RT-11
Software Support Manual

AA-H379B-TC







RT-11
Software Support Manual
AA-H379B-TC

March 1983

This document provides detailed descriptions of the components of the
RT-11 operating system. It is most useful to system programmers, but it
provides valuable background information for application programmers
as well.

This manual supersedes the RT-11 Software Support Manual, Order
No. AA-H379A-TC.

Operating System: RT-11 Version 5.0

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts



am

First Printing, March 1980
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1980, 1981, 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

clilaliltall

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M18500



aim

Contents

Preface

Chapter 2

Page
xxiii
Chapter 1 Historical Overview
1.1 Versionl . . . . . . . . . .., 1-1
1.2 Version2 . . . . . . . . L s 1-2
13 Version3 . . . . . . . ..o 1-2
14 Version4d . . . . . . . . . .. 1-3
1.5 Version5 . . . . . . . . . .. 1-3
System Components and Memory Layouts

2.1 Static Components. . . . . . . . . . .. ... L 2-1
211 TrapVectors. . . . . . . . . . . .. ... .. ... ... 2-1
2.1.2 System Communication Area. . . . . . . . . . . ... .. .. 2-3
2121 UserErrorByte . . . . . . . ... ... ... ... 2-5
2.1.2.2 Job Status Word JSW). . . . . . . . .. ... ... 2-6
2.1.3 Interrupt Vectors . . . . . . . . . . .. ... ... ... .. 2-8
214 TOPage. . . . . . . . . . ... 2-11
2.1.5 System Device Handler . . . . . . . .. .. .. ... ... 2-12
2.1.6  Resident Monitor (RMON) . . . . . . . . .. .. .. .... 2-13
2.1.7 Backgrounddob . . . . . . .. .. ... 2-15
2171 RUNCommand .. . ... ............ 2-15
2172 RCommand . . .. .. ... ... ........ 2-15
2173 .CHAINRequest. . . ... ... ......... 2-17
2.2 Dynamic Components . . . . . . . . . ... .. ... ... ... 2-19
2.2.1 Device Handlers and Free Space . . . . . . . . .. ... .. 2-20
2.2.2 Foreground and SystemdJobs. . . . . . . .. ... ... .. 2-23

2.2.2.1 Differences Between Foreground and
BackgrounddJobs. . . . . . . ... ... ... .. 2-23
2222 FRUN Command. . . ... ... ... ...... 2-24
2.2.2.3 Starting Foreground and System Jobs . . . . . . . 2-25
2.2.24 Foreground Stack . . . . . ... ... ...... 2-26
2.2.2.5 Foreground Impure Area. . . . . .. ... .. .. 2-27
i



2.3

2.2.3 User Service Routine (USR) . . . . .. .. .. .. ... . . 2-27
2231 Structure. . . . . .. ... ... ... ... ... 2-28
2232 Execution .. . ... ... ... ... ... .. . 2-29
2.2.3.3 Swapping Considerations. . . . . . . . . . . . . . 2-30
2.24 Keyboard Monitor KMON) . . . . .. .. ... .. ... . 2-38
2241 Adding New Commands Through CCL . . . . . . . 2-39
2242 Adding New Commands Through UCL . . . . . . . 2-40
Sizes of Components . . . . . . .. ... ... ... ... ... . 2-41
231 Sizeofthe USR . . . . . . ... ... .. ... ... .. . 2-41
232 Sizeof KMON. . . . . ... ... .. ... . .. .. .. 2-42
233 Sizeof RMON . . . . . .. .. ... ... .. ... .. . 2-42
2.3.4 Size of Device Handlers . . . . . . ... ... ... .. . 2-42

Chapter 3 Resident Monitor

iv

3.1

3.2

3.3

Terminal Service . . . . . .. ... ... ... ... .. ... 3-1
3.1.1 Output Ring Buffer . . . .. ... ... ... .. . ... .. 3-2
3.1.1.1  Storing a Character in the Output
Ring Buffer . . . . . . ... ... .. .. ... . . 3-2
3.1.1.2 Removing a Character from the Output
Ring Buffer . . . . . . ... ... ... ... . .. 3-3
312 InputRingBuffer . . . . . ... ... ... . ... .. .. . 3-3
3.1.2.1  Storing a Character in the Input
Ring Buffer . . . . . . .. ... ... .. ... .. 3-5
3.1.2.2 Removing a Character from the Input
Ring Buffer . . . . . . .. ... ... ... .. .. 3-5
3.1.3 High Speed Ring Buffer . . . . ... .. ... ... .. . . 3-6
3.14 Terminal I/O Limitations . . . . . ... . ... ... . . . 3-6
3.1.5 Control Functions . . . . . . . ... .. ... ... .. ... 3-7
3151 CTRL/C . . . .. ... .. ... ... ... 3-7
31562 CTRL/O . . . ... ... ... ... ... ..... 3-7
3153 CTRL/Sand CTRL/Q. . . . .. .. ... ...... 3-7
3.1.54 CTRL/B, CTRL/F,and CTRL/X. . . . . . ... . .. 3-8
3.1.6  SET Options Status Word . . . . . . .. .. ... ... . . . 3-8
Clock Support and Timer Service. . . . . . . .. . ... ... ... . 3-9
3.2.1 SJ Systems Without Timer Service. . . . . . . . . .. .. .. 3-9
3.2.2 Systems with Timer Service . . . . . .. . ... ... ... 3-10
Queued I/O System . . . . . . . ... ..., 3-11
331 IOQueue. ... ..... ... ... ... . ........ 3-12
3.32 Completion Queue . . . . . . . . .. .. ... .. ... .. 3-18
3.3.21 SJ Considerations . . . . . .. ... .. ..... 3-19
3.3.22 .SYNCH Considerations . . . . . . ... .. ... 3-19
3.3.3 Flow of Events in I/O Processing . . . . . . . . . ... ... 3-20
3.33.1 IssuingtheRequest . . . . ... .. ..... .. 3-20
3.3.3.2 Queuing the RequestinSJ. . . . .. .. .. ... 3-20



am

3.4

3.5

3.3.3.3 Queuing the Requestin FBand XM . . . . . . . . 3-21

3.3.3.4 Performing the /O Transfer . . . . . . . .. ... 3-22
3.3.3.5 Completing the /O Request . . . . . . . ... .. 3-23
Scheduling in Foreground/Background Systems . . . . . . . . . .. 3-24
3.4.1 Userand System State. . . . . . . . .. ... ... .... 3-25
3.4.1.1 Switching to System State
Asynchronously . . . . . . . . ... ... .... 3-25
3.4.1.2 Switching to System State
Synchronously . . . . . . . . . .. ... 3-27
3.4.1.3 Returning to User State . . . . . . . . . . . ... 3-29
3.4.2 Context Switching . . . . . . . . . . . ... ... 3-29
3.4.3 Blocking Conditions . . . . . . . . . . . . ... ... 3-30
3.4.3.1 How the Monitor Blocksadob . . . . . . . . . .. 3-31
3.4.3.2 $SYSWT Monitor Routine . . . . . . . ... ... 3-32
3.4.3.3 How the Monitor Unblocksadob. . . . . . . . .. 3-34
3.4.4 Scheduler Operations . . . . . . . . . . .. ... ..... 3-34
3.4.4.1 How the Monitor Requests a Scheduling
Pass . . . . . . . e e 3-34
3.4.4.2 Characteristics of a RunnableJob . . . . . . . .. 3-35
3.4.4.3 $RQTSW Monitor Routine . . . . . . . . ... .. 3-35
3.44.4 How the Scheduler Works . . . . . . . . . .. .. 3-35
3.4.5 Implications for Completion Routines. . . . . . . . . . . .. 3-35
Systemdobs . . . . . . ... 3-36
3.5.1 Characteristics. . . . . . . . . . . ... 0o 3-36
352 Logical Names. . . . . . . . . . .. . 3-37
853 JobNumber . . . . . . . . .« ..o 3-37
854 Priority . . . . . . . ... 3-37
3.5.5 Design Considerations . . . . . . . .. ... ... ... .. 3-38
3.5.5.1 Scheduling Considerations . . . . . . . . . . . .. 3-38
3.5.5.2 Space Considerations. . . . . . . . . .. ... .. 3-38
3.5.6 Programmed Requests . . . . . . . ... ... .. ... .. 3-39
35.7 Message Handling . . . . . . ... ... .. ... ..... 3-39
3.5.8 Monitor Commands . . . . . . . . . .. ..o 3-40
3.5.8.1 SRUN and FRUN Commands . . . . . . . . . .. 3-40
3.5.8.2 LOAD and UNLOAD Commands. . . . . . . . .. 3-40
3.5.8.3 SUSPEND and RESUME Commands. . . . . . . . 3-41
3.5.84 SHOW JOBS Command . . . . . . .. e 3-41
3.5.85 SETTT: NOFB Command . . . . . . .. .. ... 341
3.5.9 Communicating with a SystemdJob. . . . . . . . . . .. .. 341
3.5.10 How to Queue Files from an Application Program . . . . . . 342
3.5.10.1 Setting UptheJobBlock. . . . . . . . . ... .. 3-43
3.5.10.2 Setting Up the FileBlock . . . . . . . . ... .. 344
3.5.10.3 Setting Up the QUEUE Request Block . . . . . . . 345
3.5.10.4 Issuing the .LOOKUP Request . . . . . . . . . .. 3-45
3.5.10.5 Issuing the Request to QUEUE. . . . . . . .. .. 3-45
3.5.10.6 Receiving Acknowledgment from QUEUE . . . . . 345
3.5.10.7 QUEUE Example Program. . . . . . . . . .. .. 3-46



SR 1"

3.6 DataStructures . . . . . . . . . .. ... 348

3.6.1 FixedOffsets. . . . . . . .. ... ... ... ... .... 3-48
3.6.1.1 Configuration Word . . . . . . . . ... ... .. 3-52
3.6.1.2 Low-Memory Protection Bitmap . . . . . . . . . . 3-53
3.6.1.3 Extension Configuration Word . . . . . . . . . .. 3-55
3.6.1.4 System Generation Features Word . . . . . . . . . 3-55
36.2 ImpureArea. . . . . . . ... .. ... ... ... 3-56
3.6.2.1 Single-Job Monitor Impure Area . . . . . . ... . 3-56
3.6.2.2  Foreground/Background Monitor Impure
Area. . . . . . ... 3-56
3.6.3 Queue Element Format Summary . . . . . ... ... ... 3-61
3.6.3.1 I/OQueueElement. . . . . ... .. .. .. ... 3-61
3.6.3.2 Completion Queue Element. . . . . . . . .. ... 3-62
3.6.3.3 Synch Queue Element . . . . . . .. .. .. ... 3-62
3.6.3.4 Fork QueueElement. . . . . . . . ... ... .. 3-62
3.6.3.5 Timer Queue Element . . . . . . .. .. ... .. 3-63
3.6.4 T1/O Channel Format . . . . . ... ... ... ....... 3-63
3.6.5 Device Tables . . . . . . . .. ... ... .. .. ..... 3-64
3.6.51 $PNAME Table . . .. ... .. ... ...... 3-64
3652 $STAT Table. . . . . . . . . . . .. ... .... 3-65
3.6.53 $DVRECTable. . . . . . .. .. ......... 3-65
3654 S$SENTRY Table. . . . . . . ... .. ....... 3-65
3.6.55 $DVSIZTable . . . .. ... .. .. .. ..... 3-66
3656 $HSIZETable . . . . . ... .. ......... 3-66
3.6.5.7 $UNAM1 and $JUNAM2 Tables. . . . . . . . . .. 3-66
3658 $OWNERTable . . . ... ... ......... 3-66
3.6.5.9 Adding a Device to the Tables . . . . . . . .. .. 3-67

Chapter 4 Extended Memory Feature

4.1 Introduction. . . . . . . . . . . ... 4-1
411 16-Bit Addressing . . . . . . . . . . ... ... ... .. .. 41

4.1.2 Virtual and Physical Addresses in a 28 K-Word
System . . . .. ... 4-2
4.1.3 Circumventing the 28K-Word Memory Limitation . . . . . . . 4-2
414 18-Bit Addressing . . . . . . . . . .. ... ... 4-5

4.1.5 Virtual and Physical Addresses with Extended
Memory Hardware. . . . . . . . . . ... .. .. ...... 4-5
416 Circumventing the 32K-Word Address Limitation . . . . . . . 4-6
4.2 Hardware Concepts . . . . . . . . . . . .. ... ... ... 4-7
421 Memory Management Unit. . . . . . . . . ... ... .... 4-8
422 ConceptofPages. . . . . .. .. .. .. ... ........ 4-9
423 Relocation. . . . . ... ... .. .. ... e e 4-9
4.2.4 Active Page Register (APR) . . . . . . . . .. .. .. ... 4-11
4241 DPage Address Register (PAR). . . . . . ... ... 4-13
4.2.4.2 Page Descriptor Register (PDR). . . . . . . . . .. 4-13

vi



4.3

4.4

4.5

4.6

4.2.5

4.2.6
4.2.7
4.2.8

Converting a 16-Bit Address to an 18-Bit

Address . . . . . . ..
Status Registers . . . . . . . . . . .. .. ... ..
Kernel and User Processor Modes . . . . . . .. . . .. ..
Default Mapping. . . . . . . . . . . . . ...

Software Concepts . . . . . . . . . . . . . ...

43.1
4.3.2

4.3.3

XM System Memory Layout . . . . . . . . .. .. .. ...
How Programs Control Mapping . . . . . . . . . . . . . ..

4.3.2.1 Physical Address Regions. . . . . . . . . . .. ..
4.3.2.2 Virtual Address Windows . . . . . . . . .. . ..
4.3.2.3 Program’s Logical Address Space (PLAS) . . . . . .

Two Kinds of Mapping . . . . . . . . . . . ... ... ...

4331 Virtualdobs . . . . . . . .. .. ...
4.3.3.2 Privilegeddobs. . . . . . . ... ..o L
4.3.3.3 Differences Between Virtual and

Privileged Jobs. . . . . . . .. ...
4.3.3.4 Context Switching Between Virtual and

Privileged Jobs. . . . . . . . . .. ..o L.

Typical Extended Memory Applications . . . . . . . . . .. .. ..

44.1
4.4.2
4.4.3
4.4.4

445

Extended Memory Overlays . . . . . . . ... ... ....
Large Buffers or Arrays in Extended Memory . . . . . . . .
Multi-User Program . . . . . . . . . . . .. ... ... ..
Work Space in Extended Memory . . . . . . . . . . .. ..

44.4.1 Enabling the XM Feature of the .SETTOP

Programmed Request. . . . . . . . . .. ... ..
4.4.4.2 Program and Virtual High Limits and the

Next Free Address . . . . . . .. . ... ... ..
4443 Non-XM .SETTOP . . . ... ... .. .. ....
4444 XM.SETTOP . . ... ... . ... ... ....
4445 XM .SETTOP and PrivilegeddJobs . . . . . . . ..
4446 XM .SETTOP and VirtualdJobs. . . . . . . . . ..
4.4.4.7 Summary of SETTOP Action. . . . . . . . . . ..

Plan Your Own Application . . . . . . . . . ... ... ..

Introduction to the Extended Memory Programmed
Requests. . . . . . . . . . . . Lo
Extended Memory Data Structures. . . . . . . . . .. .. ... ..

4.6.1

4.6.2
4.6.3

4.6.4
4.6.5
4.6.6

Region Definition Block . . . . . . . . .. ... ... ...

4.6.1.1 Region StatusWord . . . . . . . .. .. .. ...
46.1.2 RDBDF Macro. . . . . . . . . . . ... ... ..
46.1.3 RDBBK Macro. . . . . . . . . . . ... ... ..

Region Control Block . . . . . . .. . ... ... ... ..
Window Definition Block. . . . . . . . .. .. .. ... ..

46.3.1 Window Status Word. . . . . . . . . . .. .. ..
46.3.2 .WDBDF Macro . . .. .. .. . o
4633 WDBBKMacro . . . . . . . .. .. ... ....

Window Control Block . . . . . . . . . . . .. ... ....
I/O Queue Element . . . . . . . ... ... ... .....
Free Memory List . . . . . . . . . . .. ... ... .. ..

vii



Chapter 5

viii

4.7 Flow of Control Within Each Programmed Request. . . . . . . . . . 4-61
471 Creatinga Region: CRRG. . . .. .. .. ... .. .... 4-61
4.7.2 Creating a Window: CRAW . . . . . . . ... ... .... 4-62
4.7.3 Mapping a Window to a Region: MAP . . . . . . .. .. .. 4-62
4.7.4 Getting the Mapping Status: GMCX. . . . .. ... .. .. 4-63
475 Unmapping a Window: .UNMAP. . . . . . ... .. .. .. 4-64
476 Eliminating a Region: . ELRG . . . . . . .. .. .. .. .. 4-64
4.7.7 Eliminating a Window: ELAW . . . . . . ... ... ... 4-65
4.7.8 Summary of Extended Memory Programmed Request
ErrorCodes . . . . . . . . . . . .. . .. ... ... 4-65
4.8 Restrictions and Design Implications. . . . . . . .. .. .. .. .. 4-66
48.1 PARI1 Restriction . . . . . . .. ... .. ... ... ... 4-66
482 Programmed Requests . . . . . . . ... ... ... .... 4-67
48.3 PAR2Restriction . . . . . ... ... .. ... ... 4-67
4.8.4 Synchronous System Traps. . . . . . .. ... ....... 4-68
484.1 TRAP, BPT, and IOT Instructions . . . . . . . .. 468
4842 Trapsto4 and 10,and FPU Traps . . . . . . . .. 4-69
484.3 Memory Management Faults. . . . . ... .. .. 4-69
48.44 Memory Parity Errors . . . . . . ... ... ... 4-69
4.9 Debugging an XM Application. . . . . . . . .. ... ... ... 4-70
4.10 Extended Memory Example Program. . . . . . . . . .. .. .. .. 4-70

Multi-Terminal Feature

5.1
5.2
5.3
5.4

5.5
5.6

5.7

Components of a Multi-Terminal System . . . . . . .. ... . .... 5-1
Hardware Background Information. . . . . . . . . . ... ... ... 5-2
What Is the Console Terminal?. . . . . . . . . .. ... ... .... 54
Using Two or More Terminals . . . . . . . . .. .. ... ...... 5-5
5.4.1 A Video Console Terminal and a Hard Copy Printing

Terminal . . . . . . . . . . .. .. ... ... ... 5-5

5.4.1.1 The Video Terminal Is the Boot-Time )

Conmsole . . . . . .. .. .. .. ... .. .... 5-6
5.4.1.2 The Hard Copy Terminal Is the Boot-Time
Console . . . . . . ... .. ... ... ... 5-6

5.4.2 Switching the Console Terminal . . . . . . . . . .. ... .. 5-8
5.4.3 A Separate Terminal for EachdJob . . . . . . . . .. ... .. 5-9
5.4.4 Multi-Terminal Applications . . . . . . . . ... ... ... 5-10
Introduction to Multi-Terminal Programmed Requests . . . . . . . . 5-10
Multi-Terminal Data Structures . . . . . . . . . . ... ... ... 5-11
5.6.1 Terminal Control Block (TCB) . . . . . . .. .. .. .. .. 5-11

56.1.1 Format. . . . . . .. .. .. .. .. ... .. 5-11

5.6.1.2 PatchingaTCB . . ... ... ... ....... 5-19
5.6.2 Asynchronous Terminal Status (AST) Word . . . . . . . .. 5-19
Using the Multi-Terminal Programmed Requests. . . . . . . . . .. 5-20
5.7.1 Attaching a Terminal: MTATCH . ... .. ... ... .. 5-20
5.7.2 Getting Terminal Status: MTGET . . . . . . .. ... ... 5-21
5.7.3 Setting Terminal Characteristics: MTSET . . . . . . . . .. 5-21
5.7.4 Getting a Character: MTIN . . . . . . ... ... ..... 5-22



Im

Chapter 6

5.8

5.9
5.10

5.11

5.12
5.13
5.14

5.7.5 Printing a Character: MTOUT. . . . . . . . ... ... .. 5-22

5.7.6 Printing a Line: MTPRNT. . . . . . .. .. ... .. ... 5-23
5.7.7 Resetting CTRL/O: MTRCTO . . . . .. ... ... .. .. 5-23
5.7.8 Getting System Status: MTSTAT . . ... ... ... ... 5-23
5.79 Detaching a Terminal: MTDTCH . . . . .. ... ... .. 5-24
Summary of Multi-Terminal Programmed Request

Error Codes . . . . v v v v i e e e e e e e e e e e e e e 5-24
The Console as a Special Case . . . . . . . . . . . ... .. .... 5-24
Interrupt Service . . . . . . . . ..o 5-26
5.10.1 Local Terminals . . . . . . . . . .« . o v v v v v 5-26
5.10.2 Remote Terminals . . . . . . . . . . . .« .« v .. 5-26
Polling Routines. . . . . . . . . . . . .. . oo 5-27
5.11.1 Time-Out Routine for DL Terminals . . . . . . . . . . . .. 5-27
5.11.2 DZ Remote Line Polling Routine . . . . . . . . . . . .. .. 5-28
Restrictions . . . . « v v« v v e e e e e e e e e e e e e e 5-28
Debugging a Multi-Terminal Application. . . . . . . .. .. .. .. 5-29
Multi-Terminal Example Program . . . . . . . . . .. ... .. .. 5-29

Interrupt Service Routines

6.1
6.2

6.3

6.4

6.5

6.6
6.7

Non-Interrupt Programmed /O . . . . . . . .. . .. ... .. ... 6-1
Interrupt-Driven /O . . . . . . . . . . ... oo 6-2
6.2.1 HowanInterrupt Works. . . . . . . .. .. ... ... ... 6-3
6.2.2 Device and Processor Priorities. . . . . . . . . . . .. .. .. 6-3
6.2.3 Processor Status PS)Word . . . . . . . . ... ... 64
In-Line Interrupt Service Routines Versus Device
Handlers . . . . . o v o v i e e e e e e e e e e e e e e e e e e 64
How to Plan an Interrupt Service Routine . . . . . . . . . . . . . .. 6-8
6.4.1 Getto Know Your Device . . . . . . . . . .. .. ... ... 6-8
6.4.2 Study the Structure of an Interrupt Service

Routine . . . . . . . . o o e e e e e e e e e e 6-10
6.4.3 Study the Skeleton Interrupt Service Routine . . . . . . . . 6-10
6.4.4 Think About the Requirements of Your Program . . . . . . . 6-10
6.4.5 Prepare a Flowchart of Your Program . . . . . . ... ... 6-10
6.46 WritetheCode. . . . . . . . . . . . . oo 6-11
6.4.7 Test and Debug the Program. . . . . . . . ... . ... .. 6-11
Structure of an Interrupt Service Routine . . . . . . . . . ... .. 6-11
6.5.1 Protecting Vectors: PROTECT. . . . . . . ... ... ... 6-11
6.5.2 Setting Up the Interrupt Vector . . . . . . . . . ... . .. 6-12
6.5.3 Stopping Cleanly: DEVICE . . . . . . ... .. ...... 6-12
6.5.4 Lowering Processor Priority: INTEN. . . . . . . . .. . .. 6-13
6.5.5 Issuing Programmed Requests: SYNCH . . . . . . . . . .. 6-14
6.5.6 Running at Fork Level: FORK. . . . . . . ... ... ... 6-16
6.5.7 Summary of .INTEN, .FORK, and .SYNCH Action . . . . . . 6-17
6.5.8 Exiting from Interrupt Service: RTSPC . . . . . . . . . .. 6-18
6.5.9 Servicing Interrupts in FORTRAN: INTSET . . . . . . . . . 6-19
Skeleton Outline of an Interrupt Service Routine. . . . . . . . . . . 6-19
Interrupt Service Routines in XM Systems . . . . . . . . . . .. .. 6-19

ix



——mm

Chapter 7 Device Handlers

7.1

7.2

7.3
7.4

7.5

How to Plan a Device Handler . . . . . . . . . . . ... ... ...

7.1.1 Get to Know Your Device . . . . .. .. ... .. .....
7.1.2  Study the Structure of a Standard Device Handler . . . . . .
7.1.3  Study the Skeleton Device Handler. . . . . . . . . . . ...
7.1.4 Think About Using the Special Features . . . . . . . . . ..
7.1.5 Study the Sample Handlers . . . . . . . .. ... ... ..
7.1.6 Prepare a Flowchart of the Device Handler. . . . . . . . . .
717 WritetheCode. . . . . . . . . . ... ... ... ...,
7.1.8 Install, Test, and Debug the Handler. . . . . . . . . . . ..

7.2.1 Preamble Section . . . . . . . . . . . . . ... ... ...

72.1.1 ..DRDEF Macro. . . . . . . . . . . . .. .....
7.2.1.2 Device-Identifier Byte . . . . . . . . . .. . ...
7.2.1.3 Device Status Word . . . . . . . .. .. .. ...
7.2.14 Device Size Word. . . . . . . .. .. ... ....

7.2.2 Header Section. . . . . . . . . . . . . ... ... ... ..

7.2.2.1 Informationin Block 0. . . . . . . . . ... ...
7.2.2.2 First Five Words of the Handler . . . . . . . . . .
7223 DRBEGMacro. . . . .. . ... ... ......
7.2.2.4 Multi-Vector Handlers: DRVTB Macro. . . . . . .
7.2.2.5 PS Condition Codes . . . . . . . . . ... ....

7.2.3 1/O Initiation Section. . . . . . . . . .. ... ... ....
7.2.4 Interrupt Service Section. . . . . . . . . ... ... ....

7.24.1 Abort Entry Point . . . . . . . ... ... ....
7.2.4.2 Lowering the Priority to Device

Priority . . . . . . . . . ... ..
7243 DRASTMacro. . . . ... ... . ... .....
7.2.4.4 Guidelines for Coding the Interrupt Service

Section. . . . . ... ... ...

7.2.5 1/O Completion Section. . . . . . . .. ... ... .. L
7.2.6 Handler Termination Section. . . . . . . . . . . . . .. ..

7.2.6.1 The DRENDMacro . . . . . . . . . . . . . ...
7.2.6.2 Pseudo-Devices. . . . . . . . . .. .. . ... ..

Skeleton Outline of a Device Handler . . . . . . . . ... ... ..
Handlers That Queue Internally . . . . . . . . . .. .. .. ....

7.4.1 Implementing Internal Queuing . . . . . . . . . .. .. ..
7.4.2 Interrupt Service for Handlers That Queue

Internally . . . . . . . . . ... ... ... ... .
7.4.3 Abort Procedures for Handlers That Queue

Internally . . . . . . . . ... . . ... .. ... ...,

SET Options. . . . . . . . . . . ... .. s

75.1 How the SET Command Executes . . . . . . .. ... ...
7.5.2 SET Table Format. . . . . ... ... ... ... .....
753 DRSET Macro. . . . . . . .. .. .. ... ... .....
7.5.4 Routines to Modify the Handler . . . . . . . . .. .. ...
7.5.5 Examples of SET Options . . . . . . .. .. .. .. ....



R

7.6

7.7

7.8

7.9

7.10

Device /O Time-out . . . . . . . .« o o v v i e e e e e e

76.1 TIMIOMACrO . . . . « v v v v v e i e e e e e e e
76.2 .CTIMIOMacro . . . . . « v v v v v v i i e v e e
7.6.3 Device Time-out Applications . . . . . . . . . ... .. ..

7.6.3.1 Multi-Terminal Service. . . . . . . . . . . . ...
7.6.3.2 Typical Timer Procedure for a Disk

Handler . . . . . . . . . . . . .. ...
7.6.3.3 Line Printer Handler Example . . . . . . . . . . .

Error Logging . . . . . . . .« . . . .o
7.7.1 When and How to Call the Error Logger . . . . . . . . . ..

7.7.1.1 To Log a Successful Transfer . . . . . . . .. ...
7712 TologaHardError. . .. ... .. .. .....
7713 ToLogaSoftError. . . . . . . ... ... ....
7.7.1.4 Differences Between Hard and Soft

Errors . . . . . . .o e e e e e e e
7715 To Call the Error Logger . . . . . . . . . . . . ..

7.7.2 Error Logging Examples . . . . . . .. .. .. .. .. ...
77.3 How to Add a Device to the Reporting Program . . . . . . .

Special Functions . . . . . . . . .. ...

7.8.1 .SPFUN Programmed Request . . . . . . . . . ... .. ..
7.8.2 How to Support Special Functions in a Device

Handler . . . . . . . . . .« o o e e
78.3 Variable Size Volumes. . . . . . . . . . . . .. .. .. ..
7.8.4 Bad Block Replacement . . . . . . . .. .. ... .....
7.8.5 Devices with Special Directories . . . . . . . . . . . . . ..

Device Handlers in XM Systems . . . . . . . . . . . . . . . .. ..

79.1 Naming Conventions and the System Conditional . . . . . .
792 XM Environment . . . . . . . . . .. ..o 000
79.3 The Queue Elementin XM. . . . . . . ... ... ... ..
794 DMA Devices: $MPPHY Routine. . . . . . . . . . .. ...
7.9.5 Character Devices: $GETBYT and $PUTBYT Routines. . . .

7951 $GETBYT Routine. . . . . . . . .. .. ... ..
7952 $PUTBYT Routine. . . . . . . .. .. ... ...

79.6 Any Device: $SPUTWRD Routine . . . . . . . . .. . . . ..
797 Handlers That Access the User Buffer Directly. . . . . . . .

System Device Handlers and Bootstraps . . . . . . . . .. ... ..

7.10.1 Monitor Files . . . . . . . . . . . . oo
7.10.2 Creating a System Device Handler. . . . . . . . . . .. ..

7.10.2.1 Primary Driver. . . . . . . . . . . . . . ... ..
7.10.2.2 Entry Routine . . . . . . . . . .. .. ... ...
7.10.2.3 Software Bootstrap. . . . . . . . . . . .. .. ..
7.10.2.4 Bootstrap Read Routine . . . . . . . . . ... ..
7.10.2.5 Bootstrap Error Routine . . . . . . . .. .. . ..
7.10.2.6 DRBOT Macro. . . . . . « v « v v v v v v v o v

7.10.3 DUP and the Bootstrap Process . . . . . . . . . . . . . ..

xi



7.11

7.12

7.13

How to Assemble, Link, and Install a Device Handler . . . . . .

7.11.1 Assembling a Device Handler . . . . . . . . .. .. .. ..
7.11.2 Linking a Device Handler . . . . . . . . .. ... ... ..
7.11.3 Installing a Device Handler . . . . . . . . . .. .. .. ..

7.11.3.1 Using the Bootstrap to Install Handlers

Automatically . . . . . . . ... . ... ... ..
7.11.3.2 Using the INSTALL Command to Install

Handlers Manually. . . . . .. ... ... ....
7.11.3.3 Using the DEV Macro to Aid Automatic

Installation . . . . .. . ... ... .......
7.11.3.4 Installing Devices Whose Hardware Is

Present . . . . . .. ... ... ... ...,
7.11.3.5 Writing an Installation Verification

Routine . . . . . .. ... ... ...,
7.11.3.6 Overriding the Hardware Restriction. . . . . . . .

How to Test and Debug a Device Handler . . . . . . .. . ... ..

7121 Using ODT to TestaHandler . . . . . . . .. . ... ...
7122 UsingODTinXM. .. . ... ... ... .........

Contents of .SYS Image of a Device Handler . . . . . . . .. .. ..

Chapter 8 File Formats

8.1

xii

Object File Format (OBJ) . . . . . . . .. ... ... .......
8.1.1 Global Symbol Directory Block (GSD) . . . . . . .. . . ..

8.1.1.1 Module Name (Entry Type 0). . . . . . .. .. ..
8.1.1.2 Control Section Name (Entry Type 1). . . . . . . .
8.1.1.3 Internal Symbol Name (Entry Type 2) . . . . . . .
8.1.1.4 Transfer Address (Entry Type 3) . . . . . . . . ..
8.1.1.5 Global Symbol Name (Entry Type4) . . . . . . ..
8.1.1.6 Program Section Name (Entry Type 5) . . . . . . .
8.1.1.7 Program Version Identification

(Entry Type 6) . . . . . . . . . . . ... ... ..
8.1.1.8 Mapped Array Declaration

(Entry Type 7) . . . . . . . . .. ...

8.1.2 End of Global Symbol Directory Block (ENDGSD) . . . . . .
8.1.3 Text Information Block (TXT) . . . . ... . ... ... ..
8.1.4 Relocation Directory Block RLD) . . . . . . ... ... ..

8.14.1 Internal Relocation (Entry Type1) . . . . . . . ..
8.1.4.2 Global Relocation (Entry Type 2). . . . . . . . ..
8.1.4.3 Internal Displaced Relocation

(Entry Type 3) . . . . . . . . .. .. ... ....
8.1.4.4 Global Displaced Relocation

(Entry Type4) . . . . . . . . .. . . ... ....
8.1.4.5 Global Additive Relocation

(Entry Type5) . . . . . . . . .. .. ... .. ..
8.1.4.6 Global Additive Displaced Relocation

(Entry Type 6) . . . . . . . .. .. ... .....

8.1.4.7 Location Counter Definition
(Entry Type 7) . . . . . . . . .. ...



A

Chapter 9

8.1.4.8 Location Counter Modification

(Entry Type 10) . . . . . . . . . . .. ... ... 8-18
8.1.4.9 Program Limits (Entry Type 11) . . . . . . . . .. 8-19
8.1.4.10 P-sect Relocation (Entry Type 12). . . . . . . . . . 8-19
8.1.4.11 P-sect Displaced Relocation
(Entry Type 14) . . . . . . . . . . . ... .. .. 8-20
8.1.4.12 P-sect Additive Relocation
(Entry Type 15) . . . . . . . . . . . ... .. .. 8-20
8.1.4.13 P-sect Additive Displaced Relocation
(Entry Type 16) . . . . . . . . . . . ... .... 8-21
8.1.4.14 Complex Relocation (Entry Type 17) . . . . . . . . 8-22
8.1.5 Internal Symbol Directory Block ISD) . . . . . . . . .. .. 8-23
8.1.6 End of Module Block (ENDMOD). . . . . . ... ... ... 8-24
8.2 Symbol Table Definition File Format STB) . . . . . . . . ... .. 8-24
8.3 Library File Format (OBJ and MAC). . . . . . . .. ... ... .. 8-24
8.3.1 Library Header Format . . . . . ... .. .. ... .... 8-25
8.3.2 Library Directories. . . . . . . . . . . . .. ... ... .. 8-26
8.3.3 Library End Block Format. . . . . . . .. ... ... ... 8-28
8.4 Absolute Binary File Format (LDA) . . . . . . . .. .. ... ... 8-28
8.5 Save Image File Format (SAV). . . . . . . . . . .. ... ... .. 8-30
8.6 Relocatable File Format (REL). . . . . . . . . . . . .. .. .... 8-32
8.6.1 REL Files Without Overlays . . . . . . . . .. .. ... .. 8-32
8.6.2 REL FileswithOverlays. . . . . . .. ... ... ..... 8-34
8.7 Stream ASCII File Format. . . . . . . . ... ... .. ...... 8-34
88 CREFFileFormat. . . . . . . . .. . .. ... .. ........ 8-36
8.9 Error Log File Formats . . . . . . . . . ... .. ... ...... 8-38
8.9.1 Error Log Disk File Format . . . . . . . .. ... ... .. 840
File Storage
9.1 Random-Access Devices . . . . . . . . . . .. .. ..o oo 9-1
911 HomeBlock . . . . . . . . . ... oo 9-1
9.1.2 = Directory Structure . . . . . . . . . ... ... 94
9.1.2.1 Directory Header Format. . . . . . . . . . .. . .. 94
9.1.2.2 Directory Entry Format . . . . . .. . . ... ... 94
9.1.23 FileProtection. . . . . . . .. ... ... ... .. 9-8
9.1.24 Sample Directory Segment . . . . . . . . . . . . .. 9-8
9.1.3 File Storage on Random-Access Devices . . . . . . . .. .. 9-10
9.1.4 Size and Number of Files . . . . . . . . . . ... ... .. 9-12
9.1.5 Splitting a Directory Segment . . . . . . .. . . . ... .. 9-13
9.1.6 How to Recover Data When the Directory Is
Corrupted . . . . . . . . . .. ..o 9-18
9.1.6.1 Examine Segment1l . . . . . . . . . . ... ... 9-18
9.1.6.2 Follow the Chain of Segments . . . . . . . . . .. 9-18
9.1.6.3 Remove the Data from the Good Segments . . . . . 9-20
9.1.6.4 Remove the Data from the Bad Segment . . . . . . 9-20
9.1.7 Interchange Diskette Format. . . . . . . . . . . . ... .. 9-21

xiii



9.2

Sequential-Access Devices . . . . . . . . . .. .. ... ... ...

9.21
9.2.2

Magtape Structure. . . . . . . .. ... ... ... ...
Cassette Structure . . . . . . . . . . ... ... ... ...

Chapter 10 Programming for Specific Devices

Xiv

10.1 Magtape Handlers MM, MS,MT) . . . . . . . . . . . . . . ....
10.1.1 File Structure Magtape Handler . . . . . . . . . . .. ...

10.2

10.1.1.1 Searching by Sequence Number . . . . . . .. ..
10.1.1.2 Searching by File Name . . . . . . . . . ... ..
10.1.1.3 Programmed Requests . . . . . . . .. ... ...
10.1.1.4 Issuing Hardware Handler Calls with

the File Structure Module . . . . . . .. ... ..

10.1.2 Hardware Magtape Handler . . . . . . . . .. .. .. ...

10.1.3

10.1.2.1 Exception Reporting . . . . . . . . .. ... ...
10.1.2.2 Reading and Writing Physical Blocks. . . . . . . .
10.1.2.3 Spacing Forward and Backward . . . . . . . . . .
10.1.24 Rewinding . . . . . . . . . . . .. .. ... ...
10.1.2.5 Rewinding and Going Off Line . . . . . . . . . . .
10.1.2.6 Writing with Extended Gap . . . . . . . . . .. .
10.1.2.7 Writing a Tape Mark. . . . . . . ... ... ...
10.1.2.8 Error Recovery. . . . . . . . . . .. ... . ...
10.1.2.9 Non-File-Structured .LOOKUP Programmed

Request . . . . . .. .. .. ... ... .....
10.1.2.10 .CLOSE Programmed Request . . . . . . . . . . .
10.1.2.11 Non-File-Structured .WRITx Programmed

Requests. . . . . . ... ... ... ... ....
10.1.2.12 Non-File-Structured .READx Programmed

Requests. . . . . . .. ... ... ... .....
10.1.2.13 Enabling 100ips Streaming on a TS05 . . . . . . .

Transporting Tapesto RT-11 . . . . . . . ... ... ...

10.1.4 Seven-Track Tape . . . . . . . . . . . . ... ... ....
Cassette Handler: CT . . . . . . . . . . . . . . . . . . .. .. ..

10.2.2

10.2.1.1 .LOOKUPRequest. . . . . . . . ... ......
10.2.1.2 .DELETE Request . . . . . . . . ... ... ...
10.2.1.3 .ENTERRequest. . . . . . . . . ... ... ...
10.2.14 .CLOSERequest . . . . . . . . .. ... .....
10.2.1.5 .READ/WRITE Requests. . . . . . . ... .. ..

Cassette Special Functions. . . . . . . . . ... ... ...

10.2.21 Rewind. . . . . . . . .. ...
102.22 LastFile. . . . . . . . . . .. .. .. ... ...
10223 LastBlock . . . . . . . . . .. .. ... .... .
10224 NextFile. . . . . . . . .. ... ... ... ...



110

10225 NextBlock. . . . . . . . . . . . ... ..., 10-28

10.2.26 WriteFileGap. . . . . . . . . . . .. ... ... 10-28

10.2.3 EOF Detection. . . . . . . . . . .« o v v v v v v v .. 10-29

10.3 Diskette Handlers: DX and DY . . . . . . . . . .. ... .. ... 10-29
10.4 Card Reader Handler: CR . . . . . . . . . . . . . . ... ... .. 10-31
10.5 High-Speed Paper Tape Reader and Punch: PC. . . . . . . . . . .. 10-35
10.6 Console Terminal Handler: TT . . . . . . . . . . . . . . . . . ... 10-35
10.7 RKO06/07 Disk Handler: DM . . . . . . . . . . . . ... 10-36
10.7.1 Bad Block Replacement . . . . . . . . . . . ... ... .. 10-36
10.7.2 SPFUNRequests . . . . . . . . . . ... .. .. .. ... 10-37

10.8 RL01/02 Disk Handler: DL.. . . . . . . . . . . . . . . ... .... 10-38
10.9 Null Handler: NL . . . . . . . . . . . o o e e e e e e e e e 10-40
10.10 DECtape Il Handler: DD. . . . . . . . .. . .. ... ... .... 1040
10.10.1 Write-Protect Feature . . . . . . . . . . . . . . . . . ... 1040
10.10.2 Data Storage. . . . . . . . . . ..o 1040
10.10.3 Adding Bad Blocks to Avoid Excessive Rewinds . . . . . . . 1041

10.11 MSCP Disk Handler: DU . . . . . . . . . . . . . . ... .. 1042
10.11.1 Addressingan MSCPDisk . . . . . . . . . . ... .. ... 1042
10.11.1.1 MSCP Unit Numbers. . . . . . . . . . . . . ... 1043

10.11.1.2 Controller Port Numbers . . . . . . . . . . .. .. 1043

10.11.1.83 Disk Partition Numbers . . . . . . . . . . . . .. 1044

10.11.2 .SPFUN Requests . . . . . . . . . . . . o v v v v v v v 1046

10.12 Virtual Memory Handler: VM . . . . . . . . .. ... ... .... 1047
10.13 Logical Disk Handler: LD . . . . . . . . . ... .. ... ..... 10-50
10.13.1 LD Translation Tables . . . . . . . . . . . .. .. .. ... 10-50
10.13.2 Other Bits Used by the LD Handler . . . . . . . . . . ... 10-51
10.13.3 Special LD Option: /$ . . . . . . . . . .. ... ... ... 10-52

Appendix A RK, DX, and PC Device Handlers

Appendix B Converting Device Handlers to V05 Format

Appendix C Sample Application Program

Index

Tables
2-1 Trap Vectors. . . . . . . . . . . . . e 2-2
2-2 System Communication Area . . . . . . . . ... ... 2-3
2-3 UserErrorByte . . . . . . . . . . . oo 2-6
2-4 Job Status Word JSW) . . . . . . . ... .. e e e e e e 2-6

XV



Xvi

2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1
4-2
4-3

4-5
4-6

4-7
4-8
49
4-10
4-11

4-12
4-13
4-14

4-15
4-16
5-1

5-2
5-3
54
5-5
5-6
5-7

5-8
6-1
6-2
6-3
7-1
7-2

Interrupt Vectors . . . . . . . . ... ...

Monitor P-sects . . . . . . . . ... ., 2-14
P-sect Ordering for FORTRAN Programs (Low to High Memory) . . . 2-34
Sizes of Distributed Components in Memory . . . . . . . . . . ... 2-41
SET Options Status Word . . . . . . . . . . ... .. ... ..... 3-8
Values of the Interrupt Level Counter INTLVL). . . . . . . . . . . 3-26
Job’s Stack After INTEN . . . . . . . . . ... .. ... ..... 3-27
Job’s Stack After SENSYS . . . . . . . . . . ... ... ... 3-28
Blocking Conditions . . . . . . . . . . .. ... ... ... .... 3-31
Request FlagBits . . . . . . . . . . ... ... ... ... .... 3-44
Acknowledgment Flag Bits. . . . . . . . . . . .. .. .. ..... 3-46
Resident Monitor Fixed Offsets. . . . . . . . . . . .. ... .... 3-48
The Configuration Word, Offset 300 . . . . . . . . . .. .. . ... 3-52
Low-Memory Bitmap. . . . . . . . . . .. .. .. ... ...... 3-53
Extension Configuration Word, Offset 370 . . . . . . . . . . .. .. 3-55
System Generation Features Word, Offset 372 . . . . . . . . . . .. 3-56
Impure Area. . . . . . . . . . . ... 3-57
Job State Word Bits, Offset 0 . . . . . . . . . . . .. .. ..... 3-60
Job Blocking Bits, Offset 36 . . . . . . . . .. .. ... ...... 3-60
Channel Status Word (CSW). . . . . . . . . ... .. .. ..... 3-64
Initial Contents of Kernel and User APRs . . . . . . . .. ... .. 4-19
Initial Register Contents for Virtualdob . . . . . . . . . . ... .. 4-20
Comparison of Virtual and Privileged Jobs. . . . . . . . . . .. .. 4-33
Background .SETTOP Summary . . . . . . . . ... ... .. ... 4-47
Summary of Foreground Job High Limit After SETTOP . . . . . . . 4-49
Summary of Activities for a Program in an Extended

Memory System . . . . . . . . . ... 4-51
Region Definition Block . . . .. . . .. . . ... .. .. ..... 4-52
Region Status Word . . . . . . . . . . ... ... ... . ..... 4-53
Region Control Block . . . . . . .. .. .. ... ... ...... 4-54
Window Definition Block. . . . . . . . .. ... ... ... .... 4-55
Correspondence Between Active Page Registers and

Virtual Addresses . . . . . . . . . . ... ... 4-57
Window Status Word . . . . . . . . . .. ... ... 4-57
Window Control Block . . . . . . . . . . .. .. .. ... ..... 4-60
Extended Memory Programmed Request Error Codes and

Meanings . . . . . . . . . . ..., 4-65
Summary of Error Codes. . . . . . . . . . . ... .. ... .... 4-66
Synchronous System Traps and Their Vectors . . . . . . . . . . .. 4-68
Summary of Activities for a Program in a

Multi-Terminal System . . . . . . . . . . .. .. ... ... ... 5-10
Contents of the Terminal Control Block (TCB) . . . . . . . .. . .. 5-13
Terminal Configuration Word, TCNFG . . . . . . . ... ... .. 5-15
Second Terminal Configuration Word, TCNF2. . . . . . . .. . .. 5-17
Terminal Status Word, T.STAT . . . . . . . . .. ... ... ... 5-18
Asynchronous Terminal Status (AST) Word . . . . . . . . ... .. 5-19
Multi-Terminal Programmed Request Error Codes and

Meanings . . . . . . . . . .. ... 5-25
Summary of Error Codes. . . . . . . . . . .. . ... ... .... 5-25
SynchBlock . . . . . . .. .. ... 6-15
Fork Block. . . . . ... ... .. ... ... . ..., 6-16
Summary of Interrupt Service Routine Macro Calls. . . . . . . . . . 6-18
Device-Identifier Byte Values . . . . . . . . . .. .. ... ..... 7-6
Device Status Word . . . . . . . .. . .. ... 7-8



1

Figures

7-8 Informationin Block 0. . . . . . . . . . . .o 0o 7-9

7—4 Handler Header Words. . . . . . . . . . . . . . .« o 7-10
7-5 Timer Block Format . . . . . . . . . . . . . . ..o 7-30
7-6 DUP Information . . . . . . . . . . . . . oo 7-56
7—7 DUP Information . . . . . . . . . . .« . e 7-59
8-1 RT-11DataBlocks . . . . . . . . . .« o 84
8-2 Entriessin GSDBlocks. . . . . . . . . ..o 8-6
8-3 Flag Bits for Global Symbol Name Entry. . . . . . . . . ... ... 8-10
84 Flag Bits for P-sect Name Entry. . . . . . . . ... ... ... .. 8-11
85 Valid Entry Types for RLD Blocks . . . . . . . . ... ... .... 8-15
86 Bit Assignments for the RLD Command Byte . . . . . .. . . ... 8-15
87 Operation Codes for Complex Relocation . . . . . . . .. ... ... 8-22
8-8 Information in Block 0. . . . . . . .. e e e 8-31
8-9 CREF Chain Interface Specification . . . . . . . . . . .. ... .. 8-36
8-10 Entry Format for CREF Input File. . . . . . . . .. ... ... .. 8-37
9-1 Home Block Contents . . . . . . . . . « o v o v 9-3
9-2 Directory Header Words . . . . . . . . . . . . ... . ... ... .. 9-5
9-3 Status Word Values . . . . . . . . . .« . o e 9-7
9-4 Interchange Diskette Sector 7 . . . . . . . . . . .. .. ... ... 9-21
9-5 Interchange Diskette Sectors 8 Through26. . . . . . . . . . .. .. 9-22
9-6 ANSI Magtape Labels in RT-11 . . . . . . . . ... .. ... ... 9-25
9-7 Cassette File Header Format. . . . . . . . . . . .. ... ... .. 9-27
10-1 Sequence Number Values for ENTER Requests . . . . . . . . . .. 10-5
010=2 ENTERErrors . . . . . v v v v v v i e i e e e e e e 10-5
10-3 Sequence Number Values for LOOKUP Requests . . . . . . . . .. 10-6
10—4 LOOKUPETIOrs . . . v « v v v v v et et e e e e e e e e e 10-7
10-5 READx Errors . . . . . . . .« o o o e e e 10-8
106 WRITX EIrors. . . . .« v v v v v e e e e et e e e e e e 10-8
10-7 End-of-File Qualifying Information. . . . . . . . . . . . . . . . .. 10-14
10-8 Hard Error Qualifying Information. . . . . . . . . . . . . . .. .. 10-14
10=9 .SPFUN ETrors . . . . « v v v v v v e e e e e e e e e 10-15
10=10.SPFUN EIrrors . . . . « v v v v v v v e e e e e e e e e 10-16
10=11.SPFUN EXrors . . . . « v v v v v v e e e e e e e e e e e 10-17
10=12.SPFUN Errors . . . . . .« v v v v e i i i e e e e e e e 10-18
10=183.SPFUN Errors . . . . « « « v v v v v e e e e e e e e e 10-18
10=14.SPFUN EIrors . . . . « v v v v v e e e e e e e e e e e e 10-19
10—15.LOOKUP Errors . . . . . .« « v v v v v v v i e e e e 10-20
10-16. WRITX Errors. . . . . . o v v v v v v it e e e e e e 10-21
10-17.READX Errors . . . . . . o o v v v v e e e e e 10-21
10-18 DEC 026/DEC 029 Card Code Conversions . . . . . . . . . . . . . . 10-32
2-1 Trap Vector Area . . . . . . . . . . .. ... ... e e e e 2-2
2-2 System Communication Area . . . . . . . . . ... ... ... ... 2-3
2-3 Job Status Word JSW) Summary . . . . . . . . . . . ... 2-8
2-4 Interrupt Vector Area . . . . . . . . . . ... 2-11
2-5 TOPage. . . . . . o o e e e e e 2-12
2-6 System Device Handler . . . . . . . ... ... ... ....... 2-13
9-7 Resident Monitor RMON) . . . . . . . . . . . . . 2-14
2-8 BackgrounddJob . . . . . . . ... 2-16
2-9 RUNCommand . . . . . . .« v v vt i vttt e e e e e 2-18
92-10 RCommand . . . . . . . . . .« . o e e e e e 2-19
xvii



—mm

xXviii

2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
3-1

3-2

3-3

3—4

3-5

3-6

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
4-1

4-2

4-3

45
46

4-7
4-8
4-9
4-10
4-11
4-12
4-13

SJ System with Two Loaded Handlers . . . . . . . . . ... . ... 2-20
SJ System with One Handler Unloaded . . . . . . . . .. .. ... 2-21
SJ System with Both Handlers Unloaded. . . . . . . . . . .. ... 2-22
Foregrounddob . . . . . . . . ... ... o 2-23
FRUN Command . . . . . . . ... .. ... ... ... ..... 2-25
FBSystem. . . . . . . . .. . ... ... 2-27
USR. . . . . e, 2-29
A FORTRAN Program in Memory . . . . . . .. ... ... .... 2-35
Keyboard Monitor . . . . . . . . . . .. ... ... 2-38
Output Ring Buffer . . . . . . . . . . ... ... .. ... ..., 3-2
Storing Characters in the Output Ring Buffer . . . . . . . . . .. .. 3-3
Imput Ring Buffer . . . . . . . . . ... .. ... ... ... .... 3-4
Storing Characters in the Input Ring Buffer . . . . . . . . . .. . .. 3-5
Timer Queue Element Format . . . . . . . . . .. ... ... ... 3-10
Components of the Queued I/O System . . . . . . . . . ... . ... 3-12
/0 Queue Element Format . . . . . . . ... ... ... ..... 3-13
I/0O Queue with Three Available Elements . . . . . . . . . .. . .. 3-14
I/O Queue with Two Available Elements . . . . . . . . . .. .. .. 3-15
I/O Queue with One Available Element . . . . . . . . . ... ... 3-15
I/0O Queue When One Element Is Returned. . . . . . . . . .. . .. 3-16
I/O Queue When Two Elements Are Returned . . . . . . . . . . .. 3-16
Device Handler Queue When a New Element Is Added . . . . . . . . 3-17
Completion Queue Element Format . . . . . . . . . ... ... .. 3-19
Synch Queue Element Format . . . . . . . . ... ... ...... 3-19
Device Handler/Resident Monitor Relationship. . . . . . . . . . .. 3-23
Interrupts and Execution States . . . . . . . ... ... ... ... 3-26
$SYSWT Monitor Routine . . . . . . . . . .. . ... .. ..... 3-33
JobBlock . . . . ... 3-43
FileBlock . . . . . . . . . . . ... 3-44
QUEUE Request Block . . . . . . ... .. ... ... ...... 3-45
Request Acknowledgment Block . . . . . . . P 3-46
QUEUE Example Program. . . . . . ... ... ... .. ..... 3-46
I/O Queue Element Format . . . . . .. .. ... ... ...... 3-61
Completion Queue Element Format . . . . . . . ... ... .. .. 3-62
Synch Queue Element Format . . . . . . .. .. ... ... .... 3-62
Fork Queue Element Format. . . . . . . . .. .. .. ... .... 3-62
Timer Queue Element Format . . . . . . .. ... ... ... ... 3-63
I/O Channel Description . . . . . . . .. ... .. .. ... .... 3-63
SOWNEREntry . . . . . . . . . ... ... ..., 3-66
16-Bit Word Addressing Space Limitation . . . . . . . . L. 4-2
Virtual and Physical Addresses in a 28K-Word System. . . . . . . . . 4-3
Chaining . . . . . . . . ..., 4-4
Overlaying . . . . . . . . . . . . . . 44
18-Bit Word Addressing Range. . . . . . . . . . . . ... ... ... 4-5
Virtual and Physical Addresses with Extended Memory

Hardware . . . . . . . . . . ..o 4-6
Program Segments Sharing Virtual Address Space . . . . . . . . . . . 4-8
MMU Address Conversion . . . . . . . . . . . . .. . ... ... .. 4-9
4K-Word Pages . . . . . . . . . .. .. ... . 4-10
Smaller Pages . . . . . . . . . . . ... 4-10
Relocation by Program. . . . . . . . . ... .. ... ... .... 4-11
Relocation by Page. . . . . . . . . . . . ... ... ... ..... 4-12
Active Page Register (APR) . . . . . . . .. ... ... ...... 4-12



LIE

4-14

4-15
4-16
4-17
4-18
4-19
4-20

4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

4-32
4-33

4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
5-1

5-2

5-3

5-5
6-1
6-2
6-3
6—4
6-5
6-6
6-7
6-8
7-1
7-2
7-3
7-4

Correspondence Between Pages and Active Page

Registers . . . . . . . . . o o .o 4-13
Page Address Register PAR) . . . . . . ... ... .. ... ... 4-13
Page Descriptor Register (PDR) . . . . . . . . . .. . ... .. .. 4-14
Virtual Address . . . . . . . . . . ..o 4-15
MMU Address Conversion (Detail) . . . . . . . . .. .. ... ... 4-15
Processor Status Word and Active Page Registers . . . . . . . . .. 4-17
Mapping the Same Virtual Addresses to Different

Physical Locations . . . . . . . . . . . . . ... 4-18
Default Mapping at Bootstrap Time . . . . . . . . . .. ... ... 4-19
XM System Memory Layout . . . . . . . . ... .. ... .. ... 4-21
Physical Address Space and Two Regions. . . . . . . . . . . . ... 4-23
Virtual Address Space and Three Windows. . . . . . . . . . . . .. 4-25
Virtual Background Job . . . . . . . . . . ... 4-28
Virtual Background Job Mapping into the Static

Region. . . . . . . . . . . e 4-29
Virtual Foreground or SystemdJob . . . . . . . . .. ... ... .. 4-30
Privileged Background Job. . . . . . . . .. .. ... 4-31
Privileged Foreground or System Job. . . . . . . . . . .. ... .. 4-32
Virtual Background Job with Extended Memory Overlays . . . . . . 4-36
Virtual Background Job with an Array in Extended

MEMOTY . . v v v v e e e e e e e e e e e 4-37
Multi-User Virtual Background Program. . . . . . . . . . . . . .. 4-38
Program and Virtual High Limits, and the Next Free

Address . . . . . . e e e e 4-40
Gaps in Virtual Address Space. . . . . . . . . . . . ... ... 4-43
Privileged Background Job. . . . . . . . .. .. ... 4-44
Virtual Background Job . . . . . . . . . .. ... 4-46
Virtual Foreground or SystemdJob . . . . . . . . . . .. .. .. .. 4-47
Background .SETTOP Summary . . . . . . . . . . . . .. .. ... 4-48
Foreground .SETTOP Summary . . . . . . . . . . . . . ... ... 4-49
Region Definition Block . . . . . . . . . . ... ... .. 4-52
Region Control Block . . . . . . . ... .. ... ... ...... 4-54
Window Definition Block. . . . . . . . . . . . . ... ... ... 4-55
WDBBK Macro Example . . . . . . .. .. ... ... ...... 4-59
Window Control Block . . . . . . . . . . . . . . .. ... .. .. 4-60
Extended Memory Example Program. . . . . . . . . .. .. .. .. 4-71
Interfaces and Physical and Logical Unit Numbers. . . . . . . . . .. 5-3
Patch for Procedure 4 . . . . . . . . . . . .. ..o 5-7
Program to Switch the Console Terminal. . . . . . . . . ... .. .. 5-8
Format of the Terminal Control Block (TCB). . . . . . . . . . . .. 5-12
Multi-Terminal Example Program . . . . . . . . .. .. ... ... 5-29
RT-11 Priority Structure . . . . . . . . . . . .. ... ... .. 6-3
Processor Status (PS) Word . . . . . . . . . .. .. ..o 6-5
In-Line Interrupt Service Routines and Device Handlers . . . . . . . . 6-7
Summary of Registers in Interrupt Service Routine Macro Calls . . . 6-18
Skeleton Interrupt Service Routine. . . . . . . . . . .. ... ... 6-20
Kernel and Privileged Mapping . . . . . . . . . . . .. . ... .. 6-21
Interrupt Service Routine Mapping Exrror . . . . . . . . . . . . .. 6-22
PAR1 Restriction for Interrupt Service Routines . . . . . . . . . .. 6-23
Skeleton Device Handler. . . . . . . . . . . . ... ... ..... 7-20
SET Option Table . . . . . . . . . . . . .. ... .. ... 7-25
Line Printer Handler Example. . . . . . . . . . . . . . ... ... 7-34
Device Handlerin XM . . . . . . . . . . . . .« . o 7-45

Xix



XX

7-5
7-6
-7
7-8
7-9
7-10
7-11
7-12
8-1
82
8-3

8-5
86

87

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39
8-40
8-41
8-42
8-43
8-44
8-45
846

Device Handler Mapping to User Buffer Area . . . . . . .. . .. . 7-51

PAR1 Mapping . . . . . . . . . ... ..., 7-52
BOOT ddn:filnam: Procedure. . . . . . . .. . . ... ....... 7-57
COPY/BOOT xxn:filnam ddm: Procedure. . . . . . . . . ... . .. 7-58
BOOT ddn: Procedure . . . . . . . . . ... ... ... ...... 7-60
Bootstrap Algorithm for Installing Device Handlers . . . . . . . . . 7-62
Installing a New Device Handler. . . . . . . .. .. ... ..... 7-63
Device Handler SAVImage . . . . . . . .. .. ... ... .... 7-71
Object Module Processing . . . . . . .. .. .. ... ... ..... 8-2
Modules Concatenated by Byte. . . . . . . . . . . . . .. ... ... 8-3
Formatted Binary Format . . . . . . . . . . . ... ... ... .. . 84
General Object Module Format. . . . . . ... . .. ... .. .. .. 8-5
Global Symbol Directory Data Block . . . . . . . . . . ... . ... .8-7
Module Name Entry Format (Entry Type 0) . . . . . . . . ... . .. 8-7
Control Section Name Entry Format (Entry Type 1) . . . . . . . . . . 8-8
Internal Symbol Name Entry Format (Entry Type 2). . . . . . . . . . 8-8
Transfer Address Entry Format (Entry Type 3). . . . . . . . .. . .. 8-9
Global Symbol Name Entry Format (Entry Type 4). . . . . . . . . .. 89
P—sect Name Entry Format (Entry Type 5). . . . . . . . . ... .. 8-11
Program Version Identification Entry Format (Entry Type 6). . . . . 8-12
Mapped Array Declaration Entry Format (Entry Type 7). . . . . . . 8-12
End of GSD Data Block . . . . . . ... ... ... ... ..... 8-13
Text Information Data Block. . . . . . . .. ... .. ... ... . 8-13
Relocation Directory Data Block . . . . . . . . . . . .. B 8-14
Internal Relocation (Entry Type 1). . . . . . . . . . . .. .. ... 8-16
Global Relocation (Entry Type 2). . . . . . . . . . . . . . .. ... 8-16
Internal Displaced Relocation (Entry Type 3). . . . . . . . . .. . . 8-16
Global Displaced Relocation (Entry Type4) . . . . .. .. ... .. 8-17
Global Additive Relocation (Entry Type5) . . . . . . . . . . .. L. 817
Global Additive Displaced Relocation (Entry Type 6) . . . . . . . . . 8-18
Location Counter Definition (Entry Type 7) . . . . . . . . . .. . . 8-18
Location Counter Modification (Entry Type 10). . . . . . . . . . . . 8-19
Program Limits (Entry Type 11) . . . . . . . . . . . . . . .. ... 8-19
P-sect Relocation (Entry Type 12) . . . . . . . . . . . . . . . ... 8-20
P-sect Displaced Relocation (Entry Type 14) . . . . . . . . . . . . . 8-20
P-sect Additive Relocation (Entry Type 15). . . . . . . . . . . . .. 8-21
P-sect Additive Displaced Relocation (Entry Type 16). . . . . . . . . 8-21
Complex Relocation (Entry Type 17) . . . . . . . . . . . . . . ... 8-23
Internal Symbol Directory Data Block . . . . . e e e e e e 8-23
End of Module Data Block . . . . . . . . . ... ... ... .... 8-24
STB File Format. . . . . . . . . .. .. ... ... ... ..... 8-25
Library File Format (OBJ and MAC). . . . . . . . . . . ... ... 8-25
Object Library Header Format . . . . . . . . . . . ... ... ... 8-26
Macro Library Header Format . . . . . . . . . . . . . .. .. ... 8-27
Library Directory Format (OBJ) . . . . . . . . . . . . .. .. ... 8-27
Library End Block Format. . . . . . . . . .. ... ... .. ... 8-28
Absolute Binary Format (LDA) . . . . . . . . .. .. ... ... . 8-29
REL File Without Overlays . . . . . . . . ... ... .. ..... 8-33
Root Relocation Information Format . . . . . . . . . . ... . ... 8-33
REL File with Overlays . . . . . . . . . . . . . . . . ... . ... 8-35
Overlay Segment Relocation Block . . . . . . . . ... .. ... .. 8-36
Error Logging Subsystem . . . . . .. . . ... ... .. .. ... 8-38
Error Logging Internals: SJ Monitor . . . . . . . . . ... ... .. 8-39
ERRLOG.DAT Format. . . . . . . .. ... ... ... ...... 8-40



nm

9-1 Random-Access Device. . . . . . . . . . . . . ..o o 92

9-2 Home Block Format . . . . . . . . .. ... .. ... ........ 9-3
9-3 Device Directory Format. . . . . . . . . . . .. ... ... ... .. 94
9-4 Directory Entry Format . . . . . . . . ... ... ..., 9-5
9-5 Status Word Format. . . . . . . . . . ... .. ... ... 9-6
9-6 DataWordFormat. . . . . . . . . . . .. . . ... ... ... 9-7
9-7 Directory Listings . . . . . . . . . . . ... 000 9-8
9-8 RT-11 Directory Segment . . . . . . . . . . . . . .. ... .. .. 9-9
9-9 Random-Access Device with Two Permanent Files . . . . . . . . . . 9-11
9-10 Random-Access Device with One Tentative File . . . . . e 9-12
9-11 Random-Access Device with Two Tentative Files. . . . . . . . . . . 9-12
9-12 Random-Access Device with Four Permanent Files. . . . . . . . . . 9-12
9-13 StoringaNew File. . . . . . . . . . . .. ... 0. 9-14
9-14 Full Directory Segment . . . . . . . . . . . .. ... ... ... 9-15
9-15 Directory Before Splitting . . . . . . . . . . . .. ... 9-16
9-16 Directory After Splitting. . . . . . . . . . . .. ... ... 9-16
9-17 Directory Links . . . . . . . . . .. .. o000 9-17
9-18 Worksheet for a Directory Chain with Four Segments . . . . . . . . 9-19
9-19 Worksheet for a Directory Chain with Nine Segments . . . . . . . . 9-19
9-20 Initialized Cassette Format . . . . . . . . . .. ... ... .... 9-24
9-21 Cassette with Data . . . . . . v v v i 9-26
9-22 Physical End of Cassette. . . . . . . .. . . ... ... ... ... 9-26
10-1 Operations Performed After the Last Block Written on Magtape . . . 10-9
10-2 Asynchronous Directory Operation Example . . . . . . . . . . . .. 10-11
10-3 Seven-Track Tape . . . . . . . . . . .« . v v v i v v 10-24
10—4 Bad Block Replacement Table . . . . . . . . . . . ... ... ... 10-39
10-5 DECtape II Tape Format. . . . . . . . . . . .. ... ... .... 1041
10-6 Bad Block Locations on DECtapeII . . . . . . . . .. .. ... .. 1042
10-7 MSCP Disk Block Number. . . . . . . .. . .. .. ... ... . .10-45
10-8 Two-Port DUHandler . . . . . . . . . .. .. ... ... ..... 1046
10-9 DU Handler Translation Table. . . . . . . . . . . .. ... .... 10-47
10-10VM Handler in a 22-bit System . . . . . . . . . . . . . ... ... 10-49
10-11 VM Handler in an 18-bit System. . . . . . . . . . . . . . ... . .10-50
A-1 RKDiskHandler . . . . . . . . . ... ... ... ... A-2
A-2 DX Diskette Handler . . . . . . . . . .. .. .. ... ...... A-22
A-3 PCPaper TapeHandler . . . . . . . . .. . ... ... ...... A-48
C-1 Sample Application Program. . . . . . . . . . . ... ... ... .. C-1

Xxi






Preface

Purpose and Audience

Design

The purpose of the RT—11 Software Support Manual is to provide detailed
descriptions of the software components of the RT—11 operating system.

It is intended for programmers with experience in MACRO-11 assembly
language who are interested in system-level programming, and for all appli-
cation programmers who want to improve their technical understanding of
the RT—11 operating system. (While the RT—11 Software Support M anual is
not strictly a tutorial manual, it does provide valuable background informa-
tion for application programmers.)

This manual will be particularly useful to you if you are a system program-
mer and your job is to support RT-11 for other users, you need to use devices
that RT—11 does not already support, or you plan to alter the RT-11 soft-
ware components. This manual can help you design more efficient programs
if you are an applications programmer, especially if’ you plan to use the
foreground/background, extended memory, or multi-terminal capabilities of
RT-11.

NOTE

DIGITAL does not maintain software that you have changed
in any way! Altering the RT-11 software components voids
your warranty and terminates your maintenance service, so
refrain from making changes unless you have the technical
expertise to be responsible for the system afterwards.

Before you read this manual you should be familiar with the topics covered
in the RT—11 System User’s Guide and with the programmed requests docu-
mented in the RT—11 Programmer’s Reference Manual. The RT-11 Software
Support Manual contains information that can help you use system
resources and the programmed requests more effectively.

The resource that can best help you while you are using this manual — espe-
cially if you are interested in monitor internals —is the microfiche listing of
the RT-11 commented source files.

This manual consists of ten chapters and three appendixes. The first two
chapters provide an overview of the RT-11 system in general as well as
information on the components, their arrangement in memory, and their

xxiii



mm

XXiv

gross structure. The chapters that follow describe the previously introduced
system components in greater depth.

Chapter 1 provides an overview of the history of RT-11’s development.

Chapter 2 describes how the software components are arranged in memory
and shows how the arrangement changes dynamically. It also provides an
overview of the components themselves.

Chapter 3 describes the internals of the Resident Monitor that are generally
common to the three RT-11 monitors. Topics that it covers include terminal
service, timer service, I/O queuing, foreground/background considerations,
system jobs, and data structures.

Chapter 4 describes the internals of the Resident Monitor that are the basis
of extended memory systems. It provides information on how the memory
management hardware works, how RT-11 implements support for 124K
words of memory, and how to design and code application programs.

Chapter 5 covers a special feature of RT—11: the ability to use more than one
terminal, or multi-terminal support. The chapter includes an example
application program.

Chapter 6 is an introduction to interrupt service in RT-11. It is useful to pro-
grammers who need to add a device to their system configuration that is not
already supported by RT—11. The chapter defines the structure and contents
of an in-line interrupt service routine, and includes information for servic-
ing interrupts in different RT—11 monitor environments.

Chapter 7 is a logical continuation of Chapter 6. It explains the differences
between in-line interrupt service routines and device handlers. It describes
how to design, code, install, and debug a device handler. The chapter also
covers some special features of handlers and gives considerations for han-
dlers that will operate in various RT-11 monitor environments. Lastly, it
lists requirements for system device handlers, and describes the bootstrap.

Chapter 8 describes the structure and format of RT-11 files. It covers stream
ASCII, LDA, REL, OBJ, STB, and SAYV files, library files, error logging files,
CREF files, and files with overlays.

Chapter 9 provides information on device directories, file storage, and for-
mats. It documents the structure of directories for random-access devices,
and shows how to repair a directory that has been corrupted. It also
describes the structure of magtapes and cassettes.

Chapter 10 describes unique attributes of various physical devices and pro-
vides information necessary for programming specifically for those devices.

Appendix A provides commented listings of three RT-11 device handlers:
RK, DX, and PC.

Appendix B explains how to convert device handlers that were written for
Version 4 of RT-11 to the current device handler format.

Appendix C contains a listing of a sample application program that uses in-
line interrupt service to control an analog-to-digital converter in a typical
laboratory situation.



Documentation Conventions

The following symbolic and vocabulary conventions are used throughout
this manual. Familiarize yourself with them before you continue reading.

Memory refers to all kinds of physical storage in the computer itself; it
includes core and semiconductor memory. It is distinguished from storage on
peripheral devices, such as disk or tape.

In all diagrams of memory, the high addresses are at the top of the picture
and the bottom of the figure represents address 0. In descriptions of data
structures and tables, low addresses and offsets are at the top of each table.

In discussions of extended memory systems, low memory refers to memory
below the 28K-word boundary. However, for LSI computers with the
MSV11-DD memory board and a special jumper installed, low memory con-
sists of the memory locations below the 30K-word boundary.

The following acronyms are used throughout this manual:

Name Meaning

USR User Service Routine
RMON Resident Monitor
KMON Keyboard Monitor

FB Foreground/Background
XM Extended Memory

SJ Single-Job

BL Baseline

EOT End-of-tape

EOF End-of-file

LEOT Logical end-of-tape
BOT Beginning-of-tape
CSW Channel Status Word
PS Processor Status Word

For your convenience, the following table shows the octal mask used to set,
clear, or test each bit in a 16-bit word.

Bit Octal Mask
0 1
1 2
2 4
3 10
4 20
5 40
6 100
7 200
8 400
9 1000

10 2000

11 4000

12 10000

13 20000

14 40000

15 100000

XXV






11

Chapter 1
Historical Overview

At its conception in 1972, RT-11 was designed to be a small, fast, easy-to-
use operating system for the PDP-11 family of minicomputers. It was devel-
oped as a single-user system for real-time and computational use; its target
applications were data acquisition, process control, and, of course, program
development.

The following sections provide an overview of the history of RT-11’s devel-
opment, showing how the operating system has evolved over the course of
eight years and four major releases. For a comprehensive overview of the
hardware, software, and documentation components of today’s RT—11 oper-
ating system, see Chapter 1 of the RT—-11 System User’s Guide.

The year 1971 was an exciting time for the computer industry. The PDP-11
computer was only a year old and DIGITAL was making computing power
feasible for thousands of applications with the introduction of this relatively
inexpensive 16-bit minicomputer.!

The software then available for the PDP—11 consisted of PTS (Paper Tape
Software, which included the PAL-11S Assembler) and DOS-11 (a batch-
oriented system). Clearly, the situation called for a low-cost, interactive sys-
tem that could be used for real-time and computational applications, and for
program development.

A popular operating system for the PDP-8, called OS/8, was the design
model for the new PDP-11 operating system, tentatively called OS-11. The
new operating system was designed to be a small, single-user, interactive
system with event-driven real-time I/O, that would run on PDP-11 comput-
ers with 28K words of memory or less. It was designed to have a simple,
modular structure; device handlers would be used for I/O transfers so appli-
cation programming could be device-independent, and files would be stored
in contiguous blocks on disk so record management would not be a program-
ming concern.

1.1 Version 1

Actual development work on OS—11 began in the fall of 1972. A group of five
system programmers and one technical writer set about refining the design
for OS-11 and producing the software and the manual. The groundwork was
laid to make OS—11 compatible with OS/8 and TOPS-10.

1 Computer Engineering: A DEC View of Hardware Systems Design, by C. Gordon Bell, J.
Craig Mudge, and John E. McNamara, Digital Press, 1978.

1-1



The first version of OS-11 included the single-job monitor and a set of pro-
gram development tools: EDIT, MACRO-11, LINK, ODT, PIP, PATCH,
EXPAND and ASEMBL (tools for developing macros in 8K-word systems),
and PIPC (for cassettes). BASIC-11, the first product to require RT-11 as its
base system, was also part of Version 1. The single-job monitor provided nec-
essary services to running programs and supervised the queued I/O system.
The operating system supported seven devices: RK, LP, TT, CT, PR, PP, and
DT.

0S-11 was renamed first to RTPS-11 (Real-Time Programming System),
then to RT-11 (Real Time). Version 1 of RT-11 was completed in the fall of
1973, and support for the GT40 video display was added in early 1974.

1.2 Version2

It soon became apparent that RT-11 was successful. More system program-
mers and technical writers were added to the group, and development for
another release was begun. Versions 2, 2B, and 2C brought some significant
new features to the operating system. A new monitor was developed that
permitted two jobs to run in a foreground/background environment. Support
was added for new peripheral devices, including MM, MT, CR, DP, RF, DX,
and DS. A number of utility programs were added to improve the set of pro-
gram development tools. These included CREF, LIBR, PATCHO, DUMP,
FILEX, SRCCOM, and BATCH. FORTRAN IV was released with Version 2,
and the operating system software included a library of FORTRAN-callable
subroutines, called SYSLIB. Version 2 was completed in the fall of 1974; the
2C update was released in early 1976.

1.3 Version3

Version 3 of RT-11 was another major release. Most significant was the
development of the extended memory monitor from a conditional assembly
of the foreground/background monitor source files. This permitted RT-11 to
support systems with up to 124K words of physical memory. Products such
as FORTRAN IV, CTS-300, and Multi-User BASIC-11 took advantage of
this feature in ways that were transparent to application programs. Support
was included for multi-terminal systems as well, and device error logging
was implemented. DCL (DIGITAL Command Language) was developed so
that almost all system programs could be accessed by English-like monitor
commands. Indirect files provided an easy-to-use alternative to BATCH.

Again, support was added for new DIGITAL peripheral devices: DL, DM,
DY, NL, and PC (which replaced PR and PP). And, more system utility
programs were introduced: PIP was divided into PIP, DUP, and DIR. Other
new utilities included PAT, FORMAT, and RESORC. System generation
was designed to permit customization and provide system flexibility. The
TECO editor was included in the distribution kits for the first time. Version
3 was completed in the fall of 1977, and the 3B update was made available in
early 1978.

1-2 Historical Overview



1

1.4 Version4

With Version 4, RT-11 could be called a mature product. The specific goals
of this development effort were to make RT-11 easier to install and main-
tain. Tools were provided, in the form of BINCOM, SIPP, SRCCOM, and
SLP, to make the generation and installation of patches almost automatic.
System jobs (special foreground jobs provided by DIGITAL) handled error
logging and file queuing. Monitor files were separated from system device
handler files, providing greater flexibility while saving storage space. Not
least among the accomplishments was a change to the linker that permitted
overlays to reside in extended memory rather than on a mass storage device.
The KED and K52 Keypad Editors were included in the distribution kits.

Version 4 was completed in early 1980. By then there were well over seven-
teen thousand RT-11 systems installed around the world, making this oper-
ating system a successful venture indeed.

1.5 Version5

Nothing stands still in the computer industry. New hardware and expand-
ing user needs create demands for up-to-date software. Version 5 of RT-11,
released in the spring of 1983, included support for new hardware such as
MSCP and the MICRO/PDP-11. The extended memory monitor was
changed to support 22-bit memory addressing on Q-bus central processors
and to allow use of the .FETCH programmed request under the extended
memory monitor. A new virtual memory handler allowed extended memory
to be used as though it were a'disk. The LD handler was added to support
logical disks and console logging. The backup utility BUP and the indirect
file processor IND were added to the distribution kit, and SYSGEN was rew-
ritten to make installation and customization still easier. New DCL com-
mands and options were added, as well as CCL (Concise Command
Language) and UCL (User Command Linkage). At the same time, however,
a minimum system could still run in 16K words of memory, maintaining the
RT-11 tradition of being small, fast, interactive, and easy to use.

Historical Overview 1-3






_am

Chapter 2
System Components and Memory Layouts

This chapter introduces the components of the RT-11 system that can be
memory resident. It provides maps of physical memory that show where the
components are located, and it indicates how their positions can change
dynamically. The components this chapter covers are divided into two
groups: static components, which have a relatively fixed position in memory,
and dynamic components, whose locations are changeable.

The components are arranged to leave the most space available for user pro-
grams and to be flexible. Flexibility is obtained by positioning the compo-
nents after determining the total amount of memory at bootstrap time.
Normally, you do not have to take any special steps to move RT-11 from one
PDP-11 computer to another.

2.1 Static Components

The static components have fixed locations in memory. Their actual
addresses vary from one PDP-11 computer to the next, depending on how
much memory each computer has available. The static components or areas
are as follows:

Trap vectors

System communication area
Interrupt vectors

I/O page

System device handler

Resident Monitor

N ok e

Background job

2.1.1 Trap Vectors

Table 2—-1 shows the memory locations from 0 to 36, an area that contains
the trap vectors. A plus sign (+) marks the locations that are reserved for
use by RT-11. You should not attempt to modify these locations; a bitmap
protects them each time you load a program. An asterisk (*) marks the loca-
tions that your programs can use. Figure 2-1 is a summary of the trap vector
area information.

2-1



mm

2-2

Table 2-1: Trap Vectors

Location

Contents

0,2+

4,6 +

10,12+

14,16*
20,22%*
24,26%*

30,32 +
34,36*

Monitor restart, executes the .EXIT request and returns control to the
monitor (has additional uses in XM systems).

Odd address and bus time-out trap; RT—11 sets this to point to its inter-
nal trap handler.

Reserved instruction trap; RT-11 sets this to point to its internal trap
handler.

BPT (breakpoint trap), T-bit trap (used by debugging utility programs).
IOT, input/output trap.

Powerfail and restart trap. Your programs can use this location unless
you included support for powerfail restart through system generation. If
your system includes the powerfail restart feature, locations 24 and 26
are reserved for use by RT-11.

EMT, emulator trap; RT-11 uses this for programmed requests.

TRAP instruction. Note that you cannot use the TRAP instruction in
assembly language subroutines linked with FORTRAN IV, DIBOL,
BASIC-11, or MU BASIC-11 programs; these languages use the TRAP
instruction for internal error reporting.

Figure 2-1: Trap Vector Area

MEMORY
28K
/ LOCATION | CONTENTS
/ 34,36 TRAP INSTRUCTION
/
/ 30,32 EMT INSTRUCTION
/
/ 24,26 POWERFAIL AND RESTART
/
/ 20,22 (0T TRAP
/ 14,16 BPT TRAP
/
// 10,12 RESERVED INSTRUCTION TRAP
/ 4,6 ODD ADDRESS/BUS TIME-OUT
36
TRAP VECTORS 0,2 MONITOR RESTART

System Components and Memory Layouts



im

2.1.2 System Communication Area

The memory locations from 40 through 57 are called the system communi-
cation area. This area holds information about the program currently
executing, as well as certain information normally used only by the monitor.

The diagram in Figure 2-2 is a summary of the system communication area
information. Table 2—-2 describes the contents of each location.

Figure 2-2: System Communication Area

28K

56
40

36

MEMORY
// LOCATION CONTENTS
// 57,56 FILL COUNT FILL CHARACTER
/
/ 54 RMON STARTING ADDRESS
/
/ 53,52 USER ERROR BYTE MONITOR ERROR BYTE
/
// 50 HIGHEST ADDRESS AVAILABLE TO PROGRAM
// 46 USR LOAD ADDRESS; NORMALLY 0
/ 44 JOB STATUS WORD (JSW)
SYSTEM
COMMUNICATION AREA 42 INITIAL VALUE OF STACK POINTER
\\
TRAP VECTORS T~ 40 PROGRAM START ADDRESS

Table 2-2: System Communication Area

Location

Contents

40,41

42,43

Start address of job. When you link a file to create an RT-11 executable
image, the linker sets the word at address 40 in the program’s file to the
starting address of the program. This word is loaded into memory location
40 at run time. When a foreground job executes, the FRUN processor relo-
cates this word to contain the actual starting address of the program.

Initial value of stack pointer. If the user program does not set this value
with an .ASECT directive, the value defaults to 1000 or to the top of the
program’s absolute section, whichever is larger. You can use the linker /
B:n option to set the initial value of the background job’s stack pointer. If a
foreground program does not specify a stack pointer in this word (by using
an .ASECT directive), the FRUN processor allocates a default stack of 128
decimal bytes immediately below the program, and the initial stack
pointer value is 1000, relative to the base of the foreground job.

(Continued on next page)

System Components and Memory Layouts 2-3



Table 2-2: System Communication Area (Cont.)

Location

Contents

44,45

46,47

50,51

52

53

54,55

56

57

Job Status Word (JSW). This is a flag word for the monitor. The monitor
maintains some of the bits itself, and your program can set or clear others.
See Section 2.1.2.2 for more information on the JSW.

USR load address. This word is normally 0, but you can set it in the file or
at run time to any valid word address in your program. If this word is 0,
the USR loads in its default location through an address contained in off-
set 266 of RMON. If this word is not 0, the USR loads at the address it spe-
cifies, unless the USR is set NOSWAP. This location is cleared by an exit
to KMON (via .EXIT, CTRL/C, or fatal error).

High memory address. In this word the monitor maintains the highest
address your program can use. The linker sets this word initially to the
high-limit value. You can modify it by using the .SETTOP programmed
request. Your program must never modify this word directly. In XM sys-
tems, locations 50 and 51 in the file contain the address that is the top of
the root section plus the low memory (/O) overlays. In memory, locations
50 and 51 contain the same value unless the program issues a .SETTOP.
In this case, these locations contain the highest available virtual address
(see Section 4.4.4.6).

EMT error code. If a monitor request results in an error, the code number
of the error is always returned in byte 52 in memory and the carry bit is
set. Each monitor call has its own set of possible errors. Byte 52 in the job’s
file has a different meaning (see Chapter 8).

NOTE

Always address location 52 as a byte, never as a word, since
byte 53 has a separate function.

User program error code (USERRB). If a user program encounters errors
during execution, it indicates the error by using this byte in memory. See
Section 2.1.2.1 for more information about this byte. See Chapter 8 for its
meaning in the job’s file.

Address of the beginning of the Resident Monitor. RT-11 always loads the
monitor into the highest available memory locations of low (rather than
extended) memory; this word in memory points to its first location. Never
alter this word — doing so causes RT-11 to malfunction. See Chapter 8 for
the meaning of this word in the job’s file.

Fill character (seven-bit ASCII). Some high-speed terminals require fill
(null) characters after printing certain characters. Byte 56 in memory
should contain the ASCII seven-bit representation of the character after
which fills are required. See Chapter 8 for the meaning of this bit in the
job’s file.

Fill count. This byte in memory specifies the number of fill characters that
are required. The number of characters is determined by hardware. If
bytes 57 and 56 are 0, no fill is required. See Chapter 8 for the meaning of
this byte in the job’s file. For more information on the terminals that
require fill characters, see the RT-11 Installation Guide.

24 System Components and Memory Layouts



Edi

2.1.2.1 User Error Byte — The Keyboard Monitor examines the user error
byte when a program terminates. If your program has reported a significant
error in this byte, KMON can abort any indirect command files in use. This
prevents spurious results from occurring if subsequent commands in the
indirect file depend on the successful completion of all prior commands.

A program can exit in one of the following states:
® Success

® Warning

e Error

® Severe error

® Unconditionally fatal error

The program status is success when the execution of the program is free of
errors.

The warning status indicates that warning messages occurred, but the
program ran to completion.

The error status indicates that a user error occurred and the program did
not run to completion. This level is also used by RT-11 system programs
when they produce an output file even though it may contain errors. For
example, a compiler can use the error level to indicate that an object file
was produced, but the source program contains errors. Under these condi-
tions, execution of the object file will not be successful if the module con-
taining the error is encountered.

The severe status indicates that the program did not produce any usable
output, and any command or operation depending upon this program out-
put will not execute properly. This type of error can result when a resource
needed by the program to complete execution is not available — for exam-
ple, insufficient memory space to assemble or compile an application
program.

The unconditionally fatal status indicates that not only has an operation
completely failed, but that the integrity of the monitor itself is
questionable.

Utility programs and the Keyboard Monitor always set the user error byte
to reflect the result of each monitor command you issue. Normally, indirect
command files abort when there has been a monitor command error. By
setting the error level to unconditionally fatal with the SET ERROR
NONE command, you guarantee that indirect command files will continue
to execute despite individual monitor command errors. Only uncondition-
ally fatal errors that indicate problems within the Keyboard Monitor itself
abort indirect files at the SET ERROR NONE level. Table 2-3 shows the
bits of byte 53, their status, and the status code printed by the RT-11 sys-
tem utility program messages.

System Components and Memory Layouts 2-5



Table 2-3: User Error Byte

Bit Mask Status RT-11 Message )
0 1 Success ?7prog-I-text, or none
1 2 Warning ?prog-W-text
2 4 Error ?prog-E-text
3 10 Severe 7prog-F-text
4 20 Fatal ?prog-U-text

Bits 5 through 7 of the user error byte are reserved for DIGITAL’s future
use; do not use them in your programs. Programs should never clear byte 53,
and should set it only through a BISB instruction, as the following example
shows. If more than one bit is set at any given time, the highest bit is the one
that RT-11 recognizes.

3

3]

USERRB
SUCCS%
WARN%$

ERROR$
SEVERS$
UFATLS

+

= ) o

o un n unn

]

+

ERROR: BISB #ERROR$@#USERRB i8ET ERROR STATUS
CLR RO JHARD EXIT
+EXIT

Note that this byte is meaningful only for the Keyboard Monitor and for
background jobs. This is because it was designed to be used by system utility
programs and language processors, which run as background jobs. A fore-
ground job can set it, but that action has no effect on the system.

2.1.2.2 Job Status Word (JSW) — Bytes 44 and 45 make up the Job Status
Word, or JSW. Table 2—4 shows the meanings of the bits in this word. The
bits marked with an asterisk (*) can be set by a user program during execu-
tion. Bits marked with a plus sign (+) are set at load time. Note that some
bits can be set at both load and run time. Unused bits are reserved for future
use by DIGITAL. Figure 2—3 shows a summary of the JSW.

Table 2-4: Job Status Word (JSW)

Bit
Number Meaning When Set
15 USR swap bit (SJ only). The monitor sets this bit when a program does
not require the USR to swap. (See Section 2.2.3 for details on the USR.)
Your program must alter this bit.
14+%* Lower-case bit. Disables automatic conversion of typed lower-case to

upper-case characters. EDIT sets it when you type the EL command.

(Continued on next page)

26 System Components and Memory Layouts



1m

Table 2-4: Job Status Word (JSW) (Cont.)

Bit
Number Meaning When Set
13+* Reenter bit. Indicates that a program can be restarted from the terminal
when you type the REENTER command.
124* Special mode terminal bit. Indicates that the job is in a special keyboard

mode of input. Refer to the explanation of the .TTYIN and .TTINR pro-
grammed requests in the RT-11 Programmer’s Reference Manual for
details.

11+% Pass line to KMON bit. Indicates, when a program exits, that the pro-
gram is passing a command line to KMON. This action causes any open
indirect file to abort. The command line should be stored in the CHAIN
information area, locations 500 through 776. RO must be cleared before
exiting. Refer to the example program for .EXIT in the RT-I1
Programmer’s Reference Manual. This bit is not available to foreground
or system jobs under the FB and XM monitors.

10+ Virtual image bit (XM only). Indicates that the job to be loaded is a vir-
tual job. You must set this bit yourself in the executable file before you
attempt to run the program. Do this at assembly time by using an
ASECT directive and modifying the JSW, or before run time by patching
this location in the file. See Chapter 4 for more information on virtual
jobs.

9 Overlay bit. This bit is set by the linker if the user program uses the
linker overlay feature.

8+ CHAIN bit. This bit can be used in two ways. If it is set in a job’s save
image, the monitor loads words 500 through 776 from the save file when
the job is started, even if the job is entered with .CHAIN. (These words
are normally used to pass parameters from one job to another across a
.CHAIN.)

The monitor sets this bit when the job is running if and only if the job
was actually entered with a .CHAIN.

74+* Error halt bit (SJ only). Indicates that the system should halt when an I/
O error occurs. If you want the system to halt when a device I/O error
occurs, you should set this bit.

6+* Inhibit terminal wait bit (FB and XM only). Inhibits the job from enter-
ing a console terminal wait state. For more information, refer to the sec-
tions concerning .TTYIN, .TTINR, .TTYOUT and .TTOUTR in the
RT-11 Programmer’s Reference Manual.

5+%* Special chain exit bit. If set when a program exits, text in the chain area,
locations 510 to 777, is passed to KMON and appended to the command
buffer. RO must be cleared before exiting. This does not abort an open
indirect file. Refer to bit 11, above. If you pass multiple command lines,
any line containing the @ indirect file command must be the last line of
the series.

44+* Disable single-line editor bit. Setting this bit disables all single-line edi-
tor functions.

(Continued on next page)

System Components and Memory Layouts 2-7



—mm

Table 2—4: Job Status Word (JSW) (Cont.)

Bit
Number Meaning When Set

3+* Nonterminating .GTLIN bit. When bit 3 of the JSW is set and your pro-
gram encounters a CTRL/C in an indirect command file, the .GTLIN
request collects subsequent lines from the terminal. If you then clear bit
3 of the JSW, the next line collected by the .GTLIN request is the CTRL/
C in the indirect command file; this causes the program to terminate.
Further input will come from the indirect command file, if there are any
more lines in it. The LINK, DUP, SIPP, SLP, QUEMAN, SRCCOM, and
LIBR utilities make use of this feature. To activate it in an indirect file,
put an uparrow (~) followed by a C on a line by itself in the file. This
causes the utilities to accept the response from the terminal instead of
taking it directly from the file.

The following indirect file shows how to obtain a response from the
terminal:

RUN LINK
TEST,TEST=MOD1,LIB/I
A~C

All further input to the linker will come from the terminal, as a result of
the AC in the indirect command file.

0-2 Reserved.

Figure 2-3: Job Status Word (JSW) Summary

15 14%+ 13%+ 12%+ 1M1*+ 10+ 9 8+
1= 1= 1= 1= 1= 1= 1=
NO USR LOWER REENTER TT PASS VIRTUAL OVERLAID CHAIN
SWAPPING CASE CAN SPECIAL LINE TO JoB JOB BIT
(SJONLY) ENABLED START JOB MODE KMON (XM ONLY)
1= 1= 1= 1= NON-
HALT ON NOTT DISABLE SPECIAL |TERMINATING RESERVED
1/0 ERROR | WAITSTATE | SINGLE-LINE .CHAIN .GTLIN
(SJONLY) EDITOR EXIT

7*+ 6%+ 5%+ 4%+ 3%+ 2 1 0

BITS MARKED WITH AN ASTERISK (*) ARE BITS THAT YOU CAN SET DURING EXECUTION.
BITS MARKED WITH A PLUS SIGN (+) CAN BE SET AT LOAD TIME.

2.1.3 Interrupt Vectors

Table 2—5 shows the locations in the low memory area that are reserved for
interrupt vectors. Figure 2—4 shows how the interrupt vector area relates to
the rest of memory.

2-8 System Components and Memory Layouts



- -

Table 2-5: Interrupt Vectors

{ Location Contents
60,62 DL11: Console terminal input
64,66 DL11: Console terminal output
70,72 PC11: Paper tape reader
74,76 PC11: Paper tape punch

100,102 KW11-L: Line clock

104,106 KW11-P: Programmable clock

110,112 Reserved!

114,116 Memory system errors: parity, cache, and uncorrectable ECC errors
120,122 XY11: X/Y Plotter?

124,126 DR11-B: DMA interface?

130,132 ADO1: Analog to digital subsystem?

134,136 AFC11: Analog input subsystem?

140,142 AA11: Digital to analog subsystem?

144,146 AA11: (requires two vectors)?

150,152 MSCP device number 1

154,156 MSCP device number 0

160,162 RL11/RLV11: RLO1/RLO2 Disk cartridge

164,166 Reserved

170,172 LP/LS/LV11 Line printer number 12

174,176 LP/LS/LV11 Line printer number 22

200,202 LP/LS/LV11 Line printer number 0 (includes LA180 parallel interface)

204,206 RH11,RH70: RS03/RS04 Fixed-head disk;
RF11: Fixed-head disk

210,212 RK611/RK711: RK06/RKO07 Disk cartridge
214,216 TC11: DECtape
220,222 RK11/RKV11: RKO05 Disk cartridge

224,226 RH11/RH70: TU16, TE16, TU45 Magtape;
TM11: TU10/TE10 Magtape;
TS03: Magtape
TS11: Magtape first controller (others float)
TS05/TSV05: Magtape

(Continued on next page)

1 This vector is used by RSTS/E. Take this into consideration if you run both RT-11 and
RSTS/E on the same PDP-11.

2 This vector is assigned to a hardware device that is optional in RT-11. If your configuration
includes this device, use this vector for it.

System Components and Memory Layouts 2-9



am

Table 2-5: Interrupt Vectors (Cont.)

Location

Contents

230,232
234,236
240,242
244,246
250,252
254,256

260,262
264,266
270,272
274,276
300,302
320,322
324,326
330,332

CD11/CM11/CR11: Card reader
UDC11: Digital control subsystem?
PIRQ, (programmed interrupt request)?
FPP or FIS floating-point exception
KT11: Memory management fault

RP11: RP02/03 Disk;
RH11/RH70: RP04/05/06/RM02/03 Disk

TA11: Cassette tape

RX11/RXV11/RX211/RX2V1: RX01, RX02 Diskette
LP/LS/LV11 Line printer number 32

LP/LS/LV11 Line printer number 42

Start of the floating vector area

VT11/VS60 Graphics terminal (requires three vectors)
VT11/VS60

VT11/VS60

2 This vector is assigned to-a hardware device that is optional in RT-11. If your configuration
includes this device, use this vector for it.

3 This vector is assigned to hardware that is not supported by RT-11.

2-10 System Components and Memory Layouts



_—

Figure 2-4: Interrupt Vector Area

MEMORY
28K
// LOCATION CONTENTS
// 474,476 | END OF VECTOR AREA
/ °
/
/ ®
/ °
/
/ 300,302 | START OF FLOATING VECTOR AREA
476 .
INTERRUPT VECTORS
60 R
56 | SYSTEM ~o
40 | COMMUNICATION AREA ~ o
~
~ 2
36 TRAP VECTORS ~o 60,62 | FIRST INTERRUPT VECTOR
0
2.1.4 /O Page

The highest 4K words! of addressing space in PDP-11 computers are
reserved for device control, status, and data buffer registers. This area is
called the I/O page. In addition to the device registers, it also contains the
Processor Status word (except on the LSI-11/02, PDP-11/03, and PDT), and,
for some processors, the system’s general registers (RO through R5), the
stack pointer (R6), and the program counter (R7). Locations in the I/O page
are directly addressable by application programs and system software, but
since they are bus addresses and not memory locations, they cannot be used
to store code and data. Figure 2-5 shows where the I/O page is addressed in
relation to the rest of the system components. You can find more information
on the I/O page and the device registers for your own processor and peripher-
als in the PDP—-11 Processor Handbook, the PDP—11 Peripherals Handbook,
the Microcomputer Processor Handbook, the Memories and Peripherals
Handbook, and in most hardware manuals.

1 An LSI-11 with MSV-11DD and memory jumper has a 2K-word I/0 page and 30K words of
regular memory. Throughout this manual, however, a 4K-word I/O page is assumed.

System Components and Memory Layouts 2-11



21

Figure 2-5: 1/0O Page

1/0 PAGE \
\
\ \\
Y
28K MEMOR SN
\ \
\ \
\ \
\ AN
\ \
\ \
\
\ BUS ADDRESS CONTENTS
\\ ; PROCESSOR STATUS WORD
\ 777776 {FOR SOME PROCESSORS)
\ °
\ .
\ .
\
\\ 777586 CONSOLE TERMINAL
\ . INTERFACE
\ 777’560
\ .
\\ R
\ . DEVICE REGISTERS
\ °
\\ o
476 _ \
60 | INTERRUPT VECTORS \ | 763776— | TOP OF FLOATING ADDRESSES
56 \
SYSTEM
40 | COMMUNICATION AREA 760010 START OF FLOATING ADDRESSES
36
. TRAP VECTORS 760 000 START OF 1/0 PAGE

2.1.5 System Device Handler

The system device handler is the handler for the device from which the

system was bootstrapped. Chapter 7 describes the structure of a system
device handler in detail.

At bootstrap time, the monitor is linked together with the system device
handler file found on the system volume. The system device handler is
loaded into memory first, immediately below the I/O page. The Resident
Monitor is loaded below the system device handler. Once it is read into mem-
ory, the system device handler remains resident and does not change its

location. Figure 2—6 shows where the system device handler resides in
memory.

2-12 System Components and Memory Layouts



Figure 2-6: System Device Handler

1/0 PAGE
MEMORY
28K y
SYSTEM
DEVICE HANDLER
476
60 INTERRUPT VECTORS
56 | SYSTEM
40 | COMMUNICATION AREA
36
TRAP VECTORS
0

2.1.6 Resident Monitor (RMON)

The Resident Monitor (RMON) is the RT—11 monitor component that is
always resident in memory. When you bootstrap an RT-11 system, the
bootstrap routine determines how much main memory is available. RMON
loads at the highest possible low memory address, just below the system
device handler. It does not move during system operation.

RMON contains routines to handle the programmed requests in RT-11. It
also contains the background job’s impure area in FB and XM systems, the
error processor, timer routines, console terminal service routines, USR swap
routines, and other monitor functions. Figure 2-7 shows a summary of the
contents of the Resident Monitor. In the figure, components marked with an
asterisk (*) are not part of the SJ Resident Monitor. See Chapter 3 for more
information on the Resident Monitor.

System Components and Memory Layouts 2-13



Link maps of the distributed RT—11 monitors (base-line, single-job, and
foreground/background) are part of the distribution kit. They exist as files
named RTBL.MAP, RTSJ.MAP, RTFB.MAP, and RTXM.MAP. Listings of
the maps also appear in the RT—11 Installation Guide. Table 2—6 lists the
p-sects that make up the Resident and Keyboard Monitors.

Figure 2-7: Resident Monitor (RMON)

(AN ASTERISK (*) MARKS ITEMS THAT ARE
NOT NORMALLY PART OF THE SJ RESIDENT

MONITOR.)
1/0 PAGE /// SYSTEM STACK
MEMORY /// MULTI-TERMINAL ROUTINES (ONLY IN MULTI-TERMINAL SYSTEMS)
e EYEf/TIE'\E"HANDLER il XM PROGRAMMED REQUESTS * (XM ONLY)
RESIDENT MONITOR CONTEXT SWITCH ROUTINE *
\ FORK PROCESSOR
\\ COMMON INTERRUPT ENTRY AND EXIT
\\ CLOCK INTERRUPT HANDLER
\\ 1/0 QUEUE MANAGER
\\ MESSAGE HANDLER *
\\ TT HANDLER*
\\ TTY 1/0 INTERRUPT HANDLERS
\\\ PROGRAMMED REQUESTS (SCATTERED ABOVE)
\\ EMT DISPATCHER
\\ ‘ ERROR PROCESSOR
476 \
60 | INTERRUPT VECTORS \ BACKGROUND IMPURE AREA
% ['sysTeEm \\ MONITOR TABLES
40 | COMMUNICATION AREA \
33 TRAP VECTORS \ FIXED OFFSETS
Table 2-6: Monitor P-sects
P-sect Name Contents
RT11 Keyboard Monitor
RMNUSR USR buffer and code
RTDATA Resident Monitor fixed offsets and database
OWNERS$ $OWNER table
UNAM1$ $UNAMI1 table
UNAM2$ $UNAM2 table
PNAMES$ $PNAME table

(Continued on next page)

2-14 System Components and Memory Layouts



Table 2-6: Monitor P-sects (Cont.)

P-sect Name Contents
ENTRY$ $ENTRY table
STAT$ $STAT table
DVREC$ $DVREC table
DVINT$ $DVINT table
MTTY$ Multi-terminal terminal control blocks
RMON Resident Monitor
XMSUBS Extended Memory routines
MTEMTS$ Multi-terminal programmed requests
MTINT$ Multi-terminal interrupt service
STACKS$ Resident Monitor stacks (not in SJ)
PATCHS$ Patch space
OVLYnn Keyboard Monitor overlays containing command processors

2.1.7 Background Job

The user job in an SJ system and the background job in an FB system are
essentially identical for the purpose of this discussion. The RT-11 utility
programs, such as PIP, DUP, and DIR, run as user jobs. In FB systems, they
run as background jobs. Figure 2-8 shows the general structure of a back-
ground job, as well as its relative location in memory.

As you can see from Figure 2-8, the background job usually begins loading
into memory at location 1000, and loads up to its high limit. There are three
ways in which RT-11 can load a background job: RUN, R, and .CHAIN.
They are described in the following three sections.

2.1.7.1 RUN Command — One way to load a job is to use the keyboard moni-
tor RUN command. The RUN command is the same as the GET and START
commands combined. First, if the SAV file is not on the system device, RUN
(or GET) loads the handler for the proper device. When this occurs the
Keyboard Monitor and the USR, which normally occupy the space above the
background job and below RMON, relocate themselves, if necessary. For
more information on the USR and the Keyboard Monitor, see later sections
of this chapter.

The space available for background job loading consists of the background
job area, the space occupied by KMON, and the space occupied by the USR
(unless the USR is set to NOSWAP). If the job needs more space than these
three areas, an error message prints and then control returns to the
Keyboard Monitor.

System Components and Memory Layouts 2-15



G|

Figure 2-8: Background Job

1/0 PAGE
MEMORY
23K
SYSTEM
DEVICE HANDLER BG JOB HIGH LIMIT
RESIDENT MONITOR
-
S
USR =~ -
KEYBOARD MONITOR
USR SWAP SPACE
FETCHED HANDLER SPACE
(USUALLY PART OF VARIABLE AREA)
SINGLEOR | | _ ]
BACKGROUND
JOB AREA VARIABLESSIZE DATA AREA
(OBTAINED BY .SETTOP)
FIXED DATA AREA
(ASSEMBLED)
1000
776 | DEFAULT
5001 BACKGROUND STACK CODE AREA
476 N (ASSEMBLED)
INTERRUPT VECTORS N
60 N
56§ SYSTEM \\
gg COMMUNICATION AREA N STACK
' TRAP VECTORS AN
0

Once the job passes the size tests, RUN loads memory locations 0 through
476 from the file, if they are not protected. To check for protection, RUN
looks at the bitmap in RMON, and does not load any locations that are pro-
tected either by RMON or by another job.

Next, RUN loads all the memory locations from 500 through 776 from the
file. This area is the default stack for the background job.

To load locations 1000 and up, RUN examines the core control block, called
the CCB, which starts at location 360 in the job file. The CCB is a bitmap
created by the linker in which each bit represents one block in the file. When
the linker takes data out of the OBJ file to go into the SAV file, it sets the
CCB bit for each block of the SAV file that actually contains code or data.
For example, if you link a file with a base address of 2000, the locations in
your file from 1000 through 1776 do not contain data, and therefore the
linker does not set the corresponding bit in the CCB. RUN loads blocks from
the file into memory only if the corresponding CCB bits for them are set.

2-16 System Components and Memory Layouts



am

If a block fits in memory in the area below KMON that is reserved for the
background job, RUN loads it directly. If a block would overlay either
KMON or the USR, RUN copies the block out to the disk file SWAP.SYS.
This process continues until the entire file is loaded into memory, or into
memory plus SWAP.SYS. SWAP.SYS is just large enough to hold the
amount of program code that would overlay the KMON and the USR.

Finally, RUN (or START) jumps to RMON. If SWAP.SYS is in use, RMON
reads its contents into memory, overlaying KMON and possibly the USR as
well. Then RMON starts the program’s execution. Figure 2-9 summarizes
how the RUN command loads a job image into memory.

If SET EXIT SWAP is in effect when the program terminates, RMON reads
KMON and the USR back into memory from the monitor .SYS file. The
memory area up to the bottom of KMON contains the background job image.
If the job overlaid KMON, the remainder of the job image is written out to
SWAP.SYS. This procedure allows the Examine and Deposit commands to
operate on the job image on disk, even though KMON has written over the
job’s locations in memory, and the RESTART command can restart the
program.

2.1.7.2 R Command — The R command is similar to the RUN command.
One initial difference, however, is that the file to be loaded must reside on
the system device (SY:). The reason for this restriction is that the R com-
mand is not capable of loading another device handler in order to read the
file.

The R command loads memory locations 0 through 776 the same way the
RUN command does. It has a different procedure for loading locations 1000
and up. The R command ignores the core control block in the file and it sets
up parameters for RMON. RMON loads the rest of the file (up to its high
limit; it does not load overlays) even if it overlays KMON and the USR. It
ignores the file SWAP.SYS. Figure 2-10 summarizes how the R command
loads a job image into memory.

If the job is a virtual job, the monitor creates for the job a virtual memory
partition, a static window and static region definition block, and then sets up
the user mapping registers. At this point it starts the job’s execution. (See
Chapter 4 for more information on virtual jobs.)

As with the RUN command, jobs (excluding virtual jobs) loaded with R use
the SWAP.SYS file, if necessary, at program termination so that the
Examine and Deposit commands function correctly. Note that if a job issues
a .SETTOP request to lower its high limit before it exits, it may prevent the
monitor from writing SWAP.SYS.

2.1.7.3 .CHAIN Request — The third way to load a job is to chain to it from
another job. The first job issues the .CHAIN programmed request to do this.
The second job can use information in memory locations 500 through 776
that was placed there by the first job. Consequently, the only difference
between loading a job with the RUN command and starting a job by chain-
ing to it is that chaining does not load memory locations 500 through 776
from the second file unless you set the chain bit in the JSW of the second file
at assembly time.

System Components and Memory Layouts 2-17



mm

Figure 2-9: RUN Command

1000
776

500
476

MEMORY

SWAP.SYS

RMON COPIES
SWAP.SYS INTO
MEMORY AT LOADS LOCATIONS INTO

START TIME. SWAP.SYS AT GET TIME SAV FILE

USR

BASED ON CORE
CONTROL
BLOCK.

KMON

LOADS J

LOCATIONS \
BASED ON
CORE CONTROL
BLOCK

LOADS
ALL LOCATIONS

LOADS SELECTED

LOCATIONS BASED CORE CONTROL BLOCK

ON BITMAP IN
RMON

N

1000
776

500
476

360

Note that in XM systems, a virtual job cannot pass information when chain-
ing to another job. In addition, you cannot chain to a virtual job. (See
Chapter 4 for more information on virtual jobs.) Note also that chaining to a
FORTRAN job does not preserve channel information from the previous job.
This is because FORTRAN itself closes the channels and discards the
impure area.

2-18 System Components and Memory Layouts



A

Figure 2-10: R Command

MEMORY .SAV FILE
e
USR
KMON
RMON
LOADS ALL

LOCATIONS
e UPTO THE

HIGH LIMIT

OF THE JOB

(CONTENTS OF
LOCATION 50)

1000

1000
776

776

RMON LOADS
ALL LOCATIONS

500
476

500

476 LOADS SELECTED
LOCATIONS
BASED ON BIT-
MAP IN RMON

PP

2.2 Dynamic Components

Dynamic components do not always load into fixed places in memory. Once
loaded, some of them can continue to shift location based on the state of the
rest of the system. The dynamic components and areas are as follows:

® Device handlers (device drivers) and free space
® Foreground and system jobs

® User Service Routine

® Keyboard Monitor

As you read about the rest of the dynamic components, you will also learn
how the system manages free space in memory. You have already seen how
the system device handler and the Resident Monitor load at the highest pos-
sible addresses, and how the background job begins loading at location 1000

System Components and Memory Layouts 2-19



and up. The strategy behind the way the system manages free memory is
that it attempts to make the most space available for foreground and back-
ground application jobs.

Figure 2-11: SJ System with Two Loaded Handlers

1/O PAGE
MEMORY
28K
SYSTEM
DEVICE HANDLER
RESIDENT MONITOR
HANDLER #1
HANDLER #2
USR
KEYBOARD MONITOR KEYBOARD
COMMANDS:
AVAILABLE SPACE
LOAD H1:
LOAD H2:
GET MYPROG
BACKGROUND
JOB “MYPROG"
1000
776
BACKGROUND STACK
500
4;2 INTERRUPT VECTORS
56| SYSTEM
40| COMMUNICATION AREA
36
TRAP VECTORS
0

2.2.1 Device Handlers and Free Space

Device handlers (drivers) are routines that provide the interface to the
computer’s hardware devices. The handlers drive, or service, peripheral
-devices and take care of moving data between memory and devices. Chapter
7 describes device handlers in greater detail.

RT-11 uses a dynamic scheme to provide memory space for loaded handlers,
foreground jobs, system jobs, indirect file and command line expansion, and
the display text scroller. Memory is allocated in the region above the

2-20 System Components and Memory Layouts



KMON/USR section and below RMON. If there is not enough memory in
this region (initially, after the system is bootstrapped, there is none), mem-
ory is taken from the background region by “sliding down” the KMON and
USR the required number of words.

When memory allocated in this manner is released, the memory area is
returned to a singly-linked free memory list, the head of which is located in
RMON. Any contiguous blocks are concatenated into a single larger block. A
block found to be contiguous with the KMON/USR is reclaimed by “sliding
up” the KMON/USR, thus removing the block from the list.

Figure 2-12: SJ System with One Handler Unloaded

1/0 PAGE
Y
28K MEMOR
SYSTEM
DEVICE HANDLER
RESIDENT MONITOR
FREE
HANDLER #2
USR KEYBOARD
COMMAND:
KEYBOARD MONITOR —_
UNLOAD H1:
AVAILABLE SPACE
BACKGROUND
JOB “MYPROG"
1000
776
BACKGROUND STACK
500
476
INTERRUPT VECTORS
60
56 | SYSTEM
40 | COMMUNICATION AREA
36
. TRAP VECTORS

Figure 2-11 shows an SJ system with a small application job and two loaded
device handlers. When you issue the LOAD monitor command the handler
loads into the memory area just above the USR and KMON. The USR and
KMON slide down in memory to provide the handlers with enough space,

System Components and Memory Layouts 2-21



2-22

leaving less space for the user program. The GT ON command is similar to
the LOAD command, except that it specifically loads the VT11/VS60 video
display handler. The GT handler is located in a Keyboard Monitor overlay
instead of a .SYS file on a storage volume. Except for the fact that it is not
stored as a separate handler file on a mass storage device, it functions the
same as other handlers.

Once handlers are brought into memory, they do not move up or down, as
the USR and KMON do. Figure 2-12 shows the system after the monitor
UNLOAD command has removed one handler from memory. In the figure,
the free space above handler #2 has not been reclaimed and is available for
later use. A handler that is the same size as the empty space, or smaller, can
be loaded there without causing any other components to move.

Figure 2-13: SJ System with Both Handlers Unloaded

1/0 PAGE
MEMORY
28K
SYSTEM
DEVICE HANDLER
RESIDENT MONITOR
USR
KEYBOARD MONITOR
AVAILABLE
SPACE
KEYBOARD
COMMAND:
UNLOAD H2:
BACKGROUND
JOB “MYPROG"”
1000
776 BACKGROUND STACK
500
4;3 INTERRUPT VECTORS
56| SYSTEM
40| COMMUNICATION AREA
36
TRAP VECTORS
0

System Components and Memory Layouts



&1

Figure 2-13 shows the system after the second handler was unloaded. This
time there is free space directly above the USR (the space formerly occupied
by the two handlers), so the USR and KMON slide up into it, making more
space available for the user program. The GT OFF command is similar to
the UNLOAD command, except that it specifically unloads the VT11/VS60
video display handler.

2.2.2 Foreground and System Jobs

In an FB or XM system, foreground jobs and system jobs are essentially
identical. A system job is simply a special kind of foreground job that
DIGITAL provides for you. The two RT-11 system jobs in the FB and XM
environments are the error logger (ERRLOG) and the file queuing program
(QUEUE). Figure 2-14 shows the general structure of a foreground job, as
well as its relative location in memory. Handlers loaded after the foreground
job are placed below it in memory, and above the USR. (See Chapter 3 for
more information on foreground and system jobs.)

Figure 2-14: Foreground Job

1/0 PAGE
MEMORY
28K
SYSTEM
DEVICE HANDLER
RESIDENT MONITOR
LOADED HANDLER JOB CAN
- - = SETTOP TO HERE
FOREGROUND JOB EXTRA SPACE FROM
FRUN/BUFFER
USR \ JOB'S HIGH
LIMIT
KEYBOARD MONITOR | \
\ OVERLAY CODE
BACKGROUND \ ROOT CODE
JOB SPACE
\ ) EXTRA SPACE FROM
\ LINK/FOREGROUND: STACK SIZE
1000 \
776 \
s00| BACKGROUND STACK \
276 DEFAULT STACK
60| 'NTERRUPT VECTORS \
JOB'S LOW LIMIT
56 | SYSTEM \
M N ARE
gg COMMUNICATION AREA \ IMPURE AREA
TRAP VECTORS \
0

2.2.2.1 Differences Between Foreground and Background Jobs — There are
some significant differences between foreground and background jobs.

1. The impure area (described in Chapter 3) for the foreground job is located
immediately below the job area itself. For a background job, the impure
area is always in the Resident Monitor.

System Components and Memory Layouts 2-23



2. Another major difference is that a foreground job cannot dynamically
change its memory allocation: the job is a fixed size. You can only change
the size at FRUN time by using the /BUFFER:n option to increase the
memory allocation. (Note that this option is ignored in XM systems for
virtual .SAV files started with the FRUN or SRUN command.)

3. You must load all the handlers a foreground job needs before the job
attempts to use them. A background job, on the other hand, can use the
.FETCH programmed request to load a handler when it is needed.

4. For FB systems only, if the USR is swapped out and the foreground job
needs it, the foreground job must allocate 2K words of program space for
the USR to swap over. (See Section 2.2.3 for more information on the
USR.)

2.22.2 FRUN Command — The FRUN command loads a foreground pro-
gram into memory and starts execution. The SRUN command, which per-
forms the same functions for system jobs, is essentially identical. You can
also use FRUN or SRUN to start a virtual .SAV job, since these jobs do not
require relocation. (See Chapter 4 for more information on virtual jobs.)
Before you start a job with FRUN, you must load all the handlers the job
requires. You can use the FRUN/PAUSE option, load the handlers, then
resume the foreground job. In any case, the handlers need to be loaded only
before the job actually uses them.

FRUN first opens the .REL file or virtual .SAV file, reads its first block (loca-
tions 0 through 776), and determines how much memory the job requires.
The job’s total memory requirement is equal to the sum of the program itself
(as indicated by location 50 in block 0 of the file), the size of the impure area,
the extra space allocated with the FRUN/BUFFER:n command, and the
extra space (if any) allocated with the LINK/FOREGROUND:stacksize com-
mand. If you do not allocate extra stack space, the default stack size is used.
If there is not enough memory available to run the job, an error message
prints and the monitor dot prints on the terminal.

Once FRUN gets the memory space the job needs, it sets up the job’s impure
area. FRUN also sets up the job context on the foreground job’s stack, for FB
systems, or in the job’s impure area, for XM systems. So, when you first load
a foreground job, it appears to be context-switched out. (See Chapter 3 for
more information on context switching and other FB monitor functions.)

Next, FRUN loads the foreground main program into memory and relocates
addresses in the root to reflect the current load address. Virtual .SAV files do
not require relocation. If the job is overlaid, there is one more step before
execution can begin. FRUN reads and relocates just the root of an overlaid
program. Then it reads the overlay relocation information into a buffer. One
by one, each overlay segment is then read into memory, relocated, and writ-
ten back to disk. Finally, FRUN starts job execution. Figure 2-15 shows a
summary of how the FRUN command loads a foreground job image into
memory.

2-24 System Components and Memory Layouts



- )

Figure 2-15: FRUN Command

MEMORY REL FILE
OVERLAY HANDLER LOADS OVERLAYS AS
THEY ARE REFERENCED IN THE PROGRAM ().
OVERLAY REGION 2 FRUN RELOCATES AND REWRITES OVERLAYS (~).
REGION 2
OVERLAY REGION 1 SEGMENT 4
REGION 2
ROOT SEGMENT 3
FG STACK REGION 1
SEGMENT 2
FOREGROUND
IMPURE AREA
REGION 1
USR SEGMENT 1
KMON ROOT
BACKGROUND
JOB SPACE OVERLAY
HANDLER
1000 N
776
500
476
LOADS SELECTED
LOCATIONS
| BASEDON
BITMAP IN RMON
0

2.2.2.3 Starting Foreground and System Jobs — Figure 2-16 illustrates the
procedure DIGITAL recommends for starting up a system that has both sys-
‘tem jobs and a foreground job. In general, group high in memory the device
handlers and programs that you expect to be running for the longest time.
Lower in memory, put the handlers and programs that you plan to run only
for a short time. This organization enables the Resident Monitor to reclaim
free memory when you unload programs and handlers that you no longer

need.

In the example in Figure 2-16, the two handlers that the QUEUE program
needs are loaded first, since the error logger and the QUEUE program are
both intended to run as long as the system runs. (The QUEUE program

System Components and Memory Layouts 2-25



2-26

needs handlers for the device to which it will copy files, as well as handlers
for the devices on which those files are currently stored. The error logger
needs no specific handler; it logs errors from any handler that calls it.) The
SRUN command is used next to start the more important of the two system
jobs (the error logger). Then the second system job (QUEUE) is started, also
with SRUN. This ordering of system jobs gives the error logger higher prior-
ity by default than the QUEUE program. (Note that if it is not convenient
for you to load the higher priority system job first, you can assign priorities
to the system jobs with the SRUN/LEVEL:n command.) Lastly, the fore-
ground job, which requires no other handler, is started with the FRUN com-
mand. In Figure 2-16 the foreground job, which always has the highest pri-
ority, is loaded last because it will only run for a short time before it is
stopped, unloaded, and replaced by a different foreground job. After you stop
a job by typing two CTRL/Cs or the ABORT command, you must use the
monitor commands to unload it and replace it with another. RT—11 does not
provide a way for one foreground job to automatically start another.

NOTE

Since the system job feature permits up to six system jobs to
execute simultaneously, it is possible to have more than one
copy of a specific job in memory at any one time. That is, you
can use SRUN to start a job called STAT.REL, for example,
and then use SRUN again to start up a second copy in memory
of the same job from the same disk image, STAT.REL.
However, this procedure is valid only for programs that are
not overlaid.

The disk image of an overlaid program is in constant use,
since the relocated overlay segments are occasionally read
into memory from the file. Thus, to execute multiple copies of
overlaid programs, you must maintain separate copies of the
programs on disk. For example, to run two copies of an over-
laid program called STAT.REL, store an additional copy of
the program on disk as STAT1.REL, and use SRUN to start
both jobs.

2.2.2.4 Foreground Stack — The foreground job’s stack is located im-
mediately above the impure area. Its default size is 128 decimal bytes. You
can change the size of the stack at link time by using the
/FOREGROUND:stacksize option.

You can also change the location of the foreground stack. To do this, use the
/STACK:n option at link time, and specify either an octal value for the stack
pointer or a global symbol name. If you change the stack location, you are
responsible for allocating space for the stack in your program.

Be careful not to let the stack overflow during execution. Since RT—11 nei-
ther checks for this error nor makes any attempt to correct it, the most likely
result is that your program or the impure area will be corrupted.

System Components and Memory Layouts



L

Figure 2-16: FB System

1/O PAGE
MEMORY
28K
SYSTEM
DEVICE HANDLER
RESIDENT MONITOR
HANDLER #1
HANDLER #2
EL KEYBOARD
COMMANDS:
QUEUE —_—
LOAD H1:
FOREGROUND JOB LOAD H2:
USR SRUN EL
SRUN QUEUE
KEYBOARD MONITOR
FRUN FGJOB
BACKGROUND
JOB SPACE
1000
776
500 | BACKGROUND STACK
476
so| 'NTERRUPT VECTORS
56 | SYSTEM
40 | COMMUNICATION AREA
36
TRAP VECTORS
0

2.2.2.5 Foreground Impure Area — The memory locations just below the fore-
ground job area contain job-dependent information. This area is called the
impure area, and its contents are maintained by the Resident Monitor.
Chapter 3 lists the information contained in this area.

2.2.3 User Service Routine (USR)

The User Service Routine (USR) is the part of the RT—11 operating system
that provides support for the RT-11 file structure. It contains instructions
to: -

® Fetch device handlers

® Get the status of device handlers

System Components and Memory Layouts 2-27



® Open existing files
® Create new files
® Delete and rename files

® Close files

In addition, the USR contains the Command String Interpreter (CSI) which
interprets device, file, and option specifications. The default memory loca-
tion for the USR is directly above the background area, or directly below the
system jobs, foreground job, and loaded device handlers, if there are any.
You can change this default location by setting an address in location 46 in
low memory.

The USR does not always have to be resident in memory. In fact, it is
designed to be swappable in order to make as much space as possible avail-
able for user jobs when they need it. In general, for SJ and FB systems, the
USR is needed only when file-oriented operations are required. The USR is
always resident in the XM monitor, so swapping is not a consideration for
XM jobs.

2.2.3.1 Structure — The USR consists of two basic parts: the buffer area and
the permanent code area. The first section, which is two blocks long, con-
tains code when the USR is brought into memory. This area also serves as
the buffer in which the USR stores a device directory segment. The second
section contains permanent code. Figure 2-17 shows an overview of the
USR’s structure and its memory location in an SJ system.

The first routine in the USR buffer section consists of initialization code to
relocate pointers in the USR and KMON. This relocation code becomes
active the first time the USR is entered after it is brought into memory. It
relocates internal pointers in the USR that point to the Resident Monitor
and to other important locations within the USR. If the USR was called from
KMON, it also relocates pointers to RMON within KMON.

For SJ systems, the next segments of code are:

1. The EMT 376 processor, which contains the text and the routines to print
fatal monitor error messages.

2. Code that processes the .CDFN programmed request.
3. Routines to handle the .SRESET and .HRESET programmed requests.

For FB and XM systems, the next section of code handles the .EXIT pro-
grammed request. The last segment of code in the buffer area processes the
.QSET programmed request for SJ and FB monitors. A small amount of
scratch space takes up the remainder of the two-block buffer area.

Following the buffer area is the USR’s permanent code which starts at offset
2000 from the beginning of the USR. The permanent code consists of rou-
tines that process the following programmed requests:

.DELETE .LOOKUP
FETCH .RENAME

2-28 System Components and Memory Layouts



A

.CLOSE .DSTATUS
.ENTER .QSET (for XM only)

The Command String Interpreter occupies the end of the USR, where the
.GTLIN, .CSIGEN and .CSISPC programmed requests are processed.

Figure 2-17: USR

1/0 PAGE
MEMORY ,/ °
28K 7/
SYSTEM e o
DEVICE HANDLER //
7/ ®
RESIDENT MONITOR Vi
PERMANENT CODE
USR
KEYBOARD MONITOR |\
\\ SCRATCH AREA
\
\\ CODE FOR.QSET
\ PROGRAMMED REQUEST
\ (PERMANENT IN XM)
BACKGROUND \
JOB AREA \
\ CODE FOR .EXIT;SJ
\ CODE FOR .SRESET, .HRESET
\ BUFFER AREA
\ (TWO BLOCKS)
\ SJ CODE FOR .CDFN
\ PROGRAMMED REQUEST
1000 \
776 \
BACKGROUND STACK \
500 \ SJMONITOR FATAL ERROR
476
- INTERRUPT VECTORS \ MESSAGE CODE AND TEXT
\
56 | SYSTEM \
40 | COMMUNICATION AREA \ CODE TO RELOCATE SOME
36 \ POINTERS IN USR AN N
o TRAP VECTORS \ OINTERS IN US D KMO
J

2.2.3.2 Execution — The general flow of execution in the USR is straightfor-
ward. When a fresh copy of the USR is brought into memory, its buffer area
contains the code described in the previous section. When a program issues a
USR programmed request, the first code to execute is the relocation code.
This code then calls the routine to process the particular request that was
issued. If the USR stays in memory, subsequent USR fequests go directly to
the routines that process them. The initialization code is not called again.

Usually, a USR request requires a device directory segment. If the correct
segment is already in the USR buffer, the USR does not read in a fresh copy
of that segment. If the correct segment is not in memory, or if the USR has
no segment at all, the USR reads the directory segment into its buffer. When
it does this, the USR stores two words of information in the Resident
Monitor fixed offset area. BLKEY, at offset 256, contains the number of the
directory segment currently in the USR buffer. CHKEY, at offset 260, con-
tains the device’s unit number in the high byte, and an index into the moni-
tor device tables in the low byte.

System Components and Memory Layouts 2-29



2-30

It can be useful to you to know under what circumstances the USR reads in a
new directory segment. The following conditions cause the USR to read in a
new directory segment:

1. Anything that causes the USR to swap out. When a fresh copy of the USR
is brought into memory, it will have no directory segment in its buffer
and will be forced to read one from a device.

2. Executing code in the buffer area. Since the code to process some pro-
grammed requests is located in the USR buffer area, attempting to pro-
cess one of those requests always causes a fresh copy of the USR to be
brought into memory. The requests that cause this to happen are:

.CDFN (for SJ)

.SRESET (for SJ)

.HRESET (for SJ)

.QSET (for SJ and FB)

.EXIT (if your program was loaded over any part of KMON)

3. An SJ monitor error occurs. This situation requires the EMT 376 proces-
sor code, which is located in the USR buffer area and causes a fresh copy
of the USR to be read into memory.

4. Issuing an .ENTER programmed request. This always causes the USR to
read a fresh directory segment.

5. Issuing a .LOOKUP programmed request with a different device or file
specification from the previous .LOOKUP. Note that doing a .LOOKUP
with the same device specification as the previous .LOOKUP does not
necessarily cause the USR to read in a fresh copy of the same directory
segment. This is why you cannot remove a volume from a given device
unit, replace it with another volume, and expect the USR to have the new
volume’s directory segment in memory. However, in this situation, you
can force the USR to read a directory segment from the new volume by
locking the USR to gain exclusive use of it, storing a value of 0 in BLKEY
(RMON fixed offset 256), and then issuing a .LOOKUP programmed
request with the same arguments as the previous .LOOKUP. Clearing
BLKEY causes the USR to “forget” the current directory segment and
read a fresh one from the new volume.

2.2.3.3 Swapping Considerations —Because the USR does not always have to
be resident in memory for SJ and FB systems, you have a variety of options
to consider when you design an application program. You can keep the USR
in memory at all times (the simplest case), or you can arrange to have the
USR swap into memory only when your program needs it. The latter proce-
dure permits your program to use an extra 2K words of memory when the
USR is swapped out. The guidelines that follow can help you design pro-
grams that handle the USR efficiently.

In XM systems, the USR is always resident (that is, SET USR NOSWAP is
always in effect). Of the sections that follow, only those that describe a resi-
dent USR are meaningful for programs in XM.

System Components and Memory Layouts



R

NOTE

In general, the burden of USR swapping should be under-
taken by the program, not by the operator who runs it. SET
USR NOSWAP is useful to override the default action of pro-
grams outside an operator’s control (such as FORTRAN), but
its use requires operators to understand internal program-
ming details — a requirement that should be avoided if at all
possible.

Keeping the USR Resident in an SJ System

In an SJ system, the normal location for the USR is just below the Resident
Monitor and loaded device handlers (see Figure 2—-17). If your program does
not need the space the USR occupies, you can force the USR to remain resi-
dent while your program is executing by issuing the monitor SET USR
NOSWAP command before you run the program. In any case, if the space is
not needed, the USR does not swap. Note that the USR can still slide up or
down in memory, as Section 2.2.1 describes.

For a FORTRAN main program, you can keep the USR resident by using the \
FORTRAN/NOSWAP command (or the /U compiler option) at compile time.
This forces the USR to remain resident while the program is executing. You
cannot use this option if your FORTRAN programs require the extra 2K
words of memory.

Keeping the USR resident means that 2K words less memory is available to
your program. However, the directory operations involved in file opening
and closing and in program loading will be faster because this arrangement
eliminates swapping and disk I/O. In addition, the program will have a
much simpler design. To keep the USR resident, a MACRO program should
avoid issuing a .SETTOP request for memory above the base of the USR.

Remember that even though the USR is set to NOSWAP, there are some
programmed requests that can cause a fresh copy of the USR to be brought
into memory. For an SJ system, these requests are .CDFN, .SRESET,
HRESET, .EXIT, and .QSET. If the USR is swappable and if the back-
ground program issues a .SETTOP request for memory above the base of the
USR, th USR loads into the area specified by the contents of location 46 in
low memory. If location 46 contains 0, as it should when you intend to keep
the USR resident, the USR loads in its usual place, below RMON. However,
if for any reason you move a different value to location 46 and then execute
one of the requests that loads a fresh copy of the USR, the USR will then
load into the area you specified. If you execute a program that keeps the
USR resident, the monitor ignores the contents of location 46.

Allowing the USR to Swap with an SJ MACRO Program

The only reason to allow the USR to swap in an SJ system is to gain access to
the extra 2K words of memory that swapping makes available. To enable
USR swapping, make sure that the SET USR SWAP command is in effect.
(This is the default condition.)

System Components and Memory Layouts 2-31



2-32

A MACRO program gains access to the 2K words of memory because its high
limit requires it, or because it does a .SETTOP to an address within the USR
area. (Refer to Figures 2-9 and 2—10 for a summary of how the RUN and R
commands load programs that overlay the USR area.) When the program
issues a programmed request that requires the USR, the part of the program
that occupies the USR area is written out to SWAP.SYS, and a fresh copy of
the USR is brought into memory from the monitor file on the system volume.
Location 46 should contain a value of 0 if you want the USR to swap into
memory at its default location. If you want it elsewhere, put the starting
address into location 46 during your program’s initialization routine. When
the programmed request completes, the part of the program in SWAP.SYS is
copied back into memory, overlaying the USR. This sequence of events
occurs for each programmed request that requires the USR, even if your pro-
gram issues two or more requests in a row.

To make more efficient use of the USR, your program can issue the .LOCK
programmed request before any other USR requests. This swaps part of your
program out, reads the USR in, and returns to your program. After this, the
USR remains in memory at the location you specified in location 46 (if any).
You can now issue a number of USR programmed requests and avoid the
overhead of USR swapping. When your program next needs the 2K words of
space, use an .UNLOCK request to release the USR.

When the USR is swappable, it is important that you put it in a safe place in
your program. This means that the area the USR will swap over must not
contain code or data that will be needed at the same time the USR is in
memory. The following is a list of code and data that must not be overlaid by
the USR:

® Device block and/or CSI or .GTLIN file description string for the current
request

® Active device handlers

® Active completion routines

® Active interrupt service routines

& Active I/O buffers

® Queue elements from .QSET

e J/O (_:hannels from .CDFN

® The program stack

® The memory list from .DEVICE

® Trap service routines from .SPFA and . TRPSET

® (Code executed between the .LOCK and .UNLOCK requests

You can control USR swapping by careful use of the .SETTOP request. A
typical practice that many system utility programs use is to issue a
SETTOP request to obtain space up to the base of the USR. The programs

System Components and Memory Layouts



im

then perform all their USR operations. Finally, the programs issue an addi-
tional .SETTOP request to obtain as much memory as possible, if necessary.

Another situation to be aware of occurs when a program issues a .SETTOP
request for more memory than is available. In this case, the program is
given only the amount of memory that is available. After issuing a .SETTOP
request, a program must always use the value returned in RO (or location 50
in low memory) as the true high limit of the program. For example, a pro-
gram can issue a .SETTOP request for memory above the base of the USR
when the USR is set to NOSWAP. However, the value returned to the pro-
gram as its true high limit is just below the base of the USR.

Allowing the USR to Swap with an SJ FORTRAN Program

As with a MACRO program in an SJ system, the only reason to permit the
USR to swap with a FORTRAN program is to gain access to an additional
2K words of memory. The USR normally swaps over the FORTRAN OTS
(Object Time System). However, problems occur when the FORTRAN OTS
and the program together are less than 2K words long. In this case, the USR
swaps over the program’s impure data area, with unpredictable results.
(Since this error is frequently made by inexperienced programmers, setting
the USR to NOSWAP and retrying a program is the first thing you should do
when debugging a FORTRAN program that doesn’t execute properly.) And,
unlike MACRO, USR swapping does not depend on your program’s high
limit — that is, if the USR is allowed to swap, it most definitely will swap. So,
do not permit USR swapping unless your program really needs the extra
memory. To enable swapping for a FORTRAN program, make sure the SET
USR SWAP command is in effect, and eliminate the /NOSWAP or the /U
option at compile time.

You have already read about the role that location 46 plays in determining
where the USR will swap. For a FORTRAN program, the FORTRAN OTS
places a value in location 46 to set up the USR swapping location. It is
important to understand where and how the USR swaps so you can design
your FORTRAN program correctly.

The FORTRAN compiler examines the sections of your program and sorts
them based on two major attributes: read-only versus read-write, and pure
code versus data. Generally, program instructions are read-only, and pro-
gram data is read-write. If you use assembly language routines, use the
same p-sects as the FORTRAN compiler. That is, place pure code and read-
only data in section USER$I, and impure data in USER$D. The compiler
forces p-sects into the order shown in Table 2—-7.

This ordering collects all pure sections before impure data in memory. The
USR can safely swap over sections OTS$I, OTS$P, SYS$I, USERSI, and
$CODE. Figure 2-18 shows the arrangement of components when a
FORTRAN program is loaded into memory. The global symbol $$OTSI
marks the start of the pure code area. The global symbol $$OTSC marks its
end, and the beginning of the impure data area. FORTRAN puts the value of
$$OTSI into location 46, and the USR swaps into memory starting at that
address, thus overlaying the first 2K words of your program.

System Components and Memory Layouts 2-33



2-34

Table 2-7: P-sect Ordering for FORTRAN Programs (Low to

High Memory)
Section
Name Attributes Contents

OTS$I RW,ILCL,REL,CON Pure code and data for the
OTS initialization module

OTS$P RW,D,GBL,REL,OVR Pure tables of addresses of
other OTS modules

SYSS$I RW,ILCL,REL,CON RT-11 SYSLIB routines

USERS$I RW,[LLCL,REL,CON Program’s pure code and
read-only data

$CODE RW,LLCL,REL,CON Start of program; read-write
data

OTS$0 RW,I,LCL,REL,CON OTS routines sensitive to
USR swapping

SYS$0 RW,I,.LCL,REL,CON

$DATAP RW,D,LCL,REL,CON Constants

OTS$D RW,D,LCL,REL,CON Pure data referenced by the
OTS modules

OTS$S RW,D,LCL,REL,CON Scratch storage referenced
by the OTS modules

SYS$S RW,D,LCL,REL,CON

$DATA RW,D,LCL,REL,CON Local variables

USER$D RW,D,LCL,REL,CON Program’s impure data

$5%83. RW,D,GBL,REL,OVR Blank COMMON

Named COMMON RW,D,GBL,REL,OVR

blocks

As with a MACRO program, your FORTRAN program should not have cer-
tain instructions or data in the area where the USR will swap. As a general
rule, the following items should not be in the USR swap area:

® Routines that request USR functions (such as IENTER and LOOKUP)

® Data structures for USR requests

® Interrupt service routines

® Completion routines

@ Data areas for interrupt service routines and completion routines

System Components and Memory Layouts



im

Figure 2-18: A FORTRAN Program in Memory

$$0TSC:

$$0TSI:

1000
776

500
476

60

40
36

MEMORY

RESIDENT MONITOR

OTS WORK AREA

LINE BUFFER

CHANNEL TABLES

DEVICE HANDLERS

b e e e — e o— —

1/0 BUFFERS

PROGRAM

- P-SECT $CODE ‘USR

0TS
ROUTINES _-

-
P-SECT OTS$I

OVERLAY HANDLER
AND/OR ODT

STACK

INTERRUPT VECTORS

SYSTEM
COMMUNICATION AREA

TRAP VECTORS

The FORTRAN system itself must also be concerned with USR swapping
and its inherent restrictions. For example, the p-sect OTS$O contains the
FORTRAN OTS routines to open files. This p-sect follows $CODE in the p-
sect ordering. If the start of OTS$O is within 2K words of $3OTSI, the essen-
tial information for the file operation is stored on the job stack before the
USR swaps over the code in OTS$0.

System Components and Memory Layouts 2-35



2-36

The best way to make sure that the USR swaps into a safe place in your
FORTRAN program is to examine the link map to determine if the USR will
swap over restricted sections. That is, see if the first 2K words above $$OTSI
can be overlaid safely. If not, relink the program and change the order of
object modules and libraries you specify to the linker. One problem is caused
by using SYSLIB routines that place important USR data in the lower 2K
words of the job image. An example is the IFETCH routine, which uses a
device block in the program. The USR swaps over the device block just
before it is used, causing an error. To avoid a situation like this, do not set up
device names as constants for a SYSLIB call. Instead, use DATA-initialized
variables. This ensures that the information will be stored high enough in
the job image to avoid being overlaid by the USR.

For more information on this topic, see the RT-11/RSTS/E FORTRAN IV
User’s Guide and the PDP-11 FORTRAN Language Reference Manual.

Keeping the USR Resident in an FB System

As with an SJ system, the easier way to deal with the USR in an FB system
is to keep it resident. Use the SET USR NOSWAP command, or the
/NOSWAP (/U) FORTRAN compiler option. This arrangement is suitable if
the background, foreground, and system jobs have enough memory. The
USR is brought into memory at its usual place, just below any loaded han-
dlers and below the foreground job and it remains in memory during pro-
gram execution. Neither job has to allocate program space for the USR, and
programs execute faster without the overhead of USR swapping and disk
I/0.

The important issue in an FB system with the USR resident is determining
which job should have control of the USR. Because only one job can use the
USR at a time, both jobs must be aware of sharing this resource. Since a pro-
gram in an SJ system can lock the USR in order to process a number of USR
programmed requests, in an FB system, either the background job or the
foreground job can lock the USR to gain exclusive use of it.

The .LOCK request gives ownership of the USR to one job. The UNLOCK
request releases the USR, making it available for the other job. The request
.TLOCK can determine whether or not the other job has exclusive owner-
ship of the USR. It permits a program to try for a .LOCK, but to continue
with execution if the attempt fails.

The LOCK/UNLOCK system permits one job to lock out another for a con-
siderable length of time. During a lockout, interrupt service and completion
routines can run, but not mainline code. This could cause serious difficulties
in a real-time foreground program. There are some ways to minimize or
eliminate this lockout problem:

1. Be sure to separate USR operations from real-time operations.

2. Avoid using devices with slow directory operations, such as cassette,
magtape, and DECtape II.

System Components and Memory Layouts



qm

3. Organize your real-time foreground program so that real-time operations
are in interrupt service routines and completion routines and will not be
affected if the mainline code is locked out with a pending USR request.

Typically, a real-time foreground job can be organized in three parts: an
initialization phase, which opens all required channels and begins real-time
operations; a real-time phase, which does interrupt service and I/O oper-
ations; and a completion phase, which stops real-time activity and closes the
channels. With this arrangement, the background program can perform
USR operations during the real-time phase without locking out the fore-
ground. The foreground program can use .LOCK and .UNLOCK to prevent
interference from the background job during initialization and completion
phases.

Swapping Considerations for Background Jobs

When either the background job or the foreground job needs the extra 2K
words of memory that swapping the USR provides, both jobs must be con-
cerned with USR swapping. The general concerns for background jobs are
those listed in the previous sections.

The easiest approach for the background job is to swap the USR into its
default location, the highest 2K words of program space. If this is not con-
venient for any reason, the background job can select any other contiguous
2K words of program space. In this case, it must also put the starting
address of the USR swap area into location 46 in the system communication
area. This location is context-switched in the FB system, so it always con-
tains the correct value for the job that is currently executing.

The background job must not place any USR-sensitive code or data in the
area where the USR will swap. In addition to the list in the section Allowing
the USR to Swap with an SJ MACRO Program, the following items must not
be in the USR swap area:

@ Memory list from the .CNTXSW request
® Active message buffers

® Code containing the .LOCK or .TLOCK requests

You must also be careful that the background job does not lock the USR for
an unreasonable length of time so it can block the foreground job from run-
ning. If you lock the USR in a background job, remember to unlock it as well.

Swapping Considerations for Foreground Jobs

If the background job issues a .SETTOP that causes the USR to swap, or if
the background job is large enough to force the USR to swap, the foreground
job must be concerned with USR swapping. However, while the background
job can simply allow the USR to swap into its default position (the highest
2K words of the background job area), the foreground job has no default loca-
tion for the USR. It must allocate 2K words within its program bounds in

System Components and Memory Layouts 2-37



which to swap the USR — space that must not contain any USR-sensitive
code or data. The foreground job must also place the starting address of that
space in location 46 in the system communication area. This location is
context-switched during normal foreground/background execution, so it
always contains the correct swapping address for whichever program is cur-
rently executing.

The foreground program could also be concerned with sharing the USR with
the background job. The .LOCK/.UNLOCK requests can give the foreground
job exclusive ownership of the USR to prevent interference by the back-
ground job. The foreground job should avoid keeping the USR permanently
locked, which sometimes happens strictly because of a programmer’s over-
sight.

2.2.4 Keyboard Monitor (KMON)

The Keyboard Monitor (KMON) is the part of the RT-11 system that pro-
vides the communication link between you at the console terminal and the
rest of the RT-11 system. Keyboard monitor commands permit you to assign
logical names to devices, load device handlers, run programs, control
foreground/background operations, control system jobs, invoke indirect com-
mand files, and examine or modify memory locations. KMON is brought into
memory when the background job completes. When KMON is in memory,
the USR is also present directly above it.

Figure 2-19: Keyboard Monitor

/0 PAGE

MEMORY

28K SYSTEM
DEVICE HANDLER

RESIDENT MONITOR

KMON COMMAND AND
INDIRECT FILE SPACE

USR

KEYBOARD MONITOR

\
\ \
BACKGROUND \ \
JOB AREA \ \
\ OVERLAY AREA FOR
MORE KEYBOARD COMMANDS
1000 \
776
soo | BACKGROUND STACK \ AREA FOR RESIDENT
476 \ KEYBOARD COMMANDS
INTERRUPT VECTORS
60 \
56 [ SYSTEM
20 | COMMUNICATION AREA \ COMMAND DISPATCHER
36
o TRAP VECTORS \ KMON/USR SLIDE DOWN ROUTINE

2-38 System Components and Memory Layouts



- am

The Keyboard Monitor consists of a root segment and a number of overlays
that contain the command processors. KMON runs as an ordinary back-
ground job, in user mode. The root segment is contained in the p-sect RT11.
See Table 2—6 for a summary of all monitor p-sects.

When KMON interprets a keyboard monitor command that you type at the
terminal, it expands the command text into an internal indirect file. For
example, the command COPY MYFILE DL:MYFILEGE) expands internally

into:

R PIP
DL:MYFILE=DK:MYFILE
“C

KMON stores this internal indirect file in the command expansion buffer
area. KMON creates space in memory for this buffer area immediately
above the USR. When KMON and the USR slide up or down in memory, the
command buffer spaces moves with them. Figure 2—19 shows the Keyboard
Monitor in memory.

Chapter 1 of the RT-11 System User’s Guide gives an overview of KMON
command processing. The RT—-11 System Generation Guide describes how to
remove individual commands or groups of commands from a system you cre-
ate through the system generation process. If you are interested in modify-
ing KMON itself to change the monitor command set, obtain the microfiche
listings of the commented sources. Extensive comments in KMON sources
outline the procedure for adding new commands and changing existing com-
mands. Note that because the procedure is very complex, DIGITAL does not
recommend modifying the keyboard monitor commands. Instead of modify-
ing KMON, use the CCL (Concise Command Language) or UCL (User
Command Linkage) interfaces to create new commands. The procedures for
doing this are outlined below.

2.2.4.1 Adding New Commands Through CCL — If KMON does not recognize
the first word of an input line as a valid KMON command, it tries to treat
the input line as a CCL command by searching for a program of that name
on SY: and running the program. If a program is found, KMON passes the
remainder of the command line to the program in the CSI input buffer as a
CSI command string, followed by a AC. The general format of a CCL com-
mand is:

command <sp> field1<sp>field2
or
command <sp> csistring

If the first form is used, KMON converts it to the second form by reversing
the fields and inserting an equal sign:

command <sp> field2 =fieldl

System Components and Memory Layouts 2-39



240

For example, you might type:

PIP A=B

or

PIP B A

Both forms are equivalent to typing:

+R SY:PIP
*A=B
*°C

If the first word on the line is more than six characters, characters after the
first six are ignored. fieldI and field2 can contain multiple file names, sepa-
rated by commas. If you have an application program on SY: named
EVALUA.SAV to evaluate certain collected data and print a report, you
could type:

EVALUATE RK3:DATA1G.DAT: RK1:DATAO3.DAT LP:

This is equivalent to:

+R SY:EVALUA
LP:=RK3:DATAL1G.DAT» RK1:DATAO3.DAT
*°C

2.2.4.2 Adding New Commands Through UCL —RT-11 V5 also supports User
Command Linkage (UCL) as a SYSGEN option. The SYSGEN conditional is
U$CL. If UCL support is enabled, KMON first checks to see if the first word
of the line is one of the defined KMON commands, such as COPY. If not,
KMON tries, using the CCL conventions outlined above, to find and run a
program of that name. If that also fails, KMON looks for the user program
SY:UCL.SAV and runs it if present. KMON passes as ASCII text, in the
chain area starting at location 512, the entire command line including the
first word, to UCL.SAV. Location 510 contains the number of bytes in the
command line. Locations 500 through 507 of the chain area are not used.

The user-written program UCL.SAV can interpret and expand the com-
mand line passed to it in any way that it wants. UCL.SAV can perform the
operations required by the command. UCL.SAYV can reformat and pass the
command to another program by doing a .CHAIN, or UCL.SAV can create a
new command line and pass the new command to KMON by doing a normal
or special chain exit. For example, you could type:

BUILD MYPROG

System Components and Memory Layouts



UCL.SAV might expand the command into the following series of
commands:

R MACRO
MYPROGsLP:/C=MYPROG
“C

R LINK
MYPROG=MYPROG

o0

RUN MYPROG

These commands could then be passed back to KMON by doing a normal
chain exit or a special chain exit. Refer to Section 2.1.2.2 for information
about normal and special chain exits.

The default device for UCL.SAV is stored as a Radix—50 word at monitor
location ..UCLD; this can be changed to another device name if desired. The
default name for the UCL command processor (initially UCL.SAV) is stored
as Radix—50 words at monitor location ..UCLF; this may also be changed to
another name if desired.

2.3 Sizes of Components

Table 2-8 shows the sizes of some of the components in the distributed
RT-11 systems.

Table 2-8: Sizes of Distributed Components in Memory

Monitor KMON USR RMON
BL 20000 2K 1857
(base-line) octal bytes words decimal words
SJ 20000 2K 1996
octal bytes words decimal words
FB 20000 2K 4220
octal bytes words - decimal words
XM 21000 2K 4500
octal bytes words decimal words

If you are not using a distributed system, and you need to know the sizes of
the components, you should follow the guidelines in the next few sections.

2.3.1 Size of the USR

For SJ and FB systems, the size of the USR is always 2K words. For XM sys-
tems the USR, which is always resident, is somewhat larger. Your running
program can determine the exact size of the USR by examining RMON fixed
offset 374, USRAREA, which contains the size of the USR in bytes. You can
also determine the size of the USR by issuing the monitor commands SET
USR NOSWAP and SHOW MEMORY.

System Components and Memory Layouts 2—41



2.3.2 Size of KMON

The size of KMON is the same as' the size of the p-sect RT11. Examine the
link map that resulted from the system generation for your system to obtain
this value.

2.3.3 Size of RMON

To determine the size of RMON, issue the SHOW MEMORY monitor com-
mand. This command prints the base address of RMON and its size in deci-
mal words.

2.3.4 Size of Device Handlers

The size of each device handler, in bytes, is contained in location 52 of the
handler’s .SYS file. You can also obtain this value by issuing a .DSTATUS
programmed request on the device from a running program or by issuing the
SHOW MEMORY monitor command, which reports the sizes of all loaded
device handlers.

242 System Components and Memory Layouts



im

Chapter 3
Resident Monitor

The main purpose of the Resident Monitor (RMON) is to provide services to
running programs and to the Keyboard Monitor. The services include field-
ing traps and interrupts, providing the programmed requests, and acting as
the central manager of the device-independent I/O system. In a multi-job
system, the monitor also arbitrates the demands of up to eight jobs for pro-
cessor time.

This chapter describes the functions of the Resident Monitor that are gener-
ally common to all RT-11 systems. It provides information on the monitor’s
terminal service for a single console teminal. (See Chapter 5 for information
on multi-terminal systems.) It also describes how clock interrupts are han-
dled and explains how timer support is implemented. The queued I/O system
is discussed, scheduling for multi-job systems is described, and the system
job feature is introduced. Lastly, information on the Resident Monitor’s data
structures is provided.

3.1 Terminal Service

RT-11 provides terminal service through the Resident Monitor. Terminal
service is always resident, and it is part of RMON itself. Because of the way
RT-11 implements terminal service, no handler is involved in the interac-
tion between you at the terminal and the running system. Thus, terminal
service is distinct from the services provided through the TT handler. (The
TT handler implements .READ and .WRITE programmed requests for the
console terminal.) It is designed to be a good interface between a person and
the system, rather than an interface between a peripheral device and the
system.

As part of the resident terminal service, RMON provides special pro-
grammed requests for terminal I/O. Because it uses ring buffers to imple-
ment the terminal service, RMON provides support for line-by-line editing.
The terminal input interrupts are always enabled, which means that you
can get the system’s attention at any time by typing CTRL/C, CTRL/B,
CTRL/F, and so on. You can also type ahead to the system without losing
characters.

The ring buffers are the heart of the terminal service implementation. In SJ,
one input ring buffer and one output ring buffer are located in RMON. For
FB and XM systems, each job has its own set of ring buffers located in its
impure area. The ring buffers store text in a buffer zone between you at the



I

3-2

terminal and a running program in memory. The default size of the input
ring buffer is 134 decimal bytes; the default size of the output ring buffer is
40 decimal bytes.

3.1.1 Output Ring Buffer

An output ring buffer consists of the buffer area, three pointers, and a byte
count. The buffer, or ring, itself is a block of bytes reserved for storing char-
acters. Two of the three pointers store and retrieve characters. The PUT
pointer marks the location where the next character will be stored and is
used by the programmed requests that fill the buffer, such as . TTYOUT,
.TTOUTR, and .PRINT. The GET pointer marks the next character to be
retrieved and is used by the output interrupt service routine that sends
characters to the terminal. The third pointer, HIGH, points to the first mem-
ory location past the buffer. Lastly, the monitor maintains a byte count for
the number of characters currently in the buffer. Figure 3—1 shows an out-
put ring buffer in memory just after the system was bootstrapped.

Figure 3-1: Output Ring Buffer

X+SIZE —— H|GH

X+SIZE—1

® RING BUFFER °

—=— PUT —=— GET

BYTE COUNT: 0

3.1.1.1 Storing a Character in the Output Ring Buffer — The output ring buffer
is filled by characters that are passed by .TTYOUT, .TTOUTR, and .PRINT.
Characters that echo what you type on the terminal are also stored here,
including sets of backslashes to enclose text you rub out with the DELETE
key on a hard copy terminal. To store a character in the output ring buffer,
the monitor first compares the buffer size to the byte count to check for room.
If there is no room, the character cannot be stored. In FB systems, this condi-
tion is sufficient to block a job if the job is doing output. (If the output is the
result of echoing, it is simply discarded.) If there is enough room, the moni-
tor checks to see if the PUT pointer is equal to the HIGH pointer. This check
ensures that the PUT pointer is pointing to a location that is within the
buffer. If the PUT and HIGH pointers are the same, the monitor subtracts
the size of the buffer from the current PUT pointer to obtain the new PUT
pointer. By doing this, the monitor “wraps” around the ring to move from
the highest address in the buffer to the lowest one.

Resident Monitor



1m

Next, the monitor moves a byte into the buffer and it increments both the
PUT pointer and the byte count. Figure 3—2 shows how characters are stored
in the output ring buffer.

Figure 3-2: Storing Characters in the Output Ring Buffer

GET

2,
_y
$

BYTE COUNT: 19

3.1.1.2 Removing a Character from the Output Ring Buffer — The terminal out-
put interrupt service routine removes characters from the output ring
buffer. If the character count is 0, the routine terminates. The routine
checks to see if the GET pointer is equal to the HIGH pointer. If it is, this
means it is time to “wrap” around the ring to move from the highest address
in the buffer to the lowest one. The wrap routine subtracts the size of the
buffer from the current GET pointer to obtain the new value of the GET
pointer. This check ensures that the GET pointer is pointing to a location
that is within the buffer.

Next, the output interrupt service routine removes one character through
the GET pointer and prepares to send it to the terminal. It increments the
GET pointer and decrements the byte count.

3.1.2 Input Ring Buffer

The input ring buffer is similar to the output ring buffer except that in addi-
tion to the GET, PUT, and HIGH pointers, it has a LOW pointer that points

Resident Monitor 3-3



to the first byte of the buffer. This pointer is useful when the pointers are
moving backward through the buffer as a result of CTRL/U or DELETE. It
indicates when to “wrap” the buffer in the reverse direction, from the lowest
address to the highest.

The monitor also keeps a count of the number of lines that are stored in the
input ring buffer. A line is any sequence of characters terminated by line
feed, CTRL/Z, or CTRL/C. (Each time you type a carriage return at the ter-
minal, RT-11 stores two characters in the input ring buffer: a carriage
return and a line feed.) In normal mode, the monitor does not pass input
characters to a program until an entire line is present. This is why you can
use DELETE to rub out a character and CTRL/U to remove an entire line
when you are typing at the terminal. Since the monitor provides for line-by-
line editing, application programs need not have this overhead themselves.

In special mode, however, the monitor passes bytes to a program exactly as
they are typed on the terminal. In the latter case, the program itself must be
able to interpret editing characters such as DELETE and CTRL/U.

NOTE

Special mode does not provide the complete transparency
required to handle devices other than terminals — such as
communication lines — through the Resident Monitor termi-
nal service. You can achieve transparency through the multi-
terminal feature of RT-11 by using the “read pass-all” and
“write pass-all” modes. These are described in Chapter 5.

Figure 3—-3 shows the input ring buffer just after the system was boot-
strapped.

Figure 3-3: Input Ring Buffer

X+SIZE —=— HIGH

X+SIZE—1

RING BUFFER

— PUT —-e——— GET —=——— LOW
BYTE COUNT: 0
LINE COUNT: 0

3-4 Resident Monitor



3.1.2.1 Storing a Character in the Input Ring Buffer — When you type charac-
ters at the terminal, the keyboard interrupt service routine stores them in
the input ring buffer. First, the routine checks to see if there is room in the
buffer. If there is no room, it rings the terminal bell (by putting a bell char-
acter in the output ring buffer). If there is room, the routine increments the
byte count, increments the PUT pointer, wrapping it if necessary, and stores
the byte in the ring buffer. It also increments the line counter, if the charac-
ter typed is a valid line terminator. Figure 3—4 shows how characters are
stored in the input ring buffer.

Figure 3—4: Storing Characters in the Input Ring Buffer

GET LOW

BYTE COUNT:_19

LINE COUNT:_1

3.1.2.2 Removing a Character from the Input Ring Buffer — The monitor
removes characters from the input ring buffer when it processes the .TTYIN,
.TTINR, .GTLIN, .CSIGEN, and .CSISPC programmed requests. First it
increments the GET pointer, wrapping around the ring if necessary. Then it
gets a byte from the buffer and decrements the byte count. It decreases the
line count as well if the character is a valid line terminator.

Resident Monitor 3-5



a1

3.1.3 High Speed Ring Buffer

RT-11 provides an optional, additional high speed ring buffer that you can
enable by setting the conditional HSR$B in SYCND.MAC to 1 and reas-
sembling the monitor. This adds an extra input ring buffer to RMON; it adds
an extra output ring buffer only if your system has multiple DL interfaces.

When the high speed ring buffer is present, all character processing and
interpretation is performed at fork level. The high speed buffer is used to
pass characters from interrupt level to fork level. The advantage of having
the high speed buffer is that it allows the monitor to handle short bursts of
characters coming in at a very high rate. This is useful for systems with
VT100 or other intelligent terminals that report their status by sending a
burst of information to the host computer. It is also useful for connecting one
computer to another over a serial line.

The disadvantage to using the high speed ring buffer is that a .FORK call is
required for each burst of characters, and, thus, overall terminal service
may be slower.

3.1.4 Terminal I/O Limitations

Terminal input and output limitations are completely separate; you use dif-
ferent methods to change each of them.

RT-11 accepts terminal input in either of two forms: a line at a time, or a
character at a time. In line mode, characters you type at the terminal are
stored in the input ring buffer until you type a valid line terminator such as
carriage return, line feed, CTRL/Z, or CTRL/C. Only then does a running
program receive the line of data. The factor limiting the length of the input
line is the size of the input ring buffer. (The setting of the terminal right
margin bears no relation to the length of the input line.) In RT-11 V05, the
default length is 134 decimal bytes, but you can change this through the sys-
tem generation process. Any attempt to insert characters beyond this limit
causes the terminal bell to ring, and the extra characters are lost. The
Command String Interpreter can accept only 81 characters per line. Most
utility programs, including PIP and BASIC-11, use the CSI to obtain lines
of data from the terminal.

In character mode, a running program receives each character immediately
after you type it at the terminal. In this mode, you can enter any number of
characters without using a line terminator. KED uses character mode, and
can thus accept lines of any length.

The length of terminal output lines is not related to the size of the output
ring buffer; instead, it is related to the setting of the terminal right margin.
Use the SET TT: WIDTH =n command to adjust the right margin. (See the
RT-11 System User’s Guide for details on SET TT: WIDTH and
SET TT: CRLF.)

3-6 Resident Monitor



£ i)

3.1.5 Control Functions

A special aspect of RT-11’s terminal service is its response to control charac-
ters that you type at the terminal. The monitor handles each character dif-
ferently, depending on the special function of each one. The following sec-
tions describe the different processes involved for the various control
characters.

3.1.5.1 CTRL/C — When you type one CTRL/C at the terminal, the terminal
interrupt service routine puts it into the input ring buffer, just as it would
any other character. The monitor treats it as a line delineator and passes it
to the running program.

However, if you type two CTRL/Cs in a row, the monitor processes them
entirely differently. Instead of passing them directly to the program, the
monitor aborts the running job. A program can use the .SCCA programmed
request to intercept CTRL/C and prevent the abort (see the RT-I1
Programmer’s Reference Manual for a description of .SCCA).

3.1.5.2 CTRL/O — When the terminal interrupt service routine detects a
CTRL/O, it never places the character in the input ring buffer, even if it is in
special mode. The monitor simply toggles a flag in the impure area. (In FB
and XM systems, this flag is the sign bit of the output ring buffer byte
count.)

The first time you type CTRL/O, the monitor echoes it, then clears the out-
put ring buffer byte count. It empties the ring by setting the GET and PUT
pointers equal to each other, and output from a running program is thrown
away. In FB and XM systems, this can unblock a job waiting for room in the
output buffer. The next time you type CTRL/O or your job issues the
.RCTRLO programmed request, normal output resumes.

3.1.5.3 CTRL/S and CTRL/Q — RT-11 implements terminal synchronization
through the characters CTRL/S and CTRL/Q. CTRL/S, or XOFF, is a signal
that stops a host computer from transmitting data to a terminal. The
CTRL/Q, or XON, signal causes the computer to resume the transmission.
Although XOFF has many uses, RT-11 supports only the two most common.

In a typical situation, you may be doing program development using a video
terminal. When you use the TYPE monitor command to review a file, the
text scrolls past faster than you can read. You can type CTRL/S to stop the
display so that you can read it, and then type CTRL/Q to resume the scroll-
ing. You initiate the XQFF yourself, in this case.

In another situation, the computer may send characters to a terminal faster
than the terminal can display them. So, the terminal itself sends the XOFF
signal to the computer, empties its internal silo, and sends XON when it is
ready to accept more data. This procedure is transparent to you.

Resident Monitor 3-7



A flag in RMON, called XEDOFTF, indicates the XOFF/XON status. Typing
CTRL/S sets the flag; typing CTRL/Q clears it. When XEDOFF is set, the
monitor disables terminal output interrupts and stops emptying the output
ring buffer. See the RT-11 System User’s Guide for a description of the
SET TT: NOPAGE command, which disables CTRL/S and CTRL/Q pro-
cessing for FB and XM systems, and for those SJ systems with the multi-
terminal special feature.

3.1.5.4 CTRL/B, CTRL/F, and CTRL/X —In FB and XM systems CTRL/B and
CTRL/F direct terminal I/O to the correct job. (In SJ systems these charac-
ters have no special meaning.) CTRL/X performs the same function for sys-
tems with system jobs. (See Section 3.5.9 for more information on communi-
cating with system jobs.) The CTRL/B, CTRL/F, and CTRL/X characters are
not put into the input ring buffer. Instead, they are recognized by the input
interrupt service routine (unless SET TT: NOFB is in effect, in which case
the characters have no special meaning) and the monitor switches the set of
ring buffers it is using.

The interrupt service routine uses two control words, TTOUSR and
TTIUSR, to point to the impure area of the correct job. The job’s identifica-
tion is stored in a special buffer in the impure area. The foreground job ID is
F>; the background job ID is B>; the ID for a system job is its job name.
When terminal I/0O is directed to a different job, the new job’s identification
prints on the terminal.

3.1.6 SET Options Status Word

The word TTCNFG in the Resident Monitor is a status word that indicates
which terminal SET options are in effect. For multi-terminal systems, each
terminal control block has a status word similar to TTCNFG. TTCNFG
reflects the status of the SCOPE, PAGE, FB, FORM, CRLF, and TAB
options. Table 3—1 shows the meanings of the bits. Unused bits are reserved
for future use by DIGITAL.

Table 3-1: SET Options Status Word

Bit Meaning When Set
0 SET TT: TAB option is in effect.
1 SET TT: CRLF option is in effect.
2 SET TT: FORM option is in effect.
3 SET TT: FB option is in effect.

4-6 Reserved.
7 SET TT: PAGE option is in effect.
8-14 Reserved.
15 SET TT: SCOPE option is in effect.

3-8 Resident Monitor



To get the status word and current width of the terminal (in systems without
the multi-terminal special feature), use the following lines of code:

Mo B#30Rn
Mo -(Rn) sSTATUS
MOVB -G(Rn) sWIDTH

Use the following additional line to obtain the value of the current carriage
or cursor position (a value of 0 means the cursor or carriage is at the left
margin):

MOVB -1(Rn) +POSIT

3.2 Clock Support and Timer Service

You do not need a system clock in order to run RT-11 on a PDP-11 com-
puter. However, if your computer does have a clock, RT-11 can provide basic
support for keeping time of day, or it can provide timer service — standard
with FB systems, and a system generation special feature for SJ systems.

3.2.1 SJ Systems Without Timer Service

An SJ system without the timer feature (the default condition) provides
basic support for a system clock. Essentially, RT-11 keeps track of the time
of day, but does not provide a means to implement mark time or timed wait
requests.

The bootstrap routine looks for a clock on the system. If it finds one, it sets
the clock bit in RMON’s configuration word at fixed offset 300. If the clock
has a CSR (Control and Status Register), the bootstrap turns the clock on. If
the clock does not have a CSR (as is the case with some LSI-11 and
PDP-11/23 computers), no executing routine can turn the clock on or off;
there may be a switch for the clock on the front panel.

RMON maintains the time of day in a two-word counter. The counter is
called $TIME (high-order word) and $TIME 2 (low-order word). RT-11
stores time of day as the number of ticks since midnight if you set the time
with the monitor TIME command. If you do not set the time, RT-11 stores
the number of ticks since the system was last bootstrapped.

RT-11 supports KW11-L and similar line frequency clocks, and KW11-P
programmable clocks. (Support for the programmable clock is a feature that
you select through system generation.) The default interrupt frequency for
the clocks is the same as the line frequency. That is, the clock interrupts 60
times per second with 60 Hz power, and 50 times per second with 50 Hz
power. Each time the clock interrupts, it adds one tick to the two-word time
of day counter.

In a simple system with a clock and no timer service you can use the monitor
TIME command to set the time of day or get the current time. A running
program can use the .GTIM programmed request to obtain the current time,
and .SDTTM to set it.

Resident Monitor 3-9



3.2.2 Systems with Timer Service

Timer service is always included in FB and XM systems. It is a system gen-
eration special feature for SJ systems. Timer service provides three extra
programmed requests: the mark time request (MRKT), the cancel mark
time request ((CMKT), and the timed wait request (TWAIT, in FB and XM
only). In addition, another system generation special feature provides device
time-out support through the time-out macro (.TIMIO) and the cancel time-
out macro (.CTIMIO), which are described fully in Chapter 7.

Because timer support itself requires the fork queue, selecting this feature
in SJ results in real, rather than simulated, fork processing. (Usually in SJ a
FORK request returns immediately to the following instructions.) With a
real fork queue in SJ, .FORK requests are serialized and do not interrupt
one another. For more information on the .FORK request, see Chapter 6.

To implement timer services, RT—11 uses a timer queue, which is a linked
list of queue elements, sorted in order of expiration time. The element that
expires soonest is at the head of the queue. The .MRKT, .TWAIT, and

- .TIMIO requests use the timer queue. They schedule completion routines to
be executed after a certain time interval elapses.

The monitor uses the timer queue internally to implement the .TWAIT pro-
grammed request, which causes the job that issues it to be suspended. The
monitor places a timer request in the timer queue, with the .RSUM pro-
grammed request code as its completion routine. The job waits until the
specified time interval has elapsed. Execution resumes when the monitor
itself issues the .RSUM request as a completion routine.

Figure 3-5 shows the format of a timer queue element. It includes the sym-
bolic names and offsets as well as the contents of each word in the data struc-
ture. Note that time is stored as a two-word number — a modified expression
of the number of ticks until the timed wait expires.

Figure 3-5: Timer Queue Element Format

NAME OFFSET CONTENTS

C.HOT 0 | HIGH-ORDER TIME

C.LOT 2 LOW-ORDER TIME

C.LINK 4 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE

C.JNUM 6 OWNER'S JOB NUMBER

C.SEQ 10 OWNER'’S SEQUENCE NUMBER ID

C.SYS 12 —11F SYSTEM TIMER ELEMENT;
—3 IF .TWAIT ELEMENT IN XM

C.COMP 14 ADDRESS OF COMPLETION ROUTINE
THREE ADDITIONAL WORDS ARE PRESENT IN
XM SYSTEMS. THEY ARE UNUSED, AND ARE
RESERVED FOR FUTURE USE BY DIGITAL.

3-10 Resident Monitor



AIL

To store the time of day in all systems with timer support, RT-11 uses a two-
word pseudo clock called PSCLOK (low-order word) and PSCLKH (high-
order word). In this pseudo clock RMON stores the time, in ticks, that has
elapsed since the system was bootstrapped. Each clock interrupt adds one
tick to the counter. Two other words — $TIME and $TIME 2 —contain a con-
stant that, when added to the value of the pseudo clock, yields the current
time of day.

The monitor uses the pseudo clock to implement timer requests. When a new
queue element is put on the queue, the monitor adds the low-order word of
the pseudo clock to the two-word time value in the queue element and it
stores the resulting value, a modified time, in the queue element time words.
Whenever the pseudo clock carries into the high-order word (approximately
every 18 minutes), the monitor subtracts 1 from the high-order word of time
in each pending timer queue element. The element expires when the high-
order time word is 0 and the low-order time word is less than or equal to the
pseudo clock low-order word. This method of storing time information means
that handling timer requests requires only test and compare instructions,
which execute rapidly, and a pass over the queue roughly every 18 minutes
to correct the time words.

Every time the system clock interrupts, the monitor increments the pseudo
clock. It then checks the first element in the timer queue. If the high-order
word of the timer element is 0 and the low-order word is greater than the
low-order word of the pseudo clock, the element has expired. The monitor
removes it from the timer queue and processes it as a completion routine for
the correct job. The monitor continues to check the timer queue until it finds
an element that has not yet expired or the queue is empty.

There are several uses for system timer elements. If C.SYS is —1, the ele-
ment is being used by .TIMIO for device time-out support, or by RMON for
multi-terminal device time-out. If C.SYS is —3, the element is being used to
implement a .TWAIT request in an XM system. For .MRKT and other
.TWAIT requests, C.SYS is 0.

In XM, completion routines that have —1 in C.SYS are run in kernel mode
and the queue element is discarded. That is, the queue element is not linked
into the list of available elements. If C.SYS is -3, the completion routine is
still run in kernel mode. However, the queue element is linked into the
available queue when the completion routine is run. (The timer queue ele-
ment is used as the completion queue element.) In all other cases, the queue
element is linked into the available queue and completion routines run in
user mode. (Chapter 4 provides more information on extended memory
systems.)

3.3 Queued I/O System

RT-11 performs I/O transfers through a queued I/O system. A job can thus
have multiple I/O requests outstanding at a given time — that is, it can issue
an I/0 request and still continue processing.

Resident Monitor 3-11



3-12

RT-11 implements queued I/O through the queue elements, the device han-
dlers, and the routines in the Resident Monitor. Once a device handler is in
memory and the job has opened a channel, any .READ or .WRITE requests
for the corresponding peripheral device are interpreted by the monitor and
translated into a call to the handler. Figure 3-6 illustrates the relationship
between these components.

Figure 3—-6: Components of the Queued I/O System

sJ FB
FOREGROUND BACKGROUND
PROGRAM JoB JoB
Q ELEMENT
] |
y
MONITOR MONITOR
MONITOR
Q ELEMENT Q ELEMENT

DEVICE HANDLER

Y

DEVICE

3.3.1 /0 Queue

The RT-11 I/O queue system consists of a linked list of queue elements for
each resident device handler and a queue of available elements for each job.
I/O queue elements are seven words long for SJ and FB systems, and 10 deci-
mal words long for XM systems. RT-11 provides one queue element in the
Resident Monitor for the SJ environment. For the FB and XM environ-
ments, each job has one queue element in its impure area. One queue ele-
ment is sufficient for a job that uses wait-mode I/O.

Figure 3—7 shows the format of an I/O queue element. It includes the sym-
bolic names and offsets, as well as the contents of each word in the data
structure.

Resident Monitor



A

Figure 3-7: 1/0 Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
Q.Csw 2 POINTER TO CHANNEL STATUS WORD IN 1/0
CHANNEL (SEE FIGURE 3-29)
Q.BLKN 4 PHYSICAL BLOCK NUMBER
Q.FUNC 6 RESERVED | JOB DEVICE | SPECIAL
Q.UNIT 7 NUMBER | UNIT FUNCTION
Q.JNUM 7 (1 BIT) (4 BITS) (3BITS) | CODE
0=BG (8 BITS)
Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1
WITH Q.PAR VALUE, IF XM)
QWCNT 12 IF <0, OPERATION ISWRITE
WORD COUNT <IF =0, OPERATION IS SEEK
IF >0, OPERATION IS READ
THE TRUE WORD COUNT IS THE ABSOLUTE
VALUE OF THIS WORD.
Q.cOMP 14 COMPLETION (IF O, THIS IS WAIT-MODE 1/0
ROUTINE IF 1, JUST QUEUE THE REQUEST
CODE AND RETURN
IF EVEN, COMPLETION ROUTINE
ADDRESS
Q.PAR 16 PAR1 VALUE (XM ONLY)
RESERVED (XM ONLY)
RESERVED (XM ONLY)

If your program uses asynchronous I/O, you must allocate more queue ele-
ments for it by using the .QSET programmed request. Otherwise, if the pro-
gram initiates an I/O transfer and no queue element is available, RT-11
must wait for a free element before it can queue up the new request.
Obviously, this slows processing. The number of queue elements is always
sufficient when you allocate n new elements, where n is the total number of
pending requests that can be outstanding at one time for a particular pro-
gram. This produces a total of n+1 available elements, since the original
single queue element is added to the list of available elements.

The list header, called AVAIL, is a linked list of free queue elements. It con-
tains a pointer to an available queue element. If AVAIL is 0, no elements
are currently available. Figure 3-8 shows an I/O queue with three queue
elements, all of which are available. In this diagram, AVAIL points to ele-
ment 1. The first word in each queue element is a pointer to the next element
in the queue. Thus, element 1 is linked to element 2, element 2 is linked to
element 3, and element 3 is the last element in the linked list; its link word
is 0.

Resident Monitor 3-13



Figure 3-8: 1/0 Queue with Three Available Elements

QUEUE OF AVAILABLE ELEMENTS

AVAIL: Q1
Q1:
Q2
Q2:
L Q3
Q3:
0 s

When a program initiates a request for an I/O operation, the monitor allo-
cates a queue element for the request by removing it from the list of avail-
able elements. The monitor then links the element into the I/O queue for the
appropriate device handler. This is accomplished by using two words in the
handler header — ddLQE and ddCQE.

The fourth word of the handler is a pointer to the last element in its queue.
This pointer is called ddLQE, where dd is the two-character physical device
name. The fifth word of the handler, called ddCQE, is a pointer to the cur-

rent queue element.

Figure 3-9 shows the status of the queue elements when one I/O request is
pending. The monitor removes the first queue element from the available
list and puts it on the device handler’s queue.

When a program requests a second I/O transfer for the same handler before
the first transfer completes, the monitor removes another queue element
from the available list and adds it to the queue for that handler. Figure 3—10
illustrates this.

3-14 Resident Monitor



LI

Figure 3-9: I/0 Queue with Two Available Elements

¢
QUEUE OF AVAILABLE ELEMENTS QUEUE FOR A DEVICE HANDLER
LQE: Q1
AVAIL: Q2 CQE: Q1
Q1: 0
Q2: Q3: e
Q3 0

Figure 3-10: I/0 Queue with One Available Element

QUEUE OF AVAILABLE ELEMENTS QUEUE FOR A DEVICE HANDLER

AVAIL: Q3 LQE: Q2
CQE: Q1
Q1: Q2
Q2: 0 —

Q3: 0 g

Resident Monitor 3-15



Figure 3-11: I/O Queue When One Element Is Returned

QUEUE OF AVAILABLE ELEMENTS QUEUE FOR A DEVICE HANDLER
LQE: Q2
VAIL:
A Q1 CQE: Q2
Q1: Q3
Q2: 0
a3 =

Figure 3-12: I/0 Queue When Two Elements Are Returned

QUEUE OF AVAILABLE ELEMENTS QUEUE FOR A DEVICE HANDLER
LQE: 0
| AVAIL: Q2 CQE: 0

Q1: i Q3

Q2: s Q1 el

Q3: 0 it

3-16 Resident Monitor



218

When the transfer currently in progress completes, the monitor returns
queue element 1 to the available list and initiates the transfer indicated by
queue element 2. Figure 3-11 illustrates the queue status when one element
is returned.

When the I/O operation indicated by queue element 2 finishes, the monitor
returns that element to the available list, as Figure 3-12 indicates. Note
that the elements are now linked in a different order from that shown pre-
viously in Figure 3-8.

Figure 3-13: Device Handler Queue When a New Element Is Added

QUEUE FOR A DEVICE HANDLER

LQE: Q6
CQE: Q1
Q1: Q2
~=——THIS 1/0 TRANSFER IS CURRENTLY
JOB NUMBER =0 IN PROGRESS; THE MONITOR DOES
(BACKGROUND JOB) NOT PREEMPT IT WITH A QUEUE
ELEMENT FOR A HIGHER PRIORITY
JOB.
Q2: Q3
JOB NUMBER = 16
(FOREGROUND JOB)
Q3: Q4
JOB NUMBER = 16
(FOREGROUND JOB) NEW QUEUE ELEMENT
s ?
Q4: Q5 JOB NUMBER = 16
(FOREGROUND JOB)
JOB NUMBER = 14
(SYSTEM JOB 6)
Qs: Q6
JOB NUMBER = 12
(SYSTEM JOB 5)
Q6: 0
—~=—THIS ELEMENT iS THE LAST ONE
JOB NUMBER =0 IN THE QUEUE; ITS LINK WORD
(BACKGROUND JOB) 1S 0.

Resident Monitor 3-17



—1 1

In SJ systems, the monitor always puts the new queue element at the end of
the device queue. By using ddLQE it can do this quickly. In FB and XM sys-
tems, the device queue is sorted in order by job number, with the queue ele-
ments belonging to the highest job number appearing at the beginning of
the queue and those belonging to the lowest job number at the end. The mon-
itor puts the new element in the queue at the end of the list within a specific
job group. Thus, if two requests are queued waiting for a particular handler,
the request with the higher job number is honored first. At no time though,
does the monitor abort an I/O transfer already in progress to start a higher
priority request. The operation in progress always completes before the
monitor initiates another transfer.

Figure 3-13 illustrates a large queue for a device handler. The monitor adds
the new element, an I/O request from the foreground job, to the queue at the
end of the list of other foreground job elements. Note that the monitor does
not preempt the current queue element, even though it is a request from the
background job.

3.3.2 Completion Queue

In FB and XM systems, the monitor maintains a completion queue for each
job, using it to serialize completion routines for each job. The head of the
completion queue is called . CMPL and it is located at offset 6 from the start
of the impure area. LCMPE, at offset 4, points to the end of the completion
queue. By using I.CMPE, the monitor can quickly add a new completion
queue element to the end of the queue.

A completion routine is a section of code in a program that begins to execute
as soon as an asynchronous event occurs. For example, the .READC pro-
grammed request starts an I/O transfer and provides the address in the pro-
gram at which execution is to begin when the I/O transfer completes. See the
RT-11 Programmer’s Reference Manual for a more thorough description of
completion routines.

When an I/O transfer completes, the monitor checks Q.COMP at offset 14
octal from the start of the I/O queue element. If the value is greater than 1 it
specifies a completion routine address. The monitor then transforms the I/O
queue element into a completion queue element and places it on the comple-
tion queue for the job whose job number appeared in Q.JNUM at offset 7
from the start of the I/O queue element.

Figure 3—14 shows the format of a completion queue element. It includes the
symbolic names and offsets, as well as the contents of each word in the data
structure.

3-18 Resident Monitor



Figure 3-14: Completion Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
2 RESERVED
4 RESERVED
6 RESERVED
Q.BUFF 10 CHANNEL STATUS WORD
Q.WCNT 12 OFFSET FROM START OF CHANNEL AREA TO THIS CHANNEL
Q.ComP 14 COMPLETION ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.3.2.1 SJ Considerations — The SJ monitor does not maintain a completion
queue. As a result, completion routines in SJ are never serialized. (Whether
or not you select timer support at system generation time does not affect the
serialization of completion routines.) When you issue a completion-mode
programmed request (such as . READC or .WRITC) and the I/O transfer com-
pletes, the monitor does not transform the I/O queue element into a comple-
tion queue element. Instead, it returns the element to the list of available
queue elements. It then moves the Channel Status Word to R0 and the chan-
nel number to R1, and begins executing the program’s completion routine.
Thus, the completion of another I/O transfer could interrupt the current
completion routine and begin execution of another one.

3.3.2.2 .SYNCH Considerations — The .SYNCH request also makes use of the
completion queue in FB and XM systems but it does not use an I/O queue
element. When you issue a .SYNCH call, you supply as an argument the
address of a ten-word area in your program, called the synch block. The
synch block contains, among other things, the address of the routine to be
executed. Figure 3—15 shows the format of a synch block, or synch queue ele-
ment. When the monitor interprets your .SYNCH request there is no cur-
rent I/O queue element for it to modify. So, it uses your ten-word area as a
completion queue element. The monitor puts the synch block at the head of
the appropriate job’s completion queue.

Figure 3-15: Synch Queue Element Format

NAME OFFSET CONTENTS

Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE

Q.Csw 2 JOB NUMBER

Q.BLKN 4 RESERVED

Q.FUNC 6 RESERVED

Q.BUFF 10 SYNCH ID

Q.WCNT 12 —1 (CUE THAT THIS IS A SYNCH ELEMENT)

Q.COmP 14 SYNCH ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

Resident Monitor 3-19



3.3.3 Flow of Events in I/O Processing

As the central manager of the device-independent I/O system, the Resident
Monitor supervises the I/O procedure, using a queue element as the commu-
nication link between a device handler and a program that requests an I/O
transfer. The following sections describe the sequence of events that occur in
a simple read or write operation.

3.3.3.1 Issuing the Request — Before a program can request an I/O transfer,
it has to open a new file or find an existing file on a device. This procedure
sets up a channel containing five words of information about the location
and length of the file. A channel number is associated with the five-word
block so that you can refer to the block later by specifying this number in a
single byte. The monitor uses the channel information when it needs to pro-
cess an I/O request.

A running program initiates an I/O procedure by issuing a request to read
from or write to a particular channel. MACRO-11 programs, for example,
can use the . READ, READW, .READC, .WRITE, .WRITW, .WRITC, and
.SPFUN programmed requests. Programs written in other languages use
similar statements to read and write data.

When the I/O request executes, the monitor uses the channel number the
request specifies to find the corresponding device handler. Then the monitor
calls its queue manager routine, which allocates a queue element from the
list of available elements and fills in the necessary information.

When a queue element is not available in SJ systems, the monitor executes
in a tight loop, waiting for a queue element to appear in the list of available
elements. This condition is satisfied when a device interrupts and the han-
dler issues the .DRFIN macro, which indicates that an I/O transfer is com-
plete, and the monitor returns the queue element for that transfer to the
available list.

When a queue element is not available in FB and XM systems, the job
requests a scheduling pass starting with the job whose priority is immedi-
ately below that of the current job. When the original job gets a chance to
run again, it first checks the available list for a free queue element. If no ele-
ment is available, it requests another scheduling pass. In FB systems, there
is no blocking bit associated with queue element availability. Therefore, the
job that needs a queue element is not officially blocked, even though it can-
not run effectively until it gets a queue element.

3.3.3.2 Queuing the Request in SJ —Once a new queue element has been allo-
cated by the queue manager, the element is put on the device handler’s
queue. In an SJ system the new element always goes at the end of the queue.
To prevent interference from a device interrupt (which might remove a dif-
ferent element from the same queue), the SJ monitor goes to priority 7 to
manipulate the queue.

3-20 Resident Monitor



a1m

If the queue is empty, the monitor makes the new element both the current
and the last element in the queue. It increments the count of queue elements
on this channel (the byte at offset 10 octal in the channel area), and returns
the priority to its previous level. It then jumps to the handler’s I/O initiation
section to start up the transfer. The handler starts the transfer and returns
control to the monitor with an RTS PC instruction.

If the queue is not empty, the handler is busy so the monitor puts the new
element at the end of the queue. It increments the count of queue elements
on this channel (the byte at offset 10 octal in the channel area), and returns
the priority to its previous level.

Whether or not the queue was empty, the queue manager checks to see if
this request is for wait-mode I/O. If it is, the system executes in a tight loop
until the transfer specified by this queue element finishes. If this request is
not for wait-mode I/0, control returns to the program, which executes while
I/O occurs simultaneously.

3.3.3.3 Queuing the Request in FB and XM —In FB and XM systems, all jobs
(system utility programs, application programs, and language processors)
and the Keyboard Monitor run in user state. Each job uses its own stack. In
user state a low-priority job that is running can be replaced by a higher-
priority job that is runnable. Similarly, a higher-priority job that is unable
to run for any reason can be replaced by a runnable lower-priority job.

The FB and XM monitors switch to system state to modify important data
structures and to perform operations that do not run entirely within a job.
Stack operations and interrupts in system state use the monitor’s stack
rather than a job’s stack. Jobs cannot run when the monitor is in system
state, and switching between lower- and higher-priority jobs is postponed
until the monitor returns to user state. In system state, then, the monitor
can safely modify critical data structures without the risk that another job
could gain control and corrupt the same data structures. (Section 3.4.1
describes system and user state in greater detail.)

Because in SJ systems there is only one execution state, the terms “user
state” and “system state” are not meaningful in those systems.

In an FB or XM system, the monitor switches to system state before it puts
the new element on the device handler’s queue in order to prevent interfer-
ence from other jobs. It does not raise the priority to 7, as does the SJ moni-
tor, because this would lock out device interrupts for too long a time.
However, a device interrupt could remove an element from the queue while
the monitor is adding the new element and adjusting the LQE and CQE
pointers. To ensure the integrity of the queue, the monitor 2olds the handler
while it performs the modification.

Holding a handler prevents any other process or routine from changing the
I/O queue. For example, when a device interrupts and an I/O operation com-
pletes, the handler issues a .DRFIN call to return to the monitor and remove

Resident Monitor 3-21



om

the current queue element from the I/O queue. Depending on the type of I/O
request the program issued, the current element should either go back to the
linked list of available queue elements, or it should go onto the completion
queue for the appropriate job. However, if the handler is held when it issues
the .DRFIN, the monitor does not remove the current queue element from
the I/O queue. Instead, it delays this action by setting a flag that it checks
later. Similarly, when a job aborts, the abort routine holds a handler while it
removes queue elements belonging to the aborted job. This prevents the
monitor from starting up the next transfer queued for this device until all
elements for the aborted job are gone. After the monitor holds the device
handler, it checks to see if the queue is empty.

If the queue is empty, the monitor clears the hold flag for the handler right
away, and then makes the new element both the current and the last ele-
ment in the queue. It increments both the count of queue elements on this
channel (the byte at offset 10 octal in the channel area), and the total num-
ber of I/O requests for this job. Remaining in system state, the monitor
jumps to the device handler’s I/O initiation section to start up the transfer.
When the handler starts the transfer and returns control with an RTS PC
instruction, execution of the program continues in user state within the
queue manager. That is, the monitor is executing “for the program”.

If the queue is not empty, the monitor continues to hold the handler until it
finishes modifying the queue. Elements in the queue are sorted by job num-
ber, as Section 3.3.1 explains. The monitor searches the queue from front to
back, and places the new element at the end of the group of elements belong-
ing to this job. It increments both the count of queue elements on this chan-
nel (the byte at offset 10 octal in the channel area), and the total number of
I/O requests for this job. Since the device handler is busy, the monitor cannot
start up an I/O transfer for this request, so its queue element sits in the
queue. The queue manager returns to user state.

Whether or not the queue was empty, the queue manager checks to see if
this request is for wait-mode I/O. If so, the program waits for the transfer to
complete. If this request is not for wait-mode I/O, execution of the program
continues concurrently with the I/O transfer.

3.3.3.4 Performing the I/O Transfer — After the monitor and a device handler
have started up an I/O transfer, a peripheral device performs the actual
operation and interrupts when it is finished. The interrupt causes control to
pass to the device handler’s interrupt service section, where the code
assesses the results of the I/O operation and restarts it if necessary. When
the transfer is done, the handler uses the .DRFIN macro to return to the
monitor and remove the current queue element from its I/O queue.

Figure 3-16 summarizes the relationship between the parts of a device han-
dler and the Resident Monitor. Chapter 7 provides a detailed description of
the internal operation of a device handler.

3-22 Resident Monitor



11

Figure 3-16: Device Handler/Resident Monitor Relationship

DEVICE HANDLER RESIDENT MONITOR

PREAMBLE SECTION

HEADER SECTION PUTS NEW QUEUE ELEMENT ON THIS
HANDLER’S QUEUE AND CALLS THE
1/0 INITIATION SECTION ~=—j—— HANDLER AS A CO-ROUTINE.

DEVICE RTS PC # RUNS THIS JOB, OR WAITS FOR
INTERRUPT THIS TRANSFER TO COMPLETE.
INTERRUPT SERVICE SECTION

°

1/0 COMPLETION SECTION

°
°

DRFIN > RETURNS QUEUE ELEMENT TO THE
LIST OF AVAILABLE ELEMENTS, OR
PUTS IT ON THE COMPLETION QUEUE.

HANDLER TERMINATION SECTION

3.3.3.5 Completing the /O Request — When a device interrupts, an I/O trans-
fer completes, and the handler issues the .DRFIN call, it is the monitor that
must take the appropriate action to complete the I/O procedure. In general,
this means that the monitor must remove the current queue element from
the handler’s I/O queue and put it in the list of available elements or on the
completion queue. In an FB or XM system, another I/O request could cause
the monitor to hold the handler while it adds an element to the queue. In
this case, the monitor simply sets a flag, dismisses the interrupt, and returns
to the interrupted process, removing the element later.

In all SJ systems, and in those FB or XM systems in which the handler is not
held, the monitor first decrements the count of queue elements on this chan-
nel. In an FB system, when the count reaches 0, it makes runnable a job that
is waiting for activity on this channel to complete. In FB and XM systems
only, the monitor next decrements the total number of I/O requests pending
for this job. Again, if this number becomes 0, it makes runnable a job that is
waiting for all its I/O to complete. When either count reaches 0, it can cause
the scheduler to run.

Next, for all systems, the monitor removes the queue element from the han-
dler’s queue. If there is another element in the handler’s queue waiting to be
processed, the monitor calls the handler again to start the next operation as
soon as the final disposition of the current element is resolved. The monitor
raises the priority to 7 for a short time as it links the element into either the
list of available elements or (except for SJ systems) the job’s completion
queue. In FB, if the element specifies a completion routine address at offset
14 octal, the monitor transforms the I/O queue element into a completion
queue element and puts it at the end of the job’s completion queue. Then the

Resident Monitor 3-23



monitor returns control to the process or program that was interrupted. In
SJ, if the element specifies a completion routine, the monitor merely returns
the I/O queue element to the list of available elements. Then it puts the
Channel Status Word in RO, puts the channel number in R1, and begins
immediate execution of the completion routine.

In all SJ systems, and in those FB and XM systems in which the element
does not specify a completion routine address, the monitor simply returns
the element to the available list. Control returns to the process or program
that was interrupted, or (except in SJ systems) the scheduler can run.

3.4 Scheduling in Foreground/Background Systems

In an FB or XM system the monitor must arbitrate the demands of up to
eight jobs for processor time, in addition to performing all its other func-
tions. Clearly then, because of the implications of having more than one job,
the FB and XM systems are considerably different from the SJ system. The
FB and XM monitors use a number of special tools to implement support for
more than one job.

The scheduler is the part of the monitor that determines which job is eligible
to run and gives control of the processor to it. The scheduler uses a simple
algorithm to determine which job should run. It looks at the jobs in order
from highest priority to lowest. If a job exists and is runnable, the monitor
restores its context and returns to it. Status bits in a flag word (I.BLOK, at
offset 36 octal from the start of the impure area) reflect the blocking condi-
tions that can prevent a job from running and thereby give a lower-priority
job a chance to execute. Context switching is the procedure through which
the monitor saves a job’s context — its machine environment and important
job-specific information — and begins execution of another job.

All the processes that are job-dependent are kept separate from those that
are monitor functions. The monitor functions are, therefore, re-entrant.
Data structures that contain job-specific information are located in the
impure area for each job, and each job has its own stack. Routines that run in
a job-dependent environment, including some parts of the monitor, use the
job’s stack and run as part of the user job in user state. Any routines that run
outside a job’s context, including interrupts, use the monitor’s stack and
execute in system state. This arrangement allows the monitor to “unwind”
the stack after a series of interrupts without changing jobs or stacks.

Two or more jobs can share a peripheral device, so the queued I/O system (as
Section 3.3 explains) must keep track of the priority of the job requesting an
I/O transfer and act accordingly. The USR is serially reentrant — that is, it
cannot be shared by two jobs; all jobs must take turns using the USR.

Lastly, monitor routines check for blocking conditions, change execution
state, interlock parts of the monitor to prevent corruption of important data
structures, request a scheduling pass, and so on. The following sections
describe the components of FB and XM systems and provide an understand-
ing of the scheduling process in a multi-job environment.

3-24 Resident Monitor



IR

3.4.1 User and System State

In order to isolate job-dependent functions from monitor processes, the FB
and XM systems provide two execution states: user state and system state.
All jobs and the Keyboard Monitor run in user state. Each job maintains rel-
evant data in its impure area, and each job uses its own stack. Context
switching is enabled in user state. That is, a lower-priority job that is run-
ning can be replaced by a higher-priority job that is runnable. A higher-
priority job that is unable to run for any reason can be replaced by a run-
nable lower-priority job.

The monitor switches to system state and the system stack for several rea-
sons. Jobs cannot run when the monitor is in system state, and context
switching is delayed until the monitor returns to user state. Consequently,
the monitor can modify important data structures in system state without
interference from other jobs. The monitor uses system state for operations
that do not run entirely within a job context. These operations, which must
not be interrupted by context switching, include the following:

® Blocking a job

e Starting up an I/O transfer

® Aborting an I/O transfer

® Servicing a timer request

e Executing the PROTECT programmed request

e Executing the CHCOPY programmed request

® Interlocking the USR

e Executing any XM mapping programmed request
® Servicing an interrupt

e Executing device handler code (except for .TIMIO completion routines
and .SYNCH routines, which run in user state in a specific job’s context)

Because it is chiefly system or monitor routines that execute in system state,
monitor errors are fatal. Traps to 4 (odd address errors, and illegal or non-
existent memory addressing errors) and traps to 10 (illegal or reserved
instruction errors) occurring in system state halt the system.

3.4.1.1 Switching to System State Asynchronously — The monitor switches
from user state to system state asynchronously whenever an interrupt
occurs. As a result of the interrupt the monitor may modify important data
structures. The switch to system state prevents interference from a context
switch while the modifications are in progress. In FB the monitor switches
from the job’s stack to the system stack. In XM the monitor does not perform
the stack switch because the hardware does it automatically. Subsequent
interrupts that occur in system state put information on the system stack.
Note that these subsequent interrupts do not cause another switch to system
state.

Resident Monitor 3-25



Interrupt Level Counter

The monitor recognizes three levels of execution state. It uses a counter
called INTLVL to distinguish among the three levels. Every interrupt incre-
ments this counter. When INTLVL is —1, execution is in user state. When
INTLVL is 0, execution is in system state at level zero. When INTLVL is
positive, execution is still in system state, but at a deeper interrupt level.
Table 3-2 summarizes the relationship between the number of interrupts
pending and the execution state.

Table 3-2: Values of the interrupt Level Counter (INTLVL)

Number of Interrupts Value of INTLVL Execution State
0 -1 User State
1 0 System State Level Zero
2 or more 1 or greater Deeper System State

Figure 3-17 shows how interrupts influence the flow of events in a running
system.

Figure 3-17: Interrupts and Execution States

USER STATE SYSTEM STATE ZERO DEEPER SYSTEM STATE
JOB 1
INTERRUPT 1
ROUTINE A
INTERRUPT 2
== ROUTINE B
INTERRUPT 3
ROUTINE C
C FINISHES
B FINISHES
A FINISHES
1
JOB 1
CONTINUES

3-26 Resident Monitor



SINTEN Monitor Routine

When an interrupt occurs, control passes to the routine specified in the
interrupt vector, and the current PS and PC are put on the job’s stack. In
RT-11, both device handlers and in-line interrupt service routines call the
monitor at the common interrupt entry point, SINTEN. Device handlers use
the .DRAST macro to call the monitor; in-line interrupt service routines use
the .INTEN macro.

$INTEN is the monitor routine that performs the switch to system state.
The routine assumes that it was called because an interrupt occurred.
Therefore, it expects the old PS and PC to be on the job’s stack. The priority
should be 7, and the interrupt service routine must not have destroyed any
registers between the time the interrupt occurred and the time $INTEN was
called. Device handlers generally call the monitor immediately, before they
do any processing at all. In-line interrupt service routines sometimes per-
form crucial operations immediately, at priority 7, then call $INTEN to
lower processor priority to device priority.

$INTEN assumes it was called with the following instruction sequence, or
its equivalent:

JSR RSIBHINTEN
+WORD “C<prioritvd40:8340

$INTEN’s first action is to save R4 on the job’s stack. Since the JSR instruc-
tion already saved R5, the job’s stack now appears as shown in Table 3-3.

Table 3-3: Job’s Stack After SINTEN

Byte Offset Contents Agent
0 R4 $INTEN
2 R5 .DRAST macro (JSR R5)
4 PC interrupt
6 PS interrupt

Next, $INTEN increments the INTLVL counter from —1 to 0. It saves the
job’s stack pointer in a memory location and switches to the system stack.
$INTEN then lowers processor priority to device priority, and calls the
device handler or interrupt service routine back as a co-routine. The inter-
rupt service routine continues to execute in system state.

3.4.1.2 Switching to System State Synchronously — The monitor switches to
system state synchronously — that is, without depending on an interrupt —
whenever other monitor routines need to go to system state temporarily to
ensure the integrity of a certain operation. In these circumstances, the mon-
itor routines can call the $ENSYS routine to switch to system state.

Resident Monitor 3-27



In special circumstances, a routine in a running job (rather than in the mon-
itor) needs to switch to system state. The routine can do this by artificially
mimicking an interrupt and using the .INTEN macro to call the $INTEN
monitor routine.

SENSYS Monitor Routine

The $ENSYS routine is voluntarily and synchronously called by any other
monitor routine that needs to switch to system state. $ENSYS mimics an
interrupt by altering the job’s stack so it duplicates the stack condition
immediately after an interrupt. Routines call SENSYS by using the follow-
ing instructions:

JSR RS s$ENSYS
+ WORD sreturn addressi-,
+ WORD 340

The instructions following the call to $SENSYS execute in system state.
When the routine that must execute in system state completes, it issues an
RTS PC instruction. Control then passes in user state to the routine spe-
cified in the calling sequence as <return address>.

Table 3—4 shows how $ENSYS manipulates the stack to imitate an
interrupt.

Table 3-4: Job’s Stack After SENSYS

Byte Offset Contents
0 R5
2 return address
4 0
INTEN Macro

When a routine in a user job needs to switch to system state, it can use a pro-
cedure similar to $ENSYS, which is used solely by monitor routines.
Essentially, the routine must push the PS and PC onto the stack, and then
call the monitor $INTEN routine with a JSR R5 instruction, which puts R5
on the stack as well. '

A device handler or a user program subroutine can use the following
instructions to switch to system state:

Moy BS5P - (5P) iMAKE ROOM ON THE STACK
CLR 2(8P) iFAKE INTERRUPT PS = 0
+MTPS #340 iGD TO PRIORITY 7
+INTEN 0O,PIC iENTER SYSTEM STATE

This routine must be executed with a return address on the top of the stack.

3-28 Resident Monitor



I

3.4.1.3 Returning to User State — Any routine that is executing in system
state issues an RTS PC instruction when it completes. The monitor
“unwinds” its stack from one or more interrupts as each RTS PC instruction
is issued. As each routine completes, the monitor decrements the INTLVL
counter.

When INTLVL is greater than 0, it indicates that the routine that was just
interrupted was executing in system state. The monitor defers some special
chores until it is just about to return to user state. If it is time to decrement
INTLVL after an RTS PC instruction, and the value of INTLVL is currently
0, the monitor knows that it is about to drop back to user state. At this time,
there are four special considerations for the monitor:

e Is there an outstanding fork routine? (Fork routines run before jobs or
their completion routines.)

® Is a scheduling pass required? (As a result of an interrupt, a job that was
previously blocked may now be runnable.)

® Are there outstanding clock ticks? (The monitor may need to normalize its
time of day counter and check the timer queue.)

@ Isthere an outstanding floating-point interrupt?

After taking these considerations into account, the monitor is ready to
return to user state. It decrements INTLVL to —1 and switches to the appro-
priate job’s stack. It restores R4 and R5, and then executes the RTI instruc-
tion to begin execution in user state.

3.4.2 Context Switching

Context switching occurs as a result of the scheduler’s command to run a dif-
ferent job. Its purpose is to restore the context for a job so that it can run.
Context switching can occur for one of two reasons:

@ The current job becomes blocked and a lower-priority job is runnable.

® A higher-priority job than the current job becomes runnable.

Note that the RT—11 monitor never saves a job’s context simply because it
switches to system state. For example, if there is only one job running, the
monitor does not bother to save or restore its context. A job’s context is only
significant when there are two or more jobs running. Many other multi-user
operating systems switch out the user job every time they leave user state
and enter system state. RT—11 avoids the overhead of unnecessary context
switching by saving and restoring the context only when it runs a different
job. This is a significant saving because there are many situations in which a
job is running, an interrupt triggers a switch to system state, and control
passes back to the same job once the interrupt is serviced.

Resident Monitor 3-29



When the monitor saves a job’s context, it saves the job-dependent informa-
tion on the job’s stack and in the job’s impure area. The following informa-
tion is saved in a context switch:

e PS
e PC

Stack Pointer (saved in the impure area)
Registers RO through R5
Kernel PAR1 (XM only)

Memory management fault trap vector (XM only)
BPT vector (XM only)

IOT vector (XM only)

TRAP vector

® System communication area (locations 40-52)

Location 56 (multi-terminal systems only)

FPP status word and floating-point registers (if floating-point hardware
present)

All data specified by the program in a .CNTXSW programmed request

Stack and impure area (which are, of course, part of the job)

When the monitor switches in the new Job’s context, it tests for a pending
completion routine by checking a status bit in L.STATE. If the job’s comple-
tion queue has a completion queue element on it, the monitor puts a pseudo-
interrupt on the job’s stack to call the completion queue manager when the
scheduler actually starts up the job.

3.4.3 Blocking Conditions

A running job is blocked if it cannot proceed until some asynchronous event
happens. Table 3-5 lists the blocking conditions, the bits in I.BLOK (at
impure area fixed offset 36 octal) that reflect the conditions, and the events
that unblock a job. Unused bits are reserved for future use by DIGITAL.

Note that there is no bit that indicates that a job is waiting for a queue ele-
ment. This is a special case and the monitor handles it by checking the list of
available queue elements. If there are none, it requests a scheduling pass to
give a lower-priority job a chance to run. The monitor continues to check the
available list until a queue element becomes available.

3-30 Resident Monitor



a1m

Table 3-5: Blocking Conditions

L.BLOK Bit,
Name, and
Blocking Agent Mask Unblocking Agent
Any request that uses the 4 The USR release routine, DEQUSR,
USR; any monitor command; USRWT$ when the USR is free and no higher-
an exit from a background job. 20 priority job needs it.
The keyboard monitor 6 The Keyboard Monitor, when an
SUSPEND command. KSPND$ operator types the RESUME
100 command.
The .EXIT request; a job that 8 I/O completion from device handlers,
aborts. EXIT$ when the job’s total I/O count is 0.
400
Termination of the foreground 9 None. Only the Keyboard Monitor
or system job. NORUNS$ can clear this bit by removing the job
1000 image from memory.
The .SPND or the TWAIT 10 The monitor’s .RSUM processor,
programmed request. SPND$ when the RSUM request executes or
2000 a .TWAIT completion routine runs.
The .READW, . WRITW, 11 I/O completion from device handlers,
WAIT, .SDATW, .RCVDW, CHNWT$ when the I/O count for the specified
.MWAIT programmed 4000 channel is 0.
requests.
The .EXIT programmed 12 The monitor’s terminal service output
request issued from a fore- TTOEMS$ routine, when the output ring buffer
ground or system job; the 10000 is empty or CTRL/O is typed.
.MTSET request issued for a
DZ line; MTDTCH issued for
any terminal but a shared
console.
The . TTYOUT, .PRINT, 13 The monitor’s terminal output inter-
.MTOUT, and .MTPRNT pro- TTOWTS$ rupt service routine, when there is
grammed requests. 20000 room in the output ring buffer.
The .TTYIN request (with 14 The monitor’s terminal input inter-
JSW bit 6 clear); the TTIWT$ rupt service routine, when a line or
.CSIGEN, .MTIN, .CSISPC, 40000 character is available.
and .GTLIN programmed
requests.
Any request that needs a none The monitor’s queue element return
queue element when none is routine, when a queue element
available. becomes free.

3.4.3.1 How the Monitor Blocks a Job — A job becomes blocked when it
encounters any of the circumstances listed in Table 3-5. These circum-
stances are brought about when one of the three following events occurs:

@ The job issues one of the programmed requests listed in Table 3-5.

" Resident Monitor 3-31



3-32

® The monitor SUSPEND command is typed.
® The job aborts.

Typically the job, which is running in user state, issues a programmed
request, such as .EXIT. The monitor remains in user state while it processes
the programmed request. It then checks to see if the job is waiting because of
a blocking condition. The .EXIT request, for example, must wait for all the
job’s I/O requests to complete before it actually terminates the job. Since
waiting for all I/O to complete is a blocking condition, the monitor initiates
the appropriate test to see if there are outstanding I/O requests and this job
is now blocked.

The monitor calls its $SYSWT routine whenever it needs to determine
whether or not a job is blocked. The monitor passes to $SYSWT a bit mask
for the bit in I.BLOK corresponding to this particular condition. (Table 3—-5
lists the bit masks for . BLOK; bit 8 corresponds to the .EXIT request condi-
tion.) It also passes a decision subroutine, which is a routine that determines
whether or not a job is blocked for a particular reason. There is a unique
decision subroutine for each call to $SYSWT, except the waiting for a queue
element condition, which has none. The decision subroutine returns with
the carry bit set if the job is indeed blocked. Note that a job can be blocked
for only one reason at a time.

When control eventually returns to the job, it executes within the monitor in
user state at $SYSWT again. (That is, the monitor runs under the auspices
of the job, executing code on its behalf.) The blocking condition must be
checked once more in order to reblock a job that may have been unblocked to
allow a completion routine to run. (Completion routines are part of a job, but
they can run even if the main part of the job is blocked. The monitor
unblocks the job to run the completion routine, then runs $SYSWT to re-
block the job when the completion routine finishes. Section 3.4.5 discusses
the implications of completion routines for scheduling.)

3.4.3.2 $SYSWT Monitor Routine — $SYSWT is the monitor routine that
decides whether or not a job is blocked. If a job is blocked, $SYSWT sets the
appropriate blocking bit. The flowchart in Figure 3-18 shows how $SYSWT
works.

First, $SYSWT runs the decision subroutine passed by the monitor to deter-
mine whether or not the job is blocked for a specific reason (point A in Figure
3—18). If the job is not blocked, control returns to the job and it continues to
run (point B). In the .EXIT case, for example, a job is not blocked if there is
no pending I/O to delay the exit procedure.

If the job is blocked, $SYSWT calls ENSYS to enter system state (point C).
Then it sets the appropriate blocking bit. In the .EXIT example, a job is
blocked if there are pending I/0 requests; $SYSWT sets the EXITS$ bit, bit 8,
in L. BLOK.

Next, $SYSWT runs the decision subroutine again. If the job is still blocked,
$SYSWT requests a scheduler pass (point E). It does this to give a runnable
lower-priority job a chance to execute.

Resident Monitor



B 1§

Figure 3-18: $SYSWT Monitor Routine

$SYSWT

Q

RUN THE
DECISION
SUBROUTINE

RETURN
TO JOB

WINDOW 1

ENTER
SYSTEM STATE

L !

SET BLOCKING
BIT

WINDOW 2

RUN THE
DECISION
SUBROUTINE
AGAIN

CLEAR THE
| BLOCKING BIT
AND RETURN

STILL
BLOCKED

REQUEST A
SCHEDULING
PASS

If the job is no longer blocked, $SYSWT clears the blocking bit and returns
(point F). When the monitor switches back to user state, the scheduler runs
if a scheduling pass is pending. When control finally returns to this job (the
one for which $SYSWT originally ran), the monitor continues execution on
the job’s behalf at the beginning of the $SYSWT routine (point A).

Resident Monitor 3-33



$SYSWT runs the decision subroutine twice because interrupts can occur
while $SYSWT is running. Since an interrupt can signal the removal of a
blocking condition, the job’s status can change even as $SYSWT is trying to
determine it.

An interrupt can occur after the decision subroutine (point A) declares a job
to be blocked, but before $SYSWT sets the blocking bit. This time interval is
shown as “Window 1” in Figure 3—-18. In this situation $SYSWT sets the
blocking bit erroneously. But, when it runs the decision subroutine the sec-
ond time, it discovers that the job is not blocked anymore. $SYSWT clears
the bit and returns to the job (point F).

“Window 2” in Figure 3—18 indicates the second time interval in which an
interrupt can occur. The interrupt can remove the blocking condition imme-
diately after $SYSWT correctly sets the blocking bit. In this case, the moni-
tor’s UNBLOK routine clears the blocking bit and requests a scheduling
pass because this job became runnable. Control returns to $SYSWT (point
D), which runs the decision subroutine again. Since the job is no longer
blocked, execution leaves $SYSWT (point F) and the scheduler runs immedi-
ately before the monitor returns to user state.

3.4.3.3 How the Monitor Unblocks a Job — An asynchronous event initiates
the monitor’s procedure to unblock a job. Table 3—5 lists the significant
events that can unblock a job. The completion of all I/O for a specific channel
is a significant event, for example, and unblocks a job whose CHNWT$ bit is
set.

When an interrupt occurs, control passes to an interrupt service routine.
The interrupt routine enters system state by executing the $INTEN monitor
routine. Then the interrupt service routine assesses the meaning of the
interrupt and takes appropriate action. In a device handler, for example, an
interrupt can indicate that an I/O transfer is complete. The handler returns
to the monitor to remove the current element from the I/O queue.

In all cases, the monitor clears the blocking bit and requests a scheduling
pass if the significant event removes a blocking condition.

3.4.4 Scheduler Operations

The scheduler runs only if there is an outstanding request for a scheduling
pass. The monitor checks a flag byte called INTACT each time it is ready to
switch from system to user state. If INTACT is not equal to zero, the sched-
uler runs.

3.4.41 How the Monitor Requests a Scheduling Pass — The monitor requests a
scheduling pass by calling the $RQTSW monitor routine. It does this when-
ever a job’s ability to run changes. (That is, whenever a running job becomes
blocked, or whenever a blocked job becomes runnable.)

3-34 Resident Monitor



B ! |

3.4.4.2 Characteristics of a Runnable Job — A job that does not have any
blocking bit set is runnable. However, there is one circumstance in which a
job with a blocking bit set can still be runnable. A job’s completion routine
can run even though the mainline program is blocked. Section 3.4.5 dis-
cusses scheduling implications for completion routines.

3.4.4.3 $RQTSW Monitor Routine — The $RQTSW routine posts a request for
a scheduling pass for a specific job by placing a value in the flag byte,
INTACT. INTACT holds the job number of the highest-priority job that
requested a scheduling pass. $RQTSW ignores a scheduling request for a job
if its priority is lower than that of the running job. When a job whose priority
is higher than that of the running job requests a scheduling pass, SRQTSW
saves the job’s number in INTACT, which holds the number in the following
format:

INTACT = -Jobmumber , 5,

3.4.4.4 How the Scheduler Works — The scheduler runs just before the moni-
tor returns to a job. Remember that INTLVL, the interrupt level counter, is
0 when it is time to return to user state.

A scheduling pass needed to make a job runnable happens asynchronously,
as a result of an interrupt that removed a blocking condition. A scheduling
pass needed to make the current job non-runnable happens synchronously,
after a job issues a programmed request, after the monitor SUSPEND com-
mand is typed, or after a job aborts.

The scheduler runs only if INTACT is not equal to 0. When INTACT is 0, it
indicates that no job changed its status, and, therefore, the same job that
was interrupted should run again. When INTACT is not 0, it contains the
number of the highest-priority job that changed its status. The scheduler
runs only if the job number in INTACT is greater than the current number
of the current job, which is kept in JOBNUM in the monitor.

The scheduler examines jobs in order of descending priority. It starts with
the job whose number is in INTACT, which is not necessarily the highest-
priority job in the system. As soon as the scheduler finds a runnable job, the
monitor switches context and runs the job. If no jobs at all are runnable, the
system idles — that is, it runs the null job briefly, then scans all jobs again
for runnability.

3.4.5 Implications for Completion Routines

A job’s completion routine can run even though the mainline program is
blocked. When an asynchronous event occurs, such as the completion of an
I/O request, the interrupt service routine enters system state through the
$INTEN monitor routine. The device handler’s interrupt service routine
returns to the monitor when I/O completes, so the monitor can remove the

Resident Monitor 3-35



I/O queue element from the device handler’s queue. If the I/O request spe-
cified a completion routine address, the monitor changes the I/O queue ele-
ment into a completion queue element and puts it on the job’s completion
queue. The monitor sets bit 7 in the job state word (Iindicate that a comple-
tion routine is pending.

‘As the monitor switches from system to user state, it checks the completion
pending bit in I.STATE. If a routine that just ran in system state queued one
or more completion routines for this job and the job is not currently running
a completion routine, the monitor clears the blocking bit so the scheduler
can run the job. This action permits completion routines to execute even
though the mainline program is blocked.

When all the completion routines finish, the mainline program begins to
execute. However, since it was recently blocked, the monitor executes for the
job at the start of the $SYSWT routine. $SYSWT runs the relevant decision
subroutine (the routine for the condition that originally blocked this job) and
reblocks the job, if necessary.

3.5 System Jobs

Through the system generation process you can create an FB or XM monitor
that is capable of running up to six simultaneous jobs in addition to a fore-
ground job and a background job. RT-11 offers the system job feature in
order to make two valuable system jobs available: the error logger, called
EL, and the file queuing program, called QUEUE. You can run either sys-
tem job as the foreground job in an RT-11 FB or XM system that does not
have the system jobs feature.

Keep in mind that even though RT-11 permits up to eight jobs to run simul-
taneously, this feature does not mean that RT—11 is a “multi-user” system in
any sense of the term. The system jobs RT-11 provides are designed to mon-
itor hardware reliability and to write files to peripheral devices through a
queue mechanism. Both jobs are in keeping with the philosophy that RT-11
is essentially a single-user system, and RT-11 still provides no protection
for one job from another, or for the operating system software from any job.
In the few cases where RT-11 appears to support multiple users, a single
application program or language processor that supports multiple terminals
is actually running. In Multi-User BASIC-11, for example, the BASIC-11
interpreter is the single user, and it alone is responsible for preserving the
integrity of each programmer’s work space.

The Resident Monitor in a system job environment is approximately 300
decimal words larger than an equivalent monitor that does not support sys-
tem jobs. DIGITAL does not encourage customers to write their own system
jobs; it reserves the remaining four potential system jobs for future use.

3.5.1 Characteristics

System jobs are similar to ordinary foreground jobs in that, for both kinds of
jobs, object code must be stored in relocatable object file format. In addition,

3-36 Resident Monitor



1L

system jobs are subject to the same restrictions as foreground jobs — that is,
they use restricted arithmetic with global variables.

3.5.2 Logical Names

You reference a system job by its logical name, which, by default, is its file
name. However, you can assign a new name when you start the job by using
the SRUN monitor command with the /NAME:logical-job-name option.
Logical job names must be unique.

The foreground and background jobs have default logical names as well as
their actual file names. For the foreground, the default logical name is F; for
the background, it is B. F and B are permanently assigned; you cannot use
them for system jobs. In addition, EL is the logical job name permanently
assigned to the error logger system job. You can assign another logical name
to the foreground job, in addition to F' by using the FRUN monitor command
with the /NAME:logical-job-name option.

The job name is stored in ASCII at offset LLNAM in the job’s impure area.

3.5.3 Job Number

In an FB or XM system without the system job feature the background job
number is 0 and the foreground job number is 2. In an environment that sup-
ports system jobs, the background job number is still 0, but the foreground
job number is always 16 octal. By default, each system job takes the next
highest available job number. Job numbers are multiples of 2, and range
from O to 16 octal. For example, the first system job you start with the SRUN
command has a job number of 14, the second system job has a job number of
12, and so on.

3.5.4 Priority

A monitor that supports the system job feature provides the same event-
driven, static priority scheduler that ordinary FB and XM systems use. The
monitor services jobs according to their priority. The background job always
has priority 0, the lowest priority. The foreground job always has the highest
priority, which is 7. You cannot change these assignments.

To assign a priority to a system job you can:

1. Use the SRUN command to start the jobs in order of their importance so
that the first job you start gets priority 6, the second job gets priority 5,
and so on. ‘

2. Explicitly specify the priority when you start the system job. Use the
SRUN/LEVEL:priority command to do this. You can specify a priority
level for each job in the range 1 through 6, as long as another job is not
currently assigned to the level you choose.

The job number is equal to the priority times 2.

Resident Monitor 3-37



L

NOTE

You can assign a priority only when you start a system job
with the SRUN command. The priority levels do not change
dynamically, and you cannot change the priority of a job while
it is running.

3.5.5 Design Considerations

If you are planning to write or run system jobs, you should keep in mind two
major design considerations:

1. RT-11 provides an event-driven, static priority scheduler.

2. Addressing space is at a premium in an RT-11 environment, and certain
parts of each job must reside in low (rather than extended) memory.

3.5.5.1 Scheduling Considerations — The RT-11 scheduler arbitrates the
demands jobs make for CPU time, awarding the use of system resources to
the highest-priority job that is not blocked. Thus, a compute-bound job can
lock out all the jobs with a lower priority. On the other hand, an I/O-bound
job, such as the RT-11 QUEUE program, is often blocked waiting for I/O
transfers to complete. As a result, it does not interfere significantly with
lower priority jobs. If you are running a text editor in the background, for
example, the fact that the QUEUE program is active is practically transpar-
ent to you.

When you design a program to run as a system job, then, consider carefully
how often it will require system resources. Keep in mind, too, the fact that
RT-11 does not permit parallel use of the USR by two or more jobs. Write
the program in such a way that it does not monopolize the system and lock
out other jobs.

3.5.5.2 Space Considerations — In an FB system, the main concern is that
the number and size of jobs is limited by the amount of space available. As
Chapter 2 explains, KMON and the USR slide down in memory each time
you load a foreground job, a device handler, or a system job above them.
However, KMON cannot slide below location 1000 octal. Since the FB moni-
tor and KMON are about 4K words in size each, this leaves about 20K words
of memory for foreground jobs, device handlers, and system jobs. Each job
carries a fixed overhead of roughly 220 decimal words for the impure area
and channel space.

XM systems have more restrictions that apply to foreground and system
jobs. First, the USR is always resident in XM. In addition, the USR cannot
slide down in memory into the area mapped by kernel PAR1 (addresses
20000 through 40000). That is, the USR must not slide below location 40000
in low memory. As a result of these two restrictions, about 11K words of
memory are available for foreground jobs, device handlers, and system jobs
in an XM environment. Each job carries a fixed overhead of approximately
340 decimal words for the impure area and channel space.

3-38 Resident Monitor



PG

However, the XM environment provides other means to load and execute
jobs. The only parts of foreground and system jobs that must reside in low
memory are the impure area, queue elements, channels, and interrupt ser-
vice routines. (Like the USR, these four parts of a job cannot reside in the
PAR1 area.) The XM system provides three ways to make use of extended
memory (memory above the 28K-word boundary) for foreground and system
jobs:

1. Use the XM .SETTOP feature in your program.

2. Segment your program and use the /V linker option to make the overlays
resident in extended memory.

3. Use the memory management programmed requests in a MACRO pro-
gram to increase the program’s physical address space.

These methods provide the means to circumvent the XM restrictions and
execute code in extended memory. They are described in detail in Chapter 4.

3.5.6 Programmed Requests

Two programmed requests — .GTJB and .CHCOPY — have optional argu-
ments that are meaningful only in an FB or XM environment with the sys-
tem job feature. The .GTJB request obtains job status information for any
job in the system. You can reference another job by either logical job name or
job number. The .CHCOPY request opens a channel for input, logically con-
necting it to a file that is currently open for another job for input or output.
See the RT—11 Programmer’s Reference Manual for a detailed explanation of
these requests.

3.5.7 Message Handling

In addition to the .SDAT/.RCVD/.MWAIT system through which foreground
and background jobs communicate with each other, RT-11 provides an easy
way for all jobs, including system jobs, to send and receive messages. The
message handling system is implemented through the message queue, or
MQ, handler. This handler is a part of the Resident Monitor for all FB and
XM systems, whether or not they include the system job feature. The MQ
handler is written as an RT—11 device handler for a “special” device. This
means that the pseudo-device has a non-RT-11 format. The MQ handler
does not accept .SPFUN calls. One advantage of using a device handler in
the message system is that you can still debug the send/receive mechanism
if one of the jobs involved in the system is not in memory.

For most other purposes, the MQ handler performs like the other RT-11
device handlers except that it communicates with a job, not a device.
Essentially, it makes another job appear to be a peripheral device. As a
result, you can open a channel to any other job by using a special . LOOKUP
programmed request format, described in the Programmer’s Reference
Manual. You can send a message by issuing a .WRITx request. Then you can
receive a message to the job by using a .READx request. The first word of the
received data buffer contains a count of the words transferred.

Resident Monitor 3-39



A further difference between other RT-11 device handlers and the MQ han-
dler becomes apparent when a job exits (with the .EXIT programmed
request) or when it aborts (because of CTRL/C or a fatal monitor error). The
monitor allows outstanding I/O requests that are queued for the job to com-
plete, but discards any messages that are queued for the job by examining
the queue for the MQ handler and removing queue elements that send mes-
sages to the job.

The XM monitor normally uses a special internal macro to transfer message
data via the MTPI instruction. This procedure is slow, but safe, since it does
not use a PAR to map any buffers. You can use a faster, but more restrictive,
transfer procedure by setting the conditional assembly symbol MQH$P2
equal to 1. When the MQ handler is assembled, the assembler will generate
code which uses kernel PAR2 to map the user buffers. In this case, all the
kernel PAR1 restrictions also apply to PAR2. So, the USR, queue elements,
channels, and interrupt service routines cannot reside within locations
20000 through 60000 in a system that actually uses the MQ handler. Note
that the QUEUE program uses the MQ handler.

3.5.8 Monitor Commands

The collection of monitor commands has some special features that reflect
the system job environment. This section describes them briefly. See
Chapter 4 of the RT—11 System User’s Guide for a complete description.

3.5.8.1 SRUN and FRUN Commands — Use the SRUN command to start
execution of a system job. You can also use the FRUN command to begin
execution of a system job in the foreground partition.

NOTE

If you use SRUN or FRUN to start a system job and a job with
the same name is already in memory but has finished execut-
ing, the monitor unloads the job in memory and brings in a
new copy from a peripheral device.

3.5.8.2 LOAD and UNLOAD Commands — Use the LOAD command to bring a
device handler into memory and to assign ownership of a peripheral device
to a specific job. Different jobs can own different units of a file-structured
device. Since a system job must already be in memory before you can assign
a device to it, remember to start the job with SRUN before you use the
LOAD command. If the job will not run without the handler, use the
/PAUSE option with the FRUN or SRUN command. Note that you cannot
assign ownership of SY or MQ.

The UNLOAD command removes a device handler or a system job from
memory. You should type a colon (:) after the name of the device handler to
distinguish it from the name of a system job. If a colon is not included, the
UNLOAD command attempts to unload a system job of the specified name. If

340 Resident Monitor



none is found, the command attempts to unload a device handler with that
name. For example, RK could be both the name of a system job and the name
of a device handler. To remove the device handler, type:

UNLOAD RK:

To unload the system job, type:

UNLOAD RK

3.5.8.3 SUSPEND and RESUME Commands — Use the SUSPEND command to
stop execution of a system job.

Use the RESUME command to continue execution of a system job that was
stopped by the SUSPEND command or the /PAUSE option for SRUN or

FRUN.

3.5.8.4 SHOW JOBS Command — Use the SHOW JOBS command to display
status information about all system jobs currently in the system.

3.5.8.,5 SET TT: NOFB Command — Use the SET TT: NOFB command to dis-
able the special control keys CTRL/F, CTRL/B, and CTRL/X you use to com-
municate with foreground, background, and system jobs.

3.5.9 Communicating with a System Job

In a system job environment you use CTRL/X to communicate with a system
job in much the same way that you use CTRL/F for a foreground job and
CTRL/B for a background job. By directing input to the correct job and by
labeling output, this mechanism permits two or more jobs to share one ter-
minal. When you type CTRL/X, the monitor sends a carriage return/line
feed combination to the terminal, followed by the J0b? prompt. While wait-
ing for your response, the monitor simulates a full output ring buffer. This
prohibits output from any other job from garbling the CTRL/X dialogue.
(This also blocks a job that is waiting for output.)

Respond to the prompt by typing the job’s logical name, followed by a line
terminator (carriage return, line feed, or CTRL/Z). DELETE (or RUBOUT)
and CTRL/U are valid editing commands in a CTRL/X sequence. Remember
that the names F' and B are reserved for the foreground and background
jobs. If the job you specify is not running, or does not exist, the monitor
prints a question mark (?). As a result of the CTRL/X sequence, the monitor
directs terminal input characters to the appropriate job’s input ring buffer.

To cancel the CTRL/X sequence before you finish typing the job name, type
CTRL/C. This does not abort any job. It simply returns to the state of the ter-
minal before you typed CTRL/X. To actually abort a system job, type CTRL/
X followed by the job name and a line terminator. Then type two CTRL/Cs.

Resident Monitor 341



342

While terminal input is directed to one job’s input ring buffer, other jobs can
still send output characters to the terminal. To avoid confusion, the monitor
prints an identifying label every time the output user changes. The terminal
identity string is stored at I.JID in each job’s impure area and it consists of a
carriage return/line feed combination, followed by the job name, a right
angle bracket (>), and another carriage return/line feed combination.

The following sequence shows how two system jobs can share one terminal.
Type a CTRL/X sequence and send a message to the first job:

CTRL/X
Job? SYI1@E
HELLO TO JOB 1@

Job 2 sends a message to the terminal:

sYz2>
HI FROM JOB 2

Send another message to job 1. Note that you do not type the SY7> label
yourself. The monitor prints it when it echoes your input characters.

SY1:x
HELLO AGAIN TO JOB 1@

Job 2 sends two more messages:

SY2%
HI AGAIN FROM JOB 2
HI A THIRD TIME FROM JOB 2

Finally, job 1 sends a message:

SY1zx
HI FROM JOB 1

3.5.10 How to Queue Files from an Application Program

Usually you queue files that you want to copy to another device by using the
monitor PRINT command. If the QUEUE program is running when you
issue the PRINT command, the files you specify are queued automatically
and the monitor dot prints on your terminal almost immediately.

Your application programs can also copy files to output devices through the
QUEUE program. The method your program must use to do this depends on
which monitor is currently running. If an FB or XM monitor that includes
the system job feature is running, your program must communicate with
QUEUE through the message queue (MQ) handler by using .LOOKUP,
-WRITW, and .READW programmed requests. Using the MQ handler is
beneficial because it frees the monitor for other tasks, and takes advantage

Resident Monitor



1m

of the existing queued I/O system. Note that the MQ handler in an XM sys-
tem may borrow kernel PAR2 for its own use if the conditional assembly
parameter MQH$P2 = 1; see Section 3.5.7 for more information on this
topic.

If an FB or XM monitor without the system job feature is running, your pro-
gram must communicate with QUEUE through the .SDAT and .RCVD pro-

grammed requests.
To queue one or more files, follow these steps:

1. Set up a job block in your program for a logical group of files to be queued.

2. Set up a file block for each file to be queued.

3. Issue the .LOOKUP programmed request for the QUEUE program.
(Omit this step if your system does not have the system job feature.)

4. Issue the .WRITW request (or the .SDATW request if your system does
not have the system job feature) to send the QUEUE request and estab-
lish a pointer to the job and file blocks.

5. Issue the READW request (or the .RCVDW request if your system does
not have the system job feature) to receive acknowledgment from
QUEUE.

Once QUEUE acknowledges your request, your program is free to continue
processing or to exit. Figure 3-23 shows a program that uses .LOOKUP,
.READW, and .WRITW to queue one file, then exits.

3.5.10.1 Setting Up the Job Block —Set up a job block in memory for a logical
group of files. The job block defines the logical name by which you can later
reference the entire group of files.

If you copy files to a file-structured device (rather than to the line printer, for
example) all the files belonging to the job are copied and stored in separate
files with the input file names and file types. The handler for the device to
which you send the job must be made resident in memory through the mon-
itor LOAD command. Figure 3—19 shows the format of the job block.

Figure 3-19: Job Block

FLAG BITS+FLG.JR

# OF BANNERS # OF COPIES

OUTPUT DEVICE (RADIX-50)

SIX-CHARACTER JOB NAME
(TWO RADIX-50 WORDS)

# OF FILE BLOCKS FOLLOWING

Resident Monitor 3-—43



The flag word in each job block defines the action QUEUE should take on
each file. Table 3-6 lists the definitions of the bits. Bits 4 through 15 are
reserved for DIGITAL.

The job block must have bit FLG.JR set. If FLG.CP is set, QUEUE sets the
default number of copies to queue for this job from the low byte of the second
word in the job block. If FLG.HD is set, QUEUE sets the number of banners
to queue for this job from the high byte of the second word in the job block.

Table 3-6: Request Flag Bits

Bit Name Mask Meaning

0 FLG.DE 1 Delete file after copying it.

1 FLG.CP 2 Make multiple copies (get number of copies
from second word in block.

2 FLG.HD 4 Create banner pages (get number of pages from
second word in block).

3 FLG.JR 10 For initial request and job block.

3.5.10.2 Setting Up the File Block —Immediately after the job block, your pro-
gram must set up a file block for each file that is part of the job. Arrange the
blocks contiguously in memory, with the job block first. Figure 3—20 shows
the format of the file block.

Figure 3-20: File Block

FLAG WORD

# OF BANNERS # OF COPIES

FOUR RADIX-50 WORDS
CONTAINING DEVICE, FILE
NAME, AND FILE TYPE OF THE
FILE TO BE QUEUED

In each file block you can specify the number of banner pages and the num-
ber of copies for the file by setting flag bits FLG.CP and FLG.HD,.and put-
ting values into the second word of the block. If you omit the flag bits,
QUEUE ignores the second word of the file block and checks the flag bits of
the job block instead. If they are set, QUEUE takes the values from the sec-
ond word of the file block. Finally, if the flag bits are clear in both the file
and the job blocks, QUEUE uses the system default of no banners and one
copy of the file, or the current default parameters as set by the QUEMAN /P
option.

3—44 Resident Monitor



am

3.5.10.3 Setting Up the QUEUE Request Block — The last data structure you
must establish is called the QUEUE request block. It need not be contiguous
in memory with the job and file blocks. Figure 3-21 shows the format of the
QUEUE request block. This block contains the information that QUEUE
needs to begin processing the files. QUEUE requests can only be issued from
a privileged job with kernel mapping. QUEUE request blocks must reside in
low memory.

Figure 3-21: QUEUE Request Block

FLG.JR

SIX-CHARACTER FILE NAME
OF YOUR PROGRAM
(THREE ASCII WORDS)

ADDRESS OF JOB BLOCK

0

3.5.10.4 Issuing the .LOOKUP Request — In the executable section of your
program, you must issue a .LOOKUP programmed request to make the first
contact with the QUEUE program and establish a communication channel.
Issue the .LOOKUP for MQ:QUEUE, following the example provided in
Section 3.5.10.7. (Omit this step if your system does not have the system job
feature.)

3.5.10.5 Issuing the Request to QUEUE — If the .LOOKUP is successful (or if
you omitted it), you next issue the .WRITW programmed request (or the
.SDATW request if your system does not have the system job feature) to send
your request to QUEUE. The text you send to QUEUE is the QUEUE
request block. See the example provided in Section 3.5.10.7.

If your request is valid, QUEUE inserts the request blocks into the queue,
which is a workfile on device DK:. The workfile is a first-in/first-out list; it
can contain requests for different output devices. QUEUE does not maintain
a separate workfile for each device.

3.5.10.6 Receiving Acknowledgment from QUEUE — When QUEUE acknowl-
edges your request, your program can continue execution, or exit, as you
desire. You obtain this acknowledgment by issuing the .READW pro-
grammed request (or the .RCVDW request if your system does not have the
system job feature). QUEUE’s response takes the form shown in Figure
3-22.

Your program must wait for this acknowledgment. QUEUE maintains only
a limited number of extra queue elements. If QUEUE sends a message to

Resident Monitor 3—45



your program that your program is not prepared to accept, a queue element
is needlessly kept out of the list of available elements; this could block
another job in your system.

Figure 3-22: Request Acknowledgment Block

— FLAG BITS

SIX-CHARACTER NAME
“QUEUE "
(THREE ASCII WORDS)

0

If the acknowledgment is positive, the flag word contains 0. If the acknowl-
edgment is negative, the sign bit of the flag word is set in addition to one of
the low three bits. Table 3—7 shows the meanings of the acknowledgment
flag bits.

Table 3-7: Acknowledgment Flag Bits

Bit Name Mask Meaning

0 FLGRA 0 Request accepted.

15,0 FLG.IR 100001 Illegal job request.

15,1 FLG.QF 100002 Insufficient room in workfile.

15,2 FLG.NQ 100004 QUEUE being aborted from console.

3.5.10.7 QUEUE Example Program — Figure 3-23 contains a listing of an
example program, MYPROG, that uses QUEUE in a system with the system
job feature to copy a data file to the line printer.

Figure 3-23: QUEUE Example Program

+TITLE MYPROG.MAC

+ENABL LC
i This examprle shows how an arpplication Program can
i send files throudh the queue svystem.

+MCALL +READW, WRITW: .LOOKUPs +EXIT: ,PRINT

iFlad bits for request

FLG.,DE= 1 iDelete file after Printing
FLG.CP= 2 iMultiple copries

FLG.HD= 4 iBanner pPades

FLG,JR= 10 idJob reauest indicator

+PSECT QUETST

jExecution Section (Continued on next page)

3—46 Resident Monitor



. am.

Figure 3-23: QUEUE Example Program (Cont.)

START: JLOOKUP #AREA,#16,#LKUP i,LOOKUP QUEUE

BCC 1% sError?
+PRINT #LUPERR iYess report it
JEXIT sand auit
1%: JWRITW #AREA#16,#REQST »#6 38end initial
ireauest to QUEUE
BCC 2% iError?
11%: +PRINT #REQERR iYess» report it
JEXIT fand auit
2%: +READW #AREA:#1G,#REPLY »#B8 iWait for ACK
ifrom QUEUE. MWord count
5of ACK in REPLY s text
iin REQST.
BCS 11% iBranch on error
TST REQST SACK okav?® (First word
5of ACK should ke 0)
BNE MERR iBranch if error
+PRINT #ACKMSG iPrint success messade
JEXIT sEnd of tests resuest
isent to line Printer.,
MERR = +PRINT #NAKMSG sPrint error messade

JEXIT sand auit
+PSECT QUEDTA
iBlock for +LOOKUP on QUEUE

LKUP: +RADSO /M@ /
+ASCIZ /QUEUE/

AREA: +BLKHW ) SEMT area
5ACK from QUEUE does here:
REPLY : +WORD 0 iWord count from .READMW
REQST: +WORD FLG.+JR iInitial reauest
+ASCII /MYPROG/ iCallindg prodram
+WORD JOBBLK iAddr of Job block
+WORD 0 SEnd of initial reauest

iBlock for Job

JOBBLK: +WORD “FLG,JR+FLG,HD+FLG.CP> iFlags for Job:
jbannerss and cories

+BYTE 243 i2 copiess 3 banners

+RADSO  /LP / iSend to Printer

+RADS0O /DATA / iLogical Job name

+WORD 1 i0ne file follows:
FILBLK: ,WORD 0 iNo flads, use defaults

+BYTE 040 jDefault bannerss coprPies

+RADSO /DK / 5Filespec to be aueued

+RADS0  /TSTFIL/
+RADS0O  /DAT/

iMessades

LUPERR: .ASCIZ /MYPROG-F-QUEUE not running/

REQERR: .ASCIZ /MYPROG-F-Initial resuest error/

NAKMSG: .ASCIZ /MYPROG-W-QUEUE acknowleddment negative/

ACKMSG: .ASCIZ /MYPROG-I-QUEUE acknowleddment OK/
Kmon.EVEN

+END START

Resident Monitor



3.6 Data Structures

The following sections describe some of the data structures in the Resident
Monitor.

3.6.1 Fixed Offsets

Some words always have fixed positions relative to the start of the Resident
Monitor. These words are called fixed offsets. In general, they contain either
status words or pointers to other significant information. The fixed offset
area in RMON is located at the start of the RTDATA p-sect.

To access the fixed offsets from a running program, use the .GVAL pro-
grammed request, as follows:

+GUAL #areas#offset
Here, area represents a two-word argument block, and offset is a byte offset

from Table 3-8. Your programs should never modify the contents of the fixed
offsets.

Table 3-8: Resident Monitor Fixed Offsets

Byte
Length
Offset Symbol (Octal) Description

0 $RMON 4 Common interrupt entry point; contains the instruc-
tion JMP $INTEN. The .INTEN macro uses it.

4 $CSW 240 Background job channel area (16 decimal channels;
each is five words long).

244 $SYSCH 12 Internal channel used for system functions; the
Keyboard Monitor uses this channel.

246 2 SJ only: Reserved.

250 2 SJ only: Reserved.

252 LSERR/ 2 SJ only: An indicator for hard or soft errors.

IL.SPLS

254 I.SPLS 2 SJ only.

256 BLKEY 2 Segment number of the directory now in memory. A
value of 0 implies that no directory is there. See
Section 2.2.3.2 for a method of inhibiting’directory
caching.

260 CHKEY 2 Device index and unit number of the device whose
directory is in memory. The low byte contains the
device index into the monitor tables; the high byte is
the unit number.

262 $DATE 2 Current date value.

(Continued on next page)

3—48 Resident Monitor



1m

Table 3—-8: Resident Monitor Fixed Offsets (Cont.)

Byte
Length
Offset Symbol (Octal) Description

264 DFLG 2 “Directory operation in progress” flag. This is non-
zero to inhibit CTRL/C from aborting a job while a
directory operation is in progress.

266 $USRLC 2 Address of the normal USR area. This is where the
USR resides when it is called into memory by the
background job and location 46 is 0. In other words,
the foreground job must provide space for the USR to
swap. (Note: if the foreground job calls in the USR
and location 46 is 0, the foreground job aborts.) See
Chapter 2 for information on USR swapping.

270 QCOMP 2 Address of the I/O exit routine for all devices. The
exit routine is an internal queue management rou-
tine through which all device handlers exit once the
I/O transfer is complete. Any new device handlers
you add to RT-11 must also use this exit location;
use the .DRFIN macro in your handler to generate
the exit code automatically.

272 SPUSR 2 Special device error word. Non RT-11 file-
structured devices, such as magtape, use this word
to report errors to the monitor.

274 SYUNIT 2 The high byte contains the unit number of the sys-
tem device. This is the unit number of the device
from which the system was bootstrapped.

276 SYSVER 1 Monitor version number. You can always access the
version number in this fixed offset to determine if
you are using the most recent version of the soft-
ware. For RT-11 Version V5, this value is 5.

277 SYSUPD 1 Monitor release level. This number identifies the
release level of the monitor version specified in byte
276. For RT-11 Version V5, this value is 0.

300 CONFIG 2 Configuration word. These 16 bits indicate informa-
tion about either the hardware configuration of the
system or a software condition. Another configura-
tion word located at fixed offset 370 contains addi-
tional data. See Section 3.6.1.1 for the meaning of
each bit.

302 SCROLL 2 Address of the VT'11 scroller.

304 TTKS 2 Address of the console keyboard status register. The
default value is 177560. See Chapter 5 for details on
changing the hardware console interface to another
terminal.

306 TTKB 2 Address of the console keyboard buffer register. The
default value is 177562.

(Continued on next page)

Resident Monitor 349



Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Offset

Symbol

Byte
Length
(Octal)

Description

310

312

314

316

320

322
320
322
324

326

352

354

356

360

362

TTPS

TTPB

MAXBLK

E16LST

CNTXT

JOBNUM
$TIME
$TIME 2
SYNCH

LOWMAP

USRLOC

GTVECT

ERRCNT

$MTPS

$MFPS

2

N N s DN

24

Address of the conscle printer status register. The
default value is 177564.

Address of the console printer buffer register. The
default value is 177566.

The maximum file size allowed in a 0 length
.ENTER programmed request. The default value is
177777 octal blocks, allowing an essentially unlim-
ited file size. You can change this value from within
a running program (although this is not recom-
mended), or by using SIPP to patch this location.

Offset from the start of RMON to the dispatch table
for EMTs 340 through 357. The BATCH processor
uses this.

FB and XM only: A pointer to the impure area for
the current executing job.

FB and XM only: The executing job’s number.
SJ only: Two words of time of day.

Address of monitor routine to handle .SYNCH
requests. Your interrupt routines can issue the
SYNCH programmed request, which enters the
monitor through this address to synchronize with
the job they are servicing.

Start of the low-memory protection map. This map
protects vectors at locations 0 through 476. See
Section 3.6.1.2 for more information on the low-
memory bitmap.

A pointer to the current entry point of the USR. This
may be 0, if the USR is not in memory; it may be the
relocation code in USRBUF, if the USR was just
brought into memory; it is the processing code, in all
other cases.

Address of VT11 or VS60 display processor display
stop interrupt vector (default is 320).

Low byte is the error count byte for use by system
utility programs. The high byte is reserved.

Entry point of the move to PS routine. The .MTPS
macro calls this routine to perform processor inde-
pendent moves to the Processor Status word.

Entry point of the move from PS routine. The .MFPS
macro calls this routine to do processor independent
moves from the Processor Status word.

3-50 Resident Monitor

(Continued on next page)



am

Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Byte
Length
Offset Symbol (Octal) Description

364 SYINDX 2 Index into the monitor device tables for the system
device. See Section 3.6.5 for information on the
device tables.

366 STATWD 2 Indirect file and monitor command state word.

370 CONFG2 2 Extension configuration word. This is a string of 16
bits indicating the presence of an additional set of
hardware options on the system. See Section 3.6.1.3
for the meaning of each bit.

372 SYSGEN 2 System generation features word. The bits in this
word indicate the presence or absence of some sys-
tem generation special features. See Section 3.6.1.4
for the meaning of each bit.

374 USRARE 2 Size of the USR in bytes. Your program can use this
information to dynamically determine the size of the
region you need in order to swap the USR. (The USR
is always resident in XM systems.)

376 ERRLEV 1 Error severity at which to abort indirect files. You
can change this level with the SET ERROR com-
mand. The default setting is ERROR. See Chapter 2
for more information.

377 IFMXNS 1 Depth of nesting of indirect files. The default nesting
level is 3. You can change this value by using SIPP
to patch this location. Be sure to refer to offset 377 as
a byte, not as a word.

400 EMTRTN 2 Internal offset for use by BATCH only.

[\

402 FORK Offset to fork processor from the start of the

Resident Monitor. (Location 54 contains the starting
address of RMON.) Use the .DREND macro in your
device handler to automatically set up a pointer to
the fork processor.

404 PNPTR 2 Offset to the $PNAME table from the start of the
Resident Monitor.

406 MONAME 4 Two words of Radix—50 containing the name of the
current monitor file.

412 SUFFIX 2 One word of Radix—50 containing the suffix used by
the current monitor to name device handlers. For SJ
and FB systems, this word is normally blank. For
XM, it is normally X, right-justified. This word is set
up by the bootstrap; you can modify it there (see the
RT-11 System Generation Guide for details).

414 DECNET 2 Reserved.
416 EXTIND 1 IND stored error byte.

(Continued on next page)

Resident Monitor 3-51



Table 3-8: Resident Monitor Fixed Offsets (Cont.)

Byte
Length
Offset Symbol (Octal) Description
417 INDSTA 1 IND control status byte. The following bits are
defined:
40 LNSIND Set if current line passed by IND
100 INSRUN  Setif KMON issued RUN of IND
200 INSIND Set if IND active
420 $MEMSZ 2 Total physical memory available, in 32-word blocks.
422 2 Reserved.
424 $TCFIG 2 Address of terminal SET option status word.
426 $INDDV 2 Pointer to ASCII device name and unit number of
IND.SAV.
430 MEMPTR 2 Offset to memory control block pointers.
432 P1EXT 2 Pointer to $P1EXT routine (refer to Section 7.9.7 for

details).

3.6.1.1 Configuration Word — The configuration word, CONFIG, indicates
information about either the hardware configuration of the system or a soft-
ware condition. Table 3-9 lists the bits and their meanings. Unused bits are
reserved for future use by DIGITAL.

Table 3-9: The Configuration Word, Offset 300

Bit Meaning

0 0 = SJ Monitor.
1= (Ifbit 12 = 0): FB Monitor.
(Ifbit 12 =1): XM Monitor.

1 1 = KMON fetches SL handler and uses single-line editor.
2 1 = VT11 or VS60 graphics display hardware exists.

3 1 = BATCH isin control of the background.

4 1 = Single-line editor is available to user programs.

5 0 = 60-cycle clock.

1 = 50-cycle clock.

The value of bit 5 is patchable to indicate the current line frequency.

6 1 = FP11 floating-point hardware exists.
7 0 = No foreground or system job is in memory.
1 = A foreground or system job is in memory.

(Continued on next page)

3-52 Resident Monitor



Table 3-9: The Configuration Word, Offset 300 (Cont.)

Bit Meaning

8 1 = Useris linked to the graphics scroller.

9 1= TUSR is permanently resident, via SET USR NOSWAP. (USR is
always resident in XM and this bit is always set.)

10 1 = The QUEUE program is running.

11 1 = Processor is a PDP-11/03. The Processor Status word on this system
cannot be accessed by means of an address in the I/O page.

12 1 = A mapped system is running under the XM monitor.

13 1 = The system clock has a status register.

14 1= AKW11-P clock exists and programs can use it.

15 1 = There is a system clock (L clock, P clock, or 11/03-11/23 line-
frequency clock).

3.6.1.2 Low-Memory Protection Bitmap — RT—11 maintains a bitmap that
reflects the protection status of low memory, locations 0 through 477. This
map is required in order to avoid conflicts in the use of the vectors. In FB
and XM, the .PROTECT programmed request allows a program to gain
exclusive control of a vector or a set of vectors. When a vector is protected,
RMON updates the bitmap to indicate which words are protected. If a word
in low memory is not protected, it is loaded from block 0 of the executable
file. If a word in low memory is protected, it is not loaded from block 0 of the
file. In addition, if the word is protected by a foreground job, it is not
destroyed when you run a new background program.

The bitmap is a 20-byte decimal table that starts 326 octal bytes from the
beginning of the Resident Monitor. Table 3—10 lists the offset from RMON
and the corresponding locations represented by that byte.

Table 3-10: Low-Memory Bitmap

Locations Locations
Offset (Octal) Offset (Octal)
326 0-17 340 240-257
327 20-37 341 260-277
330 40-57 342 300-317
331 60-77 343 320-337
332 100-117 344 340-357
333 120-137 345 360-377
334 140-157 346 400-417
335 160-177 347 420-437
336 200-217 350 440-457
337 220-237 351 . 460-477

— ) ]

Resident Monitor 3-53



Each byte in the table reflects the status of eight words of memory. The first
byte in the table controls locations 0 through 17, the second byte controls
locations 20 through 37, and so on. The bytes are read from left to right.
Thus, if locations 0 through 3 are protected, the first byte of the table con-
tains 11000000.

NOTE

Only words are protected, not individual bytes. Thus, protect-
ing word 0 means that bytes 0 and 1 are both protected.

If locations 24 through 27 are protected, the second byte of the table contains
00110000.

The leftmost bit of each byte represents lower memory locations; the right-
most bit represents higher memory locations. For example, to protect loca-
tions 300 through 307, the leftmost four bits of the byte at offset 342 must be
set to result in a value of 360 for that byte: 11110000.

The SJ monitor does not support the . PROTECT programmed request. If you
need to protect vectors in SJ, either use SIPP to manually modify the bitmap
or dynamically modify the bitmap from within a running program.

For example, the following instructions protect locations 300 through 306
dynamically:

MOV B#54,R0
BISB #"B11110000,342(R0O)

Protecting locations with SIPP means that the vector is permanently pro-
tected, even if you rebootstrap the system. The dynamic method provides a
temporary measure and does not remain effective across bootstraps. Be
aware that the dynamic method involves storing data directly into the mon-
itor. For this reason, DIGITAL recommends that you use SIPP to protect
vectors in SJ.

The RT-11 monitor uses the low-memory bitmap to automatically protect
some locations in low memory. The locations it protects are as follows:

0-16

24-32

50-66

100-102 (line-frequency clock)

104-106 (if KW11-P selected as system clock)
114-116

244-246

250-252 (for XM systems only)

The system device handler interrupt vector
Interrupt vectors for loaded device handlers
Vectors for all interfaces supported in a multi-terminal system

3-54 Resident Monitor



am

NOTE

Vectors of device handlers that you load with the LOAD com-
mand are protected; vectors of device handlers that you bring
into memory with the .FETCH programmed request are not
protected.

3.6.1.3 Extension Configuration Word — The extension configuration word,
CONFG2, indicates the presence of an additional set of hardware options on
the system. Table 3—11 lists the bits and their meanings. Unused bits are
reserved for future use by DIGITAL.

Table 3-11: Extension Configuration Word, Offset 370

Bit Meaning
0 1 = Cache memory is present.
1 1 = Parity memory is present.
2 1 = Areadable switch.register is present.
3 ‘1 = A writeable console display register is present.
4 1 = A handler used by LD may have been unloaded.
5 1 = Do not swap user code or exit.
6 Reserved.
7 1 = The Commercial Instruction Set (CIS) option is present.
8 1 = The Extended Instruction Set (EIS) option is present.
9 0 = VT11 display hardware exists if bit 2 at offset 300 is set.
1 = VS60 display hardware exists if bit 2 at offset 300 is set.
10-13 Reserved.
14 1 = The processor is a PDP-11/70.
15 1 = The processor is a PDP-11/60.

3.6.1.4 System Generation Features Word — The system generation features
word, SYSGEN, indicates which major system generation features are
present. Table 3—-12 lists the meaning of each bit. Unused bits are reserved
for future use by DIGITAL. In addition, do not set or clear any bits in this
word yourself.

Note that the values of the first three bits must correspond to the condi-
tional variables you use when you assemble your device handler files.
Attempts to use handlers that are not compatible with the monitor cause
the 2KMON-F-Conflicting SYSGEN options error message to appear.

Resident Monitor 3-55



wm

Table 3-12: System Generation Features Word, Offset 372

Bit Meaning
0 1 = The error logging feature is present.
1 1 = The memory management feature is present.
2 1 = The device I/O time-out feature is present.
3 1 = Thisis an RTEM-11 system.
4-8 Reserved.
9 1 = The memory parity feature is present.
10 1 = The SJ mark time feature is present.
11-12 Reserved.
13 1 = The multi-terminal feature is present.
14 1 = The system job feature is present.
15 Reserved.

3.6.2 Impure Area

The impure area is an area of memory where the monitor stores all job-
dependent data. For each job, the impure area contains job-specific informa-
tion, such as terminal ring buffers and I/O channels. The monitor sets up the
impure area and maintains its contents.

3.6.2.1 Single-Job Monitor Impure Area — In the SJ system, there is no dis-
tinct impure area for the single job. Instead, information relating to the job
is stored in various places throughout the Resident Monitor.

3.6.2.2 Foreground/Background Monitor Impure Area — In an FB system, the
impure areas contain all the information the monitor requires to run two or
more independent jobs. The information stored in the impure area is job-
specific. The impure area for the background job is located at the start of the
p-sect RMON in the Resident Monitor and it is permanently resident. The
impure area for a foreground or system job is located in memory below the
start of the job itself. The size of the impure area is the value in the global
symbol FMPUR, which you can find by looking at your monitor’s link map.

The monitor maintains a table of one-word pointers to the impure areas of

-all jobs in the system. This table is located at $IMPUR, and is either eight or

two words long, depending on whether the system job feature is present or
not.

In RT-11, a background job is always present. It is the Keyboard Monitor if
no other background job exists. The foreground or system job impure area
pointer may be 0 if no such job is in memory. When you issue an FRUN com-
mand, the monitor creates an impure area for the foreground job. Similarly,
the SRUN command creates an impure area for a system job. In both cases,
the monitor also updates the job’s $IMPUR entry to point to the impure
area.

3-56 Resident Monitor



1L

The contents of the impure area are the same for both the background and
the foreground jobs, as shown in Table 3-13. The offset in the table is the off-
set from the start of the impure area itself. In some cases, the contents of the
impure area depend on which system generation features you select. These
cases are indicated by a “Feature only:” phrase in the “Description” eolumn.

Table 3-13: Impure Area

Byte
Length
Offset Symbol (Octal) Description
0 LSTATE 2 Job state word bits. See Table 3-14 for the
meaning of each bit.
2 1.QHDR 2 Head of available queue element linked list.
4 I.CMPE 2 Last entry in the completion queue.
6 I.CMPL 2 Head of the completion queue.

10 IL.CHWT 2 Pointer to channel during I/O wait. When a job
is waiting for I/O on a channel to complete, the
address of that channel area is stored here.

12 LPCHW 2 Saved .CHWT during execution of a comple-
tion routine.

14 LPERR 2 Error bytes 52 and 53 saved during completion
routines.

16 LTTLC 2 Terminal input ring buffer line count (for non-
multi-terminal systems).

20 LPTTI 2 Previous terminal input character (for non-
multi-terminal systems).

16 L.CNSL 2 Multi-terminals only: Pointer to terminal con-
trol block (TCB) for this job’s console terminal.

20 unused 2 Multi-terminals only: Unused.

22 1. TID 2 Pointer to job ID area, later in impure area.

24 LJNUM 2 Job number of the job that owns this impure
area.

26 LCNUM 2 Number of I/O channels defined. The default is
16 decimal; you can use .CDFN to define more.

30 IL.CSW 2 Pointer to the job’s channel area.

32 LIOCT 2 Total number of I/O operations outstanding.

34 LSCTR 2 + Suspension counter. A value less than 0 means
the job is suspended.

36 IL.BLOK 2 Job blocking bits. See Table 3-15 for the
meaning of each bit.

(Continued on next page)

Resident Monitor 3-57



Table 3-13: Impure Area (Cont.)

Byte
Length
Offset Symbol (Octal) Description

The following offsets are not guaranteed to remain constant from release to release. In fact,
since the pointers and status words can vary depending on the special features you select
through system generation, you should consult the link map from the monitor assembly to
find the correct offsets for your system. Note that some items, such as the input and output
ring buffers, have a variable length.

- 1JID 10 Job’s terminal prompt string. If the system job
feature is present, the length of IJID is 14
octal.

- ILLNAM 6 System jobs only: Logical job name in ASCII.

- INAME 10 File name and file type, in Radix-50, of the
running job.

- LSPLS 2 Pointer to nonlinked .DEVICE list.

- LTRAP 2 Address of trap to 4 and 10 routine defined via
.TRPSET.

- LFPP 2 FPU only: Address of FPP exception routine
defined via .SFPA.

- L.SPSV 2 XM only: Bottom of saved SP data.

- LSWAP 4 Pointer to extra swap information specified in

. the .CNTXSW programmed request.

- LSP 2 Saved stack pointer.

- ILBITM 24 Bitmap for protection.

- IL.CLUN 2 Multi-terminals only: LUN of job’s console.

- ILTTLC 2 Multi-terminals only: Terminal input ring
buffer line count.

- LIRNG 2 Input ring buffer low limit.

- LIPUT 2 Input PUT pointer for interrupts.

- LICTR 2 Input character count.

- LIGET 2 Input GET pointer for TTYIN.

- LITOP 2 Input ring buffer high limit.

- _ TTYIN Input ring buffer.

- 1.OPUT 2 Output PUT pointer for .TTYOUT.

- L.OCTR 2 Output character count.

- LOGET 2 Output GET pointer for interrupts.

- 1.OTOP 2 Output ring buffer high limit.

(Continued on next page)

3-58 Resident Monitor



1|

Table 3-13: Impure Area (Cont.)

Byte
Length
Offset Symbol (Octal) Description

- —_ TTYOUT Output ring buffer.

- I.QUE QWDSIZ The initial queue element; 16 octal bytes (24
bytes if XM).

- ILMSG 4 The internal message channel.

- L.SERR 6 The third word of the message channel is used

as the hard/soft error flag.

- LTERM 2 Terminal status word.

- LTRM2 2 Terminal status word 2.

- 1.SCCcA 2 CTRL/C terminal status word set via .SCCA.

- I.SCCI 2 XM only: PAR1 value of .SCCA for XM.

- IL.DEVL 2 Pointer to linked .DEVICE list.

- LFPSA 2 XM and FPU only: Pointer to FPU save area,
later in impure area.

- I.SCOM 36 XM only: System communication save area
(for non-multi-terminal systems).

- I.SCOM 40 ' XM and multi-terminals only: System commu-
nication save area.

- LRSAV 20 XM only: Register save area.

- LWPTR 2 XM only: Pointer to window control blocks, at
LWNUM later in impure area.

- LRGN RGWDSZ XM only: Region control blocks.

- LWNUM 2 XM only: Number of window blocks.

. - WNWDSZ XM only: Window control blocks.

- LFSAV 62 XM and FPU only: FPU save area.

- ILVHI ‘ 2 XM only: Virtual high limit of job; nonzero if
linker /V option used.

- I.SCHP 2 Pointer to the job’s system channel. The moni-
tor uses this channel for its own calls, such as
.DSTATUS.

- ILSYCH 14 The job’s system channel, for all foreground

and system jobs. The background job’s channel
is in the fixed offset area of the Resident
Monitor.

Resident Monitor 3-59



Job State Word Bits

The job state word, Iindicates status information about a job. Table 3—14
shows the meaning of each bit. Unused bits are reserved for future use by
DIGITAL.

Table 3-14: Job State Word Bits, Offset 0

Mnemonic  Bit Meaning When Set
ABPND$ 0 An abort has been requested for this job.
BATRNS$ 1 BATCH is running for this job.
CSIRN$ 2 The CSI is running for this job.
USRRN$ 3 The USR is running for this job.
4 Reserved.
ABORT$ 5 The job is being aborted.
6 Reserved.
CPEND$ 7 This job hasa compietion routine pending.
8-11  Reserved.
WINDW$ 12 This is a virtual job.
' 13-14  Reserved.
CMPLT$ - 15 A completion routine is running for this job.
Job Blocking Bits

The job blocking word, . BLOK, indicates which condition is blocking a job.
Unused bits are reserved for future use by DIGITAL. Table 3—15 shows the
meaning of each bit.

Table 3-15: Job Blocking Bits, Offset 36

Mnemonic  Bit Meaning When Set
0-3 Reserved.
USRWT$ 4 The job is waiting for the USR.
5 Reserved.
KSPND$ 6 The job is suspended as a result of the monitor SUSPEND
command.
7 Reserved.
EXIT$ 8 The job is waiting for all I/O to complete.
NORUN$ 9 The job is not running (that is, it is a foreground or system job
that has completed).
SPND$ 10 The job is suspended.

(Continued on next page)

3-60 Resident Monitor



1m

Table 3-15: Job Blocking Bits, Offset 36 (Cont.)

Mnemonic  Bit Meaning When Set
CHNWTS$ 11 The job is waiting for I/O on a channel to complete.
TTOEMS$ 12 The job is waiting for the output ring buffer to be empty.
TTOWT$ 13 The job is waiting for room in the output ring buffer.
TTIWT$ 14 The job is waiting for terminal input.

15 Reserved.

3.4.1 Queue Element Format Summary

This section summarizes the formats of the various types of queue elements.
For detailed information on clock support and timer service, see Section 3.2,
which also describes the timer queue element. Section 3.3 contains more
information on the queued I/O system and includes descriptions of the I/O
queue element, the completion queue element, and the synch queue ele-
ment.

3.4.1.1 1/O Queue Element — Figure 3-24 shows the format of an I/O queue
element.

Figure 3-24: I/0 Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
Q.Csw 2 POINTER TO CHANNEL STATUS WORD IN 1/O
CHANNEL (SEE FIGURE 3-29)
Q.BLKN 4 PHYSICAL BLOCK NUMBER
Q.FUNC 6 RESERVED | JOB DEVICE | SPECIAL
Q.UNIT 7 NUMBER | UNIT FUNCTION
Q.JNUM 7 (1 BIT) (4 BITS) (3BITS) | CODE
0=BG (8 BITS)
Q.BUFF 10 USER BUFFER ADDRESS (MAPPED THROUGH PAR1
WITH Q.PAR VALUE, IF XM)
QWCNT 12 IF <0, OPERATION ISWRITE
WORD COUNT <IF =0, OPERATION IS SEEK
IF >0, OPERATION IS READ
THE TRUE WORD COUNT IS THE ABSOLUTE
VALUE OF THIS WORD.
Q.COMP 14 COMPLETION (IF 0, THIS IS WAIT-MODE 1/0
ROUTINE IF 1, JUST QUEUE THE REQUEST
CODE AND RETURN
IF EVEN, COMPLETION ROUTINE
ADDRESS
Q.PAR 16 PAR1 VALUE (XM ONLY)
RESERVED (XM ONLY)
RESERVED (XM ONLY)

Resident Monitor 3-61



3.4.1.2 Completion Queue Element — Figure 3—-25 shows the format of a com-
pletion queue element.

Figure 3-25: Completion Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; O IF NONE
2 RESERVED
4 RESERVED
6 RESERVED
Q.BUFF 10 CHANNEL STATUS WORD
Q.WCNT 12 OFFSET FROM START OF CHANNEL AREA TO THIS CHANNEL
Q.ComP 14 COMPLETION ROUTINE ADDRESS
THREE ADDITIONAL WORDS ARE PRESENT IN XM SYSTEMS. THEY
ARE UNUSED, AND ARE RESERVED FOR FUTURE USE BY DIGITAL.

3.4.1.3 Synch Queue Element — Figure 3-26 shows the format of a synch
queue element.

Figure 3-26: Synch Queue Element Format

NAME OFFSET CONTENTS
Q.LINK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
Q.CSw 2 JOB NUMBER
Q.BLKN 4 RESERVED
Q.FUNC 6 RESERVED
Q.BUFF 10 SYNCH ID
Q.WCNT 12 —1 (CUE THAT THIS IS A SYNCH ELEMENT)
Q.COMP 14 SYNCH ROUTINE ADDRESS

3.4.1.4 Fork Queue Element — Figure 3—27 shows the format of a fork queue
element.

Figure 3-27: Fork Queue Element Format

NAME OFFSET CONTENTS
F.BLNK 0 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE
F.BADR 2 FORK ROUTINE ADDRESS
| F.BR5 4 R5 SAVE AREA
F.BR4 6 R4 SAVE AREA

3-62 Resident Monitor



3.4.1.5 Timer Queue Element — Figure 3-28 shows the format of a timer
queue element.

Figure 3-28: Timer Queue Element Format

NAME OFFSET , CONTENTS

C.HOT 0 HIGH-ORDER TIME

C.LOT 2 LOW-ORDER TIME

C.LINK 4 LINK TO NEXT QUEUE ELEMENT; 0 IF NONE

C.JNUM 6 OWNER’S JOB NUMBER

C.SEQ 10 OWNER'S SEQUENCE NUMBER ID

C.SYS 12 —1IF SYSTEM TIMER ELEMENT;
—3 IF .TWAIT ELEMENT IN'XM

C.COMP 14 ADDRESS OF COMPLETION ROUTINE
THREE ADDITIONAL WORDS ARE PRESENT IN
XM SYSTEMS. THEY ARE UNUSED, AND ARE
RESERVED FOR FUTURE USE BY DIGITAL.

3.4.2 1/0 Channel Format

Figure 3-29 shows the format of an I/O channel. Since each channel uses
five words, the size of the monitor’s channel area is five times the number of
channels. RT-11 allocates 16 channels for each job. The channel area is 80
decimal words long. For SJ, a single channel area is located in RMON. For
FB and XM, one channel area for each job is located in the job’s impure area.
The .CDFN programmed request can provide more channels. Table 3-16
shows the significant bits in the Channel Status Word.

Figure 3-29: I/0 Channel Description

NAME OFFSET CONTENTS
0 CHANNEL STATUS WORD
C.SBLK 2 STARTING BLOCK NUMBER OF THIS FILE
(0 IF NON-FILE-STRUCTURED)
C.LENG 4 LENGTH OF FILE (IF OPENED BY .LOOKUP)
) SIZE OF EMPTY AREA (IF OPENED BY .ENTER)
C.USED 6 HIGHEST BLOCK WRITTEN
C.DEVQ 10 DEVICE NUMBER OF REQUESTS
UNIT NUMBER PENDING ON THIS CHANNEL

Resident Monitor 3-63



Table 3-16: Channel Status Word (CSW)

Bit : Meaning

0 Hard error bit.

0 = Noerror.
1 = Hard error.

1-5 Index into the $PNAME table and other device tables.
6 RENAME flag.

0 = NoRENAME is in progress.
1 = ARENAME operation is in progress.

7 0 = The file was opened with a .LOOKUP. The monitor does not modify
the directory when the file is closed.
1 = The file was opened with an .ENTER. The monitor modifies the direc-
tory when the file is closed.

8-12 The number of the directory segment containing this entry.
13 End-of-file (EOF) bit.

0 = No end-of-file.
1 = End-of-file was found on this channel.

14 Reserved.

15 0 = The channel is free.
1 = The channelis active.

3.4.3 Device Tables

Tables in the Resident Monitor keep track of the devices on the RT-11 sys-
tem. These tables are contained in the module SYSTBL.MAC, which is cre-
ated by system generation and assembled separately from the module
RMON. SYSTBL is linked with RMON and other modules to form the
Resident Monitor. The symbol $SLOT in SYSTBL, which is defined at sys-
tem generation time, defines the maximum number of devices the system
can have. The value of $SLOT is greater than or equal to 3, and less than or
equal to 31 decimal. '

3.4.3.1 $PNAME Table — The permanent name table is called $PNAME. It is
the central table around which all the others are constructed. The total
number of entries is fixed at assembly time; you can allocate extra slots
then. Entries are made in $PNAME at monitor assembly time for each
device that is built into the system.

Each table entry consists of a single word that contains the Radix—50 code
for the two-character physical device name. (For example, the entry for
DECtape is .RAD50 /DT/.) The TT device must be first in the table; the sys-
tem device is always second. After that, the position of a device in this table

3-64 Resident Monitor



N

is not critical. Once the entries are made into this table, their relative posi-
tion (that is, their order in the table) determines the general device index
used in various places in the monitor. Thus, the other tables are organized in
the same order as $PNAME. The offset of a-device name entry in $PNAME
serves as the index into the other tables for a given device.

The bootstrap checks the system generation parameters of a handler with
those of the current monitor (by inspecting the low three bits of SYSGEN at
RMON fixed offset 372), and zeroes the $PNAME entry for that device if the
parameters do not match. The INSTALL monitor command cannot install a
handler whose conditional parameters do not match those of the monitor.

3.4.3.2 $STAT Table — The device status table is called $STAT. Entries to

“this table are made at assembly time for those devices that are permanently

resident in the RT-11 system, such as TT and MQ in FB and XM systems.
When the system is bootstrapped, the entries for all other devices are filled
in when the handler is installed by the bootstrap or the INSTALL monitor
command. Each device in the system has a status entry in its corresponding
slot in $STAT. The device status word identifies each physical device and
provides information about it, such as whether it is random or sequential
access. The device status word is part of the information returned to a run-
ning program by the .DSTATUS programmed request. See Chapter 7 for
details on the status word.

3.4.3.3 $DVREC Table — The device handler block number table is called
$DVREC. Entries to this table are made at bootstrap time for devices that
are built into the system, and at INSTALL time for additional devices. The
entries are the absolute block numbers where each of the device handlers
resides on the system device. Since handlers are treated as files, their posi-
tions on the system device are not necessarily fixed. Thus, each time the sys-
tem is bootstrapped, the handlers are located and $DVREC is updated with
their locations on the system device. The pointer in $DVREC points to block
1 of the file. (Because handlers are linked at 1000, the actual handler code
starts in the second block of the file.) A zero entry in the $DVREC table indi-
cates that no handler for the device in that slot was necessary (such as TT or
MQ in FB and XM systems). (Note that if block 0 of the handler file resides
on a bad block on the system device, RT-11 cannot install or fetch the han-
dler.) Note also that 0 is a valid $DVREC entry for permanently resident
devices.

3.4.3.4 S$ENTRY Table — The handler entry point table is called SENTRY.
Entries in this table are made whenever a handler is loaded into memory by
either the .FETCH programmed request or by the LOAD keyboard monitor
command. The entry for each device is a pointer to the fourth word of the
device handler in memory. The entry is zeroed when the handler is removed
by the RELEASE programmed request or by the UNLOAD keyboard moni-
tor command.

Some device handlers are permanently resident. These include the system
device handler and, for FB and XM systems, the TT handler. The $ENTRY
values for such devices are fixed at boot time.

Resident Monitor 3-65



3.4.3.5 $DVSIZ Table — Each entry in the $DVSIZ table contains the size of a
device, in blocks. The value is 0 for a non-file-structured device. For devices
that accept multi-size volumes, the entry contains the size of the smallest
possible volume.

3.4.3.6 $HSIZE Table — Each entry in the $HSIZE table contains the size of a
device handler, in bytes. This value indicates the amount of memory needed
to load each handler.

3.4.3.7 $UNAM1 and SUNAM2 Tables — The tables that keep track of logical
device names and the physical names that are assigned to them are called
$UNAM1 and $UNAM2. Entries are made in these tables when the
ASSIGN monitor command is issued. The physical device name is stored in
$UNAM1 and the logical name associated with it is stored in the corre-
sponding slot in SUNAM2. When the system is first bootstrapped, there are
two assignments already in effect that associate the logical names DK and
SY with the device from which the system was booted. The value of $SLOT,
which is determined at system generation time, limits the total number of
logical name assignments. Thus, you can issue one ASSIGN command for
each device in your system. (The initial SY and DK assignments at boot-
strap time do not come out of your total.)

The $UNAMI1 and $UNAM2 tables are not indexed by the $PNAME table
offset. The fact that the tables are the same size is interesting, but not sig-
nificant.

3.4.3.8 $SOWNER Table — The device ownership table is called §OWNER and
it is used in the FB and XM environments to arbitrate device ownership.
The table is ($SLOT*2) words in length and is divided into two-word entries
for each device. Entries are made into this table when the LOAD keyboard
monitor command is issued. Each two-word entry is in turn divided into
eight four-bit fields capable of holding a job number. The low four bits of the
first byte correspond to unit 0, and the high four bits correspond to unit 1.
The low four bits of the next byte correspond to unit 2, and so on (see Figure
3-30). Thus, each device is presumed to have up to eight units, each
assigned independently of the others. However, if the device is non-file-
structured, units are not assigned independently; the monitor ASSIGN code
ensures that ownership of all units is assigned to one job.

Figure 3-30: $OWNER Entry

DEVICE UNIT # 3 2 1 0

OWNER # OWNER # OWNER # OWNER #

OWNER # OWNER # OWNER # OWNER #

DEVICE UNIT # 7 6 5 4

3-66 Resident Monitor



LI

When a background job, a foreground job, or a system job attempts to access
a particular unit of a device, the monitor checks to be sure the unit being
accessed is either public or belongs to the requesting job. If another job owns
the unit, a fatal error is generated. '

The device is public if the four-bit field is 0. If the device is not public, the
field contains a code equal to the job number plus 1. Since job numbers are
always even, the ownership code is odd. For example, in a distributed
foreground/background system, the owner field value for the background job
is 1; for the foreground job it is 3. In a foreground/background system with
the system job feature the owner field value for the background job is still 1;
for the foreground job it is 17. The owner field value for a system job is 1 plus
the job number.

3.4.3.9 Adding a Device to the Tables — You can create free slots in the tables
by deleting or renaming one or more of the device handler files from the sys-
tem device and rebooting the system, or by issuing the REMOVE monitor
command. The INSTALL monitor command can install a different device
handler into the table after the system has been booted. However, INSTALL
does not make a device entry permanent. For more information on installa-
tion, the DEV macro, and the bootstrap, see Chapter 7.

Resident Monitor 3-67






Chapter 4
Extended Memory Feature

After introducing RT—11’s extended memory feature, this chapter provides
an overview of the hardware components that are the basis of the extended
memory system. (The term extended memory refers to physical memory
above the 28K word boundary that can be accessed only by using special
hardware. Low memory is the physical memory between 0 and 28K words.
In some systems with an additional 2K words of low memory, low memory
extends to 30K words and there is no extended memory.) It then shows how
RT-11 implements support for extended memory, and explains how to
design, code, and execute a program in an extended memory environment.
Following these demonstrations is a discussion of the implications of
extended memory support for other system software components and a
description of all the restrictions you must observe when working with
extended memory. Lastly, this chapter describes how to debug an extended
memory application program and provides a sample program that uses dou-
ble buffering in extended memory.

4.1 Introduction

The following sections present a brief overview of the circumstances that led
to the RT—11 extended memory implementation. Read it to gain an under-
standing of the limitations of 28K-word systems and the means by which
RT-11 circumvents these limitations.

4.1.1 16-Bit Addressing

Each computer in the PDP-11 family can directly address 32K words. A
PDP-11 computer can never address more than this amount of memory
directly because its architecture provides only 16-bit addresses. Figure 4-1
illustrates this addressing limitation. Since the PDP-11 computer can
address bytes individually, you can see from the illustration why its address
space is limited to 32K words.

Remember that one K equals 1024 decimal, or 2 raised to the 10th power.

The RT—11 Mini-Reference Manual provides a convenient reference chart of
K-words and their equivalent octal numbers.

4-1



L10

4-2

Figure 4-1: 16-Bit Word Addressing Space Limitation

A 16-BIT WORD WITH THE HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

oL L o ]

THE SAME VALUE EXPRESSED IN OCTAL IS 177777.

THE SAME VALUE EXPRESSED IN DECIMAL IS 65535.

SINCE 0 IS A VALID LOCATION, THE PDP-11 CAN ADDRESS 65536 UNIQUE BYTE LOCATIONS.
THUS, THE PDP-11 (WHICH IS A BYTE-ADDRESSABLE COMPUTER) ADDRESSES 64K BYTES OF
MEMORY, OR 32K WORDS OF MEMORY.

In unmapped PDP-11 systems (those not using extended memory), the high-
est 4K words of address space, called the I/O page, are reserved for device
registers, general registers, and so on. Thus, only 28K words of address
space are left for use by the operating system software and programs. On a
system with 28K words of memory, all 28K words are available.

4.1.2 Virtual and Physical Addresses in a 28K-Word System

A virtual address is a value in the range 0 through 177777. It is a 16-bit
address within a program’s 32K-word address space.

A physical address is the actual hardware address of a specific memory
location. Physical addresses are not limited to 16 bits.

Figure 4-2 shows the relationship between virtual address space and phys-
ical address space in an RT-11 system with 28K words of memory. Note that
in this system, which could be running either the SJ or FB monitor, there is
a one-to-one correspondence between virtual and physical addresses. For
example, virtual address 20000 corresponds directly to physical address
020000.

4.1.3 Circumventing the 28K-Word Memory Limitation

Before RT-11 provided support for extended memory, systems were limited
to using 28K words of memory. Programmers have traditionally used two
mechanisms to circumvent the 28K-word available memory limitation. One
of the mechanisms is called chaining: one program calls a second program
at exit time; the second program provides additional processing for the data
the original program passes to it. The MACRO-11 assembler, for example,
assembles a MACRO-11 source file and chains to CREF, which produces the
cross-reference listing. One way, then, to run a program that is larger than
the amount of memory available is to divide the program into two or more

Extended Memory Feature



A

‘Figure 4-2: Virtual and Physical Addresses in a 28K-Word System

VIRTUAL PHYSICAL ADDRESS
ADDRESS SPACE SPACE
32K - 32K —
1/0 PAGE
28K
AVAILABLE
MEMORY
4K} 20 000 s 4K 20 000
0 0
16-BIT ADDRESSES 16-BIT ADDRESSES

functionally distinct parts. Then, when the first program finishes, it can
start up the second program by chaining to it.

Another way to run a program that is larger than the amount of memory
available is to divide the program into overlay segments. Separate segments
can then take turns residing in the same place in physical memory. By using
overlays you can run a very large program in a much smaller amount of
physical memory.

In both chaining and overlaying, instructions and data in the separate pro-
grams or segments use both the same virtual addresses and the same
locations in physical memory. Programs or segments not currently in mem-
ory reside on an auxiliary storage volume. Figure 4-3 illustrates chaining;
Figure 4-4 shows overlaying.

Extended Memory Feature 4-3



am

Figure 4-3: Chaining

PHYSICAL ADDRESS

SPACE
32K.
1/0 PAGE
28K
MEMORY
STORAGE
VOLUME
PROGRAM 2
PROGRAM 1
AS PROGRAM 1 EXITS, IT CALLS
PROGRAM 2. PROGRAM 2 USES
THE SAME VIRTUAL ADDRESSES
AND PHYSICAL MEMORY
LOCATIONS AS PROGRAM 1.
Figure 4-4: Overlaying
PHYSICAL ADDRESS
SPACE
32K
1/0 PAGE
28K
MEMORY
STORAGE
VOLUME
SEGMENT 1
SEGMENT 2
SEGMENT 3
OVERLAY
REGION 1
ROOT

AS THE PROGRAM RUNS, SEGMENTS 1, 2, AND 3
TAKE TURNS RESIDING IN OVERLAY REGION 1.
THE SEGMENTS ALL USE THE SAME VIRTUAL
ADDRESSES AND PHYSICAL MEMORY LOCATIONS.

44 Extended Memory Feature



S -

4.1.4 18- and 22-Bit Addressing

Although PDP-11 software uses 16-bit words, it is possible to access more
than 32K words of memory by using special memory management hard-
ware. With memory management, RT—11 can use up to 18-bit addresses on a
Unibus machine, or up to 22-bit addresses on a Q-bus machine. This means
that you can address up to 124K words plus a 4K-word I/O page on a Unibus
machine, or up to 2044K words plus a 4K-word I/O page on a Q-bus machine.
Figure 4-5 shows the addressing range for 18- and 22-bit addresses.

Figure 4-5: 18- and 22-Bit Word Addressing Range

AN 18-BIT WORD WITH THE HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

17 16 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
CT T L ]

THE SAME VALUE EXPRESSED IN OCTAL IS 777777.

THE SAME VALUE EXPRESSED IN DECIMAL IS 262143.

A 22-BIT WORD WITH HIGHEST POSSIBLE VALUE, EXPRESSED IN BINARY:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Cr e e e e e e [ e e

THE SAME VALUE EXPRESSED IN OCTAL IS 17777777

THE SAME VALUE EXPRESSED IN DECIMAL IS 2097151

SINCE 0 IS A VALID LOCATION, 18 BITS CAN ADDRESS 262,144
UNIQUE BYTE LOCATIONS, OR 128K WORDS OF PHYSICAL ADDRESS
SPACE. 22 BITS CAN ADDRESS 2,097,151 UNIQUE BYTE LOCATIONS,
OR 1024K WORDS OF PHYSICAL ADDRESS SPACE.

4.1.5 Virtual and Physical Addresses with Extended Memory
Hardware

The virtual addresses your program uses are always limited to 16 bits so
that your program’s virtual address space is always limited to 32K words.

However, an 18-bit address can reference any location between 0 and 128K
words; a 22-bit address can reference any location between 0 and 2048K
words. RT-11 systems with more than 28K words of memory, physical loca-
tions are referenced by the hardware as 18- or 22-bit addresses.

As Figure 4-6 shows, there can no longer be a direct one-to-one correspon-
dence between virtual and physical addresses.

Extended Memory Feature 4-5



21

Figure 4-6: Virtual and Physical Addresses with Extended Memory

Hardware
PHYSICAL ADDRESS
SPACE
128K
1/0 PAGE
UP TO 124K
~ ~
VIRTUAL h
ADDRESS SPACE
32K 32K
MEMORY
0 0
16-BIT ADDRESSES 18-BIT ADDRESSES

4.1.6 Circumventing the 32K-Word Address Limitation

As memory technology improves, it becomes more and more feasible to pro-
vide PDP-11 systems with more than 28K words of memory. Since the
UNIBUS and Q-bus already have the ability to use addresses longer than 16
bits, it remains the task of the hardware — the Memory Management Unit —
and the operating system software to set up a correspondence between a pro-
gram’s virtual addresses and physical memory locations so that programs
can access all of memory.

If you select extended memory as a special feature at system generation
time, you can take advantage of the 18- or 22-bit addresses. The extended
memory feature permits programs, which are still restricted to using 16-bit

4-6 Extended Memory Feature



words, to access 2044K words of physical memory. RT-11 implements sup-
port for extended memory through a combination of hardware and software
components.

Through its extended memory (XM) monitor, RT-11 provides a mechanism
to associate a virtual address with a physical address. This process is called

"mapping. RT-11 permits programs to access extended memory by mapping

their virtual addresses to physical locations in memory. In summary:

® Every location in memory has an 18- or 22-bit physical address; there are
more physical addresses than virtual addresses. '

® A program cannot access specific physical addresses unless its virtual
addresses are mapped to those physical locations.

® Programs can access all the available physical memory by using their vir-
tual addresses over and over again, but with different mapping each time.

Section 4.3 presents more material on mapping. Be sure you understand the
hardware concepts discussed in the next section before you proceed to 4.3.

In an extended memory system, programs are no longer limited to using

28K words of memory. However, they must still deal with the 32K-word
addressing limitation. Typically, large programs are still divided into
smaller segments, as in the 28K-word systems. While the instructions and
data in separate segments of a program share the same virtual addresses,
they can have unique physical addresses. Figure 4-7 shows a program that
is divided into three overlay segments. The three segments are resident
simultaneously in extended memory, but they share the virtual addresses in
overlay region 1.

4.2 Hardware Concepts

There are three hardware requirements for an RT-11 extended memory
system:

® At least 32K words of memory
® The Extended Instruction Set (EIS) option
e A Memory Management Unit '

This manual provides an overview of the memory management hardware
and its functions. The best sources of detailed information on the memory
management hardware are the hardware manuals for the KT11-C, -CD, and

-D Memory Management Units. Their full titles and order numbers are:

KT11-C, CD Memory Management Unit User’s Manual: EK-KT11C-OP-001
KT11-D Memory Management Option Manual: EK-KT11D-TM~002
KT11-D M emory Management Option User’s Manual: EK-KT11D-OP-001

Extended Memory Feature 4-7



am

Figure 4-7: Program Segments Sharing Virtual Address Space

PHYSICAL ADDRESS

e  SPACE .
[ ] [ ]
® ®
SEGMENT 1
VIRTUAL
ADDRESS SPACE
32K
SEGMENT 2
SEGMENT 3
OVERLAY
REGION 1
ROOT - ROOT
0 L !
® ®
® [ ]

SEGMENTS 1, 2, AND 3 HAVE UNIQUE PHYSICAL ADDRESSES, BUT
THEY TAKE TURNS USING THE SAME SET OF VIRTUAL ADDRESSES.

Two sources of information on the memory management hardware are
Chapter 10 of the Microcomputers and Memories Handbook (order number
EB-20912-20) and the PDP—11 Processor Handbook.

Note that it is not necessary to learn the details of how the Memory
Management Units function in order to understand and use the RT-11
extended memory system. These manual references are provided for your
convenience should you choose to do some further background reading.

4.2.1 Memory Management Unit

The central component of an XM system is a hardware option referred to
generally as the Memory Management Unit, or MMU. DIGITAL manufac-
tures several types of Memory Management Units, including the KT-11A,

4-8 ' Extended Memory Feature



the KT11-C, the KT11-D, and the KT11-CD. RT-11 supports the minimal
set of functions common to all the memory management units.

The function of the Memory Management Unit is to intercept a 16-bit vir-
tual address generated by the processor and convert it to an 18- or 22-bit
physical address. Figure 4-8 illustrates this process for 18 bits.

Figure 4-8: MMU Address Conversion

15 0
16 BITS
C J
——
CURRENT
MMU ey MAPPING
INFORMATION
. 1 :
( R
18 BITS

4.2.2 Concept of Pages

In an extended memory system the 32K-word virtual address space is
divided into eight sections called pages. Each page begins on a 4K word
boundary, and the pages are numbered from 0 through 7. A page is made up
of units of 32 decimal words each. Since there can be as many as 128 of these
units, a page can vary in size from 0 words to 4096 words, in 32-word incre-
ments. Figure 4-9 shows the virtual address space divided into eight 4K-
word pages.

Figure 4-10 shows the virtual address space divided into five pages of vary-
ing lengths. The shaded areas in the virtual address space are not part of the
pages, and are therefore inaccessible. Thus, short pages cause gaps in the
virtual address space.

4.2.3 Relocation
When the Memory Management Unit converts a 16-bit virtual address to an

18- or 22-bit physical address, it relocates the virtual address. This means
that two or more programs can have the same virtual addresses but different

Extended Memory Feature 4-9



o

Figure 4-9: 4K-Word Pages

VIRTUAL ADDRESS SPACE

32K
PAGE 7
28K f————— —— — 160000
PAGE 6
24K e — — — — — — 140000
PAGE 5
20K o — — e —— — — — 120000
PAGE 4
16K p——————— — 100000
PAGE 3
2K p———— e — — — — 60000
PAGE 2
8K p—-——— — — —— 40000
PAGE 1 |
K ——————— — 20000
PAGE 0
0 0
Figure 4-10: Smaller Pages
VIRTUAL
ADDRESS SPACE
32K
PAGE 7
28K |
7.
24K % /
S0k PAGE 5 4

> Wz 2727

i.i f/%%%{/

4-10 Extended Memory Feature

PAGE 3

PAGE O




am

physical addresses. The Memory Management Unit relocates virtual
addresses in units of pages. It assigns a page to a section of physical memory
that starts on a 32-word decimal boundary. Figure 4-11 shows how the
Memory Management Unit can relocate the virtual addresses of two differ-
ent programs in a 124K-word memory. '

Figure 4-11: Relocation by Program

PHYSICAL
ADDRESS
SPACE
124K
VIRTUAL VIRTUAL
ADDRESS ~ ﬂFj ADDRESS
SPACE SPACE
32K 32K
_____ 28K I — — — — L — — — — 160000
_____ 24K | PROGRAM _J L — — — — 140000
2
_____ 20K — — — — — 120000
_____ 16k b — — — — L — — — —{ 100000
_____ 12 b — — — — \ ————- 60000
10K I:ROGRAI\/I
PROGRAM K= ——7 — ] 10000
1 ' PROGRAM
: 2
_____ 4K -~ — — — 20000
10K 7K

0 0 0 0

Program 1 in Figure 4-11 is relocated by 20000 octal. So, when program 1
references virtual address 0, for example, it actually accesses memory loca-
tion 20000.

Since the Memory Management Unit relocates each page of virtual address
space separately, a program can reside in disjoint sections of memory, as
Figure 4-12 shows. '

4.2.4 Active Page Register (APR)

The RT-11 monitor communicates with the Memory Management Unit
through the Active Page Registers, which are located in the I/O page. Each
Active Page Register consists of two 16-bit words, as Figure 4-13 shows: a
Page Address Register (PAR), and a Page Descriptor Register (PDR).

Extended Memory Feature 4-11



Figure 4-12: Relocation by Page

PHYSICAL ADDRESS

SPACE
124K
~ ~
VIRTUAL
ADDRESS SPACE
32K
®
12K 12K
8K PAGE 2 8K
PAGE 1
4K 4K
PAGE O
0 0
PROGRAM 1
Figure 4-13: Active Page Register (APR)
15 0 15 0
PAR PDR ‘
PAGE ADDRESS REGISTER PAGE DESCRIPTOR REGISTER

The Page Address Register and the Page Descriptor Register always act as a
pair. A set of eight Active Page Registers contains all the information neces-
sary to describe and relocate the eight virtual address pages. The Page
Descriptor Register describes how much of a virtual page to map to memory.
The Page Address Register describes where in memory to put the virtual

page.
The eight Active Page Registers are numbered from 0 through 7. There is

one Active Page Register for each page in the 32K-word virtual address
space, as Figure 4-14 shows.

4-12 Extended Memory Feature




Figure 4-14: Correspondence Between Pages and Active

Page Registers
VIRTUAL
ADDRESS SPACE
32K
PAGE 7 } APR 7 ——— == | PAR 7 I PoR7 |
28K
PAGE 6 } APR 6 ————=— I PAR 6 | PDR 6 ]
24K
PAGE 5 } APRE [ PAR 5 | PDR 5 I
20K
PAGE 4 } APR 4 —— PAR 4 PDR 4
16K
DAGE 3 } APR3——->[ PAR 3 . [ PDR 3 —|
12K
PAGE 2 } APR 2 ——= I PAR 2 l PDR 2 ]
8K
PAGE 1 } APR 11— | PAR 1 | PDR 1 |
4K
BAGE 0 } APR O . [ PAR 0 | PDR 0 ]

4.2.4.1 Page Address Register (PAR) — The eight Page Address Registers cor-
-respond directly to the eight virtual address pages. The Page Address
Register contains the physical memory address in 32-word decimal units, or
Page Address Field, for a particular virtual address page. Figure 4-15 shows
the contents of the Page Address Register. Bits O through 11 are used for 18-
bit addressing; bits 0 through 15 are used for 22-bit addressing.

Figure 4-15: Page Address Register (PAR)

15 12 11 0

U T

T I
PAGE ADDRESS FIELD

|<— 18-BIT ADDRESSING

-2 22-BIT ADDRESSING B

|

4.2.4.2 Page Descriptor Register (PDR) — The Page Descriptor Register con-
tains information about page expansion, page length, and access control for
a particular page. Like the Page Address Registers, the Page Descriptor
Registers correspond directly to the virtual address pages, as Figure 4-14
shows. Figure 4-16 shows the contents of the Page Descriptor Register.
Unused bits are reserved for future use by DIGITAL.

Extended Memory Feature 4-13



. mIE

Figure 4-16: Page Descriptor Register (PDR)

6 5 4 3 2 1 0
ACF

15 14 8
PLF

In Figure 4-16, the field marked ACF represents the Access Control field.
This field describes how a particular page can be accessed, and whether or
not a particular access should cause an abort of the current operation. The
values in this field are as follows:

Value ‘ Meaning
00 Nonresident page. Abort any attempt to access it.
01 Resident read-only page. Abort any attempt to write into it. (RT-11 does

not use this value.)

10 Unused code. Abort all attempts to access this page. (RT-11 does not use
this value.) .

11 Resident read/write page. All accesses are valid.

The field marked ED is the Expansion Direction field. This bit indicates
the direction in which a page can expand. The codes and their meanings are
as follows:

Value Meaning
0 The page expands to higher addresses. (In RT-11, this field is always 0.)
1 The page expands to lower addresses. (RT-11 does not use this value.)

The field marked W is the Written Into field. It indicates whether the page
has been modified since it was loaded into memory. (RT-11 does not use this
field.)

Some PDP-11 processors, instead of using bit 6 to indicate the page’s modifi-
cation status, use one or more of the reserved bits in the Page Descriptor
Register. RT-11 ignores these other bits.

The field marked PLF is the Page Length field. It indicates the length of a
page, in 32-word decimal units.

4.2.5 Converting a 16-Bit Address to an 18- or 22-Bit Address

The information necessary for the Memory Management Unit to convert a
16-bit virtual address to an 18- or 22-bit physical address is contained in the
virtual address and in its corresponding Active Page Register set. Figure
4-17 shows the meanings of the fields in the virtual address. These fields
represent a breakdown of the virtual address that is convenient for RT-11
and the MMU to use.

Bits 13 through 15 of the virtual address constitute the Active Page Field.
This field determines which Active Page Register the Memory Management
Unit will use to create the physical address.

4-14 Extended Memory Feature



S

Figure 4-17: Virtual Address

15 13 12 0
L] v L) L 1 Ll L] v LN T L) LI I 1
1 . 1 | 1 1 1 1 1 L [ 1 L ]
— N J
. ~~
ACTIVE DISPLACEMENT
PAGE FIELD
FIELD

Bits 0 through 12 of the virtual address are the Displacement Field, which
contains an address relative to the beginning of a page.

The rest of the information necessary to create a physical address is con-
tained in the Page Address field of the appropriate Page Address Register.
Figure 4-18 shows how the Memory Management Unit converts a 16-bit vir-
tual address to an 18- or 22-bit physical address. In this example, Page
Address Register 6 contains 5460 octal, so virtual address 157746 converts
to physical address 565746. Bits 12-15 of the Page Address Register are
included for 22-bit addressing.

Figure 4-18: MMU Address Conversion (Detail)

T T T T T T T T T T T T T VIRTUAL
1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 ADDRESS
1 1 1 1 L L 1 1 L L il ] L (157746)
— A _
APF I
15. 12 11 0
1 Ll T T 1 L) 1 1 I Ll T T 1 T PAGE
oo 0 0|1 0o 1 1 0 0 1 1 0 0 0 0 ADDRESS
1 1 I 1 1 ! 1 1 L I 1 1 L L REGISTER 6
(5460)
A J
BITS 12-15 ARE INCLUDED FOR
22-BIT ADDRESSING

PHYSICAL ADDRESS (565746)

As you can see from Figure 4-18, bits 13, 14, and 15 of the virtual address
specify which Active Page Register to use. The Memory Management Unit
adds the value in bits 6 through 12 of the virtual address to the correspond-
ing Page Address Register. The Memory Management Unit places the result
of this addition in bits 6 through 17 or 6 through 21 of the physical address.

Extended Memory Feature 4-15



The Memory Management Unit copies the value in bits 0 through 5 of the
virtual address into bits 0 through 5 of the physical address to form the final
18- or 22-bit physical address.

4.2.6 Status Registers

The Memory Management Unit also communicates with the RT-11 monitor
through two status registers. Status Register 0, located at 777572 in the I/O
page contains abort error flags, the memory management enable bit, and
other essential information required by RT—11 to recover from an abort or to
service a memory management trap. Status Register 2, located at 777576, is
a read-only register containing the 16-bit virtual address that the Memory
Management Unit is currently converting to an 18- or 22-bit physical
address. (RT-11 does not use Status Register 2. However, if a memory man-
agement unit fault occurs in your system, you can examine this register
yourself.) RT—11 also uses Memory Management Register 3 (MMSR3),
located at 772516, to enable 22-bit addressing.

4.2.7 Kernel and User Processor Modes

In addition to its primary function of managing the address space, the mem-
ory management system must provide some kind of protection for the moni-
tor. To implement protection, the processor provides two modes of operation:
kernel mode and user mode. The two modes provide a mechanism for sep-
arating system-level functions (kernel mode) from application-level func-
tions (user mode).

Each mode has its own set of eight Active Page Registers and its own stack
pointer. Therefore, each processor mode also makes its own assignments of
virtual addresses to physical locations: each mode has its own mapping.
Figure 4-19 shows how the value in bits 14 and 15 of the Processor Status
word determine in which processor mode execution takes place.

Routines that run in kernel mode are generally part of the run-time oper-
ating system software and must not be corrupted by other programs. RT-11
uses the processor’s kernel mode for the Resident Monitor and the USR, for
interrupt service routines, and for device handlers, including .SYNCH and
.FORK routines. Interrupts and traps vector through kernel mapping and
cause execution to continue in kernel mode.

Routines that run in user mode are generally part of application programs.
They are prevented from executing instructions that could corrupt the mon-
itor or halt the computer. For example, a RESET instruction acts as'a NOP
instruction in user mode, and a HALT instruction generates a trap to 10.
RT-11 uses the processor’s user mode for the Keyboard Monitor, for system
utility programs, and for application programs and their completion
routines.

Since each processor mode uses its own set of Active Page Registers, kernel
mapping is not necessarily identical to user mapping. For example, if user
virtual address 20010 is associated with physical address 40210, it does not

4-16 Extended Memory Feature



Figure 4-19: Processor Status Word and Active Page Registers

15 14 13 12 11 8 7- 5 4 3 2 1
TIN]Z]V |C

T PRIORITY

PREVIOUS MODE
CURRENT MODE

(00 = KERNEL MODE
11 = USER MODE)

KERNEL (00) USER (11)
APR 0 , APR 0
APR 1 APR 1
APR 2 APR 2
APR 3 APR 3
APR 4 APR 4
APR 5 APR 5
APR 6 APR 6
APR 7 APR 7

necessarily mean that kernel virtual address 20010 is also mapped to phys-
ical address 40210. In fact, kernel virtual addresses are often mapped to dif-
ferent sections of physical memory from user virtual addresses. The map-
ping depends entirely on the contents of the Active Page Registers. Thus,
changing from user to kernel processor mode has some interesting implica-
tions: referencing the same virtual addresses in different modes can cause a
program to access different physical locations. Figure 4-20 shows an exam-
ple in which virtual address 0 in kernel mode maps to physical location 0; in
user mode, virtual address 0 maps to physical location 500. This is the map-
ping scheme RT-11 uses for a virtual job at load time.

4.2.8 Default Mapping

Mapping is the process of associating virtual addresses with physical loca-
tions (see Section 4.1.6). The RT-11 XM monitor manages the virtual
address space by controlling the way the virtual addresses map to physical

Extended Memory Feature 4-17



Figure 4-20: Mapping the Same Virtual Addresses to Different
Physical Locations

32K

8K

4K

KERNEL
VIRTUAL
ADDRESS
SPACE

PHYSICAL ADDRESS
SPACE

124K

8K

4K

32K

8K

4K

USER
VIRTUAL
ADDRESS
SPACE

locations. The monitor does this by putting values into the Active Page

Registers, thereby controlling the Memory Management Unit.

When you first bootstrap an RT-11 extended memory system, kernel and
user mapping are identical. That is, the monitor puts the same values into
both the kernel and user sets of Active Page Registers. Table 4-1 shows the
initial values of the Active Page Registers. Figure 4-21 shows the default
mapping that results from these values. Table 4-2 shows the default map-
ping for a typical 4K virtual background job that has no extended memory

overlays and no extra regions.

4-18 Extended Memory Feature




Table 4-1: Initial Contents of Kernel and User APRs

Page and Kernel User

APR No. PAR PDR PAR PDR
7 177600 77406 177600 77406
6 1400 77406 1400 77406
5 1200 77406 1200 77406
4 1000 77406 1000 77406
3 600 77406 600 77406
2 400 77406 400 77406
1 200 77406 200 77406
0 0 77406 0 77406

Figure 4-21: Default Mapping at Bootstrap Time

PHYSICAL
ADDRESS
SPACE _— /0 PAGE
777776
760000
KERNEL ' USER
VIRTUAL NN o VIRTUAL
PAR PAGE ADDRESS ADDRESS PAGE PAR
VALUE PAR SPACE SPACE PAR VALUE
177776 177776
7600 7 160000 160000 7 7600
157776 157776 157776
1400
1400 6 140000 140000 140000 6
137776 137776 137776
5 1200
1200 5 120000 120000 120000
17776 117776 117776 .
1000
1000 4 100000 100000 100000
77776 77776 77776
0
600 3 60000 60000 60000 3 60
57776 57776 57776 )
400 2 40000 40000 40000 400
200 1 37776 37776 37776 1 200
20000 20000 20000
o o 17776 17776 17776 o o
0 0 0
KERNEL USER
MAPPING MAPPING

Extended Memory Feature 4-19



Table 4-2: Initial Register Contents for Virtual Job

Page and User
APR No. PAR PDR
7 ? 0
6 ? 0
5 ? 0
4 ? 0
3 ? 0
2 ? 0
1 ? 0
0 5 77406

4.3 Software Concepts

RT-11 implements support for extended memory through the extended
memory, or XM, monitor. You must perform the system generation process
to obtain an XM monitor, since it results from assembling the FB monitor
source files with the conditional MMG$T set to 1. One of the major design
considerations for RT-11’s extended memory support was that the XM mon-
itor should closely resemble the FB monitor.

In addition, you must use a special set of device handlers that can communi-
cate between a peripheral device and extended memory. It is part of the
extended memory system design that the USR must be permanently
resident.

The following sections describe the software concepts RT—11 uses in its
extended memory system.

4.3.1 XM System Memory Layout

Figure 4-22 illustrates the locations of the XM system components in phys-
ical memory in a 128K-word system. (Notice that this layout closely resem-
bles the FB system arrangement described in Chapter 2.) When you first
bootstrap an XM system, the system device handler and the Resident
Monitor use the available memory just below the 28K-word boundary so
that extended memory — the locations between 28K and 124K —is not used.
Other loaded device handlers occupy the space below the Resident Monitor,
followed by foreground and system jobs, if any, and the USR.

The Resident Monitor executes in processor kernel mode and can access the
low 28K words of memory and the I/O page. The USR also executes in kernel
mode and is always memory resident in an XM system. The Keyboard
Monitor executes in processor user mode, but since it is a privileged back-
ground job, it uses the same mapping as the Resident Monitor. (Privileged
jobs are described in Section 4.3.3.2.) Physical locations 0 through 500 con-
tain the vectors.

4-20 Extended Memory Feature



I

Figure 4-22: XM System Memory Layout

PHYSICAL ADDRESS
SPACE

128K

1/0 PAGE _
124K

)
LS
b))

LSS

28K

SYSTEM DEVICE HANDLER
RMON
OTHER HANDLERS
FG JOB
USR
KMON

BG AREA

INTERRUPT VECTORS
SYSCOM AREA
TRAP VECTORS

4.3.2 How Programs Control Mapping

Mapping — associating virtual addresses with physical locations — is the
heart of the extended memory system. The XM monitor controls mapping by
putting values into the Active Page Registers, thus controlling the Memory
Management Unit. Obviously, this level of control is elementary and
requires the monitor to keep close watch over the mapping situation.

Fortunately, the monitor provides the means by which system and applica-
tion programs can direct mapping operations and experience the benefits of
accessing extended memory without concern for the specifics of the Memory
Management Unit operations. In fact, your programs should never access

Extended Memory Feature 4-21



o

the Active Page Registers or the Memory Management Unit Status
Registers directly. Programs communicate their extended memory require-
ments to the monitor through a collection of programmed requests. These
requests store or modify information in data structures within the pro-
grams. Based on the contents of these data structures, the monitor modifies
its own internal control blocks and puts the correct values into the Active
Page Registers to perform the appropriate mapping action.

In order to access extended memory, a program must:

e Tell the monitor how much physical address space it needs.
@ Describe the virtual addresses it needs to the monitor.

e Direct the monitor to associate the virtual addresses with the physical
locations. That is, it must map the virtual addresses to the physical
locations.

Background, foreground, and system jobs can all access extended memory by
following the three steps described above. Note, however, that none of the
jobs can share physical address space with another job.

The monitor and the programs use certain software concepts to describe the
virtual addresses and the physical memory locations. The following sections
describe the concepts of physical address regions, virtual address win-
dows, and the program’s logical address space.

4.3.2.1 Physical Address Regions — A program that needs to access extended
memory must communicate to the monitor a description of the physical
memory locations it plans to use. The program does this by defining one or
more regions in extended memory.

A physical address region is a segment of physical memory consisting of
contiguous 32-word decimal units. A region must begin on a 32-word bound-
ary; it can be as large as 96K words. A job can have as many as four regions
at any time, but their total combined size cannot exceed 128K words. The
monitor assigns identification numbers to the regions when it creates them.
A region identification is actually a pointer within your job’s impure area to
the start of the region’s control block. (You will read more about region con-
trol blocks later.)

The purpose of a region is to describe a portion of the physical address space,
thus making it available for mapping and permitting a program to use those
physical addresses. Sections of physical address space, if any, that are not
part of a region are unavailable to a program. Figure 4-23 shows how mem-
ory can be divided into regions. Note that two jobs cannot share a region in
extended memory.

Information about a physical address region is contained in a three-word
data structure in your program, called a region definition block. The mon-
itor collects information from the region definition block and stores it in a
different internal data structure, called the region control block. The

4-22 Extended Memory Feature



|

Figure 4-23: Physical Address Space and Two Regions

PHYSICAL ADDRESS
SPACE

128K

124K
2ND REGION (4K)

120K

> 1ST REGION (92K)

28K {

> 28K

region control block is located in your program’s impure area. Section 4.6
provides more detailed information on the region definition and control
blocks.

The Static Region

The first region, called the static region, is created for a virtual job by the
monitor at run time. (Section 4.3.3 describes the differences between virtual
programs and privileged programs.) The size of the static region varies,
depending on the size of the program and whether the program is a fore-
ground or background job, but it is always within the low 28K words of
memory. You can refer to the static region by using an identification of 0.

Extended Memory Feature 4-23



Your program cannot eliminate the static region or change it in any way.
(You cannot use the first region in privileged jobs, either; its data structures
are reserved and currently unused.)

The Dynamic Regions

If your program needs to access more memory than the amount allocated at
run time, it can create one to three dynamic regions and map virtual address
windows to them. A dynamic region is a portion of physical memory above
the 28K-word boundary. The static region is created by the monitor and a
program can create up to three more regions. A program can create and
eliminate any of the dynamic regions.

4.3.2.2 Virtual Address Windows — A program that needs to access extended
memory must also communicate to the monitor a description of the virtual
addresses it plans to use. While the monitor uses the concept of pages to
describe virtual addresses to the Memory Management Unit, programs
describe the virtual address space to the monitor by using the software con-
cept of virtual address windows.

A virtual address window is a section of the 32K-word virtual address space
consisting of contiguous 32-word decimal units. A window, like a page, must
begin on a 4K-word boundary. However, unlike a page, whose maximum
size is 4K words, a window can be as large as 32K words and can encompass
one or more pages. There can be as many as eight virtual address windows
or as few as one. The monitor assigns identification numbers to the windows
when your program creates them.

The purpose of a window is to describe a section of virtual address space to
the monitor, and thus permit a program to use those virtual addresses.
Windows cannot overlap each other. (While a job can describe a new window
that overlaps an existing one, the old one is eliminated when the new one is
created.) And, sections of virtual address space, if any, that are not part of a
window are not available for a program te use, unless the job is privileged.
Each window that is less than 4K words causes a discontinuity in the pro-
gram’s virtual address space. A memory management fault results if the
program tries to access a virtual address that does not fall within a mapped
window. (A window is not useful until it is also mapped.)

The monitor can assign physical addresses to the virtual addresses encom-
passed by windows by calculating the number and size of the pages involved
and putting values into the corresponding Active Page Registers for those
pages. Figure 4-24 shows how virtual address space can be divided into
windows.

Information about a virtual address window is contained in a seven-word
data structure in your program, called a window definition block. The moni-
tor collects information from the window definition block and stores it in a
different internal data structure, called the window control block. The win-
dow control block is located in your program’s impure area. Section 4.6 pro-
vides more detailed information on the window definition and control blocks.

4-24 Extended Memory Feature



BB

Figure 4-24: Virtual Address Space and Three Windows

PAR
AND VIRTUAL ADDRESS
PAGE SPACE
7
3RD WINDOW
6 > 12K WORDS

RKRXRURANKS UNAVAILABLE

RO
RRRNRHKAS

OO ’6‘6::::’....‘ ADDR ESS SPACE
IS

3 P 2022620202022 %% % 2020 200 ta e 20 2020 02020 20 % 20 20 %!
2ND WINDOW

2 6K WORDS

1
1ST WINDOW
8K WORDS

0

The Static Window

The first window, called the static window, is created for a virtual job by the
monitor at run time. (Section 4.3.3 describes the differences between virtual
jobs and privileged jobs.) The static window begins at virtual address 0, and
its size is equal to the size of your program’s base segment, up to the pro-
gram’s high limit. The static window contains your program’s root, stack,
virtual vectors, overlay handler, and low memory overlays. Instructions,
data, and buffers can appear in extended memory overlays or in extended
memory .SETTOP buffers; they are contained in a different window and
region. You can refer to the static window by using an identification of 0.
Your program cannot eliminate the static window or change its mapping.
(You cannot use the first window in privileged jobs, either; its data struc-
tures are reserved and currently unused.)

The Dynamic Windows

If your program needs to access more memory than the amount allocated at
run time, it can create one or more dynamic windows and map their virtual
addresses to physical locations. The static window is created by the monitor
and a program can create up to seven more windows. A program can create,
eliminate, map, and remap any of the dynamic windows.

Extended Memory Feature 4-25



LI

4.3.2.3 Program’s Logical Address Space (PLAS) — A program’s logical
address space is the range of physical address space effectively available to
the program as a result of mapping operations. That is, all physical locations
that are part of a region can be accessed by the program through mapping
operations, and are thus part of its logical address space. The Program’s
Logical Address Space is abbreviated as PLAS, a term often used to refer to
extended memory support in general.

4.3.3 Two Kinds of Mapping

RT-11 provides two kinds of mapping for jobs that run in an extended mem-
ory environment: virtual mapping and privileged mapping. The follow-
ing sections describe virtual jobs — those that run with virtual mapping —
and privileged jobs — those that run with privileged mapping.

4.3.3.1 Virtual Jobs —Jobs that run with virtual mapping execute in the pro-
cessor’s user mode. Virtual jobs do not use kernel mapping; virtual back-
ground jobs load into memory at an offset of 500. Virtual jobs cannot load
over the USR, the Resident Monitor, or the I/O page. Virtual mapping is the
better mapping mode to use for a job that does not require privileged access
to the vector area, the monitor, or the I/O page, since it protects these system
areas from virtual jobs.

The first 500 bytes of each virtual job image are its virtual vector and system
communication areas. The static window includes the virtual addresses
between the program’s virtual address 0 and its high limit. The size of the

-static region varies depending on whether the virtual job is a foreground or a

background job and on the size of the job.

When you first run a virtual job, it can access only those virtual addresses
that are within its own program bounds and that are also mapped to phys-
ical memory. However, a virtual job can use any remaining virtual address
space between its own high limit and the 32K-word address boundary. It can
create one or more regions in extended memory, and one or more virtual
address windows. It can then map a window to a region, thus accessing
extended memory. If a virtual job unmaps a window, it cannot use the vir-
tual addresses encompassed by the window unless it remaps the window. A
virtual job can also use the extended memory .SETTOP feature and
extended memory overlays.

Selecting Virtual Mapping

You indicate that a job is to use virtual mapping by setting bit 10 of the Job
Status Word before you run the program. If a particular job is always vir-
tual, set bit 10 at assembly time. Use the following instructions to do this:

+ASECT

=44

+WORD 2000
+PSECT

4-26 Extended Memory Feature



|

Or, if you prefer, select the program’s mapping by running SIPP and patch-
ing location 44 in the job’s .SAV or .REL file before you run the program.

NOTE

Do not change the value of bit 10 of the JSW when the pro-
gram is running. Doing so interferes with accurate processing
of I/0 requests and can cause unpredictable results.

A Virtual Background Job

Use the monitor R or RUN command to start a virtual background job. You
can also start the job through CCL by typing only the program name. The
file should have the .SAV file type. A virtual background job loads into mem-
ory starting at physmal location 500. Its highest physical address is equal to
the size of the program in octal plus 500.

The static region for a virtual background job begins at physical location 500
and extends to the lowest address used by the USR. This prevents a virtual
background job from ever accessing the physical vector area between loca-
tions 0 and 500. As a result, the vectors are protected from virtual jobs.
Figure 4-25 illustrates the mapping for a virtual background job in a 128K-
word system. Figure 4-26 shows how a virtual background job can map a
window into the static region to use the available memory just below the
USR in a 128K-word system.

A Virtual Foreground or System Job

Use the FRUN monitor command to start a virtual foreground job and the
SRUN command to start a virtual system job. You should link these jobs as
background jobs with the .SAV file type, rather than as foreground or sys-
tem jobs with the .REL file type. You can FRUN or SRUN a virtual .SAV
image because virtual foreground jobs require no relocation information.
Thus, the .SAV files are smaller on disk than .REL files, and they load into
memory faster.

When a foreground job is loaded, it uses the physical locations just below the
lowest loaded handler or previously loaded system job. The USR slides down
in memory, if necessary, to accommodate the foreground job. The foreground
job is linked with a default base address of 1000 (unless it is a .SAV image);
its virtual addresses between 0 and 500 represent the virtual vector and sys-
tem communication areas. As with the background virtual job, the static
window starts at virtual address 0 and extends to this foreground program’s
high limit, rounded up to a 32-word multiple.

The static region begins at physical location 0 and extends to the program’s
physical high limit. The foreground impure area is located in physical mem-
ory just below the program. However, no virtual addresses are mapped to
the impure area, so a virtual foreground job cannot access the contents of the
impure area. As a result, the impure area is protected from a virtual fore-
ground job. Figure 4-27 illustrates the mapping for a virtual foreground or
system job.

Extended Memory Feature 4-27



Figure 4-25: Virtual Background Job

PHYSICAL ADDRESS

SPACE
128K
1/0 PAGE
124K
~ >
VIRTUAL ADDRESS
SPACE
32K
SYSTEM 28K
I\EEDSREE\S%E;LA?(LE DEVICE HANDLER
ACCESSIBLE ONLY RMON
AFTER THE JOB
:ﬂ%’;‘?’\f‘e’v‘s A OTHER HANDLERS
OPERATION.
USR
FREE SPACE h
* BG JOB
|
BG HIGH
( BG JOB
STATIC
REGION
STATIC waePERT )]
WINDOW
STACK
STACK VIRTUAL VECTORS
——— ———— — — — 500
L VIRTUAL VECTORS VECTORS
BG LOW==0 0

4.3.3.2 Privileged Jobs — The default mapping in an extended memory sys-
tem is privileged. To indicate a privileged job, bit 10 of the Job Status Word
remains 0. The XM environment appears to a privileged job to be very simi-
lar to an SJ or FB environment. A privileged job can access the low 28K
words of memory as well as the I/O page. All the RT-11 utility programs run
as privileged jobs in an extended memory environment.

Privileged jobs, like virtual jobs, run in user processor mode. However, the
monitor copies the contents of the kernel Active Page Registers into the user
Active Page Registers. The default mapping for privileged jobs is thus the
same as the default kernel mapping.

Privileged jobs do have all 32K words of virtual address space available to
them. But much of that virtual address space is already mapped to operating
system software, the I/O page, and —in the case of a privileged foreground or

4-28 Extended Memory Feature



210

Figure 4-26: Virtual Background Job Mapping into the Static Region

PHYSICAL ADDRESS
SPACE

128K
1/0 PAGE
A 124K
A ~
7" ~d
VIRTUAL ADDRESS
SPACE
32K
DYNAMIC
WINDOW 28K
SYSTEM
2 DEVICE HANDLER
Yo,
e}
RMON
%
OTHER HANDLERS
THESE VIRTUAL
ADDRESSES ARE USR
ACCESSIBLE ONLY
AFTER THE JOB h
PERFORMS A
e
' BG JOB >STATIC
BG _ REGION
HIGH BG JOB
b e e oD a woen e G cmme e —
/ STACK
sTATIC | e e e ] WAPPED
WinDow STACK VIRTUAL VECTORS
500
VIRTUAL VECTORS VECTORS
0 0

system job — to a background job or the Keyboard Monitor. A privileged job
can alter its default mapping through the use of extended memory overlays
or programmed requests. It can map away all or part of the operating system
to obtain a full 32K words of addressable memory for itself. For example, a
program that needs to access the I/O page for only a limited time can explic-
itly map away from the I/O page when it is done using it.

Note that the static window and static region concept does not apply to privi-
leged jobs. However, one window and one region are reserved by the moni-
tor. Thus, privileged jobs have seven dynamic windows and three dynamic
regions available to them, just as virtual jobs do.

Extended Memory Feature 4-29



Figure 4-27: Virtual Foreground or System Job

PHYSICAL ADDRESS

SPACE
128K
1/0 PAGE
124K
~) ~)
fr la V4
VIRTUAL ADDRESS
SPACE
32K
)
28K
SYSTEM
DEVICE HANDLER
RMON
THESE VIRTUAL
ADDRESSES ARE
ACCESSIBLE ONLY OTHER HANDLERS
AFTER THE JOB N
PERFORMS A FG JOB
MAPPING
OPERATION.
STACK
/ VIRTUAL VECTORS
STATIC
PURE AREA
FG I & IMPURE A >REGION
HIGH FG JOB @v? USh
STATIC J h e e 4 FREE SPACE
WINDOW STACK
————————————— 500
VIRTUAL VECTORS VECTORS
FGLOW _\ 0 0/

When a privileged job creates a window and executes the mapping pro-
grammed requests, the default privileged mapping for that virtual address
space is temporarily unmapped. The monitor maps the window using the
contents of the internal window control block to the new region of memory.
When the privileged job unmaps the window, the monitor remaps that vir-
tual address space according to the contents of the kernel Active Page
Register set. This differs from a virtual job that unmaps a window, in which
the virtual addresses encompassed by the window are unusable until the
window is remapped.

Since interrupt service routines execute in kernel mapping, privileged jobs
containing user interrupt service routines should not change the mapping of
interrupt service routines, the I/O page, or parts of the monitor during any
time period in which an interrupt could possibly occur. The monitor depends
on the fact that kernel and user mapping are identical when it services user
interrupts.

4-30 Extended Memory Feature



am

Privileged Background Job

Use the monitor R or RUN commands to start a privileged background job.
Figure 4-28 illustrates the mapping for a privileged background job.

Figure 4-28: Privileged Background Job

PHYSICAL ADDRESS

SPACE
128K
1/0 PAGE
124K
e e
Q
VIRTUAL ADDRESS QQ‘O
SPACE
32K N\
28K 28K
SYSTEM
DEVICE HANDLER
RMON
OTHER HANDLERS
USR
MAPPED ——=
BG ,
HIGH BG JOB BG JOB
STACK STACK
——————————— - ’— — — —— — — — — — —
8G 0 VECTORS o
Low

Privileged Foreground or System Job

Use the monitor FRUN command to start a privileged foreground job. Use
the SRUN command to start a privileged system job.

Extended Memory Feature 4-31



ik}

Figure 4-29 illustrates the mapping for a privileged foreground or system
job.

Figure 4-29: Privileged Foreground or System Job

PHYSICAL ADDRESS
SPACE

128K

1/0 PAGE

124K

)
«
3)
«

VIRTUAL ADDRESS

30K SPACE

28K 28K
SYSTEM
DEVICE HANDLER

RMON

FG o OTHER HANDLERS

HIGH  ~ FG JOB FG JOB

MAPPED ——=

FG
Low 7

IMPURE AREA

USR

FREE
SPACE

VECTORS

4.3.3.3 Differences Between Virtual and Privileged Jobs — Table 4-3 summa-
rizes the differences between virtual and privileged jobs.

4—32 Extended Memory Feature



-

Table 4-3: Comparison of Virtual and Privileged Jobs

Characteristic

Virtual Job

Privileged Job

Value in bit 10 of JSW

Original amount of ad-
dress space available

Amount of potential ad-
dress space

Benefits

Starting procedure

Static window

Static region

Possible number of win-
dows

Possible number of
regions

1

Accesses only the virtual
addresses within its own
program bounds.

32K words. Creates win-
dows to describe the vir-
tual address space
between its own high
limit and the 32K word
boundary.

Provides protection for
operating system soft-
ware and other programs;
takes minimal physical
memory away from other
jobs.

BG: R,RUN, or CCL
command (.SAV)

FG: FRUN or SRUN
(.REL, .SAV;
SAVis
recommended)

Extends from program’s
virtual address 0 to its
high limit.

BG: Extends from phys-
ical location 500 to the
lowest address used by
the USR.

FG: Extends from phys-
ical location 0 to the phys-
ical high limit of the job.

7 plus the static window.
7 (1 window reserved)

3 plus the static region.

0

32K words. Accesses the
low 28K words of memory
plus the I/O page.

32K words. If some por-
tions of virtual address
space are already in use
(by a background job, for
example), this job can
unmap them and remap
the addresses to memory
above 28K words. It must
leave certain areas
mapped whenever a user
interrupt service routine
could run.

Compatible with FB and
SJ systems.

BG: R,RUN, or CCL
command (.SAV)

FG: FRUN or SRUN
(.REL)

None — all are dynamic.

None — all are dynamic.

3 (1 region reserved)

Extended Memory Feature



4.3.3.4 Context Switching Between Virtual and Privileged Jobs —In an RT-11
system with more than one job, the monitor saves job-dependent information
when a new job replaces the one currently running. The monitor restores
this information when the original job executes again. This procedure,
called context switching, is described in detail in Section 3.4.2.

In an XM system, each job in memory could be either a virtual or a privi-
leged job. The monitor, therefore, has more work to do when it switches con-
text in an XM system.

When the monitor switches out the current job, it saves the information
listed in Section 3.4.2. However, the monitor never saves the contents of the
Active Page Registers that the current job uses. For this reason, your pro-
grams should never manipulate the Memory Management registers
directly; their contents are lost during a context switch. The monitor also
ignores a .CNTXSW programmed request if it occurs in a virtual job. The
entire job is saved by the switch, and the virtual job is not permitted to
access the vector area in any case. :

When the monitor switches in a new job, it assumes at first that the new job
is privileged. It copies the contents of the kernel mapping registers into the
user registers. The job can then access the low 28K words of memory plus
the I/O page. Next, the monitor checks to see if the new job is the Keyboard
Monitor. If it is, execution continues with no further modifications.

If the new job is a privileged job, the monitor next checks the window and
region control blocks in the job’s impure area. If the job defined and mapped
one or more windows, the monitor restores the mapping based on the con-
tents of the internal control blocks, thus altering the default privileged map-
ping for those windows.

If the new job is virtual, the monitor clears the user mapping registers. Then
it scans the window and region control blocks in the job’s impure area. The
monitor maps only the portion of the job’s virtual address space that was
defined in a window and mapped to a region at the time the job was switched
out. Of course, any attempt to access an unmapped address causes a memory
management fault. Unused portions of virtual address space remain
unmapped unless the virtual job explicitly maps them.

4.4 Typical Extended Memory Applications

The following sections assume you understand the fundamental concepts of
extended memory systems; they should help you see how to use extended
memory. Some arrangements are suggested that may suit your own particu-
lar situation. As you read, keep in mind what benefits you want from an
extended memory system. In other words, why do you want to use it?

4.4.1 Extended Memory Overlays

The low 28K words of memory fill up rapidly with the Resident Monitor,
device handlers, the USR, a foreground job, one or more system jobs, and a

4-34 Extended Memory Feature



B || -

background job. To optimize use of this space and relieve the congestion,
make the root segments of the foreground, system, and background jobs (if
they are overlaid) as small as possible. Instead of segmeriting the programs
and using disk overlays though, you can put the overlays into extended
memory. Make all the programs virtual jobs, unless they really need to
access the monitor or the I/0 page.

Instead of accessing the I/O page directly from your program, consider writ-
ing a device handler. .SPFUN requests allow a great deal of flexibility in
writing special handlers for unusual devices.

The root segment can be minimal in size. All you need put there are queue
elements, channels, interrupt service routines (if any — there are none in
virtual jobs), and a JMP instruction to the first overlay. The overlay seg-
ments can be permanently resident in extended memory to speed up
execution.

You can use the linker’s /V option to put your overlay segments into
extended memory. The Keyboard Monitor creates a region at run time,
using information in the overlay handler and tables. The overlay handler
creates and maps windows. Figure 4-30 shows a simple virtual background
program that uses extended memory overlays in 128K words. You can find
detailed information on extended memory overlays in the RT—11 System
User’s Guide. '

4.4.2 Large Buffers or Arrays in Extended Memory

In order to put a large buffer or array into extended memory, you first create
a region large enough to accommodate the array. Next, decide how much
virtual address space your program can commit to accessing the array and -
create a virtual address window of that size. Then simply write a subroutine
that translates references to the array into instructions to remap the win-
dow into the correct part of the region. Figure 4-31 illustrates this situation
in 128K words. (The extended memory feature of the .SETTOP programmed
request can create an extended memory buffer automatically. See Section
4.4 .4 for information.)

4.4.3 Multi-User Program

An extended memory system is ideal for implementing a multi-user applica-
tion. For example, you could develop a language interpreter that several
programmers could use simultaneously. To implement this application, sep-
arate your program into two sections: a pure code section that contains the
interpreter, and a separate read/write work area for each user. Select part of
your virtual address space to be the user scratch area, and create a window
of that size. Next, decide how many users you want and create a region equal
to the number of users times the size of the window. The interpreter can
change user context by remapping the window. Figure 4-32 shows a multi-
user program in 128K words.

Your multi-user program can use extended memory overlays. In this case,
use one region for the overlays and one for the work areas.

Extended Memory Feature 4-35



Figure 4-30: Virtual Background Job with Extended

Memory Overlays

VIRTUAL ADDRESS

SPACE
32K
DYNAMIC EXTENDED MEMORY ///
WINDOW OVERLAY REGION 1
4K
BOUNDARY
~
ROOT
STATIC OVERLAY HANDLER ///”
WINDOW AND TABLES
STACK
L VIRTUAL VECTORS

4.4.4 Work Space in Extended Memory

PHYSICAL ADDRESS
SPACE

1/0 PAGE

128K

124K

OVERLAY SEGMENT 4

OVERLAY SEGMENT 3

DYNAMIC
REGION
OVERLAY SEGMENT 2
OVERLAY SEGMENT 1
S a
28K
SYSTEM
COMPONENTS
~N
ROOT
> STATIC
REGION
OVERLAY HANDLER
AND TABLES
STACK
VIRTUAL VECTORS
_/ 500

VECTORS

Another application for you to consider is putting a work area into extended

memory instead of writing it to disk.

Consider how jobs in an FB system obtain the most space possible for
dynamic buffering. A background job gets extra space by issuing a .SETTOP
programmed request. It can obtain the space above the job image up to the
top of the USR. To obtain extra space for a foreground job, you must allocate
it with the FRUN/BUFFER:n command. Once the space is reserved by
FRUN, the program can determine its size and claim it with a .SETTOP pro-
grammed request. In both cases, the extra space is within the 28K words of

low memory.

4-36 Extended Memory Feature



. am

Figure 4-31: Virtual Background Job with an Array in Extended

Memory
PHYSICAL ADDRESS
SPACE
128K
1/0 PAGE
ARRAY ENDS —= ~ 124K
ARRAY STARTS DYNAMIC
> REGION
VIRTUAL ADDRESS J 1
SPACE
32K
DYNAMIC / L
WINDOW
d# FLJ
28K 28K
;
SYSTEM
COMPONENTS
UNMAPPED
<N
BG JOB
BG - > STATIC
HIGH 56 10B : REGION
STATIC { I B STACK
WINDOW
STACK VIRTUAL VECTORS
< 500
VIRTUAL VECTORS VECTORS
\.0 0
BG LOW

In an XM system, extra space can be allocated from the physical space either
above or below the 28K-word boundary. This feature can make jobs run-
nable that require too much memory for an unmapped RT-11 system. The
ability to allocate extra space is most useful to virtual jobs because they can
obtain space up to virtual address 177776 (32K words) by using the XM fea-
ture of the .SETTOP programmed request. All the memory obtained by
.SETTOP is in extended memory; virtual foreground jobs do not require the
FRUN/BUFFER:n command to allocate extra space.

4.4.4.1 Enabling the XM Feature of the .SETTOP Programmed Request — There
are two ways to enable the XM feature of the .SETTOP programmed
request. If your program has extended memory overlays, using the linker /V

Extended Memory Feature 4-37



_am

Figure 4-32: Multi-User Virtual Background Program

PHYSICAL ADDRESS
SPACE

128K
1/0 PAGE
~Y ~
~ ~n
USER #4
USER #3
DYNAMIC
REGION
VIRTUAL ADDRESS
a9k SPACE USER #2
DYNAM!C USER WORK /
WINDOW AREA USER #1
J
28K
SYSTEM
COMPONENTS
UNMAPPED
\
PURE STATIC
CODE REGION
poRE | L ________1]
CODE
static ) L _ _ STACK
WINDOW
: STACK L VIRTUAL VECTORS )
500
VIRTUAL VECTORS VECTORS
0

option to create them enables the XM .SETTOP programmed request auto-
matically. It also enables the XM feature of the .LIMIT directive (see Section
4.4.4.4), links the extended memory overlay handler (VHANDL) into your
job image, and establishes an extended memory overlay structure. You use
the /V option by issuing the LINK/PROMPT monitor command, and then
specifying /V on a subsequent command line.

If your program has no overlays, or if it has only low memory overlays that
you create with the linker /O option, you enable the XM feature of the
SETTOP programmed request by using the LINK command with the /XM
option. The /XM option enables the XM .SETTOP programmed request and
the XM .LIMIT directive. It does not link the extended memory overlay han-
dler into your job image, nor does it establish an extended memory overlay
structure for your program.

4-38 Extended Memory Feature



R

For all programs, the .LIMIT directive returns as its high value the next
available location for the job. The extra space your program obtains with
SETTOP in an extended memory system always begins at the octal address
returned as the high value from the .LIMIT directive. This is true for all pro-
grams, whether or not they enable the XM feature of the .SETTOP pro-
grammed request.

Section 4.4.4.3 describes how .SETTOP works when you execute a program
in an extended memory environment without enabling the XM feature of
.SETTOP. Section 4.4.4.4 shows how the XM feature of .SETTOP works
after you enable it at link time; it also describes the XM feature of the
.LIMIT directive.

4.4.4.2 Program and Virtual High Limits and the Next Free Address —To under-
stand XM .SETTOP, it is important that you understand the differences
between the program high limit, the virtual high limit, and the next free
address. Figure 4-33 shows a program’s virtual address space. This pro-
gram has both low memory overlays created with the /O linker option, and
extended memory overlays created with the /V linker option. The program
high limit is the highest virtual address used by the program’s root segment
and its low memory (/O) overlay regions, if any exist. The virtual high limit
is the highest virtual address used by the extended memory (/V) overlay
regions, rounded up to a 32-word decimal boundary, minus 2. (In octal, the
low-order two digits of the address are always 76.) This is the value that
prints on the link map as nnnnnn, as the following example shows:

Yirtual high address = nnnnnn = ddddd, words, nmext free address = mmmmmm

The linker has to calculate the value of the next free address. For a job that
enables the XM feature of .SETTOP, it rounds up the virtual high limit to
the next 4K-word boundary. The next free address, then, is the last word of
the virtual address space encompassed by the highest Page Address Register
used by the job, plus 2. It is always on a 4K-word boundary. (In octal, the
next free address is always a multiple of 20000.)

As an example, consider a job with extended memory overlays whose virtual
high limit is 55076. Its next free address calculated by the linker is 60000, or
the start of the next 4K words of virtual address space. This is the value that
prints on the link map as the “next free address”. The following example
shows the values in our example situation:

Uirtual high address = 055076 = ddddd, words: next free address = 0BQ000

Of course, if a program has no extended memory overlays, it does not have a
virtual high limit, and its program high limit is not rounded up. The link
map for programs without overlays and for programs whose overlays were
created solely by the /O option prints the program high limit as mmmmmm,
as the following example shows. (The following line prints on all link maps,
whether or not extended memory is present.)

Transfer address = nnnnnny High limit = mmmmmm = ddddd, words

Extended Memory Feature 4-39



Figure 4-33: Program and Virtual High Limits, and the Next
Free Address

VIRTUAL ADDRESS SPACE

32K
SPACE
OBTAINABLE
~N BY A
f‘r} N
SETTOP
NEXT FREE
ADDRESS
(MULTIPLE — <= A 4K BOUNDARY
OF 4K)
VIRTUAL HIGH LIMIT
~=— (MULTIPLE OF
EXTENDED 32,-2)
MEMORY (/V)

OVERLAY REGION
~=m- PROGRAM HIGH LIMIT

LOW
MEMORY (/0O)
OVERLAY REGION

ROOT
SEGMENT

STACK
VIRTUAL VECTORS

4.4.43 Non-XM .SETTOP — If you do not enable the XM .SETTOP feature
through the linker, using .SETTOP in an extended memory program has
only limited value.

For a privileged job that does not alter the default mapping, SETTOP works
the way it does in an ordinary SJ or FB system. If a privileged job creates a
virtual address window and maps it to an extended memory region, the pro-
gram high limit is not affected by the mapping. The value returned by
SETTOP still represents the highest address available to the program in
the low 28K words of memory.

When the monitor performs address checking for programmed requests, it
looks first to see if the address (of an argument block, a data buffer, and so
on) is entirely within a mapped dynamic window. If it is not, the monitor
checks to see if the address is within the job’s low memory area. If the
address fails both these checks, a monitor error results and the job aborts.

440 Extended Memory Feature



RN

If the job is virtual, the program high limit at load time is set to the highest
virtual address used by the root segment and any low memory (/O) overlays.
If your job performs its own mapping operations, they do not affect the pro-
gram high limit as far as .SETTOP is concerned. So, the SETTOP request is
meaningless to these virtual jobs. The non-XM .SETTOP request deals
exclusively with the low 28K words of memory. Virtual jobs use the proces-
sor user mode and, therefore, are mapped according to the contents of the
user Active Page Register set. The virtual job is prevented from accessing
memory outside itself (because it is not mapped to any memory but its own
dedicated physical space), so issuing a .SETTOP request in a virtual job
without the LINK/XM command or the linker /V option does not obtain any
extra memory. The value returned can be used by the virtual job to do its
own mapping of the area available and then use it.

When the monitor performs address checking for a virtual job, it ignores the
program limits and simply checks to see that the virtual address is within a
window that is currently mapped. If the address is not within a mapped win-
dow, a memory management fault results.

4.4.4.4 XM .SETTOP — When you enable the XM feature of .SETTOP, as
Section 4.4.4.1 describes, .SETTOP becomes valuable to privileged and vir-
tual jobs alike, although its value to privileged jobs is limited.

For virtual jobs, not only does .SETTOP obtain virtual address space above
the virtual high limit starting at the program’s next free address, but it also
automatically maps the extra space to physical space. As a result, a job in an
extended memory environment can issue a .SETTOP programmed request
and obtain more usable virtual address space without concern for the details
of managing extended memory.

For privileged jobs, XM .SETTOP functions the way non-XM .SETTOP does,
with the following exception: in privileged jobs, the XM .SETTOP request
uses the new XM .LIMIT high value as the next free address, thus always
returning the start of the buffer on a 4K-word boundary. A .SETTOP to any
address below this 4K-word boundary is not permitted.

For both privileged and virtual programs, the linker puts two words of infor-
mation into locations 0 and 2 of the job image file. Location 0 contains the
Radix—50 code for VIR. Location 2 contains the value of the next free address
minus 2, which can be significantly different from the virtual high limit.

LIMIT Directive

For jobs in SJ and FB systems, and in XM systems without the XM feature
of .SETTOP, the .LIMIT MACRO directive returns two values to your pro-
gram. These values are:

® The lowest virtual address used by the program (usually 0)

® The program high limit + 2 (for example, 1644 + 2, or 1646)

Extended Memory Feature 441



In XM programs that enable the XM feature of .SETTOP, .LIMIT returns a
significantly different value:

® The lowest virtual address used by the program (usually 0)

® The next free address (always on a 4K-word boundary), which is usually
not equal to the program high limit + 2.

Gaps in Virtual Address Space

The linker always starts each extended memory (/V) overlay region at a 4K-
word boundary in your program’s virtual address space. This restriction
results from hardware requirements. Because of this there can be a gap
between the program high limit and the start of the virtual overlay region.
Your program causes an error if it attempts to reference the virtual
addresses within this gap. Similarly, any extra virtual address space that
XM .SETTOP obtains for your program also starts on a 4K-word boundary.
This means that a gap can exist between your program’s virtual high limit
and the start of the extra space. Your program cannot reference the
addresses within this gap. Figure 4-34 illustrates a typical program with
both low memory (/O) and extended memory (/V) overlays.

4.4.4.5 XM .SETTOP and Privileged Jobs — When a privileged job issues a
SETTOP request, if the next free address is above the base of the USR, the
program is already using the virtual address space above the start of the
monitor. Since there is no free memory that can be mapped starting at the
program’s next free address, the monitor cannot obtain any more space for
this program. Thus, a privileged job can never obtain space above SYSLOW,
the base of the USR. The .SETTOP request returns the value of the next free
address minus 2 to location 50 in your program and to R0. This is the highest
usable address.

If there is memory available, the monitor tries to obtain it, basing the size of
the area on the argument you specify with .SETTOP. The memory is always
within the low 28K words. A privileged job can never obtain an amount of
virtual address space less than its own next free address minus 2. In addi-
tion, the next free address obtained with XM .SETTOP is always on a 4K-
word boundary, and the job cannot issue a .SETTOP for any address below
that. Therefore, the job loses the space between its last used address and the
next 4K-word boundary.

Privileged Background Jobs

Figure 4-35 shows a privileged background job and all its limits in 128K
words. When no foreground job is present in memory, the background job
can obtain some space through .SETTOP. Often, there is still space avail-
able even when a foreground program is present.

442 Extended Memory Feature



1|

Figure 4-34: Gapsin Virtual Address Space

NEXT FREE
ADDRESS
(60000)
(ALWAYS ON A
4K BOUNDARY)

e

4K BOUNDARY

GAP{

VIRTUAL ADDRESS SPACE

32K
~ IJJ
~ 'Y
SPACE
OBTAINABLE r' 16K
BY
SETTOP
— 12K

/ ‘ / —=— \/IRTUAL HIGH LIMIT

(MULTIPLE OF 32, —2)

EXTENDED MEMORY (/V)
OVERLAY REGION

|,

LOW MEMORY {(/O)
OVERLAY REGION

— 4K
ROOT SEGMENT
STACK
VIRTUAL VECTORS 0

Privileged Foreground Jobs

Since foreground jobs load into memory just below the last device handler
and above the USR, there is no extra space available for them through a

SETTOP request.

Because of this situation, privileged foreground jobs are prohibited from
using extended memory overlays. This also means they cannot use the
linker /V option (either through LINK/FOREGROUND/PROMPT or
through LINK/FOREGROUND/XM) to enable the XM feature of .SETTOP

and .LIMIT.

Extended Memory Feature 443



Figure 4-35: Privileged Background Job

PHYSICAL ADDRESS

SPACE
128K

1/0 PAGE

124K

b))
C
b))
[§8

VIRTUAL ADDRESS
SPACE

32K
EXTENDED MEMORY
OVERLAY
PARTITIONS
28K
28K SYSTEM DEVICE
HANDLER
RMON
I
OTHER HANDLERS
USR
.SETTOP
iz —e= ~=— SYSLOW
SPACE
NEXT FREE . FREE SPACE OBTAIN-
OBTAINABLE
ADDRESS \ BY .SETTOP o ABLE BY .SETTOP
.SETTOP 8K
#0
VIRTUAL NOT USED
HIGH LIMIT EXTENDED MEMORY
OVERLAY REGION 4K »
PROGRAM —3 ACCESSIBLE
HIGH ROOT AND LOW MEMORY ROOT AND LOW MEMORY BY
LIMIT OVERLAYS OVERLAYS gRYOGRAM
STACK —— STACK DEFAULT
VIRTUAL VECTORS VECTORS
0 0

4.4.4.6 XM .SETTOP and Virtual Jobs — The monitor checks to see if there is
some extended memory available. If the next free address is 200000, the pro-
gram is already using the virtual address space controlled by Page Address
Register 7. The request returns the value 177776 in location 50 and in RO.

If SETTOP can obtain virtual space starting with the next free address (on
a 4K-word boundary), the monitor creates a region in extended memory for
the necessary amount of space. If not enough space is available, the monitor
creates as large a region as possible. (Be sure to check the value .SETTOP
returns.) Then the monitor creates a window and maps it to the new region.
It returns the new value of the highest available address in location 50 and
in RO. If there is no space at all available, or if there are no region or window
control blocks available, the request returns the value of the original high-
est available address in location 50 and in RO.

4-44 Extended Memory Feature



11

So, for example, if you issue a .SETTOP request with an address argument,
the monitor maps the virtual address space starting at the next 4K-word
boundary above the program’s virtual high limit, up to and including the
address you specify. It maps so that the address specified is mapped, but up
to 31 decimal additional words can also be mapped.

If the address you specify in the .SETTOP request is below the highest used
address, .SETTOP returns the value of the next free address minus 2 in loca-
tion 50 and in RO. The static window and virtual overlay regions created
with the linker /V option cannot be eliminated by using an argument to
SETTOP.

Assuming your first .SETTOP succeeded and an extended memory region
exists for your program, you can issue subsequent .SETTOP requests to con-
trol the region. Note, however, that you cannot create yet another region to
obtain any more space.

If the argument you specify in your next .SETTOP request is lower than the
original next free address minus 2 from the link map, the monitor returns
the old next free address minus 2 in location 50 and in RO and eliminates the
region and window, if present (along with any data stored there). You can, of
course, issue another .SETTOP later to create a new region again. You can
also adjust the size of the buffer by remapping within the same region.

To obtain a larger region, first issue a .SETTOP for a value below the cur-
rent high limit, which eliminates the region and any data stored there. Then
issue another .SETTOP for a larger value, which creates a new region. (Any
data stored in the first buffer will be lost.) Note also that to ensure the integ-
rity of your data, only one window exists for the .SETTOP area in an
extended memory system.

To get less memory than a previous .SETTOP obtained, issue another
SETTOP with an address argument less than the first one but equal to or
greater than the next free address. As a result, the size of the window still
equals the size of the region, but a smaller amount of the window is mapped.
This does not make any extended memory available for other users or other
regions.

Virtual Background Jobs

Virtual background and foreground jobs are the most likely candidates for
using the XM feature of the .SETTOP request. The request permits jobs to
create large buffers in extended memory quickly and easily, which can help
to reduce congestion in low memory. Figure 4-36 shows a virtual back-
ground job in 128K words.

Virtual Foreground Job

The .SETTOP request works in much the same way for foreground jobs as
for background jobs. For a virtual foreground job without the XM .SETTOP
feature, the only extra space available is the space allocated through the

Extended Memory Feature 4—45



Figure 4-36: Virtual Background Job

PHYSICAL ADDRESS

SPACE
128K
1/0 PAGE
124K
~ ~N
~ ~Y
SPACE FROM
.SETTOP
VIRTUAL ADDRESS
SPACE
39K Le— . SETTOP
#-2
EXTENDED MEMORY
OVERLAY PARTITIONS
SPACE
OBTAINABLE 28K
By SYSTEM
CSETTOP / DEVICE HANDLER
RMON
OTHER HANDLERS
USR
aK N
BOUNDARY
FREE
NEXT SPACE
FREE
ADDRESS — THE PROGRAM
CAN MAP TO
VIRTUAL THIS.
HIGH LIMIT ™ EXTENDED MEMORY STATIC
OVERLAY REGION 4g REGION
BOUNDARY "ROOT AND LOW
mgﬁilAMN:T | MEMORY OVERLAYS
ROOT AND LOW STACK
MEMORY OVERLAYS _{ | =7~ |
STATIC STACK _— VIRTUAL VECTORS
wwwoow \ | "™ 4500
VIRTUAL VECTORS VECTORS
0 0

FRUN/BUFFER:n command. For a job with the XM .SETTOP feature, the
/BUFFER option is ignored. (The job cannot have buffers in both low and
extended memory.) Figure 4-37 shows a virtual foreground or system job
with a large buffer in extended memory.

4.4.4.7 Summary of .SETTOP Action —Figures 4-38 and 4-39 and Tables 4—4
and 4-5 work together to summarize the results of all possible .SETTOP
requests. In Figure 4-38, Job A is a background job whose next free address
is below SYSLOW, the base of the USR. Job B is a background job whose
next free address is above SYSLOW. (In the table, next free address is abbre-
viated to NFA.) The values in parentheses represent specific ranges for
SETTOP arguments.

446 Extended Memory Feature



Figure 4-37: Virtual Foreground or System Job

PHYSICAL ADDRESS

SPACE
128K
1/0 PAGE
124K
~N ~N
la ~N
SPACE FROM
.SETTOP
VIRTUAL ADDRESS
32K SPACE - .SETTOP
#-2
EXTENDED MEMORY
OVERLAY PARTITIONS
SPACE 28K
OBTAINABLE SYSTEM
BY DEVICE HANDLER

.SETTOP / RMON

OTHER HANDLERS

ROOT AND LOW
MEMORY OVERLAYS

STACK
NEXT FREE
ADDRESS VIRTUAL VECTORS
(4K BOUNDARY)) -3
VIRTUAL IMPURE AREA

HIGH LiMiT “ | ExTENDED MEMORY USR

(/V). OVERLAY REGION 4K STATIC

BOUNDARY REGION
PROGRAM

HIGH LIMIT

ROOT AND LOW FREE
MEMORY (/O) OVERLAYS SPACE
STATIC
WINDOW STACK
500
VIRTUAL VECTORS VECTORS
0 70

Table 4-4: Background .SETTOP Summary

SETTOP Virtual Job Privileged Job
Argument Non-XM .SETTOP XM .SETTOP Non-XM .SETTOP XM .SETTOP

High Limit for Job A After .SETTOP

1 1 NFA-2 )] NFA -2
(2) (2) NFA -2 (2) NFA -2
(3) 3 map to (3)* (3) 3)
4) SYSLOW -2 map to (4)* SYSLOW -2 SYSLOW -2
#0 0 NFA -2 0 NFA -2
#-2 SYSLOW -2 map to 32K* SYSLOW -2 SYSLOW -2
(Continued on next page)

Extended Memory Feature 447



Table 4-4: Background .SETTOP Summary (Cont.)

SETTOP Virtual Job Privileged Job
Argument Non-XM .SETTOP XM .SETTOP Non-XM .SETTOP XM .SETTOP

High Limit for Job B After .SETTOP

1) (1) NFA -2 1 NFA-2
(2) (2) NFA -2 (2) NFA -2
3) SYSLOW - 2 NFA-2 SYSLOW -2 NFA-2
4) SYSLOW - 2 map to (4)* SYSLOW -2 NFA-2
#0 0 NFA-2 0 NFA-2
#-2 SYSLOW - 2 map to 32K* SYSLOW - 2 NFA-2

*If available; otherwise, as much extended memory as possible is obtained for the .SETTOP
region.

Figure 4-38: Background .SETTOP Summary

32K JOB A JOB B 32K
/
1/0 PAGE 1/0 PAGE
(4)
RMON, USR,
U et
JOB, HANDLERS, NFA — ™ ——— —— — — ———
SYSTEM JOBS (4K JOB, HANDLERS, a
L BOUNDARY) SYSTEM JOBS
SYSLOW
@) {
__________ |« NFA 2)
(4K
(2) BOUNDARY)
( PROGRAM h
HIGH
LIMIT
ROOT AND ROOT AND
LOW MEMORY LOW MEMORY
) OVERLAYS OVERLAYS > )
N Ve

VIRTUAL ADDRESS SPACE

4-48 Extended Memory Feature



LI

Figure 4-39: Foreground .SETTOP Summary

EXTENDED NEA
MEMORY (4K BOUNDARY)
(‘
1/O PAGE
2 (
RMON
(\.- - BUFF
FRUN/BUFFER
SPACE
1 < S OHIGH
FOREGROUND
JOB
_ VIRTUAL 0
USR,
HANDLERS
SYSLOW
BACKGROUND AREA
VECTORS AND
SYSCOM AREA

Table 4-5: Summary of Foreground Job High Limit After SETTOP

.SETTOP Virtual Job

Argument Non-XM .SETTOP XM .SETTOP
1) (1) NFA -2
(2) greater of OHIGH or BUFF NFA -2
#0 0 NFA -2
#-2 greater of OHIGH or BUFF Map to 32K

Extended Memory Feature 449



4.4.5 Plan Your Own Application

When you plan your own extended memory application, decide first whether
the semi-automatic ways of using extended memory are useful to you. If the
XM .SETTOP feature is all you need, your program will be fairly simple to
write. Similarly, if you can easily segment your program into overlays,
using the extended memory (/V) overlay feature of the linker may be simple
for you. If you decide to handle the mapping yourself in a MACRO-11 pro-
gram, sketch out diagrams ahead of time showing the arrangements of the
system components, handlers, and other jobs. Unless your job needs to access
the monitor routines or the I/O page, make it a virtual job. Think about the
number of windows and regions you need and design the program accord-
ingly. The following sections provide detailed information about the
programmed requests and macro calls that a MACRO-11 program in
extended memory can use, as well as information about extended memory
restrictions.

4.5 Introduction to the Extended Memory Programmed Requests

It is not difficult to access extended memory in a MACRO-11 program
through the programmed requests, once you understand the general proce-
dures you must follow and the tools RT—11 provides. Essentially, if your pro-
gram does its own management of extended memory (rather than relying on
any of the semi-automatic means described in the previous section), you
must first establish window and region definition blocks. Next, you must
specify the amount of physical memory the program requires, and describe
the virtual addresses you plan to use. Do this by creating regions and win-
dows. Then, associate virtual addresses with physical locations by mapping
the windows to the regions. You can then remap a window to another region
or part of a region. You can also eliminate a window or a region. In any case,
once the initial data structures are set up, you can manipulate the mapping
of windows to regions to suit your needs.

Table 46 summarizes the actions a program that uses extended memory
may need to take. It also lists the appropriate procedures for the program to
follow. Familiarize yourself with the procedures and the corresponding pro-
grammed requests and macro calls. The RT-11 Programmer’s Reference
Manual provides detailed information on the format of each programmed
request and macro call. Study this information before you attempt to write
an extended memory program.

4.6 Extended Memory Data Structures

A program in an extended memory environment communicates with the
monitor through special data structures. For each region it defines, a pro-
gram contains one region definition block to describe the size of the extended
memory region. The monitor also maintains a set of internal data struc-
tures. The region control block, located in the job’s impure area, describes a
region. The monitor can maintain up to four region control blocks per job.

4-50 Extended Memory Feature



_am

Table 4-6: Summary of Activities for a Program in an Extended
Memory System

Activity

Procedure to Follow

Define offsets and symbols for a
region definition block.

Set up a region definition block
and specify the region size.

Create aregion.

Confirm the status of the new
region.

Define offsets and symbols for a

window definition block.

Set up a window definition
block and describe the window.

Create a window.

Confirm the status of the new
window.

Associate a window with a par-
ticular region as preparation for
mapping the window.

Map a window to a region
(explicitly).

Map a window to a region
(implicitly).

Obtain the current mapping
status of a particular window.

Unmap a window (explicitly).

Unmap a window (implicitly).

Eliminate a window.

Eliminate a region.

Use the . RDBDF or .RDBBK macro.

Use the . RDBBK macro.

Use the .CRRG programmed request.

Examine the contents of the region definition block
after you use the .CRRG request to create the region.
(Check the status bits in the status word.)

Use the WDBDF or WDBBK macro.

Use the WDBBK macro.

Use the .CRAW programmed request.

Examine the contents of the window definition block
after you use the .CRAW request to create the window.
(Check the status bits in the status word.)

Move the region identification from R.GID in the
region definition block to W.NRID in the window defi-
nition block.

Use the .MAP programmed request.

Set WS.MAP in the window definition block and load
W.NRID before you issue the .CRAW request to create
the window. This procedure creates the window and
then maps it to a region.

Use the .GMCX programmed request.

Use the UNMAP programmed request.

Use the .MAP programmed request to map the window
elsewhere. You can also unmap a window by eliminat-
ing the region to which it is mapped, or by eliminating
the window itself.

Use the .ELAW programmed request.
Use the .ELRG programmed request.

For each window it defines, a program also uses one window definition block
to describe the virtual addresses encompassed by that window. The window
control block, located in the job’s impure area, is the monitor’s internal

Extended Memory Feature 4-51



4-52

description for a window. The monitor can maintain up to eight window con-
trol blocks. The I/O queue element contains extra information in an extended
memory system. Finally, the monitor allocates regions in extended memory
based on its internal free memory list.

The following sections describe these data structures and show, where nec-
essary, how to create them.

4.6.1 Region Definition Block

A region definition block is a three-word area in your program that contains
information about a region you define in extended memory. The monitor
uses the region definition block to communicate with your job when you
issue a .CRRG or .ELRG programmed request. You must set up the region
definition block in your program and define its symbolic offsets before you
can create a region in extended memory. You must then place the region’s
size in the region definition block. After you create the region, the monitor
returns its identification and some status information to you through the
region definition block. Each time your program needs to refer to this region,
it uses the region identification. (Since the monitor creates the static region
for you, you do not know its identification. You can always refer to the static
region by using 0 as its identification.) Figure 440 and Table 4-7 show the
structure of a region definition block.

Figure 4-40: Region Definition Block

R.GID

R.GSIZ

R.GSTS

Table 4-7: Region Definition Block

Byte
Offset Symbol Modifier Contents
0 R.GID Monitor’s.CRRG A unique region identification. Use it later to
routine reference this region. The region identification
is actually a pointer within the job’s impure
area to the region control block. The identifica-
tion for the static region in a virtual job is 0.
2 R.GSIZ .RDBBK macro The size of the region you need, in 32- word deci-
or user program  mal units.
4 R.GSTS Monitor’s.CRRG The region status word.

routine

Extended Memory Feature



1m

4.6.1.1 Region Status Word — The region status word contains information
on the status of a region. Table 4-8 shows the bits in the region status word
and their meaning. Bits 0 through 12 are reserved for future use by
DIGITAL.

Table 4-8: Region Status Word

Bit Name Bit Pattern Meaning When Set

15 RS.CRR 100000 The monitor created this region successfully.
The .CRRG routine sets this bit; the .ELRG rou-
tine clears it.

14 RS.UNM 40000 One or more windows were unmapped as a
result of eliminating this region. The .ELRG
routine sets this bit when necessary.

13 RS.NAL 20000 Not currently used, but reserved.

4.6.1.2 .RDBDF Macro — Use the .RDBDF macro to define symbols for the
region definition block (see the description of RDBBK in Section 4.6.1.3). It
defines the symbolic offset names for the region definition block and the
names for the region status word bit patterns. In addition, this macro defines
the length of the region definition block by setting up the following symbol:

R+GLGH = G

Note that this macro does not reserve space for the region definition block.
The format of the . RDBDF macro is as follows:
.RDBDF

The .RDBDF macro expands as follows:

R.GID = 0
R.GSIZ = 2
R+GBTS = 4
R+.GLGH = B
RS.CRR = 100000
RS+UNM = 40000
RS+NAL = 20000

4.6.1.3 .RDBBK Macro — The .RDBBK macro (like the .RDBDF macro)
defines symbols for the region definition block. This macro also actually
reserves space for it (unlike the .RDBDF macro). You specify as the argu-
ment to this macro the size of the region you need. If you use .RDBBK you
need not use .RDBDF, since .RDBBK automatically invokes .RDBDF.

The format of the RDBBK macro is as follows:
.RDBBK rgsiz

rgis is the size of the dynamic region, expressed in 32-word decimal units.

Extended Memory Feature 4-53



The following example uses the . RDBBK macro to create a region definition
block for a region 4K words in size. (4K words is equivalent to 200 32-word
units.) Then it creates the region.

RGADR: +RDBBK #2200
+CRRG #ARGBLK »#RGADR iCREATE REGION

See Section 4.10 for an example program that uses . RDBBK.

4.6.2 Region Control Block

A region control block is a three-word area in your job’s impure area whose
contents are maintained by the monitor. A virtual job dedicates one region
control block to the static region. For a privileged job, one region control
block is reserved by the monitor and cannot be used by a program. Thus, all
jobs can have up to three dynamic regions whose status is maintained by the
monitor in the region control blocks.

Figure 4-41 and Table 4-9 show the structure of a region control block. The
.ELRG programmed request clears all its fields.

Figure 4-41: Region Control Block

R.BADD

R.BSIZ

R.BNWD R.BSTA

Table 4-9: Region Control Block

Byte
Offset Symbol Modifier Contents

0 R.BADD  Monitor’s .CRRG The starting address of the region,
routine expressed in 32-word units.

2 R.BSIZ Monitor’s .CRRG The size of the region in 32-word units. If
routine this word is 0, this region control block is

free.

4 R.BSTA The monitor at run This byte is always clear unless the
time; the monitor’s region was created by an XM .SETTOP.
.CRRGroutine clears =~ The monitor then sets bit 1, called
this byte R.STOP

5 R.BNWD  Monitor’s .CRRG The number of windows currently
routine clears this mapped to this region.

byte;. MAP incre-
ments it; UNMAP
decrements it

4-54 Extended Memory Feature



4.6.3 Window Definition Block

A window definition block is a seven-word area in your program that con-
tains information about a virtual address window you define. The monitor
uses the window definition block to communicate with your program when
you issue a .CRAW, .ELAW, .GMCX, or .MAP programmed request. You
must set up the window definition block in your program and define its sym-
bolic offset names before you can create a virtual address window. You must
then place a description of the window you need in the window definition
block. After you create the window, the monitor returns its identification
and some status information to you through the window definition block.
Figure 4-42 and Table 4-10 show the structure of a window definition block.

Figure 4-42: Window Definition Block

W.NAPR W.NID

W.NBAS

W.NSIZ

W.NRID

W.NOFF

W.NLEN

W.NSTS

Table 4-10: Window Definition Block

Byte
Offset Symbol Modifier Contents

0 W.NID Monitor’s . CRAW A unique window identification.
routine Remember that you can always refer to
the static window by using 0 as its

identification.
1 W.NAPR .WDBBK macro; The number of the Active Page Register
monitor’s GMCX that includes the window’s base address.
routine Remember that a window must start on

a 4K- word boundary. See Table 4-11 for
the correspondence between Active Page
Registers and virtual addresses. For
privileged jobs, the valid range of values
is from O to 7. For virtual jobs, the new
window must not overlap the static win-
dow. You can find the lowest valid value
for W.NAPR by issuing a .GMCX
request for the static window, converting
the high virtual address to an APR
value, and incrementing it.

(Continued on next page)

Extended Memory Feature 4-55



Table 4-10: Window Definition Block (Cont.)

monitor’s CRAW,
.ELAW, and .GMCX
routines

Byte
Offset Symbol Modifier Contents
2 W.NBAS Monitor’s CRAW The base virtual address of this window.
and .GMCX routines This value should indicate the same
address as W.NAPR. It is provided as a
validity check. Note that it is expressed
as an octal address, not in 32-word deci-
mal units.
4 W.NSIZ .WDBBK macro; The size of this window, expressed in 32-
monitor’s GMCX word units.
routine
6 W.NRID .WDBBK macro; Identification of the region to which this
monitor’s .GMCX window maps. The .GMCX request
routine returns a 0 if the window is not mapped.
Otherwise, it returns the identification
of the region to which it is mapped. Note
that the value is also 0 if the window is
mapped to the static region.

10 W.NOFF .WDBBK macro; The offset, expressed in 32-word decimal
monitor’s GMCX units, into the region at which to start
routine mapping this window. The .GMCX

request clears this word if the window is
not mapped; otherwise, it puts the offset
value here.

12 W.NLEN .WDBBK macro; The amount of this window to map,
monitor’s MAP expressed in 32-word units. If you put 0
and .GMCX here (or .CRAW with WS.MAP set),
routines. .MAP maps as much of the window as

possible. On successful completion of the
mapping operation, .MAP puts the
actual length it mapped in W.NLEN. If
you put a value here (other than 0),
.MAP does not change it. The .GMCX
request clears this word if the window is
not mapped; otherwise, it puts the actual
length mapped here.

14 W.NSTS .WDBBK macro; The window status word. The .GMCX

request clears this word if the window is
not mapped; otherwise, it sets WS.MAP
to 1. '

IR

4.6.3.1 Window Status Word — The window status word serves a dual pur-
pose. First, it allows the .CRAW request to create a window and map it to a
region in one step when you put a value of 1 in bit 8. Second, the window sta-
tus word allows the monitor to communicate status information to your pro-
gram. Table 4-12 shows the bits in the window status word and their mean-
ing. Bits 0 through 7 and 9 through 12 are reserved for future use by
DIGITAL.

4-56 Extended Memory Feature



am

Table 4-11: Correspondence Between Active Page Registers and

Virtual Addresses
Virtual Address Range Active Page Register Number
0-17776 0
20000-37776 1
40000-57776 2
6000077776 3
100000-117776 4
120000-137776 5
140000-157776 6
160000177776 7
Table 4-12: Window Status Word
Bit Name Bit Pattern Meaning When Set
8 WS.MAP 400 The .CRAW request should also map the new

window in addition to creating it. Set this bit
in the window definition block by specifying it
in the WDBBK macro. Be sure to load
W.NRID before using .CRAW.

13 WS.ELW 20000 The monitor eliminated one or more windows
as a result of the current operation. The
.CRAW and .ELAW routines can set this bit.

14 WS.UNM 40000 The monitor unmapped one or more windows
as a result of the current operation. The
.CRAW and .ELAW routines can set this bit.
The .MAP and .UNMAP routines set or clear
this bit, as required. -

15 WS.CRW 100000 The monitor created this window successfully.
The .CRAW routine sets this bit; the .ELAW
routine clears it.

4.6.3.2 .WDBDF Macro — Use the .WDBDF macro to define symbols for the
window definition block (see the description of WDBBK in Section 4.6.3.3).
It defines the symbolic offset names for the window definition block and the
names for the window status word bit patterns. In addition, this macro also
defines the length of the window definition block by setting up the following
symbol:

W+NLGH = 18

Note that the .WDBDF macro does not reserve any space for the window
definition block.

Extended Memory Feature 4-57



- WIE

The format of the .WDBDF macro is as follows:
.WDBDF
The .WDBDF macro expands as follows:

W,NID = 0
W+NAPR = 1
W.NBAS = 2
WiNSIZ = 4
W+NRID = B
W«NOFF = 10
W+NLEN = 12
W«NSTS = 14
WsNLGH = 16
WS+CRW = 100000
WS+UNM = 40000
WS ELW = Z0000
WS MAP = 400

4.6.3.3 .WDBBK Macro — The .WDBBK macro (like the .WDBDF macro)
defines symbols for the window definition block. This macro also actually
reserves space for it (unlike the .WDBDF macro). The macro permits you to
specify enough information about the window to simply create it. Or you can
use the optional arguments to provide more information in the window defi-
nition block. The extra information allows you to create a window and map
it to a region by issuing just the .CRAW programmed request. If you use
.WDBBK you need not use .WDBDF, since .WDBBK automatically invokes
.WDBDF.

The format of the WDBBK macro is as follows:
.WDBBK wnapr,wnsiz[,wnrid,wnoff,wnlen,wnsts]

wnapr is the number of the Active Page Register set that includes the
window’s base address. Remember that a window must start on a 4K-word
boundary. See Table 4-11 for the correspondence between Active Page Reg-
isters and virtual addresses. The valid range of values is from 0 through 7.

wnsiz is the size of this window. Express it in 32-word decimal units.

wnrid is the identification for the region to which this window maps. This
argument is optional. It is usually filled in at run time, rather than at
assembly time.

wnoff is the offset into the region at which to start mapping this window.
Express it in 32-word decimal units. This argument is optional; supply it if
you need to map this window. The default is 0, which means that the window
starts mapping at the region’s base address.

wnlen is the amount of this window to map. Express it in 32-word decimal
units. This argument is optional; supply it if you need to map this window.
The default value is 0, which maps as much of the window as possible.

wnsts is the window status word. This argument is optional; supply it if you
need to map this window when you issue the .CRAW request. Set bit 8,
called WS.MAP, to cause .CRAW to perform an implied mapping operation.

4-58 Extended Memory Feature



AW

The example in Figure 443 uses the .WDBBK macro to create a window
definition block. First it establishes a convention for expressing K-words in
units of 32 decimal words each. Then it defines the window definition block,
creates the window, and maps the window to a region.

The macro call sets up a window definition block for a window that is 2K
words long. The window begins at address 120000, so Active Page Register
set 5 controls its mapping. The .CRAW request to create this window will
also map it to an area in extended memory. The window will map to the
region starting 2K words from the beginning of the region, and the .CRAW
request will map as much of the window as possible. Note that the program
must move the region identification into this block to select the correct
region before it issues the .CRAW request.

Figure 4-43: .WDBBK Macro Example

+MCALL .WDBBK: .RDBBKs +CRRGs +CRAW, LEXIT

KMMU= 1024.,/32, 51K in 3Z2-word units
START: +CRRG #AREA »#RGADR iCreate a redion

b '

H '

b '

Moy RGADR+R+GID syWNADR+W,NRID #iMove redion
5ID to window definition
iblock

+CRANW #AREA »#WNADR iCreate a window and map it

3 N

3 '

H '

JEXIT sExit Program

RGADR: .RDBBK 2¥KMMU iRedion definition block

WNADR: +WDBBK S2#KMMU »Z2%#KMMU s0 WS MAP  jWindow
sdefinition block
AREA: +BLKHW 2 SEMT area

+END START

4.6.4 Window Control Block

The window control block is a seven-word area in your job’s impure area
whose contents are maintained by the monitor. A virtual job dedicates one
window control block to the static window. For a privileged job, one window
control block is reserved by the monitor and cannot be used by a program.
Thus, all jobs can have up to seven dynamic windows whose status is main-
tained by the monitor in the window control blocks. Figure 4—44 and Table
4-13 show the structure of a window control block.

Extended Memory Feature 4-59



Figure 4-44: Window Control Block

Table 4-13: Window Control Block

W.BRCB

W.BLVR

W.BHVR

W.BSIZ

W.BOFF

W.BNPD

W.BFPD

W.BLPD

Byte

Offset Symbol

Modifier

Contents

0 W.BRCB  Monitor’s MAP A pointer to the region control block of
routine; the UNMAP the region to which this window is
request clears it mapped. If the value is 0, the window is

not mapped.

2 W.BLVR  Monitor’s . CRAW The window’s low virtual address limit.
routine

The window’s high virtual address limit.

4 W.BHVR  Monitor’s MAP
routine

6 W.BSIZ Monitor’'s CRAW The window’s size, in 32-word decimal
routine; the . ELAW units. If the value is 0, this window con-
request clears it trol block is free.

10 W.BOFF  Monitor’s MAP The offset into the region at which this
routine window begins to map, in 32-word deci-
mal units.
12 W.BFPD  Monitor’'s . CRAW The low byte of the address of the first
routine Page Descriptor Register that affects
this window.
13 W.BNPD  Monitor's . MAP The number of Page Descriptor
routine Registers that affect this window.
14 W.BLPD  Monitor’s MAP The contents of the last Page Descriptor

routine

Register that affects this window.

4.6.5 1/0O Queue Element

The I/O queue element in an extended memory system is ten words long,
rather than seven words long as it is in FB and SJ systems. Section 7.9.3
describes the XM I/O queue element in detail.

4-60 Extended Memory Feature



AN

4.6.6 Free Memory List

The monitor maintains a data structure called the free memory list, which it
uses to allocate areas of extended memory. The list consists of a table of 10
decimal doublewords. The address of the top of the table is $XMSIZ, and the
table is located in p-sect XMSUBS. The high-order word of each word pair
indicates the size of an available area in extended memory, expressed as a
number of 32-word decimal units. The low-order word of the pair contains
the address of the area, divided by 100 octal. A value of -1 ends the table.

At bootstrap time, the table contains only one entry. The high-order word of
the pair contains the total amount of extended memory. The low-order word
contains the value 1600. When a job requests an extended memory region,
the monitor searches through the table for an area large enough to meet the
request. It returns the area in extended memory that meets the size require-
ment and has the lowest starting address. The monitor reduces the amount
of memory in the first doubleword of the free memory list, and adjusts its
starting address.

The other nine words of the free memory list are used when jobs return areas
of extended memory to the available pool. In a very active system, the
extended memory area can become quite fragmented.

4.7 Flow of Control Within Each Programmed Request

This section summarizes the activities that take place internally for each
programmed request your program can issue. Consult the RT-11
Programmer’s Reference Manual for the detailed syntax of each request.

4.7.1 Creating a Region: .CRRG

Issue the .CRRG programmed request to create a region in physical address
space.

The monitor’s .CRRG routine first checks R.GSIZ in the region definition
block to make sure that you have requested a region with a valid size. (The
size must be between 1 and 96K.) If the size is invalid, the request returns
with error code 10 in byte 52.

Next, the routine looks for a free region control block. The request returns
with error code 6 in byte 52 if no region control blocks are free.

The routine attempts to allocate the appropriate amount of memory for the
region, based on the amount you specified in the programmed request. To
get the most memory possible, ask for 96K words. The routine scans the free
memory list for a region with the correct size. The request returns with error
code 7 in byte 52 if it cannot allocate a region with the size you requested. In
addition, RO contains the largest amount of memory available. Issue the
.CRRG request again for this amount of memory. If this second request fails,
it means that some other job in the system just acquired some of the mem-
ory. Continue to reissue the .CRRG request with the new value from RO
until you finally obtain a region.

Extended Memory Feature 4-61



i}

4-62

The request succeeds when the monitor allocates the region. The routine
puts the region identification into R.GID in the region definition block. It
sets RS.CRR in the region status word; it clears R.BSTA and R.BNWD in
the region control block, and it puts values into R.BADD and R.BSIZ, which
are also located in the region control block. The memory obtained is then
removed from the monitor’s free memory list and reserved for your job.

4.7.2 Creating a Window: .CRAW

Issue the .CRAW programmed request to create a virtual address window.

First, the monitor’s .CRAW routine checks W.NAPR in the window defini-
tion block for a valid value. The request returns with error code 0 in byte 52
if the number of the Active Page Register set is invalid for any reason.

Next, the routine shifts W.NAPR to set up the window’s base address in
W.NBAS, which is also located in the window definition block.

The routine then checks W.NSIZ in the window definition block to make
sure that you requested a valid size for the window (the window cannot
exceed the 32K-word boundary). If there is any problem with the size, the .
request returns with error code 0 in byte 52.

The routine clears bits WS.ELW, WS.UNM, and WS.CRW in the window
status word.

The next check is to see if the new window will overlap with an existing win-
dow. If the job is a virtual job and the new window overlaps with the static
window, the request returns with error code 0. In all other situations where
the new window overlaps an existing window, the routine eliminates the
existing window. If the existing window is mapped, the routine unmaps it.
The .CRAW routine sets WS.ELW in the window status word if it eliminates
a window to create the new one. It sets WS.UNM if it also unmaps a window
as it eliminates it.

Next, the routine looks for an available window control block. The request
returns with error code 1 if there are no free window control blocks.

The request succeeds when the monitor modifies the appropriate data struc-
tures. It puts values in W.BSIZ, W.BLVR, and W.BFPD in the window con-
trol block; it puts the window identification in W.NID in the window defini-
tion block, and it sets WS.CRW in the window status word.

If WS.MAP in the window status word was set when you issued the .CRAW
request, the routine now maps the window to the region whose identification
is stored in the window definition block. To do this, the routine follows the
steps outlined in the .M AP programmed request.

4.7.3 Mapping a Window to a Region: .MAP

Issue the .MAP programmed request to map a virtual address window to a
physical address region. The window definition block must contain the iden-
tification of the region to which the window will map.

Extended Memory Feature



am

First, the monitor’s MAP routine finds the window control block that corre-
sponds to the window you specify in the request. It checks W.NID to do this,
and returns with error code 3 if the value is 0 or not valid.

Next, the routine finds the region control block for the region to which this
window will map. The request returns with error code 2 if the region iden-
tification is invalid for any reason.

The routine looks at the offset into the region at which the window is to
begin mapping. This value is contained in W.NOFF in the window definition
block. If the offset is beyond the end of the region, the request returns with
error code 4.

The routine checks the length of the window it is to map. This value is con-
tained in W.NLEN in the window definition block. If the value is 0, the rou-
tine picks up the size of the region from the offset value to the end of the
region. If this amount of memory is bigger than the window, the routine
reduces the amount until it equals the window size, which it stores in
W.NLEN. Note that if you put 0 into W.NLEN, the value that is there after
the .MAP request executes is not 0, but is instead the actual length of the
window that was mapped.

If the value of W.NLEN is not O at the start of the .MAP routine, it indicates
the explicit length of the window to map. If the value is larger than the win-
dow size, or if the window would extend beyond the bounds of the region, the
request returns with error code 4.

The routine increments R.BNWD in the region control block, which main-
tains a count of the number of windows mapped to this region.

If this window is already mapped elsewhere, this routine unmaps it and sets
WS.UNM in the window status word; otherwise, this routine clears
WS.UNM.

The routine next loads the user mode Active Page Register set with the cor-
rect values to map this window to this region.

Finally, the routine updates the window control block values W.BRCB,
W.BHVR, W.BOFF, W.BNPD, and W.BLPD.

4.7.4 Getting the Mapping Status: .GMCX

Issue the .GMCX programmed request to obtain the current mapping status
of a particular virtual address window.

First, the .GMCX monitor routine looks at the corresponding window con-
trol block for this window. If you specify a window whose identification is 0,
you obtain the status of the static window for a virtual job. There is no win-
dow with the identification of 0 in a privileged job. If there is any problem
with the window, the request returns with error code 3.

The routine sets W.NAPR in the window definition block to be equal to the
top three bits of W.BLVR in the window control block. This sets up the start-
ing Active Page Register set number.

Extended Memory Feature 4-63



Next, the routine puts values into W.NBAS, W.NSIZ, and W.NRID in the
window definition block.

If the window is not currently mapped, the routine clears W.NOFF,
W.NLEN, and W.NSTS in the window definition block. If the window is
mapped, the routine puts the offset into the region in W.NOFF, puts the
length of the window in W.NLEN, and sets the bit WS.MAP in the window

status word.

4.7.5 Unmapping a Window: .UNMAP

Issue the .UNMAP programmed request to explicitly unmap a window from
aregion.

First, the monitor’s . UNMAP routine finds the appropriate window control
block. It checks W.NID in the window definition block. If the value is 0, or if
it is invalid for any reason, the request returns with error code 3. If the win-
dow is not currrently mapped, the request returns with error code 5.

To unmap the window, the routine modifies the appropriate data structures.
It clears W.BRCB in the window control block, and decrements R.BNWD in
the region control block.

If the job is virtual, the routine clears the Page Descriptor Registers that
correspond to this window so that your program can no longer reference the
virtual addresses in this window.

If the job is privileged, the monitor copies the kernel Page Descriptor
Register values into the user Page Descriptor Registers so that the mapping
defaults to that of kernel mode.

Finally, the routine sets WS.UNM in the window status word.

4.7.6 Eliminating a Region: .ELRG

Issue the .ELRG programmed request to eliminate a physical address
region.

First, the monitor’s .ELRG routine checks to see if the region identification
you specified is 0. In a virtual job, a region identification of 0 indicates the
static region, which you cannot eliminate. In a privileged job, there is no
region whose identification is 0. In either case, the request returns with
error code 2.

Next, the routine looks for the corresponding region control block for this
region. If the region identification is invalid for any reason, the request
returns with error code 2.

Then, the routine clears RS.CRR and RS.UNM in the region status word. If
there are any windows mapped to this region, the routine unmaps them and
sets RS.UNM.

4-64 Extended Memory Feature



The routine deallocates the region by returning its physical address space to
the monitor’s list of free memory. :

Finally, the routine clears the region control block.

4.7.7 Eliminating a Window: .ELAW

Issue this programmed request to eliminate a virtual address window.

As with the .ELRG request, the .ELAW routine first finds the corresponding
window control block for this window. It checks W.NID in the window defini-
tion block. If the window identification is 0, or is not valid for any reason, the
request returns with error code 3.

The routine next clears WS.CRW and WS.UNM in the window status word.
If the window was mapped, the routine unmaps it and sets WS.UNM. The
routine eliminates the window by clearing W.BSIZ in the window control
block. Finally, the routine sets WS.ELW in the window status word.

4.7.8 Summary of Extended Memory Programmed Request
Error Codes

Table 4-14 summarizes the error codes that the extended memory pro-
grammed requests can put into byte 52. Table 4-15 shows which error codes
each programmed request can use.

Table 4~14: Extended Memory Programmed Request Error Codes

and Meanings
Byte 52
Code Meaning

0 There is a problem with the window ID. The window is too large, the
value of W.NAPR is greater than 7, or you specified it incorrectly.

1 You tried to create more than seven windows in your program.
Remember that the static window is always defined for a virtual job, and
one window is always reserved by the monitor in a privileged job. You
can either unmap another window and then try to create a window, or
you can redefine your virtual address space into fewer windows.

2 The region identification was invalid for some reason.

3 The window identification was invalid for some reason.

4 The combination of the offset into the region and the size of the window
to map to the region is invalid.

5 The window you specified was not currently mapped.

(Continued on next page)

Extended Memory Feature 4-65



Table 4-14: Extended Memory Programmed Request Error Codes
and Meanings (Cont.)

Byte 52
Code Meaning
6 You tried to create more than three regions in your program. Remember
that the static region is always defined for a virtual job, and one region is
always reserved by the monitor in a privileged job. You can eliminate
another region and then try to create a new one, or you can redefine your
physical address space into fewer regions. Note that extended memory |
overlays and XM .SETTOP account for one region each. |
|
7 There is not enough memory available to create a region as large as the “
one you requested. The routine returns the size of the largest available i
region in RO, but does not create it.
10 You specified an invalid size for a region. A value of 0 or a value greater

than 96K words is invalid.

Table 4-15: Summary of Error Codes

Error Code

Programmed Request 01234561710
.CRRG X XX
.CRAW X X
.MAP XXX
.GMCX X
.UNMAP X X
.ELRG X
ELAW X

4.8 Restrictions and Design Implications

The manner in which RT-11’s support for extended memory is implemented
imposes some restrictions on the ways you can use the system. The following
sections outline the implications of the design of the extended memory
system.

4.8.1 PAR1 Restriction

The RT-11 monitor sometimes “borrows” kernel Page Address Register 1 for
its own use. For example, it uses PAR1 to map to the EMT area blocks when
it processes a programmed request.

466 Extended Memory Feature



1IN

Because the monitor alters kernel PARI1, references to virtual addresses in
the range 20000 through 37777 do not always access the corresponding
physical addresses. To avoid problems due to the occasional remapping of
the virtual addresses controlled by kernel PAR1, observe the following pro-
gramming restrictions.

1. Any channel areas you allocate with the .CDFN programmed request
must be entirely within the low 28K words of memory. In addition, they
must not be located within the addresses 20000 through 37777.

2. Any queue elements you allocate with the .QSET programmed request
must be entirely within the low 28K words of memory. In addition, they
must not be located within the addresses 20000 through 37777.
Remember to allow 10 decimal words per queue element.

3. Interrupt service routines must be located entirely within the low 28K
words of memory. In addition, if your XM monitor has been generated
without .FETCH support, they must neither reside in nor reference
addresses in the range 20000 through 37777. Section 6.7 describes the
factors you must take into consideration if your program includes an in-
line interrupt service routine. Be sure to execute your program as a privi-
leged job if it contains an interrupt service routine, so that it can access
the monitor and the device I/O page. Section 7.9 lists the implications of
the XM design restrictions on device handlers and I/O.

This aspect of RT-11’s design is important for you to understand if you have
a program with its own in-line interrupt service routine, if you put a data
buffer for I/O in extended memory, or if you write a device handler for an
XM system.

4.8.2 Programmed Requests

Some of the RT—11 programmed requests have special restrictions when you
use them in an extended memory system. These requests and their restric-
tions are as follows:

Programmed Request : Restriction

.CDFN The channel area you specify in this request must be
entirely within the low 28K words of memory.

.QSET The queue element space you specify must be entirely
within the low 28K words of memory. In addition, you
must allow 10 decimal words for each queue element.

.CNTXSW Virtual jobs cannot use this request, since they have no
need for it in an extended memory system.

4.8.3 PAR2 Restriction

The MQ message handler resides within the physical memory mapped by
Page Address Register 2. If you use the MQ handler to send and receive mes-
sages, be sure to read Section 3.5.7. When you use the MQ handler, all the
PARI1 restrictions apply as well to the virtual addresses controlled by PAR2:

the addresses in the range 40000 through 57777.

Extended Memory Feature 4—67



Next, the routine puts values into W.NBAS, W.NSIZ, and W.NRID in the
window definition block.

If the window is not currently mapped, the routine clears W.NOFF,
W.NLEN, and W.NSTS in the window definition block. If the window is
mapped, the routine puts the offset into the region in W.NOFF, puts the
length of the window in W.NLEN, and sets the bit WS.MAP in the window

status word.

4.7.5 Unmapping a Window: .UNMAP

Issue the .UNMAP programmed request to explicitly unmap a window from
aregion.

First, the monitor’s UNMAP routine finds the appropriate window control
block. It checks W.NID in the window definition block. If the value is 0, or if
it is invalid for any reason, the request returns with error code 3. If the win-
dow is not currrently mapped, the request returns with error code 5.

To unmap the window, the routine modifies the appropriate data structures.
It clears W.BRCB in the window control block, and decrements R.BNWD in
the region control block.

If the job is virtual, the routine clears the Page Descriptor Registers that
correspond to this window so that your program can no longer reference the
virtual addresses in this window.

If the job is privileged, the monitor copies the kernel Page Descriptor
Register values into the user Page Descriptor Registers so that the mapping
defaults to that of kernel mode.

Finally, the routine sets WS.UNM in the window status word.

4.7.6 Eliminating a Region: .ELRG

Issue the .ELRG programmed request to eliminate a physical address
region.

First, the monitor’s .ELRG routine checks to see if the region identification
you specified is 0. In a virtual job, a region identification of 0 indicates the
static region, which you cannot eliminate. In a privileged job, there is no
region whose identification is 0. In either case, the request returns with
error code 2.

Next, the routine looks for the corresponding region control block for this
region. If the region identification is invalid for any reason, the request
returns with error code 2.

Then, the routine clears RS.CRR and RS.UNM in the region status word. If
there are any windows mapped to this region, the routine unmaps them and
sets RS.UNM.

464 Extended Memory Feature



The routine deallocates the region by returning its physical address space to
the monitor’s list of free memory. «

Finally, the routine clears the region control block.

4.7.7 Eliminating a Window: .ELAW

Issue this programmed request to eliminate a virtual address window.

As with the .ELRG request, the .ELAW routine first finds the corresponding
window control block for this window. It checks W.NID in the window defini-
tion block. If the window identification is 0, or is not valid for any reason, the
request returns with error code 3.

The routine next clears WS.CRW and WS.UNM in the window status word.
If the window was mapped, the routine unmaps it and sets WS.UNM. The
routine eliminates the window by clearing W.BSIZ in the window control
block. Finally, the routine sets WS.ELW in the window status word.

4.7.8 Summary of Extended Memory Programmed Request
Error Codes

Table 4-14 summarizes the error codes that the extended memory pro-
grammed requests can put into byte 52. Table 4-15 shows which error codes
each programmed request can use.

Table 4~14: Extended Memory Programmed Request Error Codes

and Meanings
Byte 52
Code Meaning

0 There is a problem with the window ID. The window is too large, the
value of W.NAPR is greater than 7, or you specified it incorrectly.

1 You tried to create more than seven windows in your program.
Remember that the static window is always defined for a virtual job, and
one window is always reserved by the monitor in a privileged job. You
can either unmap another window and then try to create a window, or
you can redefine your virtual address space into fewer windows.

2 The region identification was invalid for some reason.

3 The window identification was invalid for some reason.

4 The combination of the offset into the region and the size of the window
to map to the region is invalid.

5 The window you specified was not currently mapped.

(Continued on next page)

Extended Memory Feature 465



Table 4-14: Extended Memory Programmed Request Error Codes
and Meanings (Cont.)

Byte 52
Code Meaning

6 You tried to create more than three regions in your program. Remember
that the static region is always defined for a virtual job, and one region is
always reserved by the monitor in a privileged job. You can eliminate
another region and then try to create a new one, or you can redefine your
physical address space into fewer regions. Note that extended memory
overlays and XM .SETTOP account for one region each.

7 There is not enough memory available to create a region as large as the
one you requested. The routine returns the size of the largest available
region in RO, but does not create it.

10 You specified an invalid size for a region. A value of 0 or a value greater

than 96K words is invalid.

Table 4-15: Summary of Error Codes

Error Code

Programmed Request 01234561710

.CRRG XXX

.CRAW X X

.MAP XXX

.GMCX X

.UNMAP X X

.ELRG X

ELAW X

4.8 Restrictions and Design Implications

The manner in which RT-11’s support for extended memory is implemented
imposes some restrictions on the ways you can use the system. The following
sections outline the implications of the design of the extended memory
system.

4.8.1 PAR1 Restriction

The RT-11 monitor sometimes “borrows” kernel Page Address Register 1 for
its own use. For example, it uses PAR1 to map to the EMT area blocks when
it processes a programmed request.

466 Extended Memory Feature



Because the monitor alters kernel PAR1, references to virtual addresses in
the range 20000 through 37777 do not always access the corresponding
physical addresses. To avoid problems due to the occasional remapping of
the virtual addresses controlled by kernel PAR1, observe the following pro-
gramming restrictions.

1. Any channel areas you allocate with the .CDFN programmed request
must be entirely within the low 28K words of memory. In addition, they
must not be located within the addresses 20000 through 37777.

2. Any queue elements you allocate with the .QSET programmed request
must be entirely within the low 28K words of memory. In addition, they
must not be located within the addresses 20000 through 37777.
Remember to allow 10 decimal words per queue element.

3. Interrupt service routines must be located entirely within the low 28K
words of memory. In addition, if your XM monitor has been generated
without .FETCH support, they must neither reside in nor reference
addresses in the range 20000 through 37777. Section 6.7 describes the
factors you must take into consideration if your program includes an in-
line interrupt service routine. Be sure to execute your program as a privi-

" leged job if it contains an interrupt service routine, so that it can access
the monitor and the device I/O page. Section 7.9 lists the implications of
the XM design restrictions on device handlers and I/O.

This aspect of RT-11’s design is important for you to understand if you have
a program with its own in-line interrupt service routine, if you put a data
buffer for I/O in extended memory, or if you write a device handler for an
XM system.

4.8.2 Programmed Requests

Some of the RT-11 programmed requests have special restrictions when you
use them in an extended memory system. These requests and their restric-
tions are as follows:

Programmed Request : Restriction

.CDFN The channel area you specify in this request must be
entirely within the low 28K words of memory.

.QSET The queue element space you specify must be entirely
within the low 28K words of memory. In addition, you
must allow 10 decimal words for each queue element.

.CNTXSW Virtual jobs cannot use this request, since they have no
need for it in an extended memory system.

4.8.3 PAR2 Restriction

The MQ message handler resides within the physical memory mapped by

Page Address Register 2. If you use the MQ handler to send and receive mes-

sages, be sure to read Section 3.5.7. When you use the MQ handler, all the

PARI1 restrictions apply as well to the virtual addresses controlled by PAR2:
the addresses in the range 40000 through 57777.

Extended Memory Feature 4-67




4.8.4 Synchronous System Traps

A synchronous system trap is a software interrupt that takes place synchro-
nously with your program’s execution. For example, a TRAP instruction
that a program issues is a synchronous system trap. A program that issues
an illegal instruction causes a trap to 10 to occur, which is also a synchro-
nous system trap. When a trap occurs, the PDP-11 computer pushes the cur-
rent PS and PC onto the stack and loads the new PS and PC from the con-
tents of the trap vector. Table 4-16 lists the synchronous system traps and
their corresponding vectors.

Table 4-16: Synchronous System Traps and Their Vectors

Vector Synchronous‘ System Trap
4 Trap to 4, caused by a reference to an odd address, or by a bus time-dut,
10 Trap to 10, caused by an attempt to execute a reserved instruction.
14 Breakpoint trap, usually issued by a debugging utility program such as
ODT.
20 1/0O trap.
34 TRAP instruction, issued by a program to change the flow of execution.
114 Memory parity trap, caused by a memory parity error.
244 FPU trap, caused by a floating point unit exception or error.
250 Memory management trap, caused by a program’s attempt to reference a

virtual address that is not mapped to a physical address.

In an XM system, synchronous system traps, like device interrupts, take the
new PS and PC from the appropriate vector in kernel space. For example,
when a program issues a BPT instruction, the new PS and PC are taken
from physical locations 14 and 16. As you remember, a privileged job is ini-
tially mapped to the kernel vector area, so virtual address 14 in the program
maps to physical location 14. A virtual job, on the other hand, is prevented
from accessing the kernel vector area. Initially, the virtual job’s virtual vec-
tor area maps to physical addresses starting at location 500, not 0. For a vir-
tual job then, the virtual vector 14 is not in physical location 14.

For each synchronous system trap, RT-11 provides a mechanism to field the
trap and provide values for the new PS and PC from the virtual vector. The
following sections describe the effect of the XM environment on specific syn-
chronous system traps.

4.8.4.1 TRAP, BPT, and IOT Instructions — When a program in an XM system
issues a TRAP, BPT, or IOT instruction, execution switches to the proces-
sor’s kernel mode. The hardware picks up the contents of the appropriate
vector (see Table 4-16) from kernel space. However, rather than dispatching
immediately to the trap handling routine specified in the kernel vector, the

468 Extended Memory Feature




nm

monitor replaces the new PS and PC with values that cause execution to
continue within a monitor routine. The purpose of the monitor routine is to
pick up the contents of the corresponding virtual vector in user space, and
then transfer control to the routine specified by the virtual PC. The kernel
and user vectors for a privileged job are identical. A virtual job cannot access
the kernel vectors; you can, however, put values into the virtual vectors so
that the monitor will pick them up when a trap occurs. In summary, the net
effect of the monitor’s trap handling routine is that control is transferred to
a job’s specific trap routine through the contents of the job’s virtual vector.

If the virtual vector contains an even, nonzero value, the monitor does not
clear the vector after the first trap. This permits recursion with no effort on
the part of the program.

4.8.4.2 Traps to 4 and 10, and FPU Traps — For traps to 4 and 10, and floating
point unit exception traps, the monitor provides a mechanism that protects
the vectors while still permitting you to use your own trap handling rou-
tines. The .TRPSET and .SFPA programmed requests permit your program
to set up the addresses of trap handling routines without modifying either
the kernel or the user virtual vector area. These two programmed requests
function in XM systems the way they do in FB systems. Thus, you specify
the address of your trap handling routine when you issue the programmed
request and the monitor puts this information in the job’s impure area. The
monitor clears out the routine address in the impure area, so your trap han-
dling routine should reset this area by issuing either . TRPSET or .SFPA as
its last instruction before returning to the main program.

4.8.4.3 Memory Management Faults — A memory management fault occurs
when a program references a virtual address that is not mapped to a phys-
ical address. If a memory management fault occurs while execution is in sys-
tem state, the entire system halts. If a memory management fault occurs
while execution is in user state, the monitor fields the trap through the ker-
nel vector and provides a new PS and PC from the user virtual vector area.
Once the monitor picks up the contents of a job’s virtual vector, it clears the
vector. If a second fault occurs and the virtual vector is 0, the monitor prints
its 2MON-F-MMU fault message and aborts the job.

To permit recursion, your program’s trap handling routine must reset the
contents of the memory management fault vector (at locations 250 and 252)
in the job’s virtual vector area. If RT-11 permitted automatic recursion,
your program could loop indefinitely on a memory management fault until
you halted the processor.

4.8.4.4 Memory Parity Errors — A hardware device that is an optional part of
your PDP-11 computer system performs memory parity checking. You
enable RT-11 support of this hardware option by selecting the memory par-
ity special feature at system generation time. If you have memory parity
hardware but do not generate a system with the memory parity checking
special feature, a memory parity error causes a system halt.

Extended Memory Feature 4-69



For systems that support memory parity checking, the synchronous system
trap procedure is similar to the procedure for memory management faults.
Thus, the monitor fields the trap through the kernel vector at locations 114
and 116. It then picks up the contents of your program’s virtual addresses
114 and 116, clears them, and passes control to your trap handling routine
based on the new PS and PC.

If a second memory parity error occurs and the virtual vector is 0, the mes-
sage ‘MON-F- Mem err prints and the job aborts. To enable recursion, your
program’s trap handling routine must reset the contents of the memory par-
ity fault vector at virtual addresses 114 and 116.

4.9 Debugging an XM Application

Use VDT, the Virtual Debugging Technique, to debug virtual and privileged
jobs in an XM system. VDT also handles correctly jobs in FB and SJ systems,
as well as jobs in multi-terminal systems.

Use VDT.OBJ the same way you use ODT.OBJ; link it with the program you
need to debug. The transfer address for VDT is O.ODT. The syntax for VDT
commands is the same as the syntax for ODT. See the RT—11 System User’s
Guide for instructions on using ODT.

VDT.OBJ is created from a conditional assembly of ODT.MAC, with the con-
ditional $VIRT equal to 1. VDT.OBJ is provided on the distribution kit; you
need not assemble it yourself. VDT does not contain the interrupt service or
priority routines that ODT does. Unlike ODT, which runs at priority 7 and
performs its own terminal I/O, VDT runs at the same priority as your pro-
gram, and uses .TTYIN and .TTYOUT programmed requests to perform ter-
minal [/O.

Because VDT uses .TTYIN and .TTYOUT requests, you can run it from a
job’s console terminal; it is not limited to the hardware console interface.
Since VDT alters the contents of the Job Status Word, it must save the origi-
nal contents elsewhere. You can use the $J/ command to obtain the original
contents of the JSW; you can also modify it there.

VDT runs in user, not in kernel mode. When you debug a virtual job with
VDT, you are limited to accessing the job’s area only. You cannot access the
protected system areas such as the monitor, the vectors, and the I/O page.
When you debug a privileged job with VDT, you have access to the same
memory the job does.

4.10 Extended Memory Example Program

Figure 4-45 provides an example program that uses extended memory pro-
grammed requests. This example assumes that any necessary handlers are
already loaded.

4-70 Extended Memory Feature



m

Figure 4-45: Extended Memory Example Program

sTITLE XMCOPY

THIS IS AN EXAMPLE IN THE USE OF THE RT-11 EXTENDED
MEMORY REQUESTS. THE PROGRAM COPIES FILES AND THEN
VERIFIES THE RESULTS. IT USES EXTENDED MEMORY TO
IMPLEMENT 4K TRANSFER BUFFERS. THIS PROGRAM USES MOST
OF THE EXTENDED MEMORY PROGRAMMED REQUESTS.: AND
DEMONSTRATES OTHER PROGRAMMING TECHNIQUES.

\Bm Amm AmE .EE E B mm 3@

+NLIST BEX

+MCALL UNMAP:+,ELRG+.ELAW».CRRG+.CRAK ++MAP
.,MCALL +PRINT+.EXIT+,CLOSE+.CSIGEN+.READW + WRITH
+MCALL RDBBK:.WDBBK,.TTYOUT,WDBDF ;+RDBDF

JSHW = 44 iJSW LOCATION
JHVIRT = 2000 JUIRTUAL JOB BIT IN JSHW
ERRBYT = B2 SERROR BYTE LOCATION
APR = 2 sPAR/PDR FOR 18T WINDOW
APR1 = 4 H " " 2ND "
BUF = WDB+W.NBAS iVIRTUAL ADDR OF 18T
i BUFFER
BUF1 = WDB1+W.NBAS iWIRTUAL ADDR OF ZND
i BUFFER
CORSIZ = 40896, SIZE OF BUFFER IN WORDS
PAGSIZ = CORSIZ/Z5G. iPAGE SIZE IN BLOCKS
WRNID = WDB+W.NRID JREGION ID ADDR OF 18T
i REGION
WRNID1 = WDB1+W.NRID SREGION ID ADDR OF 2ZND
i REGION
+ASECT JASSEMBLE IN THE VIRTUAL
. i JOB BIT
+= JBH
+WORD JLVIRT iMAKE THIS A VIRTUAL JOB
+PSECT iSTART CODE NOW
+WDBDF SCREATE WINDOW DEFINITION
i BLOCK SY¥MBOLS
+RDBDF SCREATE REGION DEFINITION

i BLOCK SYMBOLS
START:: CSIGEN #ENDCRE »#DEFLT.#0 §GET FILESPECS:
. i HANDLERS: OPEN FILES

BCS START iBRANCH IF ERROR
INCB ERRNO JERR = 1X
+CRRG #CAREA »#RDB iCREATE A REGION
BCC 104 iBRANCH IF SUCCESSFUL
JMP ERROR iREPORT ERROR
i (JMP DUE TO RANGE!)
10%: Moy RDB s WRNID MOVE REGION ID TO WINDOW
i DEFINITION BLOCK
INCB ERRNOD JERR = Z2X
+CRAW #CAREA »#WDB FCREATE WINDOW. .+,
BCC 20% iBRANCH IF NO ERROR
JMP ERROR iREPORT ERROR 4+
INCB ERRNO SERR = 3X
+MAP #CAREA »#WDB SEXPLICITLY MAP WINDOMW. ..
BCC 30% sBRANCH IF ND ERROR
JMP ERROR JREPORT ERROR
CLR R1i jR1 = RT11 BLOCK #
i FOR I/0
Moy #CORSIZRE iRZ2 = # OF WORDS TO READ
INCB ERRNO JERR = 4X

(Continued on next page)

Extended Memory Feature 4-71



zm

Figure 4-45: Extended Memory Example Program (Cont.)

READ: +READW #RAREA »#3,,BUF »RZ2sR1 iTRY TO READ 4K-WORTH
i OF BLOCKS

BCC WRITE iBRANCH IF ND ERROR
T8TB B#ERRBYT SEOF?
BEQ PASGE2 iBRANCH IF YES
JMP ERROR iMUST BE HARD ERROR
' i REPORT IT
WRITE: MOY RORZ iR2 = S5IZE OF BUFFER

i JUST READ
+WRITW #RAREA,»#0,,BUFsRZ:R1 SWRITE OUT THE BUFFER

BCC ADDIT iBRANCH IF NO ERROR
INCB ERRNO iERR = 35X
JMP ERROR iREPORT ERROR
ADDIT: ADD #PAGSIZ¥R1 FADJUST BLOCK #
BR READ iTHEN GO GET ANOTHER
i BUFFER
PASSZ2: INCB ERRNO iERR = GBX
+CRRG #CAREA »#RDB1 iCREATE A REGION
BCC 35% iBRANCH IF NO ERROR
JMP ERROR iREPORT ERROR
35%: Moy RDB1 sWRNIDI1 sGET REGION ID TO WINDOW

i DEFINITION BLOCK
i¥* EXAMPLE USING THE .CRAW REQUEST DOING #*

i* IMPLIED .MAP REQUEST. *

INCB ERRNO iERR = 7X

+CRAW | #CAREA ,#WDB1 iCREATE WINDOW USING

% IMPLIED .MAP

BCC VERIFY iBRANCH IF ND ERROR

JMP ERROR iREPORT ERROR
VERIFY:: INCB ERRNO iERR = 8X

CLR - R1 iRl = RT11 BLOCK # AGAIN
GETBLK: MOV #CORSIZsR2E iR2 = 4K BUFFER SIZE

+READW #RAREA,#3,BUF1RZsR1 3TRY TO GET 4K-WORTH
i OF INPUT FILE

BCC 40% iBRANCH IF ND ERROR
TSTB B#ERRBYT EOF?
BEQ ENDIT iBRANCH IF YES
JMP ERROR iREPORT HARD ERROR
40%: Mov RORZ iRZ2 = SIZE OF BUFFER READ

+READW #RAREA»#0,BUF »RZ2:R1 $TRY TO GET SAME SIZE
i FROM OUTPUT FILE

BCC 504 iBRANCH IF NO ERROR
INCB ERRNO SERR = 9X
JMP ERROR . iREPORT ERROR
50%: MOW BUF +R4 SGET OUTPUT BUFFER ADDRESS
Moy BUF1R3 iGET INPUT BUFFER ADDRESS
70%: CMP (R4)+ 4+ (R3)+ SUERIFY THAT DATA IS THE
i SAME
BNE ERRDAT iIT’S NOT» REPORT ERROR
DEC R2 JARE WE FINISHED?
BNE 70% iBRANCH IF WE AREN'T
ADD #PAGSIZR1 iADJUST BLOCK # FOR PAGE
i SIZE
BR GETBLK iGO GET ANOTHER BUFFER
i PAIR
ENDIT: +PRINT #ENDPRG FANNOUNCE WE’RE FINISHED
ACLOS: CLOSE =0 iCLOSE OUTPUT FILE
+UNMAP #CAREA ,#WDB FEXPLICITLY UNMAP 18T
i WINDOW
+ELAW #CAREA s#WDB SEXPLICITLY ELIMINATE 1ST
i WINDOW
+ELRG #CAREA,#RDB SELIMIMATE 18T REGION
+ELRG #CAREA,#RDB1 JUNMAP » ELIMINATE ZND

i WINDOW & REGION -
3

JEXIT KIT PROGRAM
(Continued on next page)

4-72 Extended Memory Feature



Figure 4-45: Extended Memory Example Program (Cont.)

ERROR: MOUB B#ERRBYT RO ;MAKE ERROR BYTE CODE
i ZND DIGIT

ADD #/0 3RO 50F ERROR CODE.s .+«

MowB ROJERRNO+1 JPUT IT IN ERROR MESSAGE

BR KCLOS ;G0 CLOSE OUTPUT FILE
ERRDAT: PRINT #ERRBUF JREPORT VERIFY FAILED...

BR HCLOS GO0 CLOSE OUTPUT FILE
RDB : .RDBBK CORSIZ/3Z. ; RDDBK DEFINES REGION

j DEFINITION BLOCK
WDB : ,WDBBK APR,CORSIZ/3Z, ;,WDDBK DEFINES WINDOW
5 DEFINITION BLOCK
RDB1: RDBBK CORSIZ/3Z. ;DEFINE 2ZND REGION SAME
i WAY
WDBl: JWDBBK APR1CORSIZ/32.+0,0,CORSIZ/32Z, sWS,MAF
i AND 2ZND WINDOW
3 (BUT WITH MAPPING
i STATUS SET!H)

CAREA: BLKW 2 JEMT ARGUMENT BLOCKS
RAREA: +BLKW 6

DEFLT: +WORD 0,040:0 ;NO DEFAULT FILE TYPES
ENDPRG: .ASCIZ / * END OF XM EXAMPLE PROGRAM */

ERR: LASCII /7¥M REQUEST OR I-0 ERROR # /
ERRND: +ASCIZ /00/ )
ERRBUF: .ASCIZ /7DATA VERIFICATION ERROR?/
ENDCRE ' jFOR CSIGEN - X
; HANDLERS LOADED !

+END START

Extended Memory Feature 4-73






Chapter 5
Multi-Terminal Feature

In describing the multi-terminal feature of RT-11 this chapter provides
background information on the hardware and describes the data structures
of a multi-terminal system. It also describes the interrupt service and pol-
ling routines, the programmed requests available to application programs,
and typical situations in which you can use two terminals without making
use of the multi-terminal special feature. Finally, restrictions are listed and
a sample program is provided.

5.1 Components of a Multi-Terminal System

RT-11 implements support for multiple terminals as a special feature that
you select at system generation time and that is available to SJ, FB, and XM
monitors. Essentially, the multi-terminal feature permits an application
program to control one or more terminals. It does not change RT-11’s basic
characteristic of being a single-user operating system. Specifically, multi-
terminal support does not permit more than one terminal at a time to be the
command terminal, the terminal at which you communicate with RT-11
through the keyboard monitor commands.

Support for multiple terminals is implemented through the following com-
ponents:

e MTTEMT.MAC, which processes the multi-terminal programmed
requests.

e MTTINT.MAC, which contains the multi-terminal interrupt service and
polling routines.

e TRMTBL.MAC, which defines the multi-terminal terminal control
blocks.

MTTEMT, MTTINT, and TRMTBL assemble and link together as part of the
Resident Monitor for a multi-terminal system.

There are also some important data structures in multi-terminal systems:

e Terminal control blocks, called TCBs (one per terminal), which contain
information about the terminal and the job. The TCBs also contain the
input and output ring buffers for the terminal.

® Logical unit numbers, called LUNs, through which RT-11 refers to the
terminals that are part of your system.

51



® Asynchronous terminal status words, called AST words (one per LUN), in
which RT-11 maintains event flags to reflect the current status of each
terminal. This word is a special feature you can select at system genera-
tion time.

5.2 Hardware Background Information

This section provides some background information that is useful if you are
unfamiliar with the communication hardware RT-11 supports.

RT-11 can support both the DL series (including DL11 and DLV11, or com-
patible equivalent, such as the PDT-11 terminal and modem ports) and the
DZ series (including DZ11 and DZV11) of serial interfaces. An interface is
similar to a device controller; it stands between the computer and a serial
line. The other end of the line can be connected to a terminal, a communica-
tion device, a peripheral device, or another computer.

The DL interface connects the computer system to a single serial line. Each
DL interface has its own Control and Status Register (CSR) address and vec-
tor address. You can have as many as eight DL interfaces on your computer
system, including the hardware console interface. Since each DL interface is
a separate controller, there is no real physical unit number; 0 is assigned for
consistency. Note that even though the DLV11-J module contains four serial
lines, they appear to the software as four separate and distinct DL
interfaces.

Each RT-11 system must have a hardware console interface so that the
hardware can use it at bootstrap time to locate the console terminal. The
hardware bootstrap on many systems requires that a terminal be connected
at the standard console addresses for diagnostic purposes and for operator
communication at bootstrap time. Your hardware console interface must be
a local DL. Its interrupt vectors are located at 60 and 64 in low memory, and
its LUN is always 0.

A DZ interface is called a multiplexer; it connects several serial lines
through a single pair of CSR and vector addresses. The DZ11 interface con-
nects the computer system to eight lines that have physical unit numbers
from 0 through 7. The DZV11 is similar to the DZ11, but it connects the sys-
tem to only four lines that have physical unit numbers from 0 through 3.
You can have two DZ11 or four DZV11 interfaces, for a total of 16 additional
lines. ‘

Figure 5-1 illustrates DL and DZ interfaces and their physical and logical
unit numbers.

At system generation time, you specify through the SYSGEN dialogue how
many DL and DZ interfaces your target system has. You also indicate how
many of their physical units are actually connected to terminals on the sys-
tem. Of those terminals, you must indicate which are local and which are
remote lines. Unlike physical unit numbers, which are numbered starting at
0 for each interface, the logical unit numbers that RT-11 uses are unique.

5-2 Multi-Terminal Feature



Figure 5-1: Interfaces and Physical and Logical Unit Numbers

RT-11 SYSTEM

DL

CONSOLE DL Dz
PUN: O o 0o 1 2 3 4 5 6 7
LUN: O 1 2 3 4 5 8 7 8 9

They begin at 0 and continue until all terminals have been accounted for.
SYSGEN assigns the physical unit numbers of the interfaces to its software
logical unit numbers in the following order:

1. Local DL lines (the hardware console interface is always LUN 0)
2. Remote DL lines

3. Local DZ lines

4. Remote DZ lines

The order in which SYSGEN assigns physical lines to logical unit numbers

'is also the order in which it generates the terminal control blocks. It gener-
ates one TCB for each line you specify in the SYSGEN dialogue. The TCBs
are arranged in RMON in the order in which you specify the lines to
SYSGEN. There are no TCBs for any unused interface physical lines.

PDT-11 systems with cluster controllers, and PDP-11/03 and 11/23 systems
with a DLV11-J interface have three additional DL interfaces at the stand-
ard addresses. The PDT-11 ports are labeled with terminal numbers that
are the same as the corresponding RT-11 logical unit numbers. Some sys-
tems have SLU (serial line unit) port numbers; the RT-11 logical unit num-
ber corresponding to a port is the SLU number plus 1.

When you bootstrap a multi-terminal system, RT-11 checks for the presence
of each interface for which a TCB exists by attempting to access its CSR, as
specified in the SYSGEN dialogue. If the interface does not exist, the logical
unit number associated with that interface is marked as nonexistent, and
any attempt to attach such a LUN results in an error. The space occupied by
the TCB of a nonexistent LUN is not recoverable. You can use the SHOW
TERMINALS monitor command to verify that the information you supplied
during system generation was correct.

Note that RT—11 does not attempt to determine whether or not a terminal or
modem is actually connected to an interface line; it assumes the connection
is present. For an unconnected line, no input characters can be generated,;
output directed to the line is sent out and lost.

Multi-Terminal Feature 5-3




5.3 What Is the Console Terminal?

A potentially confusing aspect of RT—11’s multi-terminal support is its abil-
ity to change the console terminal. This section defines precisely what is
meant by the terms hardware console interface, boot-time console, back-
ground console, and private console. You will avoid confusion if you familiar-
ize yourself with these terms and use them consistently.

The hardware console interface, as Section 5.2 describes, is the terminal
interface located at vectors 60 and 64, whose control and status registers
begin at 177560 in the I/O page. This is the serial line interface the hard-
ware bootstrap uses at bootstrap time. (Generally, you must have a terminal
connected to the hardware console interface in order to bootstrap the sys-
tem.) This is almost always the terminal on which RT—11 prints its startup
message. Remember that the hardware console interface is always LUN 0.

The boot-time console is the terminal on which RT-11 prints its startup mes-
sage. This is almost always the same asthe terminal connected to the hard-
ware console interface. In a system without the multi-terminal feature, the
CSR for this terminal, 177560, is contained in TTKS. (TTKS is located at
fixed offset 304 from the start of the Resident Monitor.) In a multi-terminal
system, the CSR is located at offset T.CSR in the first TCB in the Resident
Monitor.

The background console, also called the command console, is originally the
same as the boot-time console. (It remains the same until you use the
SET TT: CONSOL command, described below, to move the background
console.) It is the terminal on which you type commands to the Keyboard
Monitor, and through which you communicate with the background job. If
you run a foreground job or system jobs, they can share the background con-
sole. In this case, you must use CTRL/B to communicate with the back-
ground job, CTRL/F for the foreground job, and CTRL/X for the system jobs.
For example, to abort a job from a shared console, you must either type the
appropriate CTRL sequence, followed by two CTRL/C characters, or use the
DCL ABORT command. (See Chapter 3 for more information on control
sequences.)

The programmed requests .TTYIN, . TTYOUT, .CSIGEN, .CSISPC, .GTLIN,
and .PRINT interact with the background console for the background job,
and also for any foreground or system jobs that happen to be sharing this
terminal.

NOTE

RT-11 ignores any unit number you specify with device TT.
Therefore, references to TT:, TTO:, TT1:, and so on, are all
equivalent, and default to the background console.

In a multi-terminal system you can move the background console to another
terminal by issuing the SET TT: CONSOL monitor command. By specify-
ing another logical unit number in the SET command, you can move the

5-4 Multi-Terminal Feature



i

background console to any other local terminal in the system, except to a
private console.

A private console is a local terminal used by a single foreground or system
job. You give a job its own private console when you start the job by using
the FRUN/TERMINAL:n or SRUN/TERMINAL:n commands. No other job
can share a private console with the original job. A job’s private console is
the terminal with which its .TTYIN, .TTYOUT, .CSIGEN, .CSISPC,
.GTLIN, and .PRINT programmed requests interact. In addition, any
.READ or .WRITE requests to TT that this job makes access the private con-
sole. When a job has its own private console, you can no longer communicate
with the job through the background console. Thus, you can no longer use
CTRL/F at the background console, for example, to interact with a fore-
ground job that has its own private console; instead, you must type on the
private console. To abort this foreground job, you must type two CTRL/Cs on
its private console. You cannot issue keyboard monitor commands from a
private console.

You cannot change a private console to a different terminal by using the
SET TT: CONSOL command; that command is valid only for the back-
ground console. This is because the Keyboard Monitor runs as a background
job, and it can run only on the background console. The background console
is private if there are no jobs sharing it.

A shared console refers to the background console unless the following con-
ditions apply:

1. InanFB or XM system without the system job feature, the foreground job
is running with a private console;

2. In an FB or XM system with the system job feature, all six system jobs
and the foreground job are running, and each has a private console. ’

Remember that a private console can never be shared.

A console simply refers to a terminal being used as the background shared
console, or as a foreground or system job private console.

5.4 Using Two or More Terminals

There are several situations in which you may need to use more than one
terminal, but you do not need any of the special features available through
the multi-terminal programmed requests. The following sections describe
some of those situations and show how to arrange the terminals, often with-
out generating support for the multi-terminal feature.

5.4.1 A Video Console Terminal and a Hard Copy Printing Terminal

A typical situation that arises in RT-11 applications is the case in which it
is desirable to use a video terminal as the background console terminal and
a hard copy terminal as a line printer. The next two sections describe the
procedures to use, depending on whether the video terminal or the hard copy
terminal is the boot-time console.

Multi-Terminal Feature 5-5



5.4.1.1 The Video Terminal Is the Boot-Time Console — If your video terminal
is the boot-time console, it is simple to use a hard copy printing terminal as a
line printer. (Note that the hard copy terminal must be on a DL interface to
use this procedure.) You set up the vectors and CSR addresses for the hard
copy terminal in the LS device handler file (by using the SET LS: com-
mands described in the RT—-11 System User’s Guide) and install LS. You can
then simply assign LP to LS and proceed to use the hard copy terminal as a
line printer.

This is the simplest of multiple-terminal applications, since it does not
involve system generation. This procedure is not effective, however, if the
hard copy terminal is not on a local DL interface.

Under many circumstances, it may be desirable to have the hard copy termi-
nal become the console terminal. Use the procedure described in Section
5.4.2 to do this.

5.4.1.2 The Hard Copy Terminal Is the Boot-Time Console — How you make the
hard copy terminal the line printer when the hard copy terminal is the boot-
time console depends on whether the video terminal is on a DL or DZ inter-
face. If the video terminal is on a DL interface, there are four possible
approaches that permit you to use the hard copy terminal as a line printer.

In Procedure 1 you can perform a system generation (without including the
multi-terminal feature) to make the video terminal appear to be the boot-
time console. Note that the hard copy terminal remains the hardware con-
sole interface. That is, you must still type the name of the system device on
the hard copy terminal in response to the $§ prompt. However, RT-11 does
print its boot message on the video terminal. Once the system is boot-
strapped, you can use the LS handler to access the hardcopy terminal as a
line printer.

In Procedure 2 you can authorize a DIGITAL Field Service representative to
change your system configuration so that the video terminal is the boot-time
console, and the hard copy terminal is on a local DL interface. Then you can
use the procedure outlined in Section 5.4.1.1.

In Procedure 3 you can use a special program to switch the background con-
sole to the video terminal. Except that the default boot-time console defaults
to the hard copy terminal after each reboot, this is similar to procedure 1,
above. You can use the LS handler to access the hard copy terminal as a line
printer. Section 5.4.2 shows the program you run to use Procedure 3.

Procedure 4 is similar to Procedure 3, except that you alter the monitor
image on a mass storage device instead of in memory. This procedure is use-
ful only in systems without the multi-terminal feature. Figure 5-2 shows
the patch for Procedure 4. You must supply the correct value for the vector,
CSR, protection offset, and protection code (see Section 3.6.1.2) for your
application.

5-6 Multi-Terminal Feature



LI

Figure 5-2: Patch for Procedure 4

I Permanent modification of monitor usind CSR and Vector addresses
! CSR = 175B20-175B626 / Yec = 310-316

+R SIPP

*monitr.SYS @) I monitr represents the file name
Base® ig ! of the monitor file vou are
Search for? GO I changing
Start? 3100
End? 5200
Fournd at nnnnmnm
Base? R
Offset?
Base 01d New?
TR 000060 310 @D ! New vector
VIV XXXXXX "2 @D
Offset? 5]
Base Offset 01d New?
TV 000006 ooo0oed4 314 I New vector Plus 4
] 000010 XXXXXX "2 @D
Offset? “Z RO
Base? $RMONGRED I Find the value of $RMON on vour
Offset? 304 @D I link mapr.
Base Offset 01d New?
$RMON 000304 177560 175620 @) ! New CSR
ERMON 000306 177362 175622 ! New CSR
$RMON 000310 177564 175624 @D ! New CSR
SRMON o031z 177566 175626 @D ! New CSR
$RMON 000314 177777 "2 @D
Offset? 342 @D ! Offest for Protection hvte
Base Offset D14 New? |
$RMON 00034z 000000 17 @D ! Enable Protection
$RMON 000344 Q00000 Y
*°C

+

\

If the video terminal is on a DZ interface, you must perform a system gen-
eration for a multi-terminal system. Specify information about your system
configuration to SYSGEN exactly as it exists. Once you bootstrap the new
system, set the LS vector and CSR to those of the hard copy terminal (by
using the SET LS: commands described in the RT—11 System User’s Guide).
Note that this action changes the handler file on a mass storage device, and
that you cannot use the hard copy terminal in any multi-terminal applica-
tion. You need to modify the vector and CSR only once.

Before you use the LS handler, issue the SET TT: CONSOL command to
set the background console to the video terminal. Since this setting reverts
to its original state after each bootstrap, put this SET command in your
startup indirect command file.

NOTE
You must never issue the SET TT: CONSOL =0 command or

access LUN 0 in any way; this is guaranteed to crash the sys-
tem.

Multi-Terminal Feature 5-7



5.4.2 Switching the Console Terminal

Figure 5-3 lists a program called CONSOL that you can use to switch the
console terminal to another terminal in a system without the multi-
terminal special feature. Edit the source file to supply values for the CSR
and vector for the new console; use the symbols CSRAD and VEC. To switch
the console back and forth between two terminals, maintain two copies of
the program, one for each terminal. The terminal interfaces must be DL11s;
the program will not work on DZ11 interfaces.

Figure 5-3: Program to Switch the Console Terminal

+MAIN. MACRO V04,00

NVODNOU D LN =

20 000000

21 000004

000012

[SH NI 8]
DR

000014
000014
000016

000022
000026

000032
25 000034

o]
27 000042

2
29 000046

30
31 000052

32
33 000056
34
35 000060
36 000062
37
38 000064

000310

000372
020000

000017
000342

013700
000054
032760
020000
000372
001044

005046
116716
000007
013746
000054
062716
000360
004736
152760
000017
000342

062700
000304

012701
000206

005070
000000

012120

005711
100775

012700
000060

5-8 Multi-Terminal Feature

“ er s e

FROC3:

+IIF NE

+IIF NE -

1¢:

3-JAN-80 18:44:25 FAGE 1

FROGRAM TO CHANGE CONSOLE TO ONE
OTHER THAN EOOT CONSOLE

+MCALL MTFS, FRINT, .EXIT

CSRALD = 175620 i¥kk NEW CONSOLE
# INFUT CSR ¥xx
VEC = 310 %Xk NEW CONSOLE
FUVECTOR XXX
SYSGEN = 372 $OFFSET TO SYSGEN WORD
MTTYS$ = 20000 PMULTI-TERMINAL RIT IN
$SYSGEN WORD
EMASK = 360/<<15, X< VEC-<20%<VEC/20>>/8,x+1
RITMAF = 326+<VEC/20x
MoV @2#545R0O iRO =3 RMON
BIT #MTTYS$»SYSGEN(RO) iMULTI-TERMINAL SYSTEM?
ENE 2s iYES - CAN'T USE THIS
y TECHNIQUE!
7 #GO TO FRIORITY 7 11!
CLK -(6.4)
MOVE 7v(64)
MOV C&"054,-(6.)
ADD $703605(64)
JSR 7.9@C6.)%

EISE $BMASKyRITMAF(RO) FFPROTECT NEW CONSOLE

iVECTORS

ADD #3045RO iRO =: CONSOLE REGISTER
iLIST IN RMON

Mov #CSRsR1 iR1 = NEW CSR/DATA
iREG LIST

CLR @(RO) iDISAERLE OLD INFUT CSR
F INTERRUFTS

Mov (R1)+5(RO)+ iMOVE IN NEW CSR/DATA
iREGISTER ADDR

TST @GR1 i DONE?

EMI 1 #IF MINUSy NO...
i00 ANOTHER

MoV $60sRO iRO = PRESENT CONSOLE



LI

Figure 5-3: Program to Switch the Console Terminal (Cont.)

39 VECTOR
40 000070 011101 MOV @R1,R1 iR1 = NEW VECTOR
a1 000004 JREFT 4
42 MOV (RO)4+» (R1)+ sLOAD NEW CONSOLE VECTORS
43 VENDR
000072 012021 Moy (RO)+s (R1)+ sLOAD NEW CONSOLE VECTORS
000074 012021 MOV (RO +7 (R1)+ sLOAD NEW CONSOLE VECTORS
000076 012021 MOV (RO) 45 (R1)+ iLOAD NEW CONSOLE VECTORS
000100 012021 MOV (RO 47 (R1)+ iLOAD NEW CONSOLE VECTORS
44 000102 MTFS 0 SBACK TO FRIORITY 0
000102 005046 IIF NE <0 CLR -(64)
000104 116716 LIIF NE < MOVE  05(6.)
000000
000110 013746 MOV @470545-(6.)
000054
000114 062716 ADD $703605(6.)
000360
000120 004736 JSK 701@¢6004
45 000122 JEXIT STERMINATE PROGRAM
000122 104350 EMT ~0350
46
47 000124 241 JFRINT  #NOMT JFRINT ERROR MESSAGE
000124 012700 MOV ENOMT» %0
0001347
000130 104351 EMT ~0351
48 000132 JEXIT i AND LEAVE
000132 104350 EMT ~0350
49
50 WNLIST EEX :
51 000134 077 NOMT:  .ASCIZ /7HMULTI-TERMINAL SYSTEM, USE SET TT CONSOL/
52 VEVEN
53
54 000206 175620 CSK: JWORD  CSRAD iCSR/DATA BUFFER/VECTOR LIST
55 000210 175622 JWORD  CSRAD+2
56 000212 175624 JWORD  CSRAD4+4
57 000214 175626 JWORI  CSRAD+6
58 000216 000310 JWORD  VEC
59 000000° JEND  FROC3
SYMBOL TABLE
BITMAP= 000342 CSRAD = 175620 FROC3  000000R
RMASK = 000017 MTTY$ = 020000 SYSGEN= 000372
CSR 000206K NOMT 000134k VEC = 000310
. ABS., 000000 000
000220 001

ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 8448 WORDS ( 33 FAGES)
DYNAMIC MEMORY AVAILAELE FOR 56 PAGES
V4 {CONSOL/L ¢ MER/L$TTM=V4:!CONSOL

5.4.3 A Separate Terminal for Each Job

Once you perform a system generation for the multi-terminal feature, you
can easily establish private consoles for up to eight jobs. Of course, you must
be running an FB or XM monitor with the system job feature in order to sup-
port more than two jobs.

As Section 5.3 describes, simply use the FRUN/TERMINAL:n or SRUN/
TERMINAL:n commands to start foreground and system jobs, and assign
them to private consoles. You need not use any multi-terminal programmed
requests to do this. Remember that each console is truly private —no two
jobs can share terminals through the FRUN or SRUN /TERMINAL:n
mechanism.

Multi-Terminal Feature 5-9



Each job can attach its own console terminal and issue subsequent multi-
terminal programmed requests.

5.4.4 Multi-Terminal Applications

Some applications need to take advantage of RT-11’s multi-terminal feature
by using the programmed requests to manage more than one terminal per
job. Typical DIGITAL applications include MU BASIC-11, CTS-300, and
FMS-11. These represent applications in which one program controls sev-
eral terminals. Jobs that must control more than one terminal use the
multi-terminal data structures and programmed requests.

5.5 Introduction to Multi-Terminal Programmed Requests

It is not difficult for a program to use more than one terminal in a multi-
terminal system. Table 5-1 summarizes the actions a program may need to
take in order to use a terminal in addition to its own console terminal. It also
lists the appropriate procedures for the program to follow. Familiarize your-
self with the procedures and the corresponding programmed requests. The
RT-11 Programmer’s Reference Manual provides detailed information on
the format of each programmed request. Study this information before you
attempt to write a multi-terminal application program.

Table 5-1: Summary of Activities for a Program in a Multi-Terminal
System

Activity Procedure to Follow

Obtain the status of a multi- Use the MTSTAT programmed request.
terminal system.

Acquire a terminal. Use the .MTATCH programmed request to attach the
terminal and dedicate it to this program. As part of its
startup procedure a program usually attaches all the
terminals it needs. Note that only one job can attach a
shared console, and only the terminal’s owner can issue
multi-terminal programmed requests for it. However,
all the jobs sharing the background console can issue
ZTTYIN, .TTYOUT, .CSIGEN, .CSISPC, .GTLIN, and
.PRINT requests for it, as well as .READ and .WRITE
requests for TT.

To detect status changes without issuing a pro-
grammed request, examine the AST word for each
terminal.

Examine the characteristics of Use the MTGET programmed request.
each attached terminal.

Change terminal characteris- Usethe MTSET programmed request.
tics if necessary.

(Continued on next page)

5-10 Multi-Terminal Feature



L

Table 5-1: Summary of Activities for a Program in a Multi-Terminal
System (Cont.) ’

Activity Procedure to Follow

Get a character from a terminal Use the MTIN programmed request.
and wait for it.

Get a character from a termi- Use .MTSET to set the status word, then use the MTIN
nal; do not wait for it. programmed request. (You need issue the MTSET only
once.)

Send a character to a terminal Use the MTOUT programmed request.
and wait for it.

Send a character to a terminal; Use .MTSET to set the status Word, then use the
do not wait for it. .MTOUT programmed request. (You need issue the
.MTSET request only once.)

Send a line to a terminal; wait Use the MTPRNT programmed request.
until it prints.

Reset CTRL/O for a terminal, Usethe MTRCTO programmed request.
enabling output.

Relinquish ownership of a ter- Usethe MTDTCH programmed request.
minal so that another job can
use it.

5.6 Multi-Terminal Data Structures

The following sections describe the two important data structures for multi-
terminal systems: terminal control blocks, and asynchronous terminal sta-
tus words.

5.6.1 Terminal Control Block (TCB)

RT-11 creates one terminal control block, called a TCB, for each terminal
you describe at system generation time. Each TCB located in the Resident
Monitor contains terminal characteristics, terminal status, and the input
and output ring buffers and pointers for the terminal. The length of a TCB
varies depending on the special features you select through system genera-
tion. Note, though, that the first 20 decimal words in each TCB are fixed.

5.6.1.1 Format — Figure 54 illustrates the format of the TCB; Table 5-2
describes its contents. An asterisk (*) marks the data structures whose size,
offset, or existence depends on the special features you select through sys-
tem generation.

Multi-Terminal Feature 5-11



am

Figure 5-4: Format of the Terminal Control Block (TCB)

T.CNFG
T.CNF2
T.FCNT | T.TFIL
T.WID
T.LPOS l T.OCHR
T.OWNR
TSTAT
T.CSR
T.VEC
T.PRI
T.PUN T.JOB
T.PTTI T.NFIL
T.TINFL | T.TCTF
T.TID

T.TTLC
T.IRNG
T.IPUT
T.ICTR
T.IGET
T.ITOP

INPUT RING
* (DEFAULT SIZE =
134 BYTES)

* T.OPUT
* T.OCTR
* T.OGET
* T.OTOP

OUTPUT RING
* (DEFAULT SIZE =
40 BYTES)

* T.RTRY

T.TBLK
(7 WORDS)

T.AST
* (2 WORDS IN XM)

#|  T.XCNT T.XFLG
* T.XPRE

T.XBUF
(3 WORDS)

* T.CNT

5-12 Multi-Terminal Feature



nm

Table 5-2: Contents of the Terminal Control Block (T'CB)

, Offset

Name

Description

0

10
11
12

14

16

20

22
24

T.CNFG

T.CNF2

T.TFIL

- T.FCNT

T.WID

T.OCHR
T.LPOS
T.OWNR

T.STAT

T.CSR

T.VEC

T.PRI
T.JOB

The terminal configuration word. A program and the moni-
tor communicate with each other about terminal character-
istics through the .MTGET and .MTSET programmed
requests. These requests use a four-word status block
within the program to store terminal information. The first
word, M.TSTS, has the same structure as T.CNFG. Table
5-3 describes the meaning of each bit in T.CNFG.

The second terminal configuration word. The structure of
this word is the same as that of M.TSTZ2, the second word of
the four-word status block for . MTGET and .MTSET pro-
grammed requests. Table 5-4 describes the meaning of each
bitin T.CNF2.

Contains the character after which this terminal requires
one or more fill characters. The counterpart of this byte in
the four-word status block for MTGET and .MTSET pro-

grammed requests is called M.TFIL.

Contains the number of fill characters that this terminal
requires. The counterpart of this byte in the four-word sta-
tus block for MTGET and .MTSET programmed requests is
called M.FCNT.

Contains the carriage width of this terminal. The counter-
part of this word in the four-word status block for MTGET
and .MTSET programmed requests is called M.TWID. The
maximum value is 255 decimal.

Contains the character to output.
Contains the current carriage position for this terminal.

A pointer to the impure area of the job that currently owns
this terminal. This word has a value when this terminal is a
private console for a job, or, when it is a shared console and
one job has attached it. This word is 0 when this terminal is
a shared console and no job has attached it, or when it is not
a console and no job has attached it. This word is simply
nonzero in an SJ system if the job issues an .MTATCH
request.

Contains the terminal status. Table 5-5 describes the
meaning of each bit in T.STAT

Contains the CSR for the keyboard of this terminal. It is 0 if
the bootstrap could not find the CSR; this makes the LUN
unusable.

Contains the first interrupt vector for this terminal.
Contains the device interrupt priority.

Contains the job number of the job that currently owns this
terminal. :

(Continued on next page)

Multi-Terminal Feature 5-13



am

Table 5-2: Contents of the Terminal Control Block (TCB) (Cont.)

Offset Name Description

25 T.PUN Contains the physical unit number of this terminal. This
value is always 0 for terminals on DL interfaces. For termi-
nals on DZ interfaces, the value ranges from 0 through 7 (0
through 3 for DZV11s).

26 T.NFIL Active fill character counter. This byte contains the number
of nulls left to print.

27 T.PTTI Contains the last character typed on the terminal keyboard.

30 T.TCTF Contains the special fill character. (For example, a space is
the special fill character for a tab, and a line feed is the spe-
cial fill character for a form feed.)

31 T.TNFL Contains the count for the special fill character. The value
is stored as a negative number.

32 T.TID A pointer to the terminal identification prompt string,
which contains the job name, and which is used only when
the monitor is actually printing an identification. It is 0 at
all other times.

34 — Reserved.

36 T.TTLC Contains the terminal line count (the number of lines in the
input buffer).

40 T.IRNG A pointer to the first byte of the input ring buffer. (For more
information on ring buffers, see Chapter 3.)

42 T.IPUT Input PUT pointer.

44 T.ICTR Input character count.

46 T.IGET Input GET pointer.

50 T.ITOP Indicates the top of the input ring buffer. This word points
to the byte just beyond the high limit of the buffer.

52 — Input ring buffer. Its length is determined at system gen-
eration time. It is TTYIN bytes long.

T.OPUT Output PUT pointer.
T.OCTR Output character count.
— CTRL/O flag. A value of 0 means CTRL/O is not in effect; a
value of 1 means that CTRL/O is in effect.
T.OGET Output GET pointer.
T.0OTOP Indicates the top of the output ring buffer. This word actu-

ally points to the byte just beyond the high limit of the
buffer.

Output ring buffer. Its length is determined at system gen-
eration time. It is TTYOUT bytes long.

5-14 Multi-Terminal Feature

(Continued on next page)



1m

Table 5-2: Contents of the Terminal Control Block (TCB) (Cont.) _

Offset

Name

Description

T.RTRY

T.TBLK

T.AST

T.XFLG

T.XCNT

T.XPRE

T.XBUF

T.CNT

Present if device time-out support or support for modems
was selected at system generation time. This word contains
the retry count for output.

Present if device time-out support or support for modems
was selected at system generation time. This seven-word
area is the time-out block for this terminal.

Present if the asynchronous terminal status word was
selected at system generation time. This word is a pointer to
the AST word. In XM systems, the AST pointer is followed
by a second word that contains a PAR1 value for mapping to
the AST word.

Present if the system job feature was selected at system
generation time. If this flag byte is nonzero, it indicates that
a CTRL/X sequence is in progress.

Present if the system job feature was selected at system
generation time. This byte contains the number of charac-
ters typed in a CTRL/X sequence.

Present if the system job feature was selected at system
generation time. This word contains the previous character
typed on the terminal keyboard.

Present if the system job feature was selected at system
generation time. This three-word area contains the charac-
ters typed as part of a CTRL/X sequence.

Present if the system job feature was selected at system
generation time. This word contains the number of jobs that
are sharing the background console.

Table 5-3: Terminal Configuration Word, T.CNFG

Bit

Meaning

0

Hardware tab bit. When set, it indicates that this terminal has hard-
ware tab support. The monitor does not convert a tab character to
spaces before sending it to the output ring buffer. Your program can set
this bit for a particular terminal through the .MTSET programmed
request (described in Section 5.7.3). The SET TT: TAB command sets
this bit for the background console.

When this bit is set, the monitor sends a carriage return/line feed com-
bination to the terminal when its carriage width is exceeded. Your pro-
gram can set this bit for a particular terminal through the MTSET
request. The SET TT: CRLF command sets this bit for the background

console.

(Continued on next page)

Multi-Terminal Feature 5-15



5-16

Table 5-3: Terminal Configuration Word, T.CNFG (Cont.)

Bit

Meaning

2

4-5

8-11

Hardware form feed bit. When set, it indicates that this terminal has
hardware form feed support. The monitor does not convert a form feed
character to line feeds before sending it to the output ring buffer. Your
program can set this bit for a particular terminal through the MTSET
programmed request. The SET TT: FORM command sets this bit for
the background console.

When this bit is clear, the monitor treats CTRL/F, CTRL/B, and CTRL/
X as ordinary characters and ignores their special meanings. The
SET TT: NOFB command clears this bit for the background console.
Your program cannot set this bit for other terminals; only the shared
console can use it.

Reserved.

The inhibit TT wait bit. It is similar to bit 6 in the Job Status Word,
which a program can set. When this bit is set, the program does not
wait for I/O to complete on the terminal before execution continues.
Note that bit 6 in the JSW affects only the job’s current console; it does
not affect any other terminals attached to this job. If the program uses
other terminals for I/O, it can set this bit in each TCB by using the
.MTSET programmed request. '

If this terminal is a private console for this job, the job can set bit 6 in
the JSW. In a multi-terminal application, the job can set bit 6 in either
the JSW or in the TCB for the console terminal. In any case, setting bit
6 in one place (the TCB or the JSW) results in both bits being set.

The XON/XOFF bit. When set, it enables recognition of the XON
(CTRL/Q) and XOFF (CTRL/S) characters. The SET TT: PAGE com-
mand sets this bit for the background console. (See Chapter 3 for more
information on XON/XOFF processing.)

The baud rate mask for terminals on DZ lines. (The baud rate for termi-
nals on DL lines is not programmable through the .MTSET request.)
The values are as follows:

Mask Rate
0000 50
0400 75
1000 110
1400 134.5
2000 150
2400 300
3000 600
3400 1200
4000 1800
4400 2000
5000 2400
5400 3600
6000 4800
6400 7200
7000 9600
7400 not used

Multi-Terminal Feature

(Continued on next page)



am

Table 5-3: Terminal Configuration Word, T.CNFG (Cont.)

Bit

Meaning

12

13

14

15

The special mode bit. It is similar to bit 12 in the Job Status Word,
which affects the job’s console. If this terminal is a private console for
this job, the job can set bit 12 in the JSW to enable special mode. In a
multi-terminal application, the job can set bit 12 in either the JSW or
in the TCB for the console terminal. In any case, setting bit 12 in one
place (the TCB or the JSW) results in both bits being set. (See the
description of .TTYIN in the RT-11 Programmer’s Reference Manual
for more information on special mode.) If the program uses other termi-
nals for I/O, it can set this bit in each TCB by using the .MTSET pro-
grammed request.

The remote terminal bit. It is read-only, and your program cannot alter
it. When set, this bit indicates that this terminal is remote.

When this bit is set, lower- and upper-case typing is enabled. When this
bit is clear, the monitor converts all typed characters to upper-case. If
this terminal is a private console for this job, the job can set bit 14 in the
JSW. In a multi-terminal application, the job can set bit 14 in either the
JSW or in the TCB for the console terminal. In any case, setting bit 14
in one place (the TCB or the JSW) results in both bits being set.

When this bit is set, the monitor takes the appropriate action for a
video terminal when the DELETE key is pressed. Your program can set
this bit for a particular terminal through the .MTSET programmed
request. The SET TT: SCOPE command sets this bit for the back-
ground console.

Table 5-4: Second Terminal Configuration Word, T.CNF2

Bit

Meaning

0-1

These two bits indicate the length of a character. The DZ11 can trans-
mit characters that are five, six, seven, or eight bits long. The values
are as follows:

Value Character Length

00 5 bits
01 6 bits
10 7 bits
11 8 bits

These bits are unused for DL interfaces.

Unit stop bit. Depending on the speed, it indicates the number of stop
bits to send. The values are as follows:

0
1

send one stop bit
end two stop bits (one and one-half stop bits if five-bit charac-
ters are used)

This bit is unused for DL interfaces.

The parity enable bit. When set, it enables parity checking.

(Continued on next page)

Multi-Terminal Feature 5-17



am

Table 5-4: Second Terminal Configuration Word, T.CNF2 (Cont.)

Bit

Meaning

4

5-6

8-14
15

Indicates whether parity checking will be odd or even. The values are
as follows:

Value Parity Checking
0 even parity
1 odd parity

This bit is unused for DL interfaces.
Reserved.

When set, this bit indicates “read pass-all” mode. In this mode, RT-11
transmits all eight bits of each character without interpreting or echo-
ing the characters. This feature is often referred to as “transparency.”
For example, it passes AC as 203 in “read pass-all” mode if the terminal
sets the high bit upon transmission. If set, the terminal is implicity in
single-character mode.

Reserved.

When set, this bit indicates “write pass-all” mode. In this mode, RT-11
transmits all eight bits of each character without interpreting the
characters.

Table 5-5: Terminal Status Word, T

Bit

Meaning When Set

0
1-3

89
10
11
12
13
14

15

Indicates that a fill sequence is in progress.
Reserved.

Indicates that a detach operation is in progress. Input from the termi-
nal is ignored.

This is the TT handler synchronization bit.
Indicates that an output interrupt is expected.

Indicates that the terminal has sent XOFF to request suspension of
output.

Reserved.

Indicates that this terminal is the shared console.
Indicates that the remote terminal has hung up.
Indicates that the terminal interface is a DZ.
Reserved.

Indicates that two CTRL/Cs were typed at this terminal. This bit is
reset by MTGET.

Indicates that this terminal is a console for some job. It can be shared or
private.

5-18 Multi-Terminal Feature



58|

5.6.1.2 Patching a TCB — You can use SIPP to make binary patches to the
terminal control blocks in your monitor file, xxxx.SYS. The TCBs are
located in p-sect MTTY$, which you can find on your monitor link map. They
appear in the same order in which SYSGEN assigned physical units to logi-
cal unit numbers at system generation time (see Section 5.2). The first TCB
is for LUN 0; it starts at the label DLTCB::. The TCBs are all the same size;
TCBSZ contains their length.

5.6.2 Asynchronous Terminal Status (AST) Word

The asynchronous terminal status (AST) word is a special feature that you
can select at system generation time. If you select this feature, you can set
aside space for one AST word per LUN in your own program. Then, when
you issue the .MTATCH programmed request to attach a terminal to your
job, you specify as an argument the address of the AST word for that termi-
nal. The purpose of the AST word is to monitor each terminal’s line so that
the program can obtain certain information without issuing a programmed
request. RT—11 sets or clears bits in the AST word as significant events
occur. The AST word contains information on whether:

e Inputis available from the terminal

® The terminal’s output ring buffer is empty
e Double CTRL/C was typed on the terminal
® A remote line just dialed in or just hung up

Table 5—6 shows the event flags in the AST word and their meaning. Unused
bits are reserved for future use by DIGITAL.

Table 5-6: Asynchronous Terminal Status (AST) Word

Bit Name Bit Pattern Meaning When Set

15 AS.CTC 100000 Double or multiple CTRL/C was typed on this
terminal. You must reset this bit; the monitor
never turns it off.

14 AS.INP 40000 Input is available from this terminal.

13 AS.OUT 20000 The output ring buffer is empty.

7 AS.CAR 200 Carrier is present (for remote lines only).

6 AS.HNG 100 This remote line just hung up and RT-11
- dropped it.

The monitor sets bit 15, AS.CTC, whenever two or more consecutive CTRL/
Cs are typed on any terminal. Typing two CTRL/Cs on a job’s console termi-
nal always aborts the job, unless the job already issued the .SCCA pro-
grammed request to intercept the characters. The job must reset this bit
before it continues processing.

Multi-Terminal Feature 5-19



e am

The monitor sets bit 14, AS.INP, when input is available from the terminal.
It can be a line of characters in normal mode, or a single character in special
mode. The monitor clears this bit when the program reads the characters.

The monitor sets bit 13, AS.OUT, when the terminal’s output ring buffer is
empty. This occurs after the last character in the ring buffer is printed on
the terminal. The monitor clears this bit when there are characters in the
ring buffer.

The monitor sets bit 7, AS.CAR, when it answers a remote line. It clears this
bit when the remote line hangs up or drops carrier. Carrier is a tone trans-
mitted over the remote line. It carries information through its modulation.

The monitor sets bit 6, AS.HNG, when it drops a remote line that just hung
up. .

5.7 Using the Multi-Terminal Programmed Requests

The routines in MTTEMT, which are part of the Resident Monitor, dispatch
the multi-terminal programmed requests and process them.

The dispatch routine accepts programmed requests that translate into EMT
375 instructions with a subcode of 37 and a function code in the range 0
through 10 octal. The dispatch routine first checks to see if the programmed
request is a valid one. Then it verifies the logical unit number and makes
sure that the terminal is installed. If the programmed request is for an
attach operation, the dispatch routine verifies that the terminal is not
already attached. For all other requests, the dispatch routine verifies that
the terminal is attached to the calling program.

If the request passes all the checks in the dispatch routine, control passes to
the EMT processing code for the individual request.

5.7.1 Attaching a Terminal: .MTATCH

Issue the MTATCH programmed request to attach a terminal to your job.
This permits your program to print characters on the terminal, get charac-
ters from it, and alter its characteristics.

When a job attaches a terminal, the terminal remains attached until the job
issues a .MTDTCH request, or until the job exits or aborts. If the terminal is
detached through the MTDTCH request, the job is blocked until output in
process for the terminal finishes and the monitor detaches the terminal. If
the terminal is detached when the job aborts, the output terminates and the
monitor detaches the terminal immediately.

The -attach routine first checks to see if the terminal is the shared console,
but not this job’s console. If so, the routine issues error code 4. If the terminal
is already attached to another job, the routine also issues error code 4. No
other errors can occur in the attach operation.

5-20 Multi-Terminal Feature



. rm

The routine attaches the terminal by setting up two words in the TCB for
this terminal. In FB and XM systems, it stores the job number in T.JOB. In
SJ systems, T.OWNR is made nonzero when the terminal is attached. In FB
and XM systems, T.OWNR contains a pointer to the owning job’s impure
area. ‘

If AST support is part of the system, the routine puts a pointer to the AST

" word in T.AST. In XM systems, it also stores a value in T.AST + 2 to be used

as a PAR1 value in mapping to the AST word.

The routine next moves some bits from the JSW into T.CNFG, if this termi-
nal is the job’s console. It copies bits 14 (for lower case), 12 (special mode),
and 6 (wait inhibit). If the terminal is the background console the attach
routine loads T.TFIL from location 56.

5.7.2 Getting Terminal Status: MTGET

Issue the MTGET programmed request to obtain the status of a terminal.
(The terminal need not be attached to your program in order to obtain the
status.)

The . MTGET routine moves information from the TCB to the status block in
your program. The following transfers occur:

~ T.CNFG to M.TSTS

T.CNF2 to M.TST2

T.TFIL to M.TFIL

T.FCNT to M.FCNT -

T.WID to M.TWID

high byte of TSTAT to M.TSTW

Then, if the terminal is not attached to any job, the routine returns error
code 1. If the terminal is attached, but not to this job, the routine returns
error code 4 and RO contains the job number of the terminal’s owner. If the
terminal is the shared console, but the job has its own private console, RO
contains the job’s own job number. Note that despite the fact that an error is
returned from this operation, the status information is always placed in the
status block in your program.

Finally, if no error was returned, the routine clears bit 14 (CTRL/C) in
T.STAT.

5.7.3 Setting Terminal Characteristics: .MTSET

Issue the .MTSET programmed request to set the characteristics of a termi-
nal. If the terminal is not attached to your program, the routine gives error
code 1.

The routine moves the contents of M.TSTS to T.CNFG, except for bit 13 (the
remote terminal bit), which is read only in T.CNFG. If the terminal is the
job’s console, the routine moves some bits from T.CNFG into the JSW. It
copies bits 14 (for lower case), 12 (special mode), and 6 (wait inhibit).

Multi-Terminal Feature 5-21



5-22

Whether or not the terminal is the job’s console, the routine moves the fol-
lowing information:

M.TST2 to T.CNF2
M.TFIL to T.TFIL
M.FCNT to T FCNT
M.TWID to T.-WID

If DZ support is part of the system, and if this terminal is on a DZ interface,
the routine waits for any characters to finish printing on this terminal, then
sets up the DZ line parameters.

NOTE

Always issue an .MTGET request before an .MTSET request.
Change only the fields you are interested in. For a one-bit
field, use a BIS or BIC instruction to set or clear it. For a
multiple-bit field, clear it first with a BIC and then use BIS to
load the field. Use MOVB or MOV instructions only for byte
or word fields. Changing other bits can cause unusual termi-
nal service errors. Finally, issue the .MTSET specifying the
same status block that you used for the MTGET request.

5.7.4 Getting a Character: .MTIN

Issue the MTIN programmed request to get a character from the terminal.

The routine moves some bits from the JSW into T.CNFG if this terminal is
the job’s console. It copies bits 14 (for lower case), 12 (special mode), and 6
(wait inhibit). If the terminal is the background console, the attach routine
loads T.TFIL from location 56.

The routine gets a character from the input ring buffer and adjusts the ring
buffer pointers. If the terminal is the console, the routine uses the ring
buffer in the job’s impure area. If the terminal is not the console, the routine
uses the ring buffer in the terminal’s TCB.

If the input character is CTRL/C on a console terminal, and .SCCA is not in
effect, the job aborts.

5.7.5 Printing a Character: MTOUT

Issue the .MTOUT programmed request to print a character on the
terminal.

The routine moves some bits from the JSW into T.CNFG if this terminal is
the job’s console. It copies bits 14 (for lower case), 12 (special mode), and 6
(wait inhibit). If the terminal is the background console, the attach routine
loads T.TFIL from location 56.

Multi-Terminal Feature



The routine moves a character from the user buffer into the output ring
buffer and adjusts the ring buffer pointers. If the terminal is the console, the
routine uses the ring buffer in the job’s impure area. If the terminal is not
the console, the routine uses the ring buffer in the terminal’s TCB.

5.7.6 PrintingaLine: .MTPRNT

Issue the MTPRNT programmed request to print a string of characters on
the terminal. The string can end with a null byte (to print a carriage return
and a line feed at its end) or a 200 octal byte, just as in the .PRINT pro-
grammed request.

The routine moves a line from the user buffer into the output ring buffer and
adjusts the ring buffer pointers. If the terminal is the console, the routine
uses the ring buffer in the job’s impure area. If the terminal is not the con-
sole, the routine uses the ring buffer in the terminal’s TCB. If there is no
room in the output ring, the job is blocked until room is available, regardless
of the value of bit 6 in T.CNFG.

5.7.7 Resetting CTRL/O: .MTRCTO

Issue the MTRCTO programmed request to enable output on a terminal
even though CTRL/O may have been typed.

This routine clears the CTRL/O flag in the TCB for the terminal and moves
some bits from the JSW into T.CNFG if this terminal is the job’s console. It
copies bits 14 (for lower case), 12 (special mode), and 6 (wait inhibit). If the

~terminal is the background console, the attach routine loads T.TFIL from
location 56.

If you ever alter the contents of the JSW, DIGITAL recommends that your
program issue the .MTRCTO request immediately afterward so that the
TCB and the JSW always have the same information. In particular, if you
require lower-case input for a .GTLIN request, set bit 14 in the JSW and
issue .MTRCTO or .RCTRLO before using .GTLIN.

5.7.8 Getting System Status: .MTSTAT

Issue the MTSTAT programmed request to obtain status information about
the multi-terminal system. This request returns the following four words of
information to your program:

® The offset from the start of the Resident Monitor to the first TCB

® The offset from the start of the Resident Monitor to the TCB of the current
console terminal for this job

e The vaule of the highest TCB (equivalent to the highest LUN)
@ The size of each TCB in bytes. (Note that all TCBs are the same size.)

Multi-Terminal Feature 5-23



Remember that the TCBs are located in the Resident Monitor in the order in
which you specified your DL and DZ lines to the SYSGEN dialogue. That is,
the TCBs for local DLs appear first, followed by remote DLs, local DZs, and
remote DZs.

With the information returned to you by .MTSTAT you can find the TCB for
any terminal in the system and examine its contents with the .GVAL
request. Figure 5—4 and Table 5-2 describe the contents of each TCB.

5.7.9 Detaching a Terminal: .MTDTCH

Issue the MTDTCH programmed request to detach a terminal from your job
and make it available for use by another job.

The routine first sets the DTACHS$ bit, bit 4, in T.STAT to indicate that a
detach operation is in progress. This avoeids any race conditions in the mod-
ule MTTINT. (A race condition is a situation in which two or more processes
attempt to modify the same data structure at the same time; as a result, the
data structure is corrupted and the integrity of the processes is compro-
mised.) It then forces XON if XOFF had been previously set. If the terminal
is not a shared console, the output buffer is then flushed. In SJ, the routine
loops until T.OUTR is clear. In FB and XM, the job is blocked until T.OCTR
is clear. o

The words T.OWNR and T.AST are set to zero to detach the terminal.
DTACHS is finally cleared to finish the operation.

Whenever a job aborts, terminals attached to it are detached without having
their buffers flushed.

5.8 Summary of Multi-Terminal Programmed Request Error Codes

Table 5—7 summarizes the error codes that the multi-terminal programmed
‘requests can put into byte 52. Table 5-8 shows which error codes each pro-
grammed request can generate.

5.9 The Console as a Special Case

The console terminal is always a special case for I/O in multi-terminal sys-
tems. Recall that each job has input and output ring buffers and pointers,
both in its console’s TCB and in its impure area. Whenever a job gets charac-
ters from its console terminal, or writes characters to it, the monitor uses the
set of ring buffers located in the job’s impure area. In this case, the console
can be the background console, if this job is sharing it, or it can be a private
console, if this job has one.

For all I/0 requests involving the job’s console, the monitor performs the
request based on the characteristics indicated in the Job Status Word rather
than in the terminal configuration word. However, if you set or clear a

5-24 Multi-Terminal Feature



. im

Table 5-7: Multi-Terminal Programmed Request Error Codes

and Meanings
Byte 52
Code Meaning

0 There is no character in the input ring buffer for this terminal; or, there is
no room in the output ring buffer for this terminal.

1 The logical unit number is invalid.

2 " The logical unit number does not exist.

3 The programmed request you issued is invalid. The function code for EMT
375, subcode 37, must be in the range 0 through 10 octal.

4 This terminal is already attached to another job. The program cannot
attach it, detach it, or set its status.

5 The user buffer address, the status block, or the AST word address is out-

side the valid addressing space for this program. This error occurs in XM
systems only.

Table 5-8: Summary of Error Codes

Programmed Error Code
Request 012345

MTATCH
MTGET
MTSET
MTIN
MTOUT
.MTPRNT
MTRCTO
MTSTAT
.MTDTCH

s lal

ol
PR M
SRR R Rl
I T o

P R A K

terminal-related bit in the JSW, the monitor automatically sets or clears the
corresponding bit in the terminal configuration word for the job’s console the
next time the job does any kind of input or output request or reset CTRL/O
request for that terminal (see Table 5-3). DIGITAL recommends that you
issue the .MTRCTO request immediately after altering the JSW to make
sure that the contents of the JSW are duplicated in the TCB for the termi-
nal. Similarly, if you modify the terminal configuration-word with . MTSET
for a job’s console, the monitor also modifies the JSW. .

On entry to the EMT processor, R3 contains a pointer to the job’s TCB, and
R5 contains a pointer to the impure area.

Note that a program must issue the .SCCA programmed request to inhibit
CTRL/C on its console terminal.

Multi-Terminal Feature 5-25



5.10

5-26

Interrupt Service

Terminal service in multi-terminal systems is centralized in the routines
contained in MTTINT. This source file is assembled and linked together
with other files to become part of the Resident Monitor.

In general, RT-11 services terminals in one of two ways, depending on
whether the terminal is connected through a local or a remote line.

5.10.1 Local Terminals

Local terminals are connected to an interface by a minimum of four wires:
® Receive data ® Transmit data

® Receive ground e Transmit ground

Some interface circuitry, such as the EIA RS232-C, combines the receive
ground and transmit ground into one signal ground; for these, a minimum of
three wires in required. In addition, PDT-11 terminal ports require that the
data terminal ready signal be connected and asserted for proper operation.

RT-11’s interrupt service routine for multi-terminal systems contains the
following data structures:

® Receive CSR I/O page address

® Receive data buffer I/0 page address
® Transmit CSR I/O page address

® Transmit data buffer I/O page address

RT-11’s interrupt service is essentially simple. The bootstrap sets the input
(or receiver) interrupt enable bit; the monitor leaves it set at all times. If a
character is typed on a local terminal, an interrupt occurs and the monitor
picks up the character. If the terminal is not attached to any job, the charac-
ter is ignored. In multi-terminal systems with time-out support, the monitor
turns on the interrupt enable bit for each DL once every 30 clock ticks.

The monitor only sets the output interrupt enable bit when it is ready to
print a character. It clears the bit after the output ring buffer is empty.

5.10.2 Remote Terminals

Remote terminals are connected to RT—11 through modems (also known as
data sets) and telephone lines so that someone can call up the computer and
ring its data phone. When this occurs, it causes an interrupt, which the mon-
itor recognizes. If the unit is attached, the multi-terminal service routine
answers the phone call and sends out carrier in response. (Carrier is a tone
transmitted over the remote line that carries information through its
modulation.)

Multi-Terminal Feature



The remote terminal can communicate with RT-11 through an approved
protocol. Essentially, the terminal must send its own carrier to the com-
puter. If the terminal immediately sends carrier, RT-11 recognizes the sig-
nal, and I/O can begin. If, however, the terminal does not send its own car-
rier immediately, RT—11 sets a 30-second timer. This time interval gives
someone an opportunity to place a telephone receiver into an acoustic cou-
pler. If the terminal does not send carrier within 30 seconds, RT-11 discon-
nects the line.

Once communication has begun, RT-11 never takes the initiative to termi-
nate the connection. It always continues to send carrier. However, there are
two situations in which RT-11 does hang up on the remote line. If the termi-
nal stops sending carrier for any reason, RT-11 waits two seconds for it to
resume. When the interval expires, RT—11 hangs up on the remote line. In
the other situation, the remote terminal hangs up. RT-11 detects loss of car-
rier and waits two seconds before disconnecting the remote line. Special
requirements for customers in the United Kingdom are met through assem-
blies based on the U.K. conditional being set to 1.

Remote terminals require a DL11-E, DLV11-E (or equivalent, such as the
PDT-11 modem port), or DZ interface. In addition to the data lines required
for remote terminals, the following control lines must be connected:

e data terminal ready
® ring indicator
® carrier detect

A local terminal can be connected to a remote terminal interface if it is iden-
tified during system generation as a local terminal. The control lines listed
above are then ignored and you can leave them unconnected.

5.11 Polling Routines

RT-11’s multi-terminal support includes two polling routines, which the fol-
lowing sections describe.

5.11.1 Time-Out Routine for DL Terminals

You can select the time-out polling routine as a special feature at system
generation time. It is an example of the device time-out feature that is avail-
able to application programs through the .TIMIO programmed request.
RT-11 executes this routine once every half second. Its purpose is to periodi-
cally reenable the I/O interrupt enable bits so that noise on a line or local
static electricity cannot seriously affect transmissions.

Every half second, the polling routine examines each DL line on the system.
It turns on the line’s input interrupt enable bit and, if the line is remote, its

Multi-Terminal Feature 5-27



modem interrupt enable bit. Then, if output is pending with no output inter-
rupt, it turns the output interrupt enable bit off and then on, to force an out-
put interrupt on the line. (Depending on the hardware failure that caused
the loss of the output interrupt, this may occasionally cause a character to be
repeated.)

The last thing the time-out routine does is schedule itself to run again.

5.11.2 DZ Remote Line Polling Routine

The DZ polling routine polls the terminals connected to the system through
DZ interfaces. It is necessary because these terminals do not interrupt when
their status changes.

The remote line polling routine schedules a mark time request. It waits 30
seconds after the data set rings to detect carrier. If there is no carrier after
the required amount of time, the routine disconnects the remote line. The
routine takes similar action on line errors and lost carrier. This routine is
automatically included in the multi-terminal service for remote DZ lines.

5.12 Restrictions

The following restrictions apply to systems with the multi-terminal special
feature:

1. Support of the DL11-W interface requires the presence of a REV E or
later module. In the absence of a REV E module, ECO (Engineering
Change Order) number DEC-O-LOG M7856-S0002 must be applied to
the M7856 module.

Support of the DLV11—J interface requires the presence of a REV E or
later module. In the absence of such a module, ECO M8043 MRO002
must be applied to the M8043 module.

2. The multi-terminal handler can support remote terminals. Modem con-
trol is available for both DL11-E and DZ11 interfaces. The DL11 control
answers ring interrupts, permitting terminals to dial in to the system.
Dial-in is possible with the DZ11 interface, despite lack of a ring inter-
rupt in the DZ11, if the modem is operated in auto-answer mode. This is
achieved through a polling routine that periodically checks the status of
each line on the multiplexer (see Section 5.11.2). Dial-up support for DZ
interfaces requires BELL 103A-type modems with “common clear to
send and carrier” jumpers installed. With this option installed, the
modem operates in auto-answer mode.

3. The hardware console interface must be a DL interface, and it must be a
local terminal. You can use the SET TT: CONSOL command to move
the background console to any other local terminal in the system.

4. The number of DL interfaces RT—11 supports, both local and remote, is
limited to eight. This number includes the hardware console interface.

5-28 Multi-Terminal Feature

\



ILIE

10.

The number of DZ11 controllers is limited to two, for a total of 16 lines.
The total of DZV11 controllers is limited to four, for the same total of 16.

The VT11 scroller option is disabled when the multi-terminal special
feature is present in a system. The commands GT ON and GT OFF are
not valid in multi-terminal systems. For this reason, EDIT cannot use
the display support. The use of graphics is still supported, though, and
the display support in TECO works as well.

The maximum input data rate for a single terminal is 300 baud. The
aggregate total input data rate for a system is 4800 baud.

You can set the output baud rate to any speed; RT-11 sends output as
fast as possible, depending on the capacity of the CPU and the nature of
its load. ‘ _

When you type double CTRL/C in an SJ system, the monitor does a
hardware RESET instruction. This causes the DZ multiplexer to reset
its status and to drop Data Terminal Ready on all lines, thus hanging
them up. This action is part of the general cleanup the system performs
after a program aborts. ‘

If you plan to devote a terminal line to the LS handler, do not specify
that terminal’s DL interface in the SYSGEN dialogue for a multi-
terminal system. Do not attempt to attach the terminal from a multi-
terminal application program, either.

Setting the baud rate, character length, number of stop bits, and parity
via the .MTSET programmed request is supported only for DZ inter-
faces.

5.13 Debugging a Multi-Terminal Application

Use VDT, the Virtual Debugging Technique, to debug a multi-terminal
application. See Section 4.9 for more information on VDT.

5.14 Multi-Terminal Example Program

Figure 5-5 shows a program that uses the multi-terminal programmed
requests.

Figure 5-5: Multi-Terminal Example Program

+TITLE
MTYSET+MAC - Auto-baud and Initialize DEC Terminals
+IDENT /ROS, 00/

= san aam

COPYRIGHT (c) 1982, 1983 BY
DIGITAL EQUIPMENT CORPORATION: MAYNARD. MASS.
ALL RIGHTS RESERVED.

Multi-Terminal Feature 5-29



Figure 5-5: Multi-Terminal Example Program (Cont.)

TRANSFERRED .

CORPORATION.

BB wE B AAE SR AEE EE EE AEE AR am amm am

SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

+ENABL LC
+NLIST BEX
+ENABL GBL

Auto-baud and Initialize DEC Terminals
AUTHOR: L.C+P., - 10/79

This Prodram will attach all "Known" terminals and
if thev are UTSxs YTlxx or LALlxx series it will determine
at what baud rate they are set and Put that information
their TCBs+ ("Foreign" terminals will be assumed to

ke set at the correct baud rate), As each terminal is
"imitialized"s its screen will be cleareds; a "sign-on"
message will be displaved, and the terminal tvpe and
baud rate will be logded on the bacKground console.

AEE EE SR B ARE ANE BB AEE AEE BB B8 aE mm am

+8BTTL Macros and definitions
+MCALL +MTATCH»+MTDTCH + y MTGET » +MTOUT » s MTIN
+MCALL +MTPRNT + +MTSET + + MTSTAT + 4 EXIT
+MCALL +MTRCTO »  PRINT » TTYOUT + + MRKT + + CMKT
MeTSTH = 7 i0ffset to state word in TCB
S.FTCB =0 iStat offset to 1st TCB offset
S.CTCB =z iStat offset to console TCB
S.NTCB = 4 iStat offset to # TCB (LUN)
5.8TCB = 6 iStat offset to TCB size
MSPEED = 7400 iBaud rate maskK = bits B8-11
TCBIT% = 100 flnhibit TT wait
TTSPC% = 10000 ; iTT special bit
HNGUP$ = 4000 iTerminal had hundg uwup (offline)
DZ11% = 10000 iDZ11
REMOT% = 20000 iDZ11 line is remote
BKSP = 100000 iBackspace for rubout(delete)
TAB =1 iHardware tab )
NOCRLF = 2 i#¥CLEAR* CRLF bit
LF = 12 iLine feed
CR = 15 iCarriade return
ESC = 33 -~ iEscare
+8BTTL Start of Prodram
+ENABL LSB+LC iMUST enable Lower case!
MTYSET: Moy #S5TAT +R3
iR3 =% B8 word status

+MTSTAT #AREAR3 iGet MTTY status

Mov S«NTCB(R3) sRZ iR2 = # of LUNs

BEQ MTEXIT idust exit if none!

Moy S«CTCB(R3) :R4 ikRd = Dffset to console

iTCB

5-30 Multi-Terminal Feature

THIS SOFTWARE IS FURNISHED UNDER™A LICENSE AND MAY BE USED AND
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AYAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY



am

Figure 5-5: Multi-Terminal Example Program (Cont.)

SUB
BEQ

Mou
CLR
DIV$:

suB
BHI
mMov
CLUN:
14:
BEQ
+MTATCH
BCS
+MTGET
BCS
BITB
BEQ
BITB
BEQ
BITB
BNE

2%

3%:

CALL
4%z

BPL
MTEXIT:

+SBTTL

S$:
CALL
+PRINT
BR

G$:

Mow
CALL

CALL
BR

LOGLUN:

CALL

+PRINT
+PRINT
+PRINT
RETURN

BR3 R4 iR4 = Diff from 1st TCB
1% iNo differences soO

FLUN:O = consoles..
S.STCB(R3) :R5 ikRS = Size of TCB
R1 iRl = Quotient
INC Rr1 iDivide diff by size

jof a TCB
RS R4 ito det LUN of console
DIVS iRepeat until dove...
R14+(PC)+ iSave console LUN...
+WORD 0 ifor later reference
CMP RZ sCLUN ils this the Console?
4% iYessssalready set up
#AREA +#0 3RE iTry to attach terminal
MTERR1 5If carry sets can’t !
#AREAR3R2 iGet terminal’s status
MTERRZ iCan‘t! (Yery Bad!!ll)
#DZ114/400 M, TSTW(R3) ils line a DZL17
6% iNo++.s,assume a DLI11
#REMOT$/400M, TSTW(R3) iRemote line?
2% iNoPe s+
#HNGUP /400 M, TSTW(R3) 3Is it online?
o% iBranch if not
CALL TSETUP jFidure out baud rate

jand terminal tvpre

+MTRCTO #AREAR2
iReset CTRL/O0
+MTPRNT #AREA,#HELLORZ 3iClear screen (if CRT)

LOGLUN
DEC

1%
JEXIT

fjand savy hellos..
iLog term ID on console
RZ jAre we finished?
iNos+++ 90 do another LUN
iWe’re donesssexit

Terminal ID Lod routiness error routines

+PRINT #0FFLIN jLod termimal offline
PRNLUN iInclude LUNV+o
#CRLF ivesvand CRLF
4% iMerdes. .
BIS #:TTSPC%!TCBIT$»,BR3 iDL11 - Set the
jspecial bits in TCB
#ENDTBL »R4 iDoni‘t Know spreeds..
TERMID iTry to fidure out
ithe terminal ID
RSET iSet new statuss..
3% iMerdes
+PRINT  #ATMSG 5Print 1st part of log
PRNLUN iPrint LUN...
R1 jvvethen terminmal ID.o
#TINIT Sevsand finallvaess
R4 ivvssthe baud rate

PRNLUNz MOV

SWAB
7%:

BPL

ADD
STTYOUT
SWAB
STTYOUT
RETURN

MTERR1:
BR

RO
ADD

7%

RZ2 4RO iCopy LUN into RO
iPut it in high bvte
#5-10,#400%+1 R0 $Divide by 10 with
jrepeated subtracts
i0=0-10, R=R+1 till

joverflow (Y set)

#/0%¥400+0+10,%400-1%4R0 iCorrect

RO

+PRINT
8%

30 & R then ASCIIfvY.a.
iPrint Q...

IR to low bytess.
PPrint ites.

#MSG1 iLod attatch error
iMerde

Multi-Terminal Feature



1|

5-32

Figure 5-5: Multi-Terminal Example Program (Cont.)

MTERRZ:
8%:
BR

+SBTTL

TSETUP:
MoV
BIS

10%:
BIC
Moy
BIS
CMP
BEQ
Mov
SWAB
sSuUB

CALL
BCS
RSET:
BIC
BIS

12%:
13%:
RETURN

14%:
BR

TERMID:
Moy
15%:

+PRINT #MSBGZ2 ilLog det status error
CALL PRNLUN ilnclude LUN
4% iTry next LUN

Main terminal setup subroutine

Moy #SPTABL-2 R4 iR4d =r Baud rate tahble
EBR3 +MSTAT iSave old status...
#{TTSPC$!TCBIT%»+BR3 i5et special bits
T8T (R4)+ iR4 =: Next table entry
#MSPEED +@R3 iClear baud rate mask
(R4)+ RS ikRS = Baud from table
R3+BR3 iSet it in CONFG1
#ENDTBL :R4 jAre we thru tahble?
14% i¥Yes+souse as is
#32,L0OTIM iMagic # in +MRKT arg
RS iPut masK in low bvte
RS +LOTIM iSubtract from madic #
ito get # ticKs to wait
TERMID iTry to det termimal ID
10% iNo dicesss
BIC #ITTSPC$!TCBIT$»+BR3 $Clear special bits
(R1)+:@R3 iTurn off unwanted options
(R1)+4+BR3 iTurn on desired options
iRl =% Terminal ID string
mov BR4 R4 iR4 =+ ASCII baud rate
+MTBET #AREAR3:RZ2 iStore status
ikReturn to caller
CALL GETSP iGet ASCII of baud rate
13¢% iMerde. ..
+MTSET #AREAR3:R2 iSet new status
#TTLIST +RS iRS =% List of Terminals
mouv (RS)+R1

"§R1 = Terminal sepecific

BEQ
CALL
BCS
ADD
BIT
BEQ
INC
1G%:
BNE
CMP
BNE
RETURN
18%:
SEC
RETURN

+8BTTL

TOUT:
MOVB

+MTOUT
BCS
CLRB
CLR
+MRKT
19%:
BEQ
+MTIN
20%:

jcharacter sequence

18% fEnd of table - leave !
TOUT iTry to communicate. ..
15% iCarry set = no dice
OUTCT sR1 iRl =% Expected response
#1R1 i0dd address?
16% ANO v
R1 iYES! Make it ewven
CMP MSGIN:(R1)+ iMatch?
15¢ iNorPes s+
MSGIN+Z(R1)+ iStill match?
15% iNoPe s+
iReturn with R1 =% orptions
Moy #UNKTT sR1 iR1 =% "UnKnown terminal"

iSet carry...

Termival I/0 & Get baud rate routines

MOovB (R1)+INCNT iGet # char in response
(R1)+,0UTCT iGet # char in "What-

jare-you?" seguence
#AREA+R1 +R2+0UTCT 3iSend What-are-vou?

20% j0utPut error

- TFLG iClear flag

MSGIN+Z2 finit input buffer

#AREA s #WAITM »#CRTNE »#1 35et time-out

TSTB TFLG

19%

#AREA »#MSGINRZ2INCNT 3iGet response:

RETURN i{with carry status)

Multi-Terminal Feature



Lm

Figure 5-5: Multi-Terminal Example Program (Cont.)

GETSP: Mmow #SPTABL sR4 R4 =r baud rate table
mov BR3 +RS RS = TCB confid word 1
BIC #“C<MSPEED>sRS 3iClear all but baud rate
21%: CMP (R4)+ RS
jcompare it with table
BEQ 22% iBranch if equal
CMP #UNKSP ¢+ (R4) + SEnd of table?
BNE 214 iTry another if not
22%: Mouv BR4 sR4 iR4 =» ASCII baud rate
RETURN iReturn to caller
+8BTTL Timeout Completion Routine
CRTNE: INCB TFLG iSet time-out flag
RTS PC iReturn to mainline

5 Ardument blocks & worKing storade

INCNT: +WORD 0 ilnpPut brte count
OUTCT: +WORD 0 j0utpPut byte count
AREA: +BLKW 5 FEMT Argument blocK
WAITM: +WORD 0 iTime-out -argument
LOTIM: +WORD 0 i Lo order ticKs
STAT: +BLKW 8. iStatus block (B words)
+SBTTL Baud rate mask & ASCII baud rate tahles
5 Baud rate table - in "best duess" order
SPTABL: +WORD 7000,B9B00 59600 baud 3iScores -

+WORD 3400,B1200 51200 baud SLALZO ’

+WORD 2400,B300 300 baud SLA36

+WORD GO0O0,B4BOO 14800 baud 3iScopes

+WORD S5000,B2400 2400 baud 3$Scopes

+ WORD Z000,:B150 7150 baud FLA36

+WORD 1400,B134 134,55 baud FIBM
MSTAT: +WORD 0 i0rig status
ENDTBL: +WORD UNKSP sEnd-of-table

i=x "UnKnown baud"

MSGIN: +BLKB 8. iResponse buffer
TFLG: +BYTE O iTime-out flag

+NLIST BEX

B134: +ASCIZ /134.5 Baud/
B150: +ASCIZ /130 Baud/
B300: +ASCIZ /300 Baud/
B1200: +ASCIZ /1200 Baud/
B2400: +ASCIZ /2400 Baud/
B4B80OO: +ASCIZ /4800 Baud/
BABOO: +ASCIZ /9600 Baud/
+EVEN

+8BTTL Terminal ID takles

TTLIST: iTerminal Listses
+WORD UT100
+WORD UTS2
+WORD LALZO
+WORD LA34
+WORD UTSS
+WORD 8] iTabkle StorPer

i DEC terminal command seauences

UT100: +BYTE 4:3+ESC+‘Ls+'c FINCNT sOUTCNT s "W-A-Y" seq
+EVEN
+BYTE ESC»/Ls'7s’1 iResronse
+ WORD NOCRLF +»<TAB!BKSP» iUndesired:Desired orPtions
+ASCITI / UTL100Q/4200% FASCII terminal ID

Multi-Terminal Feature

5-33



5-34

Fiéure 5-5: Multi-Terminal Example Program (Cont.)

UTS2:
+EVEN
+BYTE
+WORD
+ASCII

LAL1Z20:
+EVEN
+BYTE
+WORD
+ASCII

LA34:
+EVEN
+BYTE
+WORD
+ASCII

+8BTTL
i Messade

MSG1:
+ASCII

MSG2:
ATMSG:
TINIT:
UNKSP:
UNKTT:
OFFLIN:
CRLF:

i Clear sc

HELLO:
+ASCII

+ASCII

+ASCII
+ASCIZ

+END

+BYTE

2424ESC 2

ESC 4’/ 30,40 PUTS2 response varies w/ model!
NOCRLF s TAB!BKSP:
/ UTSZ2 /<200:

JBYTE

44+34+ESC'Ls'cC

ESC+ [ 4+774'2

040

/ LALZ20/<200%

+BYTE 44+34+ESC»‘'Ls+'c
ESC+ [+'7»'3

0,40

/ LA34 /200

+BYTE Z23243ESC‘2

ESC+ E»0,0
NOCRLF +<TAB!BKSP

/ UT3E /

Messade text & Initialization string

textses

+ASCII
SR00%

+ASCII
+ASCII
+ASCII
+ASCIZ
+ASCII
+ASCII
+ASCIZ

reen & sav hello character strind...

+ASCII

“CR*<LFx/7Cannot attach terminal LUN:/

%“C LF:*/78tatus error - LUN:/<200>
“C LF*/Attaching LUN:/<200%x

/ initialized at /4200

/unKrvown baud rate/

/ unidentifiable terminal/<200:
/Terminal offline - LUN:/<200:
/7

SESCH"LZJ" iUT100 Erase screen

“ESCx"\"iUT3Z "Exit hold

i screen mode"

~ESCx"H"<{ESC:"J" jUTS5Z Home + "Erase-

“CR=<LF:

H to-End-of-Screen"
SCRLF (for hardcopy)

/TERMINAL INITIALIZED/

MTYSET

Multi-Terminal Feature

iEnd of Program



Chapter 6
Interrupt Service Routines

This chapter describes the ways a program can transfer data between mem-
ory and a peripheral device. First it covers non-interrupt programmed 1/O;
next it introduces the concept of using interrupts to handle device I/O by
comparing the advantages and disadvantages of in-line interrupt service
routines and device handlers. After these general points have been dis-
cussed, the chapter continues with a description of the structure of an inter-
rupt service routine, and shows in detail how to organize and write one. A
skeleton example of a foreground program that contains an interrupt service
routine ends this discussion of applications. The discussion is followed by a
final section dealing with the considerations involved in using interrupt
service routines in an extended memory environment.

6.1 Non-Interrupt Programmed I/O

One way to move data between memory and a peripheral device is to use
non-interrupt programmed I/O. According to this method, your program
operates with the device interrupts disabled and uses flags to coordinate the
data transfer. Your program checks the ready bit in the status register for a
particular device, moves the data when appropriate, and then either waits
in a tight loop for another ready signal or does other processing and polls the
device occasionally. Programmed I/O is device-specific and does not make
use of operating system features designed for I/O processes. In addition, it
ties up system resources until the I/O transfer is complete.

However, programmed I/O is sometimes the best method to use. For exam-
ple, the Resident Monitor uses programmed I/O to print its 2MON-F-System
halt error message. It first performs a RESET to stop all active I/O. Then it
waits in a tight loop for the console terminal to print the error message, one
character at a time. Clearly in such a situation, where the monitor itself
may be corrupted, no other job or data transfer could be running, and the
console terminal is the only desirable output device. Also, the monitor
.PRINT routine may have been corrupted and should not be used. Given
these requirements, programmed I/O is the best method to use for printing
this error message.

In an application program you could use non-interrupt programmed I/O for a
time-critical device when the program must respond as soon as a character
becomes available in a register.

6-1



The following lines of code from RMON demonstrate non-interrupt pro-
grammed I/O:

Note that R1 Points to the messade text.

TTPS is a word in memory containing the address of
the terminal pPrinter status redisters

its ready flad is the hidh-order bit of the low bvte.
TTPB is a word in memory containind the address of
the terminal printer buffer,

Moving a character to the printer buffer resets

the busy flad in the status register,

LI s e an an ae wam as as ae

E TSTB BTTPS iTEST FOR TT BUSY
BPL 5% iIF YES» TEST AGAIN
MOVB (R1)+,BTTPB iIF NOs PRINT A CHARACTER
BNE o% iBRANCH BACK IF MORE TO PRINT

The device handler for the single-density diskette, DX, provides another
example of programmed I/0. Reading data from the diskette one sector at a
time, the handler first requests a read of one sector. The diskette completes
the read operation, places the data in an internal silo, and issues an inter-
rupt. The handler then disables diskette interrupts and uses programmed
I/O to move data from the silo into memory. When it is ready to read another
sector, the handler enables interrupts again.

The following lines of code are from a DX handler:
Note that R4 Points to the disKette status redisters

RS Points to the silos
R2 Points to the data buffer in memorvy.

am @ am sam aam

TRBYT: TSTB er4 iWAIT FOR TRANSFER READY
BPL TRBYT iBRANCH IF TR NOT UP

EFBUF: MOVUB BRI (R2)+ iTRANSFER A CHARACTER
DEC @5P iCHECK FOR COUNT DONE
BGT TRBYT iTRANSFER MORE

Refer to the PDP—11 Processor Handbook for your computer for more infor-
mation on non-interrupt programmed I/O.

6.2 Interrupt-Driven /O

Although programmed I/O is useful in a few situations, generally the best
way to handle device I/O is through interrupt processing. According to this
method, a program starts an I/O transfer but continues processing. When
the transfer completes, the device issues an interrupt. An interrupt service
routine then determines whether the transfer is incomplete, complete, or
has encountered an error. It takes the appropriate action (restarting the
transfer, returning to the program, or possibly retrying the transfer in case
of error). Thé advantages of using interrupt-driven I/O are that it enables
two or more processes to run concurrently and it does not monopolize system
resources. '

6-2 Interrupt Service Routines



_mm

6.2.1 How an Interrupt Works

An interrupt is a forced transfer of program execution that occurs because of
some external event, such as the completion of an I/O transfer. The state of
the processor prior to the interrupt is saved on the stack so that processing
can continue smoothly after the return from the interrupt. The processor
saves the Processor Status word, or PS, which reflects the current machine
state, and the Program Counter, or PC, which indicates the return address.

Next, the processor loads new contents for the PC and PS from two preas-
signed locations in low memory, called an interrupt vector. These words con-
tain the address of the interrupt service routine and the new PS, which indi-
cates the new processor priority. When the interrupt service routine
completes, it executes an RTI instruction, which restores the old PS and PC
from the stack, and execution resumes at the interrupted point in the origi-
nal program.

6.2.2 Device and Processor Priorities

Interrupt processing is closely related to device and processor priorities.
Figure 6-1 illustrates the RT-11 priority structure. Each device on the sys-
tem has a priority assigned to it and devices that must be serviced as soon as
possible after they interrupt have the highest priority. DECtape, for exam-
ple, has priority 6; disks typically have priority 5; terminals and other
character-oriented devices usually have priority 4. This priority system has
been carefully designed and in general is adjustable through a pluggable

priority selector on each I/O device interface. You can control the ordering of

devices with the same priority. For these devices, the one closest to the CPU
on the bus is serviced before other devices when interrupts occur
simultaneously.

Figure 6-1: RT-11 Priority Structure

PROCESSOR PRIORITY SOFTWARE PRIORITY

oo

DEVICE HANDLERS
AND
INTERRUPT SERVICE ROUTINES
FORK —— FORK LEVEL
FOREGROUND COMPLETION ROUTINES
FG < FOREGROUND MAINLINE
BACKGROUND COMPLETION ROUTINES
BG ————< BACKGROUND MAINLINE

NULL JOB ————— MONITOR’'S IDLE LOOP

The central processor operates at any one of eight levels of priority, from 0 to
7. (The LSI processor is an exception; it operates at either 0 or 7.) When the
CPU is operating at priority 7, no device can interrupt it with a request for
service. When the CPU is operating at a lower priority, only a device with a
higher priority can cause an interrupt. You can adjust the processor’s prior-
ity from within an interrupt service routine by modifying the Processor

Interrupt Service Routines 6-3



Status word. In an RT-11 system, software tools are provided to do this for
you, so you never directly modify the PS yourself. The tools include the
.MTPS and .MFPS programmed requests, and the .INTEN and .FORK

macros.

The interrupt system allows the processor to continually compare its own
priority with that of any interrupting devices and to acknowledge the device
with the highest level above the processor’s. This system can be nested —
that is, the servicing of one interrupt can be left in order to service an inter-
rupt with a higher priority. Service continues for the lower priority device
when the higher priority device is finished.

See the PDP—11 Processor Handbook for your computer for more informa-
tion on priorities and interrupts. See also the Peripherals Handbook, the
Microcomputer Handbook, the Terminals and Communications Handbook
and the Memories and Peripherals Handbook.

6.2.3 Processor Status (PS) Word

The Processor Status (PS) word occupies the highest address on the I/O page.
(Again, the LSI processor is an exception; its PS is not addressable on the I/O
page. The monitor refers to the PS by using the MTPS and MFPS instruc-
tions.) It contains information on the current status of the machine. This
information includes the current processor priority, current and previous
operational modes, the condition codes describing the results of the last
instruction, and an indicator to cause the execution of an instruction to be
trapped (used for program debugging).

Figure 6-2 illustrates the bits in the PS. Bits 5 through 7 determine the cur-
rent processor priority. (In an LSI system, only bit 7 determines the priority;
priority is either 0 or 7.) By changing bits, you alter the CPU’s priority. You
can change the priority to 7, for example, to prevent any more interrupts
from occurring. When you are servicing a particular interrupt, you can
change the processor priority to the priority of that device so that only
devices with a higher priority will interrupt that service routine.
(Specifically, the device you are servicing cannot interrupt.) In general, you
need not access the PS yourself; use the macros provided in RT-11, such as
INTEN and .FORK, to change the processor priority.

In-Line Interrupt Service Routines Versus Device Handlers

Because both non-interrupt programmed I/O and interrupt-driven I/O are
valid processes in an RT-11 system, when you need to interface a new device
to your system — one that is not already supported by RT-11 — your first
decision must be whether to use in-line interrupt service or to write a device
handler for it. Whatever your decision, both interrupt service routines and
device nandlers can include non-interrupt programmed I/O sections as well
as interrupt-driven code. The normal RT-11 interface between the monitor
and a peripheral device is a device handler, which exists as a memory image

6—4 Interrupt Service Routines




om

' Figure 6-2: Processor Status (PS) Word

15 14 13 12 11 10 8 7 5 4 3 2 1 0

N " e——

—m= CONDITION CODES

= T BIT

— PRIORITY

= GENERAL REGISTER SET *
= PREVIOUS MODE *

-»— CURRENT MODE *

* XM ONLY

file on a mass storage device, and resides in memory when it is needed to
perform device I/O (see Chapter 2). A device handler usually includes an
interrupt service routine within it.

If you choose to use an interrupt service routine, you must place the routine
within your program so that your program directly changes the status and
buffer registers for a specific device, and it can service the interrupts within
its own code. This means, of course, that the interrupt service code must
always be resident in memory.

On the other hand, if you choose to use a device handler, the interrupt serv-
ice code is contained within the handler, not in your program. You issue
READ and .WRITE programmed requests from your main program, and the
monitor and the handler together initiate the data transfer, service the
interrupts, and notify your program when the transaction is done. In an SJ
system, or for a background job in FB, the handler must be resident only
when your program actually needs it to perform I/O. (That is, the handler
must be resident whenever a file or channel is open.) For foreground jobs and
system jobs in an FB or XM system, you must load the handler (by using the
monitor LOAD command) before you execute your program, so that the han-
dler is always resident.

How you decide which method is more suitable for your new device depends
largely on how you want the device to appear to system and application pro-
grams. In general, you should use in-line interrupt service for sensor or con-
trol devices, such as analog-to-digital converters. You should service devices

Interrupt Service Routines 6-5



that appear to be block-replaceable, file-structured mass storage devices,
such as disks and diskettes, through device handlers. You can service most
communications hardware by either method; the decision rests on other
criteria.

The two major advantages of in-line interrupt service routines are their
speed and the amount of control information they provide. Because there is
no monitor overhead involved in a data transfer, an in-line routine can often
handle interrupts faster than a device handler can. If the speed of servicing
interrupts is crucial to your application, you may choose to write an in-line
interrupt service routine even if the device is a disk.

An in-line routine has access to all the device control and status registers for
a device, as well as its data buffer registers. (Of course, a device handler has
access to all the same registers, but the program using the handler does not.)
It can pass a lot of information to the program. This provides a great deal of
flexibility in the way the program calls the interrupt service routine, and in
the amount of information the routine returns to it.

The three major advantages of using device handlers are that they provide
device independence for your programs, they can share processor time with
other processes, and they are simple to use. Device handlers have a standard
protocol for interfacing to the RT—11 monitor. There is also a standard proto- -
col for the interface between the monitor and a program, so that any pro-
gram that conforms to the monitor standards can use the handler. This
includes application programs, system utility programs, and RT-11 lan-
guage processors such as MACRO-11, FORTRAN IV, and BASIC-11. Thus,
the device handler makes a new device available to a large number of pro-
grams without any special modification. (In addition, a device handler for a
random-access device makes the RT-11 file system available on the device
at no extra cost.) In contrast, an in-line interrupt service routine makes the
new device available to just one application program.

Device handlers are easy to use. Because they are the standard RT-11
means of handling device I/O, the procedure for writing them and using
them is clear and straightforward. This procedure is simplified further by
the fact that RT-11 provides macros to write a handler; there are also key-
board monitor commands that install handlers into the monitor device
tables and load them into memory. In addition, a device handler permits you
to take advantage of the monitor programmed requests for performing data
transfers. Finally, a device handler is the only way you can interface a
device to a virtual job in an XM system.

Figure 6-3 highlights some differences between in-line interrupt service
routines and device handlers.

If you decide that your new device requires an in-line interrupt service rou-
tine, read the rest of this chapter to learn how to plan and write one. If you
decide that a device handler is more suitable, read the rest of this chapter
and then go on to Chapter 7 to learn how to plan, write, and debug a handler.

66 Interrupt Service Routines



Figure 6-3: In-Line Interrupt Service Routines and Device Handlers

DEVICE

IN-LINE INTERRUPT SERVICE ROUTINE

SPECIALIZED
APPLICATION
PROGRAM

IN-LINE
INTERRUPT
SERVICE
ROUTINE

DEVICE

DEVICE
HANDLER

- INTERRUPT
SERVICE
ROUTINE

RMON

APPLICATION
PROGRAM

UTILITY
PROGRAM

FORTRAN
v

BASIC-11

MACRO-11

APPLICATION
PROGRAM

DEVICE HANDLER

Interrupt Service Routines 6-7



6.4 How to Plan an Interrupt Service Routine

The most important part of writing an in-line interrupt service routine is
taking the time to plan carefully. Follow these guidelines:

® Get to know your device

@ Study the structure of an interrupt service routine
® Study the skeleton interrupt service routine

@ Think about the requirements of your program

® Prepare a flowchart of your program

® Write the code

® Test and debug the program

6.4.1 Getto Know Your Device

Getting to know your new device is crucial to writing an interrupt service
routine that works correctly. If your device is a DIGITAL peripheral, consult
the hardware reference manual for that device. You can also learn a lot from
the PDP—-11 Peripherals Handbook. If your device is not from DIGITAL,
study the documentation for it carefully. Regardless of the format of the doc-
umentation (whether it is a manual, a brochure, or a set of engineering
prints), it should contain the vital information you need to support it on a
PDP-11 system. Be sure you obtain this information.

In any case, you must understand how the device operates: what it needs
from you, and how it handles data transfers. Use the following checklist to
make sure you have enough device-specific information to write the service
routine. Do not attempt to write any code until you have considered each
question.

Some of the following questions do not apply to all types of devices. Some are
for mass storage devices, some are more appropriate for sensor devices or
communications devices. Consider each question carefully, though, to see if
it applies to your device.

® What is the interrupt vector (or vectors) for the device?

Decide what the interrupt vector should be. Consider both conflicts with
existing RT-11-supported devices and also conflicts with devices sup-
ported by other PDP-11 operating systems, if you use those systems. Once
you decide on the vector, make sure the device is installed properly and
that the hardware is jumpered to that address. RT-11 requires all vectors
to be below location 500 and some low-memory locations are not available
for use as vectors. Chapter 2 lists the current PDP-11 vector assignments.

® What are the control and status registers?

Learn where these registers are located and what the bits in each mean.

6-8 Interrupt Service Routines



nm

What is the priority for the device?

Is the device DMA (Direct Memory Access) or programmed transfer
(word- or character-oriented)?

What are the data buffer registers?
Learn where these registers are located and what the bits in each mean.
What are the op codes for typical operations?

Learn how to initiate the various operations by manipulating the bits in
the device registers. Device handlers tend to perform read, write, seek,
and reset operations.

When does the device interrupt?

Some devices interrupt for each character; others are word-oriented,
block-oriented, or packet-oriented. Some devices interrupt twice for cer-
tain operations, such as seek or drive reset. Find out if your device does
this, and plan now to take this information into account later.

What is the basic unit for data transfers?

This relates to the previous question, of course, but you must determine
whether to send I/O requests to the device as byte, word, or block counts.
If, for example, your program deals in terms of words and the device is
character-oriented, you may have to convert the word count to a byte
count in the service routine.

Does the device want a positive or negative byte count?

Some devices require a negative byte or word count. If your device is one
of those, you may need to negate the count in the service routine.

What is the device structure, or geometry?

If the device is a disk, find out how the cylinders, tracks, and sectors are
structured. Determine their size. Find out if the device requires interleav-
ing, and, if so, learn how to optimize for speed. (Interleaving describes the
process for writing data to a spinning device that requires program inter-
vention between sectors. The disk is constantly moving; data is written
into one sector, the program intervenes as the adjacent sector spins past,
then more data is written into the next available sector.)

What is the buffering arrangement?

Some devices transfer data to your program one character at a time.
Others buffer data internally in a silo, or send it in packets. Decide how to
buffer the data in your program. Make sure the buffer space you allocate
is large enough.

How do you calculate the address of the data on the device?

This relates to the device’s structure. Study the device now and determine
how to find the data you want on it. Note that RT-11 block numbers must

Interrupt Service Routines 6-9



be converted to device-specific addresses. Note also that some processors
have no multiply or divide instructions.

® What “housekeeping” operations does the device require?

Some devices require a drive reset before a retry. Others require that the
device be selected or that a disk pack be acknowledged before you can per-
form any operations on it. You must do a drive reset after a seek incom-
plete or a drive error, for example.

® How will you handle errors and exception conditions?

First you must decide which errors are hard and will abort the transfer,
and which errors are soft and will retry the transfer. Some typical soft
errors include checksum errors, data late errors, and timing errors.
Decide how many times you will retry the transfer for soft errors, and how
you will handle a hard error condition.

® What are the abort considerations?

Consider whether the device is relatively fast or slow. Keep in mind that
you do not want to issue a controller reset if only one unit of a two-unit
controller is affected by a program’s abort because this can interfere with
the operation of the second unit. Similar considerations may apply to
dual-ported devices.

6.4.2 Study the Structure of an Interrupt Service Routine

Section 6.5 describes the structure of an interrupt service routine. Read this
section carefully. Appendix C contains a sample application program that
does in-line interrupt service. Read that program, too, and study its struc-
ture.

6.4.3 Study the Skeleton Interrupt Service Routine

Section 6.6 contains a skeleton outline of a foreground job with an in-line
interrupt service routine. Study this outline to be sure you understand the
flow of execution.

6.4.4 Think About the Requirements of Your Program

Remember that the interrupt service routine is part of your program and
decide where to place it in the program. Review the material in Chapter 2 on
swapping the USR. If you plan to execute your program in an XM system,
read Section 6.7 for XM considerations.

6.4.5 Prepare a Flowchart of Your Program
Many experienced programmers prepare flowcharts after all their programs

are written, or they omit them entirely. However, flowcharting a system
with the complexities of interrupt service can help you find loose ends and

6-10 Interrupt Service Routines



Lm

point out errors in your logic. Flowcharts are not much help, unfortunately,
in pointing out potential race conditions. (A race condition is a situation in
which two or more processes attempt to modify the same data structure at
the same time; as a result, the data structure is corrupted and the integrity -
of the processes is compromised. It may be caused by a device interrupting
while its interrupt service routine is running, due to improper processor pri-
ority.) When you design your program, examine every step carefully; keep in
mind what would happen if an interrupt occurred at each instruction. This
kind of planning can help you avoid race conditions later.

Spend enough time to design a clean and straightforward way of handling
error conditions; if your program can handle error conditions well, you will
probably find that the rest of your program design works well too.

6.4.6 Write the Code

If you have followed the recommended steps so far, writing the code for the
interrupt service routine itself should be relatively simple. You can borrow
as much code as possible from other interrupt service routines you have
studied. Start with a general outline, then add details to reflect the specifics
of your particular device. When you are satisfied with the code, have
checked it thoroughly for logic errors, and it assembles properly, you are
ready to test and debug it.

6.4.7 Testand Debug the Program

The only way to test a program with in-line interrupt service is to try
executing it. If the program is operating correctly, it should be able to read
or write data accurately, should not lose any data, and should handle error
conditions properly. Try executing the program in a test situation with data
you have prepared. If you find errors, link the program with ODT (not VDT)
and try running it step by step. Make coding corrections, reassemble the pro-
gram, and retry it as necessary.

6.5 Structure of an Interrupt Service Routine

The following sections outline the general structure of an in-line interrupt
service routine. Read them carefully and determine which items apply to
your own situation.

6.5.1 Protecting Vectors: .PROTECT

In FB or XM systems where more than one job can be running, you should
use the .PROTECT programmed request to protect an interrupt vector
before you move a value to it. This process makes sure that the vector does
not already belong to the monitor or to another job. It gives ownership of the
vector to your job, and protects it from interference from another job or the

Interrupt Service Routines 6-11



6-12

monitor by setting bits in the monitor bitmap. (Chapter 3 describes the low-
memory bitmap in detail.) Your job should abort immediately if the
PROTECT request fails; your job must not access a vector that is already in
use. See Sections 6.5.2 and 6.6 for examples of how to use PROTECT.

See the RT-11 Programmer’s Reference Manual for the format of the
PROTECT programmed request.

Even though the PROTECT request has no meaning in an SJ system, it is
advisable to use it in your program. The request takes no action, returning
immediately to your program, yet using it simplifies conversion later if your
program needs to run in an FB environment.

6.5.2 Setting Up the Interrupt Vector

Your program must take care of moving the address of your interrupt serv-
ice routine to the first word of the interrupt vector. RT-11 requires all inter-
rupts to raise the processor priority to 7, so your program must fill in the sec-
ond word of the interrupt vector with 7 as the new priority. The following
lines of code show a typical way for a program to set up the two-word inter-
rupt vector. Note that a program should not set up a vector until the vector
is protected. For this example, assume the device name is XX, and the inter-
rupt vector is at 220 and 222.

HHYVEC = 220 SDEFINE THE VECTOR

PR7 = 340 FPRIORITY 7 = 340
H
5 The entry pPoint for the interrurt service routine is ISREP:
i

+PROTECT #AREA ,#XXVEC iPROTECT THE VECTOR
BCS NOVEC SVECTOR IN USE

Mouv #ISREPsB#XXVEC 3$SET UP FIRST WORD
Moy #PR7,8#XXVEC+2 $SET UP SECOND WORD

6.5.3 Stopping Cleanly: .DEVICE

The .DEVICE programmed request is meaningful only in FB and XM sys-
tems. Its purpose is to turn off a device (by clearing its interrupt enable bit)
if its associated program is aborted with CTRL/C, or when the program
exits. (See the RT—11 Programmer’s Reference Manual for the format of the
DEVICE programmed request. See Section 6.6 of this manual for an exam-
ple using .DEVICE.)

This request is not required in an SJ environment. However, even though
the request has no meaning in an SJ system, it is advisable to use it in your
program. The request takes no action, returning immediately to your pro-
gram, yet using it simplifies conversion later if your program needs to run in
an FB environment.

Interrupt Service Routines



im

When a program in SJ exits, the monitor waits for all I/O to finish if there is
an active queue element outstanding. In FB, when a program exits, the
monitor not only waits if there is an active queue element outstanding, but
in addition, it enters the device handler at its abort entry point. If a job is
aborted with CTRL/C, or if it issues a .HRESET request, the SJ monitor
executes a hardware reset to stop I/O on all devices. If you are designing the
hardware for your device, make sure that it stops cleanly when it receives
the bus-initialize signal.

6.5.4 Lowering Processor Priority: .INTEN

When an interrupt occurs, control passes to your interrupt service routine
entry point, the address you supplied as the first word of the interrupt vec-
tor. At this point, the processor priority is 7, and all other interrupts are pro-
hibited. If you need to do anything with all interrupts disabled, this is where
the code belongs. It should be as short and efficient as possible and should
not destroy the contents of any registers. If this code needs to use registers, it
must save them and restore them before issuing the .INTEN call. If the code
executed at priority 7 is too long, system interrupt latency (a measure of how
quickly the system can respond to an interrupt) will suffer. A good guideline
is to spend no more than 50 microseconds at priority 7.

You should lower the processor priority to that of the device as soon as possi-
ble. This means that only devices with a higher priority than this one will be
able to interrupt its service routine. To lower the priority, use the INTEN
programmed request. The stack pointer and general registers RO through
R5 must contain the same values when your interrupt service routine issues
the .INTEN request as they did at the interrupt entry point. If your inter-
rupt service routine is not written in Position-Independent Code (PIC), use
the following format:

INTEN prio
The INTEN call generates the following code:

JSR RS @54
+WORD "C<PRIO*40:8340

If your interrupt service routine is written in PIC, use the .INTEN call with

. a second argument, PIC. (The argument can actually be anything at all, as

long as it is not blank.)
INTEN prio,PIC

The second format generates Position-Independent Code:

Mouw B#534,-(SP)
JSR RS s@(5P)+
+WORD "C<PRIO*40:x8340

Interrupt Service Routines 6-13



Both formats cause a JSR to the monitor’s INTEN routine, which lowers the
processor priority, and, in FB and XM, switches to system state. The monitor
then calls the interrupt service routine back as a co-routine. R4 and R5 are
available for use on return from the call. You must not destroy the contents
of any other registers. If you need RO through R3, save them on the stack or
in memory and restore them before you exit. If you need to preserve values
across the .INTEN request, you must save them in memory before the call
and restore them after it. Likewise, if the contents of the PS are important,
such as the values of the condition bits, you should save them before issuing
the .INTEN call. Since .INTEN causes a switch to the system stack in FB
and XM, you should avoid using the stack excessively once you are in your
interrupt service routine. Save and restore registers and the PS, as neces-
sary, by using memory locations instead of the stack.

NOTE

Saving values in memory locations may prevent your inter-
rupt routine from being re-entrant. If you intend to use the
routine for multiple devices, be careful about re-entrancy
when you design it.

(See the RT—11 Programmer’s Reference Manual for more information on
INTEN. See Section 6.6 of this chapter for an example using .INTEN. See
Section 6.5.7 for a summary of the interrupt service routine macro calls.)

6.5.5 Issuing Programmed Requests: .SYNCH

The .SYNCH call is useful mainly in the FB and XM environments. Its pur-
pose is to make sure that the correct job is running when an interrupt serv-
ice routine executes a programmed request. Even though the .SYNCH call
has no meaning in an SJ system, it is advisable to use it in your program.
The request takes no action, returning immediately to your program, yet
using it simplifies conversion later if your program needs to run in an FB
environment. (For the complete expansion of this macro, see the listing of
the system macro library in the RT—11 Programmer’s Reference Manual.)
See the RT-11 Programmer’s Reference Manual for the format of the
.SYNCH request.

If you need to issue one or more RT—11 programmed requests from the inter-
rupt service routine, you must first issue the .SYNCH call. Remember that
the .INTEN call switched execution to system state, and programmed
requests can only be made in user state. The .SYNCH call itself handles the
switch back to user state. Note that you should never issue programmed
requests requiring the USR from within an interrupt service routine, even
after using .SYNCH. You can also issue .SYNCH after .FORK, which is cov-
ered in Section 6.5.6. When you issue the .SYNCH call, RO through R3 and
the stack pointer must contain the same values as they did when the
INTEN request returned to you.

6-14 Interrupt Service Routines



Table 6-1 illustrates the format of the synch block, which acts like a comple-
tion queue element. The information in the seven-word synch block is placed
at the head of the appropriate job’s completion queue. Therefore, the code
following the .SYNCH request executes as a completion routine, in user
state, at priority 0. Because of this, your program must either disable inter-
rupts before the .SYNCH call, or it must be prepared for the device to inter-
rupt again before the .SYNCH code executes. The synch block is available
for reuse when Q.COMP (offset 14 octal) is 0. You can test the synch block
easily by issuing another .SYNCH. If control passes to the error return (the
word following the .SYNCH call), the block is still in use.

Table 6-1: Synch Block

Offset Name Agent Contents
0 Q.LINK — Reserved
2 Q.CSW user Job number
4 Q.BLKN — Reserved
6 Q.FUNC — Reserved
10 Q.BUFF user RO argument to pass
12 Q.WCNT monitor -1
14 Q.COMP user Assemble a value of 0 here; the mon-
itor then maintains the contents of
this word

In general, a long time can elapse between the .SYNCH call and the return.
First, the monitor switches to user state, and a scheduling pass is required to
determine whether or not a context switch is also necessary. Then a back-
ground completion routine may have to wait for a compute-bound fore-
ground job to become blocked. So, it may take a considerable amount of time
before the code following the .SYNCH actually executes.

In the code following the .SYNCH call, RO and R1 are free for use, as they
are in any completion routine. However, you must preserve R2 through R5 if
your .SYNCH routine uses them. This poses a problem for R4 and R5, which
are not preserved across the call. If their contents are important, save them
in memory before the .SYNCH call. You can use Q.BUFF in the synch block
to pass a value into RO for the synch routine.

The .SYNCH call has an unusual error return. The first word after SYNCH
is the return address on error; the second word after .SYNCH is the return
on success. See Section 6.6 for an example using .SYNCH. See Section 6.5.7
for a summary of the interrupt service routine macro calls.

In the SJ environment, routines following .SYNCH calls (and, in fact, com-
pletion routines in general) are nested (that is, they can interrupt each
other). They are serialized in FB and XM. In SJ, the .SYNCH mechanism
simulates the FB and XM scheme but does not duplicate it.

Interrupt Service Routines 6-15



6.5.6 Running at Fork Level: .FORK

The .FORK programmed request gives you another way to lower the proces-
sor priority. (See the RT—-11 Programmer’s Reference Manual for the format
of the .FORK programmed request. For the complete expansion of this
macro, see the listing of the system macro library in that manual.)

When you issue a .FORK call, the fork block is added to a fork queue, which
is a first-in, first-out list. Fork routines (all the code following a .FORK call)
execute in system state at priority 0, after all interrupts have been serviced,
but before the monitor switches to user state. Context switching is inhibited
as well during the time fork routines are executing. (See Figure 6-1 for a
review of RT-11 priority levels.)

R4 and R5 are preserved across the .FORK call. In addition, RO through R3
are free for use after the call. Like .SYNCH, the .FORK call assumes you
have not changed RO through R3 or the stack since the INTEN call returned
to you. See Section 6.5.7 for a summary of the interrupt service routine
macro calls. Note that you cannot issue . FORK without a prior INTEN call.

You must provide a four-word block of memory for the fork queue element,
the last three words of which will contain R4, R5, and the return PC. The
first word is a link word, which must be 0 when you issue the .FORK
request. Because a .FORK routine should not be re-entrant, make sure that
the device cannot interrupt between the time you issue the .FORK call and
the time the .FORK routine (the code following the call) begins to execute.

You may not re-use a fork block until the fork routine has been entered. It is
safe to assume that the fork block is free when the call that used it returns.
See Table 6-2 for an illustration of the fork block.

Table 6-2: Fork Block

Offset Name Agent Contents
0 F.BLNK monitor Link word
2 F.BADR monitor FORK routine address
4 F.BR5 monitor R5 save area
6 F.BR4 monitor R4 save area

Generally, FORK is used in device handlers. To use it in an interrupt serv-
ice routine, you must first set up a pointer, called $FKPTR. The recom-
mended way to do this in a main program is as follows:

Mou @#54,R4
ADD 402(R4) sR4
Moy R4 $FKPTR

4
+

+

$FKPTR: +WORD 0
KKFBLK: +WORD 0403040

6-16 Interrupt Service Routines



Then, in the interrupt service routine, you can use the normal form of the
.FORK macro:

JFORK XXFBLK

The FORK macro expands as follows:

JSR RS 1@$FKPTR
+WORD KXFBLK -

In an SJ system, there is no real support for .FORK unless you select timer
support as a special feature at system generation time. Instead, the monitor
simulates the process by saving registers RO through R3 before calling the
interrupt service routine back. Beyond that, it does not attempt to serialize
fork routines. Note that in your interrupt service routine, no registers are
free for use before the INTEN call. After the INTEN, you can safely use R4
and R5. See Section 6.5.7 for a summary of the interrupt service routine
macro calls.

The .FORK request has several applications in a real-time environment
because it permits lengthy but noncritical interrupt processing to be post-
poned until all other interrupts are dismissed.

For example, the CR11 card reader handler internally buffers 80 columns of
data. It receives an interrupt once per column, and translates and moves the

character into its internal buffer at interrupt level. It then moves its inter-

nal buffer to the user buffer, a process that can take up to 2.5 msec. In RT-11
Version 2C, this process took place at priority level 6, which meant that

interrupts at this priority and lower could be locked out for this time. This

can cause data late errors on communications devices when the card reader

is active at the same time.

This problem is not solved by simply dropping priority to 0, since the card
reader could have interrupted a lower-priority device. Lowering priority
causes problems in the other device handlers that are re-entrant. Using a
.SYNCH does not always solve the problem, either, since the SJ monitor
only simulates a .SYNCH and drops priority to 0, which produces the same
problems for re-entrant handlers. The FB monitor must perform a context
switch since .SYNCH returns to the caller in user context, running on the
user stack. The context switch is a lengthy process and does not occur at all
if there is a compute-bound foreground job.

The .FORK request is the solution to the problem. It returns at priority 0,
but only when all other interrupts have been dismissed and before control is
returned to the interrupted user program. (Note that you dismiss an inter-
rupt when you leave interrupt level, by any one of several means.)

6.5.7 Summary of .INTEN, .FORK, and .SYNCH Action

Table 6-3 summarizes the effects of the .INTEN, .FORK, and .SYNCH
macro calls. Figure 6—4 describes the status of the registers for each call.

Interrupt Service Routines 6-17



Table 6-3: Summary of Interrupt Service Routine Macro Calls

Macro New New Registers Available: Your Data Preserved
Call Priority Stack to Use After Call Across Call In

INTEN device’s System R4,R5 none

.FORK 0 System RO-R5 R4,R5

.SYNCH 0 User RO, R1 RO

Figure 6-4: Summary of Registers in Interrupt Service Routine
Macro Calls

OPERATION ] RO R1 R2 R3 R4 R5

|———— CONTENTS UNKNOWN {

]

INTERRUPT

{ Y
I_—— SAVE/RESTORE IF NEEDED

' I

. INTEN
\ \ — FREE TO USE ——]
I——SAVE/RESTORE — ,
| I N N
.FORK
‘ L FREE TO USE ]
I T N N N
‘ - ‘ FREE Jﬁ' T SAVE/RESTORE T|
(LOADED (CONTAINS
WITH YOUR YOUR DATA)

DATA)

6.5.8 Exiting from Interrupt Service: RTS PC

The .INTEN request causes the monitor to call your interrupt service rou-
tine as a co-routine. At the end of your routine, when it is time to exit, use an
RTS PC instruction. This returns control to the monitor, which restores R4
and R5 and then executes an RTI instruction.

You also exit from .FORK and .SYNCH routines with an RTS PC instruc-
tion. Be sure that the stack is the same as it was upon entry, and that any
registers that must be preserved have their original contents.

6-18 Interrupt Service Routines



1|

6.5.9 Servicing Interrupts in FORTRAN: INTSET

The INTSET function is available in RT-11 to establish a FORTRAN sub-
routine that will be initiated via interrupt and that will run at interrupt
level. See the SYSLIB routines in the RT—11 Programmer’s Reference
Manual for a more complete description of INTSET.

6.6 Skeleton Outline of an Interrupt Service Routine

Figure 6-5 shows a foreground main program that contains an in-line inter-
rupt service routine. The foreground program performs some initialization
tasks and then suspends itself. When data is available from a peripheral
device the interrupt service routine collects it. When all the data is gath-
ered, the interrupt service routine resumes the main program, which can
then process the new information before suspending itself again. The main
program’s processing could involve some manipulation of the new data or it
could be writing the data to a file shared by a background data analysis job.
Note that because this example forces the job number to 2, it cannot execute
properly in a system with the system job feature present.

For this example, xx represents the device name.

6.7 Interrupt Service Routines in XM Systems

If you are not planning to execute your program in an XM environment, you
need not read this section.

Of the two kinds of jobs in an XM environment, virtual jobs and privileged
jobs, virtual jobs cannot contain in-line interrupt service routines (see
Chapter 4). By the very definition of virtual mapping, virtual jobs cannot
access the device I/O page. Therefore, they cannot set a device’s interrupt
enable bit or move data to or from a device’s data buffer register.

If a job containing an in-line interrupt service routine must run in the XM
environment, it must run as a privileged job. Privileged mapping makes the
low 28K words of memory and the I/O page available to the program and
permits the program to map portions of the user virtual address space into
extended physical memory if the program requires it.

In order to understand the restrictions that the XM environment imposes on
interrupt service routines, you must understand that when an interrupt
occurs in XM, its service routine executes with kernel, not user, mapping.
This means that whether or not the program has mapped some of its virtual
address space into extended memory, the interrupt service routine executes
with the default kernel mapping to the low 28K words of memory plus the
/O page. It makes sense, therefore, that the first XM restriction demands
that the mapping for your interrupt service routine plus any data it uses
must be identical to kernel mapping at any time that an interrupt could
occur.

Interrupt Service Routines 6-19



Figure 6-5: Skeleton Interrupt Service Routine

**¥ MAIN PROGRAM ##%

XxXVEC = wuu iTHE DEVICE VECTOR
PR7 = 340 iPRIORITY 7
DEVPRI= 5 iDEVICE PRIORITY = 5
i(0-7% NOT 000-340)
XXCSR = nnnnnn STHE DEVICE CONTROL REGISTER
IENABL =100 FINTERRUPT ENABLE BIT
START: PROTECT #LIST.,#xxVEC iPROTECT THE VECTOR
BCS ERROR FHANDLE .PROTECT ERROR
MOov #ISREPsB#xxVEC iSET UP FIRST WORD
i0OF VECTOR
MOV #PR7 ,B8#xxVEC+2 iSET UP SECOND WORD
i0OF VECTOR
+DEVICE #LIST,#DEVLST iTO DISABLE DEVICE ON

JEXIT OR ABORT

Lines of code here initialize input buffers in the service routines
initialize other Pointers and flasgs

[ JR .

PND: BIS #IENABL »@#xxCSR FENABLE INTERRUPTS
+SPND SWAIT UNTIL THERE IS SOME DATA

Lines of code here store the dataj
reset some flads

sz @ e s

BR SPND iWAIT FOR MORE DATA
DEVLST: +WORD xxCER iLIST FOR .DEVICE

+WORD 0

+WORD 0
LIST: +BLKW 3 JEMT ARG BLOCK
ERROR: iROUTINES TO HANDLE ERRORS

+

+

*% INTERRUPT SERVICE ROUTINE #*%

ISREP: STHE INTERRUPT ENTRY POINTS
iPRIORITY IS 7

INTEN DEVPRI iNOTE: NOT #DEVPRI.
iLOWER TO DEVICE PRIORITYH
iWE ARE IN SYSTEM STATE
iWITH R4 AND RS AVAILABLE.

If there is more data to collect:

an e am

BR RETURN

If there is no more data to collect:

an am am

+SYNCH #8YNBLK iGO BACK TO MAIN PROGRAM
iTO PROCESS DATA,.
BR SYNERR iSYNCH RETURNS HERE ON ERROR
+RSUM iWAKE UP MAIN PROGRAM
RETURN: RTS PC iWAIT FOR ANOTHER INTERRUPT
SYNBLK: +WORD 04240405,05-1,0 iNOTE: 2 IS THE JOB NUMBER
iFOR THE FOREGROUND JOB.
SYNERR: iPROCESS SYNCH ERROR

6-20 Interrupt Service Routines



am

Figure 6-6 shows the default kernel mapping scheme, which provides access
to the low 28K words of memory plus the I/O page. This is also the mapping
scheme for a privileged job when it first begins execution. And, this is the
mapping scheme that takes effect whenever an interrupt is serviced. (The
shaded areas in the figure represent memory that the user job cannot
access.) In Figure 6-6, the interrupt vector at 200 and 202 contains the entry
point, called ISREP:, of the interrupt service routine, and the value 340,
which represents the new PS. When an interrupt occurs, the system uses
kernel mapping to locate the interrupt service routine. In this example, it
should start at address 120000. Since privileged mapping and kernel map-
ping are identical in this diagram, the interrupt service routine is located in
physical memory exactly where the kernel mapping points, so it can execute
correctly.

Figure 6-6: Kernel and Privileged Mapping

PHYSICAL
ADDRESS SPACE

1/0 PAGE

KERNEL USER
VIRTUAL VIRTUAL
ADDRESS ADDRESS ADDRESS ADDRESS
RANGE PAR SPACE / 7 \ SPACE PAR RANGE
7

177776 7 177776
160 000 160 000

167 776 157776
140 000 140 000

137776 INTERRUPT 137776

120 000 5 ISREP: SERVICE ISREP: (120000)

120000 ROUTINE

117 776 4 17776
100 000 100 000

77776 3 3 77776
60 000 60 000

57776 57776
40 000 40 000

37776 1 1 37776
20 000 20 000

17776 0 0 17776
00 000 00 000

KERNEL PRIVILEGED
MAPPING MAPPING-UNMODIFIED

Figure 6-7 shows a privileged job that changes the user virtual address
mapping. (The shaded areas in the figure represent memory that the user
job cannot access.) You can see from the example that the interrupt service
routine cannot execute correctly when an interrupt occurs because the inter-
rupt service routine is not located in physical memory where it should be.
The memory area pointed to by the kernel mapping contains random data or
instructions. -

Interrupt Service Routines 6-21



Figure 6-7: Interrupt Service Routine Mapping Error

PHYSICAL
ADDRESS SPACE

1/0 PAGE

KERNEL INTERRUPT USER
VIRTUAL SERVICE VIRTUAL

ADDRESS ADDRESS ROUTINE ADDRESS ADDRESS
RANGE PAR SPACE SPACE PAR RANGE
177776 177776
160 000 7 7 160 000
157776 157776
140 000 6 6 140 000
137776 . 77 . 137776
) 22 120 000
(200000 ISREP: /////// \SREP: C )}

120000 =
117 776 4 117776
100 000 100 000

77776 77776
60 000 3 60 000

57776 5 57776
40 000 40 000

37776 37776
20 000 20000

17'776 202 340 0 17776
00 000 200 ISREP: 00000

T

KERNEL PRIVILEGED
MAPPING MAPPING-MODIFIED

The second restriction for interrupt service routines in XM relates to the
way the monitor uses Page Address Register (PAR) 1 with kernel mapping.
PARL1 controls the mapping for virtual addresses 20000 through 37776.
When XM is first bootstrapped with kernel mapping, the virtual addresses
map directly to the same physical addresses. However, the monitor itself
uses PAR1 to map to EMT area blocks and to user data buffers. So, when-
ever the system is running, the kernel virtual addresses in the PAR1 range
can be mapped just about anywhere in physical memory and you have no
way of controlling it. You must be sure that your interrupt service routine
and any data it needs are not located in the virtual address range mapped by
PARI. Figure 6-8 illustrates this restriction. Valid locations for interrupt
service routines, assuming that privileged mapping is identical to kernel
mapping at the time of the interrupt, are marked on the diagram as “OK”.

If your interrupt service routine needs a window into memory, it can borrow
PAR1 the same way the monitor does. It must save the contents, set the
value it needs, and restore the original contents before exiting. It can do this
at .INTEN or fork level, but not at synch level. '

NOTE

If your system uses the MQ handler to communicate among
system jobs and you have defined the conditional assembly
parameter MQH$P2=1 during system generation, all the
restrictions for PAR1 also apply to PAR2 — the range of
addresses from 40000 through 57777.

6-22 Interrupt Service Routines



om

Figure 6-8: PARI1 Restriction for Interrupt Service Routines

ADDRESS
RANGE PAR

KERNEL
VIRTUAL
ADDRESS
SPACE

177776
160 000

157776
140 000

137776
120 000

ADDRESS SPACE

USER
VIRTUAL
ADDRESS

ADDRESS
PAR RANGE

\ SPACE

177776
160 000

OK

157 776
140 000

oK

117776
100 000

77776
60 000

137776
120 000

oK

657776
40000

117776
100 000

OK

37776
20 000

77776
60 000

oK

17776
00000

57776
40000

One final piece of information is important if you use .SYNCH in your inter-
rupt service routine. The lines of code following .SYNCH execute almost like
a completion routine. Completion routines in XM execute with the user reg-
isters, the user stack, and with user mapping. But, since the code following
.SYNCH is still part of an interrupt service routine, it executes with the
user registers, but with kernel mapping. So, the code following a .SYNCH
call in XM must observe the same restriction as the main body of the service
routine: its mapping must be identical to kernel mapping at any time that
an interrupt could occur, or any time the completion routine could be execut-

37776
20 000

oK

17776
00 000

J

PRIVILEGED
MAPPING-UNMODIFIED

ing. Of course, it must observe the PAR1 and PAR2 restrictions as well.

Interrupt Service Routines 6-23







om

Chapter 7
Device Handlers

To write a device handler, you first need to know what points to consider in
the planning stage. These points are listed and cross-referenced in the first
sections of this chapter. The points that have not been treated elsewhere in
this manual are then described in detail. The structure of a standard han-
dler and a skeleton outline of a typical handler are covered here. After this,
details are given on the optional features available to handlers and their
implementation. Optional features include internal queuing, SET options,
device I/O time-out support, special functions, error logging, and special
services available in XM systems.

To write a bootstrap for a system device, you first need to know the differ-
ences between a standard handler and a system device handler. These differ-
ences are discussed in several sections before the final sections of the chap-
ter, where you will find explained the assembly, installation, testing, and
debugging procedures for the new handler.

Be sure to read Chapter 6, Interrupt Service Routines, before you read about
device handlers. Section 6.3 of that chapter can help you decide whether you
need to write an in-line interrupt service routine or a device handler.

7.1 How to Plan a Device Handler

The most important part of writing a device handler is taking the time to
plan the whole process carefully. Follow these guidelines:

@ Get to know your device

e Study the structure of a standard device handler
e Study the skeleton device handler |
e Think about using the special features

e Study the sample handlers

® Prepare a flowchart of the device handler

® Write the code

e Install, test, and debug the handler

7-1



7.1.1 Getto Know Your Device

Learning about the characteristics of your device and the bus interface is
crucial to writing a handler that works correctly. Review the material in
Section 6.4.1 so that you can answer all the pertinent questions about your
device before you attempt to write a handler for it.

7.1.2 Study the Structure of a Standard Device Handler

Section 7.2 describes the structure of a standard device handler. Read this
section carefully; your handler must conform to this structure.

7.1.3 Study the Skeleton Device Handler

Section 7.3 contains a skeleton outline of a standard device handler. You can
use this outline as a starting point when you begin to write your own han-
dler.

7.1.4 Think About Using the Special Features

Sections 7.4 through 7.9 describe the special features available to device
handlers. Read these sections carefully to determine whether any of the fea-
tures are applicable to your handler.

7.1.5 Study the Sample Handlers

Appendix A contains assembly listings of three RT—11 device handlers (RK,
DX, and PC) with extensive explanatory comments. Study these listings
until you feel comfortable with the organization of the handlers, and you
understand how they implement some of the special features. Obtain list-
ings of handlers for other devices that resemble yours; you may be able to
use some of the code that is already written.

7.1.6 Prepare a Flowchart of the Device Handler

Preparing a flowchart for your handler can help you plan the contents of the
various sections. Flowcharting can also help you spot loose ends and errors
in your programming logic. Unfortunately, flowcharts are not much help in
pointing out potential race conditions. (A race condition is a situation in
which two or more asynchronous processes attempt to modify the same data
structure at the same time; as a result, the data structure is corrupted and
the integrity of the processes is compromised.) Therefore, when you design
the handler, examine every step carefully and keep in mind what would
happen if an interrupt occurred at each instruction. This kind of planning
can help you avoid race conditions later.

7-2 Device Handlers



am

7.1.7 Write the Code

If you have followed the recommended steps so far, writing the code for the
device handler should be relatively simple. You must write Position-
Independent Code (PIC) for the handler. Review the chapter on PIC code in
the PDP—11 MACRO-11 Language Reference Manual if you are not already
familiar with it. Copy as much code as possible from the commented device
handlers in Appendix A, or from other reliable sources. Start with a general
outline that conforms to the structure presented in Section 7.2 and then add
details to reflect the specifics of your particular device. When you have thor-
oughly checked the code for logic errors and it assembles properly, you are
ready to test and debug it.

7.1.8 Install, Test, and Debug the Handler

Sections 7.11 and 7.12 show how to install a new device handler and how to
begin testing and debugging it.

7.2 Structure of a Device Handler

An RT-11 device handler consists of the following six sections:

Preamble
Header

I/0 initiation

Interrupt service

I/O completion

Handler termination

Each section is a separate logical unit, containing code for a particular pur-
pose. Because the RT-11 system macro library provides special macros to
generate much of the required code for these sections, the actual lines of code
that you write yourself are not too complex.

Before you read ahead, take a minute to glance over the sample device han-
dlers in Appendix A and get a feel for the overall structure of the handlers.
Also refer to Figure 7-12, which illustrates the layout of the .SYS image of a
device handler.

7.2.1 Preamble Section

The device handler source file begins with the preamble section, which
includes an .MCALL directive for the DRDEF macro and any other macros
you need that this chapter does not explicitly mention. The preamble also
provides definitions for symbols that you will use later. Much of the work in
the preamble is done by the DRDEF macro.

Device Handlers 7-3



7.2.1.1 .DRDEF Macro — Use the .DRDEF macro near the beginning of your
device handler. This macro performs most of the work of the preamble sec-
tion. Its functions are to:

® Issue .MCALL directives for all handler-related macros

Provide default values for the key system conditionals

Invoke the .QELDF macro to define queue element offsets

Define bit patterns for device characteristics

Define ddDSIZ as the device size in blocks

Define dd$COD as the device identification

Set up the device status word from information in ddDSIZ and dd$COD

Provide default values for the device CSR in dd$CSR and vector in
dd$VEC

® Make the symbols dd$CSR and dd$VEC global

dd represents the two-character device name. The format of the .DRDEF
macro call is as follows:

.DRDEF name,code,stat,size,csr,vec
name is a two-character device name, such as RK for the RK05 disk handler.

code is the octal numeric value that uniquely identifies the device. See
Section 7.2.1.2.

stat is the device status bit pattern. Your value for stat can use the following
symbols (described in Section 7.2.1.3):

FILST$ WONLY$ HNDLR$
RONLY$ SPECL$ SPFUNS$

size is the size of the device in 256-word blocks; use a value of 0 if the device
is not file-structured (see Section 7.2.1.4).

csris the default value for the device’s control and status register.

vec is the default value for the device’s interrupt vector.

.MCALL Directive

The .DRDEF macro issues the MCALL directive for the following macros:
.DRAST .DRBEG .DRFIN

.DRBOT .DREND .DRSET

.DRVTB .FORK .QELDF

In addition, if you assemble your handler with the conditional TIMS$IT set to
1, .DRDEF issues an .MCALL directive for these macros:

.TIMIO and .CTIMIO

74 Device Handlers



System Generation Conditionals

RT-11 source files make extensive use of conditional assembly directives.
Sections of source code are included or omitted at assembly time, based on
the value of conditional symbols. For example, RT-11 uses the conditional
ERLS$G to indicate whether routines for error logging should be assembled.

If you use conditional symbols in your handler, you should conform to RT-11
standard usage by setting the conditional equal to 0 to indicate that the fea-
ture it represents is not to be included and by setting the conditional to 1 to
include the feature. (Note that RT—11 uses only the values 0 and 1 to indi-
cate absence or presence of a feature.) See the PDP-11 MACRO-11
Language Reference Manual for information on the conditional assembly
directives .IF EQ, .IF NE, and so on.

The .DRDEF macro sets to 0 the system generation conditionals TIMSIT (for
device time-out), MMG$T (for extended memory support), and ERL$G (for
error logging), if you do not define them in a prefix file at assembly time. In
addition, if the symbols have values other than 0, DRDEF sets them to 1.

Queue Element Offsets

The .DRDEF macro invokes .QELDF to define queue element offsets sym-
bolically. The following example shows the queue element offsets generated.
(See Section 7.9.3 for the queue element in XM systems.)

Q.,LINK=0 (Link to next queue element)
Q.,CSW=2, (Pointer to channel status word)
Q.BLKN=4, (Physical block number)
Q.,FUNC=G. (Special function code)

Q. JNUM=7, (Job number)

Q.UNIT=7, (Device unit number)
Q.BUFF="010 (User buffer address)

Q.WCNT="012 (Word count)
Q.,COMP="014 (Completion routine code)
Q.ELGH="016 (Length of queue element)

Since the handler usually deals with queue element offsets relative to
Q.BLKN, the .QELDF macro also defines the following symbolic offsets:

Q$LINK=-
QECEW=-2
Q$BLKN=0
G$FUNC=2
Q% JINUM=3
Q$UNIT=3
Q$BUFF=4
QEWCNT=6
Q$COMP=10

Symbol Definitions

Use direct assignment statements to define symbols that you will use later
in the handler. Typically, the definitions include the device registers and
other useful internal symbols. Some examples from RT-11 device handlers
follow.

Device Handlers 7-5



To define an internal symbol for line feed (ASCII 12):

LF = 12

To define other device registers:

RKDS = RK$CSR
RKER = RKDS+2
RKCS = RKDS+4
RKWC = RKDS5+6

FJASCII FOR LINE FEED

iDRIVE STATUS REGISTER
JERROR REGISTER

iCONTROL STATUS REGISTER
iWORD COUNT REGISTER

The .DRDEF macro defines the following symbols for you:

HDERR$=1
EOF$=20000

iHARD ERROR BIT IN THE CSHW
END OF FILE BIT IN THE CSW

7.2.1.2 Device-ldentifier Byte — The low byte of the device status word, the
device-identifier byte, identifies each device in the system. You specify the
correct device identifier as the code argument to .DRDEF. The values are
currently defined in octal as Table 7—1 shows.

Table 7-1: Device-Identifier Byte Values

Name Code Device
RK 0 RKO05 Disk
DT 1 TC11 DECtape
EL 2 Error Logger
LP 3 Line Printer
TT,BA 4 Console Terminal or Batch Handler
DL 5 RL01/RLO2 Disk
DY 6 RX02 Diskette
PC 7 PC11 Reader/Punch
10 Reserved (V2 PP handler)
MT 11 TM11/TMAII/TU10/TS03 MAGtape
RF 12 RF11 Disk
CT 13 TA11 DECassette
CR 14 CR11/CM11 Card Reader
15 Reserved
DS 16 RJS03/RJS04 Fixed-Head Disk
17 Reserved
MM 20 TJU16/TU45 MAGtape
DP 21 RP11/RP02/RP03 Disk
DX 22 RX11/RX01 Diskette
DM 23 RK06/RK07 Disk
24 Reserved
NL 25 Null Device
26-30 Reserved (DECnet)
31-33 Reserved (CTS-300)
DD 34 TU58 DECtape I1
MS 35 TS11/TS04 MAGtape
PD 36 PDT-11/130
PD 37 PDT-11/150
40 Reserved

7—6 Device Handlers

(Continued on next page)



im

Table 7-1: Device-Identifier Byte Values (Cont.)

Name Code Device
LS 41 Serial Line Printer
MQ 42 Internal Message Handler
DR 43 DRV11J Interface (MRRT)
XT 44 Reserved (MRRT)
45 Reserved
LD 46 Logical Disk Handler
VM 47 KT11 Pseudo-Disk Handler
DU 50 MSCP Disk Class Handler (RA80, RC25)
SL 51 Single-Line Editor

To create device-identifier codes for devices that are not already supported
by RT-11, start by using code 377 octal for the first device, 376 for the sec-
ond, and so on. This procedure should avoid conflicts with codes that RT-11
will use in the future for new hardware devices.

7.2.1.3 Device Status Word — The device status word identifies each unique
physical device in an RT-11 system and provides other information about it,
such as whether it is random- or sequential-access. The value of the status
word is stored in block 0 of the handler file and in the $STAT table when the
device is installed; the .DSTATUS programmed request returns this value
to a running program. The .DRDEF macro sets up the device status word
based on the arguments code and stat.

Table 7-2 shows the meaning of the bits in the device status word. The
.DRDEF macro uses the symbol ddSTS to represent the device status word.

Note that bit 11 in the status word should be set for device handlers that
remove the queue element on entry and queue internally, and for devices
such as magtape that have internal data that could need modification on
abort. See Section 7.4 for more information on device handlers that do their
own queuing. See Section 7.8.5 for details on special devices (such as
magtape).

All device handlers that have bit 15 set are assumed to be RT-11 file-
structured devices by most of the system utility programs.

An easy way to define the device status word is to use the mnemonics for-the
bit patterns that .DRDEF defines for you. Thus, you can create the staf argu-
ment by ORing together the appropriate symbols from the list below.

FILSTS$ == 100000 ;FILE STRUCTURED RANDOM ACCESS

RONLY$ == 40000 ;READ ONLY

WONLY$ == 20000 ;WRITE ONLY

SPECL$ == 10000 ;NODIRECTORY

HNDLR$ == 4000 ;ENTER HANDLER ON ABORT

SPFUN$ == 2000 ;ACCEPTS SPECIAL FUNCTIONS

ABTIO$ == 1000 ;ALWAYS TAKE ABORT ENTRY

VARSZ$ == 400 ;HANDLER SUPPORTS VARIABLE-SIZE VOLUMES

Device Handlers 7-7



Table 7-2: Device Status Word

Bit Symbol Meaning
0-7 - Device-identifier byte (see Section 7.2.1.2)
8 VARSZ$ 0 = .SPFUN 373 requests are invalid for this handler
1 = .SPFUN 373 requests (return volume size) are valid for
this handler
9 ABTIO$ 0 = Handler is not entered at abort entry point on normal
program exits
1 = Handler is entered at abort entry point whenever a pro-
gram terminates
10 SPFUN$ 0 = .SPFUN requests are invalid

1 = Handler accepts .SPFUN requests

11 HNDLR$ 0 = Enter handler at abort entry point only if there is an
active queue element belonging to the aborted job
1 = Enter handler at abort entry point on all aborts

This bit is ignored in SJ systems.

12 SPECL$ 1 = Special directory-structured device (examples are MT,
CT)

13 WONLYS$ 1 = This is a write-only device

14 RONLY$ 1 = This is a read-only device

15 FILST$ 0 = This is a sequential-access device (examples are MT,
CT, PC,LP)

1 = Thisis a random-access device (examples are RK, DX)

For example, form the stat argument for the RK, MT, and LP handlers as
follows:

For RK: FILST$
For MT: SPECL$!SPFUN$
For LP: WONLYS$

7.2.1.4 Device Size Word — The size argument for the .DRDEF macro defines
the size of the device in 256-word blocks. The .DRDEF macro puts this value
into ddDSIZ. If the device is not random access, place the value 0 in size. The
size of the RK device is 4800 decimal blocks (11300 octal); the size for the PC
(paper tape) device is 0, since it is not random access.

The .DSTATUS programmed request returns the value of the device size
word to a running program. For examples of the .DRDEF macro, see the
device handler listings in Appendix A.

7.2.2 Header Section

The second part of an RT—11 device handler is the header section. In the
header section you invoke the .DRBEG macro to set up the first five words of

7-8 Device Handlers



the handler. This macro also stores five words of information in block 0 of
the handler file, in locations 52 through 60, and creates some global sym-
bols. The data you set up in the header section is used when the handler is
brought into memory with the .FETCH programmed request or LOAD mon-
itor command. The contents of location 176, described below, are used by the
bootstrap when it checks for the presence of device hardware at handler
installation time.

7.2.2.1 Information in Block 0 — Table 7-3 shows the five words in block 0
that the DRBEG macro sets up by using the .ASECT directive. It also shows
the three words .DRBOT sets up for bootable devices (see Section 7.10.2.6).
In the table, the associated mnemonics are shown in square brackets, and
the two-character device name is represented by dd. The installation verifi-
cation code, which is optional, is described in Section 7.11.3.5.

Table 7-3: Information in Block 0

Location Contents [and Mnemonic]
52 Size of the handler in bytes
[ddEND-ddSTRT]
54 Size of the device in 256-word blocks
[ddDSIZ]
56 Device status word
[ddSTS]
60 A status word to reflect current system generation features

[ERL$G + <MMGS$T2> + <TIM$IT4>]

62 A pointer to the start of the primary driver (from .DRBOT)
64 The length of the primary driver, in bytes (from .DRBOT)
66 The offset from the start of the primary driver to the start of the
bootstrap read routine (from .DRBOT)
176 CSR address
[dd$CSR]
200 Start of installation verification code

7.2.2.2 First Five Words of the Handler — Table 7—4 shows the five words that
the .DRBEG macro generates at the start of the handler’s p-sect. In the
table, dd represents the two-character device name.

7.2.2.3 .DRBEG Macro — Use the . DRBEG macro to set up the information in
block 0 and the first five words of the handler. This macro also generates the
appropriate global symbols for your handler. Before you use .DRBEG, you

Device Handlers 7-9



Table 7—4: Handler Header Words

Word Symbol Contents

1 ddSTRT:: Device vector (for single-vector devices);
Offset to table of vectors (for multi-vector devices)

2 - Offset to interrupt service entry point
3 - Priority (340)

4 ddLQE:: Poiﬁter to the last queue element

5 ddCQE:: Pointer to the current queue element

must have invoked .DRDEF to define dd$CSR, dd$VEC, ddDSIZ, and
ddSTS. The format for DRBEG is as follows:

.DRBEG name
name is the two-character device name.

For examples of .DRBEG, see the handler listings in Appendix A.

7.2.2.4 Multi-Vector Handlers: .DRVTB Macro — An RT—11 device handler can
service a device that has more than one vector. The PC handler, for example,
services interrupts through vector 70 for the paper tape reader, and through
74 for the paper tape punch.

If your device has more than one interrupt vector associated with it, the han-
dler must contain a table of three-word entries for each vector. The entry for
each vector consists of the vector location, the interrupt entry point, and the
Processor Status, or PS, value.

To set up the handler header for a multi-vector device, simply invoke the
.DRVTB macro two or more times. The .DRVTB macro sets up the table of
three-word entries for each vector of a multi-vector device. Place it in your
handler anywhere betwzen the .DRBEG macro and the .DREND (or
.DRBOT) macro, as long as it does not interfere with the flow of control
within the handler. You must invoke this macro once for each vector, and
the macro calls must appear one after the other in the handler.

The format of the . DRVTB macro is as follows:
.DRVTB name,vec,int[,ps]

name is the two-character device name. Specify it on the first . DRVTB call,;
leave this argument blank on all subsequent calls.

vec is the location of the vector; it must be between 0 and 474. The first vec-
tor is usually dd$VEC. The value must be a multiple of 4.

int is the symbolic name of the interrupt handling routine; it must appear
elsewhere in the handler. It generally takes the form ddINT, where dd
represents the two-character device name.

7-10 Device Handlers



ps is an optional value you can use to specify the low-order four bits of the
new Processor Status word in the interrupt vector. If you omit this argu-
ment, it defaults to 0.

An example of a handler that uses two vectors is the PC handler. The follow-
ing example shows the source lines and the code the macros generate.

i PUNCH-READER VECTOR TABLE

-+IF EQ PR11%X iIF BOTH READER AND PUNCH
+DRYTB PC,PC$VEC +PCINT iTABLE FOR READER
+DRUTB  +PPSYEC sPPINT iTABLE FOR PUNCH

—+ENDC

The vector table generated by the .DRVTB macros is as follows:

+WORD PC$VEC_&_"C3,PCINT-, 34010 JTABLE FOR READER
+WORD PP$VEC_&_"C3,PPINT-, 34010 iTABLE FOR PUNCH
+WORD 0

iTO "END THE TABLE

As you see in the example above, the priority bits of the PS are always set to
7, even if you omit the ps argument. '

7.2.2.5 PS Condition Codes —In the .DRVTB macro, only the condition code
bits of the ps argument are significant. These can be useful if you have a
common interrupt service entry point for two or more vectors and you need
to determine through which vector the interrupt occurred. For example, the
PC handler has separate interrupt entry points for its two vectors, so it can
easily determine the source of the interrupt. Interrupts through vector 70 go
to the routine at PCINT:; interrupts through 74 go to PPINT:.

Suppose that the PC handler had only one interrupt entry point, called
PCINT:. In this case, the handler could distinguish which vector took the
interrupt by setting the condition codes in the PS for the vectors. For the
reader vector at 70, it could leave the C bit clear. For the punch vector at 74,
it could set the C bit. Then, at PCINT:, control could pass to different rou-
tines based on the value of the C bit in the new PS. The following example
shows how to invoke the .DRVTB macro and place values in the condition
codes of the PS.

i PUNCH-READER VECTOR TABLE

+IF EQ PR11%$X iIF BOTH READER AND PUNCH
+DRYTB PCsPR$VEC,PCINT iC BIT CLEAR
+DRVYTB  +PP$YECPCINT »1 iC BIT SET

+ENDC

7.2.3 /0O Initiation Section

The T/O initiation section contains the first executable instructions of the
handler. The purpose of the code in this section is to start a data transfer.
Remember that you must write Position-Independent Code (PIC) for the
handler.

Device Handlers 7-11



7-12

When a program issues a programmed request that requires device I/O, such
as .READ .or .WRITE, control first passes to the Resident Monitor, which
then calls the device handler for the peripheral device with the JSR PC
instruction. The monitor calls the handler at the handler’s sixth word — that
is, the first word immediately after the five-word header. It makes the call
whenever a new queue element becomes the first element in a handler’s
queue. This situation occurs when an element is added to an empty queue, or
when an element becomes first in a queue because a prior element was
released. If any of the parameters in the I/O request are invalid for the
device (for example, the block number is too large, the unit number is too
high, and so on), the handler should proceed immediately to the I/O comple-
tion section and signal a hard (fatal) error.

The I/O initiation code executes at processor priority 0 in system state,
which means that no context switch can occur, no completion routines can
run, and any traps to 4 and 10 cause a system fatal halt. All registers are
available for you to use in this section. The fifth word of the handler header,
ddCQE, contains a pointer to the current queue element at its third word,
Q.BLKN.

The queued I/O system guarantees that requests for data transfers are seri-
alized so that RT—11 device handlers need not be re-entrant. Therefore, you
can minimize the size of a handler by mixing, rather than separating, the
pure code and the data segments.

Guidelines for Starting the Data Transfer

Since the purpose of the I/O initiation section is to start up the data transfer,
you must now supply the instructions to do this. The following steps repre-
sent guidelines for a generalized I/O initiation section.

1. You should already have decided how many times the handler will retry
a transfer should an error occur. Initialize a retry counter by moving the
maximum number of retries to it. The following two lines of code illus-
trate this step.

Mov #RKCNT » (PC) + © JRKCNT = MAXIMUM # OF RETRIES
RETRY: WORD 0 iTHE RETRY COUNTER

2. Put the pointer to the current queue element into a register, and get the
device unit number and the block number for the transfer from the queue
element. The following lines of code illustrate this.

Moy RKCOE RS GET CURRENT QUEUE ELEMENT POINTER
Mov @RS R2 iPICK UP BLOCK NUMBER

Moy Q$UNIT-1(RS) +R4 FGET REQUESTED UNIT NUMBER

ASR R4 iSHIFT UNIT NUMBER

ASR R4 i TO HIGH 3 BITS

ASR R4 i OF LOW BYTE

SWAB R4 iPUT UNIT NUMBER IN HIGH 3 BITS
BIC #"C<DAUNIT» R4 FISOLATE UNIT IN DRIVE SELECT BITS

Device Handlers



3. Next, perform the steps to calculate the address on the device for the data
transfer to begin. The instructions you use depend on the device’s struc-
ture, of course. Once you have calculated the correct address, save it in a
memory location. If you need to retry this transfer, you will not have to
recalculate the address.

+

4+

Moy R3:(PC)+ iSAVE ADDRESS IN DISKAD
DISKAD:. +WORD © SAVE CALCULATED ADDRESS HERE

4. Steps 1 through 3 outlined above are executed only once for each data I/O
request from a running program. However, in .case of a soft error, you
may find it necessary to restart a transfer as part of the retry operation.
So, by placing a label here to use as the retry entry point, you avoid
repeating steps 1 through 3.

The following steps can be performed more than once: they are executed
once for the first I/O startup, and they can be executed again if an I/O
error causes a retry.

At this point the handler should determine whether the I/O request is a
read, a write, or a seek. It should then generate the appropriate op code
for the operation and move it to the device control and status register.
This is the step that actually initiates the I/O transfer.

CSIE = 100 i INTERRUPT ENABLE
FNWRITE = 12 IWRITE
CSGO = 1 iGO BIT
AGAIN: MOV #RKCOE »R3 iPOINT TO QUEUE ELEMEN
Moy #CSIE!FNWRITE!CSGOR3 FASSUME A WRITE
Moy #RKDA R4 FPOINT TO DISK

. iADDRESS REGISTER

+

+

5. Finally, return to the interrupted program by going through the monitor
first. Then when the I/O transfer finishes, the device will interrupt, and
control will pass to the handler at the interrupt entry point in the inter-
rupt service section of the handler.

RTS PC JAWAIT INTERRUPT

7.2.4 Interrupt Service Section

Control passes to the interrupt service section of the handler when a device
interrupts or when the program requesting the I/O transfer aborts. The code
in this section must first determine if the data transfer had an error, if it was

Device Handlers 7-13



incomplete, or if it was complete, and then take the appropriate action. The
same register usage restrictions that apply to the interrupt entry point also
apply to the abort entry point (see Table 6-3).

Your first step in coding the interrupt service section is to set up the inter-
rupt entry point and the abort entry point by using the .DRAST macro.
(These entry points are sometimes referred to as the asynchronous trap
entry points.) The default name for the interrupt entry point is ddINT,
where dd is the device name. Under normal conditions, the handler is called
at the interrupt entry point when an interrupt occurs. However, under some
circumstances, the handler is called at the abort entry point. The various sit-
uations are discussed in the following sections.

7.2.4.1 Abort Entry Point — There are a number of situations that cause an
abort in the queued I/O system: (1) a double CTRL/C can abort a running
program; (2) the . HRESET programmed request causes an abort; (3) a trap
to 4 or 10, or any other condition that produces the ?MON-F- type of fatal
error message, also causes an abort. On abort, whether or not the handler is
entered at all depends on two factors. The handler is always entered at the
abort entry point (the word immediately before the normal interrupt entry
point) if an active queue element exists and it belongs to the aborting job. In
FB and XM, the handler is also entered regardless of the existence of a
queue element if HNDLRS$ (bit 11) is set in the device status word. If
HNDLRS is set, the abort routine must consider two cases: there is pending
I/O to abort; there is no I/O to abort. The SJ monitor ignores this bit.
Additionally, handlers are never entered when a job aborts in the SJ envi-
ronment; the SJ monitor simply performs a RESET instruction. In all envi-
ronments, on entry to the handler, R4 always contains the job number of the
aborting job. R0-R3 must be saved and restored.

When an abort occurs, it is important to stop I/O on some devices. Character-
oriented devices, such as the paper tape reader/punch, fall into this category.
On abort, the handler must stop the device in order to prevent a tape runa-
way condition, for example. It must also make sure that the device cannot
interrupt again. So, character-oriented devices generally contain an abort
routine; the abort entry point is simply a branch instruction to that routine.
The PC handler, for example, has an abort routine that disables interrupts
on the paper tape reader/punch. Then the handler exits to the monitor in the
I/O completion section. The following lines are from the PC handler:

PCDONE: CLR B#PC$CSR iTURN OFF THE READER INTERRUPT
CLR @#PP$CSR iTURN OFF THE PUNCH INTERRUPT

Other devices, such as disks, should be allowed to complete an I/O transfer
attempt, even if an abort occurs. In fact, trying to abort in the middle of an
operation can corrupt data or formatting information on a disk. So, instead
of having a separate abort routine, most handlers for disks ignore an abort.
Thus, an RTS PC instruction is located at the abort entry point, which sim-
ply returns control to the monitor.

7-14 Device Handlers



If you use .FORK in your handler, there is a special procedure you must fol-
low if an abort occurs. You must move 0 to F.BADR (the fork routine
address, at offset 2) in the fork block. This prevents the monitor from
attempting to execute a meaningless fork routine after the abort.

7.2.4.2 Lowering the Priority to Device Priority — When the interrupt occurs,
the handler is entered at priority 7. As with interrupt service routines, the
handler’s first task is to lower the processor priority to the priority of the
device, thus permitting more important devices to interrupt this service rou-
tine. Instead of using the .INTEN call, as in an interrupt service routine, use
the .DRAST macro to lower the priority.

7.2.4.3 .DRAST Macro — Use the DRAST macro to set up the interrupt entry
point and the abort entry point, and to lower the processor priority. The
macro also sets up a global symbol $INPTR, which contains a pointer to the
$INTEN routine in the Resident Monitor. This pointer is filled in by the
bootstrap (for the system device) or at .FETCH time (for a data device).

The format of the DRAST macro is as follows:
.DRAST name,pri[,abo]
name is the two-character device name.

pri is the priority of the device, and the priority at which the interrupt serv-
ice code is to execute, as well.

abo is an optional argument that represents the label of an abort entry
point. If you omit this argument, the macro generates an RTS PC instruc-
tion at the abort entry point, which is the word immediately preceding the
interrupt entry point.

The following example from the PC handler shows the .DRAST macro call
and the code it generates.

+DRAST PP:4,PCDONE

+GLOBL $INPTR iMAKE THIS SYMBOL GLOBAL
BR PCDONE iTHE ABORT ENTRY POINT
PPINT:: JSR RS+B$INPTR iJUMP TO MONITOR INTEN CODE

+WORD "C<4%°040:8°0340 SNEW PRIORITY

The next example, from the RK handler, does not have an abort routine.

+DRAST RK 5

+GLOBL $INPTR iMAKE THIS SYMBOL GLOBAL
RTS PC iJUST RETURN ON ABORT
RRKINT:: JSR R3IB$INPTR iJUMP TO MONITOR INTEN CODE

+WORD "Ca3%"040:8"0340 SNEW PRIORITY

Device Handlers 7-15



i

7.2.4.4 Guidelines for Coding the Interrupt Service Section — Since the purpose
of this section is to evaluate the results of the last device activity, you must
now supply the instructions to do this. Essentially, the code must determine
if the transfer was in error, if it was incomplete, or if it was complete.

1. Ifan Error Occurred

If an error occurred during the transfer, the handler must distinguish
between a hard error and a soft error that might vanish if the operation is
retried.

If the error is hard, the handler should immediately exit through the I/O
completion section.

If the error is soft, the handler should prepare to retry the transfer. It
should decrement the count of available retries. Then, at fork level, it
should branch back to the I/O initiation section to restart the transfer. If
the transfer has already been retried enough times (the retry count is 0),
treat the failure as though it were a hard error. In that case, the handler
should proceed to the I/O completion section.

Note that dropping to fork level is not strictly required to process an
error. Whether or not to use .FORK depends on the length of time
required for setting up the retry. The .FORK call is especially useful
because it gives you use of RO through R3, thus permitting you to use
common routines for the retry. If you do not use .FORK, only R4 and R5
are available.

2. Perform Retries at Fork Level

As you learned in Chapter 6, the .FORK macro causes a return to the
Resident Monitor, which dismisses the current interrupt. (Review
Section 6.5.6 for details on the .FORK macro.) The code that follows
FORK executes at priority 0, rather than at device priority, after all
other interrupts have been serviced, but before any jobs or their comple-
tion routines can execute. The code following .FORK executes, as does
the main body of the interrupt service section of the handler, in system
state. (This is the same state the I/O initiation section runs in.) Thus, con-
text switching is prevented while the fork level code is executing, and
any traps to 4 and 10 cause a system fatal halt.

The following example from the RK handler illustrates how the handler
drops priority to fork level to retry data transfers after a soft error
occurred. Fork level is ideal for performing the retries, since this may be
a lengthy process. The .FORK call and its expansion are as follows:

+ FORK RKFBLK iTHE FORK CALL

JSR RS +B$FKPTR i (JUMP. TO MONITOR FORK CODE)

+WORD RKFBLK-. s (OFFSET TO FORK QUEUE ELEMENT)
RKRETR: CLRB RETRY+1 iRESET A FLAG

BR AGAIN iBRANCH INTO I/0 INIT SECTION

7-16 Device Handlers



g

3. Ifthe Transfer Was Incomplete

In general, a transfer is considered to be incomplete when there are more
characters or more blocks of data left to transfer. The handler should
restart the device and exit with an RTS PC instruction to wait for the
next interrupt.

4. Ifthe Transfer Was Complete

When the transfer is complete, the handler can simply exit through the I/
O completion section. )

7.2.5 1/0 Completion Section

The I/O completion section provides a common exit path to inform the moni-
tor that the handler is done with the current request, so that the monitor can
release the current queue element. Although the other sections of the han-
dler are distinct, separate parts, the I/O completion section is actually an
extension of the interrupt service section and the dividing line between
these two sections is artificial. Control does not pass to the I/O completion
section as a result of a monitor call, a subroutine call, or a jump, but rather
as a result of normal flow of execution through the interrupt service section.
Execution passes to the I/O completion section when a hard error is detected,
when a soft error condition exhausts the number of retries allowed for it, or
when a data transfer completes. (Note that you can branch directly to this
section from the I/O initiation section if you detect a hard error immedi-
ately.)

1. Ifan Error Occurred

There are two kinds of errors that cause control to pass to the I/O comple-
tion section: hard errors, which should cause a branch to this section
immediately, and soft errors that have exhausted their allotted number
of retries, which cause a branch to this section after the last retry fails.
Treat both cases alike in handling the exit to the monitor.

First, set the hard error bit, bit 0, in the Channel Status Word for the
channel. The second word of the I/O queue element, Q.CSW, points to the
Channel Status Word. Then jump to the I/O completion routine in the
Resident Monitor. Use the .DRFIN macro, described below, to generate
the code for this jump.

The following lines of code are from the RK handler. They illustrate how
the handler sets<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>