dlifgliltlall

|
il
VAX-11 COBOL-74
User’s Guide
Order No. AA-C986A-TE
ikl
(N |
[

)5' COBOL/C'?V/L/ST At 7

$ Il M Bt SN S $L/1‘J/&Mﬂy’:c7‘(/¢r//3/¢”3‘)7

January 1979

This document describes how to use the VAX-11 COBOL-74 compiler.

VAX-11 COBOL-74
User’s Guide
Order No. AA-C986A-TE

OPERATING SYSTEM AND VERSION: VAX/VMS VO01.5
SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this documént, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document. ,

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
Digital.

Cop&right()l979 by Digital Equipment Corporation

!

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation. ,

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC ‘ DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

5/79-14

ACKNOWLEDGMENTS

e o o o
« .
N

BB W N NN N N
S wn -

e o e

[\

e o o o
CONNNININNOONOOOONAOUIR DB SDWNDNDN -

N =

N
. .
N =

e o o o o o
« e
N =

e o o o .
Sk WNDNDNDHE

[l SO WM

CONTENTS

INTRODUCTION
USING THE VAX-11.COBOL-74 SYSTEM

CREATING A SOURCE FILE
Choosing a Reference Format
Entering a Source Program
USING THE COMPILER
The Command Line Format
Command Qualifiers
Error Message Summary
Common COBOL-74 Command Line Errors
LINKING COBOL-74 PROGRAMS
EXECUTING A COBOL IMAGE
Setting and Resetting Program Switches
The RUN Command

NON-NUMERIC DATA HANDLING

INTRODUCTION
DATA ORGANIZATION
Group Items
Elementary Items
- SPECIAL CHARACTERS
TESTING NON-NUMERIC FIELDS
Relation Tests
Classes of Data
The Comparison Operation
"Class Tests
DATA MOVEMENT
THE MOVE STATEMENT
Group Moves
Elementary Moves
Edited Moves
Justified Moves
Multiple Receiving Fields
Subscripted Moves
Common Errors, MOVE Statement
Format 2, MOVE CORRESPONDING
THE STRING STATEMENT
Multiple Sending Fields
The POINTER Phrase
The DELIMITED BY Phrase
The OVERFLOW Phrase

Subscripted Fields in STRING Statements

Common Errors, STRING Statement
THE UNSTRING STATEMENT
Multiple Receiving Fields

iii

DERLSI SN ON SIS N SN S SN SN SN V)
|

WWWWWWWWWWWWWwwWwwww w
]
HHOWVOUINOUDBBRWNNN

Page
xiii

Xiv

|
'—l

N
[I
=

1
HHEMHFOAOAOAWNDNDNDE

wN N

CONTENTS (Continued)

Page
3.8.2 The DELIMITED BY Phrase 3-25
3.8.2.1 Multiple Delimiters 3-29
3.8.3 The COUNT Phrase 3-30
3.8.4 The DELIMITER Phrase 3-31
3.8.5 The POINTER Phrase 3-32
©+3.8.6 The TALLYING Phrase 3-34
3.8.7 The OVERFLOW Phrase 3-36
3.8.8 Subscripted Fields in UNSTRING Statements 3-37
3.8.9 Common Errors, UNSTRING Statement 3-39
3.9 THE INSPECT STATEMENT 3-39
3.9.1 The BEFORE/AFTER Phrase 3-40
3.9.2 Implicit Redefinition 3-42
3.9.3 The INSPECT Operation .3-43
3.9.3.1 Setting the Scanner 3-45
3.9.3.2 Active/Inactive Arguments 3-45
3.9.3.3 Finding an Argument Match 3-46
3.9.4 Subscripted Fields in INSPECT Statements 3-47
3.9.5 The TALLYING Phrase 3-48
3.9.5.1 The Tally Counter 3-48
3.9.5.2 The Tally Argument 3-48
3.9.5.3 The Tally Argument List 3-50
3.9.5.4 Interference in Tally Argument Lists 3-51
3.9.6 The REPLACING Phrase 3-55
3.9.6.1 The Search Argument 3-56
3.9.6.2 The Replacement Value 3-57
3.9.6.3 The Replacement Argument 3-58
3.9.6.4 The Replacement Argument List 3-58
3.9.6.5 Interference in Replacement Argument Lists 3-60
3.9.7 Common Errors, INSPECT Statement 3-60
CHAPTER 4 NUMERIC CHARACTER HANDLING 4-1
4.1 USAGES "4-1
4.1.1 DISPLAY 4-1
4.1.2 COMPUTATIONAL 4-1
4.1.3 COMPUTATIONAL-3 4-2
4.2 DECIMAL SCALING POSITION 4-3
4.3 SIGN CONVENTIONS : 4-4
4.4 ILLEGAL VALUES IN NUMERIC FIELDS 4-5
4.5 TESTING NUMERIC FIELDS 4-6
4,5.1 Relation Tests 4-6
4.5.2 Sign Tests 4-7
4.5.3 Class Tests 4-7
4.6 THE MOVE STATEMENT 4-8
4,6.1 Group Moves 4-8
4.6.2 Elementary Numeric Moves 4-9
4.6.3 Elementary Numeric Edited Moves 4-10
4.6.4 Common Errors, Numeric MOVE Statements 4-12
4.7 THE ARITHMETIC STATEMENTS 4-13
4.7.1 Intermediate Results 4-13
4.7.2 The ROUNDED Phrase . 4-14
4.7.3 The SIZE ERROR Phrase 4-15

iv

TN

CONTENTS (Continued)

Page
4.7.4 The GIVING Phrase 4-16
4.7.5 Multiple Operands in ADD and SUBTRACT
Statements 4-16
4.7.6 The ADD Statement 4-17
4.7.7 The SUBTRACT Statement 4-18
4.7.8 The MULTIPLY Statement y 4-18
4.7.9 The DIVIDE Statement 4-19
4.7.10 The COMPUTE Statement 4-20
4.7.11 Common Errors, Arithmetic Statements 4-20
4.8 ARITHMETIC EXPRESSION PROCESSING 4-21
CHAPTER 5 TABLE HANDLING 5-1
5.1 INTRODUCTION 5-1
5.2 DEFINING TABLES 5-1
5.2.1 . The OCCURS Phrase - Format 1 5-2
5.2.2 The OCCURS Phrase - Format 2 5-3
5.3 MAPPING TABLE ELEMENTS 5-3
5.3.1 Initializing Tables 5-7
5.4 SUBSCRIPTING AND INDEXING 5-9
5.4.1 Subscripting with Literals 5-10
5.4.2 Operations Performed by the Software 5-11
5.4.3 Subscripting with Data-Names 5-12
5.4.4 Operations Performed by the RTS 5-12
5.4.5 Subscripting with Indexes 5-13
5.4.6 Operations Performed by the RTS 5-14
5.4.7 Relative Indexing 5-14
5.4.8 Index Data Items 5-15
5.4.9 The SET Statement ' 5-16
5.4.10 Referencing a Variable-Length Table
Element at RTS Time 5-17
5.4.11 Referencing a Dynamic Group at RTS Time 5-17
5.4.12 The SEARCH Verb 5-17
5.4.13 The SEARCH Verb - Format 1 : 5-18
5.4.14 The SEARCH Verb - Format 2 5-19
CHAPTER 6 INPUT-OUTPUT PROCESSING 6-1
6.1 RECORD FORMAT 6-2
6.1.1 Fixed-length 6-2
6.1.2 Variable-length 6-3
6.1.3 Variable with Fixed-length Control 6-3
6.2 RECORD SIZE 6-4
6.3 RECORD BLOCKING 6-5
6.3.1 Sequential Files on Magnetlc Tape 6-6
6.3.2 Sequential Files on Disk 6-7
6.3.3 Relative Files 6-8
6.3.4 Indexed Files 6-9
‘6.4 CURRENT RECORD AREA 6-10
6.4.1 Effects on Output Operations 6-10
6.4.2 Effects of Input Operations 6-11
6.4.3 Sharing Record Areas 6-11

CONTENTS (Continued)

/ Page
6.5 I/0 BUFFERS 6-13
6.5.1 RMS Buffer Defaults 6-13
6.5.2 Multiple Buffers (RESERVE Clause) ‘ 6-13
6.5.3 Sharing Buffers (SAME AREA Clause) 6-14
6.6 OPENING FILES 6-14
6.6.1 I/0 Operations 6-14
6.6.2 OPEN Statement Execution 6-16
6.7 NAMING FILES 6-17
6.7.1 File Specifications , 6-17
6.7.2 Logical Names 6-19
6.7.3 ASSIGN and VALUE OF ID Clauses 6-20
6.7.4 File Switches (PDP-11 COBOL Compatibility) 6-22
6.8 FILE COMPATIBILITY 6-24
6.8.1 Data Type Differences 6-24
6.8.2 Data Record Formatting Differences 6-25
6.8.3 Special Control Characters 6-25
6.9 I/0 ERROR PROCESSING 6-25
6.10 LOW-VOLUME I/O (ACCEPT AND DISPLAY) 6-26
6.10.1 Mnemonic-Names (SPECIAL-NAMES Paragraph) 6-27
6.10.2 Logical Name "Devices" 6-27
6.10.3 ACCEPT Statement 6-28
6.10.4 DISPLAY Statement 6-29
CHAPTER 7 GOOD PROGRAMMING PRACTICES 7-1
7.1 FORMATTING THE SOURCE PROGRAM 7-1
7.2 USE OF PUNCTUATION 7-5
7.3 USE OF THE ALTER STATEMENT 7-5
7.4 USE OF THE PERFORM STATEMENT 7-6
7.5 USE OF LEVEL-88 CONDITION NAMES . 7-17
7.6 USE OF. QUALIFIED REFERENCES 7-9
7.6.1 Qualified Data References 7-9
7.6.2 Guideline 1 (Data Item Definition) 7-12
7.6.3 Guideline 2 (Reference Format) 7-12
7.6.4 Guideline 3 (Unigque Referability) 7-13
7.6.5 Qualified Procedure References 7-13
7.6.6 Qualification and Compiler Performance 7-13
CHAPTER 8 REFORMAT UTILITY PROGRAM 8-1
CHAPTER 9 DEBUGGING COBOL PROGRAMS 9-1
9.1 DEBUG CONCEPTS 9-1
9.2 PREPARING TO DEBUG A PROGRAM 9-2
9.2.1 SET LANGUAGE COBOL Command 9-2
9.2.2 MODULE Commands: SET, SHOW, and CANCEL 9-2
9.2.3 SCOPE Commands: SET, SHOW, and CANCEL 9-3
9.3 SPECIFYING LOCATIONS . 9-4
9.3.1 Location Types 9-4
9.3.2 9-5

Resolving Location Ambiguities

vi

~

CHAPTER

CHAPTER

CHAPTER

e o o o o o o o o
e o o o o o o
SNSouodbkwNHE

YOI O U1 > > b D Db D

N

WWOWWOWWVWWOWWOWWOVWWOWWY WYY
. . .

—
o

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.2.2.1
10.2.2.2

11

11.1
11.2
11.2.1
11.2.2
11.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.6

12

12.1
12.2
12.3
12.4
12.5

CONTENTS (Continued)

CONTROLLING PROGRAM EXECUTION
BREAK Commands: SET, SHOW, and CANCEL
TRACE Commands: SET, SHOW, and CANCEL
WATCH Commands: SET, SHOW, and CANCEL
GO and STEP Commands
CTRL/Y Command (Interrupting the Image)
EXIT Command
SHOW CALLS Command

EXAMINING AND CHANGING DATA
EXAMINE Command
DEPOSIT Command

SAMPLE DEBUG SESSION

ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

Severity Levels

Error Message Printing

Internal Compiler Errors -- System Errors
SYSTEM MESSAGES

Link-Time Error Messages

Run-Time Error Messages

Faulty Program Logic Error Procedures

File I/O Error Procedures

SORTING IN A COBOL PROGRAM

VAX-11 SORT SUBROUTINE PACKAGE

I/0 INTERFACE METHODS
File I/0 Interface
Record I/O Interface

KEY DATA AND RECORD AREAS

KEY BUFFER

SORT SUBROUTINES
SOR$PASS_FILES
SOR$INIT_SORT
SORSRELEASE_REC
SORSSORT_MERGE
SOR$RETURN_REC
SORSEND_SORT

PROGRAMMING EXAMPLE

USING THE LIBRARY FACILITY

Creating a COBOL Library File

The COPY Statement

The COPY REPLACING Statement

The Source Listing

Common Errors in Using the Library Facility

vii

)
)}
Q
1]

O WO W WLWLW WL
I
~HHHEHWOWOWWOWoo oYU Ul

i
HOOO

=
= I
|
i

e el
coocooco
[TR O I I |
U WWN -

10-5
10-5
10-7

11-1

11-1
11-2
11-2
11-2
11-3
11-4
11-6
11-6
11-7
11-8
11-9
11-10
11-11
11-12

12-1

12-2
12-2
12-4
12-6
12-7

CHAPTER

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX
FIGURES

FIGURE

13

13.1

13.1.1
13.1.2
13.1.3

13.2

13.2.1
13.2.2
13.2.3
13.3

A

B
C
D

L]

« o e
(OSSN)

o o
[N

°
N

e e e o e o e e o o o o

N2 K2 K2R K2 K2 K2 K2 K2 K2 K2 N2 I 7

B bdbWWWNDDNODNOHHEFE
.

.
[\

W W =
]
N

CONTENTS (Continued)

OPTIMIZATION

OPTIMIZING FILE DESIGN

Sequential Files

Relative Files

Indexed Files

General Rules for Indexed Files

Bucket Size

Index Depth

Overhead Accumulation
OPTIMIZING PROGRAM ORGANIZATION

Sequential Reading of Indexed Files

Caching Index Roots
Multi-block Reading and Writing
OPTIMIZING COMPUTATION

THE COBOL FORMATS

COMPILER IMPLEMENTATION LIMITATIONS

SOURCE PROGRAM LISTINGS

DIAGNOSTIC ERROR MESSAGES

RUN-TIME ERROR MESSAGES

INTERNAL COMPILER ERRORS -- SYSTEM ERRORS

PROGRAMMING EXAMPLES

CALLING A FORTRAN SUBROUTINE
The COBOL Program, GETROOT
The FORTRAN Program, SQROOT
Sample Run of GETROOT

CALLING VAX-11 RUN-TIME PROCEDURES
The COBOL Program, RUNTIME
. Sample Run of RUNTIME

USING TERMINAL ESCAPE SEQUENCES
The COBOL Program, ESCAPE
Sample Run of ESCAPE

CALLING VAX/VMS SYSTEM SERVICES
The COBOL Program, SYSTSVC
Sample Run of SYSTSVC

Building a COBOL Task Image
Field Sizes
Redefining Special Characters

viii

Page
13-1

13-2
13-2
13-2
13-3
13-5
13-6
13-7
13-7
13-8
13-8
13-8
13-9
13-9

|
e

L I |
oo

G)G)G)OOOGI)G)G)OOOO @
HHOOUU BB WWHH

I
=
w

Index-1

w W=
I
B> wn

TN

TN

FIGURE

3-42
3-43

3-44
3-45
3-46
3-47

CONTENTS (Continued)

Relation Condition

The Meanings of Relational Operators
Class Condition, General Format

Data Movement with Editing Symbols
Data Movement with No Editing
Subscripted MOVE Statements

Sample STRING Statement
Concatenation with the STRING Statement
Literals as Sending Fields

Indexed Sending Fields

Sample POINTER Phrase

Delimiting with the Word SIZE

SPACE as a Delimiter

Repeating the DELIMITED BY Phrase

Delimiting with More Than One Space Character

The ON OVERFLOW Phrase

Various STRING Statements Illustratlng the
Overflow Condition

STRING Statement with Pointer
Subscripting with the Pointer
Subscripting with the Delimiter

Sample UNSTRING Statement

Multiple Receiving Fields

Delimiting with a Space Character
Delimiting with Multiple Receiving Fields
Delimiting with an Identifier

Multiple Delimiters

The COUNT Phrase

The DELIMITER Phrase

The POINTER Phrase

Examining the Next Character by Using the
Pointer Data Item as a Subscript
Examining the Next Character by Placing
It Into a One-Character Field

The TALLYING Phrase

The POINTER and TALLYING Phrases Used
Together

Subscripting the COUNT Phrase with the
TALLYING Data Item

Using the OVERFLOW Phrase

Sequence of Subscript Evaluation
Erroneously Repeating the Word INTO
Sample INSPECT...TALLYING Statement
Sample INSPECT...REPLACING Statement
Sample INSPECT...BEFORE Statement
Matching the Delimiter Characters to the
Characters in a Field

Sample INSPECT Statement

Sample REPLACING Argument

Sample AFTER Delimiter Phrase

Where Arguments Become Active in a Field

ix

3-22
3-23
3-25
3-26
3-29
3-29

3-31

3-36

3-40

3-41
3-44
3-44
3-45
3-46

CONTENTS (Continued)

FIGURE 3-48 Sample Subscripted Argument

3-49 Format of the Tally Argument

3-50 CHARACTERS Form of the Tally Argument

3-51 Results of Counting with the LEADING
Condition

3-52 Argument List Adding into One Tally Counter

3-53 Argument List Adding into Separate Tally
Counters .

3-54 Argument List (with Delimiters) Adding into

‘ Separate Tally Counters

3-55 Results of the Scan in Figure 3-55

3-56 Two Tallying Arguments that Do Not Interfere
with Each Other

3-57 Two Tallying Arguments that Do Interfere
with Each Other

3-58 Two Tallying Arguments that, Because of

Their Positioning, Only Partially Interfere
: with Each Other
3-59 An Attempt to Tally the Character B with

Two Arguments

3-60 Tallying Asterisk Groupings

3-61 Placing the LEADING Condition in the
Argument List '

3-62 Reversing the Argument List in Figure 3-62

3-63 An Argument List that Counts Words in a
Statement

3-64 Counting Leading Tab or Space Characters

3-65 Counting the Remaining Characters with the
CHARACTERS Argument

3-66 Format of the Search Argument

3-67 Format of the Replacement Value

3-68 The Replacement Argument

3-69 Replacement Argument List that is Active
Over the Entire Field

3-70 Replacement Argument List that "Swaps"
Ones for Zeroes and Zeroes for Ones

3-71 Replacement Argument List that Becomes
Inactive with the Occurrence of a Space
Character

3-72 Argument List with Three Arguments that
Become Inactive with the Occurrence of a
Space

4-1 Memory Storage of COMP Data Items

4-2 Memory Storage of COMP-3 Data Items

4-3 Truncation Caused by Decimal Point Alignment

4-4 Zero Filling Caused by Decimal Point
Alignment

4-5 Numeric Editing

4-6 Rounding Truncated Decimal Point Positions

4-7 Rounding Truncated Decimal Scaling Positions

FIGURE

0

TABLES

TABLE

CONTENTS (Continued)

Explicit Programmer-Defined Temporary Work
Area

Arithmetic Statement Intermediate Result
Field Attributes Determined from Composite
of Operands

Arithmetic Expression Intermediate Result
Field Attributes Determined by Implementor-
Defined Rules

Defining a Table

Mapping a Table into Memory

Synchronized COMP Item in a Table

Adding a Field without Altering the Table
Size

Adding One Byte which Adds Two Bytes to
the Element Length

Forcing an Odd Address by Adding a 1-Byte
FILLER Item to the Head of the Table

The Effect of a SYNCHRONIZED RIGHT Clause
Instead of a FILLER Item as Shown in
Figure 5-6

Initializing Tables

Initializing Mixed Usage Fields
Initializing Alphanumeric Fields

Literal Subscripting

Subscripting a Multi-Dimensional Table
Subscripting Rules for a Multi-Dimensional
Table

Subscripting with Data-Names

Index-Name Item

Subscripting with Index-Name Items
Relative Indexing

Index Data Item

Legal Data Movement with the SET Statement
Example of Using SEARCH to Search a Table
Unqualified Data Item Reference

Qualified Data Item Reference

General Format of a Qualified Data Reference
General Format of a Qualified Procedure
Reference

Merging Library Text

Three-Level Primary Key Index

Command Qualifiers

Legal Non-Numeric Elementary Moves

Results of the Preceding Sample Statements
Results of the Preceding Sample Statements
Values Moved into the Receiving Fields
Based on the Value in the Sending Field
Handling a Sending Field that is Too Short

Xi

CONTENTS (Continued)

Page
TABLE 3-6 Results of Delimiting with an Asterisk 3-26
3-7 Results of Delimiting Multiple Receiving
Fields 3-27
3-8 Results of Delimiting with Two Asterisks 3-27
3-9 Results of Delimiting with ALL Asterisks 3-28
3-10 Results of Delimiting with ALL Double
Asterisks 3-28
3-11 Results of the Multiple Delimiters Shown
in Figure 3-29 3-30
3-12 Original, Altered, and Restored Values
Resulting from Implicit Redefinition 3-43
4-1 'The -Resulting ASCII Character from a Sign
and Digit Sharing the Same Byte 4-5
4-2 The Sign Tests 4-7
6-1 I/0 Statements Grouped by File Organization,
Access Mode, and Open Mode 6-15
6-2 File Specification Switches for PDP-11
Compatibility 6-22

12-1 v COPY REPLACING Matches 12-6

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 System.

956ALL

xii

)

PREFACE

MANUAL OBJECTIVES
This manual describes the VAX-11l COBOL-74 compiler. It discusses the
relationships between -the COBOL-74 language, the compiler, object
modules and executable images, and VAX/VMS and its utilities. The
User's Guide supplements the description of the COBOL-74 programming
language in the VAX-1ll COBOL-74 Language Reference Manual.
INTENDED AUDIENCE
This manual is designed for programmers who have a working knowledge
of the COBOL-74 language and who are familiar with the basic concepts
of VAX/VMS.
STRUCTURE OF THIS DOCUMENT
The User's Guide 1is organized into chapters .and appendixes that
describe functions, concepts, and features of the VAX-11l COBOL-74
language system.
ASSOCIATED DOCUMENTS
This manual refers to the following documents, which . contain
supplemental information that is relevant to VAX-1l1l COBOL-74
programming:

e VAX-11] COBOL-74 Language Reference Manual

e VAX/VMS Command Language User's Guide

e VAX-11l Linker Reference Manual

e Introduction To VAX-11l Record Management Services

e VAX-11 Symbolic Debugger Reference Manual

e VAX-1l Sort Reference Manual

® VAX/VMS Operator's Guide

CONVENTIONS USED IN THIS DOCUMENT
\
The syntactic conventions used 1in general format examples are

discussed in Chapter 1 of the VAX-11l COBOL-74 Language Reference
Manual. ‘

xiii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and 1II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Chairman of the CODASYL COBOL Committee, P.O. Box
1808, Washington, DC 20013. .

Xiv

N

VN

CHAPTER 1

INTRODUCTION

The VAX-11 COBOL-74 compiler translates ANS-74 COBOL source programs
into relocatable object modules; it runs under the supervision of
VAX/VMS. :

To run a COBOL program,‘you follow a four-step process:
® Prepare a source program
) Compile a source program
) Link object modules into an executable image file

® Execute the image

The VAX-11 COBOL-74 compiler accepts COBOL source statements from
source input files. This means that you must manually enter your
source statements onto an acceptable medium prior to the compilation
process.

Once you have decided upon an input medium and format for your source
input files and have created them, you compile the source program.
The VAX-11 COBOL-74 compiler reads source statements from the source
input file and translates them into an object module consisting of
program sections (PSECTs). It <can also produce a source program
listing with optional special-purpose 1listings, such as a map and
cross-reference. Chapter 2 describes the procedure for compiling
programs and specifying compiler options.

The compiler can compile only one source program or subprogram at a
time. Therefore, a program that consists of a main program and one or
more subprograms requires multiple executions of the compiler. Each
compilation generates a separate listing and object module.

The compiler produces an object module, which must be 1linked by the
VAX-11 Linker to produce an executable image file. The linker can
combine several independently compiled object modules into a single
executable image; the ability to compile COBOL subprograms to produce
linkable object modules enables you to create modular programs.

The image is an executable form of the declarations and instructions
in your COBOL source programs. It includes subprograms that were
included by the linker as a result of your commands. It also includes
routines from the COBOL run-time system (RTS), which is a library of
predefined generalized procedures that perform standard functions for
your program. ‘

Figure 1-1 shows the process of preparing a COBOL program for
execution.

CcoBOL

COBOL
SOURCE

SOURCE
PROGRAM

LIBRARY

VAX-11
COBOL-74
COMPILER
OTHER VAX-11
OBJECT OBJECT COBOL-74
MODULE
MODULES RUNTIME
VAX-11
LINKER

H-MK-00043-00

Figure 1-1
Building an Executable Image

1-2 INTRODUCTION

N

TN

CHAPTER 2

USING THE VAX-11] COBOL-74 SYSTEM

This chapter discusses the procedures for creating, compiling,
linking, and executing COBOL programs.

2.1 CREATING A SOURCE PROGRAM

Before you can compile a COBOL program, you must decide on the source
reference format and prepare your source program for input to the
compiler.

2.1.1 Choosing a Reference Format

The VAX-11 COBOL-74 compiler can accept source programs in either
conventional or terminal reference format (both are described in the
VAX-11 COBOL-74 Reference Manual). However, you cannot mix reference
formats in the same source program (including text copied from a COBOL
library).

Terminal format was designed to be easily used by programmers at
interactive terminals; therefore, the compiler accepts terminal
reference format as a default and allows you to use a command
qualifier to specify conventional format. The terminal format can
reduce the amount of file space needed to store source programs. In
addition, it is wusually easier to edit source programs written in
terminal format, because spacing requirements are more flexible.

You may want to select the conventional reference format, however, if
your COBOL program was originally written that way for another
compiler.

You can convert a terminal format program to conventional format by
using the REFORMAT utility, which is described in Chapter 8. You can
also use REFORMAT to match the formats of source files and COBOL
library files if they are not the same.

2.1.2 Entering a Source Program

You can create a source program file by wusing the VAX/VMS CREATE
command or a text editor. CREATE can be used only for a new file;
you must use a text editor to change existing source files. Most
users rely on text editors for both creating and updating source
files.

Unless you specify a file type for the source program file in the
command line, which is described in the next section, the compiler
assumes COB as a default; therefore, you can simplify compiling by
naming source files with the default file type.

The CREATE command is described in the VAX/VMS Command Language User's
Guide; the VAX/VMS Text Editing Reference Manual discusses the SOS
and SLP text editors.

2.2 USING THE COMPILER

The VAX-11 COBOL-74 compiler translates source statements into object
modules that contain relocatable code. It can also produce a listing
of source statements and other information if you use the appropriate
command qualifiers. This section describes the procedure for
compiling your source program; it discusses the COBOL command line
and the error message summary. Finally, it lists some common errors
to avoid in entering compiler command lines. Appendix C discusses the
components of the source program listing.

2.2.lv Thé Command Line Format
The VAx—ll COBOL—74'command line has the following format:
COBOL/C74 [/command-qualifiers] file-spec
where:tl»
COBOL/C74 | specifies tpe VAX-11 COBOL-74 compiler.
/comménd—qualifiers specify compiler options.
. file-spec specifies the file that contains the COBOL
source program. If you do not supply a file
type in the file specification, the compiler

uses COB as the default.

Do not use wild cards in the file
specification.

2-2 USING THE VAX-11 COBOL-74 SYSTEM

N

TN

SN

2.2.2 Command Qualifiers

VAX-11 COBOL-74 provides a series of command qualifiers that 'you

can

use to select or suppress compiler options. Table 2-1 summarizes the

qualifiers, which are then described in detail.

Table 2-1
Command Qualifiers

Qualifier Default

/ [NOJANSI_FORMAT : /NOANSI_FORMAT

/ [NO]COPY_ LIST /COPY_LIST

/ [NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/ [NO]DEBUG /NODEBUG
/[NOJLIST[=file-spec]

/ [NO]MAP /NOMAP

/[NO]JOBJECT [=file-spec]

/ [NO]VERB_LOCATION /NOVERB_LOCATION

/ [NO]JWARNINGS /WARNINGS

/ANSI_FORMAT
/NOANSI_FORMAT

Indicates whether the source program is in ANSI (conventional)

format or in DIGITAL's terminal format.

For conventional format, the compiler expects 80-character images

with optional sequence numbers in character positions

1-6,

indicators in position 7, Area A beginning in position 8, Area B

beginning in position 12, and the identification area

positions 73-80.

By default, the compiler assumes that the source file 1is

in

in

terminal format; that is, Area A begins in record position 1.

/COPY_LIST

/NOCOPY LIST
Controls whether statements included by COPY statements in
source program are printed in the listing file.

the

/COPY_LIST is the default: the compiler includes all - source

statements in the source listing.

/NOCOPY LIST suppresses the listing of text copied from 1library

files; only the COPY statement appears in the listing file.

/CROSS_REFERENCE
/NOCROSS_REFERENCE

Controls whether the source program listing includes

cross-reference listing.

USING THE VAX-1ll COBOL-74 SYSTEM

a

2-3.

/CROSS_REFERENCE produces a cross-reference listing as part of
the listing file. The compiler sorts data-names and
procedure-names into ascending order and 1lists them with the
source program line numbers on which they appear. On the
listing, the symbol # indicates the source line on which the name
is defined. Note that the use of /CROSS_REFERENCE significantly
slows down the compilation of large programs.

By default, the compiler does not create a cross-reference
listing.

/DEBUG [=TRACEBACK]
/NODEBUG

Controls whether the compiler produces traceback information and
local symbol table information for the debugger.

/DEBUG allows you to refer to data items by data-name, and to
Procedure Division locations by line number; it generates both
traceback and symbol table information. /DEBUG=TRACEBACK
produces traceback information only; /NODEBUG generates neither.
The default is /NODEBUG. ‘

Chapter 9 discusses COBOL program debugging wusing the VAX/VMS
Symbolic Debugger.

/LIST[=fi1e—spec]
/NOLIST

Controls whether the compiler produces an output listing.

If you use the COBOL/C74 command in interactive mode, the
compiler, by default, does not create a listing file.

If the COBOL/C74 command is executed from a batch job, /LIST is
the default.

When you specify /LIST, you can control the defaults applied to
the output file specification by where you place the qualifier in
the command, as described in the VAX/VMS Command Language User's
Guide.

The output file type always defaults to LIS.

/MAP
/NOMAP
/MAP causes the compiler to produce the following reports in the
listing file:
e Data Division Map
® Procedure Map
® External Subprograms Referenced
® Data and Control PSECTs
® RTS Routines Referenced
® Segmentation Map
/NOMAP is the default.
2-4 USING THE VAX-11l COBOL-74 SYSTEM

TN

// ,-\\‘

/OBJECT [=file-spec]

/NOOBJECT
Controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same
file name as the input file and a file type of OBJ. The compiler
also uses the default file type of OBJ when you include a file
specification with the /OBJECT qualifier that does not have a
file type.

/VERB_LOCATION

/NOVERB_LOCATION
Indicates whether the output listing produced by the compiler
shows the object location of each verb in the source program.

The location appears on the line before the source line in which
the verb is used.

The default is /NOVERB_LOCATION.

/WARNINGS

/NOWARNINGS .
Controls whether the compiler prints informational diagnostic
messages as well as warning and fatal diagnostic messages. By
default, the compiler prints informational diagnostics; specify
/NOWARNINGS to suppress them.

Consider the following command line examples:
COBOL/C74/DEBUG PROGA

Produces an object module file PROGA.OBJ from the source
file PROGA.COB.

COBOL/C74/LIST/DEBUG/OBJECT=TESTB7A12

Uses the source file Al2.COB to produce object module
TESTB.OBJ and a source listing in file Al2.LIS.

COBOL/C74/LIST/CROSS_REFERENCE PAYROLL
Uses the source file PAYROLL.COB to produce object module
PAYROLL.OBJ and a source listing with cross reference in
file PAYROLL.LIS.

The debugger cannot reference data items by data-name in
this module because the /DEBUG qualifier is not specified.

COBOL/C74/LIST=RPTB.REP/DEBUG/MAP REPORTB.TXT

Uses the source file REPORTB.TXT to produce object module
REPORTB.OBJ and a source listing with map in file RPTB.REP.

USING THE VAX-11l COBOL-74 SYSTEM 2-5

2.2.3 Error Message Summary

If the compiler detects any errors during a compilation, it displays
an error message summary on the system output device. The error
message summary has the following format:

C74 -- nnnnn ERROR(S), nnnnn FATAL

NOTE

If any fatal errors occur, the compiler
does not generate an object file.

2.2.4 Common COBOL-74 Command Line Errors
Some commoﬁ errors to avoid when entering COBOL-74 command lines are:

|
‘e Omitting the /ANSI_ FORMAT qualifier for source programs that
are in conventional format.

° Including contradictory qualifiers, such as /MAP without
/LIST.

° Omitting version numbers from file specifications when you
want to compile other than the latest version of a source
file.

° Forgetting to use a file type in the file specification when
- you intend to wuse or «create a file with other than the
default file type.

2.3 LINKING COBOL-74 PROGRAMS

After you have compiled one or more source programs to produce object
modules, you must link the object module(s) to create a program image
that can then be executed. Linking resolves symbolic references in
the object code and establishes absolute addresses for them. This
section describes the procedure for creating executable images from
object modules using the VAX/VMS LINK command. You will find further
information in the VAX/VMS Command Language User's Guide and the
VAX-11 Linker Reference Manual.

To link object modules, enter a LINK command in the following format:

LINK [/command-qualifiers] file-spec(s) [/file-qualifiers]

2-6 USING THE VAX-11 COBOL-74 SYSTEM

N

where:
/command-qualifiers specify output file options.
file-spec specifies the input file(s) to be linked.
/file-qualifiers specify input file options.

You can enter multiple file specifications separated from each other
by commas or plus signs (which are equivalent). Regardless of how
many file specifications you specify, the LINK command produces only
one executable image.

If you do not specify a file type in an input file specification, the
Linker assumes default file types, depending on the nature of the
file. For example, object files are assumed to have a file type of
OBJ. The VAX/VMS Command Language User's Guide discusses VAX-1l1l
Linker default file types in detail. ~
Default file types for output files are discussed in the VAX/VMS
Command Language User's Guide. Consider the following command line:

LINK TESTA,TESTB,SYSSLIBRARY:C74LIB/LIB

This line causes the compiler to use two object modules (TESTA.OBJ and
TESTB.OBJ) to produce a single executable image (TESTA.EXE).

NOTE

The command line must specify the
library that contains the COBOL-74 RTS.
The examples in this chapter specify:

SYSS$SLIBRARY:C74LIB/LIB

You <¢an also specify the optional
sharable RTS, which results in a smaller
image file and sharing of physical
memory when two or more COBOL images run
at the same time. Link with the
sharable RTS by specifying:

SYSSLIBRARY:C74LIB/OPT

Before you can use this option, your
system manager must install the sharable
image, SYS$SYSTEM:C74LIB.EXE, as SHARED.
The procedure is described in the
VAX/VMS Operator's Guide. -

USING THE VAX-11 COBOL-74 SYSTEM 2-7

The following discussion describes the command qualifiers and file
qualifiers that you are most likely to use for linking COBOL modules.
However, you will find complete discussions of all LINK command
qualifiers in the references already mentioned. The following
qualifiers are discussed:

Command qualifiers Default

/BRIEF

/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/ [NOIDEBUG[=file-spec] /NODEBUG

/ [NO]JEXECUTABLE [=file-spec] /EXECUTABLE

/FULL

/[NO]MAP[=file-spec] /NOMAP

/ [NO] TRACEBACK /TRACEBACK

File qualifiers

/INCLUDE=module-name[,...]
/LIBRARY
/OPTIONS

Command Qualifiers:
/BRIEF
Produces a brief memory allocation map file. Use /BRIEF only if
you also specify /MAP; /BRIEF must fellow /MAP on the command
line.
The brief form of the map contains:
1. A summary of the image characteristics.
2. A list of all object modules included in the image.
3. A summary of link-time performance statistics.
Example
LINK/MAP/BRIEF PROGA,SYSSLIBRARY:C74LIB/LIB
' /CROSS_REFERENCE
/NOCROSS_REFERENCE
Controls whether the Linker produces a symbol cross-reference on

the memory allocation map.

Use /CROSS_REFERENCE only if you also specify /MAP;
/CROSS_REFERENCE must follow /MAP on the command line.

2-8 USING THE VAX-11l COBOL-74 SYSTEM

ST

Example
LINK/MAP/CROSS_REFERENCE PROGA,SYSSLIBRARY:C74LIB/LIB

The symbol cross-reference lists each global symbol referenced in
the image, its value, and all modules in the image that refer to
it.

The default is /NOCROSS_REFERENCE.

/DEBUG[=file-spec]
/NODEBUG
Controls whether the Linker includes a debugger in the image.

If the object module contains local symbol table information for
the Debugger, specify /DEBUG to include the information in the
image as well.

You can include the optional file specification to specify a
user-defined debugger; the default file type is OBJ. If you
specify /DEBUG without a file specification, the default VAX/VMS
Debugger is linked with the image. You will £find more
information on using /DEBUG in the VAX/VMS Symbolic Debugger
Reference Manual.

The default is /NODEBUG.
Chapter 9 discusses COBOL program debugging.

/EXECUTABLE [=file-spec]

/NOEXECUTABLE
Controls whether the Linker creates an executable image and
optionally supplies a file specification for the output image
file.

By‘default, the Linker creates an executable image with the same
file name as the first input file and a file type of EXE.

Use /NOEXECUTABLE to see the results of linking in less time than
the Linker would need to create an image file.

Examples:
LINK/EXECUTABLE=NEWPROG.IMG/MAP PROGA,SYSSLIBRARY:C74LIB/LIB
LINK/NOEXECUTABLE/MAP PROGA,SYSSLIBRARY:C74LIB/LIB
/FULL
Produces a full memory allocation map listing. Use /FULL only if

you also specify /MAP; /FULL must follow /MAP on the command
line.

USING THE VAX-11 COBOL-74 SYSTEM 2-9

A full map listing contains: , v (
1. All information contained in the brief listing.

2. Detailed descriptions of each program section and image
section in the image file.

3. Lists of global symbols by name and value.
Example
LINK/MAP/NOEXEC/FULL PROGA,SYSSLIBRARY:C74LIB/LIB
/MAP[=file-spec]
/NOMAP
Controls whether the Linker produces a memory allocation map
listing. (’
You can specify the file specification to name the map file;
otherwise, the name of the output file is the same as the name of
- the first input file, with a file type of MAP.
When you specify /MAP, you can also specify /BRIEF, /FULL, or
/CROSS_REFERENCE to control the contents of the map. If you

specify none of these qualifiers, the map contains:

1. All the information contained in the brief listing.

e ~

2. A list of user-defined global symbols sorted by name.
3. A list of user-defined program sections.

The default is /NOMAP.

/TRACEBACK : ‘

/NOTRACEBACK :
Controls whether the Linker includes traceback information in the (;
image file. -

By default, the Linker includes traceback information so the
system can trace the call stack when an error occurs. If you
specify /NOTRACEBACK, you will get no traceback reporting when
errors occur.

If you specify /DEBUG, the Linker also assumes /TRACEBACK.
{

File Qualifiers

/INCLUDE=module-name[, ...]
Indicates that the associated file specification refers to an
object module library (the default file type is OLB) ;
furthermore, it causes the Linker to unconditionally include only)
the specified module(s). (

2-10 USING THE VAX-11 COBOL-74 SYSTEM

TN

You must specify at least one module-name. Specify more than one
by separating them with commas and enclosing the 1list in
parentheses.

You can also specify /LIBRARY when you specify /INCLUDE to cause
the Linker to search the library for unresolved references after
it unconditionally includes the specified module(s).

Examples:
LINK PROGA,LIBA/INCLUDE=MODA,SYSSLIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the module
MODA from the 1library file LIBA.OLB to
produce PROGA.EXE.

LINK PROGA,LIBA/INC=(MODA,MODB)/LIB,SYSSLIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the modules
MODA and MODB from the 1library file
LIBA.OLB. Because of the /LIBRARY file
qualifier, the Linker will also search
LIBA.OLB for any other unresolved references
in PROGA.OBJ, MODA, and MODB.

/LIBRARY

Indicates that the file specification refers to a library file to
be searched to resolve any undefined symbols in the input
file(s).

If the file specification does not include a file type, the
Linker assumes the default file type OLB. Do not specify a
library as the first input file wunless vyou also specify the
/INCLUDE qualifier to indicate which modules in the library are
to be unconditionally included in the image. You can use both
/INCLUDE and /LIBRARY; this causes the Linker to include the
specified modules, then search the 1library for unresolved
references.

Examples
LINK PROGA,LIBA/LIBRARY,SYS$LIBRARY:C74LIB/LIB

The Linker searches LIBA.OLB for unresolved
references in PROGA.OBJ to create PROGA.EXE.

LINK LIBA/LIB/INCLUDE=MOD1/EXEC=PROG,SYSSLIBRARY:C74LIB/LIB
The Linker includes the module MODl from
LIBA.OLB, then searches LIBA.OLB for

unresolved references in MOD1. The result
is an executable image PROG.EXE.

USING THE VAX-11l COBOL-74 SYSTEM 2-11

/OPTIONS
Indicates that the input file contains a 1list of options to
control 1linking. If the /OPTIONS file specification does not
include a file type, the Linker uses the default file type OPT.

The contents of the option file are described in the VAX-11
Linker Reference Manual.

2.4 EXECUTING A COBOL IMAGE

When the object modules have been linked to create an executable
image, you can use the RUN command to execute the image in the
process. If you specified SWITCH ON or OFF in the SPECIAL-NAMES
paragraph of the COBOL source program, you can specify the status of
switches before or during image execution.

2.4.1 Setting and Resetting Program Switches

COBOL program switches exist as the logical name COB$SWITCHES, which
can be defined for the process, group, or system. Use the DEFINE
command (you can also use the ASSIGN command) to change the status of
program switches:

DEFINE COBSSWITCHES "switch-list"
where switch-list is a list of one or more program switch numbers
(1-16) separated by commas. The entire 1list must be enclosed in
quotes. A switch is set ON if its number appears in the switch-list;
otherwise, it is set OFF.
Examples
DEFINE COBS$SWITCHES "1,5"
Sets switches 1 and 5 ON; sets all others OFF.
DEFINE COB$SWITCHES "4,5,6,7,8,9,10,11,12,13,14,15,16"
Sets all switches ON except 1, 2, and 3.
DEFINE COB$SWITCHES " "
Turns OFF all switches.
The order of evaluation of logical name assignments is: process,
group, system. System and group logical name assignments (including
COBOL program switch settings) continue until they are changed (or
deassigned). Process logical name assignments exist until either they
are changed (or deassigned) or until the process terminates.
Therefore, you should be aware of system and group assignments of

COB$SWITCHES before executing an image if you do not define it
yourself in your process.

2-12 USING THE VAX-1l COBOL-74 SYSTEM

SN

N

You can guarantee the intended status of COBOL program switches by
setting switches 3just before executing an image that uses them. You
can confirm the switch settings by using the following command:

SHOW LOGICAL COBS$SWITCHES
You can use the DEASSIGN command to remove the switch-setting logical
name from your process; the group or system logical name (if any) is
then active:

DEASSIGN COBS$SWITCHES

You can also change the status of switches during execution:

1. Interrupt the image with CTRL/Y or a STOP 1literal COBOL
statement.

2. Use a DEFINE command to change switch settings.
3. Continue the image with a CONTINUE command. Be sure that you

do not force the interrupted image to exit by entering a
command that executes another image.

2.4.2 The RUN Command
Use the RUN command to execute an image:
RUN [/command-qualifier] file-spec

If you do not specify a file type in file specification, the RUN
command uses the default file type EXE.

The RUN command has two optional command qualifiers:

/DEBUG
Specify /DEBUG to request the debugger at execution time if the
image was not linked with the debugger. However, you cannot use
/DEBUG if /NOTRACEBACK was specified when the image was linked.

/NODEBUG »
Specify /NODEBUG if you do not want the debugger at execution
time for an image that was linked with the /DEBUG qualifier.

Examples
.RUN PROGA Executes PROGA.EXE.
RUN PROGB.ABC Executes the image named PROGB.ABC.
‘RUN/NODEBUG PROGA Executes PROGA.EXE without the debugger

that may have been linked with it.

You can also use the RUN (Process) command to execute the image as a
separate process. (See the VAX/VMS Command Language User's Guide.)
o

USING THE VAX-11 COBOL-74 SYSTEM 2-13

_ CHAPTER 3

NON-NUMERIC CHARACTER HANDLING

3.1 INTRODUCTION

COBOL programs hold their data in fields whose sizes are described in
their source programs. These - fields are thus "fixed" during
compilation to remain the same size throughout the lifespan of the
resulting object program.

The data descriptions of the fields in a COBOL program describe them
as belonging to any of three data classes -- alphanumeric, alphabetic,
or numeric class. Numeric class data items contain only numeric

values, alphabetic <class
data items may contain values that
a mixture of alphabetic bytes,
character from the ASCII character

Further, these three classes are
alphabetic, numeric, numeric
~alphanumeric.
belongs to one
The class of a group item is

Every elementary item except for
of the classes and further to one of the categories.
treated

only A-Z and space, but alphanumeric class

are all alphabetic, all numeric, or
numeric bytes, or, in fact, any
set. ‘

subdivided into five
edited, alphanumeric
an index

categories:
edited, and
data item

at run time as alphanumeric

regardless of the classes of subordinate elementary items.

For alphabetic and numeric

synonymous.

8

An alphabetic field is a field declared

(A-Z and space) characters.

An alphanumeric class field that is

(data

items) class and category are

to contain only alphabetic

declared to contain any ASCII

character is called an alphanumeric category field.

If the data description of an alphanumeric class field specifies

certain editing operations will

moved into it, that field is called an alphanumeric or numeric

category field.

When reading the following sections of this chapter, this

that
performed on any value that is
edited

be

distinction

between the class or category of a data item and the actual value that

the item contains should always be

kept in mind.

Sometimes the text refers to alphabetic, alphanumeric, and
alphanumeric edited data items as non-numeric data items. This is to
distinguish them from items that are specifically described as numeric
items.

Regardless of the class of an item, it is usually possible to store a
value in the item, at run time, that is "illegal". Thus, non-numeric
ASCII characters can be placed into a field described as numeric
class, and an alphabetic class field may be loaded with non-alphabetic
characters.

To increase readability, the following sections occasionally omit the
word "class" when describing an item; however, the reader should
regard the descriptive word, numeric, alphabetic, or alphanumeric, as
referring to the <class of an item unless it applies specifically to
the value in the item.

This chapter discusses non-numeric class data and the non-arithmetic,
non-input-output operations that manipulate this type of data.

3.2 DATA ORGANIZATION

Usually, the data areas in a COBOL program are organized into group
items with subordinate elementary items. A group item is a data item
that is followed by one or more data items (elementary items) with
higher valued level numbers. An elementary item has no higher valued
subordinate level number.

All of the data areas used by COBOL programs (except for certain
registers and switches) must be described in the Data Division of the
source program. The compiler allocates memory space for these fields
and fixes them in size at compilation time.

The following sub-sections (3.2.1 and 3.2.2) discuss, on a general
level, how the compiler handles group and elementary data items.

3.2.1 Group Items

The size of a group item is the total size of the data area occupied
by its subordinate elementary items. The compiler considers group
items to be alphanumeric DISPLAY items. = Thus, the software
manipulates group items as if they had been described as PIC X()
items, and ignores the structure of the data contained within them.

3.2.2 Elementary Items
The size of an elementary item is determined by the number of

allowable symbols it contains that represent character positions. For
example, consider figure 3-1.

3-2 NON-NUMERIC CHARACTER HANDLING

TN

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Figure 3-1
Field Sizes

Both fields consume seven bytes of memory; however, FIELD-1 contains
seven alphanumeric bytes while FIELD-2 contains decimal digits and an
operational sign. Although certain verbs handle these two classes of
data differently, the data, in either case, occupies seven bytes of
VAX-1ll memory. COBOL operations on such fields are independent of the
mapping of the field into VAX-11l memory words (l16-bit words that hold
two 8-bit bytes). Thus, a field may begin in the left or right-hand
byte of a word with no effect on the function of any operations that
may refer to that field.

In effect, the compiler sees memory as a continuous array of bytes,
not words. This becomes particularly important when declaring a table
with the OCCURS clause (see Chapter 5, Table Handling).

Records (a 01 level entry and all of its subordinate entries) and data
items that have a level number of 77 and all literal values given in
the Procedure Division automatically begin on even byte addresses.

I/0 verbs require that records be aligned on word boundaries because
the VAX-11 COBOL-74 file system reads and writes integral numbers of
words.

Non-input-output verbs do not require alignment of the data. However,

when two fields are aligned 1identically, the processing verb can

sometimes increase its efficiency by processing them a word at a time
rather that a byte at a time.

In all cases, automatic word alignment of literals, records, and/or 77
items increase the opportunity for more efficient processing.

3.3 SPECIAL CHARACTERS

COBOL allows the user to manipulate any of the 128 characters of the
ASCII character set as alphanumeric data even though many of the
characters are control characters, which usually control input/output
devices. Generally, alphanumeric data manipulations are performed in
a manner that attaches no "meaning" to an 8-bit byte. Thus, the user
can move and compare these control characters in the same manner as
alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters,
certain control characters cannot appear in non-numeric literals since
the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input
key for many of the special characters, thus making it difficult to
place them into non-numeric literals.

NON-NUMERIC CHARACTER HANDLING 3-3

Special characters may be placed into data fields of the object
program by placing the binary value of the special character into a
numeric COMP field and redefining that field as alphanumeric DISPLAY.
Consider the following example of redefinition. (Keep in mind that
the even byte of a word corresponds to the low-order bits of a binary
word.) ('
01 LF-COMP PIC 999 COMP VALUE 10.
01 LF REDEFINES LF-COMP PIC X.
01 HT-COMP PIC 999 COMP VALUE 9.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 999 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

Figure 3-2
Redefining Special Characters

The sample coding in Figure 3-2 introduces each character as a 1l-word
COMP item with a decimal value, then redefines it as a single byte.
(The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically
\sized fields.)

Use the Character Set table in Appendix B of the VAX-11l COBOL-74

Language Reference Manual to determine the decimal value for any ASCII
character.

3.4 TESTING NON-NUMERIC FIELDS

3.4.1 Relation Tests

An IF statement that contains a relation condition (greater-than,
less-than, equal-to, etc.) can compare the value in a non-numeric data
item with another value and use the result to alter the flow of
control in the program.

An IF statement with a relation condition compares two operands,

either of which may be an identifier or a literal, except that both

cannot be literals. If the relation exists between the two operands,
the relation condition has a truth value of true. '

Figure 3-3 illustrates the general format of a relation condition.
(The relational characters ">," "<," and "=," although required, are
not wunderlined to avoid confusion with other symbols such as
greater-than-or-equal-to.)

3-4 NON-NUMERIC CHARACTER HANDLING

~

\.

e

SN
/ \

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

identifier-1 IS [NOT] EQUAL TO identifier-2
literal-1 Is [NOT] > literal-2
arithmetic-expression-1 IS [NOT] < f arithmetic-expression-2
IS [NOT] =
Figure 3-3

Relation Condition

When coding a relational operator, leave a space before and after each
reserved word. When the reserved word NOT is present, the software
considers it and the next key word or relational character to be one
relational operator that defines the comparisén. Figure 3-4 shows the
meanings of the relational operators.

OPERATOR MEANING
IS [NOT] GREATER THAN The first operand is greater than
IS [NOT] > (or not greater than) the second operand.
. IS [NOT] LESS THAN The first operand is less than
IS [NOT] < (or not less than) the second operand.
IS [NOT] EQUAL TO The first operand is equal to
IS [NOT] = (or not equal to) the second operand.
Figure 3-4

The Meanings of the Relational Operators

3.4.1.1 Classes of Data - COBOL allows comparison of both numeric
class operands and non-numeric class operands; however, it handles
each class of data slightly differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but requires that all other
comparisons (including comparisons of any group items) be between
operands with the same usage. It compares numeric class operands with
respect to their algebraic values and non-numeric (or a numeric and a
non-numeric) class operands with respect to a specified collating
sequence.

If only one of the operands is numeric, it must be an integer data
item or an integer literal and it must be DISPLAY usage; further, the
manner in which the software handles numeric operands depends on the
non-numeric operand. Consider the following two types of non-numeric
operands:

1. If the non-numeric operand is an elementary item or a
literal, the software treats the numeric operand as if it had
been moved into an alphanumeric data item (which is the same
size as the numeric operand) and then compared. This causes
any operational sign, whether carried as a separate character
or as an overpunch, to be stripped from the numeric item;

NON-NUMERIC CHARACTER HANDLING 3-5

thus, it appears to be an unsigned quantity. In addition, if
the picture-string of the numeric item contains trailing P
characters indicating that there are assumed integer
positions that are not actually present, these are filled
with zero digits during the operation of stripping any sign
that 1is present. Thus, an item with a picture-string of
S9999PPP is moved to a temporary location where it is
described with a picture-string of 9999999. 1If its value is
432J (-4321), the value in the temporary location will be
4321000. The numeric digits, stored as ASCII bytes, take
part in the comparison. '

2. If the non-numeric operand is a group item, the software
treats the numeric operand as if it had been moved into a
group item (which is the same size as the numeric operand)
and then compared. This is equivalent to a "group move".
The software ignores the description of the numeric field
(except for length) and, therefore, includes any operational
sign, whether carried as a separate character or as an
overpunch, in its length. (Overpunched characters are never
ASCII numeric digits, but characters in the range of from A
through R, , or .) Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeroes are not
supplied for P characters in the picture-string.

The compiler will not accept a comparison between a non-integer
numeric operand and a non-numeric operand, and any attempt to compare
these two items will cause a diagnostic message at compile time.

3.4.1.2 The Comparison Operation - If the two operands are
acceptable, the software compares them byte for byte starting at their
left-hand end. It proceeds from 1left to right, comparing the
characters in corresponding character positions until it either
encounters a pair of unequal characters or reaches the right-hand end
of the longer operand.

If the software encounters a pair of unequal characters, it considers
their relative position in the collating sequence. The operand with
the character that is positioned higher in the collating sequence is
the greater operand. ’

If the operands have different lengths, the comparison proceeds as
though the shorter operand were extended on the right by sufficient
ASCII spaces (hex 20) to make them both the same length.

If all of the pairs of characters compare equally, the operands are
equal.

3-6 NON-NUMERIC CHARACTER HANDLING

~

N

3.4.2 Class Tests

An 1IF statement that contains a class condition (NUMERIC or
ALPHABETIC) can test the value 1in a non-numeric data item (USAGE
DISPLAY only) to determine if it contains numeric or alphabetic data
and use the result to alter the flow of control in the program.

Figure 3-5 illustrates the general format of a class condition. If
the data item consists entirely of the ASCII characters 0123456789
with or without the operational sign, the <class condition would
determine that it is NUMERIC. If the item consists entirely of the
ASCII characters A through Z and space, the <class condition would
determine that it is ALPHABETIC.

NUMERIC
identifier IS [NOT]

ALPHABETIC

Figure 3-5
Class Condition, General Format

When the reserved word, NOT, is present, the software considers it and
the next key word as one class condition that defines the class test
to be executed; for example, NOT NUMERIC is a truth test for
determining if an operand contains at least one non-numeric byte.

If the item being tested was described as a numeric data item, it may
only be tested as NUMERIC or NOT NUMERIC. (For further information on
using class conditions with numeric items, see Chapter 4.) The NUMERIC
test cannot examine an item that was described either as alphabetic or
as a group item containing elementary items whose data descriptions
indicate the presence of operational signs.

3.5 DATA MOVEMENT

COBOL provides three statements (MOVE, STRING, and UNSTRING) that
perform most of the data movement operations required by
business-oriented programs. The MOVE statement simply moves data from
one field to another. The STRING statement concatenates a series of
sending fields into a single receiving field. The UNSTRING statement
disperses a single sending field into multiple receiving fields. Each
has its wuses and its limitations. This section discusses data
movement situations which take advantage of the versatility of these
statements.

The MOVE statement handles the majority of data movement operations on
character strings. However, the MOVE statement has limitations in its
ability to handle multiple fields; for example, it cannot, by itself,
concatenate a series of sending fields into a single receiving field
or disperse a single sending field into several receiving fields.

NON-NUMERIC CHARACTER HANDLING 3-7

Two MOVE statements will, however, bring the contents of two fields
together into a third (receiving) field if the receiving field has
been "subdivided" with subordinate elementary items that match the two
sending fields in size. 1If other fields are to be concatenated into
the third field and they differ in size from the first two fields,
then the receiving field will require additional subdivisions (through
redefinition).

Another method of concatenation with the MOVE statement 1is to
subdivide the receiving field into single character fields, creating a
"table" of a single character field that occurs as many times as there
are characters in the receiving field, and execute a data movement
loop which moves each sending field, a character at a time, using a
subscript that moves continuously across the receiving field.

Two MOVE statements can also be used to disperse the contents of one
sending field to several receiving fields. The first MOVE statement
can move the left-most end of the sending field to a receiving field;
then the second MOVE statement can move the right-most end of the
sending field to another receiving field. (The second receiving field
must first be described with the JUSTIFIED clause.) Characters from
the middle of the sending field cannot easily be moved to any
receiving field without extensive redefinitions of the sending field
or a character-by-character movement loop (as with concatenation).

The concatenation and dispersion limitations of the MOVE statement are
handled quite easily by the STRING and UNSTRING statements. The
following sections (3.6, 3.7, and 3.8) discuss these three statements
in detail.

3.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following illustration shows the two formats of the MOVE statement.

Format 1
MOVE FIELD1 TO FIELD2
Format 2

MOVE CORRESPONDING FIELD1 TO FIELD2

NOTE

Format 2 is discussed in Section 3.6.6.

FIELDl is the name of the sending field and FIELD2 is the name of the
receiving field. The statement causes the software to move the
contents of FIELDl into FIELD2. The two fields need not be the same
size, class, or usage; and they may be either group or elementary
items.

3-8 NON-NUMERIC CHARACTER HANDLING

/‘\

N

If the two fields are not the same length, the software will align
them on one end or the other -- and will truncate or pad (with spaces)
the other end. The movement of group items and non-numeric elementary
items is discussed below.

A point to remember when using the MOVE statement is that it will
alter the contents of every character position in the receiving field.

3.6.1 Group Moves

If either the sending or receiving field is a group item, the software
considers the move to be a group move. It treats both the sending and
receiving fields in a group move as if they were alphanumeric class
fields. If the sending field is a group item and the receiving field
is an elementary item, the software ignores the receiving field
description (except for the size description, in bytes, and any
JUSTIFIED clause); therefore, the software conducts no conversion or
editing on the receiving field. '

3.6.2 Elementary Moves

If both fields of a MOVE statement are elementary items, their data
description clauses control their data movement. (If the receiving
field was described as numeric or numeric edited, the rules for
numeric moves -- see Chapter 4, Numeric Character Handling -- control
the data movement.) \

The following table shows the 1legal (and illegal) non-numeric

elementary moves.

Table 3-1
Legal Non-Numeric Elementary Moves

SENDING FIELD CATEGORY RECEIVING FIELD CATEGORY
ALPHABETIC ALPHANUMERIC
ALPHANUMERIC EDITED
ALPHABETIC ' Legal Legal
ALPHANUMERIC Legal Legal
ALPHANUMERIC EDITED Legal Legal
NUMERIC INTEGER
(DISPLAY ONLY) Illegal Legal
NUMERIC EDITED Illegal Legal

NON-NUMERIC CHARACTER HANDLING 3-9

In all of the legal moves shown above, the software treats the sending
field as though it had been described as PIC X(). If the sending
field description contains a JUSTIFIED clause, the clause will have no
effect on the move. If the sending field picture-string contains
editing characters, the software wuses them only to determine the
field's size.

Numeric class data must be in DISPLAY (byte) format and must be an
integer.

If the description of the numeric data item indicates the presence of
an operational sign (either as a character or an overpunch) or if
there are P characters in the picture-string of the numeric data item,
the software first moves the item to a temporary location. During
this move, it removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value (which may be
shorter than the original if a separate sign were removed, or longer
if P character positions were filled in with zeroes) as the sending
field as if it had been described as PIC X(), that 1is, as if its
category were alphanumeric.

If the sending item is an unsigned numeric class field with no P
characters 1in its picture-string, the software does not move the item
to a temporary location.

A numeric integer data item sending field has no effect on the
justification of the receiving field. If the numeric sending field is
shorter than the receiving field, the software £fills the receiving
field with spaces.

In legal, non-numeric elementary moves, the receiving field actually
controls the movement of data. All of the following items, in the
receiving field, affect the move: (1) the size, (2) the presence of
editing characters in its description, and (3) the presence of the
JUSTIFIED RIGHT clause in its description. The JUSTIFIED clause and
editing characters are mutually exclusive; therefore, the two classes
are discussed separately below.

When a field that contains no editing characters or JUSTIFIED clause
in its description is used as the receiving field of a non-numeric
elementary MOVE statement, the statement moves the characters by
starting at the left-hand end of the fields and scanning across,
character-by-character to the right. If the sending item is shorter
than the receiving item, the software fills the remaining character
positions with spaces.

3.6.2.1 Edited Moves - Alphabetic or alphanumeric fields may contain
_editing characters. Consider the following insertion editing
characters. Alphabetic fields will accept only the B character;
however, alphanumeric fields will accept all three characters.

B -- blank insertion position
0 -- zero insertion position f
/ —-=- slash insertion position.

3-10 NON-NUMERIC CHARACTER HANDLING

7 ™~

When a field that contains an insertion editing character in its

Picture-string is wused as the receiving field of a non-numeric

elementary MOVE statement, each receiving character position that
corresponds to an editing character receives the insertion byte value.
Figure 3-6 illustrates the use of such symbols with the statement,
MOVE FIELDl TO FIELD2. (Assume that FIELDl was described as PIC
X(7).)

FIELD2
FIELD1 PICTURE~-STRING CONTENTS AFTER MOVE
070476 XX/99/XX 07/04/76
04JUL76 99BAAAB99 04 JuL 76
2351212 XXXBXXXX/XX/ 235 1212/ /
123456 0XBOXBOXBOX 01 02 03 04
Figure 3-6

Data Movement with Editing Symbols

Data movement always begins at the left end of the sending field, and
moves only to the byte positions described as A, 9, or X in the
receiving field picture-string. When the sending field is exhausted,
the software supplies space characters to fill any remaining character
positions (not insertion positions) in the receiving field. If the
receiving field becomes exhausted before the last character is moved
from the sending field, the software ignores the remaining sending
field characters.

3.6.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the data
description of the receiving field causes the software to reverse its
usual data movement conventions. (It starts with the right-hand
characters of both fields and proceeds from right to left.) If the
sending field is shorter than the receiving field, the software fills
the remaining 1left-hand character positions with spaces. Figure 3-7

- illustrates various data description situations for the statement,

MOVE FIELD1l TO FIELD2, with no editing.

FIELD1l FIELD2
PICTURE-STRING CONTENTS PICTURE-STRING CONTENTS AFTER

) (AND JUST CLAUSE) MOVE

XX AB

XXXXX ABC

XXX ABC XX JusT BC
XXXXX JUusT ABC

Figure 3-7

Data Movement with No Editing

NON-NUMERIC CHARACTER HANDLING 3-11

3.6.3 Multiple Receiving Fields

If a MOVE statement is written with more than one receiving field, it
moves the same sending field value to each of the receiving fields.
It has essentially the same effect as a series of separate MOVE
statements that all have the same sending field. (For information on
subscripted fields, see section 3.6.4.)

The receiving fields need have no relationship to each other. The
software checks the legality of each one independently, and performs
an independent move operation on each one.

Multiple receiving fields on MOVE statements provide a convenient way
to set many fields equal to the same value, such as during
initialization code at the beginning of a section of processing. For
example: :

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.
MOVE ZEROES TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Any field of a MOVE statement may be subscripted and the réferenced
field may also be used to subscript another name in the same
statement.

When more than one receiving field is named in the same MOVE
statement, the order in which the software evaluates the subscripts
affects the results of the move. ~ Consider the following two
situations:

Situation 1 MOVE FIELD1 (FIELD2) TO FIELD2 FIELD3.

Situation 2 MOVE FIELDl TO FIELD2 FIELD3(FIELD2).

Figure 3-8
Subscripted MOVE Statements

In situation 1, the software evaluates FIELDl(FIELD2) only once,
before it moves any data to the receiving fields. 1In effect it is as
if the statement were replaced with the following statements:

MOVE FIELD]1l (FIELD2) TO TEMP.
MOVE TEMP TO FIELD2.

)
MOVE TEMP TO FIELD3.

3-12 NON-NUMERIC CHARACTER HANDLING

ST

In situation 2, the software evaluates FIELD3(FIELD2) immediately
before moving the data into it (but after moving the data from FIELD1
to FIELD2). Thus, it uses the newly stored value of FIELD2 as ‘the
subscript = value. In effect, it is as if the statement were replaced
with the following statements:

MOVE FIELDl1 TO FIELD2.

MOVE FIELDl TO FIELD3(FIELD2).

3.6.5 Common Errors, MOVE Statement

A most important thing to remember when writing MOVE statements is
that the compiler considers any MOVE statement that contains a group
item to be a group move. It is easy to forget this fact when moving a
group item to an elementary item, and the elementary item contains
editing characters, or a numeric integer. These attributes of the
receiving field (which would determine the action of an elementary
move) have no effect on the action of a group move.

3.6.6 Format 2 - MOVE CORRESPONDING

Format 2 of the MOVE statement allows the programmer to move multiple
elementary items from one group item to another, by using a single
MOVE statement. When the corresponding phrase 1is wused, selected
elementary items in the sending field are moved to those elementary
items in the receiving field whose data-names are 1identical. For
example:

01 A-GROUP. 01 B-GROUP.
02 FIELDL. , 02 FIELD2.
03 A PIC X. 03 A PIC X.
03 B PIC 9. 03 C PIC XX.
03 C PIC XX. 03 E PIC XXX.

03 D PIC 99.
03 E PIC XXX.
MOVE CORRESPONDING A-GROUP TO B-GROUP
OR

MOVE CORRESPONDING FIELDl1 TO FIELD2

NON-NUMERIC CHARACTER HANDLING 3-13

The preceding examples are equivalent to the following series of MOVE
statements: ’

MOVE A OF FIELDl TO A OF FIELD2
MOVE C OF FIELDl TO C OF FIELD2

MOVE E OF FIELDl TO E OF FIELD2

3.7 THE STRING STATEMENT

The STRING statement concatenates the contents of two or more sending

fields into a single field.

The statement has many forms; the simplest 1is equivalent, 1in
function, to a non-numeric MOVE statement. Consider the following
illustration; if the two fields are the same size, or if the sending
field (FIELDl) is 1larger, the statement 1is equivalent to the
statement, MOVE FIELD1 TO FIELD2.

STRING FIELDl DELIMITED BY SIZE INTO FIELD2.

Figure 3-9
Sample STRING Statement

If the sending field is shorter than the receiving field, an important
difference between the STRING and MOVE statements emerges: the
software does not fill the receiving field with spaces. Thus, the
STRING statement may leave some portion of the receiving field
unchanged.

Additionally, the receiving field must be an elementary alphanumeric
field with no JUSTIFIED clause or editing characters in its
description. Thus, the data movement of the STRING statement always
fills the receiving field from left-to-right with no editing
insertions.

3.7.1 Multiple Sending Fields

An important characteristic of the STRING statement is its ability to
concatenate a series of sending fields into one receiving field.
Consider the following example of the STRING statement:

STRING FIELD1A FIELD1B FIELD1C DELIMITED BY SIZE
INTO FIELD2.

Figure 3-10
Concatenation with the STRING Statement

3-14 NON-NUMERIC CHARACTER HANDLING

-

TN

77N\

In this sample STRING statement, FIELD1A, FIELD1B, and FIELDIC are all
sending fields. The software moves them to the receiving field
(FIELD2) in the order in which they appear in the statement, from left
to right, resulting in the concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation
stops when it is full. If this occurs while moving one of the sending
fields, the software ignores the remaining characters of that field
and any other sending fields not yet processed. For example, if
FIELD2 became full while receiving FIELD1B, the software would ignore
the rest of FIELD1B and all of FIELDIC.

If the sending fields do not fill the receiving field, the operation
stops with the movement of the last character of the last sending item
(FIELDIC in Figure 3-10). The software does not alter the contents
nor space-fill the remaining character positions of the receiving
field.

The sending fields may be non-numeric 1literals and figurative
constants (except for ALL 1literal). For example, the following
statement sets up an address label with the literal period and space
between the STATE and ZIP fields:

STRING CITY SPACE STATE ". " ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-11
Literals as Sending Fields

Sending fields may also be subscripted. For example, the following
statement wuses subscripts to concatenate the elements of a table
(A-TABLE) into a single field (A-FOUR). (I, of course, must be a
subscript or an index-name.)

STRING A-TABLE(I) A-TABLE(I+1) A-TABLE(I+2) A-TABLE(I+3)
DELIMITED BY SIZE INTO A-FOUR.

Figure 3-12
Indexed Sending Fields

3.7.2 The POINTER Phrase

Although the STRING statement normally starts at the left-hand end of
the receiving field, with the POINTER phrase it is possible to start
it scanning at another point within the field. (The scanning,
however, remains left-to-right.)

NON-NUMERIC CHARACTER HANDLING 3-15

MOVE 5 TO P.
STRING FIELD1A FIELD1B DELIMITED BY SIZE
INTO FIELD2 WITH POINTER P.

Figure 3-13
Sample POINTER Phrase

When the POINTER phrase is used, the value of P determines the
starting character position in the receiving field. 1In Figure 3-13,
the 5 in P causes the software to move the first character of FIELDIA
into character position 5 of FIELD2 (the left-most character position
of the receiving field is character position 1) and leave positions 1
through 4 unchanged.

When the STRING operation is complete, the software leaves P pointing
to one character position beyond the last character replaced in the
receiving field. 1If FIELD1A and FIELD1B in Figure 3-13 are both four
characters long, P will contain a value of 13 (5+4+4) when the
operation is complete (assuming that FIELD2 is at least 12 characters
long).

3.7.3 The DELIMITED BY Phrase

Although the sending fields of the STRING statement are fixed in size
at compile time, they frequently contain variable-length items that
are padded with spaces. For example, a 20-character city field may
contain only the word MAYNARD and 13 spaces. A valuable feature of
the STRING statement is that it may be used to move only the useful
data from the left-hand end of the sending field. The DELIMITED BY
phrase, written with a data-name or literal, instead of the word SIZE,
performs this operation. (The delimiter may be a literal, a data
item, a figurative constant, or the word SIZE. It may not be ALL
literal since ALL literal has an indefinite length. When the phrase
contains the word SIZE, the software moves each sending field, 1in
total, wuntil it either exhausts the sending field, or fills the
receiving field.)

Consider the following example:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-14
Delimiting with the Word SIZE

If CITY is a 20-character field, the result of the STRING operation
shown in Figure 3-14 might look like the following: -

AYER MA. 01432

__16 spaces

' 3-16 NON-NUMERIC CHARACTER HANDLING

TN

TN

A far more attractive printout can be produced by having the STRING
operation produce the following:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter
on the sending field; thus, ‘

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE

INTO ADDRESS-LINE WITH POINTER P.

Figure 3-15
SPACE as a Delimiter

This sample coding uses the pointer's characteristic of pointing to
one character position beyond the last character replaced in the
receiving field to enable the second STRING statement to begin at a
position one character past where the first STRING statement stopped.
(The first STRING statement moves data characters until it encounters
a space character -- a match of the delimiter SPACE. The second
STRING statement adds the 1literal, the 2-character STATE field,
another literal, and the 5-character ZIP field.) - : :

The delimiter can be varied for each field within a single STRING
statement by repeating the DELIMITED BY phrase after the sending field
names to which it applies. Thus, the following shorter statement has
the same effect as the preceding example. (Placing the operands on
separate source lines, as shown in this example, has no effect on the
operation of the statement, but improves program readability and
simplifies debugging.) ‘ ‘

STRING CITY DELIMITED BY SPACE
ll' n STATE ll. "
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

Figure 3-16
Repeating the DELIMITED BY Phrase

The sample STRING statement in Figure 3-16 cannot handle 2-word city
names, such as New York, since the software would consider the space
between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (non-numeric literal), can
solve this problem. Only when a sequence of characters matches the
delimiter will the movement stop for that data item.

NON-NUMERIC CHARACTER HANDLING 3-17

With a 2-byte delimiter, the same statement can be rewritten in a
simpler form: '

{

STRING CITY ", " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Figure 3-17
Delimiting with More Than One Space Character

Since only the CITY field may contain two consecutive spaces (the
entire STATE field is only two bytes long), the delimiter's search of
the other fields will always be unsuccessful and the effect 1is the
same as moving the full field (delimiting by SIZE).

Data movement under control of a data-name or literal is generally
slower in execution speed than movement delimited by SIZE.

The example in Figure 3-17 illustrates a frequent source of error in
the use of STRING statements to concatenate fields. The remainder of
the receiving field is not space-filled as with a MOVE statement. If
ADDRESS-LINE is to be printed on a mailing label, for example, the
STRING statement should be preceded by the statement, MOVE SPACES TO
ADDRESS-LINE. This guarantees a space fill to the right of the
concatenated result. Alternatively, the last field concatenated by
the STRING statement can be a field previously set to SPACES. (This
sending field must be moved under control of a delimiter other than
SPACE, of course.)

3.7.4 The OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation and the pointer value is either known or the POINTER phrase
is not used, the programmer can tell, by simple addition, if the
receiving field is large enough to hold the sending fields. However,
if the DELIMITED BY phrase contains a literal or an identifier, or if
the pointer value is not predictable, it may be difficult to tell
whether the size of the receiving field is adequate, and an overflow
may occur.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDl1A FIELD1B DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO PN57.

Figure 3-18
The ON OVERFLOW Phrase

'3-18 NON-NUMERIC CHARACTER HANDLING

7N

e S \

Overflow occurs when the receiving field is full and the software is
either about to move a character from a sending field or is
considering a new sending field. Overflow may also occur if, during
the initialization of the statement, the pointer contains a value that
is either less than 1 or greater than the length of the receiving
field. In this case, the software moves no data to the receiving
field and terminates the operation immediately. ’

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial value in pointer PNTR from the overflow caused by a receiving
field that is too short. Only a separate test, preceding the STRING
statement, can distinguish between the two.

The following examples illustrate the overflow condition:

DATA DIVISION.
01 FIELDIA PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.

PROCEDURE DIVISION.
STRING FIELDIA QUOTE DELIMITED BY SIZE INTO FIELD2..
STRING FIELD1A FIELD1A DELIMITED BY SIZE INTO FIELD2.
STRING FIELDl1A FIELD1A DELIMITED BY "C" INTO FIELD2.
STRING FIELD1A FIELD1A FIELD1A FIELDIA
DELIMITED BY "B" INTO FIELD2.
. STRING FIELDl1A FIELD1A "C" DELIMITED BY "C"
INTO FIELD2.
MOVE 2 TO P.
STRING FIELD1A "AC" DELIMITED BY "C"
INTO FIELD2 WITH POINTER P.

o e o o

(8] S wno -

[=)]
°

) Figure 3-19
Various STRING Statements
Illustrating the Overflow Condition

The results of executing the numbered statements follow:

Table 3-2
Results of the
Preceding Sample Statements

Value of FIELD2 after

the STRING operation Overflow? _ ,
M

l. ABC" No

2. ABCA Yes

3. ABAB ‘ No

4., AAAA : No

5. ABAB ’ Yes

6. AABA No

NON-NUMERIC CHARACTER HANDLING 3-19

3.7.5 Subscripted Fields in STRING Statements

All data-names used in the STRING statement may be subscripted, and
the pointer value may be used as a subscript.

Since the pointer value might be used as a subscript on one or more of
the. fields in the statement, it is important to understand the order
in which the software evaluates the subscripts and exactly when it
updates the pointer. (The use of the pointer as a subscript is not
specified by ANS-74 COBOL. Before using it, read the note at the end
of this subsection.)

The>56ftware updates the pointer after it moves the last character out
of each sending field. Consider the following sample coding:

MOVE 1 TO P.

STRING "ABC"
SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-20
STRING Statement with Pointer

During the movement of "ABC" into the receiving field (R), the pointer
value remains at 1. After the move, the software increases the
pointer value by 3 (the size of the sending field literal "ABC") and
it takes on the value 4. The software then moves the figurative
constant SPACE and increases the pointer value by 1 and it takes on
the wvalue 5. "DEF" is then moved and, on completion of the move, the
software increases the pointer to its final value for this operation,
8.

Now, consider the updating characteristics of the pointer when applied
to subscripting:

MOVE 1 TO P.
STRING CHAR(P)
CHAR(P)
CHAR (P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-21
Subscripting with the Pointer

If CHAR is a l-character field in a table, the pointer increases by
one after each field has been moved and the software will move them
into R as if they had been subscripted as CHAR(l), CHAR(2), CHAR(3),
and CHAR(4). If CHAR is a 2-character field, the pointer increases by
two after each field has been moved and the fields will move into R as
if they had been subscripted as CHAR(l), CHAR(3), CHAR(5), and
CHAR(7) .

3-20 NON-NUMERIC CHARACTER HANDLING

e ~

Thus, the software evaluates the subscript of a sending item once,
immediately before it considers the item as a sending item.

The software evaluates the subscript of a receiving item only once, at
the start of the STRING operation. Therefore, if the pointer is used
as a subscript on the receiving field, changes occurring to the
pointer during the execution of the STRING statement will not alter
the choice of which receiving string is altered.

Even the delimiter field can be subscripted, and it too <can be
subscripted with the pointer. The software re-evaluates the delimiter
subscript once for each sending field, immediately before it compares
the delimiter to the field. Thus, by subscripting it with the pointer
value, the delimiter can be changed for each sending field. This has
the peculiar effect of choosing the next sending field's delimiter
based on the position, in the receiving field, into which its first
character will fall. For example, consider the following sample
coding: :

'

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

MOVE 1 TO P.

STRING "ABC"
n ABC "
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Figure 3-22
Subscripting the Delimiter

The following table shows the value that will arrive in the receiving
field (R) from the three "ABC" literals if DTABLE contains the values
shown in the left-hand column:

Table 3-3
Results of the
Preceding Sample Statements

DTABLE Value R Value
ABCDEFG (Unchanged)
BCDEFGH AABABC
CDEFGHI : ABABCABC
cccececececce ABABAB

NON-NUMERIC CHARACTER HANDLING 3-21

NOTE

The rules in this section, concerning
subscripts 1in the STRING statement, are
rules that are not specified by 1974
American National Standard COBOL.
Dependence on these rules, particularly
those involving the use of the pointer
field as a subscript, may produce
programs that will not perform the same
way on other COBOL compilers.

If the pointer field is not used as a
subscript on any of the fields in the
statement, the point at which the
software evaluates the subscripts is
immaterial to the execution of the
statement. Thus, by avoiding the use of
the pointer as a subscript, uniform
results can be expected from all COBOL
compilers that adhere to 1974 ANS COBOL.

3.7.6 Common Errors, STRING Statement
The most common errors made when writing STRING statements are:
® using the word "TO" instead of "INTO"
° forgetting to write "DELIMITED BY SIZE";
® forgetting to initialize the pointer;
° initializing the pointer to 0 instead of 1;

° forgetting to provide for space fill of the receiving field
when it is desirable.

3.8 THE UNSTRING STATEMENT

The UNSTRING statement disperses the contents of a single sending
field into multiple receiving fields.

The statement has many forms; the simplest is equivalent in function
to a non-numeric MOVE statement. Consider the following illustration;
the sample statement 1is equivalent to MOVE FIELDl1 TO FIELD2,
regardless.of the relative sizes of the two fields.

UNSTRING FIELD1l INTO FIELD2.

Figure 3-23
Sample UNSTRING Statement

3-22 NON-NUMERIC CHARACTER HANDLING

P

The sending field (FIELDl) may be either a group item or an
alphanumeric, or alphanumeric edited elementary item. The receiving
field (FIELD2) may be alphabetic, alphanumeric, or numeric, but it
cannot specify any type of editing.

If the receiving field is numeric, it must be DISPLAY usage. The
picture-string of a numeric receiving field may contain any of the
legal numeric description characters except for P and, of course, the
editing characters. The UNSTRING statement moves the sending field to
numeric receiving fields as if the sending field had been described as
an unsigned integer; further, it automatically truncates or zero
fills as required.

If the receiving field is not numeric, the software follows the rules
for elementary non-numeric MOVE statements. It left-justifies the
data in the receiving field, truncating or space-filling as required.
(If the data-description of the receiving field contains a JUSTIFIED
clause, the software right-justifies the data, truncating or
space-filling to the left as required.)

3.8.1 Multiple Receiving Fields

An important characteristic of the UNSTRING statement is its ability
to disperse one sending field into several receiving fields. Consider
the following example of the UNSTRING statement written with multiple
receiving fields:

UNSTRING FIELD1 INTO
FIELD2A FIELD2B FIELD2C.

Figure 3-24
Multiple Receiving Fields

In this sample statement, FIELDl is the sending field. The software
performs the UNSTRING operation by scanning across FIELDI from left to
right. When the number of characters scanned is equal to the number
of characters -in the receiving field, the software moves the scanned
characters into the receiving field and begins scanning the next group
of characters for the next receiving field.

Assume that each of the receiving fields in the preceding illustration
(FIELD2A, FIELD2B, and FIELD2C) is £five characters long, and that
FIELDl is 15 characters long. The size of FIELD2A determines the
number of characters for the first move. The software scans across
FIELD]l until the number of characters scanned equals the size of
FIELD2A (5). It then moves those first five characters to FIELD2A,
and sets the scanner to the next (sixth) character position in FIELDI.
The size of FIELD2B determines the size of the next move. The
software begins this move by scanning across FIELDl from character
position six, until the number of scanned characters equals the size
of FIELD2B (5).

NON-NUMERIC CHARACTER HANDLING 3-23

The software then moves the sixth through the tenth characters to
FIELD2B, and sets the scanner to the next (eleventh) character
position-in FIELDl. FIELD2C determines the size of the last move (for
this example) and causes characters 11 through 15 of FIELDl to be
moved ‘into FIELD2C, thus terminating this UNSTRING operation.

Each data movement acts as an individual MOVE statement, the sending
field of which is an alphanumeric field equal in size to the receiving
field. 1If the receiving field is numeric, the move operation will
convert the data to the numeric form.. For example, consider what
would happen if the fields under discussion had the data descriptions
and were manipulating the values shown in the following table:

Table 3-4 v
Values Moved Into the Receiving Fields
Based on the Value in the Sending Field

FIELD1 FIELD2A FIELDZé FIELD2C

PIC X (15). PIC X(5) PIC S9(5) PIC S999Vv99
VALUE 1IS: LEADING SEPARATE

ABCDE1234512345 ABCDE +12345 3450
XXXXX0000100123 XXXXX +00001 1230

FIELD2A is an alphanumeric field and, therefore, the software simply
conducts an elementary non-numeric move with the first five
characters.

FIELDZB, however, has a leading separate sign that is not included 1in
its size. Thus, the software moves only five numeric characters and
generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to
the right of it, plus an overpunched sign on the low-order digit. The
sending field should supply five numeric digits; but, since the
sending field 1is alphanumeric, the software treats it as an unsigned
integer; it truncates the two high-order digits and supplies two zero
digits for the decimal positions. Further, it supplies a positive
overpunch sign, making the low-order digit a +0 (or the ASCII
character, {). (There is no simple way to have UNSTRING recognize a
sign character or a decimal point in the sending field.)

If the sending field is shorter than the sum of the sizes of the
receiving fields, the software ignores the remaining receiving fields.
If it reaches the end of the sending field before it reaches the end
of '‘one of the receiving .fields, the software moves the scanned
characters into that receiving field. It left-justifies and fills the
remaining character positions with spaces for alphanumeric data, or
decimal point aligns and zero fills the remaining character positions
for numeric data.

3-24 NON-NUMERIC CHARACTER HANDLING

,/,-\‘

Consider the following examples of a sending field that is too short.
(The statement is UNSTRING FIELDl INTO FIELD2A FIELD2B. FIELD2A is a
3-character alphanumeric field, and receives the first three
characters of FIELD1 (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling. Since FIELD2A always
contains the characters ABC, it is not shown.)

Table 3-5
Handling a Sending Field that is Too Short

FIELD1 FIELD2B FIELD2B
PIC X (6) PICTURE 1IS: Value after UNSTRING Operation
VALUE IS: '
ee——— e |

ABCDEF XXXXX DEF

599999 0024F
ABC246 59V999 600

59999 +0246

LEADING SEPARATE

3.8.2 The DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter,
rather than by the size of the receiving field. The DELIMITED BY
phrase supplies the delimiter characters. o

UNSTRING delimiters are quite flexible; they can be 1literals,
figurative constants (including ALL literal), or identifiers
(identifiers may even be subscripted data-names). This sub-section
discusses the use of these three types of delimiters. Subsequent
sections cover multiple delimiters, the COUNT phrase, and the
DELIMITER phrase. Subscripting delimiters is discussed at the end of
this section under Subscripted Fields in UNSTRING Statements. '

Consider the following sample UNSTRING statement; it uses the
figurative constant, SPACE, as a delimiter: .

UNSTRING FIELDl DELIMITED BY SPACE INTO FIELD2.

Figure 3-25
Delimiting with a Space Character

In this example, the software scans the sending field (FIELD1),
searching for a space character. If it encounters a space, it moves
all of the scanned (non-space) characters that precede that space - to
the receiving field (FIELD2). If it finds no space character, it
moves the entire sending field. When it has determined the size of
the sending field, the software moves the contents of that field
following the rules for the MOVE Statement, truncating or zero filling
as required.

NON-NUMERIC CHARACTER HANDLING 3-25

The following table shows the results of an UNSTRING operation that
delimits with a 1literal asterisk (UNSTRING FIELDl DELIMITED BY "*"
INTO FIELD2). '

Table 3-6
Results of Delimiting with an Asterisk
FIELD1 FIELD2 FIELD2
PIC X(6) PICTURE 1S: VALUE AFTER
VALUE IS: UNSTRING
XXX ABC
ABCDEF X(7) ABCDEF
XXX JUSTIFIED DEF
kkkkkk XXX
*ABCDE XXX
A*f*** XXX JUSTIFIED A
286%** 59999 024F
12345% S9999 SEPARATE 2345+
TRAILING
2468%* S999V9 SEPARATE +4680
LEADINGV
246% 9999 0000

If the delimiter matches the first character in the sending field, the
software considers the size of the sending field to be zero. The
movement operation still takes place, however, and fills the receiving
field with spaces or zeroes depending on its class.

A delimiter may also be applied to an UNSTRING statement that has
multiple receiving fields:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2A FIELD2B. '

Figure 3-26
Delimiting with Multiple Receiving Fields

The sample instruction in Figure 3-26 causes the software to scan
FIELDl searching for a character that matches the delimiter. If it
finds a match, it moves the scanned characters to FIELD2A and sets the
scanner to the next character position to the right of the character
that matched. It then resumes scanning FIELD1l for a character that
matches the delimiter.

3-26 NON-NUMERIC CHARACTER HANDLING

e N

™~

If the software finds a match, it moves all of the characters that lie
between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the
next character position to the right of the character that matched.
(The DELIMITED BY phrase could handle additional receiving fields in
the same manner as it handled FIELD2B.)

The following table shows the results of an UNSTRING operation that
applies a delimiter to multiple receiving fields (UNSTRING FIELD1
DELIMITED BY "*" INTO FIELD2A FIELD2B).

Table 3-7
Results of Delimiting
Multiple Receiving Fields

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
ABC*DEF* DEF
ABCDE*FG FG
A*BXxkk k% A B
*AB*CD** AB
**ABCDEF ,
A*BCDEFG A BCD
ABC**DEF ABC

- Akkkkkkp A

The last two examples illustrate the limitations of a single character
delimiter. Accordingly, ' the delimiter may be longer than one
character and it may be preceded by the word ALL.

The following table shows the results of an UNSTRING operation that
uses a 2-character delimiter (UNSTRING FIELDl1 DELIMITED BY "**" INTO
FIELD2A FIELD2B): ‘

Table 3-8
Results of Delimiting
with Two Asterisks

FIELD1 . VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELDZ2A FIELD2B
VALUE IS: PIC XXX PIC XXX

- JUSTIFIED
ABC**DEF ABC , DEF
A*B*C*D* A*B
AB***C*D AB C*D
AB**C*D* AB *D*
AB**CD** AB CD
AB** *CD* ~___AB CD*

AB*****CD || AB

NON-NUMERIC CHARACTER HANDLING 3-27

\

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the
action of the UNSTRING statement remains essentially the same as with
one delimiter wuntil the scanning operation finds a match. At this
point, the software scans farther, looking for additional consecutive
strings of characters that also match the delimiter item. It
considers the "ALL delimiter" to be one, two, three, or more adjacent
repetitions of the delimiter item.

The following table illustrates the results of an UNSTRING operation
that uses an ALL delimiter (UNSTRING FIELDl DELIMITED BY ALL "*" INTO
FIELD2A FIELD2B).

Table 3-9
Results of Delimiting
with ALL Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B

VALUE IS: PIC XXX PIC XXX

) JUSTIFIED
| —————— =

ABC*DEF* ABC DEF

ABC**DEF ABC DEF

A**kkkkkF A F

A*Phkkkk A F

A*CDEFG A EFG

The next table illustrates the results of an UNSTRING operation that
combines ALL with a 2-character delimiter (UNSTRING FIELD1l DELIMITED
BY ALL "**" INTO FIELD2A FIELD2B).

Table 3-10
Results of Delimiting with
ALL Double Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) PIC XXX PIC XXX
VALUE IS: JUSTIFIED
ABC**DEF ABC DEF
AB**DE** " AB DE
A**kDkkk " A *D
Akdkkkkk " » A *

3-28 NON-NUMERIC CHARACTER HANDLING

N

- .

In addition to unchangeable delimiters, such as literals and
figurative constants, delimiters may be designated by identifiers.
Identifiers (which may even be subscripted data-names) permlt variable
delimiting. ConS1der the following sample statement:

UNSTRING FIELD1 DELIMITED BY DELl
INTO FIELD2A FIELDZ2B.

Figure 3-27
Delimiting with an Identifier

The data-name, DELl1, must be alphanumeric. It may be a group or
elementary item, and it may be edited. (Since the delimiter is not a
receiving field, any editing characters will not effect its use, other
than contributing to the size of the item.)

If the delimiter contains a subscript, the subscript may be varied as
a side effect of the UNSTRING operation. The evaluation of subscripts
is 'discussed later in this section.

3.8.2.1 Multiple Delimiters - The UNSTRING statement has the ability
to scan a sending field, searching for a match from a list of
delimiters. This list may contain ALL delimiters and delimiters of
various sizes. The only requirement of the list is that delimiters
must be connected by the word OR.

The following sample statement separates a sending field into three
receiving fields. The sending field consists of three strings
separated by the following: (1) any number of spaces, or (2) a comma
followed by a single space, or (3) a single comma, or (4) a tab
character, or (5) a carriage return character. (The ", " must precede
the "," in the list if it is ever to be recognized.) ,

UNSTRING FIELDl DELIMITED BY
ALL SPACE OR

" ’ " OR
" ’ " OR
TAB OR
CR

INTO FIELD2A FIELD2B FIELD2C.

Figure 3-28
Multiple Delimiters

Table 3-11 illustrates the potential of this statement. The tab
(represented by the letter t) and carriage return (represented by the
letter r) characters represent single character fields containing the
ASCII horizontal tab and carriage return characters.

NON-NUMERIC CHARACTER HANDLING 3-29

Table 3-11
Results of thée Multiple Delimiters
Shown in Figure 3-28

FIELD1 ” FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A,0,Cr A 0000 ‘ C
At456, E A 0456 _ E

A 3 9 A 0003 9

AttBr A 0000 B

a,,C A 0000 c

ABCD, 4321,% ABC 4321 Z
t--tab character, r--carriage return character

3.8.3 The COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and
stores the length in a user-supplied data area.

The length of a delimited sending field may vary widely (from zero to
the full length of the field) and some programs may require knowledge
of this length. For example, if it exceeds the size of the receiving
field (which is fixed in size) some data may be truncated and. the
program's logic may require this information.

To use the phrase, simply follow the receiving field name with the
words COUNT IN and an identifier. Consider the following sample
statement:

UNSTRING FIELDl1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

Figure 3-29
The COUNT Phrase

In this sample statement, the software will count the number of
characters between the left-hand end of FIELD]l and the first asterisk
in FIELDl and place that value into COUNT2A; thus, COUNT2A contains
the size of the first sending string. The software does not include
the delimiter in the count (as it is not a part of the string).

3-30 NON-NUMERIC CHARACTER HANDLING

TN

SN

,/Q\\

The software then counts the number of characters in the second
sending field and places that value into COUNT2B.

The phrase should be used only where needed; in this example the
length of the string moved to FIELD2C is not needed, so no COUNT
phrase follows it.

If the receiving field is shorter than the value placed in the count
field, the software truncates the sending string. (If the number of
integer positions in a numeric field is smaller than the value placed
into the count field, high-order numeric digits have been lost.) If
the software finds a delimiter match on the first character it
examines, it places a zero in:the count field.

The count field must be described as a numeric integer, either COMP or
DISPLAY usage, with no editing symbols nor the character P in its
picture-string. The software moves the count value into the count
field according to the rules for an elementary numeric MOVE statement

The COUNT phrase may be used only in conjunction with the DELIMITED BY
phrase.

3.8.4 The DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that
delimited the sending field to be stored in a user-supplied data area.
This phrase is most useful when: (1) the statement contains a
delimiter 1list, (2) any one of the items in the list might have
delimited the field, and (3) program logic flow depends -on which one
found a match. In fact, the DELIMITER and COUNT phrases could be used
together and program logic flow could depend on both the size of the
sending string and the delimiter character that terminated it.

To use the DELIMITER phrase, simply follow the receiving field name
with the words DELIMITER IN and an identifier. (The software places
the delimiter character in the area named by the identifier.) Consider
the following sample UNSTRING statement:

UNSTRING FIELD1 DELIMITED BY "," OR TAB OR
ALL SPACE OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

Figure 3-30
The DELIMITER Phrase

After moving the first sending string to FIELD2A, the software takes
the character (or characters) that delimited that string and places it
in DELIMA. DELIMA, then, contains a comma, or a tab, or a carriage
return, or any number of spaces. Since the delimiter string is moved
under the rules of the elementary non-numeric MOVE statement, the
software truncates or space fills with left or right justification
(depending on its data description).

NON-NUMERIC CHARACTER HANDLING 3-31

The software then moves the second sending string to FIELD2B and
places its delimiting character into DELIMB.

When a sending string is delimited by the end of the sending field
(rather than a match on a delimiter) the delimiter string is of zero
length. This causes the DELIMITER item to be space filled. The
phrase should be wused only where needed; in this example, the
character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It may contain editing characters and it may even
be a group item.

When the DELIMITER and COUNT phrases are used together, they must
appear in the <correct order (DELIMITER phrase preceding the COUNT
phrase). Both of the data items named in these phrases may be
subscripted or indexed. If they are subscripted, the subscript may be
varied as a side effect of the UNSTRING operation. (The evaluation of
subscripts is discussed in section 3.8.8.)

3.8.5 The POINTER Phrase

Although the UNSTRING statement normally starts at the left-hand end
of the sending field, the POINTER phrase permits the user to select a
character position in the sending field for the software to begin
scanning. (The scanning, however, remains left-to-right.)

When a sending field is to be dispersed into multiple receiving
fields, it often happens that the choice of delimiters, the size of
subsequent receiving fields, etc. depend on the value in the first
sending string or the character that delimited that string. Thus, the
program may need to move the first field, hold its place in the
sending field, and examine the results of the operation to determine
how to handle the sending items that follow. This is done by using an
UNSTRING statement with a POINTER phrase that fills only the first
receiving field. When the first string has been moved to a receiving
item, the software updates the pointer data item with a new position
(one character beyond the delimiter that caused the interruption) to
begin the next scanning operation. The program may then examine the
new position, the receiving field, the delimiter value, the sending
string size, and resume the scanning operation by executing another
UNSTRING statement with the same sending field and pointer data item.
Thus, the UNSTRING statement can move one sending string at a time,
with the form of each move being dependent on the context of the
preceding string of data. '

The POINTER phrase must follow the 1last receiving item in the

statement. Consider the following two UNSTRING statements with their
accompanying POINTER phrases and tests:

3-32 NON-NUMERIC CHARACTER HANDLING

B \\
\

FRN

N

MOVE 1 TO P.
UNSTRING FIELD1 DELIMITED BY
":" OR TAB OR CR OR ALL SPACE
INTO FIELD2A
DELIMITER IN DELIMA
COUNT IN LSIZEA
WITH POINTER PNTR.
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"
IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELD1 DELIMITED BY ... WITH POINTER PNTR.

Figure 3-31
The POINTER Phrase

PNTR contains the current position of the scanner in the sending
field. The second UNSTRING statement uses PNTR to begin scanning the

~additional sending strings in FIELDI.

Since the software considers the left-most character to be character
position one, the value returned by PNTR may be used to examine the
next character. To do this, simply use PNTR as a subscript on the
sending field (providing that the sending field is also described as a
table of characters). For example, consider the following sample
coding:

01 FIELDI. o
02 FIELD1-CHAR OCCURS 40 TIMES.

UNSTRING FIELD1
WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" ...

Figure 3-32
Examining the Next Character
By Using the Pointer Data
Item as a Subscript

Another way to examine the next character of the sending field is to
use the UNSTRING statement to move it to a l-character receiving
field. Consider the sample coding in figure 3-33.

NON-NUMERIC CHARACTER HANDLING 3-33

UNSTRING FIELDI1
WITH POINTER PNTR.
UNSTRING FIELD1 INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARLl = "X" ...

Figure 3-33
Examining the Next Character
By Placing It Into a l-Character Field

The program must decrement PNTR in order for this case to work like
the one illustrated in Figure 3-32, since the second UNSTRING
statement will increment the pointer value by 1. .

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The software will terminate the UNSTRING
operation if the initial value of the pointer is. 1less than one or
greater than the length of the sending field. ..(A pointer value that
is less than one or greater than the length of the sending field
causes an overflow condition. Overflow conditions are discussed in
section 3.8.7.) .

The POINTER and TALLYING phrases may be used ~together - in the same
UNSTRING statement; but, when both are used, the POINTER phrase must
precede the TALLYING phrase. TS

3.8,.6 The TALLYING Phrase

The TALLYING phrase counts the number of receiving fields that
received data from the sending field. - '

When an UNSTRING statement contains several :ireceiving fields, the
possibility exists that there may not always be as many sending
strings as there are receiving fields. The TALLYING phrase provides a
convenient method for keeping a count of how many fields were acted
upon. ‘

MOVE 0 TO RCOUNT.
UNSTRING FIELD1 DELIMITED BY "," OR ALL SPACE
INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Figure 3-34
The TALLYING Phrase

3-34 NON-NUMERIC CHARACTER HANDLING

N

- N

Ve

If the software has moved only three sending strings when it reaches
the end of FIELDl, it adds 3 to RCOUNT. The first three fields
(FIELD2A, FIELD2B, and FIELD2C) contain data from the operation, and
the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents
plus the number of sending strings acted upon by the UNSTRING command
just executed. Thus, the programmer may want to initialize the tally
count before each use.

When used in the same statement with a POINTER phrase, the TALLYING
phrase must follow the POINTER phrase and both phrases must follow all
of the field names, the DELIMITER and COUNT phrases. The data items
for both phrases must contain numeric integers, that is, be without
editing characters or the letter P in their picture-strings; both-
data items may be either COMP or DISPLAY usage. They may be signed or
uns1gned and, if they are DISPLAY usage, they may contain any desired
sign option.

The data items for both phrases may be subscripted or indexed, or they
may be used as subscrlpts on other fields in the statement. (The
evaluation of subscripts is discussed in section 3.8.8.) A convenient
use of the TALLYING phrase data item is as a subscript of a receiving
field. Consider the following sample coding, which causes program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field.

MOVE 1 TO PNTR, TLY.
PARl. UNSTRING FIELDl1 DELIMITED BY "," OR CR
INTC FIELD2(TLY)
DELIMITER IN DEL2
WITH POINTER PNTR
TALLYING IN TLY.
IF DEL2 = "," GO TO PARI.

Figure 3-35
The POINTER and TALLYING Phrases
Used Together

This sample codlng causes program control to loop through the UNSTRING
statement, using the pointer, PNTR, to scan across FIELDl with
successive executions. Each comma isolates a sending string until
control reaches either a carriage return character or the end of
FIELDl. If it reaches the end of the field without encountering a
carriage return character, the software places a space into the
delimiter field, DEL2, and control falls through the IF statement and
out of the 1oop.

Since the TALLYING data item, TLY, is increased by 1 after each data
movement, it serves as a subscript on the receiving field. 1In effect
this causes the software to unpack the value in FIELDl into an array
of fixed-size fields. Further, an array of COUNT data items can be
supplied and loaded by the UNSTRING/TALLYING statement by adding' the
COUNT 1IN phrase to the coding in Figure 3-35, as is shown in Figure
3-36.

NON-NUMERIC CHARACTER HANDLING 3-35

-

COUNT IN C(TLY)

Figure 3-36
Subscripting the COUNT Phrase
With the TALLYING Data Item

The TALLYING data item, in the above example, is one greater than the
number of receiving fields acted upon by the UNSTRING operation. This
is because the data item must be initialized to a value of one in
order to be used as a subscript for the first receiving item.

3.8.7 The OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and provides an
imperative statement to be executed when it detects the condition. An
overflow condition exists when either of the following two situations
occurs:

1. The UNSTRING statement 1is about to be executed and its
pointer data item contains a value of 1less than one or
greater than the size of the sending field. When it detects
this situation, the software executes the OVERFLOW phrase
before it moves any data. Thus, the values of all of the
receiving fields remain unchanged.

2. The UNSTRING statement has filled all of the receiving fields
and data still remains in the sending field that has not been
matched as a delimiter or included in a sending string. When
it detects this situation, the software executes the OVERFLOW
phrase after it has executed the UNSTRING statement. Thus,
the values of all of the receiving fields are updated, but
some data has not been moved.

If the UNSTRING operation causes the scanner to move off the end of
the sending field (thus exhausting it), the software will not execute
the OVERFLOW phrase. :

Consider the following set of instructions, which cause program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field. The TALLYING data item is a subscript indexing the
receiving field. (Compare this loop with the one in Figure 3-35,
which accomplishes the same thing.)

v

MOVE 1 TO TLY PNTR.
PARl. UNSTRING FIELD1 DELIMITED BY "," OR CR
INTO FIELDZ2(TLY)
WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARI.

Figure 3-37
Using the OVERFLOW Phrase

3-36 NON-NUMERIC CHARACTER HANDLING

7/

L~

NOTE

The overflow condition also occurs if
the value of a pointer data item lies
outside the sending field at the start
of execution of the UNSTRING statement.
(The pointer value must not be less than
1, nor greater than the length of the
sending field.) This type of overflow is
not distinguishable from the overflow
condition described at the start of this
section, except that this condition
causes the UNSTRING statement to
terminate before any data movement takes
place. Then, the values of all
receiving fields remain unchanged.

3.8.8 Subscripted Fields in UNSTRING Statements

Since the flexibility of the UNSTRING statement is enhanced by
subscripting and indexing and particularly by subscripting with other
fields within the statement (such as subscripting the receiving field
with the TALLYING data item as discussed above), it is important to
understand how often and exactly when the software evaluates these
subscripts and indexes. This sub-section discusses the frequency and
times of subscript evaluation.

The software evaluates subscripts and indexes on the following items
only once, at the initiation of the UNSTRING statement; thus, any
change in subscript values during the execution of the statement has
no effect on these fields:

1. Sending field,

2. POINTER data item,

3. TALLYING data item.
The software evaluates subscripts and indexes on the following items
immediately before it moves data into the item. It moves the data to
these items in the order in which they are 1listed in the statement
(which is the same order as below):

1. Receiving field,

2. DELIMITER data item,

3. COUNT data item.
The software evaluates any subscripts and indexes on the data-names in
the DELIMITED BY phrase (delimiters) immediately before it scans each

sending string looking for a delimiter match. Thus, it re-evaluates
these data-names once for each receiving field in the statement.

NON-NUMERIC CHARACTER HANDLING 3-37

If any of

the following items are used as subscripts on any

receiving

fields, the programmer must be aware of the point at which these items

are updat
°
®
°
°

Figure 3-
operation

ed:

POINTER data-item,
TALLYING data-item,
COUNT data-item,

Another receiving field.

38 illustrates, with a flow chart,
-H

the sequence of evaluation

© START)

P
o EVALUATE IF STORE
EVALUATE CONTINUE u DELIMITER POINTER SCANNER IN
ALL SCANNING FOR a RECEIVING PHRASE POINTER
DELIMITER REPETITIVE w FIELD P e
SUBSCRIPTS MATCHES é SUBSCRIPT
) :
o
oc
e STORE IF
N UPDATE B DELIMITER TALLYING VbR
SENDING] STRING IN PHRASE TAL!
FIELD FOR SCANNER 4 RECEIVING PRESENT DATA ITEM
DELIMITER e | FIELD
([EvaLoate
[
G z COUNT SENDING VES
DELIMITER e @ FIELD FIELD EXHAUSTED
MATCH
3 c SUBSCRIPT g SUBSCRIPT ?
&
<
[+
I
a
MOVE SENDING E STORE COUNT
STRING TO E VALUE IN
ALL 3 MORE
DELIMITER RECEIVING 8 COUNT FIELD R G
? =L FIELDS
?
@ END
H-MK-00046-00
Figure 3-38

Sequence of Subscript Evaluation

3-38 NON-NUMERIC CHARACTER HANDLING

NOTE

The rules in this section concerning the
exact point at which the software
evaluates the identifiers in the
DELIMITED BY phrase and the point at
which it updates the POINTER and
TALLYING data items, are rules that are
specified by 1974 American National
Standard COBOL, as opposed to the STRING
statement where these are not so
specified.

3.8.9 Common Errors, UNSTRING Statement
The most common errors made when writing UNSTRING statements are:
® Leaving the OR connector out of a delimiter list;

) Misspelling or interchanging the words, DELIMITED and
DELIMITER;

® Writing the DELIMITER and COUNT phrases in the wrong order
when both are present (DELIMITER must precede COUNT);

° Leaving out the word INTO or writing it as TO;

) Repeating the word INTO where it is not needed; thus:

UNSTRING FIELD1 DELIMITED BY SPACE OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

Figure 3-39
Erroneously Repeating the Word INTO

) Writing the POINTER and TALLYING phrases in the wrong order
(POINTER must precede TALLYING).

3.9 THE INSPECT STATEMENT

The INSPECT statement examines the character positions in a field and
counts or replaces certain characters (or groups of characters) in
that field.

Like the STRING and UNSTRING operations, INSPECT operations scan
across the field from 1left to right; further, 1like those two
statements, the INSPECT statement features a phrase which allows it to
begin or terminate the scanning operation with a delimiter match.
(Thus, the operation can begin within the field instead of at the
left-hand end, or it may begin at the left-hand end and terminate
within the field.)

NON-NUMERIC CHARACTER HANDLING 3-39

The TALLYING operation (which counts certain characters in the field)
and the REPLACING operation (which replaces certain characters in the
field) are quite versatile and may be applied to all of the characters
in the delimited area of the field being inspected, or they may be
applied only to those characters that match a given character string
under stated conditions. Consider the following sample statements,
which both cause a scan of the complete field:

INSPECT FIELD1 TALLYING TLY FOR ALL "B".

- Figure 3-40
Sample INSPECT...TALLYING Statement

This statement scans FIELD1l looking for the character B. Each time it
finds a B, it increments TLY by 1.

INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

Figure 3-41
Sample INSPECT...REPLACING Statement

This statement scans FIELD]1l looking for space characters. Wherever it
finds a space character, it replaces it with zero.

One INSPECT statement can contain both a TALLYING phrase and a
REPLACING phrase. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements and, in fact,
the software compiles such a statement into two distinct INSPECT
statements. (To simplify debugging, therefore, it 1is best to
initially write the two phrases in separate INSPECT statements.)

3.9.1 The BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and (possibly) restricts
the area of the field being inspected.

The following sample statement would count only the zeroes that
precede the percent sign (%) in FIELDI.

INSPECT FIELDl TALLYING TLY
FOR ALL ZEROES BEFORE "g&".

Figure 3-42
Sample INSPECT...BEFORE Statement

3-40 NON-NUMERIC CHARACTER HANDLING

The delimiter (the percent sign in the preceding sample statement) can
be a single character, a string of characters, or any figurative
constant. Further, it can be either an identifier or a literal.

® If the delimiter is an identifier, it must be an elementary
data item of DISPLAY usage. It may be alphabetic,
alphanumeric, or numeric, and, it may contain editing
characters. The compiler always treats the item as if it had
been described as an alphanumeric string. (It does this by
implicit redefinition of the item, as described in Section
3.9.2.) '

) If the delimiter is a literal, it must be non-numeric.

The software repeatedly compares the delimiter characters against an
equal number of characters in the field being inspected. If none of
the characters matches the delimiter, or if insufficient characters
remain in the field for a full comparison (at the right-hand end), the
software considers the comparison to be unequal.

The examples of the INSPECT statement in Figure 3-43, illustrate the
way the delimiter character finds a match in the field being
inspected. (The portion of the field the statement ignores as a
result of the BEFORE/AFTER phrase delimiters is crossed out with a
slash, and the portion it inspects is underlined.)

INSTRUCTION FIELD1 VALUE
INSPECT FIELDl...BEFORE "E". ABCDRP@HY
INSPECT FIELDl...AFTER "E". ZBCPRPFGHI
INSPECT FIELDl...BEFORE "K". ABCDEFGHI
INSPECT FIELDl...AFTER "K". KBZPEFGHA
INSPECT FIELDl...BEFORE "AB". IBCPEFZAZ
INSPECT FIELDl...AFTER "AB". KBCDEFGHI
INSPECT FIELDl...BEFORE "HI". ABCDEFGHZ
INSPECT FIELDl...AFTER "HI". KBCRPFGHY
INSPECT FIELDl...BEFORE "I ". ABCDEFGHI
INSPECT FIELDl...AFTER "I ". KBCPEFEHZ
The ellipsis represents the position of the TALLYING or REPLACING
phrase.- ,

Figure 3-43
Matching the Delimiter Characters
to the Characters in a Field

NON-NUMERIC CHARACTER HANDLING 3-41

The software scans the field for a delimiter match before it scans for
the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection.
Section 3.9.3 further discusses the importance of the separate scan.

3.9.2 1Implicit Redefinition

The software requires that certain fields referred to by the INSPECT
statement be alphanumeric fields. If one of these fields was
described as another data class, the compiler redefines that field so
the INSPECT statement can handle it as a simple alphanumeric string.
This implicit redefinition is conducted as follows:

) If the field was described as alphabetic, alphanumeric
edited, or unsigned numeric, the compiler simply redefines it
as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

) If the field was described as signed numeric, the compiler
first removes the sign and then redefines the field as
alphanumeric. If the sign is a separate character, the
compiler ignores that character, essentially shortening the
field, and that character does not participate in the
implicit redefinition. If the sign is an "overpunch" on the
leading or trailing digit, the compiler actually removes the
sign value and leaves the character with only the numeric
value that was stored in it. The compiler alters the digit
position containing the sign before beginning the INSPECT
operation and restores it to its former value after the
operation. If the sign's digit position does not contain a
valid ASCII signed numeric digit, the action of the
redefinition causes the value to change. Table 3-12 shows
these original, altered, and restored values.

' The compiler never moves an implicitly redefined item from its storage
: position. All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does
not affect implicit redefinition.

3-42 NON-NUMERIC CHARACTER HANDLING

N

Table 3-12
Original, Altered, and Restored Values Resulting
from Implicit Redefinition

ORIGINAL VALUE ALTERED VALUE RESTORED VALUE
p e
{ (7B) 0 (30) { (78)
A (41) 1 (31) A (41)
B (42) 2 (32) B (42)
C (43) 3 (33) C (43)
D (44) 4 (34) D (44)
E (45) 5 (35) E (45)
F (46) 6 (36) F (46)
G (47) 7 (37) G (47)
H (48) 8 (38) H (48)
I (49) 9 (39) I (49)
} (7D) 0 (30) } (7D)
J (4A) 1 (31) J (4n)
K (4B) 2 (32) K (4B)
L (4C) 3 (33) L (4C)
M (4D) 4 (34) M (4D)
N (4E) 5 (35) N (4E)
0 (4F) 6 (36) O (4F)
P (50) 7 (37) P (50)
Q (51) 8 (38) Q (51)
R (52) 9 (39)° R (52)
0 (30) 0 (30) { (7B)
1 (31) 1 (31) A (41)
2 (32) 2 (32) B (42)
3 (33) 3 (33) C (43)
4 (34) 4 (34) D (44)
5 (35) 5 (35) E (45)
6 (36) 6 (36) F (46)
7 (37) 7 (37) G (47)
8 (38) 8 (38) H (48)
9 (39) 9 (39) I (49)
All other values 0 (30) { (7B)

3.9.3 The INSPECT Operation
Regardless of the type of inspection (TALLYING or REPLACING), the

INSPECT statement has only one method for inspecting the characters in
the field. This section describes this method.

NON-NUMERIC CHARACTER HANDLING 3-43

However, before discussing how the inspection operation is conducted,
let's analyze the INSPECT statement itself:

INSPECT FIELD1 TALLYING TLY FOR ALL "B" BEFORE "A".
The field being . The argument
inspected
The operation The delimiter
phrase phrase
Figure 3-44

Sample INSPECT Statement

The format of the INSPECT statement requires that a field be named
which is to be inspected (FIELDl1 above); the field name must be
followed by an operation phrase (TALLYING TLY above); and, that
phrase must be followed by one or more identifiers or literals ("B"
above). These identifiers or literals comprise the "arguments" (items
to be compared to the field being inspected). More than one argument
makes up the "argument list".

° TALLYING Arguments

Each argument in an argument list can have other fields
associated with it. Thus, each argument that is used in a
TALLYING operation must have a tally counter (TLY above)
associated with it. The software increments the tally
counter each time it matches the argument with a character or
group of characters in the field being inspected.

° REPLACING Arguments

INSPECT FIELD1 REPLACING ALL "O" BY "$".

replacing argument

Figure 3-45
Sample REPLACING Argument

Each argument in an argument list that is used in a REPLACING
operation must have a replacement item ($ above) associated
with it. The software uses the replacement item to replace
each string of characters in the field that matches the
argument.

Each argument in an argument list (that is used with either a TALLYING
or REPLACING operation) may have a delimiter field (BEFORE/AFTER
phrase) associated with it. If the delimiter field is not present,
the software applies the argument to the entire field. 1If the
delimiter field is present, the software applies the argument only to
that portion of the field specified by the BEFORE/AFTER phrase.

3-44 NON-NUMERIC CHARACTER HANDLING

/ TN

3.9.3.1 Setting the Scanner - The INSPECT operation begins by setting
the scanner to the leftmost character position of the field being
inspected. It remains on this character until an argument has been
matched with a character (or characters) or until all arguments have
failed to find a match at that position.

3.9.3.2 Active/Inactive Arguments - When an argument has a
BEFORE/AFTER phrase associated with it, that argument has a delimiter
and may not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it
starts the INSPECT operation in an inactive state. The delimiter of
the AFTER phrase must find a match before the argument can participate
in the comparison. When the delimiter finds a match, the software
retains the character position beyond the matched character string;
then, when the scanner reaches or passes this position, the argument
becomes active. ‘

INSPECT FIELDl1 TALLYING TLY
FOR ALL "B" AFTER "X".

Figure 3-46
Sample AFTER Delimiter Phrase

If FIELDl in Figure 3-46 has a value of "ABABXZBA", the argument B
remains inactive until the scanner finds a match for the delimiter X.
Thus, argument B remains inactive while the software scans character
positions 1 through 5. At character position 5, the delimiter X finds
a match, and since the character position beyond the matched delimiter
character is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a
successful match at character position 7 and this causes TLY to be
incremented by 1.

The examples in Figure 3-47 illustrate other situations where the
arguments and/or the delimiters are 1longer than one character.
(Consider the sample statement to be an INSPECT...TALLYING statement
that is scanning FIELDl, tallying in TLY, and 1looking for the
arguments and delimiters in the left-hand column. Assume that TLY is
initialized to 0.)

NON-NUMERIC CHARACTER HANDLING 3-45

ARGUMENT AND FIELD1 ARGUMENT CONTENTS OF
DELIMITER VALUE ACTIVE AT TLY AFTER SCAN
POSITION
BXBXXXXBB 6 2
"B" AFTER "XX" XXXXXXXX 3 0
BXBXBBBBXX never 0
BXBXXBXXB 6 2
"X" AFTER "XX" XXXXXXXX 3 6
BBBBBBXX never 0
BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3
BBBBBBXB never 0
XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1
XXBXXXXBX 4 1

Figure 3-47
Where Arguments Become Active in a Field

When an argument has an associated BEFORE delimiter, the
inactive/active states reverse roles: the argument is in an active
state when the scanning begins, and becomes inactive at the character
position that matches the delimiter. Additionally, regardless of the
presence of the BEFORE delimiter, an argument becomes inactive when
the scanner approaches the right-hand end of the field and the
remaining characters are fewer in number than the characters in the
argument. (In such a case, the argument cannot possibly find a match
in the field so it becomes inactive.)

Since the BEFORE/AFTER delimiters are found on a separate scan of the
field, the software recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters
can be used as arguments and delimiteérs in the same phrase.

3.9.3.3 Finding an Argument Match - The software selects arguments
from the argument list in the order in which they appear in the 1list.
If the first one it selects is an active argument and the conditions
stated in the INSPECT statement allow a comparison, the software
compares it to the character at the position of the scanner. If the
active argument does not find a match, the software takes the next
active argument from the list and compares that to the same character.
If none of the active arguments finds a match, the scanner moves one
position to the right and begins the inspection operation again with
the first active argument in the 1list. The inspection operation
terminates at the right-hand end of the field.

3-46 NON-NUMERIC CHARACTER HANDLING

N

N

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again wunless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELD1 TALLYING TLY
FOR ALL X(TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(1). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT. ..REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings wunder certain stated
- conditions. It keeps the count in a user-designated field called,
here, a tally counter.

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited stting being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

ALL } identifier}
LEADING literal

CHARACTERS

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
- illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

TN

TN

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELD1 TALLYING TLY
FOR ALL X (TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(l). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT...REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings wunder certain stated
- conditions. It keeps the count in a user-designated field called,
here, a tally counter.

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

ALL } identifier}
LEADING literal

CHARACTERS

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

7 N,

//,‘\\

Thus, the first argument is initially inactive and becomes active only
after the scanner encounters an A; the second argument begins the
scan in the active state but becomes inactive after a B has been
encountered; and the third argument is active during the entire scan
of FIELDIl.

Figure 3-55 shows various values of FIELDl and the contents of the
three tally counters after the scan. Assume that the counters are
initialized to 0 before the INSPECT statement. .

" CONTENTS OF TALLY COUNTERS AFTER SCAN

FIELD1
VALUE

Figure 3-55
Results of the Scan in Figure 3-54

The BEFORE/AFTER phrase applies only to the argument that precedes it,
and delimits the field for that argument only. Each BEFORE/AFTER
phrase causes a separate scan of the field to determine the limits of
the field for its corresponding argument. :

3.9.5.4 1Interference in Tally Argument Lists - When several tally
arguments contain one or more identical characters that are active at
the same time, they may interfere with each other (i.e., when one of
the arguments finds a match, the scanner is stepped past the matching
character (s) which prevents those character(s) from being considered
for any other match).

The example in Figure 3-56 illustrates two identical tally arguments
that do not interfere with each other since they are not active at the
same time. (The first A in FIELDl causes the first argument to become
inactive and the second argument to become active.)

MOVE 0 TO T1 T2.
INSPECT FIELD1 TALLYING
-~ T1 FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

Figure 3-56
— Two Tallying Arguments that
Do Not Interfere with Each Other

The two identical tally arguments in Figure 3-57 will interfere with
each other since both are active at the same time. (For any given
p051t10n of the scanner, the arguments are applied to FIELDl in the
order in which they appear in the statement. When one of them finds a
match, the scanner moves to the next position and ignores the

NON-NUMERIC CHARACTER HANDLING 3-51

remaining arguments in the argument list.) Each comma in FIELDl causes
Tl to be incremented by 1 and the second argument to be ignored.
Thus, Tl will always contain an accurate count of all of the commas in
FIELDl, and T2 will always be unchanged.

INSPECT FIELD1 TALLYING
Tl FOR ALL ","
T2 FOR ALL "," AFTER "A".

Figure 3-57
Two Tallying Arguments that
Do Interfere with Each Other

The following statement achieves the same results as the statement in
Figure 3-56. The first argument does not become active until the
scanner encounters an A. The second argument tallies all commas that
precede the A. After the A, the first argument counts all commas and
causes the second argument to be ignored. Thus, T1 contains the
number of commas that precede the first A and T2 contains the number
of commas that follow the first A. This statement works well as
written, but could be more confusing to debug than the one in Figure
3-56.

INSPECT FIELD]1 TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ",".

Figure 3-58
Two Tallying Arguments that,
Because of their Positioning,
Only Partially Interfere with
Each Other

The preceding three examples show that one INSPECT statement cannot
count any character more than once. Thus, when using the same
character in more than one argument of an argument list, consider the
nature of the interference and choose the order of the arguments very
carefully. The solution to the problem may require two or more
INSPECT statements. Consider the following problem:

INSPECT FIELD1 TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

Figure 3-59
An Attempt to Tally the Character B
with Two Arguments

If FIELDl contains "ABCABC", after the scan Tl will be incremented by
a 2 and T2 will be unaltered. The successful matching of the argument
includes each B in the field. Each match resets the scanner to the
character position to the right of the B, and causes the second

3-52 NON-NUMERIC CHARACTER HANDLING

TN

,/-\\

argument to never be successfully matched. Reversing the order of the
arguments has no effect, the results remain the same. Only separate
INSPECT statements can develop the desired counts.

Sometimes the programmer can use the interference characteristics of
the INSPECT statement to good advantage. Consider the following
sample argument list:

MOVE 0 TO T4 T3 T2 Tl1.

INSPECT FIELD1 TALLYING
T4 FOR ALL "***%"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*",

Figure 3-60
Tallying Asterisk Groupings

The argument list in Figure 3-60 counts all of the asterisks in FIELD1
but in four different tally counters. T4 counts the number of times
that four asterisks occur together; T3 counts the number of times
three asterisks appear together; T2 counts double asterisks; and Tl
counts singles.

If FIELD]l contains a string of more than four consecutive asterisks,
the argument 1list breaks the string into groups of four, and counts
them in T4. It then counts the less-than-four remainder in T3, T2, or
T1.

Reversing the order of the arguments in this list causes Tl to count
all of the asterisks and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument
list, that argument becomes inactive as soon as it fails to be matched
in the field being inspected. Therefore, when two arguments in an

"argument list contain one or more identical characters and one of the

arguments has a LEADING condition, the argument with the LEADING
condition should appear first. Consider the following sample
statement:

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING
Tl FOR LEADING "*"
T2 FOR ALL "*",

Figure 3-61
Placing the LEADING Condition
in the Argument List

The placement of the LEADING condition in this sample statement causes
Tl to count only leading asterisks in FIELDl; the occurrence of any
other character stops this counting and causes the first tally
argument to become inactive. T2 keeps a count of any remaining
asterisks in FIELD1.

NON-NUMERIC CHARACTER HANDLING 3-53

Reversing the order of the arguments in this statement results in an
argument list that can never increment Tl.

INSPECT FIELD1 TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*".

Figure 3-62
Reversing the Argument
List in Figure 3-61

If the first character in FIELDl is not an asterisk, neither argument
can match it and the second argument becomes inactive. If the first
character in FIELDl is an asterisk, the first argument matches and
causes the second argument to be ignored. The first non-asterisk
character in FIELDl will fail to match the first argument and the
second argument will become inactive. (The second argument becomes
inactive because it has not found a match in all of the preceding
characters.)

An argument with both a LEADING condition and a BEFORE phrase can
sometimes sucessfully "delimit" the field being inspected:

MOVE 0 TO T1 T2.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE ".".

IF T2 > 0 ADD 1 TO T2.

Figure 3-63
An Argument List that Counts
Words in a Statement

The statements in Figure 3-63 count the number' of "words" in the
English statement in FIELDl. (This assumes that no more than three
spaces separate the words in the sentence and that the sentence ends
with a period.) When FIELD1l has been scanned, T2 contains the number
of gaps between the words. Since a count of the gaps.renders a number
that is one less than the number of words, the conditional statement
adds one to the count. '

The first argument removes any leading spaces, counting them in a
different tally counter. This shortens FIELD1 by preventing the
application of the second through the fourth arguments until the
scanner finds a non-space character. The BEFORE phrase on each of the
other arguments causes them to become inactive when the scanner
reaches the period at the end of the sentence. Thus, the BEFORE
phrases "shorten" FIELDl by making the second through the fourth
arguments inactive before the scanner reaches the right-hand end of
FIELDl. 1If the sentence in FIELDl is indented with tab characters
instead of spaces, a second LEADING argument can count the tab
characters. Figure 3-64 illustrates this technique:

3-54 NON-NUMERIC CHARACTER HANDLING

AT

TN

P

INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " " etc.

Figure 3-64
Counting Leading Tab or Space Characters

When an argument list contains a CHARACTERS argument, it should be the
last argument in the 1list. Since the CHARACTERS argument always
matches the field, it prevents the application of any of the following
arguments 1in the list. However, as the last argument in an argument
list, it can count the remaining characters in the field being
inspected. Consider the following illustration.

MOVE 0 TO Tl T2 T3 T4 T5.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES
T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","
T5 FOR CHARACTERS BEFORE ",".

Figure 3-65
Counting the Remaining Characters
With the CHARACTERS Argument

If FIELDl is known to contain a number in the form frequently used to
input data, it may contain a plus or minus sign, and a decimal point;
further, the number may possibly be preceded by spaces and terminated
by a comma. If this statement were compiled and executed, it would
deliver the following results:

Tl would contain the number of leading spaces,

T2 would contain the number of periods,

T3 would contain the number of plus signs,

T4 would contain the number of minus signs,

T5 would contain the number of remaining characters (assumed to
be numeric), and

the sum of T1 through T5 (plus 1) gives the character position
occupied by the terminating comma.

3.9.6 The REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the
designated field.

NON-NUMERIC CHARACTER HANDLING 3-55

The REPLACING phrase names a search argument consisting of a character
string of one or more characters and a condition under which the
string may be applied to the field being inspected. Associated with
the = search argument is the replacement value, which must be the same
length as the search argument. Each time the search argument finds a
match in the field being inspected, under the condition stated, the
replacement value replaces the matched characters.

A BEFORE/AFTER phrase may be used to delimit the area of the field
being inspected. A search argument applies only to the delimited area
of the field.

3.9.6.1 The Search Argument - The search argument of the REPLACING
phrase names a character string and a condition under which the
character string should be compared to the delimited string being
inspected. Figure 3-66 shows the format of the search argument:

ALL identifier
LEADING literal]
FIRST

CHARACTERS

Figure 3-66
Format of the Search Argument

The CHARACTERS form of the search argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the search argument.
Thus, the replacement value replaces each character in the delimited
string. (The replacement value, in this case, must be one character
long.)

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which may be represented by a literal or
an identifier. The search argument character string may be any
length. However, each character of the argument must match a
character in the delimited string before the software considers the
argument matched.

° A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as " ", "0", etc. with the same
effect. Since a figurative constant represents a single
character, the replacement value must be one character 1long.

° An identifier must represent an elementary item of DISPLAY
usage. It may be any class. However, if it is other than
alphabetic, the software performs an implicit redefinition of

the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition .discussed in Section
3.9.1.)

3-56 NON-NUMERIC CHARACTER HANDLING

The words ALL, LEADING, and FIRST supply conditions which further
delimit the inspection operation: :

® The word ALL specifies that each match that the search
argument finds in the delimited string is to be replaced by
the replacement value. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The figurative constant meaning of ALL "," is
a string of consecutive commas, as many as the context of the
statement requires.) ALL "," as a search argument of the
REPLACING phrase means, "replace each comma without regard to
adjacent characters."

° The word LEADING specifies that only adjacent matches of the
search argument at the 1left-hand end of the delimited
character string be replaced. At the first failure to match
the search argument, the software terminates the replacement
operation and causes the argument to become inactive.

e The word FIRST specifies that only the 1leftmost character
string that matches the search argument is to be replaced.
After the replacement operation, the search argument
containing this condition becomes inactive.

3.9.6.2 The Replacement Value - Whenever the search argument finds a
match in the field being inspected, the matched characters are
replaced by the replacement value. The word BY followed by an
identifier or literal specifies the replacement value.

identifier

literal

Figure 3-67
Format of the Replacement Value

The replacement value must always be the same size as its associated
search argument.

If the replacement value is-a literal character string, it must be
either a non-numeric literal or a figurative constant (other than ALL
literal). A figurative constant represents as many characters as the
length that the search argument requires.

If the replacement value is an identifier, it must be an elementary
item of DISPLAY usage. It may be any class. However, if it is other
than alphanumeric, the software conducts an implicit redefinition of
the item. (This redefinition 1is the same as the BEFORE/AFTER
redefinition discussed in Section 3.9.1.)

NON-NUMERIC CHARACTER HANDLING 3-57

3.9.6.3 The Replacement Argument - The replacement argument consists
of the search argument (with its condition and character string), the
replacement value, and an optional BEFORE/AFTER phrase.

ALL ";" BY SPACE BEFORE "."

search _ BEFORE/AFTER
argument phrase (optional)
replacement
value

Figure 3-68
The Replacement Argument

3.9.6.4 The Replacement Argument List - One INSPECT...REPLACING
statement can contain more than one replacement argument. Several
replacement arguments form an argument list, and the manner in which
the 1list is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement
argument lists. The text following each one tells how that list will
be processed. /

INSPECT FIELD1 REPLACING
ALL "," BY SPACE

ALL "." BY SPACE

¢ ALL ";" BY SPACE.

Figure 3-69
Replacement Argument List that is
Active Over the Entire Field

These three replacement arguments all have the same replacement value,
SPACE, and are active over the entire field being inspected.

Thus, this statement replaces all commas, periods, and semicolons with
space characters; and leaves all other characters unchanged.

INSPECT FIELDl1 REPLACING
ALL L1} 0 n BY n l "
ALL n 1 L BY " 0 n .

Figure 3-70
Replacement Argument List that
"Swaps" Ones for Zeroes and Zeroes for Ones

Each of these two replacement arguments has its own replacement value,
and 1is active over the entire field being inspected. This statement
exchanges zeros for ones and ones for zeroes, and 1leaves all other
characters unchanged.

3-58 NON-NUMERIC CHARACTER HANDLING

NOTE

When a search argument finds a match in
the field being inspected, the software
replaces that character string and scans
to the next position beyond the replaced
characters. It ignores the remaining
arguments and applies the first argument
in the list to the character string in
the new position. Thus, it never
inspects the new value that was supplied
by the replacement operation. Because
of this, the search arguments may have
the same values as the replacement
arguments with no chance of
interference.

INSPECT FIELD1 REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "O" BEFORE SPACE.

Figure 3-71
Replacement Argument List that
Becomes Inactive with. the
Occurrence of a Space Character

This sample statement is identical to the statement in Figure 3-70,
except that, here, the first occurrence of a space character in FIELD1
causes both arguments to become inactive.

INSPECT FIELD1 REPLACING
ALL "O" BY "1" BEFORE SPACE
ALL "1" BY "O0" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

Figure 3-72
Argument List with Three Arguments
That Become Inactive with the
Occurrence of a Space

Just as in the argument list in Figqgure 3-71, the first space character
causes all of these replacement arguments to become inactive. This
argument list exchanges =zeroes for ones, ones for =zeroes, and
asterisks for all other characters that are in the delimited area.

If the BEFORE phrase is removed from the third argument, that argument
will remain active across all of FIELDl. Within the area delimited by
the first space character, the third argument replaces all characters
except ones and zeroes with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELD1 for the
first two arguments and any zeroes and ones) with asterisks. .

NON-NUMERIC CHARACTER HANDLING 3-59

3.9.6.5 1Interference in Replacement Argument Lists - When several
search "arguments that are active at the same time contain one or more
identical characters, they may interfere with each other, and
consequently have an effect on the replacement operation. This
interference of one search argument with the matching of other search
arguments is similar to the interference that occurs between tally
arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the software scans for delimiter
matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of
any replacement value, since the scanner does not inspect the replaced
characters again during execution of the INSPECT statement.
Interference between search arguments, therefore, depends on the order
of the arguments, the values of the arguments, and the active-inactive
status of the arguments. (The discussion in Section 3.9.5.4
Interference 1in Tally Argument Lists, applies, generally, to
replacement arguments as well.)

The following rules will help minimize interference in replacement
argument lists:

1. Place search arguments-with LEADING or FIRST conditions at
the start of the list;

2. Place several arguments with the CHARACTERS condition at the
end of the list;

3. Consider, very carefully, the order of appearance of any

search arguments that contain one or more identical
characters.

3.9.7 Common Errors, INSPECT Statement
The most common errors made when writing INSPECT statements are:
) Leaving the FOR out of an INSPECT...TALLYING statement.

® Using the word "WITH" instead of "BY" in the REPLACING
phrase.

'@ Failing to initialize the tally counter.
® Omitting the word "ALL" e.g.:

INSPECT FIELD1 TALLYING TLY FOR SPACES.

3-60 NON-NUMERIC CHARACTER HANDLING

N

CHAPTER 4

NUMERIC CHARACTER HANDLING

This chapter discusses numeric class data and the COBOL operations
that can be performed on numeric data items. It is assumed that you
have read Chapter 3, and that you understand the concept of COBOL data
classes.

4.1 USAGES

The USAGE of a numeric class item specifies the form in which the data
is stored in memory. VAX-11 COBOL-74 has four formats for numeric
data storage: DISPLAY (which is equivalent to DISPLAY-6 and
DISPLAY-7), COMPUTATIONAL (abbreviated COMP), and COMPUTATIONAL-3
(abbreviated COMP-3).

4.1.1 DISPLAY

Items with DISPLAY usage are stored as strings of characters (bytes)
in decimal radix with an assumed decimal point and optional sign.

4.1.2 COMPUTATIONAL

COMPUTATIONAL usage is the standard VAX-1l1 binary format. A COMP item
is stored as a binary value with an assumed decimal scaling position;
it is automatically SYNCHRONIZED on a word boundary and stored in
memory (in one, two, or four words) as follows:

PICTURE RANGE STORAGE
S(9) to S9(4) 1 word (2 bytes)
S9(5) to S9(9) 1 longword (4 bytes)

S9(10) to S59(18) 1 quadword (8 bytes)

Figure 4-1 indicates the significance of each byte in a COMP data item
by the number in parentheses. For example, "(1)" indicates that the
byte contains the 1lowest-valued bits. Observe that the computer
address (the first-referenced byte) of each COBOL data item
corresponds to the low byte of the least significant word.

The number in parentheses also indicates the order of characters if
the data item is redefined as an alphanumeric item. Consider an
example of a two-word COMP item:

01 COMP-ITEM PIC 9(9) USAGE IS COMP.
01 GROUP-ITEM REDEFINES COMP-ITEM.
03 CHARACTER-ITEM PIC X OCCURS 4 TIMES.

The subscripts of CHARACTER-ITEM correspond to the numbers in
parentheses in Figure 4-1.

high | low high | low high | low
byte | byte byte | byte byte | byte
(2) (1) (2) (1) (2) (1) Addressed word
(4) (3) (4) (3) | Next word

(6) (5) Next word

(8) (7) Next word
One-word Two-word Four-word
COMP item COMP item COMP item

Figure 4-1

Memory Storage of COMP Data Items

4.1.3 COMPUTATIONAL-3

COMP-3 specifies packed-decimal data items. They are stored as two
decimal digits per byte (byte-aligned) with an assumed decimal scaling
position. The sign is contained in the rightmost half (four bits) of
the rightmost byte.

The maximum size of a COMP-3 item is 18 decimal digits, regardless of
the decimal scaling position. 1In the following example, both NUM-1
and NUM-2 represent COMP-3 items of maximum size: :

03 NUM-1 PIC S9(18) USAGE IS COMP-3.
03 NUM-2 PIC S9(6)V9(12) USAGE IS COMP-3.

The description of a COMP-3 data item must have a sign in its PICTURE
character-string.

4-2 NUMERIC CHARACTER HANDLING

When you specify an even number of digits, the value zero is stored in
the leftmost four bits of the leftmost byte.

Signs resulting from operations in which the receiving item is
specified as COMP-3 are:

"y binary 1100 hexadecimal C
et binary 1101 hexadecimal F

The following signs are also recognized as valid, but they are not
generated as a result of program operations:

Positive signs- binary 1010, hexadecimal
binary 1100, hexadecimal
binary 1110, hexadecimal
binary 1111, hexadecimal

HmE QP

Negative signs- binary 1011, hexadecimal B
binary 1101, hexadecimal D

Figure 4-2 represents the memory storage of COMP-3 data items of one,
two, and three digits:

1st byte ‘lst byte 2nd byte 1st byte 2nd byte
5 + 0 3 2 - 2 6 2 +
PICTURE S9 PICTURE S9(2) PICTURE S9(3)
value: +5 value: -32 value: +262
Figure 4-2

Memory Storage of COMP-3 Data Items

4.2 DECIMAL SCALING POSITION

The assumed decimal scaling position, or scaling factor, is not stored
as part of an actual numeric value. However, it is used by the RTS to
control operations on numeric data items. Consider the following
field description: ’

01 ORDER-PRICE PIC 99V99 COMP VALUE 12.34.

VAX-11 COBOL-74 stores this item as a l-word binary number. The word
contains the integer value 1234 and another location contains the
scaling factor. 1In this example, the scaling factor records the fact
that this integer has two decimal fractional positions. Thus, the
COBOL RTS knows that the stored binary integer is 100 times larger
than the programmer intends it to be.

NUMERIC CHARACTER HANDLING 4-3

If the compiler encounters the following statement:
ADD 1 TO ORDER-PRICE.

it generates instructions to add a 1 to the 1234 in ORDER-PRICE. The
RTS, however, scales the literal 1 up by two decimal places and adds
the resultant literal, 100, to the number in ORDER-PRICE. Thus, after
the ADD operation, ORDER-PRICE contains the new value 1334 (which is
actually 13.34 with the stored decimal scaling position).

Thus, the VAX-11 COBOL-74 compiler and RTS manipulate the data in
DISPLAY, COMP, and COMP-3 data items in much the same way. All four
usages have exactly the same accuracy and precision, and can be freely
mixed in a program. To illustrate, if a DISPLAY usage number and a
COMP usage number are both involved in the same arithmetic statement,
the RTS converts them to a common radix with no loss of information.
It also converts the result, if necessary, with no loss of
significance.

The only effect of specifying a binary or packed-decimal usage is that
it reduces the space required for most numbers and can speed up the
execution of arithmetic statements.

4.3 SIGN CONVENTIONS

COMP-3 data items must be signed; however, DISPLAY AND COMP numeric
items can be signed or unsigned. Unsigned numbers can contain values
that range from zero to the largest positive value allowed by their
declared ©precision. Negative values are not allowed. All VAX-1ll
COBOL-74 arithmetic operations yield signed results. When the RTS
must store such a result, whether positive or negative, in an unsigned
data item, it stores only the absolute value of the result. Thus,
unsigned items always contain zero or positive values.

This guide does not recommend unsigned numbers for general use. They
are wusually a source of programming errors, and are handled less
efficiently than signed quantities by the RTS.

Signed quantities always contain a numeric value and an operational
sign. The RTS stores the sign with the numeric value in a variety of
ways depending on the usage of the item and the presence of the SIGN
clause.

NOTE

If numeric data is read into a field
described using the picture character S,
then that data must include an
operational sign of the appropriate
format to pass the NUMERIC test.

4-4 NUMERIC CHARACTER HANDLING

VAX-11 COBOL-74 always stores signed
binary form.
Sign representation for COMP-3 data
4.1.4.

VAX-11 COBOL-74 always stores signed
byte positions containing numeric
the sign in the high-order byte, the
extra, byte on either the high-order

Thus, the high-order bit indicates the sign of the item.

COMP items in two's complement
items 1is described in Section
DISPLAY items as a sequence of

ASCII characters. It may include
low-order byte, or as a separate,
or low-order end of the item.

When the RTS stores the sign as part of a byte that also contains a
numeric digit, the sign causes a value change in that byte and, hence,
changes the value of the numeric digit. Table 4-1 shows the actual
ASCII character that results when a numeric value and a sign share the
same byte.

Table 4-1
The Resulting ASCII Character From a
Sign and Digit Sharing the Same Byte

DIGIT VALUE

 SIGN

A byte containing a +0 stores as hexadecimal 7B, which prints as
either a { or a [depending on the printing device.
A byte containing a -0 stores as :hexadecimal 7D, which prints as
‘either a } or a] depending on the printing device.
When the RTS stores the sign as a separate distinct character, the

actual ASCII <character that it stores is the graphic plus sign (hex
2B) or the graphic minus sign (hex 2D).

4.4 ILLEGAL VALUES IN NUMERIC FIELDS

All VAX-11 COBOL-74 arithmetic operations store legal values in their
result fields. However, it is possible, by reading invalid data or
through redefinition and group moves, to store data in numeric fields
that do not obey the descriptions of those fields. (For example, it
is possible to place signed values into unsigned fields, and to place
non-numeric or improperly signed data into signed numeric DISPLAY
fields.)

The results of arithmetic operations that use invalid data in numeric
fields are unpredictable.

NUMERIC CHARACTER HANDLING 4-5

4.5 TESTING NUMERIC FIELDS

COBOL provides the following three kinds of tests for evaluating
numeric fields:

1. Relation tests, that compare the field's contents to another
numeric value;

2. Sign tests, that examine the field's sign to see 1if it is
positive or negative; and,

3. Class tests, that inspect the field's digit positions for
legal numeric values.

The following sub-sections explain these tests in detail.

4.5.1 Relation Tests

A relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following
statement compares FIELDl to FIELD2 and determines if the numeric
value of FIELD]l is greater than the numeric value of FIELD2. If so,
the relation condition is true and program control takes the True path
of the statement.

IF FIELD1l > FIELD2 ...

" Either field in a relation test may be a numeric literal or the
figurative constant, ZERO. (The numeric literals 0, 00, 0.0, or ZERO
are all equivalent, both in meaning and in execution speed.)

The sizes of the fields in a numeric relation test do not have to be
the same (this includes the sizes of numeric literals). The
comparison operation aligns both fields on their assumed decimal
positions (through actual scaling operations in'temporary locations or
by accessing the individual digits) and supplies leading or trailing
(as required) zeroes to either or both fields.

The comparison operation always compares the signs of non-zero fields
and considers positive fields to be greater than negative fields.
However, since it does not compare them, positive zeroes and negative
zeroes are equal. (A negative zero could arrive in a field through
redefinition of the field or a MOVE to a group item.) Further, the
operation considers unsigned numeric fields to be positive.

The form of representation of the number (COMP, COMP-3, or DISPLAY
usage) and the various methods of storing DISPLAY usage signs have no
effect on numeric relation tests.

For comparison purposes, the operation converts any illegal characters

stored in DISPLAY usage fields to zeroes. It does not, however, alter
the actual values in those fields.

4-6 NUMERIC CHARACTER HANDLING

7 N

4.5.2 8Sign Tests

The sign test compares a numeric quantity to zero and determines if it
is greater (positive), less (negative), or equal (zero). Both the
relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELDl > 0 ...
Now consider the following sign test:

IF FIELD1l POSITIVE ...
Both of these tests accompllsh the same thing and would always arrive
at the same result. The sign test, however, shortens the statement

and shows, at a glance, that it is testing the sign.

Table 4-2 shows the sign tests and their equivalent relatlon tests ' as
applied to FIELD1l.

Table 4-2
The Sign Tests
SIGN TEST EQUIVALENT RELATION TEST
E — — —
IF FIELDl1 POSITIVE ... IF FIELD1l > 0 ...
IF FIELD1 NOT POSITIVE ... IF FIELDl NOT > 0 ... C
IF FIELDl1 NEGATIVE ... IF FIELDl < 0 ... '
IF FIELD1 NOT NEGATIVE ... IF FIELDl NOT < 0 ...
IF FIELDl ZERO ... IF FIELDlI = 0 ...
IF FIELDl1 NOT ZERO ... : IF FIELDl NOT = 0 ...

Sign tests have no execution speed advantage over relation tests. The
compiler actually substitutes the equivalent relation test for every
correctly written sign test. (Sections 4.2.1 and 4.2.2 discuss the
acceptable sign values and the treatment of illegal sign values.)

4.5.3 Class Tests

The class test interrogates a numeric field to determine if it
contains numeric or alphabetic data, and uses the result to alter the:
flow of control in a program. For example, the following statement’
determines if FIELDl contains numeric data. If so, the test condition
is true and program control takes the true path of the statement.

IF FIELD1l IS NUMERIC ...

When reading in newly prepared data, it is often desirable to check
certain fields for wvalid values. Relation tests and sign tests can
only determine if the field's contents are within a certain range, and
these tests both treat illegal characters in DISPLAY usage items as
zeroes. Thus, some data preparation errors could pass both of these
tests. »

NUMERIC CHARACTER HANDLING 4-7

The NUMERIC class test checks numeric (or alphanumeric) DISPLAY usage
fields for valid numeric digits.

If the field being tested contains a sign (whether <carried as an
overpunch or as a separate character), the test checks it for a valid
sign value. If the character position carrying the sign contains an
illegal sign wvalue, the NUMERIC class test rejects the item and
program control takes the false path of the IF statement. If the
character position contains a valid sign and all digit positions in
the field contain valid numeric digits, the NUMERIC class test passes
the item and program control takes the true path of the IF statement.

The ALPHABETIC class test checks alphabetic (or alphanumeric) fields
for wvalid alphabetic characters and the space character. If all of
the character positions of the field contain ASCII characters (A-Z or
space), the item passes the ALPHABETIC class test and causes program
control to take the true path of the IF statement. (For further
information concerning the ALPHABETIC class test, see Chapter 3,
Section 3.3.2.)

4.6 THE MOVE STATEMENT
The MOVE statement moves the contents of one field into another. The
following sample MOVE statement moves the contents of FIELDl into
FIELD2.
MOVE FIELD1 TO FIELD2.

Section 3.5 discusses the basic MOVE statement. This section
considers MOVE statements as applied to numeric fields. These MOVE
statements can be grouped into the following three categories:

1. Group moves,

2. Elementary moves with numeric receiving fields, and

3. Elementary moves with numeric edited receiving fields.

The following three sub-sections (4.4.1, 4.4.2, and 4.4.3) discuss
each of these categories separately.

4.6.1 Group Moves

The software considers a move to be a group move if either the sending
field or the receiving field is a group item. It treats both fields
in a group move as alphanumeric class fields and performs the move as
an alphanumeric to alphanumeric elementary move.

If either field in a group move is a numeric elementary item, the RTS
treats the storage area occupied by that item as a field of
alphanumeric bytes; thus, it ignores the USAGE, sign, and decimal
point location characteristics of the numeric item.

4-8 NUMERIC CHARACTER HANDLING

;/h\

Only the item's allocated size, in bytes, affects the move operation.
The RTS considers a separate sign character to be part of the item and
moves it with the numeric digit positions.

4.6.2 Elementary Numeric Moves

If both fields of a MOVE statement are elementary items and the
receiving field 1is numeric, the RTS considers the move to be an
elementary numeric move. (The sending field may be either numeric or
alphanumeric.) The numeric receiving field may be DISPLAY, COMP, or
COMP-3 usage. The elementary numeric move converts the data format of
the sending field to the data format of the receiving field.

An alphanumeric sending field may be either an elementary data item or
any alphanumeric 1literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, HIGH-VALUE, or ALL "literal". The elementary
numeric move accepts the figurative constant ZERO and considers it to
be equivalent to the numeric 1literal 0. It treats alphanumeric
sending fields as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending field to
the data format of the receiving field and aligns the sending field's
decimal point on that of the receiving field. It then moves the
sending field digits to their corresponding receiving field digits.

If the sending field has more digit positions than the receiving
field, the decimal point alignment operation truncates the sending
field, with the resultant 1loss of digits. The end truncated
(high-order or low-order) depends upon the number of sending field
digit positions that find matches on each side of the receiving
field's decimal point. If the receiving field has fewer digit
positions on both sides of the decimal point, the operation truncates
both ends of the sending field. Thus, if a field described as PIC
999v999 is moved to a field described as PIC 99V99, it loses one digit
from the left end and one from the right end. Figure 4-3 illustrates
this alignment operation (the carat (") indicates the stored decimal
scaling position): =~ :

01 AMOUNT1 PIC 99V99.

MOVE 123.321 TO AMOUNTI.

Before execution 00 00

After execution 23 32

Figure 4-3
Truncation Caused By Decimal Point Alignment

'NUMERIC CHARACTER HANDLING 4-9

If the sending field has fewer digit positions than the receiving
field, the move operation supplies =zeroes for all unfilled digit
positions. Figure 4-4 illustrates this alignment (the carat (»)
indicates the stored decimal scaling position):

01 TOTAL-AMT PIC 999Vv99.

MOVE 1 TO TOTAL-AMT.

Before execution 000 00

After execution 001 00

Figure 4-4
Zero Filling Caused By Decimal Point Alignment
The following statement produces the same results:
MOVE 001.00 TO TOTAL-AMT.

Consider the following two MOVE statements and their resultant
truncating and zero-filling effects:

STATEMENT TOTAL-AMT AFTER EXECUTION
MOVE 00100 TO TOTAL-AMT 100 00
MOVE "00100" TO TOTAL-AMT 100 00

Literals with leading or trailing zeroes have no significant advantage
in space or execution speed with VAX-11 COBOL-74, and the zeroes are
often lost by decimal point alignment.

The MOVE statement's receiving field dictates how the sign will be
moved. A signed DISPLAY usage receiving field causes the sign to be
moved as a separate quantity. An unsigned DISPLAY usage receiving
field causes no sign movement. A COMP usage receiving field, whether
signed or unsigned, causes the sign to be moved; however, if the
receiving field 1is unsigned, the RTS sets its value to absolute. A
COMP-3 receiving field always causes the sign to be moved.

4.6.3 Elementary Numeric Edited Moves

The VAX-11 COBOL-74 run-time system considers an elementary numeric
move to a receiving field of the numeric edited category to be an
elementary numeric edited move. The sending field of an elementary
numeric edited move may be either numeric or alphanumeric and, if
numeric, its usage can be DISPLAY, COMP, or COMP-3. The RTS treats
alphanumeric sending fields in numeric edited moves as unsigned
DISPLAY usage integers.

4-10 NUMERIC CHARACTER HANDLING

TN

rd ’_\:

The RTS considers the receiving field to be numeric edited category if
it is described with a BLANK WHEN ZERO clause, or a combination of the
following symbols: v

B Space insertion position;

P Decimal scaling position;

\'4 Location of assumed decimal point;

Z Leading numeric character position to be replaced by a space

if the position contains a zero;

0 Zero insertion position;

9 Position contains a numeric character;

/ Slash insertion position;

’ Comma insertion position;

. Decimal point insertion position;

* Leéding numeric character position to be replaced by an

asterisk if the position contains a zero;

+ Positive editing sign control symbol;

- Negative editing sign control symbol;

CR Credit editing sign control symbol;

DB Debit editing sign control symbol;

cs Currency symbol ($) insertion position.
A numeric edited field may contain 9, V, and P, but combinations of
those symbols without an editing character do not make the field
numeric edited.
The numeric edited move operation first converts the sending field ' to
DISPLAY usage and aligns both fields on their decimal point locations,
truncating or padding (with zeroes) the sending field until it
contains the same number of digit positions on both sides of the
decimal point as the receiving field. It then moves the resulting
digit values to the receiving field digit positions following the
COBOL editing rules.

The COBOL editing rules allow the numeric edited move operation to
perform any of the following editing functions:

e Suppress leading zeroes with either spaces or asterisks;

NUMERIC CHARACTER HANDLING 4-11

® Float a currency sign and a plus or minus sign through
suppressed zeroes, inserting the sign at either end of the
field; .
® Insert zeroes and spaces;
® Insert commas and a decimal point.
Figure 4-5 illustrates several of these functions with the statement,
MOVE FLD-B TO TOTAL-AMT. (Assume that FLD-B is described as
S9999v99.)
TOTAL-AMT _
FLD-B PICTURE STRING I CONTENTS AFTER MOVE
0023 00 / 72%23%.99 23.00
0085 90 , ' ++++.99 -85.96
1234 00 Z2,22%7.99 \ 1,234.00
0012 34 $,$$$.99 $12.34
0000 34 $,$$9.99 $0.34
1234 00 $$,$$8.99 $1,234.00
0012 34 $$9,999.99 $0,012.34
0012 34 $985,595.99 $12.34
0000 00 $$8,985.88
0012 3M ++++.99 -12.34
0012 34 Shkk k% 99 Skkkk%] 2, 34
Figure 4-5

Numeric Editing

The currency symbol ($) and the editing sign control symbols (+ -) are
the only floating symbols. To float them, enter a string of two or
more occurrences of the symbol.

4.6.4 Common Errors, Numeric MOVE Statements

The most common errors made when writing numeric MOVE statements are:

Placing an incorrect number of replacement characters in a

‘numeric edited item.

Moving non-numeric data into numeric fields with group moves.

Trying to float the $ or + insertion characters past the
decimal point to force zero values to appear as .00 instead of
spaces. (Use $$.99 or ++.99.)

Forgetting that the $§ or + insertion characters require an
additional position on the 1leftmost end that cannot be
replaced by a digit (unlike the * insertion character which
can be completely replaced).

4-12 NUMERIC CHARACTER HANDLING

TN

TN

4.7 THE ARITHMETIC STATEMENTS

The COBOL arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPUTE allow COBOL programs to perform simple arithmetic operations
on numeric data.

This section covers the use of the COBOL arithmetic statements. The
first five sub-sections (4.7.1 through 4.7.5) discuss the common
features of the statements and the last five (4.7.6 through 4.7.10)
discuss the individual arithmetic statements themselves.

4.7.1 1Intermediate Results

Most forms of the arithmetic statements perform their operations in
temporary work locations, then move the results to the receiving
fields, aligning the decimal points and truncating or zero filling the
resultant values.

This temporary work field, called the intermediate result field, has a
max imum size of 18 numeric digits. The actual size of the
intermediate result field varies for each statement, and is determined
at compile time based on the sizes of the operands used by the
statement.

When the compiler determines that the size of the intermediate result
field exceeds 18 digits, it truncates the excess high-order digits.
Thus, a program that requests a multiplication operation between the
following two fields,

PIC 9(18) and PIC V99.

)

(which would otherwise cause the compiler to set up a 20-digit
intermediate result field -- 9(18)V99) actually causes the following
intermediate result field ‘

PIC 9(16)V99.

VAX-11 COBOL-74 truncates high-order digits or low-order digits to the
right of the decimal point, based on the assumption that most large
data declarations are larger than ever need be, so zeroes occupy most
of their high-order digit positions. Numeric data may be declared as
PIC 9(12) or PIC 9(15) but the values that are placed in these fields
will probably not exceed nine digits of range (1 billion) in most
applications.

When using large numbers (or numbers with many decimal places) that

are close to 18 digits long, examine all of the arithmetic operations
that manipulate those numbers to determine if truncation will occur.

NUMERIC CHARACTER HANDLING 4-13

If truncation is a possibility, reduce the size of the number by
dividing it by a power of 10 prior to the arithmetic operation. (This
scaling down operation causes the low-order end to lose digits, but
these are probably 1less «critical.) Then, after the arithmetic
operation, multiply the result by the same power of 10.

To save the low-order digits in such an operation, move the field to a
temporary 1location before the scaling DIVIDE, perform separate,
identical arithmetic operations on both the original and the temporary
fields, then, after the scaling MULTIPLY, combine their results.

4.7.2 The ROUNDED Phrase

Rounding-off is an important tool with most arithmetic operations.
The ROUNDED phrase causes the RTS to round-off the results of COBOL
arithmetic operations.

The phrase may be wused on any COBOL arithmetic statement.
Rounding-off takes place only when the ROUNDED phrase requests it, and
then only if the intermediate result has more 1low-order digits than
the result field.

VAX-11 COBOL-74 rounds-off by adding a 5 to the leftmost truncated
digit of the absolute value of the intermediate result before it
stores that result.

Consider the following illustration and assume an intermediate result
of 54321,2468:

Coding:

01 FLD-A PIC S9(5)V9999.
01 FLD-B PIC S9(5)V99.

ADD FLD-A TO FLD-B ROUNDED.

Intermediate result field:

PIC S9(6)V9999.

The ROUNDED operation:

Truncated
digits
Intermediate result field: 054321.24 6&‘\
LEFT-MOST
ROUNDED: (ADD) .00 |50 truncated
FLD-B's ROUNDED result: 054321.25 |18 digit
Figure 4-6

Rounding Truncated Decimal Point Positions

4-14 NUMERIC CHARACTER HANDLING

AN

i

TN

TN

The following ROUNDING example rounds-off to the decimal scaling
position (P). Assume an intermediate result of 24680. (Section 4.7.4
discusses the GIVING phrase in numeric operations.)

Coding:

01 AMOUNT1 PIC 9999.
01 AMOUNT2 PIC 9999PP.

MULTIPLY AMOUNT1 BY 10

GIVING AMOUNTZ2 ROUNDED.

\

Intermediate result field:

PIC 999999.

The ROUNDED operation:

,Truncated

Intermediate result field: 0246 |80. digits
ROUNDED (ADD) : 50.

AMOUNT2's ROUNDED result: 0247 |30.

Figure 4-7
Rounding Truncated Decimal Scaling Positions

4.7.3 The SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order non-zero digits
in the results of COBOL arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in
a size error, the RTS truncates the high-order digits and stores the
result without notifying the user. When the execution of a statement
with a SIZE ERROR phrase results in a size error, the RTS discards the
entire result (it does not alter the receiving fields in any way) and
executes the SIZE-ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the RTS
rounds the result before it checks for a size error.

NUMERIC CHARACTER HANDLING 4-15

The phrase cannot be used on numeric MOVE statements. Thus, if a
program moves a numeric quantity to a smaller numeric field, it may
inadvertently lose high-order digits. For example, consider the
following MOVE of a field to a smaller field:

01 AMOUNT-A PIC 9(8)V99.

01 AMOUNT-B PIC 9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

This MOVE operation always loses four of AMOUNT-A's high-order digits.
Either of the following two statements could determine whether these
digits are zero or non-zero, and could be tailored to any size field:

1. 1IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE ...

2. ADD ZERO TO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR ...

Both of these alternatives allow the MOVE operation to occur only if
AMOUNT-A loses no significant digits. If the value in AMOUNT-A is too
large, both alternatives avoid altering AMOUNT-B and take the
alternative execution path.

4.7.4 The GIVING Phrase

The GIVING phrase moves the intermediate result field of an arithmetic
operation to a receiving field. (The phrase acts exactly like a MOVE
statement with the intermediate result serving as a sending field and
the data item following the word GIVING (in the statement) serving as
a receiving field.)

The phrase may be used on the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements.

If the data item following the word GIVING is a numeric edited field,
the RTS performs the editing the same way it does for MOVE statements.

4.7.5 Multiple Operands in ADD and SUBTRACT Statements

bl
Both the ADD and SUBTRACT statements may contain a string of more than
one operand preceding the word TO, FROM, or GIVING.

Multiple operands in either of these statements cause the RTS to add
the string of operands together and use the intermediate result of
that operation as a single operand to be added to or subtracted from,
the receiving field.

4-16 NUMERIC CHARACTER HANDLING

TN

TN

The following three equivalent coding groups illustrate how the
software executes the multiple operand statements:

1. Statement: ADDABCDTOETF G H.

Equivalent coding: ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F GIVING F.
ADD TEMP, G GIVING G.
ADD TEMP, H GIVING H.

2., Statement: SUBTRACT A, B, C, FROM D.
Equivalent coding: ADD A, B, GIVING TEMP.
ADD TEMP, C GIVING TEMP.
SUBTRACT TEMP FROM D GIVING D.
3. Statement: ADD A B C D GIVING E.
Equivalent coding: ADD A B GIVING TEMP.

ADD TEMP C GIVING TEMP.
ADD TEMP D GIVING E.

(Just as with all COBOL statements, any commas in these statements are
optional.)

Only statement 3 may have a numeric edited receiving field, since it
is the only statement containing a GIVING phrase.

4.7.6 The ADD Statement

The ADD statement adds two or more operands together and stores the
result.

The statement may contain multiple operands (with the exception of
Format 3) and the ROUNDED and SIZE ERROR phrases. It may be written
in one of the following formats:

Format 1. ADD FIELDl ...TO FIELD2 FIELD3
Format 2. ADD FIELD1l FIELD2 ...GIVING FIELD3 FIELD4
Format 3. ADD CORRESPONDING FIELDl TO FIELD2.

In Format 1, the receiving fields (FIELD2, FIELD3) are one of the
addends. These must not be in the numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are not one of the

addends. They may either be numeric or numeric edited. When using
this format, omit the word TO.

NUMERIC CHARACTER HANDLING 4-17

In Format 3, the receiving field (FIELD2) is one of the addends. Both
FIELD1 and FIELD2 must be group items. The corresponding elements of
FIELDl1l are added to the corresponding elements of FIELD2.

4.7.7 The SUBTRACT Statement

The SUBTRACT statement subtracts one, or the sum of two or more,
operands from another operand and stores the result.

The statement may contain multiple operands (with the exception of
Format 3) and the ROUNDED and SIZE ERROR phrases. It may be written
in one of the following formats:

Format 1. SUBTRACT FIELDl ... FROM FIELD2 FIELD3

Format 2. SUBTRACT FIELDl ... FROM FIELD2
GIVING FIELD3 FIELD4

Format 3. . SUBTRACT CORRESPONDING FIELDl1 FROM FIELD2.
In Format 1, the receiving fields (FIELD2, FIELD3) are both the
subtrahend and the difference (the result). These must not be in the
numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are used only to
store the result. They may be either numeric or numeric edited.

In Format 3, the receiving field (FIELD2) is both the subtrahend and

the difference (results). Both FIELDl1 and FIELD2 must be group items.
The corresponding elements of FIELD2.

4.7.8 The MULTIPLY Statement

The MULTIPLY statement multiplies one operand by another and stores
the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. It may be written in either of
the following formats:

Format 1. MULTIPLY FIELD1l BY FIELD2, FIELD3

Format 2. MULTIPLY FIELD1 BY FIELD2 GIVING FIELD3, FIELD4 ..
In Format 1, the receiving fields (FIELD2, FIELD3) are also the
multipliers. These must not be in the numeric edited category.
In Format 2, the receiving fields ' (FIELD3, FIELD4) are neither

multiplier nor multiplicand. These may be either numeric or numeric
edited.

4-18 NUMERIC CHARACTER HANDLING

. .

AN

COBOL's "near English" format could cause a problem with the MULTIPLY
statement, since it is common to speak of multiplying a number
(multiplicand) by another number (multiplier) and to think of the
result as a new value for the multiplicand; thus:

MULTIPLY EARNINGS BY 0.24.
Multiplier
Multiplicand

This statement is incorrect since the RTS stores the result in the
multiplier field, and this multiplier 1is a literal. The compiler
could diagnose this error, but would not diagnose it if the multiplier
were a data item. Consider this multiplier written as a data item:

MULTIPLY EARNINGS BY TAX-RATE.

The compiler would not diagnose this statement's error, and would
store the result of the operation in TAX-RATE. A good practice when
using MULTIPLY statements is to always write them in Format 2. This
ensures that the result is properly stored. The following two
statements safely capture their results: '

MULTIPLY EARNINGS BY 0.24 GIVING EARNINGS.
or

MULTIPLY EARNINGS BY TAX-RATE GIVING EARNINGS.

4.7.9 The DIVIDE Statement

The DIVIDE statement divides one operand into another and stores the
result.

The statement may contain the ROUNDED and SIZE ERROR phrases. With
the exception of Formats 4 and 5, it may not contain multiple
receiving operands. It may be written in any of the following
formats:

Format 1. DIVIDE FIELD1l INTO FIELD2 FIELD3 ‘

Format 2. DIVIDE FIELDl INTO FIELD2 GIVING FIELD3 FIELD4 ...

Format 3. DIVIDE FIELD2 BY FIELDl1 GIVING FIELD3 FIELD4

Format 4. B DIVIDE FIELDl INTO FIELD2 GIVING FIELD3 REMAINDER
FIELD4.

Format 5. DIVIDE FIELDl BY FIELD2 GIVING FIELD3 REMAINDER
FIELD4.

In Format 1, the receiving fields (FIELD2, FIELD3) are also the
dividends. These must not be in the numeric edited category.

NUMERIC CHARACTER HANDLING 4-19

In Formats 2 and 3, the receiving fields (FIELD3, FIELD4 ...) are
neither dividends nor divisor. These may be either numeric or numeric
edited.

In Formats 4 and 5, the receiving field (FIELD3) is neither a dividend
nor a divisor. FIELD4 is the remainder. The receiving field and the
remainder may be either numeric or numeric edited.

4,7.10 The COMPUTE Statement

The COMPUTE statement computes the value of an arithmetic expression
and stores the value in the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. The COMPUTE statement has the
following format:

COMPUTE FIELDl FIELD2 ... = arithmetic-expression.

The receiving fields (FIELDl, FIELD2) may be either numeric or numeric
edited.

4.7.11 Common Errors, Arithmetic Statements

The most common errors made when using arithmetic statements are:

° Using an alphanumeric class field in an arithmetic statement.
The MOVE statement allows data movement between alphanumeric
class fields and certain numeric class fields, but arithmetic
statements require that all fields be numeric.

) Writing the ADD or SUBTRACT statements without the GIVING
phrase, but attempting to put the result into a numeric
edited field.

) Writing a Format 2 ADD statement with the word TO; For
example:

ADD A TO B GIVING C.

° Subtracting a 1 from a numeric counter that was described as
an unsigned quantity, and testing for a value of less than
zero. .

) Forgetting that the MULTIPLY statement, without the GIVING

phrase, stores the result back into the second operand
(multiplier).

4-20 NUMERIC CHARACTER HANDLING

VS

° Performing a series of calculations in such a way as to .
generate an intermediate result that is larger than 18 digits
when the final result will be fewer digits. (The programmer
should be careful to intersperse divisions with
multiplications or to drop non-significant digits that result
from multiplying large numbers (or numbers with many decimal
places).

) Performing an operation on a field that contains a value
greater than the precision of its data description. This can
happen only if the field was disarranged by a group move or
redefinition.

) Forgetting that, in an arithmetic statment containing
multiple receiving fields, the ROUNDED phrase must be
specified for each receiving field that is to be rounded.

° Forgetting that, in an arithmetic statement containing
multiple receiving fields, the ON SIZE ERROR phrase, if
specified, applies to all receiving fields. Only those
receiving operands for which a size error condition is raised
are left unaltered. The ON SIZE ERROR statement is executed
after all the receiving fields are processed by the RTS.

4.8 ARITHMETIC EXPRESSION PROCESSING

COBOL provides language facilities for manipulating user-defined data
arithmetically. In particular, the language provides the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the facilities of
arithmetic expressions using the +, -, *, /, and ** operators. In
simple terms, a given arithmetic functionality may be expressed in one
of several ways. For example, consider a COBOL application in which
the total yearly sales of a salesman are to be computed as the sum of
the four individual sales quarters. Figure 4-8 illustrates one method
of expressing a solution to this problem in COBOL:

MOVE 0 TO TEMP.

ADD 1ST-SALES TO TEMP.

ADD 2ND-SALES TO TEMP.

ADD 3RD-SALES TO TEMP.

ADD 4TH-SALES TO TEMP GIVING TOTAL-SALES.

Figure 4-8 Explicit Programmer-Defined Temporary Work Area

In figure 4-8, the COBOL programmer chooses to use a series of single
ADD statements to develop the final value for TOTAL-SALES. 1In the
process of computing TOTAL-SALES, a COBOL data-name, called TEMP, is
used to develop the partial sums (i.e., intermediate results). The
important point here is that the programmer explicitly defines and
declares the temporary work area TEMP in the data division of the
COBOL program. That is, the attributes (i.e., class, USAGE, number of
integer and decimal places to be maintained) are specified explicitly
by the COBOL programmer.

NUMERIC CHARACTER HANDLING 4-21

Figure 4-9 below illustrates another way of expressing a solution to
the problem:

ADD 1ST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

FIGURE 4-9
ARITHMETIC STATEMENT INTERMEDIATE RESULT FIELD ATTRIBUTES
DETERMINED FROM COMPOSITE OF OPERANDS

IN THIS EXAMPLE, THE PROGRAMMER CHOOSES TO COMPUTE TOTAL-SALES with a
single ADD statement. Analogous to the previous example, an
intermediate result field is required to develop the partial sums of
the four quarterly sales quantities. In Figure 4-8, the programmer is
cognizant of this requirement, but chose to define' the intermediate
result area TEMP explicitly in the data division of his COBOL program.
However, for the example in Figure 4-9, the compiler defines the
intermediate result field in a manner transparent to the COBOL source
program. That is, the compiler allocates storage for and assigns
various attributes to this "transparent" intermediate result field
according to a well-defined set of rules defined by the COBOL language
specification. In particular, the attributes of
number-of-integer-places, number-of-decimal-places, and USAGE assigned
by the software to the intermediate result field are a function of the
composite of source operands in the ADD statement. (The reader should
read the VAX-1l COBOL-74 Reference Manual for details concerning the
composite of operands for the arithmetic statements.) The important
point here is that the ANS-74 COBOL language standard prescribes rules
for determining the attributes of intermediate result fields for the
arithmetic statements, and the language processor, the VAX-11 COBOL-74
compiler, must implement those rules.

As a final example, consider the following solution to our problem:

COMPUTE TOTAL-SALES = 1ST-SALES + 2ND-SALES + 3RD-SALES
+ 4TH-SALES.

Figure 4-10
Arithmetic Expression Intermediate Result Field
Attributes Determined by Implementor-Defined Rules

In Figure 4-10, the programmer solves the problem by using a single
COMPUTE statement with an embedded arithmetic expression. Again, an
~intermediate result field is required and, as in Figure 4-9, is
defined by the software. However, in defining the attributes of
intermediate result fields for COBOL arithmetic expressions, the
ANS-74 COBOL language standard is not as helpful to the user as it
could be. In fact, the COBOL language standard gives almost complete
freedom to the implementor in defining the "attributes of the
arithmetic expression intermediate result fields. The only rules
imposed by the ANS-74 COBOL language specifications are:

4-22 NUMERIC CHARACTER HANDLING

/’.’\‘

TN

1. Arithmetic operations are to be combined without restrictions
on the composite of operands and/or receiving fields.

2. Each implementor will indicate techniques wused in handling
arithmetic expressions. ‘

Thus, the user can and should expect differences between various
implementations of ANS-74 COBOL. The rest of this section describes
how the VAX-11 COBOL-74 compiler computes the sizes of intermediate
result fields.

The. compiler compﬁtes the size of an intermediate result field for
each component operation of an arithmetic expression. Each operation
can be stated as:

OP1 OPR OP2

where:
()21 is the first operand
OPR is an arithmetic operator
OP2 is the second operand

The size of an intermediate result is described in terms of the number
of integer places (IP) and the number of decimal places (DP). The
symbol DPEXP represents the maximum number of decimal places in the
entire arithmetic expression.

OPR
+ and - IP = max (IP(OPl), IP(OP2)) + 1
DP = max (DP (OP1l), DP(OP2))
* IP = IP(OPl) + IP(OP2)
DP = DP(OP1l) + DP(OP2)
/ IP = IP(OPl) + DP(OP2)
‘ DP = max (DPEXP, max (DP(OPl), DP(OP2) + 1))
*x For exponents that convert to one-word values,
a = OP2
b = OP2 + DP(OP1)

Otherwise,

a=29, if IP(OP2) =1,
otherwise, a = 19
b = DPEXP
and
IP = IP(OPl) * a
DP = max (DPEXP, DP(OPl) * Db)

NUMERIC CHARACTER HANDLING 4-23

Py

CHAPTER 5

TABLE HANDLING

5.1 INTRODUCTION

With COBOL, as with any other language, any data item to which the
program refers must be uniquely identified. This unique
identification of data items is usually accomplished by assigning a
unique name to each item. However, in many applications this is
tedious and inconvenient; often programs require too many names for
items that have different names but contain the same type of
information. Tables provide a simple solution to this problem.
VAX-11 COBOL-74 includes full table handling capabilities as outlined
for standard COBOL in the 1974 ANSI Standards.

A table is a repetition of one item (element) in memory. This
repetition is accomplished by the use of the OCCURS clause in the data
description entry. The literal value in the OCCURS clause causes the
software to duplicate the data description entry as many times as
indicated by that value, thus creating a matrix or table.

The elements may be initialized with the VALUE clause or with a
procedural instruction. They may contain synchronized or
unsynchronized data. They may be accessed only with subscripted
procedural instructions. A subscript is a parenthesized integer or
data name (with an integer value). The integer value represents the
desired occurrence of the element.

This chapter discusses how to set up tables and access them accurately
and efficiently. It attempts to cover any problems that may be
encountered while handling tables. Read it through carefully before
setting up tables with VAX-11] COBOL-74.

5.2 DEFINING TABLES

To define a table with VAX-11 COBOL-74, simply complete a standard
data description for one element of the table and follow it with an
OCCURS clause. The OCCURS clause contains an integer which dictates
the number of times that element will be repeated in memory, thus
creating a table.

The OCCURS phrase has two formats:

Format 1
OCCURS integer-2 TIMES
ASCENDING :
KEY IS data-name-2 [, data-name-3] e
DESCENDING

[INDEXED BY index-name-1 [, index-name-2] ...]

Format 2
OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

ASCENDING
KEY IS data-name-2 [, data-name-3] ... cee
DESCENDING

[INDEXED BY index-name-l1 [, index-name-2] ...]

- In either format, the system generates a buffer large enough to
accommodate integer-2 occurrences of the data description. Therefore,
the amount of storage allocated in either case is equal to the amount
of storage required to repeat the data entry integer-2 times.

The software will automatically map the elements into memory. When -
mapping a table into memory, the software follows the rules for
mapping which depend on whether the element contains synchronized
items or not. 1If they do not contain synchronized items, the software
maps them into adjacent memory locations and the size of the table can
be easily calculated by multiplying the size of the element times the
number of occurrences (5X10 for the table illustrated in Figure 5-1,
or 50 bytes of memory).

01 A-TABLE
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Figure 5-1
Defining a Table

5.2.1 The OCCURS Phrase - Format 1

When Format 1 is used, a fixed length table is generated, whose length
(number of occurrences) is equal to the value specified by integer-2.
This format is useful for storing large amounts of frequently used
reference data whose size never changes. Tax tables, used in payroll
deduction programs, are an excellent example of where a Format 1
(fixed length) table might be used.

5-2 TABLE HANDLING

/"r\\

5.2.2 The OCCURS Phrase - Format 2

Format 2 is used to generate variable length tables. When wused, a
table whose length (number of occurrences) is equal to the value
specified by data-name-1 is generated.

NOTE

Data-name-1 must always be a positive
integer whose value is equal to or
greater than integer-1l but not greater
than integer-2.

Unlike format 1 tables, the number of occurrences of data items in
format 2 tables can be dynamically expanded or reduced to satisfy user
needs.

By generating a variable length table, the user is, in effect, saying;
"build me a table that can contain at least integer-1 occurrences, but
no more than integer-2 occurrences, and set its number of occurrences
equal to the value specified by data-name-1".

Data-name-1 always reflects the number of occurrences available for
user dccess. To expand the size (number of occurrences available for

use) of a table, the user need only increase the value of data-name-1
accordingly.

Likewise, reducing the value in data -name-1 w1ll reduce the number of
occurrences available for user access.

5.3 MAPPING TABLE ELEMENTS

As mentioned in Section 5.2, when the software detects an OCCURS
clause in an unsynchronized item, it maps the table elements into
adjacent locations in memory. Consider the following data description
of a simple table and the way it is mapped into memory:

Table Description: 01 A-TABLE.
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Memory Map:

‘ words II IT | ITII| IV |V VI |VII | VIII |IX | X .o
bytes [T1 11 RN AR L 1]
Y —— W TN
A-GROUP A-GROUP A-GROUP A-GROUP Ceee
Figure 5-2

Mapping a Table into Memory

TABLE HANDLING 5-3

The data description in Figure 5-2 causes the software to set up ten
items of five bytes each (elements) and place them in adjacent
ascending memory locations for a total of 50 character positions, thus
creating a table. Since the length of each A-GROUP element is odd
(5), the memory addresses of each subsequent element will alternate
between odd and even locations.

The SYNCHRONIZED clause causes the software to add a fill byte to
items that contain an odd number of bytes, thereby making the number
of bytes in that item even. This ensures that each subsequent
occurrence of the element will not alternate between odd and even
addresses, but will map the same (0dd or even) as the first repetition
of that element. If the data description of A-GROUP contained a
SYNCHRONIZED clause, the software would map it quite differently. If
A-GROUP were synchronized, it would expand its length to three words.
The item will, by default, be synchronized to the left occupying the
first five characters of the three words. The software supplies a
padding character to fill out the third word. This padding character
is not a part of the A-GROUP element and table instructions referring
to A-TABLE will not detect the presence or absence of the character.

The padding character does, however, affect the overall length of the
group item and, hence, the table. Without the SYNCHRONIZED clause,
A-TABLE required only 50 character positions; now, with the clause,
it requires 60 character positions. (This length includes the last
padding character -- following the tenth element in the table.)

Although the SYNCHRONIZED clause has 1little value when used with
alphanumeric fields, an understanding of the concept is essential
before attempting to use COMP and INDEX data items in tables. The
software automatically synchronizes all COMP and INDEX usage data
items, and will most probably alter the size of any table (often
drastically) that contains these data types. Consider the following
illustration of a synchronized data item being mapped by the software:

Table Description: 01l A-TABLE.
03 A-GROUP OCCURS 20 TIMES.

05 ITEM1 PIC X. 1--ITEM1
05 ITEM2 PIC S999 COMP. 2--1ITEM2
S S--SLACK
BYTE
Memory Map:
words I II III] IV \4 VI VII | VIII§ ...
bytes 1] 2]2 1] 2[2] 1] 2]2 1] 2[2 1 ...

A-GROUP A-GROUP A-GROUP A-GROUP ...

Figure 5-3
Synchronized COMP Item in a Table

5-4 TABLE HANDLING -

AN

Since the software synchronizes the ITEM2 fields (COMP), these fields
each occupy a single word in memory; thus, a slack byte follows each
occurrence of ITEMl. Each repetition of A-GROUP consumes four bytes
of memory -- one byte for ITEM1l, one byte for the slack byte, and two
bytes for ITEM2. A-TABLE, then, requires 80 bytes of memory (20
elements of four bytes each).

Now, consider the effect of adding a l-byte field to A-TABLE. If we
place the field between ITEM1 and 1ITEM2, it will take the space
formerly occupied by the slack byte. This has the effect of adding a
data byte but leaving the size of the table unchanged. Consider the
following illustration:

Table Description: 01 A-TABLE.
' 03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM3 PIC X.
05 ITEM2 PIC S999 COMP.

1--ITEM1
Memory Map: 2--ITEM2
- - 3--ITEM3
words I IT III | IV \" VI ...
bytes 1|3 2|2 113]2]2]1f3]2]7...
- J

A-GROUP A-GROUP A-GROUP

Figure 5-4
Adding a Field without Altering the Table Size

If, however, we place the l-byte field after ITEM2, it has the effect
of adding its own length plus another slack byte. Now, each element
requires six full bytes and the complete table consumes 120 bytes of
memory (6X20)! This is due to the fact that the first repetition of
ITEM]1 falls on an even byte and, in order to keep the mapping of each
A-GROUP element the same, the software allocates each successive
repetition of ITEM1 to an even byte address. Thus, it assigns ITEM3
to the even byte of the third word and adds a slack byte to guarantee
that the next element begins on an even byte. Consider the following
illustration:

Table Description: 01 A-TABLE.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:

Odd or Even E O E

words LI I .o
bytes BE cee
L
A-GROUP A-GROUP A-GROUP

Figure 5-5
Adding One Byte which Adds Two Bytes to the Element Length

TABLE HANDLING 5-5

NOTE

The illustrations in this section show
each byte with an even address (E) as
the leftmost byte, and each byte with an
odd address (0) as the rightmost byte.
(The two bytes, odd and even, are
reversed in actual memory.)

I1f, however, we use a FILLER byte to force the first allocation of
ITEM1 to occur on an odd byte, A-GROUP again requires only four bytes
and no slack bytes. Figure 5-6 illustrates this. Since the FILLER
item occupies the even byte of the first word, ITEM1 falls on an odd
byte. The software requires that each repetition of ITEM]I must be an
even number of bytes in length in order to guarantee that the
synchronized item(s) will map onto word boundaries. No slack bytes
are needed and A-GROUP elements are again only four bytes long, and
A-TABLE requires only 81 bytes.

Table Description: 01 A-TABLE.

03 FILLER PIC X.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memofy Map:

odd or even EO EO EO EO EO EO EO oo
words I IT III | IV \" Vi VI oo
bytes Fl11] 2|2 3§1]2]2]3§1] 2]21}3 oo

/

FILLER

A-GROUP A-GROUP A-GROUP

Figure 5-6
Forcing an 0dd Address By Adding a 1-Byte FILLER
Item to the Head of the Table

If we try to force ITEM1l onto an odd byte with a SYNCHRONIZED RIGHT
clause, the software maps ITEM1 into the odd byte, but prohibits all
repetitions of the element from using the even byte. Thus, the first
repetition of A-GROUP has a slack byte at its beginning and, so that
the next element can begin (with a slack byte) at an even address,
another slack byte (odd) following ITEM3. This expands the element
length to six bytes and the table length to 120 bytes.

5-6 TABLE HANDLING

TN

TN

N

Table Description: 01 A-TABLE.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X SYNCHRONIZED RIGHT.
05 ITEM2 PIC S999 COMP,
05 ITEM3 PIC X.

Memory Map:

Odd or Even EO EO EO EO EO EO EO EO E O .o
words I [11 JII1Jiv | V [VI [VvitJvitilix 1 .
bytes 1[2[2]3 1 2[2] 3 1]2[2 |3 ..
A-GROUP A-GROUP A-GROUP ...
Figure 5-7

The Effect of a SYNCHRONIZED RIGHT Clause Instead
of a FILLER Item as shown in Figure 5-6

To determine how the software will map a given table, ~apply the
following two rules:

1. The software maps all items in the first repetition of a
table element into memory words as with any item properly
defined with a data descrlptlon, obeying any implicit or
explicit synchronization requirements.

2. If the first repetition contains any elementary items with
implicit or explicit synchronization, the software maps each
successive repetition-of the element into memory words in the
same way as the first repetition. It does this by adding one
slack byte, if necessary, to make the size of the element
even.

5.3.1 1Initializing Tables

If a table contains only DISPLAY items, it can be set to any desired
initial value (initialized). To initialize a table, simply specify a
VALUE phrase on the record level preceding the item containing the
OCCURS clause. . The sample data definitions, below, will set up
initialized tables:

TABLE HANDLING 5-7

Table Description: 01 A-TABLE VALUE IS "JANFEBMARAPRMAY
- JUNJULAUGSEPOCTNOVDEC".
03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

Memory Map:

words T [11 [rrr]zv | v [vi Jviz[vrzz[ix | x [XI [XII
byte contents [J[A|N]F|E[B|M[A|R[A|P|[R|M[A[Y[J [U[N|J[U|L]A[U]C
N s’ \ PR et st
MONTH-GROUP | _”MONTH-GROUP
MONTH-GROUP MONTH-GROUP
MONTH-GROUP MONTH-GROUP

MONTH-GROUP MONTH-GROUP

Figure 5-8
Initializing Tables

Often a table is too long to initialize with a single literal, or it
contains items that cannot be initialized (numeric, alphanumeric, or
COMP). These items can be individually initialized by redefining the
group level preceding the 1level that contains the OCCURS clause.
Consider the following sample table descriptions:

Table Description: 01 A-RECORD-ALT.

05 FILLER PIC XX VALUE "AX".
05 FILLER PIC 99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC 99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S99 COMP.

Memory Map: Binary 1 Binary 2
words I |IT §III|IV .o
byte contents at A|X | BX ...

initialization time A-GROUP A-GROUP

Figure 5-9
Initializing Mixed Usage Fields

In the preceding example, the slack bytes in the alphanumeric fields
(ITEM1) are being initialized to X.

5-8 TABLE HANDLING

/ N

Table Description: 01 A-RECORD-ALT.
03 FILLER PIC X(30) VALUE IS
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC".
03 FILLER PIC X(30) VALUE IS
"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF".
(etc.)

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEM1 PIX X(10) OCCURS 26 TIMES.

Memory Map:

word I |II |ITII|IV V |VI JVII|VIII|IX X |XI cee
byte A[A[A[A[A[A[A]A[A]A[B[B|B[B[B[B [B[B[B[B[C[C] ---
contents at
initialization
time v —
ITEM1 ITEM1 cee |
Figure 5-10

Initializing Alphanumeric Fields

In the preceding example, each FILLER item initializes three 10-byte
table elements.

When redefining or initializing table elements, allow space for any
slack bytes that may be added due to synchronization (implicit or
explicit). The slack bytes do not have to be initialized; however,
they may be and, if initialized to an uncommon value, they may even
serve as a debugging aid for situations such as a statement referring
to the record level above the OCCURS clause or another record
redefining that level. Sometimes the length and format of table items
are such that they would best be initialized by statements in the
Procedure Division.

Once the OCCURS clauses have established the necessary tables, the
program must be able to access the elements of those tables
individually. Subscripting and indexing are the two methods provided
by COBOL for accessing individual elements.

5.4 SUBSCRIPTING AND INDEXING

To refer to a particular element within a table, simply follow the
name of the desired element with a parenthesized subscript or index.
A subscript is an integer or a data-name that has an integer value;
the integer value represents the desired occurrence of the element --
an integer value of 3, for example, refers to the third occurrence of
the element. An index 1is a data-name that has been named in an
INDEXED BY phrase in the OCCURS clause. '

TABLE HANDLING 5-9

5.4.1 Subscripting with Literals

A literal subscript is simply a parenthesized integer whose value
represents the occurrence number of the desired element. 1In figure
5-11, the literal subscript in the MOVE instruction (2) causes the
software to move the contents of the second element of the table,
A-TABLE, to I-RECORD. ‘

01 A-TABLE. -
Table Description 03 A-GROUP PIC X(5)
OCCURS 10 TIMES.

Procedural Instruction MOVE A-GROUP(2) TO I-RECORD.

Figure 5-11
Literal Subscripting

If the table has more than one level (or dimension), follow the name
of the desired item with a list of subscripts, one for each OCCURS
clause to which the item is subordinate. The first subscript in the
list applies to the first OCCURS clause to which the item is
subordinate. (This is the most encompassing level -- A-GROUP in the
following example.) The second subscript in the list applies to the
next most encompassing level, and the last subscript applies to the
lowest level OCCURS clause being accessed (or the desired occurrence
number of the item named in the procedural instruction -- ITEM5 in the
following example) .

Consider Figure 5-12; the subscripts (2,11,3) in the MOVE instruction
cause the software to move the third repetition of ITEM5 in the
eleventh repetition of ITEM3 in the second repetition of A-GROUP to
I-FIELDS. (For illustration simplicity, I-FIELD5 is not defined.)
(ITEM5(1,1,1) would refer to the first occurrence of ITEM5 in the
table and ITEM5(5,20,4) would refer to the last occurrence of ITEM5.)

01 A-TABLE.
03 A-GROUP OCCURS 5 TIMES.
05 ITEM1 PIC X.
Table Description 05 ITEM2 PIC 99 COMP OCCURS 20
' TIMES.
05 ITEM3 OCCURS 20 TIMES.
07 ITEM4 PIC X.
07 ITEM5 PIC XX OCCURS 4 TIMES.

Procedural Instruction MOVE ITEM5(2, 11, 3) TO I-FIELDS5.

Figure 5-12
Subscripting a Multi-Dimensional Table

5-10 TABLE HANDLING

—

TN

TN

AN

NOTE

Since ITEM5 is not subordinate to ITEM2,
an occurrence number. for ITEM2 is not
permitted in the subscript list.

Figure 5-13 summarizes the subscripting rules for each of the above
items and shows the size of each field in bytes.

NAME NUMBER OF SUBSCRIPTS SIZE

OF - REQUIRED TO REFER TO OF

FIELD THE NAMED FIELD FIELD
A-TABLE NONE 1110
A-GROUP ' ONE 222
ITEM1 ONE 1%
ITEM2 TWO 2
ITEM3 TWO 9
ITEM4 TWO 1
ITEMS THREE 2
* Plus a slack byte

Figure 5-13
Subscripting Rules for a
Multi-Dimensional Table

5.4.2 Operations Performed by the Software

When a literal subscript is used to refer to an item in a table, the

software

performs the following steps to determine the exact address

of the item:

1.

2.

The compiler converts the literal to a l-word binary value.

The compiler range checks the subscript value (the value must
not be less than 1 nor greater than the number of repetitions
specified by the OCCURS clause) and prints a diagnostic
message if the value is out of range.

The compiler decrements the value of the subscript by 1 and
multiplies it by the size of the item that contains the
OCCURS clause corresponding to this subscript, thus forming
an index value; it then stores this value, plus the literal
subscript, in the object program.

At run time, for a fixed length table, the RTS adds the index
value (from 3 above) to a base address, thus determining the
address of the desired item. For a variable length table
reference, the procedure for fixed length tables is preceded
by the procedure described in Section 5.4.6.

TABLE HANDLING 5-11

5.4.3 Subscripting with Data-Names

As discussed earlier in this section, subscripts may also be specified
using data-names instead of 1literals. To ‘use a data-name as a
subscript, simply define it as a numeric integer (COMP or DISPLAY).
It may be signed, but the sign must be positive at the time it is used
as a subscript. :

The sample subscripts in figure 5-14 refer to the same element
accessed in Figure 5-12, (2, 11, 3). i

Data Descriptions 01 KEY1l PIC 99 USAGE DISPLAY.
of Subscript data-names 01 KEY2 PIC 99 USAGE COMP.
01 KEY3 PIC S99.

MOVE 2 TO KEYl.
MOVE 11 TO KEY2.
MOVE 3 TO KEY3.
Procedural Instructions GO TO TABLERTN.
TABLERTN.
MOVE ITEMS5 (KEY1l KEY2 KEY3) TO
I-FIELDS.

Figure 5-14
Subscripting with Data-Names

5.4.4 Operations Performed by the RTS

When a data-name subscript is used to refer to an item in a table, the
RTS performs the following steps at run time: '

1. If the data-name's data type is DISPLAY, the software
converts it to a l-word binary value.

2. For fixed 1length tables, the software range checks the
subscript value (the value must not be 1less than 1 nor
greater than the number of repetitions specified by the
OCCURS clause) and terminates the image (with a diagnostic
message) if it is out of range. For variable length tables,
the procedure described in Section 5.4.6 is followed.

3. The software decrements the value of the subscript by 1 and
multiplies it by the size of the item that contains the
OCCURS clause corresponding to this subscript, thus forming
an index value. ' : .

4. The software adds the index value (from 3 above) to a base
address, thus determining the address of the desired item.

5-12 TABLE HANDLING

N

5.4.5 Subscripting with Indexes

The same rules apply for the specification of indexes as apply to
subscripts except that the index must be named in the INDEXED BY
phrase of the OCCURS clause. :

An index-name item (an item named in the INDEXED BY phrase of the
OCCURS clause) has the ability to hold an index value. (The index
value is the product formed in step 3 of the operations performed by
the software for 1literal or data-name subscripts -- the relative
location, within the table, of the desired item.)

The compiler allocates a 2-part data item for each name that follows
an INDEXED BY phrase. These index-name items cannot be accessed as
normal data items; they cannot be moved about, redefined, written to
a file, etc. However, the SET verb can change their values and
relation tests can examine their values. One part of the 2-part
index-name item contains a subscript value and the other part contains
an index value. Consider the following illustration:

; INDEX PART ————>
SUBSCRIPT PART ———————»

Figure 5-15
Index-Name Item

Whenever a SET statement places a new value in the subscript part, the
software performs an index value computation and stores the result in
the index part. Only the subscript part of the item acts as a sending
or receiving field. The index part is never altered by any other
operation and is never moved to another item. It is used only when
the index-name 1is used as an index referring to a table item. The
sample MOVE statement in Figure 5-16 would move the contents of the
third repetition of A-GROUP to I-FIELD. (For illustration simplicity,
once again, I-FIELD is not defined.)

01 A-TABLE.
Table Description 03 A-GROUP OCCURS 5 TIMES
INDEXED BY IND-NAME.
Procedural Instructions SET IND-NAME TO 3.
MOVE A-GROUP (IND-NAME) TO I-FIELD.

Figure 5-16
Subscripting With Index-name Items

TABLE HANDLING 5-13

5.4.6 Operations Performed by the RTS

The RTS performs the following steps when .-it executes the SET
statement: ; oo

1. The RTS converts the contents of the sending field of the SET
statement to a l-word binary value.

2. The RTS range checks the value (the wvalue must not be . less
than 1 nor greater than the number of repetitions specified
in the OCCURS clause) and terminates the image with a
diagnostic message if it is out of range. ,

3. The RTS decrements the value by 1 and multiplies it by the
size of the item that contains the OCCURS clause, thus
forming an index value.

For fixed length tables, once the SET statement has been executed and
the software has encountered the index-name item as an. index, it only
has to add the index value (from 3 above) to a base address to
determine the address of the desired item. . Since this is:the only
action performed, the execution speed of a procedural -statement with
an indexed data-name is equivalent to a reference with a literal
subscript. :

For a variable length table, when the index-name is encountered as an
index, the procedure described in Section 5.4.6 is invoked before
following the fixed length table logic. However, the SET statement
itself 1is not impacted by the fixed/variable characteristic of the
associated table.

VAX-11 COBOL-74 initializes the value of all index-name items to a
subscript value of 1 (index value of 0), hence an attempt to use an
index-name item as an index before it has been:the receiving field of
a SET verb will not result in an out-of-range termination.

NOTE

Initialization of index-name items is an
extension to the ANSI COBOL standards.
Users concerned with writing COBOL
programs. that adhere to standard COBOL
should not rely on this feature.

5.4.7 Relative Indexing

To perform relative indexing, when referring to a table item, simply
follow the index-name with a plus or minus sign and an integer
literal. Relative indexing, albeit easy to wuse, causes -additional
overhead to be generated each time a table item is referenced in this
fashion. At compile time, the compiler has to compute the index value
corresponding ‘to the specified literal; and transfer this index value
‘to the object.file. At run time, the index value for the 1literal is
added to (+) or subtracted from (-) the index value of the index-name.

5-14 TABLE HANDLING

i

The resulting index value is stored in a temporary location. The RTS
adds this temporary index value to the base address of the table to
determine the address of the desired table item. At this point, a
range check is performed on the temporary index value to insure that
the resulting index is within the permissible range for the table.

‘'For fixed 1length tables, this index manipulation is relatively

straightforward. The size of the table is known at compilation time,
and this size is passed along to the RTS in the object file. A simple
compare against this fixed value is all that is required to determine
if a given index value is within the permissable range for the table.

For a variable length table, however, the process is more involved.
The current number of occurrences (data-name-1l) for the table must be
determined and range checked; the index value corresponding to the
current number of occurrences must be calculated; then the temporary
index value must be range checked using the current number of
occurrence's index value.

The run-time overhead required for the relative indexing of variable
length tables 1is significantly greater than that required for fixed
length tables. 1In either case, the index portion of the index-name is
not altered. If any of the range checks reveals an illegal (out of
range) value, execution is terminated with an apropriate error

- message.

The sample MOVE instruction in Figure 5-17 moves the fourth repetition
of A-GROUP to I-FIELD if 1IND-NAME has not been altered with a SET
verb.

MOVE A-GROUP (IND-NAME + 3) TO I-FIELD.

Figure 5-17
Relative Indexing

The actual operation of accessing a table element is shorter at run
time since the compiler has calculated the index value of the literal
at compile time and has stored it in the object program ready for use.
Relative indexing, therefore, involves two additions and a range check
dat run time. It leaves the index-name item unaltered.

5.4.8 1Index Data Items

Often a program will require that the value of an index-name item be
stored outside of that item. It is for this purpose that VAX-11
COBOL-74 provides the index data item. :

Index data items are l-word binary integers with implicit
synchronization. (The 1l-word size corresponds to the subscript part
of the index-name item.) They must be declared with a USAGE IS INDEX
phrase and they may be modified (explicitly) only by the SET
statement.

TABLE HANDLING 5-15

Subscript Part —————]

Figure 5-18
Index Data Item

Since index data items are considered to contain only the subscript
part of an index-name item, when a SET statement "moves" an index-name
item to an index data item, only the subscript part is moved.
Likewise, when a - SET statement "moves" an index data item to an
index-name item, a new index value is computed by the software. This
is done to guarantee that an index-name item will always contain a
good index value.

The. only advantage gained by using index data items over numeric, COMP
items 1is that the data description is shorter, easier to write, and
more self-documenting. Further, the restrictions placed on access to
index items may be useful™in debugging the program.

5.4.9 The SET Statement

The SET statement alters the value of index-name items and copies
their value into other items. When used without the UP BY/DOWN BY
clause, it functions like a MOVE statement. Figure 5-19 illustrates
the legal data movements that the SET statement can perform.

INDEX-NAME ITEM

NUMERIC LITERAL _ (INDEX PART) _ INDEX DATA ITEM

| |— (SUBSCRIPT PART) [*—]]
NUMERIC DATA NAME INDEX-NAME ITEM
(COMP OR DISPLAY [(INDEX PART) |

|] (SUBSCRIPT PART)

Figure 5-19
Legal Data Movement with the SET Statement

The SET statement may be used with the UP BY/DOWN BY clause to alter
the value of an index-name item arithmetically. The numeric literal
is added to (UP BY) or subtracted from (DOWN BY) the subscript part,
and the index part 1is .recalculated by the software after the
appropriate range check against the number of repetitions for the
table. The SET statement 1is not affected by whether the table is
fixed or variable length.

5-16 TABLE HANDLING

5.4.10 Referencing a Variable-Length Table Element at Run Time

At run time, when a procedural reference involves an element in a
variable length table, the following procedure is used:

1. Determine the number of occurrences in the table (the value
contained in data-name-1), and verify its legality.

(integer-1 <= data-name-1 <= integer-2)
2. Verify that the subscript is within the legal range.
(subscript <= data-name-1)

If any of the above checks fails, execution is terminated with an
appropriate error message. ‘ '

5.4.11 Referencing a Dynamic Group at Run Time

A dynamic group is defined as a group item that contains a subordinate
item that is a variable length table. At run time, when a dynamic
group is referenced, the following procedures are followed:

1. The number of occurrences of the subordinate variable 1length
table is determined, and checked for 1legality; i.e.,
integer-1<=data-name-1<=integer-2. If this check fails,
execution terminates and the appropriate error message is
issued.

2. The size of the dynamic group is calculated. The number of
occurrences of the variable 1length table (data-name-1l) is
multiplied by the size of one table entry. The resulting
number is then added to the fixed size of the dynamic group.

NOTE

The fixed size of a dynamic group is the
size of '~ the group up to but not
including the variable length table.

5.4.12 The SEARCH Verb

The SEARCH verb 'has two formats: Format 1, which performs a
sequential search of the specified table beginning with the current
index setting; and Format 2 which performs a selective (binary)
search of the specified table, beginning with the middle of the table.

Both formats allow the programmer to specify imperative statements
within the SEARCH verb. At run time, an imperative statement
contained within a search verb is executed only when one of the exit
paths (success or failure) is taken.

TABLE HANDLING 5-17

The failure path is defined either explicitly by the AT END statement,
in which case the imperative statement which follows it is executed;
or by default, in which case control is passed to the next procedural
sentence. In either «case (success or failure), after an imperative
statement is executed, control is passed to the next procedural
sentence.

5.4.13 The SEARCH Verb - Format 1

Format 1 directs the RTS to search the indicated table sequentially.
The OCCURS clause for the table being searched must contain the
INDEXED by phrase. Unless otherwise specified in the SEARCH
statement, the first index 1is the controlling index for the table
search. The search begins with the current index setting, and
progresses through the table, augmenting the index by one as each
occurrence is interrogated. If any of the specified conditions is
true (success), the associated imperative statement is executed; the
search exits; and the index remains at the current setting.

If the possible number of occurrences for the table 1is exhausted
before any of the specified conditions are met, the specified failure
exit path is taken. That 1is, either the AT END exit path (if
specified) 1is taken, or «control 1is passed to the next procedural
sentence.

Figure 5-20 contains an example of using the SEARCH verb to search a
table in a serially.

Associated with Format 1 is the optional VARYING phrase. This phrase
can be specified by using any of the following methods:

1. default - phrase omitted
2. VARYING index-name-n
3. VARYING identifier-2

4. VARYING index-name-2

NOTE

The following is true regardless of which of the
above methods is used.

a. An index name associated with the table 1is methodically
augmented by one, by the RTS, for each cycle of the
serial search. This controlling index, when compared to
the allowable number of occurrences for the table,
dictates the permissible range of search cycles at run
time. When an exit occurs (success or failure), this
index remains at the current setting.

5-18 TABLE HANDLING

TN

b. The RTS will not initialize the index when the search
begins. It is the programmers responsibility to insure
that the initial index setting is the appropriate one.
The RTS will begin processing the table with the setting
it finds when the search is initiated.

When method 1 is used, the first index name (index-name~l) associated
with the table is used as the controlling index. Only this index is
set to consecutive values by the RTS serial search processor. See
Figure 5-20, Example 2, for an example of using method 1.

When method 2 is used, index-name-n is any index that 1is associated
with the table being searched. It becomes the controlling index for
the table. 1It alone is set to consecutive values by the RTS search
processor. See Figure 5-20, Example 3, for an example of using method
2.

When method 3 is used, identifier-2 is augmented by one each time the
first index (controlling index) for the table is augmented by one.
Identifier-2 is not a substitute index. It merely allows the
programmer to maintain an "~ additional pointer to elements within a
table. See Figure 5-20, Example 4, for an example of method 3.

When method 4 is used, index-name-2 is an index that 1is associated
with a table other than the one being searched. Each time the
controlling index (lst index for the table) of the searched table is
augmented, index-name-2 is also augmented. See Figure 5-20, Example
5.

5.4.14 The SEARCH Verb - Format 2

Format 2 is used to direct the RTS to search the indicated table
selectively. The selective (binary) search is predicated upon the
ASCENDING/DESCENDING KEY attributes of the table being searched.
Therefore, an ASCENDING and/or DESCENDING KEY(s) must be specified in
the OCCURS clause that defines the table, to inform the RTS that the
keys are stored within the table in ascending or descending order.

The INDEXED BY phrase must also be specified. When the binary search
is executed, the RTS uses the first or only index associated with the
table as the controlling index for the search. The selective (binary)
search is implemented in the RTS as follows:

1. The RTS examines the range of permissible values for the
index of the table being searched; selects the median value;
and assigns this median value to the index.

2. The RTS then proceeds to process the sequence of simple tests
for equality, beginning with the first, with the index set to
the median value.

3. If all of the tests for equality are true (success), the
search is terminated; the associated imperative statement is
executed; the search exits; and the index retains its
current value.

TABLE HANDLING 5-19

4. If any of the tests for equality is false, the following
results occur.

a. The RTS determines if all of the possible occurrences for
the table have been tested. If the table has been
exhausted, the imperative statement which accompanies the

AT END statement (if specified) is executed. 1In either

case, control is passed to the next procedural statement.

b. The RTS will now determine which half of the table is to
be eliminated from further consideration. This
determination is predicated on whether the key being
tested 1is in ascending or descending order, and whether
the test failed because of a greater than or 1less than
comparison. For example, if the key values being tested
are stored in ascending order, and the median table
element being tested 1is greater than the value being
tested for equality, the RTS will assume that all key
elements following the one tested are also greater than
the value being tested for equality. Therefore, the
lower half of the table, those items which follow the
current index setting, are no longer in contention.

. c. Once the direction of search is determined, half of the
table is eliminated from further consideration. A new
range of permissible index values is computed from the
remaining half of the table.

d. Processing begins all over again from step 1.

See Figure 5-20, Example 6, for an example of searching a table using
Format 2 of the SEARCH verb.

5-20 TABLE HANDLING

el

N

- AN

TN

FED=TAX=TABLES,

22

82

ALLOWANCE=DATA,
3 FILLER PIC X(7@) VALUE
"gaalu4e
"p2m2880
"@304320
"BUR5762
"@8a7200
"PQe0BAUD
"aT10084a
"g811520
"g912960
"jajudpnn,
ALLOWANCE=TABLE REDEFINES ALLOWANCE=DATA,
@3 FED=ALLOWANCES OCCURS 1@ TIMES
ASCENDING KEY I8 ALLOWANCE=NUMBER
INDEXED BY IND=1,
B4 ALLOWANCE=NUMBER PIC XX,

@4 ALLOWANCE PIC 999Ve9,
@2 SINGLES=DEDUCTION=DATA,
a3 FILLER PIC X(112) VALUE
"p250006700000016
"26700115008067220
"1150018320163223
"1830024020319621
"2400027900439326
"27900834600540730
"I46P0U999997U1T36",
@2 SINGLES=DEDUCTION=TABLE REDEFINES SINGLES=DEDUCTION=DATA,.
A3 SINGLES=TABLE OCCURS 7 TIMES
ASCENDING KEY I8 S=MIN®RANGE S=MAXwRANGE
INDEXED BY IND=2, TEMP=INDEX,
04 SeMINeRANGE PIC 999Ves,
P4 SwMAX=RANGE PIC 999Ve9,
A4 S=TAX PIC 99V99,
@4 SB=PERCENT PIC V99,
@2 MARRIED=DEDUCTION=DATA,
23 FILLER PIC X(119) VALUE
"p48000960000002017
"096221730020281622
"17300264000235617
"26402346002390325
"346P0433000595328
"43300500007R38932
"5Ap07999991753336",
#2 MARRIED-DEDUCTIOM=TABLE REDEFINES MARRIED=DEDUCTION=DATA,
@3 MARRIED=TABLE OCCURS 7 TIMES
ASCENDING KEY I8 M=MINwRANGE MmMAX=RANGE
INDEXED RY IND=@, IND=3,
@4 M=MIN®RANGE PIC 999Vv9S,
P4 MeMAX«RANGE PIC 999Ve9,
P4 MeTAX PIC 999ve9,
A4 MePERCENT PIC V99,
TEMPeINDEX LUSAGE INDEX,

Figure 5-20
Example of Using SEARCH
To Search a Table

TABLE HANDLING

{
§

Examgle‘1

SINGLE,
IF TAXABLE=INCOME < p2499
GO TO END=FED=COMP,
SET IND=2 TO |,
SEARCH SINGLES=TABLE VARYING IND=2 AT END
GO TO TABLE=2=ERROR
WHEN TAXABLE=INCOME 3 S=MIN=RANGE(IND=2)
MOVE SeTAX(IND=2) TO FED=TAX=DEDUCTION OF
QUTPUT=MASTER
G0 TO STORE=FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX=RANGE(IND=2)
SUBTRACT S=MINwRANGE(IND=2) FROM TAXABLE«INCOME
MULTIPLY TAXABLE=INCOME BY S=PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FEDwTAX=DEDUCTION OF
DUTPUT=MASTER,
Example 2

SINGLE,
IF TAXABLE=INCOME ¢ @2499
GO TO ENDsFED=COMP,
SET IND=2 TO {,
SEARCH SINGLES=TABLE VARYING IND=2 AT END
GO TO TABLE=2«ERROR
WHEN TAXARLEwINCOME =-S=MIN=RANGE(IND=2)
MOVE S=TAX(IND=2) TO FED=TAX=DEDUCTIQN OQOF
OUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX=RANGE(IND=2)
SUBTRACT S=MIN®wRANGE(IND=2) FROM TAXABLE«INCOME
MULTIPLY TAXABLE=«INCOME BY S=PERCENTC(INDw2) ROUNDED
ADD TAXABRLE=INCOME TO FEDeTAX«DEDUCTION OF
OUTPUT=MASTER, '
Example 3

MARRIED,
IF TAXABLE=INCOME « Q4799
MOVE ZEROS TO FED=TAX=DEDUCTION OF OUTPUT=MASTER,
GO TO END=FED=COMP,
SET IND=3 TO i,
SEARCH MARRIED=TABLE VARYING IND=3
AT END GO TO TABLE=3=ERROR
WHEN TAXABLEwINCOME = MaMIN«RANGE(IND=3)
MOVE M=TAX(IND=3) TO FED=TAX=DEDUCTION OF OUTPUTeMASTER,
GO TO STORE=FED=TAX,
WHEN TAXABLE=INCOME ¢ M=MAX=RANGE(IND=3)
MOVE M=TAX(IND=3) TO FED=TAX=DEDUCTION OF OQUTPUT=MASTER,
SUBTRACT M=MIN=RANGE(IND=3) FROM TAXABLE=INCOME ROUNDED,
MULTIPLY TAXABLE=INCOME BY M=PERCENT(IND=3) ROUNDED,
ADD TAXABLE=INCOME TO FED=TAX=DEDUCTION
NF QUTPUT=MASTER ROUNDED,
GO TO STORE=-FED=TAX,

Figure 5-20 (Cont.)
Example of Using SEARCH,
To Search a Table

5-22 TABLE HANDLING

N

,//—\.

Example 4

SINGLE,
IF TAXABLE=INCOME « @2499
GO TO END=FED=COMP,
SET IND=2 TO 1§,
SEARCH SINGLES=TABLE VARYING TEMP=INDEX AT END
GO 70 TABLE=2«ERROR
WHEN TAXABLE=INCOME = S§=MINeRANGE(IND=2)
MOVE S=TAX(IND=2) TO FED=TAX=DEDUCTION OF
DUTPUT=MASTER
GO TO STNRE-FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX=RANGE(IND=2)
SUBTRACT S=MINeRANGE(IND»2) FROM TAXABLE«INCOME
MULTIPLY TAXABLEwINCOME BY S=PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FED«TAX=DEDUCTION OF
OUTPUT=MASTER,

Example 5

SINGLE,
IF TAXARLE=INCOME < 22499
GO TO ENN=FED=COMP,
SET IND=2 TO i, ,
SEARCH SINGLES=TABLE VARYING IND=@ AT END
GO TO TABLE=2=ERROR
WHEN TAXABLE=INCOME = S=MIN«RANGE (IND=2)
MOVE S=TAX(IND=2) TO FED=TAX=DEDUCTION OF
OUTPUT=MASTER
GO TO STORE=FEDeTAX
WHEN TAXABLE=INCOME € SeMAX=RANGE(IND=2)
SURTRACT S=MIN=RANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY S=PERCENT(INDm2) ROUNDED
ADD TAXABLE=INCOME TO FED=TAX=DEDUCTION OF
OUTPUT=MASTER,

Example 6

FED=DEDUCT=COMPUTATION,
SET IND=y TO 1§, »
SEARCH ALL FED=ALLOWANCES AT END GO TO TABLE=1=ERROR

WHEN ALLOWANCE«NUMBER(IND=1) = NR=DEPENDENTS OF

QUTPUT=MASTER,
SUBTRACT ALLOWANCE(IND=1) FROM GROSS=WAGE OF QUTPUT=MASTER

GIVING TAXARLE=INCOME ROQUNDED,
IF MARRITAL=STATUS OF OUTPUT=MASTER =z "M"
G0 TO MARRIED,

Figure 5-20 (Cont.)
Example of Using SEARCH
To Search a Table

TABLE HANDLING 5-23

—

N

CHAPTER 6

INPUT-OUTPUT PROCESSING

This chapter relates COBOL-74 I/0 concepts to the features and
requirements of VAX/VMS and Record Management Services (RMS), which is
the file and record access subsystem of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>