- VAX/VMS
Internals and
Data Structure

LAWRENCE J. KENAH & SIMON E BATE

VAX/VMS Internals and Data Structures

VAX/VMS Internals
and Data Structures

LAWRENCE J. KENAH
SIMON F. BATE

clilgliltlall

Digital Press

Copyright 1984 by Digital Equipment Corporation.

All rights reserved. Reproduction of this book, in whole or in part, is prohibited. For
information, write Digital Press, Educational Services, Digital Equipment Corporation,
Bedford, Massachusetts.

The painting reproduced on the front cover is “From Red to Violet” (1970, oil on can-
vas) by Hannes Beckmann, courtesy of the DeCordova Museum Collection: Gift of Mr.
Michael F. Lynch.

DEC, DECnet, UNIBUS, VAX, and VMS are trademarks of Digital Equipment Corpora-
tion.

Designed by David Ford.
Automatically typeset utilizing a VAX-11/780 by York Graphic Services, Incorporated.
Printed in U.S.A. by Halliday Lithograph.

Order number EY-00014-DP.

Library of Congress Cataloging in Publication Data

Kenah, Lawrence J., 1946—
VAX/VMS internals and data structures.

Includes index.

1. VAX/VMS (Computer operating system) 2. VAX-11 (Computer)—
Programming. 3. Data structures (Computer science] I Bate,
Simon. II. Title. II. Title: V.A.X./V.M.S. internals and data structures.
QA76.6.K454 1984 001.64"2 83-26187
ISBN 0-932376-52-5

Preface

This book explains how the VAX/VMS executive works. It describes the data
structures maintained and manipulated by the VMS operating system, dis-
cusses the mechanisms that transfer control between user processes and the
VMS operating system (and among the components of the operating system
itself), and describes some of the features of the VAX hardware as they are
used by the VMS operating system. It also describes the VMS executive, in-
cluding all the major components of the executive, as well as system initiali-
zation and the operation of all system services. It does not include a general
discussion of the I/O subsystem, because that subject is already described in
the VAX/VMS Guide to Writing a Device Driver (Digital Equipment Corpora-
tion, 1982). However, the details of some VAX/VMS device drivers, as well as
the operations of I/O-related system services are included in this book.

This book is intended for system programmers and other users of the VAX/
VMS operating system who wish to understand the internal workings of the
executive. The detailed description of data structures should help system
managers make better informed decisions when they configure systems for
space-or time-critical applications. It will also help application designers to
appreciate the effects {in speed or in memory consumption) of different de-
sign and implementation decisions. This book assumes that the reader is
familiar with the VAX architecture and the VMS operating system, particu-
larly with its use of system services and its techniques of memory manage-
ment.

In explaining the operation of a subsystem of the executive, this book em-
phasizes the data structures manipulated by that component, rather than de-
tailed flow diagrams of major routines.

This book differs from the reference manuals that make up the VAX/VMS
documentation set in that it describes internal operations and data struc-
tures. While it is unlikely that any component described in this book will be
drastically changed with any major release of the VAX/VMS operating sys-
tem, there is no guarantee that a particular data structure or subroutine de-
scribed here will remain the same from release to release. With each new
version of the operating system, privileged application programs that rely on
details contained in this book must be tested before they are used for produc-
tion work with a standard load of users.

This book is divided into nine parts, each of which describes a different
aspect of the operating system.

¢ Part 1 presents an overview of the VAX/VMS operating system and reviews
those concepts that are crucial to understanding the workings of that sys-
tem.

Preface

Vi

o Part 2 describes the mechanisms used to pass control between user pro-
grams and the operating system and within the VMS system itself.

o Part 3 describes scheduling and timer support, concluding with a discus-
sion of the internals of the VAX/VMS lock manager.

 Part 4 discusses memory management.

e Part 5 describes the I/O subsystem.

“e Part 6 describes the creation and deletion of a process and the activation

and termination of an image in the context of a process.

o Part 7 deals with system initialization and also includes a discussion on
the VAX-11/782.

 Part 8 discusses miscellaneous topics that are not conveniently classified
in any conventional catalog of operating systems:

—The implementation of logical names

‘—The functions of miscellaneous system services
—The use of listing and map files

—The conventions used in naming symbols

* Part 9 provides information on VMS data structures.

Most of the operations of the VMS executive can be easily understood once
the contents of the various data structures are known. Although selected
structures are described throughout the book, Appendix B describes {or pro-
vides pointers to) all the structures used by the operating system. The struc-
tures related to device drivers and the file system are not described. The data
structures related to device drivers are described in the VAX/VMS Guide to
Writing a Device Driver. Data structures specific to the file system have yet
to be documented.

Several documents in the VAX/VMS document set supply important back-
ground information for the topics discussed in this book. The following pro-
vide an especially valuable foundation: VAX/VMS System Services Reference
Manual, the VAX-11 software installation guides, and the chapter in the
VAX-11 Run-Time Library Reference Manual that describes condition han-
dling.

The concepts underlying the operating system are discussed in the VAX/
VMS Summary Description and Glossary, and the VAX Software Handbook.
The following documents are also helpful references: the VAX/VMS Guide to
Writing a Device Driver, the VAX-11 Architecture Reference Manual, and
the VAX Hardware Handbook.

An excellent description of the VAX architecture, as well as a discussion of
some of the design decisions made for its first implementation, the VAX-11/
780, can be found in Computer Programming and Architecture: The VAX-11
by Henry M. Levy and Richard H. Eckhouse, Jr. {Digital Press, 1980). This

Preface

book also contains a bibliography of some of the literature dealing with oper-
ating system design.

The reader should be aware of several conventions used throughout this
book. In all diagrams of memory, the lowest virtual address appears at the top
of the page and addresses increase toward the bottom of the page. This con-
vention means that the direction of stack growth is toward the top of the
page. In diagrams that display more detail, such as bytes within longwords,
addresses also increase from right to left. That is, the lowest addressed byte
(or bit) in a longword is on the righthand side of a figure and the most signifi-
cant byte (or bit) is on the lefthand side.

The words “system”’ or ““VMS system’” are used to describe the entire soft-
ware package that is a part of a VAX-11 system, including privileged proc-
esses, utilities, and other support software as well as the executive itself.

The word “executive” refers to those parts of the VMS operating system
that reside in system virtual address space. The executive includes the con-
tents of the file SYS.EXE, device drivers, and other code and data structures
loaded at initialization time, including RMS and the system message file.

When either “process control block’” or “PCB” is used without a modifier,
it refers to the software structure used by the scheduler. The data structure
that contains copies of the general registers (that the hardware locates
through the PR$_PCBB register) is always called the ‘“hardware PCB.”

When referring to access modes, the term “inner access modes’”’ means
those access modes with more privilege. The term ““outer access modes”
means those access modes with less privilege. Thus, the innermost access
mode is kernel and the outermost access mode is user.

The term “SYSBOOT parameter” is used to describe any of the adjustable
parameters that are used by the secondary bootstrap program SYSBOOT to
configure the system. The adjustable parameters include both the dynamic
parameters that can be changed on-the running system and the static parame-
ters that require a reboot in order for their values to change. These parame-
ters are referred to by their parameter names rather than by the global loca-
tions where their values are stored. Appendix A relates the SYSBOOT
parameter names to their corresponding global locations.

The terms “byte index,” “word index,” “longword index,” and so on, refer
to a method of access that uses the VAX-11 context indexing addressing capa-
bility. That is, the index value will be multiplied by one, two, four, or eight
(depending on whether a byte, word, longword, or quadword is being refer-
enced) as part of operand evaluation in order to calculate the effective address
of the operand.

In general, the component called INIT refers to a module of that name in
the executive and not the volume initialization utility. When that utility
program is being referenced, it will be clearly specified.

vii

Preface

viii

Three conventions are observed for lists.

* In lists such as this one, where there is no order or hierarchy, list elements
are indicated by leading bullets (¢). Sublists without hierarchy are indi-
cated by dashes (—).

 Lists that indicate an ordered set of operations are numbered. Sublists that
indicate an ordered set of operations are lettered.

¢ Numbered lists with the numbers enclosed in circles indicate a corre-
spondence between individual list elements and numbered items in a
figure.

ACKNOWLEDGMENTS

Our first thanks must go to Joe Carchidi, for suggesting that this book be
written, and to Dick Hustvedst, for his help and enlightening conversations.

We would like to thank John Lucas for putting together the initial versions
of Chapters 7, 10, 11, and 30 and Vik Muiznieks for writing the initial ver-
sions of Chapters 5, 18, and 19.

Appreciation goes to all those who reviewed the drafts for both editions of
the book (VAX/VMS Version 2.2 and 3.3). We would particularily like to
thank Kathy Morse for reviewing the first edition in its entirety and Wayne
Cardoza for reviewing the entire second edition. Our special thanks go to
Ruth Goldenberg for reviewing both editions in their entirety, and for her
many corrections, comments, and suggestions.

We owe a lot of thanks to our editing staff, especially to Jonathan
Ostrowsky for his labors in preparing the first edition, and Betty Steinfeld for
her help and suggestions. Many thanks go to Jonathan Parsons for reviewing
and editing the second edition, and for all his help, patience, and suggestions.

We would like to thank the Graphic Services department at Spitbrook,
particularily Pat Walker for her help in paging and production of the first
edition, and Paul King for his help in transforming innumerable slides and
rough sketches into figures. Thanks go to Kathy Greenleaf and Jackie
Markow for converting the files to our generic markup language.

Thanks go to Larry Bohn, Sue Gault, Bill Heffner, Kathleen Jensen, and
Judy Jurgens for their support and interest in this project.

Finally, we would like to thank all those who originally designed and im-
plemented the VAX/VMS operating system, and all those who have contrib-
uted to later releases. '

' Lawrence J. Kenah
Simon F. Bate
August 1983

Contents

PART I/Introduction

1 System Overview 3

1.1 Process, Job, and Image 3

1.1.1 Process 3

1.1.2 Image 5

1.1.3 Job 6

1.2 Functionality Provided By
VAX/VMS 6

1.2.1 Operating System Kernel 6

1.2.3 User Interface 9

124 Interface among Kernel
Subsystems 11

1.3 Hardware Implementation
of the Operating System
Kernel 13

1.3.1 VAX Architecture Features
Exploited by VMS 13

1.3.2 VAX-11 Instruction Set 14

1.3.3 Implementation of VMS Kernel
Routines 15

1.34 Memory Management and
Access Modes 19

1.3.5 Exceptions, Interrupts, and
REI 20 '

1.3.6 Process Structure 21

1.4 Other System Concepts 22

14.1 Resource Control 22

1.4.2 Other System Primitives 23

1.5 Layout of Virtual Address
Space 24

151 System Virtual Address
Space 24

1.5.2 The Control Region (P1
Space] 26

1.5.3 The Program Region (PO
Space] 26

2 Synchronization
Techniques 30

2.1 Elevated IPL 30

2.1.1 Use of IPL§_SYNCH 31

2.1.3
2.14
22
2.2.1
2.2.2
2.3

2.3.1
232
233
2.3.4

2.3.5
2.4

3.14
3.1.5
3.1.6
3.2

3.2.1
322

3.3
3.3.1

Other IPL Levels Used for
Synchronization - 32

IPL$_QUEUEAST 33

IPL2 34 '

Serialized Access 35 . -

Fork Processing 35 -

I/0 Postprocessing 36

Mutual Exclusion Semaphores
(Mutexes) - 36

Locking a Mutex for Read
Access 37

Locking a Mutex for Write
Access 38

Mutex Wait State 39

Unlocking a Mutex 39

Resource Wait State 40

VAX/VMS Lock Management
System Services 40

Dynamic Memory
Allocation 42

Allocation Strategy and
Implementation 42

Allocation of Dynamic
Memory 43

Example of Allocation of
Dynamic Memory 44 -

Deallocation of Dynamic
Memory 45

Example of Deallocation of
Dynamic Memory 45

Synchronization 47

Granularity of Allocation 49

Preallocated Request
Packets 50

Allocation from One of the
Lookaside Lists 50

Deallocation to the Lookaside
List 51

Use of Dynamic Memory 53

Process Allocation Region 53

ix

Contents

3.3.2 Paged Dynamic Memory 53
3.3.3 Nonpaged Dynamic
Memory 56

PART II/Control Mechanisms

4 Condition Handling 61

4.1 Overview of the Condition
Handling Facility 61

4.1.1 Goals of the VAX-11 Condition
Handling Facility 61

4.1.2 Features of the VAX-11
Condition Handling
Facility 62

4.2 Generation of Exceptions 63

421 Exceptions That Originate in
the Hardware 63

4.2.2 Exceptions Detected by
Software 74

4.3 Uniform Exception
Dispatching 75

43.1 Establishing a Condition
Handler 77

43.2 The Search for a Condition
Handler 78

43.3 Multiply Active Signals 81

44 Condition Handler Action 83

44.1 Continue or Resignal- 84

44,2 Unwinding the Call Stack 84

443 Example of Unwinding the Call
Stack 85

444 Potential Infinite Loop 88

445 Unwinding Multiply Active
Signals 88

44.6 Correct Use of Default Depth
in SYSSUNWIND 89

44.7 Unwinding AST’s 92

4.5 Default (VMS-Supplied)
Condition Handlers 95

451 Traceback Handler Established
by Image Startup 95

452 Catch-All Condition
Handler 95

453 Handlers Used by Other Access

Modes 96

5.1.1
5.1.2
52

5.2.1

5.2.2

52.3

524

5.2.5

5.2.6

5.3

6.1
6.1.1

6.2

6.2.1

6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

7.1.1
7.1.2

Hardware Interrupts 98

Hardware Interrupt
Dispatching 98

Interrupt Dispatching 99

System Control Block 100

VAX/VMS Interrupt Service
Routines 104

Restrictions Imposed on
Interrupt Service
Routines 104

Servicing UNIBUS
Interrupts 105

MASSBUS Interrupt Service
Routines 109

DR32 Interrupt Service
Routine 112

MA780 Interrupt
Dispatching 112

MA780 Interrupts on the
VAX-11/782 114

Connect-to-Interrupt
Mechanism 115

Software Interrupts 117

The Software Interrupt 117

Hardware Mechanism of
Software Interrupts 117

Software Interrupt Service
Routines 119

Software Interrupt Levels in
VAX/VMS 119

Mount Verification
Cancellation 120

Fork Processing 121

Software Timer 123

I/O Postprocessing 123

Rescheduling Interrupt 124

AST Delivery Interrupt 125

AST Delivery 126

Hardware Assistance to AST
Delivery 126

REIInstruction 126

ASTLVL Processor Register
(PR§_ASTLVL} 127

7.2

7.2.1
7.2.2

7.2.3
7.2.4
7.2.5
7.3

7.3.1
7.3.2
7.3.3
7.4

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.5

7.5.1
7.5.2

7.53

7.5.4
7.5.5

8.1
8.1.1

8.1.2
8.1.3
8.14

Queuing an AST toa
Process 127
AST Control Block 127
Access Mode and AST
Queuing 130
Special Kernel Mode
ASTs 130
Piggyback Special Kernel Mode
ASTs 130
Computation of a New Value
for ASTLVL 132
Deliveringan ASTtoa
Process 133
AST Delivery Interrupt 133
Argument List 135
AST Exit Path 136
Special Kernel Mode
ASTs 137
I/O Postprocessing in Process
Context 137
Process Suspension 138
Process Deletion 138
$GETJPI System Service 139
Power Recovery ASTs 140
Other System Use of
ASTs 140 ,
Attention and Out-of-Band
ASTs 140
Set Attention Mechanism 140
Delivery of Attention
ASTs 141
Flushing an Attention AST
List 142
Examples in VAX/VMS 142
Out-of-Band ASTs 143

Error Handling 147

Error Logging 147

Overview of the Error Logging
Subsystem 147

Device Driver Errors 147

Other Error Log Messages 148

Operation of the Error Logger
Routines 148

Cursory Overview of the
ERRFMT Process 149

8.1.6
8.2

8.2.1
8.2.2

8.2.3
8.3

8.3.1

8.3.2

8.3.3

8.3.4

9.1
9.2

9.2.1

9.2.2

9.3

9.3.1

9.3.2

9.3.3

9.3.4
9.3.5

9.3.6

9.4

94.1

9.4.2

Contents

Error Log Mailbox 150
System Crashes
(BUGCHECKS) 150
Bugcheck Mechanism 150
Operation of Bugcheck
Routine 151
System Dump File 154
Machine Check
Mechanism 156
VAX-11/730 Machine
Check 157
VAX-11/750 Machine
Check 157
VAX-11/780 Machine
Check 159
Machine Check Recovery
Blocks 160

System Service
Dispatching 162

System Service Vectors 162

Change Mode
Instructions 165

The CHMK and CHME
Instructions 165

The CHMS and CHMU
Instructions 165

Change Mode Dispatching in
VMS 166 .

Operation of the Change Mode
Dispatcher 167

Change-Mode-to-Kernel
Dispatcher 171

Change-Mode-to-Executive
Dispatcher 171

RMS Dispatching 171

Return Path for System
Services 172

Return Path for RMS
Services 173

User-Written System Service
Dispatching 174

Per-Process User-Written
Dispatcher 174

Privileged Shareable
Images 175

xi

Contents

9.4.3
9.5

9.5.1
9.5.2

9.5.3

System-Wide User-Written
Dispatcher 178

Related System Services 178

Set System Service Failure
Exceptions System
Service 179

Change Mode System
Services 179

System Service Filtering 179

PART III/Scheduling and Timer

Support

10 Scheduling 183

10.1 Process States 183

10.1.1 Process Control Block 183

10.1.2 Software Priority 184

10.1.3 State Queues 191

10.2 System Events 197

10.2.1 Process State Changes 198

10.2.2 Wait States and AST
Delivery 198

10.2.3 Event Reporting 200

10.2.4 System Events and Associated
Priority Boosts 201

10.3 Rescheduling Interrupt 202

103.1 Hardware Context 203

10.3.2 Removal of Current Process
from Execution 204

10.3.3 Selection of Next Process for
Execution 205

10.3.4 Summary Longword and
Computable State
Queues 206

10.3.5 Hardware Assistance in
Context Switching 207

11 Timer Support 212

11.1 Timekeepingin VAX/VMS 212

11.1.1 Hardware Clocks 212

11.1.2 Software Time 215

11.1.3 Set Time System Service 215

11.2 Hardware Clock Interrupt
Service Routine 217

11.2.1 System Time Updating 217

11.2.2
11.3

11.3.1
11.3.2

11.3.3
11.3.4
11.3.5

11.4
11.4.1
11.4.2

12

12.1

12.1.1
12.1.2
12.1.3
12.1.4

12.2
12.2.1
12.2.2
12.2.3
12.3

12.3.1
12.3.2

12.3.3
12.3.4

12.3.5
12.3.6

13

13.1

13.1.1
13.1.2

Timer Queue Testing 217
Software Timer Interrupt
Service Routine 218
Quantum Expiration 218
Timer Queue and Timer Queue
Elements 218
Timer Request Servicing 220
Scheduled Wakeup 220
Periodic System
Procedures 221
Timer System Services 222
$SETIMR Requests 222
Scheduled Wakeup
Operations 223

Process Control and
Communication 225

Event Flag Services 225

Local Event Flags 225

Common Event Flags 226

Event Flag Wait States 228

Setting and Clearing Event
Flags 229

Affecting the Computability of
Another Process 231

Common Event Flags 231

Process Control Services 231

Miscellaneous Process
Attribute Changes 234

Interprocess
Communication 235

Event Flags 238

VAX/VMS Lock Management
system services 238

Mailboxes 238

Logical Names 239

Global Sections 239

Interprocessor Communication
with the MA780 239

VAX/VMS Lock
Manager 244

Lock Manager Data
Structures 244

Lock Blocks 245

Resource Blocks 246

13.1.3

13.1.4

13.2

13.2.1

13.2.2
13.2.3

13.3
13.3.1

13.3.2
13.3.3

Accessing the Lock and
Resource Blocks 247
Relationships in the Lock

Database 250
Queuing and Dequeuing
Locks 250
The $ENQ System
Service 250
Lock Conversions 254
The $DEQ System
Service 255
Handling Deadlocks 255
Initiating a Deadlock
Search 256
Deadlock Detection 256
Victim Selection 262

PART IV/Memory Management

14

14.1

14.1.1
14.1.2
14.1.3
14.1.4

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.2.5

1426

14.2.7
14.2.8
14.2.9
14.3

14.3.1
14.3.2

14.3.3

Memory Management Data
Structures 267

Process Data Structures
(Process Header) 267
Process Page Tables 269
Working Set List 273
Process Section Table 276
Process Header Page
Arrays 279
PFN Database 279
PTE Array 279
BAK Array 280
STATE Array 282
TYPE Array 283
Forward and Backward
Links 284
REFCNT Array 284
SHRCNT Array 285
WSLX Array 286
SWPVBN Array 286
Data Structures for Global
Pages 286
Global Section Descriptor 286
The System Header and Global
Section Table Entries 287
Global Page Table Entries 288

14.3.4
14.3.5
14.4

14.4.1
14.4.2
14.4.3
14.5

14.5.1
14.5.2

14.5.3
14.5.4

14.6

14.6.1

14.6.2
14.6.3

14.6.4

14.7

14.7.1

14.7.2

14.7.3

14.7.4

15
15.1
15.1.1
15.1.2
15.2

15.2.1

Contents

Global Page Table and System
Page Table 289
Process PTEs for Global
Pages 292)
Swapping Data Structures 292
Balance Slots 292
Balance Slot Arrays 293
Comment on Equal Size
Balance Slots 294
Data Structures That Describe
the Page and Swap Files 295
Structure of Page and Swap
Files 295
The SHELL process 297
Structure of Swap Files 297
Alternate Page and Swap
Files 299
Swapper and Modified Page
Writer Page Table
Arrays 299
Direct I/O and Scatter/
Gather 299
Swapper I/O 300
Modified Page Writer PTE
Array 300
Nonreentrancy of Swapper and
Modified Page Writer 301
Data Structures Used with
Shared Memory 302
Shared Memory Control
Structures 302
Global Sections in Shared
Memory 304
Mailboxes in Shared
Memory 307
Common Event Flag Clusters
in Shared Memory 307

Paging Dynamics 308
Overview of Pager
Operation 308
Hardware Action 308
Initial Pager Action 309
Page Faults for Process Private
Pages 310

Page Located in an Image
File 311

xiii

Contents

15.2.2 Demand Zero Pages 317
15.2.3 Global Copy-on-Reference and
Page-File Pages 317
15.2.4 Page Located in the Page
File 319
15.3 Page Faults for Global
Pages 319
153.1 Page Fault for Global
Read-Only Page 319
15.3.2 Global Read/Write Pages 322
15.3.3 Global Copy-on-Reference

Pages 323

153.4 Global Page-File Backing Store
Pages 324

15.4 Working Set Replacement 326

15.4.1 Scan of Working Set List 326
154.2 Reusing Working Set List
Entries 326
15.4.3 Using an Available Entry in the
Working Set List 327
154.4 Skipping Working Set List
Entries 328
15.5 Input and Output That Support
Paging 328
15.5.1 Page Reads and
Clustering 329
1552 Modified Page Writing 333
1553 Update Section System
Service 338
15.6 Paging and Scheduling 339
15.6.1 Page Fault Wait State 339
15.6.2 Free Page Wait State 339
15.6.3 Collided Page Wait State 340

16 Memory Management
System Services 341
16.1 Dispatch Method for Memory

Management System
Services 341
16.2 Virtual Address Creation and
Deletion 342
16.2.1 Address Space Creation 342
16.2.2 Address Space Deletion 344
16.2.3 Controlled Allocation of
Virtual Memory 346
16.3 Private and Global
Sections 346

Xiv

16.3.1

16.3.2

16.3.3

16.3.4

16.4
16.4.1

16.4.2

16.4.3
16.4.4

17

17.1

17.1.1
17.1.2
17.1.3

17.2
17.2.1

17.2.2

17.2.3

17.3

17.3.1

17.3.2

174
17.4.1

17.4.2

17.4.3

17.5
17.5.1

17.5.2

Create and Map Section System
Service 346

Map Global Section System
Service 349

Delete Global Section System
Service 349

Update Section System
Service 350

Related System Services 351

Working Set Size
Adjustment 351

Locking and Unlocking
Pages 357

Process Swap Mode 359

Altering Page Protection 359

Swapping

Swapping Overview 360
Swapper Responsibilities 360
Swapper Implementation’ 361
Comparison of Paging and
Swapping 362
Swap Scheduling 362
Selection of Inswap
Candidate 362
Selection of Shrink or Outswap
Candidates 366
System Events That Trigger
Swapper Activity 369
Swapper’s Use of Memory
Management Data
Structures 370
Process Header 370
Swapper I/O Data
Structures 372
Outswap Operation 373
Selection of Qutswap
Candidate 374
Outswap of the Process
Body 374
Outswap of Process
Header 379
Inswap Operation 381
Selection of an Inswap
Candidate 382
Inswap of the Process
Header 382

17.5.3 Rebuilding the Process
Body 383

PART V/Input/Output

18 I/0 System Services 393

18.1 Assigning and Deassigning
Channels 393

18.1.1 Channel Assignment 393

18.1.2 Channel Deassignment 395

18.2 Device Allocation and
Deallocation 396

18.2.1 Device Allocation 396

18.2.2 Device Deallocation 397

18.3 $QIO System Service 398

18.3.1 Device-Independent
Preprocessing 398

18.3.2 FDT Routines 399

18.3.3 I/0O Postprocessing 400 -

18.4 I/O Cancellation 402

18.5 Mailbox Creation and
Deletion 402

18.5.1 Mailbox Creation 403

18.5.2 Mailbox Creation in Shared
Memory 405

18.5.3 Mailbox Deletion 407

18.6 Broadcast System Service 408

18.7 Informational Services 411

18.7.1 Device-Independent '
Information 411

18.7.2 Device-Dependent
Information 412

19 VAX/VMS Device
Drivers 414

19.1 Disk Drivers 414

19.1.1 ECC Error Recovery 414

19.1.2 Offset Recovery 416

19.1.3 Dynamic Bad Block
Handling 416

19.1.4 Multiple-Block Noncontiguous
Virtual /O 417

19.2 Magnetic Tape Drivers 419

19.3 Class and Port Drivers 420

19.3.1 Implementation of SCA on

VAX/VMS 420

19.3.2
19.4

19.4.1
19.4.2

19.4.3
19.5

19.5.1
19.5.2
19.5.3
19.5.4
19.6

19.6.1

19.6.2
19.6.3

19.6.4

19.6.5

Contents

I/O Processing 422
Terminal Driver 422
Full Duplex Operation 426
Channels and Terminal
Controllers 428
Type-Ahead Buffer 428
Pseudo Device Drivers 428
Null Device Driver . 429
Network Device Driver 429
Remote Terminals 430
Mailbox Driver 430
Console Interface 435
VAX-11/730 Console
Interface 435
VAX-11/750 Console
Interface 436
VAX-11/780 Console
Interface 436
Data Transfer Between the
VAX-11 CPU and Console
Devices 437
Console Interrupt
Dispatching 437

PART VI/Process Creation and

Deletion

20 Process Creation 443

20.1 Create Process System
Service 443

20.1.1 Control Flow of Create
Process 444

20.1.2 Establishing Quotas for the
New Process 450

20.1.3 The PCB Vector 452

20.1.4 Fabrication of Process IDs 452

20.2 The Shell Process 454

20.2.1 Moving SHELL Into Process
Context 454

20.2.2 Configuration of the Process
Header 455

20.3 Process Creation in the
Context of the New
Process 458

20.3.1 Operation of PROCSTRT 458

20.3.2 Catch-All Condition

Handler 462

XV

Contents

21

21.1
21.1.1
21.1.2

21.1.3
212
21.2.1
2122
213
213.1
214

21.4.1
214.2

22
22.1

22.1.1
22.2

22.2.1
22.2.2

22.2.3

23

23.1
23.1.1

23.1.2
23.1.3

232

23.2.1
23.2.2

xXvi

Image Activation and
Termination 463

Image Initiation 463

Image Activation 464

The Address Relocation Fixup
System Service 476

Image Startup 480

Image Exit 482

Control Flow of the Exit
System Service 483

Example of Termination
Handler List Processing 484

Image and Process
Rundown 485

Control Flow of Rundown 485

Process Privileges 488
Process Privilege Masks 488
Set Privilege System

Service 490

Process Deletion 492

Process Deletion in Context of
Caller 492

Delete Process System
Service 492

Process Deletion in Context of
Process Being Deleted 493

Special Kernel AST for Process
Deletion 493

Deletion of a Process That
Owns Subprocesses 496

Example of Process Deletion
with Subprocesses 497

Interactive and Batch
Jobs 499

The Job Controller and
Unsolicited Input 499
Unsolicited Terminal
Input 499
The SUBMIT Command 502
Unsolicited Card Reader
Input 502
The LOGINOUT Image 503
Interactive Jobs 503
LOGINOUT Operation for
Batch Jobs 505

23.2.3
23.3

23.3.1
23.3.2
23.3.3
23.3.4
23.3.5

23.4

The Logout Operation 506
Command Language
Interpreters and Image
Execution 508
CLI Initialization 509
Command Processing
Loop 509
Image Initiation by DCL 511
Image Termination 513
Abnormal Image
Termination 514
The LOGOUT Operation 516

PART VII/System Initialization

24
24.1

24.1.1

24.1.2

2413

24.2

24.2.1

24.2.2
24.2.3

2424
24.3

24.3.1

25

25.1

25.1.1

25.1.2

25.1.3

Bootstrap Procedures 521

Processor-Specific
Initialization 521

VAX-11/730 Initial Bootstrap
Operation 521

VAX-11/750 Initial Bootstrap
Operation 524

VAX-11/780 Initial Bootstrap
Operation 528

Primary Bootstrap
Program 530

Motivation for Two Bootstrap
Programs 534

Operation of VMB 535

Bootstrap Driver and I/O
Subroutines 542

File Operations 542

Secondary Bootstrap Program
(SYSBOOT) 542

Detailed Operation of
SYSBOOT 543

Operating System
Initialization 548

Initial Execution of the
Executive (INIT) 548
Turning on Memory
Management 548
Initialization of the
Executive 550
I/0O Adapter Initialization 557

25.1.4
25.2

25.2.1
25.2.2
25.3

25.3.1
25.3.2

25.3.3

26

26.1
26.1.1
26.1.2
26.1.3
26.2

26.2.1

26.2.2

26.2.3

26.2.4

26.3

26.3.1

26.3.2
26.4

27

27.1
27.2
27.2.1

CPU-Dependent
Routines 558
Initialization in Process
Context 559
SYSINIT Process 561
The STARTUP Process 564

The System Generation Utility

(SYSGEN) 565

Contents of Parameter
Block 566

Use of Parameter Files by
SYSBOOT 566

Use of Parameter Files by
SYSGEN 570

Size of System Virtual
Address Space 572

Size of Process Header 572

Process Page Tables 573

Working Set List and Process
Section Table 573

Process Header Page
Arrays 575

System Virtual Address
Space 576

System Virtual Address Space
and SYSBOOT
Parameters 576

System Page Table and the PEN
Database 585

Approximation Used by
SYSBOOT 586

Renormalization of
SPTREQ 587

Physical Memory
Requirements of the
Executive 587

Physical Memory Used by the
Executive 587

System Processes 589

Sizes of Pieces of P1 Space 590

Powerfail Recovery 596

Powerfail Sequence 596

Power Recovery 597

Initial Step in Power
Recovery 598

27.2.2
27.2.3
27.2.4
27.3

27.3.1
27.3.2

27.3.3
27.4

27.4.1

27.4.2

28

28.1

28.1.1
28.1.2

28.2

28.2.1
28.2.2
28.2.3
28.2.4
28.3

28.3.1
28.3.2
28.3.3
28.3.4

28.3.5

Contents

Operation of the Restart
Routine 601

Device Notification 603

Process Notification 604

Multiple Power Failures 605

Nested Power Fail
Interrupts 605

Prevention of Nested
Restarts 606

Device Driver Action 606

Power Failure on the
UNIBUS 607

UNIBUS Power Failure on the
VAX-11/730 and
VAX-11/750 607

UNIBUS Power Failure on the
VAX-11/780 607

The VAX-11/782
Multiprocessing
System 609

How the VMS System Supports
Multiprocessing 610
Hooks in the Executive 611
Hardware Support for
Multiprocessing 612
System Initialization on the
VAX-11/782 613
System Initialization on the
Primary Processor 613
System Initialization on the
Attached Processor 613
Turning Multiprocessing
On 614
Turning Multiprocessing
Off 615
Scheduling and Interrupts on
the VAX-11/782 616
Scheduling Processes on the
VAX-11/782 617
Preventing Scheduling on the
Attached Processor 618
Executing Jobs on the Attached
Processor 618
Detecting Access Mode
Transitions 620
Interrupt
Communication 621

XVii

Contents

PART VIII/Miscellaneous Topics

29 Logical Names 625

29.1 Logical Name Tables 625

29.1.1 Logical Name Data
Structures 625

29.1.2 Logical Name Block 627

29.1.3 Searching for a Logical
Name 628

29.1.4 ‘Hashing the Logical
Names 628

29.1.5 Changes to Speed Logical
Name Translation 629

29.2 Logical Name System
Services 629

29.2.1 Privilege and Protection
Checks 630

29.2.2 Logical Name Table

Mutexes 630
29.2.3 Logical Name Creation 630
29.2.4 Logical Name Deletion 631
29.2.5 Logical Name Translation 631

30 Miscellaneous System
Services
30.1 Communication with System

Processes 632

30.1.1 Accounting Manager (Job
Controller) 632

30.1.2 Symbiont Manager (Job
Controller) 633

30.1.3 Operator -
Communications 634

30.1.4 Error Logger 634

30.2 System Message File
Services 635

30.2.1 Get Message System
Service 635

30.2.2 Put Message System
Service 637

302.3 Procedure EXE$EXCMSG 638

30.3 Process Information
(SGETJPI] 639

30.3.1 Operation of the $§GETJPI
System Service 639

30.3.2 $GETJPI Special Kernel Mode
ASTs 641

xviii

30.3.3

30.4

30.5
30.5.1

30.5.2

31

31.1

31.1.1
31.1.2
31.1.3
31.1.4
31.1.5
31.1.6

31.2
31.2.1

31.2.2

31.2.3
31.2.4

31.2.5
313

31.3.1
31.3.2

31.3.3
31.4

314.1
31.4.2

31.4.3

Wildcard Support in
SGETJPI -641
System Information
(SGETSYI) 642
Formatting Support. 642.
Time Conversion
Services 643
Formatted ASCII Output 643

Use of Listing and Map
Files 645

Hints in Reading the Executive
Listings 645

Structure of a MACRO Listing
File 645

The VAX-11 Instruction Set and
Addressing Modes 649

Use of the REI Instruction 653

Register Conventions 654

Elimination of Seldom-Used
Code 655

Dynamically Locking Code or
Data into Memory 656

Use of Map Files 658

The Executive Map
SYS.MAP 658

RMS.MAP, DCL.MAP, and
MP.MAP 659

Device Driver Map Files - 660

CPU-Dependent
Routines 660

Other Map Files 661

The System Dump Analyzer
(SDA) 661

Global Locations 661

Layout of System Virtual
Address Space 662

Layout of P1 Space 662

Interpreting MDL Files 662

Sample Structure
Definitions 662

Commonly Used MDL
Commands 663

Bit Field Definitions—The V
Directive 670

32 Naming Conventions 671

32.1 Public Symbol Patterns 671

32.2 Object Data Types 676

32.3 Facility Prefix Table 677

APPENDIXES

A Executive Data Areas 683

Al Statically Allocated Executive
Data 683

A2 Dynamically Allocated
Executive Data 725

B Data Structure
Definitions 733

B.1 Executive Data
Structures 736

B.2 Constants 764

B.3 Data Structures Used by the
I/O System 771

B.4 Data Structures Used by Files-
11 773

B.5 Miscellaneous Data Structures

and Constants 774

Contents

X1X

PART I/Introduction

1.1

1.1.1

1.1.1.1

System Overview

For the fashion of Minas Tirith was such that it was built on
seven levels, each delved into a hill, and about each was set a
wall, and in each wall was a gate.

—J.R.R. Tolkien, The Return of the King

This chapter introduces the basic concepts that are used to describe the
VAX/VMS operating system. Special attention is paid to the features of the
VAX architecture that are either exploited by the operating system or exist
solely to support an operating system. In addition, some of the design goals
that guided the implementation of the VMS operating system are discussed.

PROCESS, JOB, AND IMAGE

The fundamental unit in the VAX/VMS operating system, the entity that is
selected for execution by the scheduler, is the process. If a process creates
subprocesses, the collection of the creator process, all the subprocesses cre-
ated by it, and all subprocesses created by its descendants, is called a job. The
programs that a process executes in order to accomphsh meaningful work are
called images.

Process

A process is fully described by hardware and software context and a virtual
address space description. This information is stored in several data struc-
tures located in different places in the process address space. The data struc-
tures that contain the various pieces of process context are pictured in Figure
1-1. :

Hardware Context. The hardware context consists of copies of the general
purpose registers, the four per-process stack pointers, the program counter
(PC), the processor status longword (PSL), and the process-specific processor
registers, including the memory management registers and the AST level

_register. The hardware context resides in a data structure called the hardware
- process control block that is used primarily when a process is removed from
- or selected for execution.

Another part of process context that is related to hardware is the existence
of four per-process stacks, one for each of the four access modes. When any
code executes in the context of a process, the code uses the stack associated
with the code’s current access mode.

1. Hardware context is stored

in hardware PCB.

2. Software context is spread
around in PCB, PHD, JIB,

and P1 space.

3. Virtual address space
description is stored in

PO and P1 page tables.

This JIB is pointed
to by all other
processes (if any)
in the same job.

Figure 1-1

Data Structures That Describe Process Context

Job Information
Block (JIB)

(Control Region)

Software
Process Control
Block (PCB)

P1 Space

System Space J

* Pooled Quotas

* Master Process
ID

* Count of
Processes in Job

® Process Name

® Scheduling
Information

* Process ID

 Pointers to
other structures

A\

® Per-Process
Stacks

* RMS Data

* I[mage Data

Process Header
(PHD)

A

w

J 0

7| 80000000

Hardware Process
Control Block

* Working Set List

* Process Section
Table

* Accounting
Information

¢ General Registers
* PC, PSL
® Per-Process
Stack Pointers
* Memory
Management Registers
® ASTLVL

PO Page Table

(Virtual
Address Space
Description)

P1 Page Table

(Hardware Context)

MIIAIIA() UIIISAS

1.1.1.2

1.1.1.3

1.1.2

1.1 Process, Job, and Image

Software Context. Software context consists of all the data required by vari-
ous parts of the operating system to make scheduling and other decisions
about a process. This data includes the process software priority, its current
scheduling state, process privileges, quotas and limits, and miscellaneous in-
formation such as process name and process identification.

The information about a process that must be in memory at all times is
stored in a data structure called the software process control block (PCB).
This data includes the software priority of the process, its unique process
identification (PID), and the particular scheduling state that the process is in
at a given point in time. Some process quotas and limits are stored in the
software PCB. The quotas and limits shared among all processes in the same
job are stored in a shared data structure called the job information block.

The information about a process that does not have to be permanently
resident (swappable process context) is contained in a data structure called
the process header. This information is only needed when the process is resi-
dent and consists mainly of information used by memory management when
page faults occur. The data in the process header is also used by the swapper
when the process is removed from memory (outswapped) or brought back
into memory (inswapped). The hardware PCB, which contains the hardware
context of a process, is a part of the process header. Some information in the
process header is available to suitably privileged code whenever the process is
resident (is in the balance set), and some information is only accessible from
that process’s context.

Other process-specific information is stored in the P1 portion of the process
virtual address space (the control region). This data includes exception dis-
patching information, RMS data tables, and information about the image that
is currently executing. Information that is stored in P1 space is only accessi-
ble when the process is executing (is the current process) because P1 space is
process specific.

Virtual Address Space Description. The virtual address space of a process is
described by the process PO and P1 page tables, stored in the high address end
of the process header. The process virtual address space is altered when an
image is initially activated, during image execution through selected system
services, and when an image terminates. The process page tables reside in
system virtual address space and are in turn described by entries in the sys-
tem page table. Unlike the other portions of the process header, the process
page tables are themselves pageable, and they are faulted into the process
working set only when they are needed.

Image
The programs that execute in the context of a process are called images.
Images usually reside in files that are produced by the VAX/VMS linker.

System Overview

1.1.3

1.2

1.2.1

1.2.1.1

When the user initiates image execution (as part of process creation or
through a DCL or MCR command in an interactive or batch job), a compo-
nent of the executive called the image activator sets up the process page
tables to point to the appropriate sections of the image file. The VMS operat-
ing system uses the same paging mechanism that implements its virtual
memory support to read image pages into memory as they are needed.

Job

The collection of subprocesses that have a common root process is called a
job. The concept of a job exists solely for the purpose of sharing resources.
Some quotas and limits, so-called pooled quotas, are shared among all proc-
esses in the same job. The current values of these quotas are contained in a
data structure called a job information block (Figure 1-1) that is shared by all
processes in the same job.

FUNCTIONALITY PROVIDED BY THE VAX/VMS SYSTEM

The VAX/VMS operating system provides services at many levels so that user
applications may execute easily and effectively. The layered structure of the
VAX/VMS operating system is pictured in Figure 1-2. In general, components
in a given layer can make use of the facilities in all inner layers.

Operating System Kernel

The main topic of this book is the operating system kernel: the I/O subsys-
tem, memory management, the scheduler, and the VAX/VMS system serv-
ices that support and complement these components. The discussion of these
three components and other miscellaneous parts of the operating system ker-
nel focuses on the data structures that are manipulated by a given compo-
nent. By discussing what each major data structure represents, and how that
structure is altered by different sequences of events in the system, we will
describe the detailed operations of each major piece of the executive.

I/0 Subsystem. The I/O subsystem consists of device drivers and their associ-
ated data structures, device-independent routines within the executive, and
several system services, the most important of which is the $QIO request,
the eventual I/O request that is issued by all outer layers of the system. The
I/O subsystem is described in great detail from the point of view of adding a
device driver to a VMS operating system in the VAX/VMS Guide to Writing a
Device Driver. Chapters 18 and 19 of this book describe features of the I/O
subsystem that are not described in that manual.

Privileged Images

Images Installed with Privilege
Other Privileged Images
Images Linked with the

System Symbol Table

o File System

¢ Informational
Utilities

Run-Time
Library

(Specific)
* FORTRAN

* PASCAL
*PL/N

Layered Products

* Language Compilers
o DATATRIEVE
* Forms Utilities

Figure 1-2

Command Language Interpreter
and System Services

* Text Editors

e Linker

¢ MACRO Assembler
* System Message

e Compiler

Record Management System
and System Services

System Services

$CRETVA $ASSIGN

SADJWSL

Memory
Management

1/0 Subsystem

¢ Device

System-Wide Drivers Run-Time
* Pager Protected « 1/0 Support Library
* Swapper Data Structures Routines (General)
* Page Tables « Math Lib
« |/O Database . st lorary
« Scheduler Data N:::i;g:ulation
® Screen
Process and Time Management Formatting

e Scheduler
* Process Control

$CREPRC

$SETIMR

Assorted Utilities

* SORT

© File Manipulation
* HELP

* DIRECTORY

$GETTIM

$SNUMTIM

Layered Design of the VAX/VMS Operating System

Program Development Tools

waIsAS SWA/XVA 211 £4q pap1aoiq Airjpuonoung g'[

System Overview

1.2.1.2

1.2.1.3

1.2.14

1.2.2

Memory Management. The main components of the memory management
subsystem are the page fault handler, which implements the virtual memory
support of the VAX/VMS operating system, and the swapper, which allows
the system to more fully utilize the amount of physical memory that is avail-
able. The data structures used and manipulated by the pager and swapper
include the PFN database and the page tables of each process. The PFN data-
base describes each page of physical memory that is available for paging and
swapping. Virtual address space descriptions of each currently resident proc-
ess are contained in their respective page tables.

System services are available to allow a user (or the system on behalf of the
user) to create or delete specific portions of virtual address space or map a file
into a specified virtual address range.

Scheduling and Process Control. The third major component of the kernel is
the scheduler, which selects processes for execution and removes processes
from execution that can no longer execute. The scheduler also handles clock
servicing and includes timer-related system services. System services are
available to allow a process (ci programmer) to create or delete other proc-
esses. Other services provide one process the ability to control the execution
of another.

Miscellaneous Services. One area of the operating system kernel that is not
pictured in Figure 1-2 involves the many miscellaneous services that are
available in the operating system kernel. Some of these services, for such
tasks as logical name creation or string formatting, are available to the user in
the form of system services. Others of these miscellaneous services, such as
pool manipulation routines and synchronization techniques, are only used by
the kernel and privileged utilities.

Data Management

The VAX/VMS operating system provides data management facilities at two
levels. The record structure that exists within a file is interpreted by the
VAX-11 Record Management Services (RMS), which exists in a layer just
outside the kernel. RMS exists as a series of procedures located in system
space, so it is in some ways just like the rest of the operating system kernel.
Most of the procedures in RMS execute in executive access mode, providing a
thin wall of protection between RMS and the kernel itself.

The placement of files on mass storage volumes is controlled by one of the
disk or tape ACPs (Ancillary Control Process). ACPs are implemented as
separate processes because many of their operations must be serialized to
avoid synchronous access conflicts. These processes interact with the kernel

1.2.3

1.23.1

1.2.3.2

1.2.3.3

1.2 Functionality Provided by the VAX/VMS System

both through the system service interface and by using some of the utility
routines that are not accessible to the general user.

User Interface

The interface that is presented to the user (as distinct from the application
programmer who is using system services and Run-Time Library procedures)
is one of the command language interpreters (CLI). Some of the services per-
formed by a CLI call RMS or the system services directly. Others result in the
execution of an external image. These images are generally no different from
user-written applications because their only interface to the executive is
through the system services and RMS calls.

Images Installed with Privilege. Some of the informational utilities and disk
and tape volume manipulation utilities require that selected portions of pro-
tected data structures be read or written in a controlled fashion. Images that
require privilege to perform their function can be installed (made known to
the operating system) by the system manager so that they can perform their
function in an ordinarily nonprivileged process environment. Images that fit
this description are MAIL, MONITOR, VMOUNT (the volume mount util-
ity), SET, and SHOW. Table 1-1 lists all those images that are installed with
privilege in a typical VMS system.

Other Privileged Images. Other images that perform privileged functions are
not installed with privilege because their functions are less controlled and
could destroy the system if executed by naive or malicious users. These im-
ages can only be executed by privileged users. Examples of these images in-
clude SYSGEN (for loading device drivers), INSTALL (which makes images
privileged or shareable), or the images invoked by a CLI to manipulate print
or batch queues. Images that require privilege to execute but are not installed
with privilege in a typical VAX/VMS system are also listed in Table 1-1.

Images That Link with SYS$SYSTEM:SYS.STB. Table 1-1 also lists those
components that are linked with the system symbol table (SYS$SYSTEM:
SYS.STB). These images access known locations in the system image
(SYS.EXE) through global symbols and must be relinked each time the sys-
tem itself is relinked. User applications or special components such as device
drivers that include SYS.STB when they are linked must be relinked when-
ever a new version of the symbol table is released, usually at each major
release of the VAX/VMS operating system.

System Overview

10

Table 1-1: System Processes and Privileged Images

Image Name

F11AACP.EXE
F11BACP.EXE
MTAAACP.EXE
REMACP.EXE
NETACP
ERRFMT.EXE
INPSMB.EXE
JOBCTL.EXE
OPCOM.EXE
PRTSMB.EXE

Linked with
SYS.STB

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Description

Files-11 Structure Level 1 ACP
Files-11 Structure Level 2 ACP
Magnetic Tape ACP

Remote Terminal ACP

Network ACP

Error Log Buffer Format Process
Card Reader Input Symbiont

Job Controller/Symbiont Manager
Operator Communication Facility
Print Symbiont

Images Installed with Privilege (in a typical VMS system)

Image Name

DISMOUNT.EXE
INIT.EXE
LOGINOUT.EXE
MAIL.EXE
MONITOR.EXE
PHONE.EXE
REQUEST.EXE
SET.EXE
SETPO.EXE
SHOW.EXE
SUBMIT.EXE

VMOUNT.EXE

Linked with
SYS.STB

Yes
Yes
Yes

Yes

Description

Volume Dismount Utility
Volume Initialization Utility
Login/Logout Image

Mail Utility

System Statistics Utility
Phone Utility

Operator Request Facility
SET Command Processor
SET Command Processor
SHOW Command Processor
Batch and Print Job Submission
Facility

Volume Mount Utility

Images That Require Privilege That Are Typically Not Installed

Image Name

AUTHORIZE.EXE
INSTALL.EXE
NCP.EXE
OPCCRASH.EXE
QUEMAN.EXE
REPLY .EXE
RMSSHARE.EXE
RUNDET.EXE
SDA.EXE
SYSGEN.EXE

Linked with

SYS.STB

Yes
Yes
Yes
Yes
No
No
Yes
No
Yes
Yes

Description

Authorize Utility
Known Image Installation Utility
Network Control Program
System Shutdown Facility

Queue Manipulation Command Processor

Message Broadcasting Facility
File Sharing Utility

RUN Process Command Processor

System Dump Analyzer

System Generation and Configuration Utility

1.24

1.24.1

1.2.4.2

1.2 Functionality Provided by the VAX/VMS System

Table 1-1: System Processes and Privileged Images (continued)

Images Whose Operations Are Protected by System UIC or Volume Ownership

Linked with

Image Name SYS.STB Description

BAD.EXE No Bad Block Locator

BACKUP.EXE No Backup Utility

DSCI1.EXE No Disk Save and Compress Utility
for Structure Level 1

DSC2.EXE No Disk Save and Compress Utility
for Structure Level 2

DISKQUOTA.EXE Yes Disk Quota Utility

VERIFY.EXE No File Structure Verification Utility

Miscellaneous Images Linked with SYS$SYSTEM:SYS.STB

Linked with
Image Name SYS.STB Description
DCL.EXE Yes DCL Command Interpreter
MCR.EXE Yes MCR Command Interpreter
MP.EXE Yes Multiprocessing Loadable Code
RMS.EXE Yes Record Management Services Image

Interface among Kernel Subsystems

The coupling among the three major subsystems pictured in Figure 1-2 is
somewhat misleading because there is actually little interaction between the
three components. In addition, each of the three components has its own
section of executive data structures that it is responsible for. When one of the
other pieces of the system wishes to access such data structures, it does so
through some controlled interface. Figure 1-3 shows the small amount of
interaction that occurs between the three major subsystems in the operating
system kernel.

I/0 Subsystem Requests. The I/O subsystem makes a request to memory
management to lock down specified pages for a direct I/O request. The pager
or swapper is notified directly when the I/O request that just completed was
initiated by either one of them.

I/0 requests can result in the requesting process being placed in a wait
state, until the request completes. This change of state requires that the
scheduler be notified. In addition, I/O completion can also cause a process to
change its scheduling state. Again, the scheduler would be called.

Memory Management Requests. Both the pager and swapper require input
and output operations in order to fulfill their functions. Neither calls $QIO

11

System Overview

1.2.4.3

12

Lock/Unlock Physical
Pages for Direct I/O

Memory
Management 1/0 Subsystem
* Page Fault Handler

Page Fault Read * Regular I/O

. Inswap/Outswap Requests
* Physical Page PFN Modified Page Write
Manager Database
Pager Data Te] * Page I/0
Structures Database
* Swap /O
* Swapper
Wake UP Wait for I/0 Request
Swapper 1/0 Request Complete

Page Fault Wait Scheduli
Page Fault Read Complete cheduling

Queues
Free Page Wait

Physical Page Available

Inswap Complete
Outswap Complete

Process and Time Management
* Wait Code (Block Execution)
* Make Processes Computable

Figure 1-3
Interaction between Components of VMS Kernel

directly because many of the protection checks that $QIO makes are unnec-
essary and would slow down page I/O and swap 1I/O. Instead, the pager and
swapper use special entry points into the I/O subsystem, and these points
allow prebuilt I/O requests to be queued directly to a driver.

If a process incurs a page fault that results in a read from disk, or if a process
requires physical memory and none is available, the process is put into one of
the memory management wait states by the scrheduler. When the page read
completes or physical memory becomes available, the process is made com-
putable again.

Scheduler Requests. The scheduler interacts very little with the rest of the
system. It serves a more passive role when cooperation with memory man-
agement or the I/O subsystem is required. One exception to this passive role
is that the scheduler awakens the swapper when a process that is not cur-
rently memory resident becomes computable.

1.3

1.3.1

1.3 Hardware Implementation of the Operating System Kernel

HARDWARE IMPLEMENTATION OF THE OPERATING
SYSTEM KERNEL

The method of implementing the many services provided by the VAX/VMS
operating system illustrates the close connection between the hardware de-
sign and the operating system. Many of the general features of the VAX archi-
tecture are used to advantage by the VAX/VMS operating system. Other fea-
tures of the architecture exist entirely to support an operating system.

VAX Architecture Features Exploited by VMS

Several features of the VAX architecture that are available to all users are
used for specific purposes by the operating system.

The general purpose calling mechanism is the primary path into the oper-
ating system from all outer layers of the system. Because all system serv-
ices are procedures, they are available to all native mode languages.
The memory management protection scheme is used to protect code
and data used by more privileged access modes from modification by less
privileged modes. Read-only portions of the executive are protected in the
same manner.

There is implicit protection built into special instructions that may only
be executed from kernel mode. Because only the executive (and suitably
privileged process-based code) executes in kernel mode, such instructions
as MTPR, LDPCTX, and HALT are protected from execution by non-
privileged users.

The operating system uses interrupt priority level (IPL) for several pur-
poses. At its most elementary level, IPL is elevated so that certain inter-
rupts are blocked. For example, clock interrupts must be blocked while the
system time (stored in a quadword) is checked because this checking takes
more than one instruction. Clock interrupts are blocked to prevent the
system time from being updated while it is being checked.

IPL is also used as a synchronization tool. For example, any routine that
accesses a system-wide data structure must raise IPL to 7 (called
IPL$_SYNCH). The assignment of various hardware and software inter-
rupts to specific IPL values establishes an order of importance to the hard-
ware and software interrupt services that the VMS operating system per-
forms.

Several other features of the VAX architecture are used by specific compo-
nents of the operating system and are described in later chapters. They
include the following:

—The change mode instructions (CHME and CHMK), which are used to
decrease access mode (to greater privilege) (see Figure 1-4). Note that
most exceptions and all interrupts result in changing mode to kernel (a

13

System Overview

Access mode fields in the PSL are not directly accessible to the programmer or

to the operating system.
A process can reach a.
MORE privileged access
mode through the CHMx
instructions. In addition,
most exceptions (except
CHME, CHMS, and CHMU)
and all interrupts cause
access mode change to
kernel.

Instruction.

The boundaries between the access modes are nearly identical to the layer
boundaries pictured in Figure 1-2.
¢ Nearly all of the system services execute in kernel mode.
* RMS and some system services execute in executive mode.
e Command Language Interpreters normally execute in supervisor mode.
o Utilities, application programs, Run-Time Library procedures, and so on
normally execute in user mode. Privileged utilities sometimes execute in
kernel or executive mode.

Figure 1-4
Methods for Altering Access Mode

The only way to reach a
LESS privileged access
mode is through the REI

brief introduction to exceptions and interrupts is presented in Section

1.3.5).

—The inclusion of many protection checks and pending interrupt checks
in the single instruction that is the common interrupt exit path, REIL

—Software interrupts.

—Hardware context and the single instructions (SVPCTX and LDPCTX)

that save and restore it.
—The use of ASTs to obtain and pass information.

1.3.2 VAX-11 Instruction Set

While the VAX-11 instruction set, data types, and addressing modes were
designed to be somewhat compatible with the PDP-11, several features that

14

1.3.3

1.3.3.1

1.3 Hardware Implementation of the Operating System Kernel

were missing in the PDP-11 were added to the VAX architecture. True con-
text indexing allows array elements to be addressed by element number, with
the hardware accounting for the size (byte, word, longword, or quadword) of
each element. Short literal addressing was added in recognition of the fact
that the majority of literals that appear in a program are small numbers.
Variable length bit fields and character data types were added to serve the
needs of several classes of users, including operating system designers.

The instruction set includes many instructions that are useful to any de-
signer and occur often in the VMS executive. The queue instructions allow
the construction of doubly linked lists as a common dynamic data structure.
Character string instructions are useful when dealing with any data structure
that can be treated as an array of bytes. Bit field instructions allow efficient
operations on flags and masks.

One of the most important features of the VAX architecture is the calling
standard. Any procedure that adheres to this standard can be called from any
native language, an advantage for any large application that wishes to make
use of the features of a wide range of languages. The VMS operating system
adheres to this standard in its interfaces to the outside world through the
system service interface, RMS entry points, and the Run-Time Library proce-
dures. All system services and RMS routines are written as procedures that
can be accessed by issuing a CALLx to absolute location SYS$service in the
process P1 virtual address space. Run-Time Library procedures are included
in a user’s image instead of being located in system space.

Implementation of VMS Kernel Routines

In Section 1.2.1, the VMS kernel was divided into three functional pieces plus
the system service interface to the rest of the world. Alternatively, the oper-
ating system kernel can be partitioned according to the method used to gain
access to each part. Three classes of routines within the kernel are proce-
dure-based code, exception service routines, and interrupt service routines.
Other system-wide functions, the swapping and modified page writing per-
formed by the swapper, are implemented as a separate process that resides in
system space. Figure 1-5 shows the various entry paths into the operating
system kernel.

Process Context and System State. The first section of this chapter discussed
the pieces of the system that are used to describe a process. Process context
includes a complete address space description, quotas, privileges, scheduling
data, and so on. Any portion of the system that executes in the context of a
process can count on all of these process attributes being available.

There is a portion of the kernel, however, that operates outside the context
of a specific process. The largest class of routines that fall into this category is
that of interrupt service routines, invoked in response to external events with

15

System Overview

External Device
Hardware Interrupts
(IPL=20...23)

Translation - not - Valid

Fault (Page Fault)
(Exception, not Interrupt)

Device Driver
Fork Processing

f (PL=8...11)

1/0 Postprocessing

Software Interrupt
- (IPL=4)

Memory
Management

1/0 Subsystem

¢ Page Fault
Handler

* Device Drivers

¢ Post-
processing
routines

Process and Time Management

* Rescheduling Interrupt
Service Routine

¢ Clock and Timer Service

W AST Delivery
Software Interrupt
//' (PL=2)

Rescheduling
Software Interrupt

(IPL=3)
Hardware Clock Software Timer
Interrupt Interrupt
(IPL=24) (IPL=7)
Figure 1-5

Paths into Components of VMS Kernel

no regard for the currently executing process. Portions of the initialization
sequence also fall into this category. In any case, there are no process features
such as a kernel stack or a page fault handler available when these routines
are executing.

Because of the lack of a process; this system state or interrupt state can be
characterized by the following limited context.

* All stack operations take place on the system-wide interrupt stack.

¢ The primary description of system or interrupt state is contained in the
processor status longword (PSL). The PSL will indicate that the interrupt
stack is being used, that the current access mode is kernel mode, and that
the IPL is higher than IPL 2.

» The system control block, the data structure that controls the dispatching

of interrupts and exceptions, can be thought of as the secondary structure
that describes system state.

16

1.3.3.2

1.3 Hardware Implementation of the Operating System Kernel

» Code that executes in this so-called system context can only refer to sys-
tem virtual addresses. In particular, there is no P1 space available, so the
system-wide interrupt stack must be located in system space.

+ No page faults are allowed. The page fault handler generates a fatal bug-
check if a page fault occurs and the IPL is above IPL 2.

* No exceptions are allowed. Exceptions, like page faults, are associated
with a process. The exception dispatcher generates a fatal bugcheck if an
exception occurs above IPL 2 or while the processor is executing on the
interrupt stack.

» ASTs, asynchronous events that allow a process to receive notification
when external events have occurred, are not allowed. {The AST delivery
interrupt is delivered when IPL drops below IPL 2, an indication that the
processor is leaving the interrupt state.)

» No system services are allowed in the system state. (In fact, most system
services can only be called from process context at IPL 0; only the memory
management system services can be called at IPL 2. Process deletion re-
quires that these system services be callable at IPL 2; doing so requires a
great deal of care and is not recommended.)

Process-Based Routines. Procedure-based code (RMS services and the system
services) and exception service routines usually execute in the context of the
current process (on the kernel stack when in kernel mode).

The system services are implemented as procedures and are available to all
native mode languages. In addition, the fact that they are procedures means
that there is a call frame on the stack. Thus, errors detected by a utility
subroutine used by a system service can return an error simply by putting the
error status into RO and issuing a RET instruction. All superfluous informa-
tion is cleaned off the stack by the RET instruction. The system service dis-
patchers, actually the dispatchers for the CHMK and CHME exceptions, are
exception service routines.

System services must be called from process context. They are not availa-
ble from interrupt service routines or other code (such as portions of the
initialization sequence) that executes outside the context of a process. One
reason for requiring process context is that the various services assume that
there is a process whose privileges can be checked and whose quotas can be
charged as part of the normal operation of the service. Some system services
reference locations in P1 space, a portion of address space only available
while executing in process context. System services also make assumptions
about IPL and synchronization that would be violated if they were called
from other than process-based code executing at IPL 0.

The pager (the page fault exception handler) is an exception service routine
that is invoked in response to a translation-not-valid fault. The pager thus
satisfies page faults in the context of the process that incurred the fault. Be-

17

System Overview

1.3.3.3

1.3.3.4

18

cause page faults are associated with a process, the system cannot tolerate
page faults that occur in interrupt service routines or other routines that
execute outside the context of a process. The actual restriction imposed by
the pager is even more stringent. Page faults are not allowed above IPL 2. This
restriction applies to process-based code executing at elevated IPL as well as
to interrupt service code.

Interrupt Service Routines. By their asynchronous nature, interrupts execute
without the support of process context (on the system-wide interrupt stack).

e I/O requests are initiated through the $QIO system service, which can be
issued directly by the user or by some intermediary, such as RMS, on the
user’s behalf. Once an I/O request has been placed into a device queue, it
remains there until the driver is triggered, usually by an interrupt gener-
ated in the external device. :

Two classes of software interrupt service routines exist solely to support
the I/O subsystem. The fork level interrupts allow device drivers to lower
IPL in a controlled fashion. Final processing of I/O requests is also done in
a software interrupt service routine.

* The timer functions in the operating system include support in both the
hardware clock interrupt service routine and a software interrupt service
routine that actually services individual timer requests.

» Another software interrupt performs the rescheduling function, where one
process is removed from execution and another selected and placed into
execution.

Special Processes—Swapper and Null. The swapper and the null process are
different from any other processes that exist in a VAX/VMS system. The
differences lie not in their operations, which are completely normal, but in
their limited context. .

The limited context of either of these processes is due, in part, to the fact
that these two processes exist as part of the system image SYS.EXE. They do
not have to be created with the Create Process system service. Specifically,
their PCBs and process headers are assembled (in module PDAT) and linked
into the system image. Other characteristics of these two processes are listed
here.

» Their process headers are static. There is no working set list and no process
section table. Neither process supports page faults. All code executed by
either process must be locked into memory in some way. In fact, the code
of both of these processes is part of the nonpaged executive.

» Both processes execute entirely in kernel mode, thereby el1m1nat1ng the
need for stacks for the other three access modes.

1.3.3.5

1.3.4

1.3 Hardware Implementation of the Operating System Kernel

* Neither process has a P1 space. The kernel stack for either process is lo-
cated in system space.

« The null process does not have a PO space either. The swapper uses an
array allocated from nonpaged pool as its PO page table for a special portion
of process creation, the part that takes place in the context of the swapper
process.

Despite their limited contexts, both of these processes behave in a normal
fashion in every other way. The swapper and the null process are selected for
execution by the scheduler just like any other process in the system. The
swapper spends its idle time in the hibernate state until some component in
the system recognizes a need for one of the swapper functions, at which time
it is awakened. The null process is always computable, but set to the lowest
priority in the system (priority 0). All CPU time not used by any other proc-
ess in the system will be used by the null process.

Special Subroutines. There are several utility subroutines within the operat-
ing system related to scheduling and resource allocation that are called from
both process-based code such as system services and from software interrupt
service routines. These subroutines are constrained to execute with the lim-
ited context of interrupt or system state.

Memory Management and Access Modes

The address translation mechanism is described in the VAX Hardware Hand-
book. Two side effects of this operation are of special interest to the VMS
operating system. When a page is not valid, a translation-not-valid exception
is generated that transfers control to an exception service routine that can
take whatever steps are required to make the page valid. This exception
transfers control from a hardware mechanism, address translation, to a soft-
ware exception service routine, the page fault handler, and allows the operat-
ing system to gain control on address translation failures in order to imple-
ment its dynamic mapping of pages while a program is executing.

Before the address translation mechanism checks the valid bit, a protection
check is made to determine whether the requested access will be granted.
The check uses both the current access mode in the PSL (PSL<25:24>), a
protection code that is defined for each virtual page, and the type of access
(read, modify, or write) to make its decision. This protection check allows the
operating system to make read-only portions of the executive inaccessible to
anyone (all access modes) for writing, preventing corruption of operating sys-
tem code. In addition, privileged data structures can be protected from even
read access by nonprivileged users, preserving the integrity of the operating
system.

19

System Overview

1.3.5

1.3.5.1

20

Exceptions, Interrupts, and REI

Before mentioning other features of the exception and interrupt mechanisms
used by the VMS operating system, it would be helpful to compare and con-
trast these two mechanisms.

Comparison of Exceptions and Interrupts. The following list summarizes
some of the characteristics of exceptions and interrupts.

Interrupts occur asynchronously to the currently executing instruction
stream. They are actually serviced between individual instructions or at
well-defined points within the execution of a given instruction. Excep-
tions occur synchronously as a direct effect of the execution of the current
instruction.

Both mechanisms pass control to service routines whose addresses are
stored in the system control block. These routines perform exception-
specific or interrupt-specific processing.

Exceptions are generally a part of the currently executing process. Their
servicing is an extension of the instruction stream that is currently execut-
ing on behalf of that process. Interrupts are system-wide events that can-
not rely on support of a process in their service routines.

Because exceptions are usually caused by an executing process, the sys-
tem-wide interrupt stack is usually used to store the PC and PSL of the
process that was interrupted. Exceptions are usually serviced on the per-
process kernel stack. Which stack to use is actually determined by control
bits in the system control block entries for each exception or interrupt.
Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions
often cause exception-specific parameters to be stored along with a PC/PSL
pair.

Interrupts cause the IPL to change. Exceptions usually do not have an IPL
change associated with them. (Machine checks and kernel-stack-not-valid
exceptions elevate IPL to 31.)

A corollary of the previous step is that interrupts can be blocked by elevat-
ing IPL to a value at or above the IPL associated with the interrupt that is
to be blocked. Exceptions, on the other hand, cannot be blocked. However,
some exceptions can be disabled (by clearing associated bits in the PSW).
When an interrupt or exception occurs, a new PSL is formed that summa-
rizes the new IPL, the current access mode (almost always kernel), the
stack being used (interrupt or other), and so on. One difference between
exceptions and interrupts, a difference that reflects the fact that interrupts
are not related to the interrupted instruction stream, is that the previous
access mode field in the new PSL is set to kernel for interrupts, while the
previous mode field for exceptions reflects the access mode in which the
exception occurred.

1.3.5.2

1.3.5.3

1.3.6

1.3 Hardware Implementation of the Operating System Kernel

Other Uses of Exceptions and Interrupts. In addition to the translation-not-
valid fault used by memory management software, the operating system also
uses the change-mode-to-kernel and change-mode-to-executive exceptions as
entry paths to the executive. System services that must execute in a more
privileged access mode use either the CHMK or CHME instruction to gain
access mode rights (see Figure 1-4). The system handles most other excep-
tions by passing them through a common exception dispatcher described in
Chapter 4.

Hardware interrupts temporarily suspend code that is executing so that an
interrupt-specific routine can service the interrupt. Interrupts have an IPL
associated with them. The internal processor priority level (IPL) is raised
when the interrupt is recognized. High level interrupt service routines thus
prevent the recognition of lower level interrupts. Lower level interrupt serv-
ice routines can be interrupted by subsequent higher level interrupts. Kernel
mode routines can also block interrupts at certain levels by specifically rais-
ing the IPL.

The VAX architecture also defines a series of software interrupt levels that
can be used for a variety of purposes. The VMS operating system uses them
for scheduling, I/O completion routines, and for synchronizing access to cer-
tain classes of data structures.

The REI Instruction. The REI instruction is the common exit path for inter-
rupts and exceptions. Many protection and privilege checks are incorporated
into this instruction. Because most fields in the processor status longword
are not accessible to the programmer, the REI instruction provides the only
means for changing access mode to a less privileged mode (see Figure 1-4). It
is also the only way to reach compatibility mode.

Although the IPL field of the PSL is accessible through the PR$ _IPL proces-
sor register, execution of an REI is a common way that IPL is lowered during
normal execution. Because a change in IPL can alter the deliverability of
pending interrupts, many hardware and software interrupts are delivered
after an REI instruction is executed.

Process Structure

The VAX architecture also defines a data structure called a hardware process
control block that contains copies of all a process’s general registers when the
process is not active. When a process is selected for execution, the contents of
this block are copied into the actual registers inside the processor with a
single instruction, LDPCTX. The corresponding instruction that saves the
contents of the general registers when the process is removed from execution
is SVPCTX.

21

System Overview

1.4

1.4.1

1.4.1.1

14.1.2

22

OTHER SYSTEM CONCEPTS

This chapter began by discussing the most important concepts in the VMS
operating system, process and image. There are several other fundamental
ideas that should be mentioned before beginning a detailed description of
VMS internals. Some of these ideas are briefly described here.

Resource Control

The VAX/VMS operating system protects itself and other processes in the
system from careless or malicious users with hardware and software protec-
tion mechanisms, software privileges, and software quotas and limits.

Hardware Protection. The memory management protection mechanism that
is related to access mode is used to prevent unauthorized users from modify-
ing (or even reading) privileged data structures. Access mode protection is
also used to protect system and user code, and other read-only data struc-
tures, from being modified by programming errors.

A more subtle but perhaps more important aspect of protection provided by
the memory management architecture is that the process address space of
one process (PO space and P1 space) is not accessible to code running in the
context of another process. When such accessibility is desired to share com-
mon routines or data, the operating system provides a controlled access
through global sections. System virtual address space is available to all proc-
esses (although page-by-page protection may deny read or write access to
specific system virtual pages for certain access modes).

Process Privileges. Many operations that are performed by system services
could destroy operating system code or data or corrupt existing files if per-
formed carelessly. Other services allow a process to adversely affect features
in other processes in the system. The VMS operating system requires that
processes wishing to execute these potentially damaging operations be suita-
bly privileged. Process privileges are assigned when a process is created, ei-
ther by the creator or through the user’s record in the authorization file.

These privileges are described in the VAX/VMS System Management and
Operations Guide and in the VAX/VMS System Services Reference Manual.
The privileges themselves are specific bits in a quadword that is stored in the
beginning of the process control block. (The locations and manipulations of

the several process privilege masks that the operating system maintains are

discussed in Chapter 21.) When a VMS service that requires privilege is
called, the service checks to see whether the associated bit in the process
privilege mask is set.

1.4.1.3

1.4.1.4

1.4.2

1.4.2.1

1.4 Other System Concepts

Quotas and Limits. The VMS operating system also controls allocation of its
system-wide resources, such as nonpaged dynamic memory and page file
space, through the use of quotas and limits. These process attributes are also
assigned when the process is created. By restricting such items as the number
of concurrent I/0 requests or pending ASTs, the executive exercises control
over the resource drain that a single process can exert on system resources
such as nonpaged dynamic memory. In general, a process cannot perform
certain operations (such as queue an AST) unless it has sufficient quota
(nonzero PCB§W_ASTCNT in this case). The locations and values of the
various quotas and limits used by the operating system are described in
Chapter 20. ~

User Identification Code (UIC). The VMS operating system uses user identifi-
cation code (UIC) for two different protection purposes. If a process wishes to
perform some control operation (Suspend, Wake, Delete, and so on) on an-
other process, it requires WORLD privilege in order to affect any process in
the system. A process with GROUP privilege can affect only other processes
with the same group number. A process with neither WORLD nor GROUP
privilege can affect only other processes that are part of the same job. (A
process with neither GROUP nor WORLD privilege cannot affect any other
process in the system, even if it has the same UIC, unless the target process is
in the same job as the process in question.)

The UIC is also the parameter that determines whether a user can read
from or write to a given file. The owner of a file can determine how much
access to his files he grants to himself, to other processes in the same group,
and to other processes in the system.

The same UIC protection that exists for files is also used for other data
structures in the system. Both logical names and global sections exist in two
varieties, group names and sections or system names and sections. The group
variety is only available to other processes in the same group. Common event
flags, flags that can be shared among several processes, are restricted to proc-
esses in the same group.

Other System Primitives

Several other simple tools used by the VMS operating system are mentioned
freely throughout this book and are described in Chapters 2, 3, and 29.

Synchronization. Any multiprogramming system must take measures to pre-
vent simultaneous access to system data structures. The executive uses two
simple synchronization techniques. By elevating IPL, a subset of interrupts
can be blocked, allowing unrestricted access to system-wide data structures.

23

System Overview

1.4.2.2

1.4.23

1.5

1.5.1

24

The most common synchronization IPL used by the operating system is IPL
7, called IPL§_SYNCH.

For some data structures, elevated IPL is either an unnecessary tool or a
potential system degradation. For example, processes executing at or above
IPL 3 cannot be rescheduled (removed from execution). Once a process gains
control of a data structure protected by elevated IPL, it will not allow another
process to execute until it gives up its ownership. In addition, page faults are
not allowed above IPL 2 and so any data structure that exists in pageable
address space cannot be synchronized with elevated IPL.

The VMS executive requires a second synchronization tool to allow syn-
chronized access to pageable data structures. This tool must also allow a
process to be removed from execution while it maintains ownership of the
structure in question. The synchronization tool that fulfills these require-
ments is called a mutual exclusion semaphore (or mutex). Synchronization,
including the use of mutexes, is discussed in Chapter 2.

Dynamic Memory Allocation. The system maintains three dynamic memory
areas from which blocks of memory can be allocated and deallocated.
Nonpaged pool contains those system-wide structures that might be manipu-
lated by (hardware or software) interrupt service routines or process-based
code executing above IPL 2. Paged pool contains system-wide structures that
do not have to be kept memory resident. The process allocation region, a
portion of the process P1 space, is used for pageable data structures that will
not be shared among several processes. Dynamic memory allocation and
deallocation are discussed in detail in Chapter 3.

Logical Names. The system uses logical names for many purposes, including
a transparent way of implementing a device-independent I/O system. The use
of logical names as a programming tool is discussed in the VAX/VMS System
Services Reference Manual. The internal operations of the logical name sys-
tem services, as well as the internal organization of the logical name tables,
are described in Chapter 29.

LAYOUT OF VIRTUAL ADDRESS SPACE

This section shows the approximate contents of the three different parts of
virtual address space.

System Virtual Address Space

The layout of system virtual address space is pictured in Figure 1-6. Details
such as the no-access pages at either end of the interrupt stack are omitted to
avoid cluttering the diagram. Table 26-2 gives a more complete description of

80000000

High address end
of system virtual
address space

Figure 1-6

1.5 Layout of Virtual Address Space

System Service Vectors

Linked Driver Code and Data Structures

Nonpaged Executive Data

Nonpaged Executive Code

Pageable Executive Routines

XDELTA (usually unmapped), INIT

Static Portion (SYS.EXE)

System Virtual Pages
Mapped to I/O Addresses

RMS Image
(RMS.EXE)

System Message File
(SYSMSG.EXE)

.
-

. Pool of Unmapped System Pages

P
A

\

Restart Parameter Block

PFN Database

Paged Dynamic Memory

Nonpaged Dynamic Memory

Interrupt Stack

System Control Block

A\
\

Balance Slots

AR\Y

System Header

System Page Table

Global Page Table

Layout of System Virtual Address Space

Dynamically mapped at
initialization time

25

System Overview

1.5.2

1.5.3

26

system space, including these guard pages, system pages allocated by disk
drivers, and other details.

This figure was produced from two lists provided by the system dump ana-
lyzer (the system page table and the contents of all global data areas in system
space) and from the system map SYS$SYSTEM:SYS.MAP. The relations be-
tween the variable size pieces of system space and their associated SYSBOOT
parameters are given in Chapter 26.

The Control Region (P1 Space)

Figure 1-7 shows the layout of P1 space. This figure was produced mainly
from information contained in module SHELL, which contains a prototype of
a P1 page table that is used whenever a process is created. An SDA listing of
process page tables was used to determine the order and size of the portions of
P1 space not defined in SHELL.

Some of the pieces of Pl space are created dynamically when the
process is created. These include a P1 map of process header pages, a
command language interpreter if one is being used, and a symbol table
for that CLI.

The two pieces of P1 space at the lowest virtual addresses (the user stack
and the image I/O segment) are created dynamically each time an image exe-
cutes and are deleted as part of image rundown. Chapter 26 contains a de-
scription of the sizes of the different pieces of P1 space. Table 26-4 gives a
complete description of P1 space, including details such as memory manage-
ment page protection and the name of the system component that maps a
given portion.

The Program Region (P0 Space)

Figure 1-8 shows a typical layout of PO space for both a native mode image
(produced by the VAX-11 Linker) and a compatibility mode image (produced
by the RSX-11M task builder). This figure is much more conceptual than the
previous two illustrations because PO space does not contain pieces of the
executive as P1 space and system space do.

By default, the first page of PO space (0 to 1FF) is not mapped (protection set
to No Access). This no-access page allows easy detection of two common
programming errors, using zero or a small number as the address of a data
location or using such a small number as the destination of a control transfer.
(A link-time request or a system service call can alter the protection of vir-
tual page zero. Note also that page zero is accessible to compatibility mode
images.)

1.5 Layout of Virtual Address Space

Direction
of growth

Image-Specific Portion
of P1 Space

User Stack

Deleted at image exit
by MMGS$IMGRESET

Image /0 Segment

40000000

:CTL$GL__CTLBASVA

Per-Process Message Section(s)

Dynamic Permanent
Portion of P1 Space

CLI Symbol Table

CLI Image

Locates border between)
image-specific and
process-permanent
pieces of P1 space

MMG$GL__CTLBASVA

P1 Window to Process Header

Channel Control Block Table

Static Permanent
Portion of P1 Space

Process I/O Segment

Per-Process Common Area
for Users

Per-Process Common Area
Reserved to DIGITAL

Compatibility Mode Data Page

VMS User Mode
Data Page

Image Activator
Context Page

Process Allocation Region

Generic CLI Data Pages

Image Activator Scratch Pages

Debugger Context

Vectors for Messages and User-Written System Services

Image Header Buffer

Kernel Stack

Executive Stack

Supervisor Stack

System Service
Vectors

P1 Pointer Page

Debugger Symbol Table

(not mapped if debugger not present)

Figure 1-7
Layout of P1 Space

Locates initial low
address end of P1
space for each process
as it is created

7FFFFFFF

27

8T

Native Mode image

e 0
Not Mapped
Executive
This part of Image
PO space is
defined by the
linker and <
mapped by the VMSRTL

The order of the images
in this portion is
LBRSHR undefined at link time.
The order is determined
by IMGACT at image
activation time.

image activator.

other shareable images

N/

This part of Debugger (LIBSDEBUG)
PO space is "

N (If requested at link,
not defined at run, or execution time)
link time. '

If either of Traceback (LIBSTRACE)

these pieces is
required, it is

(I not overriden at link
time and needed)

mapped. Note _ POLR Pages
that both cannot

be mapped at =~ not mapped Pt

the same time. T 3FFFFFFF

Figure 1-8
PO Space Allocation

This portion
of PO space
is defined by
the RSX-11
task builder
and mapped
by the AME.

The AME is
mapped by the
image activator
when it detects
that it is activating
a compatibility
mode image.

Compatibility Mode Image

Compatibility
Mode Image

End of Compatibility

not mapped

Mode Image

RSX-11M AME
(RSX.EXE)
(BACKTRANS.EXE)
Native Mode Image

177777g=FFFF g

POLR Pages

2

not mapped

>

i 3FFFFFFF

MITATIA() WIIISAS

1.5 Layout of Virtual Address Space

The main image is placed into PO space, starting at address 200 (hex). Any
shareable libraries that are position independent and shared (for example,
VMSRTL) are placed at the end of the main image. The order in which these
libraries are placed into the image is determined in image activation.

If the debugger or the traceback facility is required, these images are added
at execution time (even if /DEBUG was selected at link time) by procedure
SYS$IMGSTA. This mapping is described in detail in Chapter 21.

29

2.1

30

Synchronization Techniques

And now I see with eye serene
The very pulse of the machine.

—William Wordsworth, She Was a Phantom of Delight

One of the most important issues in the design of an operating system is
synchronization. Especially in a system that is interrupt driven, certain se-
quences of instructions must be allowed to execute without interruption.
The VMS operating system uses special IPL values to block certain interrupts
during the execution of critical code paths.

Any operating system must also take precautions to insure that shared data
structures are not being simultaneously modified by several routines or being
read by one routine while another routine is modifying the structure. The
VMS executive uses a combination of software techniques and features of the
VAX hardware to synchronize access to shared data structures. The following
techniques are described in this chapter:

¢ Elevated IPL

e Serialized access

* Mutual exclusion semaphores, called mutexes
¢ VAX/VMS lock management system services

ELEVATED IPL

The primary purpose of raising IPL is to block interrupts at the selected TPL
value and all lower values of IPL. For example, by raising IPL to 23, all device
interrupts are blocked; but the clock, which interrupts at IPL 24, can still
cause interrupts. The operating system also uses selected IPL values for per-
forming certain actions or for accessing certain structures.

The IPL, stored in PSL<20:16>, is altered by writing the desired IPL value
to the privileged register PR _IPL with the MTPR instruction. This change
in IPL is usually accomplished in the operating system with one of two
macros, SETIPL or DSBINT, whose macro definitions are as follows:

.MACRO SETIPL IPL = #31

MTPR IPL,S #PR$_IPL
.ENDM SETIPL

.MACRO DSBINT IPL=#31, DST=—(SP)
MFPR S"#PR$_IPL,DST

MTPR IPL,S #PR$_IPL

.ENDM DSBINT

2.1.1

2.1 Elevated IPL

The SETIPL macro changes IPL to the specified value. If no argument is pres-
ent, IPL is elevated to 31. The DSBINT macro first saves the current IPL
before elevating IPL to the specified value. If no alternate destination is speci-
fied, the old IPL is saved on the stack. The default IPL value is 31.

The DSBINT macro is usually used when a later sequence of code must
restore the IPL to the saved value (with the ENBINT macro). This macro is
especially useful when the caller’s IPL level is unknown. The SETIPL macro
is used when the IPL will later be explicitly lowered with another SETIPL or
simply as a result of executing an REI instruction. That is, the value of the
saved IPL is not important to the routine that is using the SETIPL macro.

The ENBINT macro is the counterpart of the DSBINT macro. It restores
the IPL to the value found in the designated source argument

.MACRO ENBINT SRC = (SP)+
MTPR SRC,S #PR$_IPL
-.ENDNM ENBINT

Occasionally it is necessary to save an IPL value (to be restored later by the
ENBINT macro) without changing the current IPL.

.MACRO SAVIPL DST=—(SP)
MFPR S"#PR$_IPL,DST
.ENDM SAVIPL

The successful use of IPL as a synchronization tool requires that IPL be raised
(not lowered) to the appropriate synchronization level. Lowering IPL defeats
any attempt at synchronization and runs the risk of a reserved operand fault
when an REI instruction is later executed. (An REI instruction that attempts
to elevate IPL causes a reserved operand fault.)

Use of IPL$ _SYNCH

IPL 7 (IPL$ _SYNCH)] is used as the interrupt level for the software timer
routines, those routines that service timer queue entries and handle quantum
expiration. IPL 7 is also used as the level to which IPL must be raised for any
routine to access a system-wide data structure. By raising IPL to 7, all other
routines that might access the same system-wide data structure are blocked
from execution until IPL is lowered.

While the processor is executing at IPL 7, certain system-wide events such
as scheduling and I/O postprocessing are blocked. However, other, more im-
portant operations, such as hardware interrupt servicing and device driver
fork processing, can continue. Thus, the amount of time that the operating
system spends at IPL 7 does not affect more important activities such as
servicing I/O requests. The fact that I/O processing, including fork process-
ing, is more important than other system operations (such as satisfying a page
fault) reflects one of the underlying philosophies of the executive, to keep
external devices as busy as possible.

31

Synchronization Techniques

2.1.2

2.1.2.1

2.1.2.2

32

Other IPL Levels Used for Synchronization

Table 2-1 lists several IPL levels that are used for synchronization purposes
by the system. Some of these levels are used to control access to shared data
structures. Other levels are used to prevent certain events, such as a clock
interrupt or process deletion, from occurring while a block of instructions is
executed.

IPL 31. Routines in the operating system will raise IPL to 31 to block all
interrupts for a short period of time (usually less than ten instructions once
the system is initialized).

Device drivers use IPL 31 just before they call IOC$§WFIxxCH to prevent a
powerfail interrupt from occurring.

The entire bootstrap sequence operates at IPL 31 in order to put the system
into a known state before allowing interrupts to occur.

Because the error logger routines can be called from anywhere in the exec-
utive, including fault service routines that execute at IPL 31 (such as ma-
chine check handlers), allocation of an error log buffer can only execute at
IPL 31. A corrolary of this requirement demands that the ERRFMT process
execute at IPL 31 when it is altering data structures that describe the state
of the error log buffer. (As Chapter 8 describes, the copy is done at two IPL
levels. The error log buffer status flags and message counts are modified at
IPL 31. Then IPL is lowered to zero; the contents of the error log buffer are
copied to the ERRFMT process PO space, and the messages are formatted
and written to the error log file.)

IPL 24. When IPL is raised to 24, the level at which the hardware clock inter-
rupts, clock interrupts are blocked. The software timer interrupt service rou-

Table 2-1: Common IPL Values Used by the Executive for Synchronization

Value
Name (decimal) Meaning
IPL$_POWER 31 Disable all interrupts
IPL$ _HWCLK 24 Block clock and device interrupts
UCB$B_DIPL (1) 20-23 Block interrupts from specific devices
UCB$B_FIPL (1) 8-11 Device driver fork levels
IPL$ _SYNCH 7 Synchronize access to any system-wide
data structures
IPL$ _QUEUEAST 6 Device driver fork IPL that allows drivers
to elevate IPL to 7
IPL$ _ASTDEL 2 Block delivery of ASTs (prevent process

deletion)

(1) These symbols are offsets into a device unit control block.

2.1.2.3

2.1.24

2.1 Elevated IPL

tine uses this IPL level when it is comparing two quadword system time
values. An IPL value of 24 prevents the system time from being updated
while it is being compared with some other time value. (This precaution is
required because the VAX architecture does not contain a CMPQ—compare
quadword—instruction.)

Device IPL. Device drivers will raise IPL to the level at which the associated
device will interrupt in order to prevent other devices from generating inter-
rupts while device registers are being read or written. This step usually pre-
cedes the further elevation of IPL to 31 just described.

Fork IPL. Fork IPL (a value specific to each device type) is used by the execu-
tive to synchronize access to each unit control block. These blocks are
accessed by device drivers and by procedure-based code, such as the comple-
tion path of the $QIO system service and the Cancel I/O system service.

Device drivers also use their associated fork IPL as a synchronization level
when accessing data structures that control shared resources, such as multi-
unit controllers or datapath registers or map registers. In order for this syn-
chronization to work properly, all devices sharing a given resource must use
the same fork IPL.

The use of fork IPL to synchronize access to unit control blocks works the
same way that elevating IPL to 7 does. That is, one piece of code elevates IPL
to the specified fork IPL (found at offset UCB$B_FIPL) and blocks all other
potential accesses to the UCB. Fork processing, the technique whereby de-
vice drivers lower IPL below device interrupt level in a manner consistent
with the interrupt nesting scheme, also uses the serialization technique de-
scribed in Section 2.2.

IPL$_QUEUEAST

Perhaps the example that best illustrates the synchronization rules followed
by the operating system is the use of IPL 6 (IPL$_QUEUEAST) by device
drivers. There are instances where device drivers find it necessary to interact
with the scheduler. For example, the terminal driver may notify a requesting
process about unsolicited input or a CTRL/Y through an AST (see Chapter 7).
The mailbox driver also can notify requesting processes about reads or writes
to a mailbox.

The enqueuing of an AST must occur at IPL§_SYNCH to synchronize ac-
cess to the scheduler’s database. As already pointed out, IPL must be elevated
(not lowered) to 7 to achieve this synchronization. The fork level at IPL 6
allows device drivers that execute at IPL 8 through IPL 11 to make these
scheduling requests. Specifically, the driver calls a routine -called
COMSDELATTNAST that creates an IPL 6 fork request. That is, a fork block
is placed into the IPL 6 fork queue and an IPL 6 software interrupt requested

33

Synchronization Techniques

34

(software interrupts are described in Chapter 6). When that interrupt occurs,
the fork block is used as an AST control block and passed to SCH$QAST,
which will elevate IPL to 7, in keeping with the rule that IPL must be raised
to IPL§ _SYNCH to preserve proper interrupt nesting.

An obvious question in response to the above description is why the IPL 7
fork interrupt cannot be used to achieve the same result. The answer is that if
the IPL 7 software interrupt were not being used for another purpose, that
would be a perfectly acceptable solution. However, the software timer service
routine is entered as a result of the IPL 7 software interrupt. So this synchro-
nization technique uses the first free IPL below 7, the IPL 6 software inter-
rupt called IPL$_QUEUEAST. ‘

IPL 6 is used in a second instance by device drivers that interact with the
scheduler. As described in the next chapter, nonpaged pool cannot be deallo-
cated from code executing in response to an interrupt above IPL 7, because
nonpaged pool is a system-wide resource whose availability must be reported
to the scheduler. Routine COM$DRVDEALMEM creates an IPL 6 fork proc-
ess that allows the deallocation to take place in response to an IPL 6 software
interrupt, allowing the scheduler to properly synchronize its database ac-
cesses. The actual pool manipulation takes place at IPL 11 to synchronize
with the allocation routine.

TPL2

IPL 2 is the level at which the software interrupt associated with AST deliv-
ery occurs. When system service procedures raise IPL to 2, they are blocking
the delivery of all ASTs, but particularly the special kernel AST that causes
process deletion. In other words, if a process is executing at IPL 2 (or above),
that process cannot be deleted.

This technique is used in several places to prevent process deletion be-
tween the time that some system resource (such as system dynamic memory)
is allocated and the time that ownership of that resource is recorded (such as
the insertion of a data structure into a list). For example, the $QIO system
service executes at IPL 2 from the time that an I/O request packet is allocated
from nonpaged dynamic memory until that packet is queued to a unit control
block or placed into the I/O postprocessing queue.

The memory management subsystem uses IPL 2 in order to inhibit the
special kernel mode AST that is queued on I/O completion. This inhibition is
necessary at times when the memory management subsystem has some
knowledge of the process’s working set and yet the execution of the I/O com-
pletion AST could cause a modification to the working set, thereby invalidat-
ing that knowlege.

IPL 2 also has significance for an entirely different reason: it is the highest
IPL level at which page faults are permitted. If a page fault occurs at IPL above

2.2

221

2.2 Serialized Access

2, a fatal bugcheck (BUG$_PGFIPLHI) is issued. If there is any possibility
that a page fault can occur, because either the code that is executing or the
data that it references is pageable, then that code cannot execute above IPL 2.
The converse of this constraint is that any code that executes above IPL 2,
and all data referenced by such code, must be locked into memory in some
way. Chapter 31 shows some of the techniques that the VMS executive uses
to dynamically lock code or data into memory so that IPL can be elevated

above IPL 2.

SERIALIZED ACCESS

The software interrupt capability described in Chapter 6 provides no method
for counting the number of requested software interrupts. The VMS operating
system uses a combination of software interrupts and doubly linked lists to
cause several requests for the same data structure or procedure to be serial-
ized. The most important example of this serialization in the operating sys-
tem is the use of fork processes by device drivers. The I/O postprocessing
software interrupt is a second example of serialized access.

Fork Processing

Fork processing is the technique that allows device drivers to lower IPL in a
manner consistent with the interrupt nesting scheme defined by the VAX
architecture. When a device driver receives control in response to a device
interrupt, it performs whatever steps are necessary to service the interrupt at
device IPL. For example, any device registers whose contents would be de-
stroyed by another interrupt must be read before the driver dismisses the
device interrupt.

Usually, there is some processing that can be deferred. For DMA devices,
an interrupt signifies either completion of the operation or an error. The code
that distinguishes these two cases and performs error processing is usually
lengthy, and to execute at device IPL for extended periods of time would slow
down the system. For non-DMA devices that do not interrupt at too rapid a
rate, interrupt processing can be deferred in favor of other, more important
device servicing.

In either case, the driver signals that it wishes to delay further processing
until the IPL in the system drops below a predetermined value, the fork IPL
associated with this driver. This signaling is accomplished by calling a rou-
tine in the executive that saves the address of the next instruction in the
driver in a data structure called a fork block (see Figure 6-2). The fork block is
then inserted at the end of the fork queue for that IPL value. A software
interrupt at the appropriate IPL is requested.

35

Synchronization Techniques

222

23

36

I/0 Postprocessing

Upon completion of an I/O request, there is a series of cleanup steps that
must be performed. The event flag associated with the request must be set. A
special kernel AST that will perform final cleanup in the context of the proc-
ess that initially issued the $QIO call must be queued to the process. This
cleanup must be completed for one I/O request before another is handled. In
other words, I/O postprocessing must be serialized.

This serialization is accomplished by performing the postprocessing opera-
tion as a software interrupt service routine (at IPL 4). When a request is recog-
nized as being complete, the I/0 request packet is placed at the tail of the I/0
postprocessing queue (at global listhead IOC$GL_PSBL), and a software in-
terrupt at IPL 4 is requested.

When the device driver recognizes that an I/O request has completed (ei-
ther successfully or unsuccessfully), it calls routine IOC$REQCOM, which
makes the IPL 4 software interrupt request at fork IPL (IPL 8 to IPL 11}, so the
postprocessing interrupt is deferred until the IPL drops below 4.

Some I/O requests do not require driver action. When the Queue I/O Re-
quest ($QIO) system service or device-specific FDT routines detect that the
request can be completed without driver intervention, or if they detect an
error, they call one of the routines EXE$FINISHIO or EXE$FINISHIOC.
These two routines execute at IPL 2 and so the requested software interrupt
is taken immediately. ACPs also place I/O request packets directly into the
postprocessing queue and request the IPL 4 software interrupt.

MUTUAL EXCLUSION SEMAPHORES (MUTEXES)

The synchronization techniques described so far all execute at elevated IPL,
thus blocking certain operations, such as a rescheduling request, from taking
place. There are some shared data structures that must be protected from
multiple access where elevated IPL is an unacceptable technique for synchro-
nization, because the processor would have to remain at an elevated IPL for
an unspecified length of time. For example, two processes cannot allocate
paged pool at the same time. In addition, when a system is low on paged pool
or when the pool is highly fragmented, a search for an unused block that is
the correct size can be very time consuming.

A second situation where elevated IPL is not acceptable as a synchroniza-
tion tool occurs when the data structure that is being protected is paged. The
memory management subsystem does not allow page faults to occur when
IPL is above 2. Thus, any pageable data structure cannot be protected by
elevating IPL to 7. For these two reasons, another mechanism is required for
controlling access to shared data structures.

The VMS operating system uses mutexes, mutual exclusion semaphores,
for this purpose. Mutexes are essentially flags that indicate whether a given
data structure is being examined or modified by one of a group of cooperating

23.1

2.3 Mutual Exclusion Semaphores (Mutexes)

Table 2-2: List of Data Structures Protected by Mutexes

Global Address Value in
Data Structure of Mutex (1) Version 3.0
System Logical Name Table LOGS$AL_MUTEX 80002750
Group Logical Name Table 80002754
I/0 Database (2) IOC$GL_MUTEX 800028C0
Common Event Block List EXE$GL_CEBMTX 800028C4
Paged Dynamic Memory EXE$GL_PGDYNMTX 800028C8
Global Section Descriptor List EXE$GL_GSDMTX 800028CC
Shared Memory Global Section EXE$GL_SHMGSMTX 800028D0
Descriptor Table
Shared Memory Mailbox EXE$GL_SHMMBMTX 800028D4
Descriptor Table
Enqueue/Dequeue Tables EXE$GL_ENQMTX 800028D8
(Not Currently Used)
Known File Entry Table EXE$GL_KFIMTX 800028DC
Line Printer Unit Control UCB$L_LP_MUTEX (3)

Block (3)

(1) When a process is placed into an MWAIT state waiting for a mutex, the address
of the mutex is placed into the PCB§L_EFWM field of the PCB. The symbolic
contents of PCB$L_EFWM will probably remain the same from release to re-
lease. The numeric contents are almost certain to change with each major re-
lease of the operating system.

(2) This mutex is used by the Assign Channel and Allocate Device system services
when searching through the linked list of device data blocks for a device with a
given name. It is also used by the Mount Utility and the file system ACPs to
lock the file system data structures.

(3) The mutex associated with each line printer unit does not have a fixed address
like the other mutexes. Its value depends on where the UCB for that unit is
allocated.

processes. The implementation allows either multiple readers or one writer
of a data structure. Table 2-2 lists those data structures in the system that are
protected by mutexes.

The mutex itself consists of a single longword that contains the number of
owners of the mutex (MTX$W_OWNCNT) in the low-order word and status
flags (MTX$W _STS) in the high-order word (see Figure 2-1). The owner count
begins at —1 so that a mutex with a zero in the low-order word has one
owner. The only flag currently implemented indicates whether a write opera-
tion is either in progress or pending for this mutex (MTX$V_WRT).

Locking a Mutex for Read Access

When a process wishes to gain read access to a data structure that is protected
by a mutex, it passes the address of that mutex to a routine called

37

Synchronization Techniques

23.2

38

31 17 16 15 0

Status Ownership Count

Write-in-Progress or
Write-Pending Flag

Figure 2-1
Format of Mutual Exclusion Semaphore (Mutex)

SCHS$LOCKR. If there is no write operation either in progress or pending, the
owner count of this mutex (MTX$§W_OWNCNT) is incremented, the count
of mutexes owned by this process (stored at offset PCB§W_MTXCNT in the
software PCB) is also incremented, and control is passed back to the caller,
unless this is the only mutex owned by this process (mutex count equals
one).

If the mutex count for this process (PCB§W_MTXCNT) is one, indicating
that the process owns no other mutexes, the current and base priorities are
stored in the PCB at offsets PCB$B_PRISAV and PCB$B_PRIBSAV. In addi-
tion, if the process is not a real-time process (priority is less than 16), the
software priority (both current priority and base priority) of the process is
elevated to 16 to insure that the mutex will be owned for as little time as
possible. Notice that the check on the number of owned mutexes prevents a
process that gains ownership of two or more mutexes from receiving a perma-
nent priority elevation into the real-time range.

Routine SCH$LOCKR always returns successfully in the sense that, if the
mutex is currently unavailable, the process is placed into a mutex wait state
(MWALIT) until the mutex is available for the process. When the process even-
tually gains ownership of the mutex, control will then be passed to the proc-
ess. IPL is set to IPL§_ASTDEL (IPL 2) to prevent process deletion while the
mutex is owned by this process. This preventative step must be taken be-
cause the Delete Process system service has no internal checks on whether
the process being deleted owns any mutexes. If the deletion succeeded, the
locked data structure would be lost to the system.

Locking a Mutex for Write Access

A process wishing to gain write access to a protected data structure passes
the address of the appropriate mutex to a routine called SCH$LOCKW. This
routine returns control to the caller with the mutex locked for write access
if the mutex is currently unowned. In addition, both mutex counts
(MTX$W_OWNCNT and PCB$W_MTXCNT) are incremented, the process
software priority is possibly altered, and IPL is set to 2. An alternate entry
point, SCH$LOCKNOWAIT, returns control to the caller with R0O<0>

233

234

2.3 Mutual Exclusion Semaphores (Mutexes)

cleared (indicating failure) if the requested mutex is already owned. For the
regular entry point (SCH$LOCKW), if this mutex is owned, the process is
placed into the mutex wait state (MWAIT). However, the write pending bit is
set so that future requests for read access will also be denied. In a sense, this
scheme is placing requests for write access ahead of requests for read access.
However, all that this check is really doing is preventing a continuous stream
of read accesses keeping the mutex count (MTX$W_OWNCNT) nonzero.
When the mutex count gees to —1 (no owners), it is declared available, and
the highest priority process waiting for the mutex is the one that will get first
access to the mutex, independent of whether it is requesting a read access or
a write access.

Mutex Wait State

When a process is placed into a mutex wait state, its stack is set up so that
the saved PC is the entry point of either the read-lock routine or the write-
lock routine. (In the latter case, the PC points to a branch to SCH$LOCKW.)
The PSL is adjusted so that the saved IPL is 2. The address of the mutex that
is being requested is placed into the software PCB at offset PCB§L_EFWM.
(Because the process is not waiting on an event flag, this field is available for
other purposes.) Table 2-2 and part of Table 10-2 list the contents of the
PCB$L_EFWM field for each MWAIT state.

Unlocking a Mutex

A process relinquishes ownership of a mutex by passing the address of the
mutex to be released to a routine called SCH$UNLOCK. This routine decre-
ments the number of mutexes owned by this process recorded in its PCB. If
this process does not own any more mutexes (PCB§W_MTXCNT contains
zero), the saved base and current priorities (in fields PCB$B_PRIBSAV and
PCB$B_PRISAV) are established as the process’s new base and current priori-
ties. If there are computable (COM) processes with higher priorities than this
process’s new current priority, a rescheduling interrupt is requested.

SCH$UNLOCK also decrements the number of owners of this mutex
(MTX$W_OWNCNT). If the owner count of this mutex does not go to —1,
there are other outstanding owners of this mutex, so control is simply passed
back to the caller.

If the count does become —1, this value indicates that this mutex is cur-
rently unowned. If the write-in-progress bit is clear, this indicates that there
are no processes waiting on this mutex, and control is passed back to the
caller. (A waiting writer would set this bit. A potential reader is only blocked
if there is a current or pending writer.) If there are other processes waiting for
this mutex, they are all made computable by scanning the MWAIT queue for

39

Synchronization Techniques

235

24

40

all processes whose PCB$L_EFWM field matches the address of the unlocked
mutex.

If the priority of any of the processes removed from the mutex wait state is
greater than the priority of the current process, a rescheduling pass will occur
that will select the highest priority process for execution. As noted above,
there is no difference between processes waiting for read access and processes
waiting for write access. The criterion that determines who will get first
chance at ownership of the mutex is software priority.

Resource Wait State

The routines that place a process into a resource wait state and make re-
sources available share some code with the mutex locking and unlocking
routines and will be briefly described here. Details of resources that one proc-
ess can access at a time can be found in Chapter 10.

When a process requires a resource that is unavailable, it is placed into a
resource wait state, which shares the same scheduling state number and wait
queue header with the mutex wait state. The resource number is stored in
the PCB (at offset PCB$L_EFWM) instead of the mutex address (see Table
10-2). In addition, a bit corresponding to this resource is set in a resource wait
mask (found at global location SCH$GL_RESMASK). The saved PC and PSL
are determined by the caller of routine SCH$RWAIT. SCH$RWAIT saves the
process’s context, inserts the PCB into the MWAIT queue, and causes a new
process to be selected for execution.

When a resource becomes available, the appropriate bit in the resource wait
mask is cleared. If the bit was previously set, there are other processes wait-
ing on this resource. The same routine that frees processes waiting on a
mutex is entered at this point. Offset PCB$L_EFWM now contains a resource
number instead of a mutex address, but this difference is a conceptual differ-
ence that is invisible to the code that is actually executing.

The MWAIT state queue is scanned for all processes whose PCB$L_EFWM
field matches the number of the recently freed resource. All such processes
are made computable. If the new priority of any of these processes is larger
than the priority of the currently executing process, a rescheduling interrupt
is requested. In any event, all processes waiting for the now available re-
source will compete for that resource based on software priority.

VAX/VMS LOCK MANAGEMENT SYSTEM SERVICES

So far, the methods of synchronization described in this chapter have re-
quired elevated IPL or execution in kernel access mode, or both. Though both
are powerful and effective in synchronizing access to system data structures,

2.4 VAX/VMS Lock Management System Services

there are other system applications in which elevated IPL or kernel mode
access are not really necessary or desirable (for example, RMS).

The VAX/VMS lock management system services (or the lock manager)
provide synchronization tools that can be invoked from all access modes.
The use of the VAX/VMS lock management system services is described fully
in the VAX/VMS System Services Reference Manual; the internals of the
lock manager are described in Chapter 13 of this book.

41

3.1

42

Dynamic Memory Allocation

In this bright little package, now isn’t it odd? You've a dime’s
worth of something known only to God!

—Edgar A. Guest, The Package of Seeds

Some of the data structures described in this book are created when the sys-
tem is initialized; many others are created when they are needed and de-
stroyed when their useful life is finished. In order to store the data structures,
virtual memory needs to be allocated and deallocated in an orderly fashion. In
addition, different data structures have differing memory requirements; the
VAX/VMS operating system maintains three separate areas for dynamic allo-
cation of storage.

» The process allocation region holds data structures that are required only
by a single process.

» Paged dynamic memory contains data structures that are used by several
processes but are not required to be permanently memory resident.

» The nonpaged pool contains data structures and code that are used by the
portions of the VMS operating system that are not procedure based, such as
interrupt service routines and device drivers. These portions of the operat-
ing system can use only system virtual address space and usually execute
at elevated IPL, requiring nonpaged pool space rather than paged pool
space.

The nonpaged pool also contains data structures and code that are
shared by several processes and must not be paged. This requirement is
usually dictated by the constraint that page faults are not permitted
above IPL 2.

ALLOCATION STRATEGY AND IMPLEMENTATION

Each of the three pool areas has the same structure, so common allocation
and deallocation routines can be used. The first two longwords of each un-
used block in one of the pool areas are used to describe the block. As illus-
trated in Figure 3-1, the first longword in a block contains the virtual address
of the next unused block in the list. The second longword contains the size in
bytes of the unused block. Each successive unused block is found at a higher
virtual address. Thus, each pool area forms a singly linked memory ordered
list.

3.1.1

3.1 Allocation Strategy and Implementation

Used

Beginning of Pool Area
(Filled in when

system is initialized)

Size of this Block

First Unused
Block
Used R
o ~ 0
Size of this Block :fie:as'z :': First

(Modified by allocation

Next Unused and deallocation routines)

Block
/—\/

T

]

(Zero in pointer
signifies end of list)

Size of this Block

Last Unused
Block

T~

]

Figure 3-1
Layout of Unused Areas in Dynamic Memory Pools

Allocation of Dynamic Memory

When the allocation routine is called, it searches from the beginning of the
list until it encounters the first unused block large enough to satisfy the call.
If the fit is exact, the allocation routine simply adjusts the previous pointer to
point to the next free block. If the fit is not exact, it subtracts the allocated
size from the original size of the block, puts the new size into the remainder
of the block, and adjusts the previous pointer to point to the remainder of the
block. The two possible allocation situations (exact and inexact fit) are illus-
trated in Figure 3-1.

43

Dynamic Memory Allocation

3.1.2

44

Example of Allocation of Dynamic Memory

The first part of Figure 3-2 (Initial Condition) shows a section of paged pool,
including the pointers MMG$GL_PAGEDYN, which points to the beginning
of paged pool, and EXE$GL_PAGED, which points to the first available block
of paged pool. In this example, allocated blocks of memory are indicated only
as the total number of bytes being used, ignoring either the number or size of

the individual data structures within each block.

Following the allocation of a block of 60 bytes (an exact fit), the structure of
the paged pool looks like the second part of Figure 3-2 (60 Bytes Allocated).

Initial Condition

T

60 Bytes Allocated

' MMGS$GL__PAGEDYN

,[176 Bytes];

48 Bytes Allocated

From listhead

L/ 176 Bytes ’]:

From listhead

’ 176 Bytes s

1 in Use 1 1 in Use 1 1 in Use

32 32 32
L aeyes) & 32Bytes & L seByes &
1 Unused 1 1 Unused 1 Unused T
P 96 Bytes P 144 Bytes in Use -
1 in Use 1 A (96+48 Bytes)

hd 224 Bytes in Use e

60 | (96+60+68 Bytes) | 12

e e
A j’

J: 60 Bytes Z ~. 12 Bytes Unused .~
1 Unused (60-48 Bytes)
P 68 Bytes ~ 68 Bytes
1 in Use 1 ’(in Use T

48 48
b 48 Bytes ~ ~ 48 Bytes =~ P 48 Bytes ~
1 Unused 1 1 Unused ' ' Unused 17
L 208Bytes & A 208Bytes 208 Bytes ~
e 4 e - y -

in Use 1 in Use T 1 in Use

Figure 3-2

Examples of Allocation from Dynamic Memory

3.1.3

3.14

3.1 Allocation Strategy and Implementation

Note that the discreet portions of 96 bytes and 68 bytes in use and the 60
bytes that were allocated are now combined to show simply a 224-byte block
of paged pool in use.

The third part of Figure 3-2 (48 Bytes Allocated) shows the case where a
48-byte block was allocated from the paged pool structure shown in the first
part of the figure. The 48 bytes were taken from the first unused block large
enough to contain it. (Note that allocation is done from the low address end
of the unused block.) Because this allocation was not an exact fit, an unused
block, 12 bytes long, remains.

Deallocation of Dynamic Memory

When a block is deallocated, it must be placed back into the list in its proper
place, according to its address. This replacement is accomplished by follow-
ing the unused area pointers until an address larger than the address of the
block to be deallocated is encountered. If the deallocated block is adjacent to
another unused block, the two blocks are merged into a single unused area.
This merging, or agglomeration, can occur at the end of the preceding unused
block or at the beginning of the following block (or both). Three sample
deallocation situations, two of which illustrate merging, are shown in Figure

3-3 and are described in Section 3.1.4. Because merging occurs automatically
as a part of deallocation, there is no need for any externally triggered cleanup
routines.

The deallocation routine assumes that the word at offset 8 from the begin-
ning of a block contains the size of the block being deallocated. All of the
dynamically allocated blocks used by the executive adhere to this conven-
tion. The type code located in the byte at offset 10 is also used by the deallo-
cation routine to distinguish between structures allocated from local mem-
ory (type code is positive) and structures allocated from shared memory (type
code is negative). This size word and the type code stored in the adjacent byte
at offset 10 allow SDA to correctly interpret the portions of nonpaged pool
that are currently in use.

Example of Deallocation of Dynamic Memory

The first part of Figure 3-3 (Initial Condition) shows the structure of an area
of paged pool containing logical name blocks for three logical names: ADAM,
GREGORY, and ROSAMUND. These three logical name blocks are
bracketed by two unused portions of paged pool one 64 bytes long, the other
176 bytes long.

If the logical name ADAM were deleted the structure of the pool would be
altered to look like the structure shown in the second part of Figure 3-3
(ADAM Deleted). Because the logical name block was adjacent to the high

45

Dynamic Memory Allocation

From previous block From previous block
e Initial Condition e 4, ADAM De!etod 4/
64 112
z 64 Bytes -
T Unused 1 112 Bytes
Unused
.Logical Name Block (64 +48 Bytes)
(48 Bytes)
Logical Name ADAM
Logical Name Block Logical Name Block
(80 Bytes) (80 Bytes)
Logical Name GREGORY Logical Name GREGORY
Logical Name Block Logical Name Block
(64 Bytes) (64 Bytes)
Logical Name ROSAMUND Logical Name ROSAMUND
176 176
176 Bytes 176 Bytes
Unused Unused
L P V P > Y
To next block

AY

|

A

64

64 Bytes
Unused 1

ARY

Logical Name Block
(48 Bytes)
Logical Name ADAM

P

80

80 Bytes
Unused

Logical Name ROSAMUND

Logical Name Block
(64 Bytes)

176

176 Bytes
Unused

'

//
To next block

Figure 3-3

From previous block
~ GREGORY Deleted _,

. ROSAMUND Deleted

Fi

To next block

rom previous block

A 4J
<

64

o 64 Bytes
Unused

A\

Logical Name Block
(48 Bytes)
Logical Name ADAM

Logical Name Block
(80 Bytes)
Logical Name GREGORY

P

240

240 Bytes
Unused
(64+176 Bytes)

Pg

Y

,/ -
To next block

Examples of Deallocation of Dynamic Memory

46

3.1.5

3.1 Allocation Strategy and Implementation

address end of an unused block, the blocks are merged. The size of the
deallocated block is added to the size of the unused block.

If the logical name GREGORY were deleted, the structure of the pool
would be altered to look like the structure shown in the third part of Figure
3-3 (GREGORY Deleted). The pointer in the unused block of 64 bytes is
altered to point to the deallocated block; a new pointer and size longword are
created within the deallocated block.

The fourth part of Figure 3-3 (ROSAMUND Deleted) shows the case where
the logical name ROSAMUND was deleted. In this case the deallocated
block is adjacent to the low address end of an unused block, so the blocks are
merged. The pointer to the next unused block that was previously in the
adjacent block is moved to the beginning of the newly deallocated block. The

following longword is loaded with the size of the merged block (240 bytes).

Synchronization

Some method is required to synchronize access to the pool areas to avoid
several processes or executive routines searching one of these lists simulta-
neously. '

There is no locking mechanism currently used for either the process alloca-
tion region or any of the lists {such as the process logical name table or the
private mounted volume list) found there. However, the allocation routine
executes in kernel mode at IPL 2, effectively blocking any other mainline or
AST code from executing and perhaps attempting a simultaneous allocation
from the process allocation region.

Paged pool is protected by a mutex. Before a block of memory is either
allocated or deallocated from the paged pool, this mutex, found at global label
EXE$GL_PGDYNMTX, is locked for write access.

Elevated IPL is used to control allocation of nonpaged pool. The IPL that is

used is stored in the longword immediately preceding the pointer to the first

unused block in the nonpaged pool (see Table 3-1). The allocation routine for
nonpaged pool raises IPL to the value found here before proceeding. While the
system is running, this longword usually contains an 11. The value of 11 was
chosen because device drivers running at fork level frequently allocate dy-
namic storage, and IPL 11 represents the highest fork IPL currently used in
the operating system. (An implication of this synchronization IPL value is
that device drivers must not allocate nonpaged pool while executing at de-
vice IPL in response to a device interrupt.)

During initialization, the contents of this longword are set to 31 because
the rest of the code in the system initialization routines (module INIT) exe-
cutes at IPL 31 to block all interrupts. INIT is described in detail in Chapter
25. Changing the contents of this longword avoids lowering IPL as a side

47

8y

Table 3-1: Global Listheads for Each Pool Area

Pool Area

Nonpaged Pool

Nonpaged Pool
Lookaside Lists

Paged Pool

Paged Pool
Process Allocation
Region’

Process Allocation
" Region

Global Address
of Pointer

EXE$GL_NONPAGED

MMG$GL_NPAGEDYN
IOC$GL_LRPSPLIT

EXE$GL_SPLITADR

IOC$GL_SRPSPLIT

EXE$GL_PAGED

MMG$GL_PAGEDYN
CTL$GQ_ALLOCREG

Size

3 longwords
longword

longword

longword -

longword
longword

longword

longword

2 ldngwords
longword
longword

longword

2 longwords
longword
longword

Use of These Fields

Synchronization IPL for nonpaged pool
allocation.

Address of next (first) free block.

Dummy size (of zero) for listhead to speed
up allocation routine.

Address of beginning of nonpaged pool area.

Address of beginning of large request
packet area.

Address of beginning of I/O request packet
area. .

Address of beginning of small request
packet area.

Address of next (first) free block.
Dummy size (of zero) for listhead to speed
up allocation routine.

Address of beginning of paged pool area

Address of next (first) free block.

Dummy size (of zero) for listhead to speed
up allocation routine.

There is no global pointer that locates the
beginning of the process allocation region.

Static or
Dynamic (1)

Dynamic (2)

Dynamic
Static

Static
Static -

Static
Static
Dynamic
Static
Static

Dynamic
Static

(1) Static pointers are loaded at initialization time. The contents of these locations do not change during the life of the system. Dynamic pointers
generally change their contents each time a block is allocated from or deallocated to a pool area.
(2) The synchronization IPL is changed to 31 by INIT while it is executing but is reset to 11 and remains at that value for the life of the system.

uonvoO[y AIOUWaJ OTWDUA

3.1.6

3.1 Allocation Strategy and Implementation

effect of allocating space from nonpaged pool. The value of this longword is

- reset to 11 after INIT has finished its allocation but before INIT passes con-

trol to the scheduler. .

IPL is also a consideration for deallocation of nonpaged pool, but for a dif-
ferent reason. Although nonpaged pool can be allocated from fork processes
running at IPL levels up to IPL 11, it cannot be deallocated as a result of an

_interrupt above IPL 7. The reason for limiting the IPL is that nonpaged pool is

a system-wide resource that processes might be waiting for. The deallocation
routine notifies the scheduler that a resource is available. The scheduler in
turn checks whether any processes are waiting for the nonpaged pool re-
source. All of this scheduling must take place at IPL§ _SYNCH, and the in-
terrupt nesting scheme requires that IPL never be lowered below the IPL

~ value at which the current interrupt occurred. This rule dictates that all pool
be deallocated at IPL .7 or lower.

There may be instances where code executing above IPL 7 must deallocate
nonpaged pool. Routine COM$DRVDEALMEM exists for this purpose. This
routine takes the block that is to be deallocated, turns it into a fork block (see
Figure 6-2), and requests an IPL 6 software interrupt. The code that executes
as the fork process (the saved PC in the fork block) simply issues a JMP
to EXE$DEANONPAGED to deallocate the block. However, because
EXE$DEANONPAGED is entered at IPL 6 and not at fork IPL, the synchro-
nized access to the scheduler’s database is preserved. (This technique is simi-
lar to the one used by device drivers that need to interact with the scheduler

~ by declaring ASTs. The attention AST mechanism is briefly described in

Chapter 2 and discussed in greater detail in Chapter 7.)

Granularity of Allocation

‘The allocation routines for both paged and nonpaged pool round the re-

quested size up to the next multiple of 16 bytes to impose a granularity on
both the allocated and unused areas. Because both pool areas are initially
page aligned, this rounding causes every structure allocated from one of the
two system-wide pool areas to be at least quadword aligned.

There is no granularity imposed on the allocation size for the process allo-
cation region. However, the two structures allocated from this pool by the
system (logical name blocks for process logical names and mounted volume
list entries for private volumes) are both an integral number of quadwords

long so that any block allocated from the process allocation region is quad-

word aligned. Also, the smallest possible size of an unallocated block is eight
bytes. Any user-written privileged program that allocates space from the
process allocation region should insure that it requests an integral number of
quadwords to keep this region quadword aligned.

49

Dynamic Memory Allocation

3.2

3.21

50

PREALLOCATED REQUEST PACKETS

While most of the structures found in the nonpaged pool are allocated and
deallocated infrequently, pool is constantly being allocated and deallocated
for I/O request packets and other system data blocks. To avoid the overhead
of searching for blocks of free memory of sufficient size to accommodate
specific request packets, portions of nonpaged pool (called the lookaside lists)
are dedicated to the allocation and deallocation of I/O request packets (IRPs),
small request packets (SRPs), and large request packets (LRPs).

Specifically, at initialization time, a portion of the nonpaged system space
following the main portion of pool is partitioned into three pieces. One piece
is reserved for the IRP list, one is for the LRP list, and one is for the SRP list.
The pieces are then structured into a series of elements. The size of the IRP
list element is determined by the symbol IRP§C_LENGTH. The sizes of the
elements in the LRP and SRP lists are contained in the cells IOC$GL _LRPSIZE
and IOC$GL_SRPSIZE, which are defined in module SYSCOMMON. INIT
determines the values for LRPSIZE and SRPSIZE from SYSBOOT parameters.
In each of the lists, the elements are entered into a doubly linked list (with
the INSQUE instruction) so that the each list is a doubly linked list contain-
ing fixed size list elements.

Allocation from One of the Lookaside Lists

When a routine (such as the $QIO system service) needs an I/O request
packet, it simply issues a REMQUE from the beginning of this list (found
through global label IOC$GL_IRPFL). The SRP and LRP lookaside lists are
located by the global labels IOC$GL_SRPFL and IOC$GL_LRPFL respec-
tively. Only if the list is empty (indicated by the V-bit set in the PSW) would
the more general allocation routine have to be called. Because allocation and
deallocation from the lookaside list are so much more efficient than the gen-
eral routines that allow any size block to be allocated or deallocated, a special
check is built into the general nonpaged pool allocation routine to determine
whether the requested block can be allocated from one of the lookaside lists.
The logic of this routine is approximately the following.

1. The allocation size is rounded up to the next multiple of 16.

2. If the rounded size is greater than the size of an IRP (IRP$C_LENGTH), an
attempt is made to allocate a packet from the LRP list. If the rounded size
is still greater than the size of an LRP, the general allocation routine is
called to search for the first free block large enough to accommodate the
request. If the rounded size is less than the smallest request size for which
an LRP can be allocated (IOC$GL_LRPMIN), the general allocation rou-
tine is called.

3. The cell IOC$GL_IRPMIN indicates the smallest request size that can be

3.2.2

3.2 Preallocated Request Packets

allocated an IRP. If the rounded size is less than IOC$GL_IRPMIN, an
attempt is made to allocate a packet from the SRP list. If the rounded size
is greater than the size of an SRP (IOC$GL_SRPSIZE), the general alloca-
tion routine is called.

4. Once the appropriate lookaside list is found, and if the list is not empty,
the first packet is removed from the list and returned to the caller.

5. If a lookaside list is empty, an attempt is made to extend the list (see
Section 3.3.3.2). If the list is extended, the allocation is attempted again. If
the list cannot be extended, the general allocation routine is called.

Note that because allocation is done with a single instruction, there is no
need for any other synchronization than that provided by the REMQUE in-
struction; however, IPL is raised to IPL§ _SYNCH before determining if the
allocation can be made from one of the lookaside lists or the main portion of
pool (allocation from the main portion does require synchronization). The
other concern of the general allocation routines, the block granularity, is also
irrelevant here because all blocks on the lookaside list are the same size.

Deallocation to the Lookaside List

When the routine to deallocate .a block of nonpaged pool is called, it first
checks whether the block was allocated from the main portion of the pool or
from one of the lookaside lists. The lookaside lists are divided by the follow-
ing symbols, beginning with the smaller addresses:

IOC$GL_LRPSPLIT Boundary between the main part of pool and the
LRP list

EXE$GL_SPLITADR Boundary between the LRP and the IRP list

IOC$GL_SRPSPLIT Boundary between the IRP list and the SRP list

These addresses were determined by INIT when the lookaside lists were
initialized. Figure 3-4 shows the relationship of the lookaside lists to the rest
of nonpaged pool.

The deallocation routine determines the list to which the piece of pool is
being returned by the following steps:

¢ The address of the block being deallocated is compared to the contents of
global location IOC$GL_SRPSPLIT. If the address of the block is greater
than IOC$GL_SRPSPLIT, the block came from the SRP list.

 If the address was less than IOC$GL_SRPSPLIT, the address is compared
to EXE$GL_SPLITADR. If the address is greater, the block came from the
IRP list.

« If the address was less than EXE$GL_SPLITADR, the address is compared
to IOC$GL_LRPSPLIT. If the address is greater, the block came from the
LRP list.

51

Dynamic Memory Allocation

52

1 :!MMG$GL__NPAGEDYM

¢ : :EXESGL_NONPAGED

I0C$GL__LRPBL: : o—

I0C$GL__IRPBL: : @——

|IOC$GL__SRPBL: : —|

Rest of
‘Nonpaged
Pool -+——1o NEXT
SIZE
First
Unused
Block
LRP Lookaside List i R i
N // /X // /W
/I
Room for Expansion of LRP List
IRP Lookaside List Il i I B
-
/W
Room for Expansion of IRP List
. . -] -
SRP Lookaside List -
/’ /’ /l /’
i
A

Figure 3-4

Room for Expansion of SRP List

Preallocated Request Packets

: IOC$GL__LRPSPLIT

\ : 10C$GL_LRPFL

1 :EXE$GL__SPLITADR

\ : I0C$GL__IRPFL

::IOC$GL__SRPSPLIT

\- : :I0C$GL_SRPFL

¢ If the address was less than IOC$GL_LRPSPLIT, the block came from the
main part of pool.

If the block was originally allocated from one of the lookaside lists, it is
returned there by inserting it at the end of the list with an INSQUE instruc-
tion. The ends of the lookaside lists are indicated by the global labels
IOCGL_SRPBL, IOCGL_IRPBL, and IOC$GL_LRPBL. Note that by allo-
cating packets from one end of the list and putting them back at the other
end, a transaction history as long as the list itself is maintained. If the block

3.3

3.3.1

3.3.2

3.3 Use of Dynamic Memory

was originally allocated from the general pool area, the general deallocation
routine is called. The differences between the lookaside list and the general
nonpaged pool are summarized in Table 3-2.

Although the allocation from the lookaside list required no additional syn-
chronization in addition to the REMQUE instruction, deallocation must
be done at IPL 7 or below, because nonpaged pool is a resource whose avail-
ability must be reported to the scheduler, which will elevate IPL to 7. All
deallocation to nonpaged pool is accomplished through the routines
EXE$DEANONPAGED (which should not be called above IPL 7), and
COMS$DRVDEALMEM (which can be called from any IPL).

USE OF DYNAMIC MEMORY

Almost all of the data structures that are dynamically configured are placed
in either the nonpaged or paged pool areas. Only the PEN database, the global
and system page tables, the system header, and the interrupt stack have sepa-
rate virtual address space allocated. Most per-process data structures, on the
other hand, are assigned to dedicated areas of P1 space, as defined in the
module SHELL and illustrated in Figure 1-7 and listed in Table 26-4. One
per-process data structure, the process header, resides in the area of system
space called the balance slot area. ’

Process Allocation Region

The process allocation region is currently 46 pages long. Its size is fixed by an
assembly time parameter in module SHELL. Its protection is set to UREW
(the page protection codes are described in Table 14-1). That is, it can be
written from executive and kernel modes and read from any access mode.
Only the process logical name table and the mounted volume list for private
volumes are found in the process allocation region. There is enough room in
the process allocation region for privileged application software to allocate
reasonably sized process-specific data structures.

Paged Dynamic Memory
The following data structures are located in the paged pool area:

¢ The group and system logical name tables.

* Global section descriptors, Wthh are required only when a section is
mapped or unmapped.

» Data structures required by the Install Utility to descnbe known images.
Any image that is installed has a known file entry created to describe it.

53

12

Table 3-2: Comparison of Different Pool Areas

Pool Area

Nonpaged Pool

Lookaside Lists
SRP

IRP

LRP

Allocation
Quantum

16 bytes

@IOC$GL_SRPSIZE

156 bytes

@IOCS$GL_LRPSIZE

Type of List
(1 and 2)

Variable size

(1)

Fixed size blocks
(2)

Synchronization
Technique

Elevated IPL

None required

Typical Structures
Allocated Here

Buffered I/O buffer (GTRU 96 bytes)
Driver Prolog Table (Driver Structure)
Job Information Block

Network Data Structures

Process Control Block

Process Quota Block

Unit Control Block (Driver Structure)

UonvIo[[y AIOWIN JIWDUA(]

Buffered I/O buffer (LEQU @IOC$GL_IRPMIN bytes)
Channel Request Block (Driver Structure)

Device Data Block (Driver Structure)

File Control Block

Interrupt Dispatch Block (Driver Structure)

Timer Queue Element

Window Control Block

Buffered I/O buffer (GTR @IOC$GL_IRPMIN bytes)
Common Event Block

1/0 Request Packet

Volume Control Block

DECnet buffer

Table 3-2: Comparison of Different Pool Areas (continued)

Allocation Type of List
Pool Area i Quantum (1 and 2)
Paged Pool 16 bytes Variable size
(1)
Process Allocation none Variable size
Region : (1)

Synchronization
Technique

Mutex

Access mode

Typical Structures
Allocated Here

Global Section Descriptors
Known File Entries
Known File Headers
Logical Name Blocks for group
- and system logical names
Mounted Volume List Entry for volumes
mounted /SYSTEM or /GROUP

Logical Name Blocks for
process logical names
Mounted Volume List Entry for private
- volumes (/SHARE OR /NOSHARE)

(1) The lookaside list has extremely efficient (single instruction) allocation and deallocation routines. Because the blocks are fixed size, internal
fragmentation (unused space within individual blocks) can result.
(2) The general pool areas allow variable sized allocation requests (and contain variable sized empty areas). The allocation and deallocation routines
must search at least a portion of the empty list. External fragmentation (unused blocks equal to the allocation quantum) near the beginning of

the list can result from this type of allocation scheme.

SS

A1owaN oTIIDUA(T O 9S[] €€

Dynamic Memory Allocation

333

33.3.1

56

Some frequently accessed known images also have their image headers
permanently resident. These data structures are described in more detail in
Chapter 21.

» The mounted volume list for volumes shared among several processes.

The size of paged dynamic memory is determined by the SYSBOOT parame-
ter PAGEDYN. Its protection is set to URKW. The pages of paged dynamic
memory used by RMS for the shared file database have their protection al-
tered to EW (either read or write access from executive or kernel mode) by
RMSSHARE, the image that executes as part of STARTUP.COM to initialize
the shared file database. -

Nonpaged Dynamic Memory

Nonpaged pool serves several purposes. At initialization time, data structures
whose size and contents depend on SYSBOOT parameters will be allocated
from nonpaged pool and initialized. These structures include the PCB vector
and sequence vector, the swapper’s I/O page table, the page file bitmap, modi-
fied page writer arrays, and the adapter control blocks for all external adapters
located at bootstrap time. The detailed use of nonpaged pool by the initializa-
tion routines is described in Chapter 25.

A second general, somewhat static use of nonpaged pool is to contain de-
vice driver code and associated data structures for all devices that are either
located through the autoconfigure phase of SYSGEN or explicitly loaded with
the SYSGEN commands LOAD or CONNECT. The details of these struc-
tures are described in the VAX/VMS Guide to Writing a Device Driver.

The Sizes of Nonpaged Dynamic Memory Regions. The sizes of the variable
nonpaged pool and the lookaside lists are determined by SYSBOOT parame-
ters. Nonpaged dynamic memory differs from the paged dynamic area (and
the process allocation area) in that it is potentially extensible during normal
system operation (see Section 3.3.3.2). For each of the four regions of non-
paged pool there exist two SYSBOOT parameters, one to specify the initial
size of the region, and another to specify the maximum size of the region.
The size in bytes of the variable length region of nonpaged pool is con-
trolled by the SYSBOOT parameters NPAGEDYN and NPAGEVIR, both of
which are rounded down to an integral number of pages. During system ini-
tialization, sufficient contiguous system page table entries (SPTEs) are allo-
cated for the maximum size of the region (the larger of NPAGEDYN and
NPAGEVIR). Physical pages of memory are allocated for the initial size of the
region and are mapped using the first portion of allocated SPTEs. The protec-
tion of the valid pages is ERKW. The remaining SPTEs are left invalid. SPTEs
and other memory management data structures are described in Chapter 14.

3.3.3.2

3.3 Use of Dynamic Memory

‘Table 3-3; SYSBOOT Parameters Controlling Lookaside List Sizes

List Type Size of Packet . - Initial Count Maximum Count
-IRP 160 i IRPCOUNT - IRPCOUNTV -
SRP SRPSIZE - SRPCOUNT SRPCOUNTV

- LRP. LRPSIZE+64 LRPCOUNT LRPCOUNTV

During system operation, failure to allocate from the variable nonpaged
pool region will result in an attempted expansion of the region, with physical
page(s) allocated to fill in the next invalid SPTE(s). The deallocation merge

‘'strategy described in Section 3.2.2 requires that the newly extended nonpaged

dynamic area be virtually contiguous with the existing area and that the four

regions be adjacent. It is because of these restrictions that the maximum
‘number of SPTEs are allocated for each reglon even if some of them are

initially unused. ~

The lookaside lists are allocated during system initialization in the same
manner as the variable length region. Table 3-3 lists the SYSBOOT parame-
ters for each lookaside list. In each case, the initial count and maximum
count are maximized. SRPSIZE is rounded up to a 16-byte boundary, and the
maximum size in bytes of the SRP lookaside list is rounded up to a page

- boundary. The value 64 is added to LRPSIZE and the sum is rounded up to a
- 16-byte boundary, and the maximum size in bytes of the LRP lookaside list

region is rounded up to a page boundary.

The parameter LRPSIZE is intended to be the DECnet buffer size, excluswe
of a 64-byte internal buffer header. (Note that the output of SHOW MEM-
ORY displays the inclusive packet size.)

Dynamic nonpaged pool expansion enables automatic system tuning. The
penalty for setting an inadequate initial allocation size is the increased over-
head encountered in allocating requests that cause expansion. An additional
minor physical penalty is that unnecessary PFN database is built for those
physical pages that are subsequently added to nonpaged pool as a result of
expansion. The cost is about four percent of the size of the page (18 bytes) per
added page. The penalty for a maximum allocation that is too large is one
SPTE for each unused page, or less than one percent. If the maximum size of
a lookaside list is too small, system performance may be adversely affected
when the system is prevented from using the lookaside mechanism for pool
requests. If the maximum size of the variable length region is too small,
processes may be placed into the MWAIT state, waiting for nonpaged pool to
become available.

Expansion of Nonpaged Dynamic Pool. When routine EXESALONONPAGED
(in module MEMORYALC) fails to allocate nonpaged pool from any of the

57

Dynamic Memory Allocation

58

four regions, it attempts to expand nonpaged pool by invoking the routine
EXE$EXTENDPOOL (found in module MEMORYALC).

EXE$EXTENDPOOL examines each lookaside list in turn. If a list is empty
and is not at its maximum size, EXESEXTENDPOOL attempts to allocate a
page of physical memory. First a check is made to see if a physical page can be
allocated without reducing the number of physical pages available to the
system, that is, sufficient pages to accommodate the sum of the maximum
working set size, the modified list low limit, and the free list low limit. If a
page can be allocated, EXESEXTENDPOOL places its page frame number
(PEN) in the first invalid SPTE for that list, setting the valid bit. The new
virtual page and any fragment from the previous virtual page are formatted
into packets of the appropriate size and placed on the list. EXESEXTENDPOOL
records the size and address of any fragment left from the new page.

If EXE$EXTENDPOOL was called due to a failure to allocate space from
the variable length region, EXE$EXTENDPOOL attempts to expand the re-
gion by a page and reports that the resource RSN$_NPAGEDYN is available
for any waiting processes. (See Chapter 10 for more information on schedul-
ing and event reporting.)

For proper synchronization of system databases, the resource availability
report and the allocation of physical memory must not be done from a thread
of execution running as the result of an interrupt above IPL 7. For this reason,
EXE$EXTENDPOOL checks to see whether it has been entered in system
context (that is, on the interrupt stack) as the result of attempted pool alloca-
tion from a device driver. If the interrupt stack bit in the PSL is set,
EXE$EXTENDPOOL creates an IPL 6 fork process to expand the lists at some
later time when IPL drops below 6 and returns an allocation failure status to
its invoker.

PART II/Control Mechanisms

4.1

Condition Handling

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

. —Lewis Carroll, Alice’s Adventures in Wonderland

One of the design goals of the VAX architecture was a generalized uniform
condition handling facility for both hardware-detected exceptions and soft-
ware-generated conditions. In addition to making this facility available to
users, the VAX/VMS operating system uses many of the features of the condi-
tion handling facility for its own purposes.

OVERVIEW OF THE CONDITION HANDLING FACILITY

The generalized condition handling facility that is included as part of the
VAX architecture provides users and the system with a powerful tool in han-
dling exceptional conditions that arise during normal program execution. In
addition, software-detected conditions (not necessarily indicating an error)
can be passed to the operating system to allow them to be handled in exactly
the same manner as hardware-detected exceptions.

The options that are available to user programs to allow them to use the
features of the VAX-11 condition handling facility are described in the
VAX/VMS System Services Reference Manual and the VAX-11 Run-Time
Library Reference Manual. This chapter discusses how the tools described in
those two manuals actually implement their features.

Goals of the VAX-11 Condition Handling Facility

Some of the goals of the VAX-11 condition handling facility reflect goals of
the VAX-11 procedure calling standard. Other goals reflect the desire to place
an easy-to-use, general purpose mechanism into the operating system so that
application programs and other layered products such as compilers can use
this mechanism rather than inventing their own application-specific tools.
Some of the explicit and implicit goals of the VAX-11 condition handling
facility are the following.

1. The condition handling facility should be included in the base machine
architecture so that it is available as a part of the base machine and not as
part of some software component. The space reserved for condition han-
dler addresses in the first longword of ‘the call frame accomplishes this
goal. '

61

Condition Handling

4.1.2

62

2.

By including the handler specification as a part of the call frame, signal
handling is an integral part of a procedure, rather than a global facility
within a process. Including the handler specification as part of the call
frame contributes to the general goal of modular procedures and allows
condition handlers to be nested. The nested inner handlers can either serv-
ice a detected exception or pass it along to some outer handler in the
calling hierarchy.

. Some languages such as BASIC and PL/I have signaling and error handling

as part of the language specification. These languages can use the general
mechanism rather than inventing their own procedures.

. There should be little or no cost to procedures that do not establish han-

dlers. Further, procedures that do establish handlers should incur little
overhead for establishing them, with the expense in time being incurred
when an error actually occurs.

. As far as the user or application programmer is concerned, there should be

no difference in the appearance of exceptions initially detected by the
hardware and signals generated by software.

Features of the VAX-11 Condition Handling Facility

Some of the features of the VAX-11 condition handling facility show how
these goals were attained. Others show the general desire to produce an easy-
to-use but general condition handling mechanism. Features of the VAX-11
condition handling facility include the following.

1.

A condition handler has three options available to it. The handler can fix
the condition (continuing). The handler may not be capable of fixing the
condition, so it passes the condition on to the next handler in the calling
hierarchy (resignaling). The handler can alter the flow of control (unwind-
ing the call stack).
Because condition handlers are themselves procedures, each has its own
call frame with its own slot for a condition handler address. This condition
handler address gives handlers the ability to establish their own handlers
to field errors that they might cause.
The goals related to cost in space and time were realized by using only a
single longword per procedure activation for handler address storage.
There is no cost in time for procedures that do not establish handlers.
Procedures that do establish handlers can do so with a single MOVAx
instruction. No time is spent looking for condition handlers until a signal
is actually generated.
The mechanism is designed to work even if a condition handler is written
in a language that does not produce reentrant code. Thus, if a condition
handler written in FORTRAN generated an error, that error would not be
reported to the same handler.

In fact, the special actions that are taken if multiple signals are active

4.2

4.2.1

4.2 Generation of Exceptions

have a second benefit, namely that no condition handler has to worry
about errors that it generates, because a handler would never be called in
response to its own signals.

5. Uniform exception dispatching for hardware and software exceptions is
accomplished by providing parallel mechanisms for the two forms of ex-
ceptions. Software-detected exceptions are generated by calling a proce-
dure in the Run-Time Library. Hardware exceptions transfer control to an
exception dispatcher in the executive. While the initial execution of these
two mechanisms differs slightly to reflect their differing initial conditions,
they eventually execute identical instruction sequences so that the infor-
mation reported to condition handlers is independent of the initial detec-
tion mechanism.

6. By making condition handling a part of a procedure, high level languages
can establish handlers that can examine a given signal and determine
whether the signal was generated as a part of that language’s support li-
brary. If so, the handler can attempt to fix the error in the manner defined
by the language. If not, the handler passes the signal along to procedures
further up the call stack.

GENERATION OF EXCEPTIONS

One way of classifying the conditions that occur in a running VAX/VMS
system is to separate those conditions that originate in the VAX-11 hardware
from those that are initiated by software. The primary differences between
the two sets of initial conditions are the initial state of the stack that con-
tains the exception parameters and the location of the routine that performs
the dispatching.

Exceptions That Originate in the Hardware

When an exception is detected by the hardware, the exception PC and PSL
(and possible exception-specific parameters) are pushed onto the appropriate
stack. The appropriate stack is determined by the access mode in which the
exception occurred and whether the CPU was previously executing on the
interrupt stack.

* If the exception occurred in any mode other than kernel and the exception
was not a CHMU, CHMS, or CHME exception, the kernel stack is used.
(The interrupt stack is not a consideration in this case because it is impos-
sible to be on the interrupt stack in other than kernel mode.)

* If the exception occurred in kernel mode and the kernel stack was in use,
the kernel stack is also used as the exception stack.

« If the exception occurred in kernel mode and the interrupt stack was in
use, the interrupt stack is used as the exception stack. The VMS system

63

Condition Handling

64

does not expect exceptions to occur when it is operating on the interrupt
stack. If an exception should occur on the interrupt stack, the exception
dispatcher generates a VMS-requested system crash called a bugcheck (see
Chapter 8) with a BUG$_INVEXCEPTN code.

- The actual stack {interrupt or kernel) that is used to service an exception
or interrupt is determined by the low-order two bits in the system control
block (SCB) entry and whether the interrupt stack is already in use. These
rules reflect the behavior of the VMS executive, where exceptions are asso-
ciated with a process and serviced on that process’s kernel stack (because
the low-order two bits in the SCB entry are zero). The interrupt stack is
only used if it was already in use when the exception occurred. Note that
two serious aborts (machine check and kernel stack not valid), exceptions
that also change IPL to 31, are serviced on the interrupt stack by the sys-
tem. ‘

After all of the exception information has been pushed onto the stack,
control is then passed to an exception-specific service routine whose ad-
dress is stored in the SCB (see Figure 4-1). The use of the first twenty

System Control Block

\\o :PR$__SCBB
Exceptions (20)
The System Control Block
Base Register (SCBB)
Processor Faults (12) contains the physical

address of the page-
aligned System Control
Block (SCB).

Software Interrupts (16)

Clock and Console (16)

EXE$GL_SCB

The system virtual address
of the SCB is stored

External Adapter in global location EXE$GL__SCB.

Interrupts

The VAX-11/730 and VAX-11/750 system control
-+ block is two pages long: The second page is used

for directly vectored UNIBUS device interrupts.

The system control block in a VAX-11/750

with a second UNIBUS is three pages long.

The VAX-11/780 system control block is one
page long.

Figure 4-1
System Control Block

4.2.1.1

4.2 Generation of Exceptions

locations of this table are listed in Table 4-1. Most of the exceptions that
are listed in this table are handled in a uniform way by the operating sys-
tem. The actions that the VMS executive takes in response to these excep-
tions are the subject of most of this chapter. Some of the exceptions, how-
ever, result in special action on the part of the operating system. These
exceptions are discussed in the paragraphs that follow and are indicated in
Table 4-1 by an asterisk.

Exceptions That the VMS Executive Treats in a Special Way. Although the
operating system provides uniform handling of most exceptions generated by
users, several possible exceptions are used as entry points into privileged
system procedures. Other exceptions can only be acted upon by the execu-
tive. It makes no sense for these procedures to pass information about the
exceptions along to user’s programs.

1.

The machine check exception is a processor-specific condition that may or
may not be recoverable. The machine check exceptlon service routine is
discussed in Chapter 8.

A kernel-stack-not-valid exception indicates that the kernel stack was not
valid while the processor was pushing information onto the stack during
the initiation of an exception or interrupt. The exception service routine
for this exception generates a fatal bugcheck with a BUG$ _KRNLSTAKNV
code.

. The powerfail entry point that appears as one of the first twenty entries in

the SCB is not an exception. Because a power fluctuation occurs
asynchronously with respect to the currently executing instruction
stream, it is actually an interrupt. The fact that powerfail is an interrupt,
with an associated IPL, implies that the powerfail interrupt can be blocked
simply by raising IPL to 30 or 31. The steps that the VMS system takes in
response to power failure as well as on power recovery are described in
Chapter 27.

. The translation-not-valid exception is a signal that a reference was made

to a virtual address that is not currently mapped to physical memory. The
page fault handler that is invoked in response to this exception is dis-
cussed in detail in Chapter 15.

. The change-mode-to-kernel and change-mode-to-executive exceptions are

the mechanisms used by the VMS system services and by RMS to reach a
more privileged access mode. The dispatching scheme for system services
and RMS calls is described in Chapter 9.

The last two exceptions in the list (the two change mode exceptions) are
paths into the operating system that allow nonprivileged users to reach a
privileged access mode in a controlled fashion.

65

99

Table 4-1: Use of First 20 Locations in System Control Block

Byte Offset
from SCB Base

0

4

8
12
16
20
24
28
32
36
40
44
48
52

Exception Name

Unused

*Machine Check

*Kernel Stack Not Valid
*Powerfail

Reserved/Privileged Instruction
Customer Reserved Instruction
Reserved Operand

Reserved Addressing Mode
Access Violation

*Translation Not Valid

Trace Pending

BPT Instruction

Compatibility Mode
Arithmetic

Extra
Parameters

Z
Q
o
o
—

—— OO0OMNMDNMNMNOOOOOO

Type (Abort,
Fault, Trap)

Note 1
Abort
Interrupt
Fault

Fault
Abort/Fault
Fault

Fault

Fault

Fault

Fault
Abort/Fault
Fault/Trap

Notes on VMS
Dispatching

Note 1 .
Note 2
Note 3

Note 4
Note 5
Note 5

Comments

(See Chapter 8.
IPL=31, Interrupt Stack
IPL=30 (See Chapter 27.)

XFC Instruction

(See Chapter 14.)

VMS modifies code
(See Table 4-3.)

Surjpuvg uonIPUO))

L9

Table 4-1: Use of First 20 Locations in System Control Block (continued)

Byte Offset Exception Name Extra Type (Abort, Notes on VMS Comments

from SCB Base : ’ Parameters Fault, Trap) Dispatching

56 Unused

60 Unused

64 *CHMK 1 Trap Note 6 Uses Kernel Stack

(See Chapter 9.

68 *CHME ‘ 1 Trap Note 6 Uses Executive Stack
k (See Chapter 9.)

72 CHMS ' 1 Trap , Uses Supervisor Stack

76 CHMU 1 Trap Uses User Stack

*These exceptions result in special action on the part of the operating system.

(1) The machine check exception indicates a processor-detected internal error. Machine checks in executive and kernel mode cause bugchecks.
Machine checks in supervisor and user-mode are reported through the normal exception dispatch method.

(2) The exception service routine for the kernel-stack-not-valid abort issues a bugcheck.

(3) Powerfail causes an interrupt that passes control to the powerfail handler.

(4) The translation-not-valid fault is the entry path into the paging facility in VMS.

(5) If executive debugging (XDELTA) is selected at SYSBOOT time, the exception vectors for BPT and trace pending are altered to point into
XDELTA fault handlers (see Chapter 25).

(6) The change-mode-to-kernel and change-mode-to-executive traps are the entry paths into system service and RMS procedures.

suondaoxy fo uonvIouds) gy

Condition Handling

4.2.1.2 Other Hardware Exceptions. The rest of the exceptions detected by hardware
are handled uniformly by their exception service routines. These exceptions
are all reported to condition handlers established by the user or by the sys-
tem, rather than resulting in special system action such as occurs following a
change-mode-to-kernel exception or a translation-not-valid fault (page fault).
When a hardware-detected exception occurs, the PSL and PC at the time of
the exception are pushed onto the stack. The usual stack that is used is the
kernel stack but the CHMx exceptions use the stack of the destination mode.
For example, a CHMS exception pushes the PC and PSL of the exception onto
the supervisor stack. Note that a CHMx instruction issued from an inner
access mode in an attempt to reach a less privileged (outer) access mode will
not have the desired effect. The mode indicated by the instruction is mini-
mized with the current access mode to determine the actual access mode
that will be used. For example, a CHMS instruction issued from kernel mode
will generate an exception through the correct SCB vector (the one for
CHMS), but the final access mode will still be kernel. In other words, as
illustrated in Figure 1-4, the CHMx instructions can only reach equal or more
privileged access modes. ‘
The PC that is pushed depends on the nature of the exception, that is,
whether the exception is a fault, a trap, or an abort.

» Exceptions that are faults (see Table 4-1) cause the PC of the faulting in-
struction to be pushed onto the stack. When faults are dismissed with an
REI instruction, the faulting instruction will execute again.

» Exceptions that are traps (see Table 4-1) push the PC of the next instruc-
tion onto the destination stack. Instructions that cause traps do not
reexecute when the exception is dismissed with an REI instruction.

* A third class of exception, an abort, causes a PC in the middle of the in-
struction to be pushed onto the stack. Aborts are not restartable. Some
aborts also raise IPL to 31, blocking all other activity on the system. IPL is
usually not affected when exceptions occur. Independence from IPL is one
of the features that distinguishes exceptions from interrupts. Exceptions
that are aborts include kernel-stack-not-valid, some machine check codes,
and some reserved operand exceptions.

For all exceptions that will eventually be reported to condition handlers,
the hardware has pushed a PC/PSL pair onto the destination stack. In addi-
tion, from zero to two exception-specific parameters are pushed onto the
destination stack (see Table 4-1). Finally, the hardware passes control to
the exception service routine whose address VMS placed into the SCB
when the system was initialized. k

4.2.1.3 Initial Action of Exception Service Routines. These exception service rou-
tines all perform approximately the same action. The exception name (of the

68

4.2 Generation of Exceptions

form SS$_exception-name) and the total number of exception parameters
(from the exception name to the saved PSL inclusive) are pushed onto the
stack so that the destination stack now contains a list, called the signal array,
that resembles a VAX-11 argument list used by the CALLXx instructions (see
Figure 4-2). The exceptions that the operating system handles in this uniform
way, including their names and total number of signal array elements, are
listed in Table 4-2. '

After the VMS system has built this array, control is passed to a general
exception dispatcher that must locate any condition handlers that have been
established in the access mode of the exception. The search method and the
list of information passed to condition handlers is described in Section 4.3
below. :

All hardware exceptions (except for CHME, CHMS, and CHMU| are ini-
tially reported on the kernel stack (assuming the processor is not already on
the interrupt stack). In addition, the hardware exception reporting mecha-
nism assumes that the kernel stack is valid. The decision to use the kernel
stack was made to avoid the case of attempting to report an exception on, for
example, the user stack, only to find that the user stack is corrupted in some
way (invalid or otherwise inaccessible), resulting in another exception. If a
kernel-stack-not-valid exception is generated while reporting an exception,
the operating system causes a fatal bugcheck to occur.

However, the exception must eventually be reported back to the access
mode in which the exception occurred. Before the dispatcher begins its
search, it creates space on the stack of the mode in which the exception
occurred. The exception parameter lists are then copied to that stack, where
they will become the argument list that is passed to condition handlers.

N
Pushed N is the number of longwords from
by software SS$__exception-name to the exception
SS$__exception-name PSL. It ranges from 3 to 5.
P From 0 to 2 »
2~ Exception-Specific ~—~
Parameters (Table 4-1)
Arguments are pushed onto the kernel
- Pushed stack except for CHMS and CHMU
" Exception PC by hardware exceptions where the supervisor or
user stack is used.
Exception PSL J

 Figure 4-2
Signal Array Built by Hardware and Exception Routines

69

0L

Table 4-2: Exceptions That Use the Dispatcher in Module EXCEPTION

Exception Name

Access Violation

Arithmetic Exception

AST Delivery Stack Fault
(Software exception)

BPT Instruction
Change Mode to Supervisor

Change Mode to User
Compatibility Mode
Debug Signal

(Software exception)
Machine Check
Customer Reserved Instruction
Reserved/Privileged Instruction

Name in
Signal Array

SS$_ACCVIO

(See Table 4-3.)

SS$_ASTFLT

SS$_BREAK
S_CMODSUPR

§S$_CMODUSER
SS$_COMPAT
SS$_DEBUG

§S$_MCHECK
§S$_OPCCUS
SS$_OPCDEC

Notes on VMS
Dispatching
(Section 4.2.1.4)

Item 1

Item 2

Item 3c

Item 4
Item 4
Item 4
Item 3

Item 5

Size of
Signal Array

W A B BRw

@w W

Extra Parameters

in Signal Array

(Note 1)

Signal (2) = Reason Mask

Signal (3) = Inaccessible Virtual Address
Note 2

Surpuvy uonIpuo)

Signal (2) = SP Value at Fault

Signal (3) = AST Parameter of failed AST

(Note 3)

Signal (4) = PC at AST delivery interrupt

Signal (5) = PSL at AST delivery interrupt

Signal (6) = PC to which AST would have
been delivered

Signal (7) = PSL at which AST would have
been delivered

Signal (2) = Change mode code
Signal (2) = Change mode code
Signal (2) = Compatibility exception code

Note 4

I

Table 4-2: Exceptions That Use the Dispatcher in Module EXCEPTION (continued)

Exception Name Name in '~ Notes on VMS Size of Extra Parameters
_Signal Array Dispatching Signal Array in Signal Array
‘ ' (Section 4.2.1.4) (Note 1)
Page Fault Read Error SS$_PAGRDERR Item 3b , 5 Signal (2) = Reason Mask
(Software exception) v Signal (3) = Inaccessible Virtual Address
Reserved Addressing Mode SS$_RADRMOD 3
Reserved Operand ' SS$_ROPRAND ‘ 3
System Service Failure SS$_SSFAIL Item 3a 4 Signal (2) = System service final status
(Software exception)
Trace Pending SS$_TBIT 3

(1) Additional parameters in the signal array are represented in the following way.
Signal (0) = N Number of additional longwords in 31gnal array

Signal (1) Exception name
Signal (2) First additional parameter

Signal (3) Second additional parameter

Signal (N — 1) Exception PC
Signal (N} Exception PSL

(2] The arithmetic exception has no extra parameters, despite the fact that the hardware pushes an exception code onto the kernel stack. VMS
modifies this hardware code into an exception-specific exception name (see Table 4-3).
Signal (1) = 8 * code + SS$_ARTRES

(3) The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would have been delivered.

(4) Machine check exceptions that are reported to a process do not have any extra parameters in the signal array. The machme check parameters have
been examined, written to the error log, and discarded by the machine check handler (see Chapter 8).

suonydaoxy fo UONIDIAUIS) Z'p

Condition Handling

4.2.1.4

72

More Special Cases in Exception Dispatching. Although the procedure de-
scribed above is a reasonable approximation to the operation of the exception
service routines in the operating system, there are detailed differences that
occur in the dispatching of several exceptions that deserve special mention.
These special cases are listed here.

1. User Stack Overflow is detected by the hardware as an access violation at
the low address end of P1 space. The access violation fault handler tests
whether the inaccessible virtual address is at the low end of P1 space. If it
is, the stack is expanded and the exception dismissed. User and system
condition handlers would only be notified about such an exception if the
stack expansion were unsuccessful.

2. There are ten possible arithmetic exceptions that can occur. They are dis-

-tinguished in the hardware by different exception parameters. However,
the exception service routine does not simply push a generic exception
‘name onto the stack, resulting in a four-parameter signal array. Rather, the
exception parameter is used by the exception service routine to fashion a
unique exception name for each of the possible arithmetic exceptions. The
exception parameters and their associated signal names are listed in Table
4-3. »

3. There are three exceptions listed in Table 4-2 that are detected by software
rather than by hardware. However, these conditions are not generated by
LIB$SIGNAL. Rather, they are detected by the executive, and control is
passed to the same routines that are used for dispatching hardware-
detected exceptions. The conditions are dispatched through the executive,
because they are typically detected in kernel mode but must be reported
back to some other access mode. The code to accomplish this access mode
_switch is contained in EXCEPTION. LIB$SIGNAL has no corresponding
function. The three exceptions that fall into this category are system serv-
ice failure exceptions, page fault read errors, and insufficient stack space
while attempting to deliver an AST.

¢ The SS$_SSFAIL exception is reported when a process has enabled sys-
- tem service failure exceptions and a system service returns unsuccess-
fully with a status of either STSSK_ERROR or STS$K_SEVERE.

» The SS§_PAGRDERR exception is reported when a process incurs a
page fault for a page on which a read error occurred in response to a
previous page fault.

o The SS$_ASTFLT exception is reported when an inaccessible stack is
detected while attempting to deliver an AST to a process.

A fourth software-detected exception is listed in Table 4-2 although it
does not have a global entry point in module EXCEPTION. The signal
SS$_DEBUG is generated by either the DCL or MCR command language
interpreter in response to a DEBUG command while an image exists in an

4.2 Generation of Exceptions

Table 4-3: Signal Names for Arithmetic Exceptions

Exception Type * Code Pushed Resulting Exception. Notes
. by Hardware Reported by VMS
Traps ’
Integer Overflow 1 SS$_INTOVF 1
Integer Divide by Zero 2 SS$_INTDIV
Floating Overflow 3 SS§_FLTOVF 3
Floating/Decimal.
Divide by Zero 4 SS$_FLTDIV 3
Floating Underflow 5 SS$_FLTUND 2,3
~ Decimal Overflow 6 SS$_DECOVF , 1
Subscript Range 7 SS$_SUBRNG
_ Faults
Floating Overflow 8 SS$_FLTOVEF_F 3
Floating Divide by Zero - 9 SS§_FLTDIV_F 3
Floating Underflow 10 SS$_FLTUND_F 3

(1) Integer overflow enable and decimal overflow enable bits in the PSW can be al-
tered either directly or through the procedure entry mask.

(2) The floating underflow enable bit in the PSW can only be altered directly. There is
no corresponding bit in the procedure entry mask.

(3) On the VAX-11/730 and VAX-11/750, these three floating point exceptions are
faults. On the VAX-11/780 earlier than microcode revision (rev) level 7, they are
traps. Rev level 7 ECO changes them to faults.

interrupted state. The DEBUG command processor pushes the PC and PSL
of the interrupted image, the exception name (SS$_DEBUG), and the size
of the signal array (3) onto the supervisor stack and jumps to
EXE$REFLECT, a global entry address in module EXCEPTION.

The reason that a CLI uses this mechanism for the DEBUG signal rather
than simply calling LIB§SIGNAL is that the DEBUG command is issued
while in supervisor mode but the exception has to be reported back to user
mode. Reporting information back to user mode involves moving the excep-
tion parameters from one stack to another (a function that does not exist
in LIB$SIGNAL but does exist in EXCEPTION), because most hardware-
detected exceptions are reported on the kernel stack.

4. The exception dispatching for the CHMS and CHMU exceptions and for
compatibility mode exceptions can be short-circuited by use of the De-
clare Change Mode or. Compatibility Mode Handler system service. When
this system service is executed, one of three longword locations in the P1

. pointer page (see Appendix A) is loaded with the address of the handler
passed as a parameter to the system service.

73

Condition Handling

422

42.2.1

74

When the dispatcher for the change-mode-to-supervisor or change-
mode-to-user exception finds nonzero contents in the associated longword
in P1 space, it transfers control to the routine whose address is stored in
that location with the exception stack (supervisor or user) in exactly the
same state it was in following the exception. That is, the change mode
code is on the top of the stack, and the exception PC and exception PSL
occupy the next two longwords.

The dispatcher for compatibility mode exceptions transfers control to
the user-declared compatibility mode handler (if one was declared) with
the user stack in the same state it was before the compatibility mode
exception occurred. That is, no parameters are passed to the compatibility
mode handler on the user stack. The compatibility mode code, the excep-
tion PC and PSL, and the contents of RO through R6 are saved in the first
ten longwords of the compatibility mode context page in P1 space at global
location CTLSAL_CMCNTX (see Appendix A).

5. The reserved instruction fault is generated whenever an unrecognized op-
code is detected by the instruction decoder. The same exception is gener-
ated when a privileged instruction is executed from other than kernel
mode.

VMS uses this fault as a path into the operating system crash code called
the bugcheck mechanism. Opcode FF, followed by FE or FD, tells the re-
served instruction exception service routine that the exception is actually
a bugcheck. Control is passed to the bugcheck routine that is described in
Chapter 8.

Exceptions Detected by Software

One of the goals of the design of the VAX architecture was to have a common
condition handling facility for both hardware-detected and software-detected
conditions. The dispatching for conditions that are initially detected by the
hardware (and for four special software-detected exceptions) is performed by
the routines in the executive module EXCEPTION. The Run-Time Library
procedure called LIB§SIGNAL provides a similar capability to any user of a
VAX/VMS system.

Passing Status from a Procedure. There are usually two methods available
for a procedure to indicate to its caller whether it completed successfully.
One method is to indicate a return status in RO. The other is the signaling
mechanism. The signaling mechanism involves a call to the VAX-11 Run-
Time Library procedure LIB§SIGNAL to initiate a sequence of events exactly
like those that occur in response to a hardware-detected exception. One of

4.2.2.2

4.3

4.3 Uniform Exception Dispatching

the choices that must be made when designing a modular procedure is the
method for reporting exceptional conditions back to the caller.

There are two reasons why signaling may be chosen over completion sta-
tus. In some procedures, such as the mathematics procedures in the Run-
Time Library, RO is already used for another purpose, namely the return of a
function value, and is therefore unavailable for error return status. In this
case, the procedure must use the signaling mechanism to indicate excep-
tional conditions, such as an attempt to take the square root of a negative
number.

The second common use of signaling occurs in an application that is using
an indeterminate number of procedure calls to perform some action, such as
a recursive procedure that parses a command line, where the use of a return
status is often cumbersome and difficult to code. In this case, the VAX-11
signaling mechanism provides a graceful way not only to indicate that an
error has occurred but also to return control (through SYSSUNWIND) to a
known alternate return point in the calling hierarchy.

Initial Operation of LIB§SIGNAL. When the procedure that detects an error
wishes to signal it, the procedure calls LIB§SIGNAL with the name of the
exception and whatever additional parameters it wishes to pass to the condi-
tion handlers that have been established by the user and by the system. The
state of the stack following a call to LIB§SIGNAL is pictured in Figure 4-3.

Before LIB§SIGNAL begins its search for condition handlers, it removes the
call frame (and possibly the argument list) from the stack. Removing the call
frame causes the stack to appear almost exactly the same to LIBSSIGNAL as
it does to EXCEPTION following a hardware exception (see Figure 4-3). After
building the exception argument list, LIBSSIGNAL uses the routines in EX-
CEPTION to search for condition handlers. The only difference between this
procedure and the code contained in the executive is that no stack switch is
required here. The search for condition handlers takes place on the stack of
the caller of LIB§SIGNAL.

UNIFORM EXCEPTION DISPATCHING

Once information concerning the exception has been pushed onto the stack,
the differences between hardware and software exceptions are no longer im-
portant. In the following discussion, the operation of exception dispatching
will be discussed in general terms and explicit mention of EXCEPTION or
LIB$SIGNAL will only be made where they depart from each other in their
operation. '
Before the search for a condition handler begins, the exception dispatcher
must build a second data structure on the stack that will be used to report the

75

9L

State of the stack immediately
after the CALLS to LIB$SIGNAL

0 = No condition handler

Register Save Saved® PSW| ™\

CALLS, then the argument list is
“copied from elsewhere to the
signal array. The rest of the

call frame is discarded
. in the same fashion.

Figure 4-3
Removal of Call Frame by LIB§SIGNAL

The call frame is discarded before
handlers are called.
Saved PSW = low 16
(1) bits of PSL in signal
array
@ Saved AP—AP

@ Saved FP—FP

State of the stack after
LIB$SIGNAL has removed
‘the call frame

call and push
of argument list

Mask, etc. N i
| N Saved PC—signal array . Mechanism array
- o) . will go here
Saved AP @ Call ™~ M is the size of the :
frame for > ~/ argument list. Signal/St "
~ LIBSSIGNAL > (G Nis the size of the 1 = LIBSSIGNAL 2 ~ LIBSSTOP
Saved FP @ or LIBSSTOP / signal array (N = M+2). d
. 1 /" Exitfrom LIBSSIGNAL with___—"" @n)
- / .
Saved PC)3\ // REI and not FiE"I; -
- SN _—~=""" The argument list is 32-bit Status Code
p 0..3 Stack Alignment Ly, %\\/—’ shifted up 8 bytes (Signal Name)
“1 Bytes J/ P {tr,;) AN to make room for the
~ \‘\0% N PCIPSL pair so
Gm NN that hardware and
\\‘(_,,/‘ software signal arrays
® 5\ look th X
4201t Status Cod N\ the same _ Additional Arguments Signal
-bit Status Code \\ 0 \\ L (If Any) Passed L | array
(Signal Name) N PN 4 toLIBSSIGNAL - A > passedto
NC%, N or LIBSSTOP condition
Argument list \\9’77@ N, : handlers
. passed to . 'b,%
Additional Arguments f LIBSSIGNAL or N %,
‘ , LIBSSTOP %
(If Any) Passed |] NCe
A to LIB$SIGNAL = />\ % PC of Instruction
(or LIB§STOP o N Following CALLx
" PSL that Existed
T Before CALLx @
//
A J
If CALLG instead of —— Value of SP before >

Surypuvy uonIpuUo)

4.3.1

4.3 Uniform Exception Dispatching

2
Address of _
Signal Array
Address 6f
Mechanism Array
4 <
These two longwords are FP of Establisher Frame
used and modified by
handler search procedure. Depth Argument
Because the VAX-11 calling Saved RO
standard dictates that ave Condition handlers can pass
RO and R1 are not saved status back to mainline code
across calls, they must be Saved R1 by modifying saved RO (and R1).
preserved in some other way.
Signal/Stop Code
1 =LIB$SIGNAL; 2 =LIB$STOP
e < .
Exception generated by N Argument count (N) is the
call to LIB§SIGNAL or number of longwords in a signal
LIB$STOP. The argument . . array (N= 3).
list is passed by call to Exception or Signal Name
LIB$SIGNAL or LIB$STOP. N
The PC and PSL are added Additional exception parameters
before handlers are called. P pushed by hardware or > Exception dispatcined through
See Figure 4-3. - additional arguments passed to hardware dispatcher. Parameters
‘ LIB$SIGNAL or LIB$STOP are pushed initially onto the kernel
~ > stack (except for CHMS and CHMU)
Exception PC or PC following by hardware and copied to the
call to LIBSSIGNAL or LIB$STOP exception stack by software. The
exception name and argument count
ion PS are added by software before
Exception PSL - handlers are called.
J
Value of SP before
exception

Figure 4-4
Signal and Mechanism Arrays

exception. The address of this structure, called the mechanism array, along
with the address of the table containing the exception arguments will be the
two arguments that are passed to any condition handlers that are called by
the dispatcher (see Figure 4-4).

Establishing a Condition Handler

The VMS operating system provides two different methods for establishing
condition handlers.

77

Condition Handling

4.3.2

43.2.1

78

* One method uses the call stack associated with each access mode. Each
call frame includes a longword to contain the address of a condition han-
dler associated with that frame.

» The second method uses software exception vectors, set aside in the con-
trol region (P1 space) for each of the four access modes. Vectored handlers
do not possess the modular properties associated with call frame handlers
and are intended primarily for debuggers and performance monitors.

Call frame handlers are established by placing the address of the handler in
the first longword of the currently active call frame. Thus, in assembly lan-
guage, call frame handlers can be established with a single instruction:

MOVAB new-handler, (FP)

Because the frame pointer is generally not available to high level language
programmers, the Run-Time Library procedure LIBSESTABLISH can be
called in the following way to accomplish the same result:

old-handler = LIB$ESTABLISH (new-handler)

Condition handlers are removed by clearing the first longword of the current
call frame, as in the following assembly language instruction:

CLRL (FP)

The Run-Time Library procedure LIBSREVERT removes the condition
handler established by LIBSESTABLISH.

Exception vector handlers are established and removed with the Set Excep-
tion Vector system service, which simply loads the address of the specified
handler into the specified exception vector, located in the pointer page in P1
space.

The Search for a Condition Handler

At this point in the dispatch sequence, the signal and mechanism arrays have
been set up on the stack of the access mode that the exception will be re-
ported to. The establisher frame argument in the mechanism array (see Fig-
ure 4-4) will be used by the search procedure to indicate how far along the
search has gone. The depth argument in the mechanism array not only serves
as useful information to condition handlers that wish to unwind but also
allows the search procedure to distinguish call frame handlers (nonnegative

‘depth) from exception vector handlers (negative depth).

Primary and Secondary Exception Vectors. The search for a condition handler
begins with the primary exception vector of the access mode in which
the exception occurred. If the vector contains the address of a condition han-

~ dler (any nonzero contents|, the handler is called with a depth argument of

—2 (third longword in mechanism array, Figure 4-4). If that handler resignals

4.3.2.2

4.3.2.3

4.3 Uniform Excepti‘on Dispatching

or if none exists, the same step is performed for the secondary exception
vector, where the depth argument is now —1.

Call Frame Condition Handlers. If the search is to continue (no handler yet
passed back a status of SS§_CONTINUE), the contents of the current call
frame are examined next. If the first longword in the current call frame is
nonzero, that handler is called next. If no handler is found there or if that
handler resignals, the previous call frame is examined by using the saved
frame pointer in the current call frame (see Figure 4-5). As each handler is
called, the depth longword in the mechanism array is set to the number of
frames that have already been examined for a handler.

The search continues until some handler passes back a status code of
SS$_CONTINUE or until a saved frame pointer of zero is found (indicating
the end of the call frame chain). When the exception dispatcher receives a
return status of SS$_CONTINUE (any code with the low bit of R0 set will
do), the stack is cleaned off, RO and R1 are restored from the mechanism
array, and the exception is dismissed by issuing an REI, using the saved PC
and PSL that form the last two elements of the signal array.

Note that control is passed back with an REI instruction, even if the excep-
tion was caused by a call to LIB§SIGNAL, because it discarded the call frame
that was set up when it was called. That is, LIB§SIGNAL modifies its stack to
look just like the stack used by EXCEPTION (see Figure 4-3).

Last Chance Condition Handler. In the event that all handlers resignal, the
search terminates when a saved frame pointer of zero is located. The excep-
tion dispatcher then calls the handler whose address is stored in the last
chance exception vector with a depth argument of —3. (This handler is also
called in the event that any errors occur while searching the stack for the
existence of condition handlers.) The usual handler found in the last chance
vector is the so-called catch-all condition handler established as part of image
initiation. The action of this system-supplied handler is described at the end
of this chapter.

If the last chance handler returns to the dispatcher (its status is ignored) or
if the last chance vector is empty, the exception dispatcher indicates that no
handler was found. This notification is performed by a procedure called
EXES$EXCMSG (see Chapter 30) in the executive. Its two input parameters
are an ASCIZ string containing message text and the argument list that was
passed to any condition handlers. Following the call to EXE§EXCMSG (see
Chapter 30), the image is terminated with a status indicating either that no
handler was found or that a bad stack was detected while searching for a
condition handler.

79

Condition Handling

80

®
| 2
@ Signal Array o

Mechanism Array o |

4 |
Signal and |
mechanism Establisher FP o
arrays for
signal S Depth =1
generated by P @
procedure C RO
R1
Signal/Stop Code

TN:

Name of Signal S

A\

~ Other Parameters =~

Exception PC in C

Exception PSL

CH
Call frame for Direction of
procedure C stack growth
Saved FP &
Saved PCin B
BH - -
Call frame for
procedure B
Saved FP o-
Saved PCin A
AH -

©

Call frame for
procedure A

Saved FP o]

Saved PC

To previous frame

Figure 4-5
Order of Search for Condition Handler

4.3.3

4.3.3.1

4.3.3.2

4.3 Uniform Exception Dispatching

Multiply Active Signals

If an exception occurs in a condition handler or in a procedure called by a
condition handler, a situation called multiply active signals is reached. To
avoid an infinite loop of exceptions, the procedure that searches for condition
handlers modifies its search algorithm so that frames searched while servic-
ing the first condition are skipped while servicing the second condition.

In order for this skipping to work correctly, call frames of condition han-
dlers must be uniquely recognizable. The frames are made unique by always
calling the condition handlers from a standard call site, located in the system
service vector area.

Common Call Site for Condition Handlers. Before the dispatch to the handler
occurs, the stack is set up to contain the signal and mechanism arrays and the
handler argument list (see Figure 4-4). The handler address is loaded into R1
by the handler search procedure and control is passed to the common dis-
patch site with the following instruction:

JSB @#SYS$CALL_HANDL

The code located at SYS§CALL_HANDL simply calls the procedure whose
address is stored in R1 and returns to its caller with an RSB.

SYS$CALL_HANDL: :

CALLG 4(SP),(R1)

RSB

The call instruction leaves the return address SYS$CALL_HANDL + 4,
the address of the RSB instruction, in its call frame. Thus, the unique identi-
fying characteristic of a condition handler is the address SYSSCALL_HANDL
+ 4 in the saved PC of its call frame. This signature is used not only by the
search procedure but also by the Unwind system service, as described below.

Example of Multiply Active Signals. The modified search procedure can best
be illustrated through an example. Figure 4-5 shows the stack after procedure
C, called from B called from A, has generated signal S. We are assuming that -
the primary and secondary condition handlers (if they exist) resignaled. Con-
dition handler CH also resignaled.

(1) Procedure A calls procedure B, which calls procedure C.

(2) Procedure C generates signal S.

@ The search procedure modifies the depth argument and establisher frame
argument. If handler CH resignals, the depth argument is 1 when BH is
called.

(4) The call frame for handler BH is located (at lower virtual addresses) on
top of the signal and mechanism arrays for signal S (see Figure 4-6). (The
only intervening items are the saved registers and stack alignment bytes

81

Condition Handling

®

Signal and
mechanism
arrays for
signal T
generated by
procedure Y

®

Call frame for
procedure Y

®

Call frame for
procedure X

®

Call frame for
procedure BH

Figure 4-6

9

| 2

Signal Array o

Mechanism Array —|

Establisher FP l 4

Depth = 3

RO

R1

Signal/Stop Code

N

A

Name of Signal T

2= Other Parameters

Exception PCin Y

Exception PSL

YH

Saved FP o—

Return PC in X

XH

Saved FP o

Return PC in BH

BHH

RSM l

Saved FP .

Direction of
stack growth

Y
To call frame for
procedure A
in Figure 4-5

Dispatcher Call Site

Saved registers and
stack alignment
~ bytes indicated -
(by register save
mask (RSM) in
call frame BH

Return PC from JSB

®

To call frame for
procedure C
in Figure 4-5

Modified Search with Multiply Active Signals

82

4.4

4.4 Condition Handler Action

indicated by the register save mask in the upper byte of the second long-
word of the call frame for handler BH.) The saved frame pointer in the call
frame for BH points to the frame for procedure C.

(5) Handler BH now calls procedure X, which calls procedure Y (see Figure
4-6).

(6) Procedure Y generates signal T. The desired sequence of frames to be
examined is: frame Y, frame X, frame BH, and then frame A. Frames B and
C should be skipped because they were examined while servicing condi-
tion S.

() The search procedure proceeds in its normal fashion. The primary and
secondary vectors are examined first (no skipping here). Then frames Y,
X, and BH are examined, resulting in handlers YH, XH, and BHH being
called in turn. Let us assume that all these handlers resignal. After han-
dler BHH returns to the dispatcher with a code of SS§_RESIGNAL, the
search procedure notes that this is the frame of a condition handler, be-
cause its saved PC is SYS§CALL_HANDL + 4 (see Figure 4-6).

The skipping is accomplished by locating the frame that established this
handler. The address of that frame is located in the mechanism array for
signal S.

To locate the mechanism array for signal S, the value of SP before the
call to BH must be calculated, using the register save mask and stack
alignment bits in the call frame.

(9) One extra longword, the return PC from the JSB to SYS$CALL_HANDL,

" must be skipped to locate the argument list (and thus the mechanism
array) for signal S.

Because the frame pointed to by the mechanism array element has al-
ready been searched, the next frame examined by the search procedure is
the frame pointed to by the saved frame pointer in the call frame of proce-
dure B, which in this case is the frame for procedure A. The depths that
are passed to handlers as a result of the modified search are 0 for YH, 1 for
XH, 2 for BHH, and 3 for AH.

@D The frame for the search procedure, or for any of the handlers YH, XH,
BHH, and AH when they are called, will be located on top of the signal
and mechanism arrays for signal T (at lower virtual addresses). (One ex-
ample is shown in Figure 4-8, which illustrates the operation of
SYSSUNWIND.)

CONDITION HANDLER ACTION

Condition handlers have several options available to them.

* They can fix the exception and allow execution to continue at the inter-
rupted point in the program.

83

Condition Handling

44.1

4.4.2

84

» They can pass the exception along to another handler by resignaling.
» They can also allow execution to resume at any arbitrary place in the
calling hierarchy by unwinding a number of frames from the call stack.

Continue or Resignal

A handler first determines the nature of the exception by examining the sig-
nal name in the signal array (see Figure 4-4). If the handler determines that it
is not capable of resolving the current exception for whatever reason, it in-
forms the exception dispatcher that the search for a handler must go on. This
continuation is called resignaling and is performed by passing a return status
code of SS$_RESIGNAL back to the dispatcher. (Recall that condition han-
dlers are function procedures that return a status to their caller in RO.)
On the other hand, if the condition handler is able to resolve the exception
(in some unspecified way), it indicates to the dispatcher that the program that
was interrupted when the exception occurred can continue. To indicate that

~ the program can continue, the return status code of SS$_CONTINUE is

passed back to the caller.

When the dispatcher detects this return status code, it removes the argu-
ment list and mechanism array from the stack (see Figure 4-4), restoring RO
and R1 in the process. It then removes all of the signal array except the excep-
tion PC and PSL from the stack. Finally, these are removed with the REI
instruction that dismisses the exception and passes control back to the pro-
gram that was interrupted when the exception occurred.

If the exception that occurred was a hardware fault (such as an access viola-
tion), the instruction that caused the exception will be repeated because the
PC of that instruction was pushed onto the stack when the exception oc-
curred. If the exception was a hardware trap (such as integer overflow), the
next instruction in the instruction stream will be the first to execute. In the
event that a condition handler continues from an exception that was initi-
ated through a call to LIB$SIGNAL, the first instruction to execute will be
the instruction following the CALLx instruction.

Unwinding the Call Stack

Another powerful tool available to condition handlers allows them to alter
the flow of control when an exception occurs. This tool is called unwinding
and allows the condition handler to pass control back to a previous level in
the calling hierarchy by throwing away a specified (or default) number of call
frames. ' '

The Unwind Call Stack system service is called with two optional argu-
ments, the first of which indicates the number of frames to remove from the

4.4.3

4.4 Condition Handler Action

call stack and the second of which gives an alternate return PC to which
control will be returned.

The Unwind system service does not actually remove frames from the
stack. Rather, it changes the return PC in the specified number of frames to
point to a special routine in the executive that will be entered as each proce-
dure exits with a RET instruction. The effect of calling Unwind is pictured in
Figure 4-7. If the alternate PC argument has also been passed to Unwind, the
return PC in the next call frame is altered to the specified argument (see
Figure 4-7).

As each procedure issues a RET instruction, control is passed to the execu-
tive routine that examines the current frame for the existence of a condition
handler. If such a handler exists, it is called with the exception name
SS$_UNWIND. When the condition handler returns to the unwind routine, a
RET is issued by the unwind routine on behalf of the procedure to discard the
current call frame. This sequence goes on until the specified number of call
frames have been discarded. This technique of calling handlers as a part of the
unwind sequence allows handlers that previously resignaled an exception to
regain control and perform procedure-specific cleanup.

Example of Unwinding the Call Stack

An example of an unwind sequence is illustrated here with the help of Figure
4-7. The situation begins with a sequence exactly like the one pictured in
Figure 4-5. Procedure A calls procedure B, which calls procedure C. Procedure
C generates signal S. The primary and secondary handlers (if they exist) sim-
ply resignal. Handlers CH and BH, located next by the search procedure, also
resignal. ,

Finally, handler AH is called. AH decides to unwind the call stack back to
its establisher frame. (This unwinding is not the default case.) To accomplish
the unwinding , AH must call SYS§UNWIND with a depth argument equal

-to the value contained in the mechanism array. In this example, the depth

argument is 2. After the call to SYSSUNWIND, which executes in the access
mode of its caller, but before the frame modification occurs, the stack has the
form pictured on the left-hand side of Figure 4-7. The operation of frame
modification by the $UNWIND system service now proceeds as follows.

(D) Unwind looks down the call stack until it locates a condition handler.
Recall that a condition handler is identified by a saved PC of
SYS$CALL_HANDL + 4. If handler AH had called another procedure in
this example, nothing would have happened to that procedure’s call
frame. The first call frame modified by Unwind is the frame of the
first handler that it encounters, which in the example in this figure is
the frame for AH.

85

Condition Handling

Call frames on entry

~—— FP

to EXESUNWIND
SYS$SUNWIND's Handler
Call frame for
system service
SYS$SUNWIND
(EXESUNWIND Saved AP —
executes in
access mode Saved FP [
of caller.)

Return PC in AH

AHH (if established)

Call frame for
condition handler

AH

This AP locates
the signal and
mechanism arrays
passed to

handler AH.

Saved FP

®

Return PC in Exception Dispatcher
(SYS$CALL__HANDL +4)

Signal and mechanism arrays for
initial condition located here
(Figure 4-5)

CH (if established)

Call frame for
procedure C

Saved FP

Return PC in B

BH (if established)

Call frame for
procedure B

Saved FP

Return PC in A

AH

Call frame for
procedure A

Saved FP

¢ .

Return PC in Caller of A

Figure 4-7

Call Frame Modification by SYSSUNWIND

86

Previous call

frame

Return PCs in these
frames after they
have been modified by
EXESUNWIND

Return PC in AH

STARTUNWIND

®

The signal array contains return PC
in procedure C, which is
bypassed if unwinding any frames.

LOOPUNWIND

(Alternate Return PC)

4.4 Condition Handler Action

(2) Unwind does not modify its own frame. When it issues a RET, control is

passed back to handler AH.

@ The first frame that Unwind modifies is the frame of the first condition

handler that it encounters by tracing back the call stack. It replaces the
return address found there with the address of aroutine (STARTUNWIND)
internal to itself.

When handler AH issues its RET, control will not go back to the excep-
tion dispatcher. Instead, the instructions beginning at STARTUNWIND
execute. Note that not returning to the exception dispatcher means that
control will never get back to procedure C, because its return PC is stored
in the mechanism array and would be restored by the REI instruction
issued by the exception dispatcher.

(4) Unwind continues to modify the saved PC longwords in successive

frames on the call stack until the number of frames specified (or implied)
in the SYS§UNWIND argument list have been modified. All frames ex-
cept the first have their saved PC replaced with address LOOPUNWIND,
another label in the internal unwind routine (see Figure 4-7). It is this
routine that checks whether the current frame has a handler established
and, if so, calls that handler with the signal name SS$§_UNWIND to
allow the handler to perform procedure-specific cleanup.

If a handler called in this way calls SYSSUNWIND (with the signal
array containing SS$_UNWIND as the signal name), an error status of
SS$_UNWINDING is returned, indicating that an unwind is already in
progress.

(5) If the alternate PC argument was also supplied to SYSSUNWIND, the

call frame into which this argument would be inserted is the next frame
beyond the last frame specified (or implied) in the first SYSSUNWIND
argument. In this case; if an alternate PC argument were present, it
would be placed into the call frame for procedure A.

Now that all the frames have been modified, the actual unwinding occurs.

The sequence of steps is approximately the following.

1.

Unwind returns control to handler AH.

2. Handler AH does whatever else it needs to do to service the condition.

When it has completed its work, it returns to the code beginning at label
STARTUNWIND in module SYSUNWIND. (Because none of the unwind
routines check return status, it does not matter what status is passed back
by AH as it returns.)

. The routine beginning at STARTUNWIND first restores RO and R1 from

the mechanism array. It then performs the following three steps.

a. If a handler is established for this frame, the handler is célled with the
signal name SS$_UNWIND.

87

Condition Handling

4.4.4

44.5

88

b. If either RO or R1 is specified in the register save mask, the unwind
routine replaces the value of that register in the register save area of the
call frame with the current contents of the register. Note that this is
rather an unusual case; the procedure calling standard specifies that RO
and R1 are to be used to return status codes and function values.

c. Control is returned to whatever address is specified in the saved PC
longword of the current call frame by issuing a RET.

4. The RET issued in step 3c discards the call frame for procedure C, passing
control to LOOPUNWIND where the three steps 3a through 3c are again
executed.

5. The RET that discards the call frame for procedure B passes control back
to the point in procedure A following the call to procedure B (if we assume
no alternate PC argument) where execution will resume.

In effect, STARTUNWIND and LOOPUNWIND simulate returns from
each nested procedure that is being unwound. These procedures never receive
control again. However, the outermost procedure receives control as if all of
the nested procedures had returned normally.

Potential Infinite Loop

There is one possible pitfall that can happen with this implementation. The
previous section pointed out that the exception dispatcher takes care (when
multiple signals are active) not to search frames for the second condition that
were examined on the first pass. If a condition handler generates an excep-
tion, it is not called in response to its own signal (unless it establishes itself
to handle its own signals!).

However, Unwind cannot perform such a check. It must call each condi-
tion handler that it encounters as it removes frames from the stack. Thus, a
poorly written condition handler (one that generates an exception) could re-
sult in an infinite loop of exceptions if a handler higher up in the calling
hierarchy unwinds the frame in which this poorly written handler is de-
clared. This loop has no effect on the system but effectively destroys the
process in which this handler exists.

Unwinding Multiply Active Signals

There is a slight change to the Unwind system service. when multiple signals
are active. While modifying saved PCs in call frames, Unwind counts the
number of frames that have been modified until the requested number has
been reached. The only change that occurs with multiply active signals is
that the loop stops counting while the skipped frames are being modified.

The example of multiply active signals pictured in Figures 4-5 and 4-6 can

4.4.6

4.4 Condition Handler Action

be used to illustrate the unwinding. Recall that procedure A called procedure
B, which called procedure C, which signaled S. Handler CH resignaled. Han-
dler BH called procedure X, which called procedure Y, which signaled T.
Handlers YH, XH, and BHH all resignaled. Flnally, handler AH was called for
signal T with a depth of 3.

If AH calls SYSSUNWIND, the top of the stack is as pictured in Figure 4-8,
with the continuations of this figure in Figure 4-6. Assume that the depth
argument passed to SYSSUNWIND is 3 (taken from the mechanism array
and meaning unwind to the establisher of AHJ, and the alternate PC argu-
ment is not present.

The end result of the operation of Unwind in this case is as follows.

1. Unwind looks down the call stack until it locates a condition handler,
which in this case is AH. The saved PC is modified to STARTUNWIND.

2. The saved PC longwords in frames Y and X are altered to contain address
LOOPUNWIND. Note that SYSSUNWIND has now altered three frames.

3. Because the next frame on the stack, BH, indicates a condition handler
(saved PC of SYSSCALL_HANDL + 4), its associated mechanism array is
located (by climbing over saved registers, stack alignment bytes, and a
saved PC from the JSB instruction). The saved PCs in all frames up to the
frame pointed to by the mechanism array are modified (but not counted
toward the number specified in the argument passed to SYS§UNWIND) to
contain address LOOPUNWIND. This modification causes frame& BH and
C to get their saved PCs altered in the example.

4. The saved PC in the frame for procedure B is not altered so that when the
unwind takes place, control will return to the call site of procedure B in
procedure A. '

Correct Use of Default Depth in SYSSUNWIND

A default depth argument to SYSSUNWIND (DEPADR = 0) specifies that the
stack is to be unwound to the caller of the handler’s establisher. In most
cases, the caller of the handler’s establisher is equivalent to the depth of the
handler plus 1. However, because of an inherent ambiguity in counting the
stack frames when multiply active signals are present, it is important that
the default be used when unwinding to the caller of the establisher, rather
than an explicit depth.

Consider the two following cases of nested exceptions. In Figure 4-9, rou-
tine A calls routine B. An exception causes handler BH to be invoked. An
exception within BH causes handler AH to be invoked (because frame B is
skipped, as described in Section 4.3.3). The depth of the mechanism vector in
AH’s argument list is 1. For AH to unwind to its establisher, it must specify
an explicit depth of 1 to SYS§UNWIND. Then SYSSUNWIND removes one

89

Condition Handling

Call frame
for condition
handler AH

Signal and
mechanism
arrays generated
by procedure A

Call frame
for condition
handler BH

Signal and
mechanism
arrays generated
by procedure B

Call frame for
procedure B

Call frame for
procedure A

Figure 4-8

Saved FP

)

Establisher FP e

Depth =1

Saved FP

[]

Direction of

stack growth

Establisher FP

Depth =0

BH

Saved FP o~

AH

Saved FP ¢—|

To previous frame

Modified Unwind with Multiply Active Signals

Call frame for
condition handler
AHH

. Signal and
mechanism
arrays generated
by handler AH

Call frame for
condition
handler AH

Signal and
mechanism
arrays generated
by procedure A

Call frame
for procedure A

Figure 4-9

4.4 Condition Handler Action

Saved FP ®

Establisher FP o Y

Depth =0

AHH

Direction of
stack growth

Saved FP ¢

Establisher FP o S |

Depth =0

AH

To previous frame

Nested Exception, Type 1

91

Condition Handling

4.4.7

92

frame, as specified by the count. The handler AH then notices that the next
frame is a handler frame, and therefore continues to remove stack frames
until it finds the establisher of the handler. This discovery completes the
unwind to frame A.

Now consider Figure 4-10, in which routine A incurs an exception, result-
ing in the invoking of handler AH. Handler AH then causes an exception,
causing its handler AHH to be invoked. The depth of AHH is zero. Now let us
suppose that AHH wishes to unwind to the caller of its establisher. Now the
establisher of AHH is AH. Since AH is a handler, its caller is the condition
dispatcher, NOT routine A. o »

Compare Figure 4-10 with Figure 4-9 carefully and consider what happens
if AHH calls SYS§UNWIND with an explicit depth of 1 (its depth plus 1). The
depth of 1 causes AHH’s frame to be removed. SYSSUNWIND then notices
that the next frame is a handler frame and, therefore, unwinds it back to its
establisher (frame A). Note that once AHH’s frame is removed, the stack is
indistinguishable from the stack in Figure 4-9 (down to frame B). Thus,
SYSSUNWIND with an explicit depth of 1 results in control returning to
routine A, which is incorrect.

Therefore, for AHH to unwind to the caller of its establisher (the condition
dispatcher), it must specify a default depth. When this is done, §UNWIND’s
behavior upon encountering a handler frame after the count has been ex-
hausted is modified so that the stack is not unwound further and control
passes correctly back to the condition dispatcher.

Because of the inherent ambiguity of these two cases, it is important that
handlers always use the default depth when unwinding to the caller of their
establisher.

Unwinding ASTs

In VAX/VMS Version 3.0, the behavior of §UNWIND was changed so that it
correctly handles unwinding out of ASTs. Doing so requires some special

- processing, because simply peeling off the stack frames ignores the presence

of the AST and fails to dismiss the AST properly. The result is that execution
continues in the user’s main level code, with delivery of further ASTs
blocked.

This situation is depicted in Figure 4-11. If handler XH unwinds to the
caller of its establisher (procedure A), it will also unwind out of the AST. The
problem is handled by having the §UNWIND service recognize the return PC
of the AST call frame, which is set to the value EXESASTRET, the AST
return point in the executive. When this PC is seen in a call frame, $UN-
WIND knows that located immediately beneath it is the AST parameter list.
In this case, the unwind PC (STARTUNWIND or LOOPUNWIND) is stored
not in the call frame, but rather in the PC of the AST parameter list.

4.4 Condition Handler Action

Call frame for
condition
handler XH
Saved FP e
Signal and
mechanism
array generated
by AST
routine X
Establisher FP o- >
Call frame for <
AST routine X XH
Direction of
Saved FP o stack growth
EXE$ASTRET
AST parameters [N
AST Parameter
RO
R1
PC
PSL
Call frame for <
procedure A AH
Saved FP ¢—
To previous frame
Figure 4-10

Nested Exception, Type 2

93

Condition Handling

94

SYS$UNWIND's Handler |¢———————FP
Call frame for
system service
SYS$SUNWIND
(EXESUNWIND Saved AP
executes in Saved FP _
access mode o
of caller.) Return PC in AH
AHH (if established) -
Call frame for
condition RSM
handler AH
Saved FP o
Return PC in
Exception Dispatcher Direction of
stack growth
Saved registers and
| stack alignment bytes |
Zr indicated by register
T save mask RSM in T To frame for
call frame AH procedure Y
= in Figure 4-6
Return PC from JSB
| 2
Signal and
mechanism arrays Signal Array e——
for signal T
Mechanism Array ._:|
» 1
To signal array
array
in Figure 4-6
Figure 4-11
Exception during an AST

When the AST call returns during the actual unwinding of the stack, it
returns to EXE§ASTRET, which dismisses the AST and returns to the inter-
rupted code with an REI. The REI then returns back to STARTUNWIND or
LOOPUNWIND because of the modified PC. In addition, immediately before
returning to EXE§ASTRET, SUNWIND stores the current RO and R1 in the
AST parameter list so that they will propagate through the unwind process.

While it is technically possible to unwind out of an AST, doing so must be
done with some caution. If the AST routine has any sort of side effects, it is
essential to have a condition handler declared by the AST routine to clean up
the side effects when the AST is unwound. (Note that issuing an I/O opera-
tion is a side effect of the highest order!) Note also that cleaning up any

4.5

4.5.1

4.5.2

4.5 Default (VMS-Supplied) Condition Handlers

subroutines of the main line program from which an unwind was executed
may be more difficult, because the asynchronous nature of ASTs means that
unwinding could take place at any instant during the execution of a program.

DEFAULT (VMS-SUPPLIED) CONDITION HANDLERS

Although the use of condition handlers is totally general and completely in
the hands of the user, some actions will always occur as the result of default
condition handlers that are established by the executive as a part of process
creation or image activation.

The discussions of process creation in Chapter 20 and image initiation in
Chapter 21 point out exactly when and how each of the handlers described in
this section is established. The action of each of these handlers, once they are
invoked, is briefly described here.

Traceback Handler Established by Image Startup

When an image includes either the debugger or the traceback handler, an-
other frame is put on the user stack before the image itself is called (see
Chapter 21). The code that executes before calling the image places the ad-
dress of a condition handler into this frame so that subsequent conditions
that are not handled by an intervening condition handler will be picked up by
this traceback handler.

This handler first checks whether the exception that occurred was
SS$_DEBUG. If so, it maps the debugger into PO space (if not already mapped)
and passes control to it. This condition is signaled by a CLI in response to a
DEBUG command. This feature allows an image that was not linked or run
with debugger support to be interrupted and have that support added.

For all other exceptions, if the severity level is warning, error, or severe
error, the handler maps the traceback facility into the top of PO space and
passes control to it. The traceback facility passes information about the ex-
ception to SYSSOUTPUT and terminates the image.

If the severity level is other than the three listed above, the traceback con-
dition handler resignals the condition, which usually means that the condi-
tion is being passed on to the catch-all condition handler.

Catch-All Coqdition Handler

The address of this handler is placed in an initial call frame on the user stack
and in the last chance exception vector for user mode either by PROCSTRT
when the process is created or by a command language interpreter before an
image is called. This handler is always called if no other handlers exist or if
all other handlers resignal. Because the address of the handler is duplicated in

95

Condition Handling

4.5.3

4.5.3.1

96

the last chance vector, it will also be called in the event of some error while
looking through the user stack.

The first step that this handler takes is to call SYS$PUTMSG (see Chapter
30). If the handler was called through the last chance exception vector (the
depth argument in mechanism array is —3), or if the severity level of the
exception name in the signal array indicates severe (exception name <2:0>
GEQU 4), then SYS$EXCMSG (see Chapter 30) is called to print a summary
message and the image is terminated. Otherwise, the image is continued.

Handlers Used by Other Access Modes

In addition to the handlers that the operating system supplies to handle ex-
ceptions that occur in user mode, it also sets up handlers that will determine
system behavior if an exception occurs in one of the other three access
modes.

Exceptions in Kernel or Executive Mode. In response to an exception in kernel
mode, the exception dispatcher makes special checks to determine
whether the processor was operating on the interrupt stack when the excep-
tion occurred, whether the process was the swapper process or null process,
or whether IPL was above IPL$_ASTDEL (IPL 2). Any of these conditions
could indicate that the exception is not associated with a normal process. In
any case, if either of these conditions holds, an Invalid Exception fatal bug-
check (BUG$_INVEXCEPTN) is generated. Routines that forbid exceptions
include interrupt service routines, device drivers (except for their FDT rou-
tines), and process-based code that happens to be executing above
IPL$_ASTDEL (such as portions of certain system services).

If a kernel mode exception is associated with process-based code for which
exceptions are allowed (IPL is less than or equal to 2 and the exception oc-
curred on the kernel stack), then exception dispatching proceeds in its usual
manner. The last chance exception vectors for both kernel and executive
modes are initialized in module SHELL (see Chapter 20) to contain the ad-
dresses of routines that generate a bugcheck code of Unexpected System
Service Exception. The difference between the bugchecks for the two access
modes is that the bugcheck generated by the kernel mode primary exception
handler is fatal while the corresponding bugcheck generated by the executive
mode primary exception vector is not. Fatal bugchecks cause the system to
crash. Nonfatal bugchecks generally result in error log entries and the dele-
tion of the process that caused the bugcheck. The bugcheck operation is de-
scribed in Chapter 8.

Routines that execute in executive mode include RMS, parts of the execu-
tive, and any user-written procedure that is entered through either a user-
written system service dispatcher or through the Change Mode to Executive

4.5.3.2

4.5 Default (VMS-Supplied) Condition Handlers

system service. Routines that execute in kernel mode (that can cause this
bugcheck and not the Invalid Exception bugcheck because they execute at
IPL 0 or IPL 2) include portions of all system services, many exception service
routines, device driver FDT routines, including those that are written by
users, and procedures that are called either by the user-written system serv-
ice dispatcher or by the Change Mode to Kernel system service.

Condition Handler Used by DCL or MCR. The DCL and MCR command
language interpreters establish nearly identical condition handlers at the begin-
ning of their command loops to field exceptions that occur in supervisor
mode.

Part of process creation involves image activation of the CLI (DCL or
MCR). The first step that the CLI takes after image activation is to establish
the supervisor mode condition handler that the CLI uses to handle its own
internal errors. The condition handler performs two tasks when it is called:

* It cancels any exit handlers that have been established.
* It resignals the error.

The CLI is then allowed to run to completion, as a result of which the
process is deleted.

97

5.1

98

Hardware Interrupts

While I nodded, nearly napping, suddenly there came a tapping,
As of some one gently rapping, rapping at my chamber door.

—Edgar Allan Poe, The Raven

The VMS operating system is an interrupt-driven operating system. It con-
tains a collection of interrupt service routines that execute in response to
hardware interrupts from external devices and internal devices such as the
clock. The VMS operating system does not have a software-based central
dispatching module that receives notification of all system events (that is,
interrupts) and decides what to do next. Instead, the VMS operating system
relies on a hardware-controlled interrupt dispatching scheme that always
forces the highest priority interrupt on the system to be serviced first.

HARDWARE INTERRUPT DISPATCHING

The VAX architecture provides 16 hardware interrupt priority levels (IPL),
from IPL 31 down to IPL 16. The top eight levels are for use by urgent condi-
tions including serious errors (such as machine check), the system clock, and
power failure. These conditions are discussed in Chapters 8, 11, and 27 re-
spectively. The lower eight levels are used by peripheral devices.

When a peripheral device generates an interrupt, that interrupt is requested
at a particular hardware IPL (fixed for a given device). As in the case of soft-
ware interrupts, if the requested IPL value is higher than the level at which
the processor is currently running (as determined by PSL <20:16>), then the
interrupt service routine whose address is in the selected vector in the sys-
tem control block (SCB) is entered immediately. Otherwise, servicing of the
interrupt is deferred until IPL drops below the level associated with the inter-
rupt.

When an interrupt is serviced, the current processor status must be pre-
served so that the interrupted thread of execution (either process-based code
or an interrupt service routine executing at lower IPL) can continue normally
after the interrupt is dismissed. Preserving the processor status is accom-
plished (by the hardware) by automatically saving the PC and PSL on the
stack. These are later restored with an REI instruction that dismisses the
interrupt. Other elements of the process context, such as general registers,
must be saved and restored by the routine(s) handling the interrupt. In order
to reduce interrupt overhead, no memory mapping information is changed
when an interrupt occurs. Therefore, the instructions and data referenced by
an interrupt service routine must be in system address space.

5.1.1

5.1 Hardware Interrupt Dispatching

Interrupt Dispatching

The following list outlines the primary sequence of events that occur in in-
terrupt dispatching.

1.

An interrupt is requested.

2. The current instruction finishes or reaches a well-defined point where the

instruction state is completely contained in the general registers, PC, and
PSL (which happens in the execution of the string instructions). (Some
instructions can also be interrupted at well-defined points. so that, after
the interrupt dismissal, they are restarted, rather than continued.)

The interrupt sequence is initiated by the hardware, pushing the current
PC and PSL onto the stack. The VMS operating system uses the interrupt
stack for.all hardware interrupt servicing. Hardware interrupts are indi-
cated by placing a 01 in bits <1:0> of each hardware interrupt vector in
the system control block (see Figure 5-1).

Most software interrupts are also serviced on the interrupt stack. On the
other hand, the per-process interrupt associated with AST delivery and
nearly all exceptions are serviced on the per-process kernel stack.

A new PC is loaded (from the appropriate SCB vector), and a new PSL is
created (with PSL <20:16> containing the IPL associated with the inter-
rupt, and the previous access mode, current access mode, CM, TP, FPD,

DV, FU, IV, T, N, Z, and C bits cleared by the hardware). The current

access mode bits are cleared to indicate that the service routine will run in
kernel mode. ,

The interrupt service routine 1dent1f1ed by the PC in the SCB executes
and, eventually, exits with an REI instruction that dismisses the interrupt.
The PC and PSL are restored by the execution of the REI instruction, and
the interrupted thread of execution (process or less important interrupt
service routine} continues where it left off.

31 1 0
Address of Longword-Aligned
Interrupt Service Routine Code $CB vector
Code Meaning
00 Service the event on the kernel stack unless currently on the interrupt stack; in that

o1

case, use the interrupt stack.

Service the event on the interrupt stack; if the event is an exception, raise IPL to 31.

10 Service the event in the Writeable Control Store (WCS), passing bits < 15:2>

1

to the microcode; if the WCS does not exist or is not loaded, the operatlon is undefuned
(the processor will halt).

The operation is undefmed (the processor will halt).

Figure 5-1
System Control Block Vector Format

99

Hardware Interrupts

100

Unlike software interrupt dispatching, there is not a one-to-one corre-
spondence between hardware IPL and an interrupt service routine vector in
the SCB (see Figure 5-2). The SCB contains the addresses of several interrupt
service routines for a given device IPL. There are no registers corresponding
to the Software Interrupt Request Register (PR$_SIRR) or Software Interrupt
Summary Register (PR$_SISR); rather, the processor notes that a lower prior-
ity interrupt has been requested, but not granted. When IPL falls below the
device interrupt level, and the device is still requesting the 1nterrupt the
interrupt will be granted.

If, however, the device is no longer requesting an interrupt, the system will
be unable to determine which interrupt service routine to call; such occur-
rences are called passive releases. If the adapter to which the device is
connected is still requesting an interrupt, an adapter-specific error routine is
called. If the adapter is no longer requesting an interrupt, the system is un-
able to determine which adapter requested the interrupt; in this case a nexus
0 interrupt service routine is called. In either case, the system increments the
counter IO$GL_SCB_INTO.

System Control Block

The system control block (SCB) contains the vectors used to dispatch (soft-
ware and hardware) interrupts and exceptions. The starting physical address
of the SCB is found in the System Control Block Base Register (PR$_SCBB).
The size of the SCB varies depending on processor type. The VAX-11/750 and
the VAX-11/730 system control blocks are two pages long; a VAX-11/750
with a second UNIBUS has a three-page system control block; the
VAX-11/780 system control block consists of a single page.

The first page of the system control block is the only page defined by the
VAX architecture. It contains the addresses of software and hardware inter-
rupt service routines as well as exception service routines. The layout of the
first SCB page is pictured in Figure 4-1. Table 6-1 contains more details about
the SCB vectors used for software interrupts. Figure 5-2 shows how the sec-
ond half of the first page is divided among 16 possible external devices, each
interrupting at four possible IPL values. The second SCB page on the VAX-
11/730 and VAX-11/750 is used for directly vectored UNIBUS device inter-
rupts. The third page on a VAX-11/750 with a second UNIBUS is used for
directly vectored UNIBUS device interrupts to the second UNIBUS.

Each vector in the SCB is a longword that is examined by the processor
when an exception or interrupt occurs, to determine how to service the
event. Figure 5-1 illustrates the format of a vector in the SCB, and indicates
which stack is used to service an exception or interrupt. In the VAX/VMS
operating system, all hardware interrupts (and all software interrupts above
IPL 3) are serviced on the system-wide interrupt stack. The rescheduling soft-

5.1 Hardware Interrupt Dispatching

SCB (System Control Block)

0
I Various Exceptions and
Software Interrupts
Offsets .
in
SCB
1 001 6 \
IPL 20 16 vectors,
one for
Interrupts > each TR
number
P
1404¢ N
IPL 21
Interrupts > 16 vectors
18046 <
IPL 22
Interrupts > 16 vectors
7
IPL 23
Interrupts 16 vectors
A second SCB page exists on the
VAX-11/730 and VAX-11/750 for directly
vectored UNIBUS device interrupts.
A VAX-11/750 with a second UNIBUS
will have a third SCB page
for interrupts on the second UNIBUS.
Figure 5-2

System Control Block Vectors for Hardware Interrupts

sCBB

(Physical
address
of start
of SCB)

101

Hardware Interrupts

5.1.2.1

5.1.2.2

102

ware interrupt (IPL 3) begins execution on the kernel stack but immediately
changes to the interrupt stack when it executes a SVPCTX instruction (see
Chapter 10). AST delivery (IPL 2) is serviced using a process-specific kernel
stack.

VAX-11/730 External Adapters. On the VAX-11/730 the CPU, the UNIBUS
adapter, and the memory controller are connected by the Array Bus. In addi-
tion to the Array Bus, communications between the CPU and the integrated
disk controller (IDC) are performed over the Accelerator Bus (the floating
point accelerator also communicates over the Accelerator Bus). The IDC con-
trols RLO2 and R80 disks. The VAX-11/730 is not expandable and does not
use expansion slots.

Because there are no expansion slots in the VAX-11/730, the first page of
the SCB contains only one set of SCB vectors. The longwords located at SCB
+ 08 through SCB + OB in the first page of the SCB are used as external
adapters, one for each IPL value from 20 to 23. The second SCB page on the
VAX-11/730 is used for directly vectored UNIBUS device interrupts. Each
SCB vector corresponds to a UNIBUS vector in the range from 0 to 774 (octal).

VAX-11/750 External Adapters. The backplane interconnect on the
VAX-11/750, called the CMI (CPU to memory interconnect), connects the
CPU, memory controllers, and UNIBUS or MASSBUS adapters. Each connec-
tion to the CMI is identified by its slot number. There is a total of 32 slots,
the first 16 of which are used for the optional writeable control store (WCS).
The next 10 slots are reserved for memory controllers and UNIBUS or MASS-
BUS adapters. These 10 slots are called fixed slots because the mapping of
controller/adapter to slot number is fixed. That is, a particular slot can have
only a particular adapter placed in it. Five of the ten fixed slots are currently
used by external adapters. The following list details these adapters:

Memory Controller Slot 0
Up to three MASSBUS Adapters Slots 4 through 6
UNIBUS Adapter Slot 8

The last six slots are reserved for adapters with configuration registers and
are called floating slots.

Each slot has four SCB vectors in the first SCB page assigned to it, one for
each IPL value from 20 to 23. As shown in Figure 5-2, the first 16 vectors are
assigned to IPL 20. The second SCB page on the VAX-11/750 is used for di-
rectly vectored UNIBUS device interrupts. Each SCB vector corresponds to a
UNIBUS vector in the range from 0 to 774 (octal). The third SCB page on a
VAX-11/750 in a two-UNIBUS configuration is used for directly vectored
UNIBUS device interrupts on the second UNIBUS.

5.1.2.3

5.1 Hardware Interrupt Dispatching

VAX-11/780 External Adapters. On the VAX-11/780, the Synchronous Back-
plane Interconnect (SBI) connects the CPU, memory controllers (including
MA780s), DR780s, CI780s, and UNIBUS or MASSBUS adapters. Each con-
nection to the SBI is assigned a transfer request (TR) number that identifies
its SBI priority. TR numbers range from 0 (highest priority) to 15 (lowest
priority). There is a limit of 15 connections to the SBI (see Table 5-1). TR
number 14 is reserved for the CI780; TR number 0 is used for a special pur-
pose on the SBI and has no corresponding external adapter. The TR number
defines the physical address space through which the device’s registers are
accessed and through which vectors the device will interrupt.

An adapter is not restricted to having a specific TR number. However, the
relative priorities of the various adapters may not change. That is, a system
cannot have an MBA with a higher priority (lower TR number) than a UBA.
For instance, if a system has two local memory controllers and an MA780

Table 5-1: Standard SBI Adapter Assignments on the VAX-11/780

VAX-11/780
External Adapter Type Assignment Comments
TRO Hold Line for next cycle.
TR 0 is the highest
TR level and is not
assigned to a device.
First Memory Controller TR 1
Second Memory Controller TR 2
First MA780 Shared Memory
Second MA780 Shared Memory
First UNIBUS Adapter TR 3
Second UNIBUS Adapter TR 4
Third UNIBUS Adapter TR 5
Fourth UNIBUS Adapter TR 6
TR 7 Reserved
First MASSBUS Adapter TR 8
Second MASSBUS Adapter TR 9
Third MASSBUS Adapter TR 10
Fourth MASSBUS Adapter TR 11
DR780 SBI Interface TR 12
TR 13 Reserved
CI TR 14
TR 15 Reserved
TR 16 The CPU has implicit

TR 16. Level 16 is the
lowest TR level.

103

Hardware Interrupts

5.1.2.4

5.2

5.2.1

104

shared memory controller, the first UNIBUS adapter on that system could
have TR number 4, with the MA780 having TR number 3, and the memory
controllers having TR numbers 1 and 2.

Adapter Configuration. On the VAX-11/750 and VAX-11/780, the presence of
an adapter at a particular slot or TR number is checked by testing the first
longword in the adapter’s I/O register space, and checking for nonexistent
memory. The presence or absence of an external adapter is determined by the
primary bootstrap program VMB (see Chapter 24) as part of that program’s
memory sizing operation. Specifically, VMB loads the machine check vector
in the SCB with the address of a special routine while it is sizing memory and
determining which external adapters are present. If a nonexistent memory
machine check occurs, there is no connected adapter at the location being
tested. The result of this testing is stored in a 16-byte array in a data structure
called a restart parameter block (RPB). The later stages of system initializa-
tion use the information obtained by VMB and stored in the RPB when they
configure specific adapters into the system.

On the VAX-11/730, VAX-11/750, and VAX-11/780, only IPL levels 20
through 23 are used for device interrupts. Within the SCB, vectors are re-
served for each IPL level available to each adapter (see Figure 5-2). Whenever
an adapter generates an interrupt for a device connected to it, the slot number
or TR number of the adapter and the device IPL are used by the hardware to
index into the SCB for the appropriate interrupt service routine. Some adapt-
ers such as local memory controllers do not generate interrupts.

VAX/VMS INTERRUPT SERVICE ROUTINES

The interrupt service routines used by the VMS operating system operate in
the limited system context or interrupt context described in Chapter 1.
These routines execute at elevated IPL on the interrupt stack outside the
context of a process.

Restrictions Imposed on Interrupt Service Routines

There are several restrictions imposed on interrupt service routines either by
the VAX architecture or by synchronization techniques used by the VMS
operating system. These restrictions result from the limited context that is
available to any routine that executes outside the context of a process. The
following list of items indicates some of the specific operations and data
references that cannot occur in an interrupt service routine. The description
of interrupt context in Chapter 1 contains a more general list of these and
other restrictions.

5.2.2

5.2.2.1

5.2 VAX/VMS Interrupt Service Routines

« Interrupt service routines should be very short and do as little processing
as possible at elevated IPL.

e Any registers used by an interrupt service routine must first be saved.

 Although an interrupt service routine can elevate IPL, it cannot lower IPL
below the level at which the original interrupt occurred.

» The size of the interrupt stack, the stack used by all hardware interrupt
service routines, is controlled by the SYSBOOT parameter INTSTKPAGES
(which has a default value of two pages). This parameter determines the
amount of stack storage available to interrupt service routines.

¢ Any elements pushed onto the stack by an interrupt service routine must
be removed before the interrupt is dismissed in order that REI works cor-
rectly.

 Because the low two bits of interrupt service routine addresses in the sys-
tem control block are used for stack selection, interrupt service routines
called directly by the hardware must be longword aligned.

» No pageable routines or data. structures can be referenced above IPL 2.

» Data structures that are synchronized by either IPL§_SYNCH or by
mutexes cannot be referenced by interrupt service routines without de-
stroying the synchronization (unless the interrupt service routine is exe-
cuting at IPL$§_SYNCH with the express purpose of accessing the data
structure).

* No references to per-process address space (PO space or P1 space) are al-
lowed.

Servicing UNIBUS Interrupts

Each device on the UNIBUS has one (or more) vector number(s) to identify
the device, and a bus request (BR) priority to allow the UNIBUS to arbitrate
among devices when multiple interrupts occur. There are 4 BR levels, called
BR4, BR5, BR6, and BR7. BR7 has the highest priority. If multiple interrupts
occur for devices with the same BR level, the device electrically closest to the
UNIBUS interface has the highest priority. The device IPL used equals the BR
priority + 16. For example, BR4 corresponds to IPL 20.

VAX-11/730 and VAX-11/750 UNIBUS Interrupt Service Routines. UNIBUS
interrupts on the VAX-11/730 and VAX-11/750 are directly vectored through
the second page of the system control block. The system control block con-
tains separate addresses for the interrupt service routines for all of the UNI-
BUS interrupt vector locations. When a unit is connected (using SYSGEN),
the appropriate fields in the SCB are initialized to point to the interrupt serv-
ice routines for the device vectors. The interrupt service routines eventually
transfer control to the appropriate device driver interrupt service routines.
The VAX/VMS Guide to Writing a Device Driver describes the data struc-

105

Hardware Interrupts

5.2.2.2

106

tures in the I/0O database, and contains a more complete discussion of driver
interrupt service routines than that presented here.

When a UNIBUS device generates an interrupt on the VAX-11/730 or
VAX-11/750, the interrupt is vectored directly through the SCB, and control
is immediately transferred to the following instruction in the appropriate
device controller’s channel request block (CRB).

PUSHR # M<RO,R1,R2,R3,R4,R5>

The next instruction in the CRB is a JSB to the driver interrupt service
routine (see Figure 5-3). The longword following the JSB instruction contains
the address of another data structure (the IDB, interrupt dispatch block). This
address is pushed onto the stack (as the return PC for the JSB instruction).
However, control is never returned there because that address is removed
from the stack by the driver interrupt service routine.

After the JSB instruction in the CRB transfers control to the driver inter-
rupt service routine, the following events take place.

1. The driver interrupt service routine removes the IDB pointer from the
stack and uses it to obtain both the address of the device controller’s con-
trol/status register (CSR) and the address of the UCB for the device gener-
ating the interrupt.

2. Having found the UCB, the interrupt service routine determines whether
the interrupt was expected or not, and, if expected, restores the driver
context stored in the UCB and transfers control to the saved PC.

3. When the driver finishes processing the interrupt, it issues an RSB.

4. Control is transferred back to the driver interrupt service routine, which
restores the registers (RO through R5) saved by the PUSHR instruction and
dismisses the interrupt with an REL

If the interrupt was unsolicited, the driver may either take some appropriate
action or simply dismiss the interrupt by restoring RO through R5 and issuing
an REL

VAX-11/780 UNIBUS Interrupt Service Routines. When a device on the
UNIBUS requests an interrupt, the UBA converts that request into an inter-
rupt on the SBI. The SBI interrupt is vectored through the SCB to a UNIBUS
adapter interrupt service routine. In the case of interrupts generated by a
UNIBUS device on the VAX-11/780, the corresponding adapter receives de-
vice interrupt requests, determines which has the highest priority, and gener-
ates an interrupt of its own for the CPU (on behalf of the interrupting device).
It is actually the adapter interrupt that is vectored through the SCB (using the
interrupting device’s IPL and the adapter’s TR number), to an adapter inter-
rupt service routine. The adapter interrupt service routine saves registers RO

L0T

VAX-11/780
SCB

An interrupt
occurs;

UBA ADP

the hardware

responds to
the interrupt

VAX-11/730
Or
VAX-11/750
SCB

UBA Interrupt Service Routine
e Saves RO-R5
¢ Reads BRRVR register in UBA
* Uses vector read as index
into vector table

is initiated.

Second page

Second
VAX-11/750 UNIBUS
(Optional)

SCB

The executing process is interrupted; the
/ software response to the interrupt

+—— Device registers

Figure 5-3

e JMP o—
Vector Table Containing
Device CRB Addresses
Device IDB
Device CSR e——

Device CRB y
PUSHR RO-R5 | UCB address ¢——
JSB e
IDB pointer -

Device Driver

Device Driver Interrupt Service
Routine
* Uses IDB address on stack

to locate:)

- Device registers . Device UCB

- Device UCB
* Restores R3 and R4 from Fork Block

fork block in UCB * R3
* Transfers control to PC in * R4

fork block (via JSB) *PC
© When driver issues RSB:

- Restores R0-R5 .

- Issues REI to dismiss The interrupted

the interrupt process
P —> continues
execution.

Control Flow in Servicing a UNIBUS Interrupt

SaUIINOY 201AI19§ 1dniraiuy SWA/XVA 'S

Hardware Interrupts

108

through R5, determines which device actually requested the interrupt, and
then passes control to an interrupt service routine in the device driver for the
interrupting device. The driver interrupt service routine can then respond to
the interrupt in a device-dependent fashion. After servicing the interrupt, the
registers saved by the adapter interrupt service routine must be restored, and
an REI instruction issued to dismiss the interrupt.

There are four interrupt service routines for each UBA, one for each BR
level at which UNIBUS devices request interrupts. They differ only in which
internal UBA register they read to determine which device requested the
interrupt. These interrupt service routines are found in a data structure de-
scribing the UBA (the adapter control block) that is created when the system
is bootstrapped (from module INITADP).

UNIBUS interrupt servicing on the VAX-11/780 begins in one of four UNI-
BUS adapter interrupt service routines.

1. The UBA interrupt service routines (see Figure 5-3) save registers RO
through R5.

2. A UBA internal register (BRRVR) is read to determine the identity of the
interrupting device. Each BRRVR register contains either the vector num-
ber corresponding to the device interrupt or an indication that the UBA is
interrupting on behalf of itself, not for some device. (There are four
BRRVRs in the UBA, one for each BR level.)

3. If the UBA is interrupting on behalf of itself, it is normally indicating an
adapter error condition. These errors usually result when a reference is
made to a nonexistent address in UNIBUS I/O space. They may indicate
only a transient hardware error or a bug in a device driver. These errors are
logged, up to a maximum of 3 in any given 15-minute period, and the
interrupt is dismissed.

4. For a device interrupt, the vector number is used as an index into a vector
table. The vector table contains a pointer to the JSB instruction inside the
CRB. Control is transferred to the JSB instruction by a JMP instruction in
the adapter interrupt service routine.

The vector table entry pointing to the CRB, as well as the address fields
in the CRB, are filled in by SYSGEN at the time the device driver is loaded
into the system with the SYSGEN command CONNECT.

The instruction inside the CRB is a JSB to the driver interrupt service routine.
The longword following the JSB instruction contains the address of another
data structure (the IDB, interrupt dispatch block). This address is pushed onto
the stack (as the return PC for the JSB instruction). However, control is never
returned there because that address is removed from the stack by the driver
interrupt service routine.

After the JSB instruction in the CRB transfers control to the driver inter-
rupt service routine, the following events take place:

5.2.3

5.2 VAX/VMS Interrupt Service Routines

1. The driver interrupt service routine removes the IDB pointer from the
stack and uses it to obtain both the address of the device controller’s con-
trol/status register (CSR) and the address of the UCB for the device gener-
ating the interrupt.

2. Having found the UCB, the interrupt service routine determines whether
the interrupt was expected or not, and, if expected, restores the driver
context stored in the UCB and transfers control to the saved PC.

3. When the driver process finishes processing the interrupt, it issues an RSB.

4. Control is transferred back to the driver interrupt service routine, which
restores the registers (RO through R5) saved by the UBA interrupt service
routine and dismisses the interrupt with an REL

If the interrupt was unsolicited, the driver may either take some appropriate
action or simply dismiss the interrupt by restoring RO through R5 and issuing
an REL ;

At this point, interrupt dispatching proceeds exactly as it does in the case
of the VAX-11/750. Note that device drivers need not concern themselves
with whether they are on a VAX-11/730, a VAX-11/750, or a VAX-11/780,
because their interrupt service routines will be entered in a transparent man-
ner.

MASSBUS Interrupt Service Routines

Unlike UNIBUS interrupt dispatching, the MASSBUS interrupt sequences for
the VAX-11/750 and the VAX-11/780 MASSBUS are identical. The
VAX-11/730 has no MASSBUS. When the system is bootstrapped, entries are
made in the SCB to transfer control to locations in the CRB for the MASSBUS
adapter. The instructions in the MBA CRB are a PUSHR for R2 to R5 and a
JSB to the MBA interrupt service routine MBA$INT (which is part of module
MBAINTDSP).

MBA interrupts are handled differently from UNIBUS interrupts, partly
because one MBA interrupt may indicate that multiple devices on the adapter
need servicing. The MBA interrupt service routine reads an attention sum-
mary register to determine what it must do to respond to an interrupt.

If the interrupt enable bit in the MBA is set, an MBA interrupt can be
caused by any of the following operations.

* A data transfer completes.
* An attention line is asserted while the MBA is not busy.
* An MBA error occurs while the MBA is not busy.

» The power is turned on for the MBA.

Devices on the MASSBUS can assert the attention line under the following
circumstances:

109

Hardware Interrupts

110

o If an error occurs, whether or'not a transfer is taking place
¢ When a mechanical motion such as a disk seek or tape rewind completes
e When a device changes its state

In general, MASSBUS device drivers do not request ownership of the MBA
until they need it to perform a transfer. The MBA interrupt service routine
assumes that if the MBA owner is expecting an interrupt, then the interrupt
currently being serviced indicates that a transfer has completed or been
aborted. That is, when an MBA interrupt occurs and the current owner of the
MBA is expecting an interrupt, MBASINT dispatches immediately to the
owner’s driver. It then checks whether other devices on the MASSBUS need
attention. The UCB list contained in the IDB allows MBASINT to associate
UCB addresses with devices that are requesting service.

MBASINT responds to an interrupt in one of three ways (see Figure 5-4). It
may perform all three of these actions to service multiple attention requests
in response to a single interrupt.

* For an expected interrupt for a single-unit controller (a disk), MBASINT
issues a JSB instruction that transfers control directly to the fork PC stored
in the UCB of the interrupting device. The driver returns to MBASINT
when it has completed its work.

 For an unsolicited interrupt for a single-unit controller, MBAS$INT issues a
JSB instruction that transfers control to a driver-supplied unexpected inter-
rupt service routine, which will return to MBASINT.

» For a multidevice controller (a magtape), MBASINT transfers control to
the CRB for the device controller. The device controller CRB dispatches to
a controller interrupt service routine that saves R2 to R5 and transfers
control to the driver interrupt service routine. This service routine eventu-
ally returns control to MBA$INT.

The way MBASINT decides whether an entry in the MBA IDB is a UCB
address (single-unit controller), or a pointer into a CRB (multidevice control-
ler) is by checking the low-order bit of the entry in the MBA IDB for the
controller. If the bit is set, then the entry is for a multidevice controller. If the
bit is clear, the entry represents the UCB address for the device on a single-
device controller. UCBs, like CRBs, are always longword aligned (the low
order two bits are clear). When a CRB is created for a multidevice controller,
and its address stored in the MBA IDB, the address is incremented by 1 so the
low order bit will be set. Control is actually transferred to the PUSHR in-
struction in the multidevice controller CRB using the following instruction
(where R5 contains the MBA IDB entry) so that the low-order bit is cleared
before control is actually transferred:

JSB —(R5)

ITI

An interrupt occurs;
the hardware responds
to the interrupt.

(AN

MBA Interrupt Service
Routine (MBASINT)

MBA IDB

MBA CRB

The executive process
is interrupted; the ===
software response to

PUSHR R2-R5
JSB

the interrupt is initiated.

The interrupted process P —

continues execution.

Figure 5-4

$— MBASINT determines type

of interrupt and executes the
appropriate code.

> CASE 1: Single-Unit (Disk)
Controller Expecting
Interrupt

—— = MBA Registers

Device UCB
for Single-Unit Controller

MBA CSR

List of Cth
and UCBs for

devices on e-
MASSBUS e-

o

Device Driver

Instruction awaiting

JSB

- CASE 2: Single-Unit (Disk)
Controller Not Expecting
Interrupt

interrupt (PC stored
in UCB fork block)
* Exits with RSB (=

I_'> Unsolicited interrupt
routine

JSB =

* Exits with RSB

Ly~ CASE 3: Multiunit (Tape)
Controller

PUSHL PSL

JsB

Device CRB

Interrupt service

routine JSB
* Restores R2-R5
* Exits with REI

—

After returning from subroutine,
MBASINT cleans up and then
determines if another interrupt is

L— present. If one exists, return to

cases; if there is no interrupt,
REL.

PUSHR R2-R5

JsB

.Control Flow in Servicing a MASSBUS Interrupt

Device UCB for

Device IDB

Multiunit

Controllex

> Device CSR o l"
List of UCBs o

for devices on

this controller

/

Controller Registers

saunInoy 201412 1dniraiu] SWA/XVA &'S

Hardware Interrupts

5.2.4

5.2.5

112

Because data transfer functions block the interrupts from nontransfer func-
tions until the data transfer completes, MBASINT always checks the MBA
attention summary register after a driver interrupt service routine returns
control. This check is made to determine if another device on the MASSBUS
requested an interrupt either while the MASSBUS owner was transferring
data or while the current interrupt was being processed.

DR32 Interrupt Service Routine

DR32 (or DR750 and DR780) interrupt dispatching is handled similarly to
MBA interrupt dispatching. When the system is bootstrapped, entries are
made in the SCB to transfer control to locations in the CRB for the DR32.
The instructions in the CRB are a PUSHR for R2 to R5, and a JSB. The DR32
IDB address follows the JSB instruction in the DR32 CRB (see Figure 5-5).

Initially, the JSB in the DR32 CRB transfers control to routine DR$INT in
module DRINTHAND. This routine simply performs the following opera-
tions:

1. It clears the adapter power up and power down bits in a DR32 control
register.

2. It calls a controller initialization routine to reset the DR32 (and disable
DR32 interrupts).

3. It restores registers R2 to R5.

4. It issues an REI instruction.

When the DR32 driver (XFDRIVER) is loaded by SYSGEN (as part of
AUTOCONFIGURE when the system is bootstrapped, or by an explicit
CONNECT command), the JSB instruction is overwritten to point to the
interrupt service routine in the driver. This routine performs the following
operations:

1. It responds to the various types of DR32 interrupts.
2. It restores registers R2 to RS5.
3. It issues an REI instruction.

MA?780 Interrupt Dispatching

Although the standard MS780 memory controller does not generate inter-
rupts, the shared memory (MA780) controller does. Interrupts are requested
by a driver or the executive to interrupt another processor connected to the
shared memory. Interrupts occur whenever a shared memory event flag is set
or a shared memory mailbox message is written, or whenever there is inter-
processor communication in the VAX-11/782. Note that this discussion de-
scribes MA780 used as shared memory among VAX-11/780s; interrupt han-

el

SCB

An interrupt
occeurs;

A

DR32 CRB

the hardware

responds to

the interrupt.

Figure 5-5

PUSHR R2-R5

CASE 1

DR$INT::

Path
taken
until the
DR32
driver is

JsB L5
DR32 IDB

The executing /

process is interrupted;

DR32 IDB

the software response
to the interrupt is
initiated.

DR32 CSR

[]

P losded

CASE 2

¢ Disables DR32
interrupts

* Restores R2-R5

* REI

DR32 Driver Interrupt Service Routine

Device UCB

Device UCB

Fork Block
*R3
* R4
*PC

Control Flow in Servicing a DR32 Interrupt

Path
taken
after the
DR32
driver is
loaded

\

DR32
Registers

* Respond to interrupt;
e.g., queue AST to
user process to
inform user of interrupt

* Restore R2-R5

* REI

The interrupted
process
continues
execution.

SaUNNOY 99IAIAS 1dNiIaIu] SWA/XVA 29

Hardware Interrupts

5.2.6

114

MA780 Registers

SCB MASINT::
. MA780 ADP ¢ Computes address of

An interrupt ADP from pointer on
occurs; MA780 CSR &— stack The

s — . | PUSHR RO-R5 interrupted

g o Services interrupt =P process

the hardware JSB ¢ | continues
responds « Restores RO-R5 execution.

to the
interrupt. Exits with REI

The executing process is
interrupted; the software
response to the interrupt
is initiated.

Figure 5-6
Control Flow in Servicing an MA780 Interrupt

dling in the VAX-11/782 is somewhat different and is briefly discussed in
Section 5.2.6. Chapter 28 gives a more complete description of MA780 inter-
rupts in the VAX-11/782.

When the system is bootstrapped, module INITADP places entries into the
SCB to transfer control to locations in the MA780 ADP when MA780 inter-
rupts occur (see Figure 5-6). The locations in the ADP contain a PUSHR in-
struction saving RO to R5, and a JSB instruction that transfers control to
routine MASINT (in MAHANDLER).

1. When MASINT obtains control, it removes the value pushed onto the
stack by the JSB instruction in the ADP and uses it to determine the ad-
dress of the MA780’s ADP.

2. It uses fields in the ADP to locate adapter registers in the MA780 and to
determine which port requested an interrupt (and what kind of interrupt
was requested).

3. If the interrupt is for a processor being connected to the memory, the
interrupt is dismissed by restoring RO to R5 and issuing an REL

4. Otherwise, MASINT services the interrupt.

5. Finally, the interrupt is dismissed by restoring RO to R5 and issuing an
REL

MA780 Interrupts on the VAX-11/782

The VAX-11/782 multiprocessing system uses interrupts from the MA780 to
allow the processors to interrupt one another. Thus, the MA780 interrupts
must be handled somewhat differently on the VAX-11/782.

When the multiprocessing code is loaded, the MA780 interprocessor inter-
rupt vectors in the primary processor’s SCB are redirected to point to a multi-

5.3

5.3 Connect-to-Interrupt Mechanism

processing MA780 interrupt routine (only for the first MA780). The interrupt
routine serves interrupts from the secondary processor. A new SCB is created
in nonpaged pool for the secondary processor. The new SCB contains vectors
that point to multiprocessing MA780 interrupt routines for the secondary
processor. The interprocessor interrupt vector for the remaihing MA780s is
pointed to an unexpected interrupt handler.

When multiprocessing code is loaded, the operating system debugger
(XDELTA) is moved from interrupt vector 5 to interrupt vector 15. Interrupt
vector 5 is used for the multiprocessing rescheduling routine.

For more information on the VAX-11/782 multiprocessing system, see
Chapter 28.

CONNECT-TO-INTERRUPT MECHANISM

The connect-to-interrupt mechanism allows a process to be notified of a
UNIBUS device interrupt by the delivery of an AST, by the setting of an event
flag, or both. The process can also specify an interrupt service routine that
will respond to device interrupts.

A suitably privileged process (with CMKRNL and PFNMAP privileges) can
respond to an interrupt by reading or writing device registers and, possibly, by
initiating further device activity. However, in order to directly manipulate
device registers, the process must first map the UNIBUS 1I/O page(s) contain-
ing the registers for the device into its own process space (PO or P1). The
VAX/VMS Real-Time User’s Guide contains a discussion of mapping the
UNIBUS I/0 page and using the connect-to-interrupt capability. Chapter 16
of this book contains more detailed information on how the mapping is actu-
ally performed. '

Note that the physical addresses of the UNIBUS I/O page differ among the
VAX-11/730, VAX-11/750, and VAX-11/780. Therefore, different PFNs must
be used when mapping the UNIBUS I/O page. The details of mapping to the
1I/O page are described in the VAX/VMS Real-Time User’s Guide. Appendix B
contains a list of symbols defined by the $I0730DEF, $I0750DEF, and
$I0780DEF macros to make this mapping as symbolic as possible.

The connect-to-interrupt facility is an extension of the interrupt dispatch-

" ing scheme. In order to use it, the connect-to-interrupt driver (CONINTERR)

must be associated with the interrupt vector. The association is made using
the SYSGEN command CONNECT, specifying all of the following:

* A name for the device (to be used by the process that connects to the
interrupt) ‘

e The address of the device

 The interrupt vector at which the device generates interrupts

» The CONINTERR driver, which initially responds to the device interrupts

115

Hardware Interrupts

116

CONINTERR Interrupt User-supplied Interrupt

Device CRB Service Routine Service Routine
JSB e— * JSB (or CALL) _ I—> * Responds to interrupt
- o if requested by in device-dependent
|DB address ® user fashion
¢ Request delivery _ * Exits with RSB
of AST to process
Device IDB or set an event
- flag, if desired
Device CSR e— by user
l * Restore R0-R5
Device UCB ® * Issue an REI
to dismiss interrupt
Device UCB
- This portion of the interrupt This portion of the interrupt
Fork Block dispatch scheme is an dispatch scheme is specific
R3 explicit example of the general to the connect-to-interrupt driver.
R4 UNIBUS interrupt dispatch
«PC scheme illustrated in Figure 5-3.
Figure 5-7

Extending Interrupt Dispatch Mechanism with the
Connect-to-Interrupt Facility

When the device generates an interrupt, the normal UNIBUS interrupt dis-
patching sequence is followed, as discussed in Sections 5.2.1 and 5.2.2. How-
ever, the CONINTERR interrupt service routine transfers control to the
user-supplied interrupt service routine (if one was supplied) using a JSB or
CALL instruction (as requested by the user). This transfer is illustrated in
Figure 5-7. When the user-supplied interrupt service routine issues an RSB (or
RET), the CONINTERR interrupt service routine regains control. Before re-
storing RO to R5 and issuing an REI, the CONINTERR interrupt service rou-
tine queues an AST to the process (if requested) to notify the process that an
interrupt has occurred (via the AST, or by setting an event flag).

In order for the process-supplied interrupt service routine to be accessible
to the CONINTERR interrupt service routine, the CONINTERR driver dou-
ble-maps the user routine into system address space. The double mapping
requires enough system page table entries (reserved by the REALTIME_SPTS
SYSBOOT parameter) to map the user-supplied routines (other driver rou-
tines besides an interrupt service routine may be specified when connecting
to an interrupt). When the process disconnects from the interrupt, the SPTEs
used to map the routines for that process are made available for later use by
other processes.

6.1

6.1.1

Software Interrupts

Noise is the most impertinent of all forms of interruption. It is
not only an interruption, but also a disruption of thought.

—Schopenhauer, Studies in Pessimism: On Noise

The software interrupt mechanism that is provided as an integral part of the
VAX architecture is relied on heavily by the VAX/VMS operating system for
several purposes. The scheduler is invoked as a software interrupt service
routine: Software interrupts provide device drivers a clean method for lower-
ing IPL. Several I/O completion routines run as software interrupt service
routines. This chapter first describes the general software interrupt mecha-
nism and then lists several uses of software interrupts in the VAX/VMS oper-
ating system. . ‘

THE SOFTWARE INTERRUPT

A software interrupt is actually a hardware mechanism, similar to an inter-
rupt generated by an external device. It causes a PC/PSL pair to be pushed
onto an appropriate stack (usually the interrupt stack) and passes control to
an interrupt service routine whose address is stored in the system control
block. Like hardware interrupts, the VMS operating system interprets soft-
ware interrupts as system-wide events that are serviced independently of the
context of a specific process. The AST interrupt, discussed briefly at the end
of this chapter and in greater detail in Chapter 7, is the only variation from
this sequence of events.

The big difference between software interrupts and hardware interrupts,
and the reason for the name, is that software interrupts are generated by an
explicit request from software. The typical software interrupt request occurs
as the result of a hardware interrupt or within another software interrupt

service routine. However, there are examples within the VMS operating sys-

tem of software interrupts being issued from code executing in process con-
text.

Hardware Mechanism of Software Interrupts

The VAX architecture provides 15 software interrupt levels, from IPL 15
down to IPL 1. There are 15 entries in the system control block (SCB) for
addresses of software interrupt service routines, one for each IPL level. A
software routine (usually a hardware or software interrupt service routine)

117

Software Interrupts

118

requests a software interrupt at a given IPL level by writing the desired IPL
value into the privileged register Software Interrupt Request Register
(PR$_SIRR|). Writing to this register causes a bit in the Software Interrupt
Summary Register (PR$_SISR) to be set. The bit in the SISR is cleared when
the interrupt is finally taken. The layout of these two processor registers is
pictured in Figure 6-1. All software interrupt requests in the VMS operating
system use the SOFTINT macro to write the SIRR. This macro expands into
the following instruction:

.MACRO SOFTINT IPL

MTPR IPL,S"#PR$_SIRR

.ENDM SOFTINT
The usual situation in the VMS operating system is that the requested IPL
level is less than or equal to the current IPL (as determined by PSL>20:16<).

" In this case, the interrupt is deferred until the IPL drops below the requested

level. The deferral of pending software interrupts based on current IPL is
exactly the way that pending hardware interrupts are treated. This lowering
of IPL usually occurs as the result of an REI instruction but could also occur if
privileged code directly altered the current IPL by writing to the PR$_IPL
register (with the SETIPL or the ENBINT macros, described in Chapter 2).

If the requested IPL value is higher than the level at which the processor is
currently running, then the interrupt service routine whose address is in the
selected slot in the SCB is entered immediately. (This is the same way that
pending hardware interrupts are treated.)

There are a few occurrences in the VMS operating system of a software
interrupt request at an IPL level greater than that at which the processor is

31 4 3 0

Ignored Request | :PR$__SIRR

Software Interrupt Request Register
(Write Only)

31 16 15 1

o

Pending Software Interrupts

MBZ :PR$_SISR

N®m=Z

FlElD]clB|A|9|8|7|6|5|4|3|211

Software Interrupt Summary Register
(Read/Write)

Figure 6-1
Content of Software Interrupt Request Register and Soft-
ware Interrupt Summary Register

6.1.2

6.2

6.2 Software Interrupt Levels in the VAX/VMS Operating System

currently running. For example, device driver FDT routines may signal com-
pletion by calling the routines EXE$FINISHIO or EXE$FINISHIOC. These
routines execute at IPL 2 and terminate by requesting the I/O postprocessing
software interrupt at IPL 4. In this case, the interrupt is taken immediately.
The file system ACP uses the same technique to signal I/0O completion for
requests in which it was involved.

Software Interrupt Service Routines

There are several features about the use of software interrupts in the VMS
operating system that are independent of the purposes of individual interrupt
service routines. Some of these are dictated by the particular way that soft-
ware interrupts are treated in the hardware.

Because the VAX architecture supplies no mechanism for determining how
many times a software interrupt has been requested before it is taken, soft-
ware must supply some protocol for determining this number. The VMS op-
erating system uses queues (doubly linked lists manipulated by the INSQUE
and REMQUE instructions) for this purpose. In general, each queue element
represents a specific operation that must be performed. The use of queues,
particularly the use of the INSQUE and REMQUE instructions, allows other
optimizations to be made.

¢ The software interrupt service routine can use the information provided by
condition code settings, this time as the result of executing a REMQUE
instruction. That instruction returns the V-bit set if the queue was empty
before the instruction began execution, an indication that the work of this
particular interrupt service routine is complete.

* By coding software interrupt service routines so that they keep removing
work list elements from a queue until there is no more work to do, it is
possible to simply ignore spurious software interrupt requests. In fact, all
of the software interrupt service routines in the VMS operating system,
including those that do not use queues, handle interrupts, even in the
event of spurious interrupts requests.

SOFTWARE INTERRUPT LEVELS IN THE VAX/VMS
OPERATING SYSTEM

The VMS operating system uses the software interrupt mechanism for sev-
eral purposes.

* Mount verification cancellation executes above driver fork IPL and below
device IPL so that DMA operations will work, yet drivers cannot interfere
with the device data structures.

¢ Device drivers use forks in order to execute at an IPL below device IPL.

119

Software Interrupts

6.2.1

120

Table 6-1: Software Interrupt Levels Used by the Executive

IPL Use Stack

15 XDELTA on VAX-11/782 Interrupt

14-13 ‘Unused " Interrupt

12 Mount Verification Cancellation Interrupt

11 IPL=11 Fork Dispatching Interrupt

10 IPL=10 Fork Dispatching Interrupt

9 IPL=9 Fork Dispatching Interrupt

8 IPL=8 Fork Dispatching Interrupt

7 Software Timer Service Routine " Interrupt

6 IPL=6 Fork Dispatching Interrupt

5 Used to Enter XDELTA, also Interrupt
Scheduling on VAX-11/782

4 I/0 Postprocessing Interrupt

3 Rescheduling Interrupt Kernel

2 AST Delivery Interrupt Kernel

1 Unused na

The software timer service routine performs timer operations that would
bog the system down (because I/O device interrupts are blocked) if they
were performed at IPL 24, the level at which the hardware clock interrupts.
The need for I/O postprocessing can be flagged by device driver interrupt
service routines but the actual processing deferred while another pending
I/0 request is started.

Rescheduling, the removal of the current process from execution and the
selection of a new process for execution, is implemented as a software
interrupt service routine.

The AST delivery interrupt is the only software interrupt that is treated as
a process-specific interrupt rather than a system-wide event.

Table 6-1 lists all the software interrupt levels used by the VAX/VMS operat-
ing system.

Mount Verification Cancellation

If a Files-11 volume is mounted in a drive, and the corresponding device
driver generates one of a select set of errors, mount verification is invoked.
Mount verification allows the system to recover gracefully from certain er-
rors, rather than wait indefinitely or report a bugcheck. While mount verifi-
cation is in progress on a particular device, no other requests will be serviced
by the ACP associated with that device.

6.2.2

6.2 Software Interrupt Levels in the VAX/VMS Operating System

If the device undergoing mount verification uses the same ACP as the sys-
tem disk, mount verification can effectively stall the system until the mount
verification either completes or times out. This stall can occur because the
ACP will not service any other requests.

In order to abort mount verification, an IPL 12 interrupt must be requested
from the console terminal. The interrupt service routine that serves the IPL
12 interrupt prompts with the following prompt:

IPC>

At this point, commands can be issued to cancel mount verification or enter
XDELTA. More information about canceling mount verification can be found
in the VAX/VMS System Management and Operations Guide.

Fork Processing

Another use of software interrupts is found in the mechanism called fork
processing employed by device drivers. The interrupt nesting scheme defined
by the VAX architecture will not work correctly if an interrupt service rou-
tine lowers IPL below the level at which the interrupt occurred. However,
device driver interrupt service routines, initially entered or invoked at device
IPL (typically 20 to 23 decimal), often must perform lengthy processing that
does not require device interrupts to be blocked, the usual reason for main-
taining high IPL. Some mechanism is required to allow device drivers to
lower IPL without destroying the interrupt nesting scheme.

Several IPL values (6, and 8 to 11) and their associated SCB slots are used by
device drivers to allow them to continue their execution at lower IPL, as
so-called fork processes. There are also six quadword listheads associated
with the fork IPLs. (Because IPL 7 software interrupts are used by the soft-
ware timer, this listhead is not used by the fork processor but merely serves
as a place saver so that context indexed addressing can be used by the fork
processor and the fork dispatcher with the IPL value as an index.) The queue
elements that describe each individual operation that must be performed at
lower IPL are called fork blocks and are used to pass context between driver
interrupt service routines and the fork level software interrupt service rou-
tines. A fork block (pictured in Figure 6-2) is often part of a larger structure
such as a unit control block.

When a driver must lower its IPL (by creating a fork process), it calls rou-
tine EXE$FORK with R5 containing the address of the fork block. That rou-
tine saves the driver context (R3, R4, and saved PC) in the fork block, inserts
the fork block into the appropriate fork queue, and requests a software inter-
rupt at the requested IPL level. The actual instructions in routine EXE§FORK
that perform these functions are listed here to illustrate how work queues
and software interrupt requests are managed.

121

Software Interrupts

Fork Block
Fork Queue Forward Link
Fork Queue Backward Link
Fork IPL | Type Size
Saved PC
Saved R3
Saved R4
Figure 6-2
Layout of Fork Block
EXE$FORK::
MOVQ R3,FKB$L_FR3(RS)
POPL FKB$L_FPC(RS)
MOVZBL FKB$B_FIPL(RS),R4
MOVAQ W SWT$GL_FQFL-<b*8>[R4],R3

INSQUE (RS) ,@4(R3)
SOFTINT R4
RSB

The fork dispatcher, which is the software interrupt service routine that exe-
cutes in response to the requested interrupt, executes the following sequence
of instructions (or a sequence much like it), which removes each queue ele-
ment in turn from the associated queue and processes it. This processing
continues until the queue is empty, at which time the software interrupt is
dismissed with an REL R6 is loaded with the address of the fork queue lis-
thead before this sequence is executed.

.ALIGN LONG

EXE$FORKDSPTH: :
PUSHL RS
PUSHL R4
PUSHL R3
PUSHL R2
PUSHL R1
PUSHL RO
REMQUE @(RE) ,RS
BVS 20$
10%: MOVQ FKB$L_FR3(R5),R3
JSB @FKBSL_FPC(RS),
REMQUE @(RGL) (RS
BVC 10%

122

6.2.3

6.2.4

6.2 Software Interrupt Levels in the VAX/VMS Operating System

20s$: POPR #M<RO,R1,R2,R3,R4, RS, RE>
REI

.END

Software Timer

Most of the timer operations in the VMS operating system execute in re-
sponse to a software interrupt at IPL 7. These operations are described in
detail in Chapter 11. The use of software interrupts by the timer support
routines is described here.

When the hardware clock interrupt service routine (executing at IPL 24)
determines that further service is required (due to quantum expiration or
because the first element in the timer queue has come due), it requests a
software interrupt at IPL 7 (IPL$ _TIMER). Unlike the fork queue described in
the previous section, timer queue elements (TQEs) are not placed into the
timer queue by an interrupt service routine. Rather, they are usually placed
there by one of the timer-related system services (such as $SETIMR or
$SCHDWEK). The key to the timer queue is that the queue elements are or-
dered by expiration time so that only the first TQE has to be examined by the
hardware clock service routine.

The software interrupt service routine rechecks for quantum expiration
and takes action if necessary. After any required quantum end processing has
occurred, the software timer service routine examines the timer queue for
any timer requests that have expired. Any timer queue element that has an
expiration time earlier than the current system time is then removed from
the timer queue and serviced. Because of the time ordering of the timer
queue, this removal takes place from the beginning of the list. When no more
expired timer queue elements remain (the expiration time of the first TQE in
the queue is later than the current system time), the software interrupt is
dismissed. Note that a second difference between this software interrupt
service routine and fork processing is that the software timer service routine
may leave timer queue elements (the ones that have not yet expired) in the
queue when it dismisses the interrupt. For more information on timers and
timer queues, see Chapter 11.

I/0 Postprocessing

When a device driver or FDT routine detects that a particular I/O request is
complete, it calls a routine that places the I/O request packet (pointed to by
R3) at the tail of the I/O postprocessing queue (located through global pointer
IOC$GL_PSBL) and requests a software interrupt at IPL 4 (IPL$_IOPOST) if
the queue was previously empty. The following instructions (from routine

123

Software Interrupts

6.2.5

124

IOC$REQCOM in module IOSUBNPAG) show the similarities between the
software interrupt requests for fork processing and I/O postprocessing. (Other
routines that request an IPL$_IOPOST software interrupt, $QIO completion
code and ACP routines, execute similar instructions.)

INSQUE (R3), @W"IOC$GL_PSBL
SOFTINT #IPL$_IOPOST

The I/O postprocessing software interrupt service routine removes each IRP
in turn from the beginning of the queue (located through global pointer
IOC$GL_PSFL) and processes it. When the queue is empty, the IPL 4 soft-
ware interrupt is dismissed. The similarities between fork processing and I/O
postprocessing are also found in their respective software interrupt service
routines. The following instructions from module IOCIOPOST illustrate
these similarities.

JOC$IOPOST: :
MOVQ R4 ,—(SP)
MOVQ R2,—(SP)
MOVQ RO,—(SP)
IOPOST: REMQUE @W IOC$GL_PSFL,RS
BVC 10%
MOVQ (SP)+,RO
MOVQ (SP)+,R2
MOVQ (SP)+,R4
REI
10%: ‘
;Complete processing of
; this request
BRx IOPOST

Rescheduling Interrupt

The routine that removes a process from execution and selects the highest
priority process for execution is invoked as a software interrupt service rou-
tine at IPL 3 (IPL$ _SCHED) by the routine that makes a process computable.
Whenever the state of a resident process becomes computable and its priority
is greater than or equal to the priority of the current process, this software
interrupt is requested. Because several processes could all become computa-
ble at effectively the same time, there could be multiple requests for this
software interrupt service routine.

- The rescheduling interrupt is not totally independent of process context
like the fork processing and I/O postprocessing interrupts: The SCB entry for

6.2.6

6.2 Software Interrupt Levels in the VAX/VMS Operating System

this interrupt indicates that it should be serviced on the kernel stack (see
Table 6-1). In fact, its first operation is to remove the current process from
execution with a SVPCTX instruction. However, that instruction performs a
stack switch from the kernel stack to the interrupt stack so the rest of the
rescheduling interrupt service routine is performed in system context. The
operation of the scheduler, including a detailed description of the reschedul-
ing interrupt, is discussed in Chapter 10.

Unlike fork processing or I/O postprocessing requests, there is no need to
count requests for the rescheduling interrupt, because only one process can
become current at a given time. The software priorities of the computable
processes determine which of them is chosen for execution. The scheduler
will select the process with the highest software priority. The rest of the
processes will remain in the computable state until some system event oc-
curs that alters the scheduling balance of the system and causes one of these
processes to be selected for execution. For example, if a higher priority proc-
ess were to become computable, an IPL 3 software interrupt would be re-
quested. (If the current process were to enter a wait state, a different path is
taken through the scheduler, one that bypasses the software interrupt request
and executes the code contained in the second half of the rescheduling inter-
rupt service routine.)

AST Delivery Interrupt

The software interrupt that indicates that there is an AST to deliver differs in
several respects from the other software interrupts.

o The AST delivery interrupt is associated with a specific process and is
serviced on the kernel stack of that process.

» The interrupt request is made in two steps. Routines that recognize that
there is an AST that can be delivered to a process indicate that by writing
the access mode associated with the AST into a per-process privileged reg-
ister called the AST level register (PR§_ASTLVL). The REI instruction
compares the contents of this register with the access mode that it is re-
storing to determine whether to request an IPL 2 software interrupt.

* As this mechanism suggests, IPL 2 software interrupts have a second di-
mension associated with them, namely access mode.

The use of ASTs in the VMS operating system is so important and complex
that it is described in a separate chapter (Chapter 7).

125

71

7.1.1

126

AST Delivery

There’s absolutely no reason for being rushed along with the
rush. Everybody should be free to go very slow. . . . What you
want, what you're hanging around in the world waiting for, is for
something to occur to you.

—Raobert Frost

Asynchronous system traps (ASTs) are a mechanism for signaling asynchro-
nous events to a process. Specifically, a procedure (or routine) designated by
either the process or the system executes in the context of the process. ASTs
are created in response to system services such as $QIO, $SETIMR, and
$DCLAST. Additionally, unrequested ASTs occur as implicit results of other
operations such as I/0 completion, process suspension, and obtaining infor-
mation about another process with the Get Job/Process Information
($GETJPI) system service. The reason that ASTs are used for these operations
is that it is necessary for code to execute in the context of a specific process.
ASTs fulfill this need.

AST enqueuing is a system event that may result in a rescheduling inter-
rupt. AST delivery occurs in the context of the process that is to actually
receive the AST. This chapter discusses how ASTs are enqueued and deliv-
ered to a process. Several examples of how ASTs are used by the VMS operat-
ing system are also included. ‘

HARDWARE ASSISTANCE TO AST DELIVERY

The delivery of ASTs is an example of the VAX hardware providing assistance
to the VMS operating system. Three hardware components or mechanisms
contribute to AST delivery:

» The REI instruction
» The PR$_ASTLVL processor register
» The IPL 2 software interrupt

The first two features are discussed in this section. The IPL 2 interrupt
service routine, ASTDEL, is discussed in Section 7.3.

REI Instruction

The return from exception or interrupt routine instruction, REI, provides the
initial step in the delivery of an AST to a process. Among the operations
performed by the REI microcode are the following.

7.1.2

7.2

7.2.1

7.2 Queuing an AST to a Process

1. A check is made to determine which stack will be active after the return.
No ASTs are delivered if the interrupt stack is active.

2. The value in the AST level processor register, PR§_ASTLVL, is compared
with the access mode to which control is being passed. If the destination
access mode number is less than the value in PR§ _ASTLVL (that is, more
privileged), no ASTs can be delivered.

3. If the interrupt stack is not going to be used and the access mode number
is greater than or equal to the PR§_ASTLVL value, then an AST can be
delivered. The REI instruction microcode requests a software interrupt at
IPL 2. (Note that the requested IPL 2 interrupt will not actually be granted
until the IPL drops below 2.) The IPL 2 software interrupt service routine
is found at global location SCH$ASTDEL (see Section 7.3).

ASTLVL Processor Register (PR$ _ASTLVL)

The processor register, PR§_ASTLVL, is a per-process hardware register indi-
cating the deliverability of ASTs to the current process. PR§_ASTLVL is part
of the hardware context of the process {loaded by LDPCTX] and is recorded in
the hardware process control block (see Chapter 10). PR§_ASTLVL can con-
tain the following values:

0 A kernel mode AST is deliverable.

1 An executive mode AST is deliverable.
2 A supervisor mode AST is deliverable.
3 A user mode AST is deliverable.

4 No AST is deliverable.

Thus, if multiple ASTs are deliverable, PR§_ASTLVL contains the access
mode value for the AST that has the innermost access mode. The null value
of four is chosen so that the REI test, described above, will fail, regardless of
the destination access mode of the REI instruction. If the access mode of the
deliverable AST is at least as privileged as the destination access mode of the
REI instruction, the AST delivery interrupt will be requested.

QUEUING AN AST TO A PROCESS

ASTs are queued to a process as the corresponding events (I/O completion,
timer expiration, and so on) occur. The AST queue is maintained as a list
structure of AST control blocks (ACBs) with the listhead contained in the
software process control block (PCB) (see Figure 7-1).

AST Control Block

The AST control block (ACB) contains the following information necessary
to deliver an AST to a process:

127

AST Delivery

Software Process Control Block (PCB)

ASTEN [ASTACT

ASTQFL [

ASTQBL

ASTCNT

_3\\

AST Control Block (ACB)

\ ASTQFL — g
Links to other
>y ASTQBL \ACBS in queue
AMOD | TYPE | SIZE (See Figure 7-2.)
PID
AST
ASTPRM
KAST

RMOD Bits:
76 543210

T

Figure 7-1
AST Control Block and AST Queue in Software PCB

128

T
MODE

SPARE
PKAST
NODELETE
QUOTA
KAST

» The process identification and AST routine address
» The correct access mode

"o The appropriate parameter to pass to the routine

The ACB is allocated from nonpaged dynamic memory before the queuing
of an AST to a process is requested.

Figure 7-1 shows the format of an AST control block and the relevant soft-
ware PCB fields. ACB$L_ASTQFL and ACB$L_ASTQBL link the ACB into
the AST queue for the process. The listhead of this queue is the pair of
longwords PCB$L_ASTQFL and PCB$L_ASTQBL. The field ACB$B_RMOD
provides five types of information.

1. Bits <0:1> (ACB$V_RMOD) contain the value corresponding to the ac-
cess mode in which the AST routine is to execute.

2. Bit <4> (ACB$V_PKAST) indicates the presence of a plggyback special
kernel mode AST (see Section 7.2.4).

7.2 Queuing an AST to a Process

3. Bit <5> (ACB$V_NODELETE) indicates that the ACB should not be
deallocated after the AST is delivered. Typically this bit indicates that the
ACB is a portion of a larger structure.

4. Bit <6> (ACB$V_QUOTA) indicates whether the allocation of the data
structure is accounted for in the process AST quota, PCB§W_ASTCNT.

5. Bit <7> (ACB$V_KAST) indicates the presence of a special kernel mode
AST (see Sections 7.2.3 and 7.4).

ACBS$L_PID identifies which process is to receive the AST. ACB$L_AST
and ACB$L_ASTPRM are the entry point of the designated AST routine and
* the AST parameter, respectively. ACB§L_KAST contains the entry point of a
system-requested special kernel mode AST routine if the ACB§V_PKAST or
ACB$V_KAST bit of ACB$B_RMOD is set (items 2 and 5 above).

ACBs can be created by three types of action.

1. The process explicitly declares an AST. The $DCLAST system service
simply allocates an ACB, fills in the ACB information from its argument
list, and requests the queuing of the ACB. The followmg checks are made
before the ACB is queued:

e The AST quota for the process is checked to make sure it is not ex-
ceeded by the request.

» The access mode in which the AST routine is to execute is checked to
make sure that it is no more privileged than the access mode from
which the system service was called.

The ACB$V_QUOTA bit is set to indicate that this AST is counted
against the process AST quota, PCB§W _ASTCNT.

2. The process requests an AST to be associated with an event such as the
completion of a request (I/O or update section, lock management, or timer
requests). System services such as these have arguments that include an
AST routine entry point and an AST parameter. The delivery of an AST is

-accounted for in the PCB§W _ASTCNT field. The control block (ACB) is

actually a reuse of the I/0 request packet (IRP), lock block (LKB), or timer

queue element (TQE) used in the initial operation. (Compare the ACB

format pictured in Figure 7-1 with the TQE format shown in Figure 11-1,

the LKB format shown in Figure 13-1, or the IRP layout shown in the
- VAX/VMS Guide to Writing a Device Driver.)

3. The system, or another process, can request an AST to execute code in the
context of the selected process. Examples of this type of action include I/O
completion, Get Job/Process Information system service executed from
another process, Forced Exit system service, expiration of CPU time
quota, and working set adjustment as part of the quantum end event (see

129

AST Delivery

7.2.2

723

7.2.4

130

Chapter 10). AST control blocks used in these situations are not deducted
from the AST quota of the target process because of their involuntary
nature.

Access Mode and AST Queuing

The ACB$V_RMOD bits of the ACB$B_RMOD field determine the inser-
tion position of an AST control block when it is queued to a process. The
AST queue is maintained as a first-in/first-out (FIFO) list for each access
mode. ASTs of different access modes are placed into the queue in ascending
access mode order, that is, kernel mode ASTs first and user mode ASTs last.
Special kernel mode ASTs precede normal kernel mode ASTs.

When the subroutine SCH$QAST (in module ASTDEL) is invoked, the pre-
allocated and preinitialized AST control block is inserted into the AST queue
of the appropriate process at IPL§_SYNCH. The following steps are then
performed.

1. If the process is nonexistent, the ACB is deallocated and the AST event is
ignored. An error status code is returned.

2. If the AST queue is empty (the contents of PCB$L_ASTQFL are equal to
its address), the ACB is inserted as the first element in the AST queue.

3. Otherwise, the queue elements (ACBs) are scanned until either the end of
the queue is reached or an ACB is found with an access mode less privi-
leged than the one being inserted (that is, the ACB§V_RMOD value is
higher). The new AST control block is inserted at this point. Thus, ASTs
are first-in/first-out within an access mode and grouped by access mode in
decreasing amount of privilege. User mode ASTs are always placed at the
tail of the queue.

Special Kernel Mode ASTs

Special kernel mode ASTs represent a fifth type of AST. They are maintained
as a separate group in the AST queue. Special kernel mode ASTs are indicated
by the ACB§V_KAST bit of the ACB$B_RMOD field. Insertion of a special
kernel mode AST will occur after any previous special kernel mode ASTs,
but before any normal ASTs of any access mode (including kernel). The orga-
nization of the AST queue is shown in Figure 7-2.

Section 7.4 discusses special kernel mode ASTs more fully and provides
several examples.

Piggyback Special Kernel Mode ASTs

Piggyback special kernel mode ASTs (PKASTs) are a new form of AST deliv-
ery used in VAX/VMS Version 3. PKASTs allow a special kernel mode AST to

1€l

PCB

Special Normal
Kernel Kernel Executive Supervisor User
l e N A A re
I ’ N N N N7
AST Queue > Rl o - -] < - - -] - R | -
Listheads !
2
j: -~
ACB
Figure 7-2

Organization of the AST Queue

$$2001J v 01 [SV UD Sumand) g’/

AST Delivery

7.2.5

132

ride piggyback in the ACB$L_KAST field of a normal mode AST. Piggyback
special kernel mode ASTs are inserted in the AST queue according to the
mode of the normal mode AST on which they ride.

When the normal AST becomes deliverable, the information in the ACB is
saved and the special kernel mode AST is delivered first. When the special
kernel mode AST returns, the normal mode AST is called.

There are reasons for using piggyback special kernel mode ASTs:

1. It is faster to deliver two ASTs from one interrupt than to deliver two
ASTs separately.

2. There are times when delivering an AST requires some additional work in
kernel mode in the context of the calling process. Piggyback special kernel
mode ASTs reduce the work involved in this operation.

The lock manager uses piggyback special kernel mode ASTs to load the
fields of the caller’s lock status block and lock value block. In order to
copy the information from the lock manager’s database to the caller’s
process space, a piggyback special kernel mode AST is required.

3. A piggyback special kernel AST can be used to queue other normal mode
ASTs to a process. The lock manager uses this feature to deliver both
blocking and completion ASTs to one process. The terminal driver uses
piggyback special kernel mode ASTs to requeue out-of-band ASTs (thus
making them repeating).

Computation of a New Value for ASTLVL

An AST can be enqueued to a process at any time, because the software PCB
and the AST control blocks are neither paged nor swapped. Each time an AST
control block is inserted into the queue, the assignment of a value to
ASTLVL (processor register and hardware PCB field) is attempted. However,
the process can be in any one of three possible situations that determine to
what degree the state of the AST queue can be updated.

* If a process is outswapped, the ASTLVL cannot be updated because the
process header (including the hardware process control block) is not availa-
ble. When the process becomes resident and computable at a later time,
ASTLVL will be calculated by the swapper (by invoking SCH$NEWLVL in
module ASTDEL).

 If the process is memory resident but not currently executing, the new
value for ASTLVL will be recorded in the hardware PCB field but not in the
processor register.

+ If the process is currently executing, the new ASTLVL value will be stored
in both the hardware PCB field and the processor register, PR§ _ASTLVL.

7.3

7.3.1

7.3 Delivering an AST to a Process

The ASTLVL value indicates the deliverability and access mode of the first
pending AST in the queue, There is no‘indication of the deliverability of any
other pending ASTs. ASTLVL is calculated in the following steps:

o If the AST queue is empty, ASTLVL is set to 4.

* If the AST queue is not empty and the first ACB is for a special kernel
mode AST (see Sections 7.2.3 and 7.4), then ASTLVL is set to 0.

+ If the AST queue is not empty and the first ACB is for a normal mode AST,
ASTLVL is set to the access mode of that ACB (the value contained in
RMOD).

DELIVERING AN AST TO A PROCESS

An AST is delivered to a process when an REI instruction determines (from
the destination access mode and the PR§_ASTLVL register) that a pending
AST is deliverable (see Sections 7.1 and 7.2). A software interrupt is requested
at IPL 2. The amount of time before the AST is actually delivered is depend-
ent upon the interrupt activity of the system. When IPL finally drops below
two, the AST delivery interrupt service routine will be executed.

Note that a rescheduling interrupt at IPL 3 may be requested and granted,
prior to the granting of the IPL 2 AST delivery interrupt request. Thus, it is
possible for a spurious AST delivery interrupt to be granted in the context of
a different process than was originally requested. Such spurious AST inter-
rupts are detected and ignored.

AST Delivery Interrupt

Routine SCH$ASTDEL (in module ASTDEL) is the IPL 2 interrupt service

routine. Its function is to remove the first pending AST from the queue and

execute the appropriate AST routine in the correct access mode.
SCH$ASTDEL performs the following operations:

1. After raising the IPL to SYNCH, the first AST control block is removed
from the AST queue of the process. If the queue was empty, the routine
~ sets ASTLVL to 4 and exits with an REI instruction. This test detects
spurious AST delivery interrupts.
2. The removed ACB is tested for a special kernel mode AST (using
ACB$V_KAST in ACB$B_RMOD). If the AST is a special kernel mode
AST, a shortened sequence of steps occurs:

a. IPL is dropped from SYNCH to IPL§_ASTDEL (IPL 2).

b. The special kernel mode routine is executed by a JSB instruction with
the ACB address in R5 and the PCB address in R4.

¢. On return from the special kernel mode routine, SCHSASTDEL returns
to step 1.

133

AST Delivery

134

3. If the AST removed from the queue is not a special kernel mode AST, then

a check is made to confirm that the mode of the AST is at least as privi-
leged as the destination of the REI instruction that initiated AST delivery.
This test is accomplished by checking the saved PSL on the kernel stack. If
the mode of the AST is not correct, the ACB is reinserted at the head of the
queue and the routine exits through the REI instruction, setting the new
ASTLVL; these tests detect spurious AST delivery interrupts. Similar
checks are made for already active ASTs (PCB$B_ASTACT, which insures
that an AST is not interrupted by another AST at the same access mode)
and for disabled access modes (cleared bits in PCB$B_ASTEN indicate
that the access mode that corresponds to the bit cannot receive ASTs).

. If the AST is deliverable, then the following operations are performed be-

fore dispatching to the AST routine.

a. The bit corresponding to the current access mode in PCB$B_ASTACT
is unconditionally set.

b. If the ACB is accounted for in the PCB§W_ASTCNT quota, then the
count is incremented to show delivery of the AST and deallocation of
the ACB to nonpaged pool.

c. ASTLVL is recomputed because the removal of the first ACB alters the
state of the AST queue. The new value of ASTLVL is the access mode of
the current process plus one (the next outer mode). The access mode is
calculated in this manner in order to prevent another AST interrupt
when SCH$ASTDEL executes its REI to EXESASTDEL. ASTLVL is
computed more precisely when the AST procedure is done, based on the
access mode of the first ACB in the queue.

d. IPL is dropped to ASTDEL.

e. A kernel mode AST does not require changing access mode, and the
appropriate stack is already active. For executive, supervisor, and user
mode ASTs, however, the inactive stack pointer is obtained.

f. An argument list (described in the next section) is built on the stack of
the AST’s access mode.

g. For ASTs for the outer three access modes, a PC/PSL pair of longwords
is built on the kernel stack. The stored PC is the location EXE§ASTDEL,
the AST dispatcher. The stored PSL contains the access mode in which
the AST is to be delivered in both its current mode and previous mode
fields.

h. If a piggyback special kernel mode AST is associated with the current
AST, the special kernel mode AST routine is dispatched through a JSB
instruction with the ACB address in R5 and the PCB address in R4.
When the AST routine returns, processing continues with the next
step.

i. If a piggyback special kernel mode AST does not exist, the bit

7.3.2

7.3 Delivering an AST to a Process

ACB$V_NODELETE is tested. If the bit is set, processing continues
with the previous step; if the bit is not set, the ACB is deallocated and
returned to nonpaged dynamic memory.

j. EXE$ASTDEL executes in the access mode of the AST. For kernel
mode, this merely requires dropping the IPL to zero. For the other ac-
cess modes, transfer of control and change of access mode is accom-
plished through an REI instruction, the only way to reach a less privi-
leged access mode (see Figure 1-4). (The PC and PSL used by the REI
instruction are described above in item 4g.) A CALLG instruction is
executed, transferring control to the AST procedure, with the argument
pointer (AP pointing to the argument list.

Argument List

User-written ASTs are procedures, which means that they can be written in
any language. The procedures must begin with an entry mask and return
control to their caller (the AST dispatcher) with a RET instruction.

Figure 7-3 shows the argument list passed to an AST procedure by the
interrupt service routine, ASTDEL. The AST parameter is obtained from the
ACB where it was initially stored by a system service such as $QIO,
$SETIMR, or $DCLAST. The parameter was originally an argument to that
system service. The interpretation of the AST parameter is dependent on the
application. '

The general purpose registers, RO and R1, are saved in the argument list
because the procedure calling convention does not require that they be saved.
The asynchronous nature of ASTs implies that the RO and R1 contents are
unpredictable and cannot be destroyed. The registers are saved and restored
by the AST delivery mechanism.

The saved PC and PSL values are the register contents originally saved
when the IPL 2 interrupt was initiated by the hardware. The values are nor-

l 5 — AP

ASTPRM
SAVED RO
SAVED R1
SAVED PC
SAVED PSL

Figure 7-3
Argument List Passed to AST by Dispatcher

135

AST Delivery

7.3.3

136

mally the pair that was about to be used by the original REI instruction re-
questing the AST delivery.

AST Exit Path

When the AST routine issues the RET instruction, control is returned to the
location EXE$ASTRET in the access mode of the AST. The call frame, but
not the argument list, was removed from the current stack by the RET in-
struction. The argument list remains because a CALLG rather than a CALLS
instruction was used to execute the AST routine. The following steps then
occur.

1. The argument count and the AST parameter are removed from the stack,
leaving the RO, R1, PC, and PSL values.
2. The following instruction is executed:

CHMK #ASTEXIT

This instruction invokes the change-mode-to-kernel system service dis-
patcher, CMODSSDSP (described in Chapter 9). The service code of zero
(ASTEXIT = 0) causes the normal kernel mode dispatching mechanism to
be bypassed.

3. In place of the kernel mode dispatching mechanism, the following actions
are performed while in kernel mode:

e The IPL is raised to SYNCH.

» The appropriate PCB$B_ASTACT bit is cleared to signal AST comple-
tion.

* The ASTLVL value is recomputed.

These fields can only be written from kernel mode. Thus, it is necessary
for the AST dispatcher to reenter kernel mode after the AST returns con-
trol to the dispatcher and before the AST delivery interrupt is dismissed.

4. An REI instruction, still in module CMODSSDSP, drops the IPL to zero,
and returns the access mode to that of the AST.

5. Code in the module ASTDEL resumes at the previous access mode and IPL
0 with the following steps:

e The saved values in RO and R1 are restored.
* Another REI instruction is issued.

The REI instruction returns control to the access mode and location origi-
nally interrupted by AST delivery.

Note that the REI instructions in CMODSSDSP and ASTDEL may cause
another IPL 2 interrupt to occur, depending upon the ASTLVL value and the
access mode transitions.

7.4

7.4.1

7.4 Special Kernel Mode ASTs

SPECIAL KERNEL MODE ASTs
Special kernel mode ASTs are different from normal ASTs in several ways:

1. The ASTs represent system actions that must occur in the context of the
process. These actions are frequently requested when the process is not
currently executing.

2. The special kernel mode AST routines are dispatched at IPL 2 and execute
at that level or higher. Synchronization is provided by the interrupt mech-
anism itself, rather than requiring additional PCB$B_ASTACT and
PCB$B_ASTEN bits. Only one special kernel mode AST can be active at
any moment because the AST delivery interrupt is blocked.

3. The special kernel mode AST routines are invoked by a JSB instruction
rather than a CALLG instruction. There is no argument list (the PCB ad-
dress is in R4 and the ACB address is in R5). When the special kernel mode
AST routine executes its RSB instruction, the stack must be in its original
state (when the special kernel mode AST routine was called). The routine
must also save and restore general registers R6 through R11.

4. The AST routine is responsible for the deallocation of the ACB (to non-
paged pool). (For normal ASTs, this deallocation is done by the AST deliv-
ery routine.)

5. On return from the AST routine (with an RSB instruction), the AST queue
is checked once more (in case a special kernel mode AST queued a normal
AST to the process). If the queue is empty, an REI instruction is executed.
This instruction attempts to pass control to the originally interrupted
PC/PSL pair. IPL will drop from two to zero at the same time.

The next five sections briefly describe five examples of the special kernel
mode AST mechanism.

I/0 Postprocessing in Process Context

Part of the sequence of completing an I/O request involves the delivery of a
special kernel mode AST to the requesting process. I/O postprocessing is
described in the VAX/VMS Guide to Writing a Device Driver. This request is
made by the IPL 4 (I/O postprocessing) interrupt service routine by queuing
the former I/O request packet as an ACB. The operations performed by the
I/O completion AST routine are those that must execute in process context,
particularly those that reference process virtual addresses. The primary oper-
ations (executed at IPL 2) are the following.

1. Far buffered read I/O operations only, the data is moved from the system
buffer to the user buffer, and the system buffer is deallocated to nonpaged
dynamic memory.

2. The buffered or direct I/O count field of the process header is incremented
for accounting information.

137

AST Delivery

7.4.2

7.4.3

138

3. If a user diagnostic buffer was specified, the diagnostic information is
moved from the system diagnostic buffer before it is deallocated.

4. The channel control block (in the control region) is updated to show I/0
completion. Updating the CCB may make the channel idle.

5. The event flag associated with the I/O request is set.

6. If an I/O status block (IOSB) was specified, the IOSB is written using infor-
mation in the I/O request packet.

7. If an AST was specified with the $QIO request, then the ACB§V_QUOTA
bit was set in the IRP. The AST procedure address and the optional AST
parameter were originally stored in the IRP (now an ACB). The former IRP
is queued to the process once again in the access mode of the requesting
process.

8. Otherwise, the IRP/ACB is deallocated to nonpaged dynamic memory.

Process Suspension

When a $SUSPND system service request specifies a process other than the
requesting process, the suspend mechanism requires a special kernel mode
AST to enter the context of the target process.

When the special kernel mode AST is delivered, the following actions are
performed:

1. The ACB is deallocated to nonpaged dynamic memory.

2. After raising IPL from ASTDEL (IPL 2) to SYNCH, the PCB$V_RESPEN
bit is cleared. If a request to resume from the $RESUME system service
was pending, then the resume request has precedence. That is, the AST
routine exits without suspending the process (after dropping IPL back to
ASTDEL).

3. If no resume request was pending, then the process is placed into the SUSP
wait state. The process hardware context is saved with a SVPCTX instruc-
tion (described in detail in Chapter 10). The process quantum field in the
process header is charged with a voluntary wait interval (determined by
the special system parameter IOTA, described in Chapter 10). The time at
which the process enters the wait state is stored in the process header at
offset PHD$W_WAITIME. Control is passed to the scheduler at
SCH$SCHED to select the next process for execution.

When the process finally executes again (after a RESUME system service
call), the PCB$V_SUSPEN bit is unconditionally cleared and the process is
made computable.

Process Deletion

The major portion of the steps involved in process deletion occur in a special
kernel mode AST routine queued in response to a $DELPRC system service

7.4.4

7.4 Special Kernel Mode ASTs

call. A detailed explanation of process deletion is provided in Chapter 22. The
use of the special kernel mode AST mechanism provides the following:

* Execution as the current process is accomplished by AST delivery. Almost
all waiting processes are made computable by AST delivery (see Chapter
10), with the exception of suspended processes. The $DELPRC service en-
sures the deletion of a suspended process by issuing a $RESUME first.

Execution as the current process is required for process virtual address
translation and other operations that require process context (particularly
in obtaining the information contained in the control region).

* The delivery of deletion ASTs cannot be prevented by the $SETAST sys-
tem service. A process can only avoid deletion by raising IPL to ASTDEL
(IPL 2) or above to prevent all AST deliveries. Because IPL can only be
elevated while in kernel mode, only privileged processes, or the system
acting on behalf of some process, can explicitly prevent process deletion.

$GETJPI System Service

The $GET]JPI system service is described in Chapter 30. When information is
requested for a process other than the requesting process, the target process
must execute to establish process context. In addition, if the target process is
outswapped, the enqueuing of the special kernel mode AST will make the
process an inswap candidate. This action brings in both the working set and
the process header (where much of the accounting information is main-
tained).
In general terms, the $GETJPI AST activity is as follows.

1. An ACB is constructed for a special kernel AST. A system buffer is also
allocated and a pointer to it is placed in the ACB.

2. When the special kernel mode AST routine executes in the context of the
target process, the requested information is moved into the system buffer.
(The requests had been encoded in the ACB.) The ACB is then reset to
deliver a special kernel mode AST back to the requesting process.

3. The second special kernel mode AST moves data from the system buffer
into a user buffer in the requesting process. Other actions include the
following:

* Deallocating the system buffer
* Setting an event flag v
* Delivering an AST in the access mode of the caller, if requested

4. If an AST is delivered, the ACB is used for the third time. If no AST is
delivered, then the ACB is deallocated.

139

AST Delivery

7.4.5

7.4.6

7.5

7.5.1

140

Power Recovery ASTs

Another example of the use of special kernel mode ASTs occurs in the imple-
mentation of power recovery ASTs, a tool that enables processes to receive
notification that a power failure and successful restart have occurred. (Power
failure and power recovery are described in Chapter 27.)

When a successful power recovery occurs, all processes that have estab-
lished a power recovery AST are notified first with a special kernel mode
AST. This AST retrieves information from the P1 pointer page that allows
the user-requested AST to be delivered. The AST is required because P1 space
information is only available from process context. '

‘Other System Use of ASTs

Three other features within the executive are 1mplemented through ASTs,
but these ASTs are not special kernel mode ASTs. The automatic working set
adjustment that takes place at quantum end is implemented with normal
kernel ASTs. (See Chapter 10 for information on quantum end activities and
Chapter 16 for detailed description of of automatic working set adjustment.)
CPU time limit expiration is implemented with potentially multiple ASTs.
Beginning with user mode, the AST procedure calls the $EXIT system serv-
ice. If the process is not deleted, a supervisor mode time expiration AST is
queued. This loop continues with higher access modes until the process is
deleted. The Force Exit system service (see Chapters 12 and 21) causes a user
mode AST to be delivered to the target process.

ATTENTION AND OUT-OF-BAND ASTs

Two other categories of AST use are the mechanisms for serving attention
and out-of-band ASTs. Attention ASTs and out-of-band ASTs are used in
association with I/O operation to notify processes or routines that an unsolic-
ited event has occurred on a device. Out-of-band ASTs are described in Sec-
tion 7.5.5.

Set Attention Mechanism -

In order to establish an attention AST for a particular device (whose driver
supports this function), the user must issue a $QIO system service request
with the I/O function IO _SETMODE (or IO$ _SETCHAR for some devices).
The kind of attention AST requested is indicated by a function modifier.

The following steps are provided by the routine COM$SETATTNAST in

‘module COMDRVSUB. (This routine requires process context and so is

called only from device driver FDT routines.)

7.5.2

7.5 Attention and Out-of-Band ASTs

1. If the user AST routine address (the $QIO P1 parameter) is zero, the re-
quest is interpreted as a flush attention AST list request (see Section 7.5.3).

2. An expanded ACB is allocated from nonpaged dynamic memory. The ACB
is deducted from the process quota, PCB§W_ASTCNT.

3. Information from the I/O request packet (such as the AST routine entry
point, AST parameter, device channel number, and process ID) is moved
into the ACB.

4. IPL is raised to UCB$B_DIPL, the IPL at which this list is synchronized.
The ACB is linked to the unit control block (UCB) of the associated device
in a singly linked, last-in/first-out (LIFO) list.

Delivery of Attention ASTs

The occurrence of a situation for which attention ASTs have been defined
causes the delivery of all such attention ASTs. The mechanism of delivery is
implemented in the routine COM$DELATTNAST of module COM-
DRVSUB. COM$DELATTNAST is usually invoked by a device driver at de-
vice IPL (IPL 20 through 23), after specifying which list of attention AST fork
blocks/ACBs is to be used.

Each ACB is originally formatted as a fork block with the AST information
located at different offsets. Figure 6-2 shows the layout of a fork block. The
control block contains relevant additional information such as saved PC, R3,
and R4 values, the channel number for the device, and the IPL value for
processing the AST (IPL$_QUEUEAST = IPL 6). During fork processing, the
control block is reformatted into a standard ACB.

When COMS$SDELATTNAST begins execution, the CPU is usually execut-
ing at device IPL. The queuing of ASTs is an operation using IPL$ _SYNCH as
a synchronization mechanism (see Chapter 2). Specifically, IPL must be
raised to SYNCH. To accomplish correct synchronization, the IPL 6 fork dis-
patcher is used.

The following steps summarize the delivery of attention ASTs:

1. At IPL 20 through 23, each attention AST fork control block/ACB is re-
moved from the appropriate list in the reverse order of declaration.

2. The routine invokes the FORK system macro to dispatch to EXE$FORK.
EXE$FORK queues the fork block to the listhead defined by the fork IPL
field and requests an interrupt at that'IPL.

3. As the interrupt priority level of the CPU drops below six, the fork inter-
rupt is taken. The IPL$ _QUEUEAST fork dispatcher removes each fork
control block from its queue and passes the control block back to a loca-
tion in COM$DELATTNAST at IPL 6.

4. At IPL 6, the fork control block is then reformatted into an ACB, repre-
senting an AST in the access mode of the original requesting process.

141

AST Delivery

7.5.3

754

142

5. The ACB is then queued to the process through SCH$QAST (which will
immediately raise IPL to IPL$ _SYNCH in order to synchronize access to
the ACB listhead and the scheduler database).

Flushing an Attention AST List

The list of attention ASTs is flushed as the result of an explicit user request, a
cancel I/O request, or a deassign channel request for the associated device.

An explicit user request to flush the attention AST list is performed as the
result of a set attention AST request with an AST routine address of zero (see
Section 7.5.1). COM$SETATTNAST then branches to COM$FLUSHATTNS.

Device drivers can request the flushing of the attention AST list by either
invoking COM$SETATTNAST with an AST routine address of zero or by
directly invoking COM$FLUSHATTNS with the channel number of the de-
vice in R6.

COMSFLUSHATTNS performs the following operations.

. The IPL is raised to the hardware IPL of the device (IPL 20 through 23).

. As each control block in the attention AST list is found, the process ID of
the process requesting the flushing operation is compared with the process
ID stored in the control block. An AST control block is retained in the
attention AST list if the process IDs do not match.

3. If the process IDs match, then the channel numbers must match. One
channel number is passed in R6 from the flush request, and the other is in
the control block from the declaration of the AST. If the channel numbers
do not match, then the control block is retained in the attention AST list.
Otherwise, the control block is removed from the attention AST list.
Control blocks are therefore removed for a specific process on a specific
channel.

4. IPL is dropped from device interrupt level (IPL 20 through 23).

5. The ASTCNT quota is incremented to indicate deallocation of the control
block.

6. The control block is deallocated to nonpaged dynamic memory. This oper-
ation requires execution through the fork dispatcher at IPL§ _QUEUEAST
to insure proper synchronization with IPL. (Actual deallocation is done at
IPL 11 as described in Chapter 3.)

7. Processing continues until the entire attention AST list has been scanned.

N =

Examples in the VAX/VMS Executive

Two devices that commonly have attention ASTs associated with them are
terminals and mailboxes. Brief descriptions of the support for attention ASTs
in these device drivers are given here.

7.5.4.1

7.5.4.2

7.5.5

7.5.5.1

7.5 Attention and Out-of-Band ASTs

Terminal Driver and CTRL/Y Notification. The terminal I0$_SETMODE
and IO$_SETCHAR functions may take either IO$M_CTRLCAST or
IO$M_CTRLYAST function modifiers. When a CTRL/C is typed on a termi-
nal, the CTRL/C attention AST list is emptied by delivering each CTRL/C
AST associated with the terminal. If no CTRL/C attention AST is declared,
then the CTRL/C is interpreted as a CTRL/Y and the CTRL/Y AST list is
searched instead. If a CTRL/Y is typed, only the CTRL/Y attention AST list
is emptied.

Because the list is emptied each time a CTRL/Y or a CTRL/C is typed, both
CTRL/C and CTRL/Y attention ASTs must be reenabled each time they are
delivered to a process. In contrast, out-of-band ASTs are repeating. That is,
once declared, out-of-band ASTs can be delivered to the process for the life of
the process, or until the Cancel system service is called to flush the AST list.

Mailbox Driver. The IOSM_READATTN and IO$M_WRTATTN function
modifiers provide notification of mailbox requests from other processes.
IO$M_WRTATTN provides notification of unsolicited input to a mailbox.
IO$M_READATTN notifies the enabling process when any process issues a
read to a mailbox when no message is available.

Multiple attention ASTs of each type may be declared by processes for the
same mailbox. When a condition corresponding to an attention AST occurs
in a mailbox, all ASTs of the appropriate type are delivered. Only the first
process to issue a responding I/O request will be able to complete the transfer
of data signaled by the attention ASTs.

Read and write attention ASTs must be reenabled after delivery because
the entire attention AST list is delivered (and removed) after each occurrence
of the specified condition.

Out-of-Band ASTs

In VAX/VMS Version 3.0 a new form of AST mechanism was introduced
specifically for the terminal driver. Routines establish out-of-band ASTs in
order to intercept control characters received from the terminal (ASCII codes
00 through 20 [hex]) and to perform special processing as a result of the con-
trol character being typed. This mechanism is intended to supplement the
attention AST mechanism described in Section 7.5, which applies only to the
characters CTRL/C and CTRL/Y (ASCII codes 03 and 19 [hex]) in the termi-
nal driver. ~

Set Out-of-Band AST Mechanism. The mechanism of out-of-band ASTs is
similar in many ways to that of attention ASTs. Out-of-band ASTs are estab-
lished by issuing the $QIO system service, specifying I0$_SETMODE (or
I0$_SETCHAR) with the function modifier IO$M_OUTBAND. Like atten-

143

AST Delivery

7.5.5.2

144

tion ASTs, the list of out-of-band ASTs is linked to the unit control block
(UCB) of the associated terminal.

The following steps are performed by the routine COM$SETCTRLAST in
module COMDRVSUB. (This routine requires process context, so it can be
called from device driver FDT routines only.)

o If the user AST routine address (the $QIO P1 parameter) is zero, or if the
character mask (the $QIO P2 parameter) is zero, the request is interpreted
as a flush out-of-band AST list request (see Section 7.5.5.3).

* The list of out-of-band ASTs is scanned, searching for an out-of-band AST
control block with the same characteristics as the caller. The following
items are checked:

—The process ID (PID). Out-of-band ASTs can be issued to the same ter-
minal device from a process and its subprocesses (which will have differ-
ent PIDs).

—The channel number.

—The character mask.

If an out-of-band AST control block is found with the same characteristics,
the request is interpreted as a request to modify the existing out-of-band AST
control block. If a similar out-of-band AST control block is not found, a new
control block is allocated from nonpaged dynamic memory. The ACB in the
out-of-band AST control block is deducted from the process AST quota,
PCB$W_ASTCNT.

¢ Information from the I/O request packet (such as the AST routine entry
point, AST parameter, device channel number, and process ID) is moved
into the out-of-band AST control block.

* The out-of-band AST control block is placed on the tail of the control
block list.

* The character mask is ORed into the out-of-band AST summary mask.

Delivery of Out-of-Band ASTs. When a control key is typed at a terminal, a
check must be made to see if an out-of-band AST has been enabled for that
key. The character typed is compared with the out-of-band AST summary
mask. If the bit in the summary mask is set, an out-of-band AST has been
declared for that control character and the AST is delivered. The mechanism
of delivery is implemented in the routine COM$DELCTRLAST of module
COMDRVSUB. COM$DELCTRLAST is invoked by the terminal driver at
device IPL.

Each out-of-band AST control block is originally formatted as a fork block
with the AST fields located at different offsets. (The first six longwords of the
unit control block pictured in the VAX/VMS Guide to Writing a Device
Driver are the most common example of a fork block.) The control block

7.5.5.3

7.5 Attention and Out-of-Band ASTs

contains relevant additional information, such as: the saved PC, R3, and R4
values; the channel number for the device; and the IPL value for processing
the AST (IPL§_QUEUEAST = IPL 6). During fork processing, the out-of-band
AST control block is reformatted into a standard ACB.

When COM$DELCTRLAST begins execution, the CPU is executing at

device IPL. ASTs are queued using IPL$ _SYNCH as a synchronization mech-
anism (see Chapter 2). Specifically, IPL must be raised to SYNCH. To accom-
plish correct synchronization, the IPL 6 fork dispatcher is used.

The following steps summarize the delivery of out-of-band ASTs.

. At device IPL, the list of out-of-band AST control blocks is searched for a

block whose character mask contains the character typed at the terminal.
When a match is found, a bit in the out-of-band AST control block is
checked to see if the control block is already in use. If the block is in use, it
is skipped; if the block is not in use, it is marked in-use, the control block
is modified to act as a fork block, and the block is queued to the IPL6 fork
queue listhead.

. The routine invokes the FORK system macro to notify the fork dispatcher

through the IPL 6 software interrupt.

. As the interrupt priority level of the CPU drops below six, the fork inter-

rupt is taken. The IPL$ _QUEUEAST fork dispatcher removes each fork
control block from its queue and passes the control block back to a loca-
tion in COM$DELCTRLAST at IPL 6.

. At IPL 6 the fork control block is then reformatted into an ACB, represent-

ing an AST in the access mode of the original requesting process. The no
delete and piggyback special kernel mode AST flags are set in the ACB,
and the special kernel mode AST field is loaded with the address of the
piggyback special kernel mode AST.

. The ACB is then queued to the process through SCH$QUAST (which will

immediately raise IPL to IPL§_SYNCH).

. When the process receives the ASTs, the piggyback special kernel mode

AST is delivered first. The piggyback special kernel mode AST performs
two functions:

¢ It clears the busy bit.

o If the out-of-band AST is marked as “lost,” it is deallocated. “Lost”
control blocks occur when a request to flush the AST list cannot deallo-
cate a control block because the busy bit is set (see Section 7.5.5.3).
Once the AST is delivered and the busy bit is clear, the control block is
no longer needed and can be deallocated.

Flushing an Out-of-Band AST List. The list of out-of-band ASTs is flushed as
the result of an explicit user request, a cancel I/O request, or a deassign chan-
nel request for the associated device.

145

AST Delivery

146

An explicit user request to flush the out-of-band AST list is performed as

the result of a set out-of-band AST request with an AST routine addresss of
zero or a character mask of zero (see Section 7.5.5.1). COM$SETCTRLAST
then branches to COM$FLUSHCTRLS.

Device drivers can request the flushing of the out-of-band AST list by ei-

ther invoking COM$SETCTRLAST with an AST routine address of zero (or a
character mask of zero) or by directly invoking COM$FLUSHCNTRLS with
the channel number of the device in R6.

COMS$FLUSHCTRLS performs the following operations.

. The IPL is raised to the device IPL for the terminal.
2. The list of out-of-band AST control blocks is scanned. As each control

block is found, the process ID of the process requesting the flushing opera-
tion is compared with the process ID stored in the control block. An AST
control block is retained in the out-of-band AST list if the process IDs do
not match.

. If the process IDs match, then the channel numbers must match. One

channel number is passed in R6 from the flush request; the other is in the
control block from the declaration of the AST. If the channel numbers do
not match, then the control block is retained in the out-of-band AST list.

. If the channel numbers match, the busy bit is checked. If the busy bit is

set, the “lost” bit is set so that the control block will be deallocated once
its AST is delivered. Otherwise, the control block is removed from the
out-of-band AST list.

. IPL is dropped from device interrupt level.
. The ASTCNT quota is incremented to indicate deallocation of the control

block.

. The control block is deallocated to nonpaged dynamic memory. This oper-

ation requires execution through the fork dispatcher at IPL§ _QUEUEAST
to insure proper synchronization with IPL. (The actual deallocation is
done at IPL 11 as described in Chapter 3.)

. Processing continues until the entire out-of-band AST list has been

scanned.

8.1

8.1.1

8.1.2

Error Handling

There is always something to upset the most careful of human
calculations.

—Ihara Saikaku, The Japanese Family Storehouse

There are several levels for reporting system-wide errors in the VMS operat-
ing system. (Process-specific and image-specific errors are handled by the ex-
ception mechanism described in Chapter 4.)

» The error logging subsystem allows device drivers and other system com-
ponents to record errors and other events for later inclusion in an error log
report.

» The BUGCHECK mechanism is used by the VMS operating system to shut
down the system in an orderly fashion when internal inconsistencies or
other irrecoverable errors are detected.

* A machine check is an exception that indicates that the processor has
detected some CPU-specific error.

ERROR LOGGING

The error logging subsystem is used to record device errors, processor-
detected conditions, and other noteworthy events, such as volume mounts
and system startups.

Overview of the Error Logging Subsystem

Error logging occurs in three steps.

1. Components such as device drivers that wish to log an error call routines
in the executive that write error messages into one of two buffers perma-
nently allocated in the executive image.

2. When the buffer allocation routine detects that a buffer is full, it awakens
the ERRFMT process so that the buffer contents can be written to the
error log file SYSSERRORLOG:ERRLOG.SYS.

3. The contents of this file can be assembled into a report by the report gener-
ator utility SYE.

Device Driver Errors

There are two routines in the error log subsystem used by device drivers.
ERL$DEVICERR is used to report device-specific errors. ERL§$DEVICTMO

147

Error Handling

8.1.3

8.14

148

can be called by a driver to report a device timeout. In either case, the follow-
ing action is performed by the routines:

1. An error message buffer is allocated.

2. The buffer is loaded with information obtained from the unit control
block and from the current I/O request packet.

3. The driver is called at its register dump routine entry point to store de-
vice-specific information into the error message buffer.

Other Error Log Messages

The VMS operating system uses the error log subsystem to record other infor-
mation besides device errors. The kinds of items written to the error log
include the following:

» Warm start entries. These entries record successful recoveries from power
failure.

* Cold start entries. These entries record all successful system bootstrap
attempts.

+ All bugchecks, fatal and otherwise. Bugchecks are described in the next
section.

* Machine check occurrences.

¢ Volume mounts and dismounts.

¢ Any messages written to the error message buffer by the Send Message to
Error Logger system service. The use of this system service requires
BUGCHK privilege.

Operation of the Error Logger Routines

Error message buffer allocation occurs at IPL 31. This high IPL allows the
allocation routine (ERLSALLOCEMB) to be called from anywhere in the sys-
tem (including machine check handlers, which execute at IPL 31) without
causing IPL problems. IPL is restored to the caller’s IPL before control is
passed back to the caller.

There are two 512-byte buffers used for holding messages. A flip-flop
switch (ERL$GB_BUFIND) indicates which of the two buffers is currently
active. Allocation involves finding enough free space in the buffer indicated
by ERL$GB_BUFIND to hold a message. When the current buffer is filled,
the switch is thrown to activate the other buffer and the ERRFMT process is
awakened to write the filled buffer to the error log file.

After a message buffer is successfully allocated, its address is returned to
the caller of the allocation routine, which loads the buffer with information
specific to the message being logged. Once the information has been stored, a

8.14.1

8.1.5

8.1 Error Logging

second routine (ERLSRELEASEMB) is called to write more information into
the message header, indicating that the message is valid.

Waking the ERRFMT Process. The routine ERL§WAKE is called at least once
a second from EXE$TIMEOUT (see Chapter 11). This routine is also called
when one of the two log buffers is filled. The routine does not automatically
wake the ERRFMT process. Rather, it decrements a counter (ERL$GB_
BUFTIM) and only wakes ERREMT if the counter goes to zero.

If the counter goes to zero, it is also reset. The current starting value for the
error log timer is 30. (This value is an assembly-time parameter, not adjusta-
ble with SYSGEN.) That is, the routine can be called a maximum of 30 times
before ERREMT is awakened. Thus, a maximum of thirty seconds can elapse
without ERRFMT’s becoming computable, forcing error messages to be writ-
ten to the error log file at reasonable intervals, even on systems that have
very few errors occurring.

This timing mechanism is exploited by the allocation and deallocation
routines if they wish to force an awakening of ERRFMT. Either of these rou-
tines simply loads a 1 into ERL$GB_BUFTIM. The next call to ERLSWAKE
(which must be done at IPL 7 and, thus, cannot be done directly either by the
allocation or deallocation routine) is guaranteed to wake ERRFMT.

The allocation routine forces a wake whenever it is forced to switch buffers
because the current buffer is full. The buffer release routine forces a wake if
the current message buffer contains ten or more messages.

Cursory Overview of the ERRFMT Process

The ERRFMT process copies a previously filled error message buffer to the
error log file SYSSERRORLOG:ERRLOG.SYS, as described by the following
steps:

¢ The contents of the message buffer are copied into the PO space of ERRFMT.
This copying occurs at IPL 31 to synchronize with the allocation subrou-
tine.

¢ Once the message buffer contents are accessible in ERRFMT’s address
space, they can be put into a format acceptable to SYE, the error log report
generator. The reformatted error messages are written to SYSSERRORLOG:
ERRLOG.SYS.

* If a process has declared an error log mailbox, each message in the error log
buffer is also sent to that mailbox.

» If ERRFMT detects volume mounted or volume dismounted messages
within the message buffer, it will send volume mounted or volume dis-
mounted message to terminals enabled as disk or tape operators.

After ERRFMT has completed its output operations, it reenters the hibernate
(HIB) state.

149

Error Handling

8.1.6

8.1.6.1

8.1.6.2

8.2

8.2.1

150

Error Log Mailbox

The error logging subsystem provides the capability (currently available for
internal use by DIGITAL) for a process to monitor error logging activity as it
is happening rather than wait for offline processing with the formatting pro-
gram SYE. This capability is provided through an unsupported system service
called Declare Error Log Mailbox (SYS$DERLMB).

System Service Call. A process that has DIAGNOSE privilege can call the
$DERLMB system service with a single argument, the unit number of the
mailbox to receive error log messages. If the error log mailbox is not in use
(the error log mailbox descriptor EXE§GQ_ERLMBX contains a zero), the
unit number is stored in the first word of the mailbox descriptor and the PID
of the requesting process is stored in the second longword.

Note that the Declare Error Log Mailbox ($DERLMB) system service is not
supported by DIGITAL, and is not documented in the VAX/VMS System
Services Reference Manual.

If this service is called with a unit number of zero, the descriptor is cleared,
disabling the error log mailbox feature. The descriptor is also unconditionally
cleared by the image rundown routine (see Chapter 21).

Action of the ERRFMT Process. If the ERRFMT process detects that the error
log mailbox feature is enabled, it sends each message that it extracts from the
error log buffer to that established mailbox. Thus a process can monitor mes-
sages that the ERRFMT process is writing to the error log file.

SYSTEM CRASHES (BUGCHECKS)

When the VMS operating system detects an internal inconsistency, such as a
corrupted data structure or an unexpected exception, it declares a bugcheck.
If the system can continue running, a nonfatal bugcheck is declared, which
results in an error log entry. Serious errors result in fatal bugchecks, through
which the system is shut down in a controlled fashion.

1. The contents of physical memory are written to the system dump file
(unless inhibited by a SYSBOOT flag, DUMPBUG).

2. After the system is halted, it may restart itself (again according to the
setting of a SYSBOOT flag, BUGREBOOT). ‘

Bugcheck Mechanism

The path into the bugcheck routine appears in source code as the invqcation
of the BUG_CHECK macro. This macro expands into opcode "XFF, a byte
containing "XFE, and a word containing the particular bugcheck code.

8.2.2

8.2.2.1

8.2 System Crashes (BUGCHECKS)

The execution of opcode "XFF results in a reserved instruction exception
(SS$_OPCDEC, opcode reserved to DIGITAL), causing control to be trans-
ferred through the system control block to an exception-specific service rou-
tine. This routine checks for both of the following:

« If the opcode is "XFF.

o If the byte following the reserved opcode is either "XFE or "XFD. (A "XFE
indicates that the bugcheck code is contained in the next word. A "XFD
indicates that the bugcheck code is contained in the next longword. The
VMS operating system does not currently use longword bugcheck codes.)

If both of these checks succeed, the VMS operating system interprets this
exception as a bugcheck and transfers control to routine EXE$BUG_CHECK.
Otherwise, the illegal opcode exception is treated in the usual manner de-
scribed in Chapter 4.

Operation of Bugcheck Routine

The bugcheck routine performs several steps, depending on the access mode
in which the bugcheck occurred and whether the bugcheck was fatal. (The
fatality of the bugcheck is determined by the severity field, bits <2:0> in the
bugcheck code. If the BUG_CHECK macro call includes the parameter
FATAL, a code of STS$K_SEVERE [value of 4] is placed into this field. Other-
wise, a zero is placed there.) If the SYSBOOT flag BUGCHECKFATAL is set,
all bugchecks are treated as fatal, independent of the severity code in the
low-order three bits of the bugcheck code. The BUGCHECKFATAL flag is
clear by default, which means that nonfatal bugchecks do not cause the sys-
tem to crash.

Bugchecks from User and Supervisor Mode. If a bugcheck is generated from
either user or supervisor mode, and the process has BUGCHECK privilege, a
message (of type user-generated bugcheck) is written to the error log buffer.

o If the bugcheck is fatal, the $EXIT system service is called with the code
SS$_BUGCHECK as the final image status. What happens as a result of
this call depends on whether the process is executing a single image (no
supervisor mode termination handler has been established) or the process
is an interactive or batch job.

—If the process is executing a single image, a fatal bugcheck from user or
supervisor mode results in process deletion.

—With the current use of supervisor mode termination handlers, a fatal
bugcheck issued from an interactive or batch job causes the currently
executing image to exit and control to be passed to the CLI to receive
the next command.

151

Error Handling

8.2.2.2

152

In either case, the only difference between user and supervisor mode is
that user mode termination handlers are not called if a fatal bugcheck is
issued from supervisor mode.

« If the bugcheck code is not fatal, the exception (the initial path into the
bugcheck code) is dismissed, and execution continues with the instruction
following the BUG_CHECK macro.

The BUGCHECKFATAL flag has no effect on bugchecks issued from user or
supervisor mode. The severity field in the bugcheck code is used to deter-
mine whether a given bugcheck is fatal. In addition, neither user nor supervi-
sor mode bugchecks cause the system to shut down.

VMS Use of Bugchecks. The bugchecks that the VMS operating system uses
for its own purposes are issued from executive or kernel mode. If the bugcheck
is not fatal and the SYSBOOT parameter flag BUGCHECKFATAL was turned
off, the bugcheck routine proceeds as it does for nonfatal bugchecks for the
outer two access modes. A message is sent to the error logger and the excep-
tion is dismissed, passing control back to the caller at the instruction follow-
ing the bugcheck invocation.

A fatal bugcheck results in an orderly shutdown of the system. Rather than
describe each step that the bugcheck routine takes to accomplish this shut-
down, several items of general interest in the operation of the orderly shut-
down are described.

+ All disk I/O performed by the bugcheck routine uses the bootstrap disk
driver used by the initialization programs VMB and SYSBOOT (see Chap-
ter 24) and loaded into nonpaged pool by INIT (see Chapter 25). The use of
this driver allows a dump file to be written even if the system disk driver is
corrupted.

* Most of the bugcheck routine and all the bugcheck codes and associated
text are not resident. They are stored in the executive image SYS.EXE and
read into memory (by the boot driver).

This code and data are read into system space on top of a read-only
portion of the executive. Global label BUG$FATAL defines the beginning
of the buffer into which the bugcheck code and data will be read. This label
immediately precedes the blank program section (named . BLANK .” and
located at address 80007A6E in VAX/VMS Version 3.0).

The code and data that are read into memory at this time include the
following:

—The bulk of the bugcheck service routine

—A template for the message that is typed on the console terminal
—Some primitive console terminal output routines

—The textual description of all possible bugcheck messages

8.2 System Crashes (BUGCHECKS)

There are two implications of reading code into memory on top of existing
code.

—None of the routines destroyed by BUGCHECK is available for use by
the bugcheck code. This requirement is most important in deciding how
the nonpaged executive is laid out.

—Portions of the dump may look strange when inspected by SDA. For
example, it is impossible to determine if a portion of the instruction
stream is corrupted because SDA displays bugcheck code and data in-
stead of the original instructions and read-only data.

A header block for the dump file is constructed in the 512 bytes immedi-
ately preceding the area into which the bugcheck code and data were writ-
ten. This area contains more read-only portions of the nonpaged executive.
(The system virtual address range whose contents are altered by the opera-
tion of bugcheck, including the 512-byte dump file header block, extends
from 8000786E to 8000A26E. These numbers are valid for VAX/VMS Ver-
sion 3.0 but are almost certain to change with the next major release of the
system.)

The contents of the dump file header block are listed in Table 8-1. Note
that the error log entry associated with this bugcheck is written into the
header to avoid loss of information if the error log buffers were full when

Table 8-1: Contents of the Dump File Header Block

Description Size
Last error log sequence number (unused) Longword
Dump file flag Word
(Low bit set if dump file analyzed)
Dump file version Word
(Contains 1 if Version 2.0 format)
Contents of SBR, SLR, KSP, ESP, SSP, USP, ISP 7 Longwords
Quadword memory descriptors for up to eight 8 Quadwords
memory controllers (each quadword is
broken down as follows:
Page count 24 Bits
TR number for this controller 8 Bits
Base PEN for this controller 32 Bits
System version number Longword
One’s complement of previous longword Longword
Error log entry for crash/restart 125 Words
(See Table 8-2)
Contents of software PCB of current process 156 Bytes

(See Table B-2)

153

Error Handling

the bugcheck occurred. This error log entry will be written into one of the
error log buffers by SYSINIT (see Chapter 25) when the rest of the error log
messages (blocks 2 and 3 in the dump file) are put back into the buffers. (If
there is no room in the error log buffers, the bugcheck entry will never be
written to the error log file, although it is preserved in the dump file.)

* A small amount of information describing the bugcheck is written to the
console terminal. This information includes the contents of general regis-
ters, the kernel and executive stacks, the contents of processor internal
registers, and a summary of the reason for the bugcheck. This output oc-
curs before the dump file is written and should not be interrupted by halt-
ing the VAX processor from the console terminal. Such an interruption
would prevent the dump file from being written.

» The dump header, the contents of the two error log buffers, and the con-
tents of physical memory are written to the system dump file. This step
can be inhibited by clearing the SYSBOOT parameter flag DUMPBUG.
The system dump file is described in some detail in the next section.

* The last step in the bugcheck routine reboots the system. This is accom-
plished by writing a special code ("XF02) into the console transmit data
buffer (PR$_TXDB). (The special uses of the console registers are described
in Chapter 19.) After the bootstrap code is written, a HALT instruction is
executed that allows console microcode to gain control and process the
bootstrap command.

—On a VAX-11/730 processor, the AUTO RESTART/BOOT switch must
be in the AUTO RESTART ON position in order for the system to auto-
matically reboot following a bugcheck.

—On a VAX-11/750 processor, the bootstrap device selector switch must
be properly set and the system disk must be unit 0 in order for the
system to automatically reboot following a bugcheck.

—On a VAX-11/780 processor, the contents of the file DEFBOO.CMD on
the console floppy must contain commands to direct a reboot from the
system disk.

The automatic reboot following a bugcheck can be prevented by clearing
the SYSBOOT parameter flag BUGREBOOT. This flag is also manually
cleared by OPCCRASH, the program that executes as part of the orderly
shutdown procedure SHUTDOWN.COM. When automatic rebooting is
inhibited, the system loops at IPL 31, waiting for a command to be entered
at the console terminal.

8.2.3 System Dump File

The most important operation that is performed by the bugcheck routine is
writing the contents of physical memory and other important information to

154

8.2 System Crashes (BUGCHECKS)

Table 8-2: Contents of Error Message Buffer for Crash/Restart Entry

Description Size

Error message buffer header Longword
Size in bytes of buffer Word
Allocation buffer indicator Byte
Error message valid indicator Byte

Entry type (contains EMB$K_CR = 37 decimal) Word

System time when crash occurred Quadword
(from EXE$GQ_SYSTIME)

Error log sequence number Word
(low order word of ERL$GL_SEQUENCE)

Contents of KSP, ESP, SSP, USP, ISP 5 Longwords

Contents of RO to R11, AP, FP, SP, PC, PSL 17 Longwords

Contents of POBR, POLR, P1BR, P1LR, SBR, SLR, 14 Longwords

PCBB, SCBB, ASTLVL, SISR, ICCS, ICR,
TODR, ACCS

Contents of CPU-specific registers

There are no CPU-specific registers saved for
the VAX-11/730.

For the VAX-11/750 this area contains the following:

21 Longwords

Translation buffer disable register (PR§_TBDR) Longword
Cache disable register (PR§_CADR| Longword
Machine check error summary (PR§_MCESR) Longword
Cache error register (PR$_CAER) Longword
CMI error summary register (PR$§_CMIERR) Longword
For the VAX-11/780 this area contains the following:
SBI fault status (PR$_SBIFS) Longword
SBI comparator register (PR$_SBISC) Longword
SBI maintenance register (PR$ _SBIMT) Longword
SBI error register (PR$_SBITA) Longword
SBI timeout address register (PR$_SBIS) Longword
Bugcheck crash code Longword
Length in bytes of software PCB Word

NOTE. The error log entry for a nonfatal bugcheck contains the same information as the
entry for a fatal bugcheck except for the 35 longwords set aside for architectural and CPU-
specific processor registers.

the dump file. In the case of system crashes, the dump file can be examined
by the System Dump Analyzer (SDA) to determine the reason for the crash.
SDA is invoked by the DCL command ANALYZE/CRASH_DUMP. The
dump file contains three distinct pieces.

1. The previously constructed dump header (see Table 8-1) is written to the
first block in the file.
2. The two error log buffers are written to the next two blocks. These buffers

155

Error Handling

8.3

156

will be copied back into the error log buffers in memory from the dump
file by SYSINIT (see Chapter 25) as part of the initialization code. In this
way, no error log information is lost across a system crash or an operator-
requested shutdown.

3. The rest of the dump file is filled with the current contents of physical
memory. Bugcheck uses the memory descriptors in the restart parameter
block (RPB) constructed by VMB (see Chapter 24} to provide an accurate
layout of physical address space. If a MA780 shared memory adapter is
present on the system, its contents are also written to the dump file.

The size of the dump file must be four blocks larger then the number of
physical pages in the system. (The fourth block is not currently used.) In
order to insure that a crash dump can be analyzed with SDA, it is important
that the dump file be large enough. If a dump file is too small, only the
physical pages that fit into the underconfigured dump file will be written. In
a typical VMS configuration, the most crucial contents of physical memory,
the system page table, are located at the largest physical addresses {see Chap-
ter 24) and will not be written, making a partial dump useless. That is, SDA
cannot be used to examine a dump file that does not contain all of physical
memory.

MACHINE CHECK MECHANISM

A machine check is an exception that is reported when the CPU or an exter-
nal adapter detects an internal error. The initial processing of a machine
check exception is CPU specific. This section contains an overview of ma-
chine check handling. Consult the VAX Hardware Handbook or other hard-
ware-related literature for information about a specific type of machine
check.

The basic philosophy of any of the machine check handlers is to keep as
much of the system running as possible. There are two important pieces of
information that determine how serious a particular machine check is: the
nature of the machine check itself and the access mode in which the machine
check occurred.

o If the machine check is recoverable, the simple action is to log an error.
This step is taken no matter what access mode was active when machine
check occurred. In addition, the error time is recorded. If machine checks
start occurring too quickly (more than one machine check per 10-millisec-
ond interval), then the handler assumes that something is seriously wrong
and treats a recoverable machine check in the same way that it treats an
abort. The distinction between recoverable machine checks and aborts is
CPU specific. The VAX Hardware Handbook or the module MCHECKxxx
(where xxx represents the processor number) contains information about
the machine checks that can occur on a particular processor.

8.3.1

8.3.2

8.3 Machine Check Mechanism

o If the machine check has put the system into a state from which it cannot
recover, the action taken by the machine check handler depends on the
access mode in which the machine check occurred. If the previous mode
was supervisor or user, a machine check exception is reported to that ac-
cess mode. (Unless the process has taken special action, this step will re-
sult in image exit.) If the previous mode was executive or kernel, an irre-
coverable machine check causes a fatal bugcheck (with the bugcheck code
BUG$_MACHINECHK).

VAX-11/730 Machine Check

When a machine check occurs on a VAX-11/730, IPL is elevated to 31 and the
interrupt stack contains the following information.

» The length in bytes of the exception-specific information pushed on the
stack. (This count does not include either the PC/PSL pair or the count
longword itself.) There are currently 3 longwords in this list, which result
in a value of OC hex onto the stack.

* Machine check error code.

» Two parameters, the contents of which depend on the machine check error
code. The machine check codes and the information passed in these two
parameters are detailed in Table 8-3.

» PC of aborted opcode.

* PSL at the time of the abort.

The machine check error code (the second item on the stack) determines the
specific action of the machine check handler. If the machine check is an
abort (PC left in an indeterminate state), then recovery is impossible. In addi-
tion, a subset of the VAX-11 instruction opcodes on the VAX-11/730 cannot
be restarted. (The list of these instructions can be found in module
MCHECK730.)

In addition to the VAX-11/730 machine checks that appear as exceptions
(through the SCB vector at offset 4), one type of machine check can appear as
an interrupt through a dedicated SCB vector. When this machine check oc-
curs, only the PC and PSL are pushed onto the interrupt stack.

This machine check is a corrected memory data condition (CRD) and will
interrupt at IPL 26 through SCB vector 54 (hex). This exception simply causes
an error log entry (indicating a soft memory error) to be written. (If errors
occur too quickly, the CRD interrupt bit in the memory controller is turned
off by the machine check handler.)

VAX-11/750 Machine Check

When a machine check occurs on a VAX-11/750, IPL is elevated to 31 and the
interrupt stack contains the following information.

157

891

Table 8-3: VAX-11/730 Machine Check Codes and Their Associated Parameters

Code
MICRO_ERRORS

TB_PARITY

BAD_MEM_CSR
NO_FAST_INT

FPA_PARITY

SPTE_READCHK

RDATASUBS

NX_MEM
UNALIGNED_IO

UNK_IO_ADDR
BAD_UB_ADDR

Explanation

Microcode detected errors

Translation Buffer Parity

Error

Illegal format for memory CSR
Fast interrupts with no IDC
present

Floating Point Accelerator

Parity Error

Hard Memory Error on SPTE read

Uncorrectable ECC Errors
Read Data Substitute
Nonexistent Memory
Unaligned or non-longword
reference to I/0 space
Illegal I/0O space address
Illegal UNIBUS reference

MCS$L_P1

0:No information available
2:Unable to set PTE modify bit
3:Bad microprocessor interrupt

PTE in error

VA referenced
Z€ero

FPA parity information
Physical Address of SPTE
Physical Address Referenced

Physical Address Referenced
Physical Address Referenced

Physical Address Referenced
Physical Address Referenced

MCS$L_P2

Zero

VA of PTE in TB

Bad CSR value
Zero

Zero

Memory Controller
Diagnostics
Memory Controller
Diagnostics

ZEro

Zero

Zero
Zero

Surppuvy 1o11g

8.3.3

8.3 Machine Check Mechanism

¢ The length in bytes of the exception-specific information pushed on the
stack. (This count does not include either the PC/PSL pair or the count
longword itself.) There are currently 10 longwords in this list, which result
in a value of 28 hex on the stack.

* Machine check error code.

* Virtual address of the last fetch or store operation.

e Program counter at the time of the error.

* Memory data of the last fetch or store operation.

» Saved mode register.

* Read lock timeout register.

 Translation buffer parity error register.

* Cache error register.

* Bus error register.

» Error summary register.

* PC of aborted opcode.

o PSL at the time of the abort.

The machine check error code (the second item on the stack) determines the
specific action of the machine check handler. If the machine check is an
abort (PC left in an indeterminate state), then recovery is impossible. In addi-
tion, a subset of the VAX-11 instruction opcodes on the VAX-11/750 cannot
be restarted. (The list of these instructions can be found in module
MCHECK750.)

In addition to the VAX-11/750 machine checks that appear as exceptions
(through the SCB vector at offset 4) there are two machine checks that appear
as interrupts through dedicated SCB vectors. When either of these occurs,
only the PC and PSL are pushed onto the interrupt stack.

» A corrected memory data condition (CRD) will interrupt at IPL 26 through
SCB vector 54 (hex). This exception simply causes an error log entry (indi-
cating a soft memory error) to be written. (If errors occur too quickly, the
CRD interrupt bit in the memory controller is turned off by the machine
check handler.)

+ A write bus error condition will interrupt at IPL 29 through SCB vector 60
(hex). This error is treated as an irrecoverable error and further processing
depends on the previous access mode.

VAX-11/780 Machine Check

When a machine check occurs on a VAX-11/780, IPL is elevated to 31 and the
interrupt stack contains the following information.

¢ The length in bytes of the exception-specific information pushed on the
stack. (This count does not include either the PC/PSL pair or the count

159

Error Handling

8.3.4

160

longword itself.) There are currently 10 longwords in this list, which result
in a value of 28 hex on the stack.

¢ Machine check summary parameter.

¢ CPU error status.

» Trapped micro PC, the microcode error location.

* Virtual address at fault time.

* CPU D register at fault time.

» Translation buffer status register 0.

» Translation buffer status register 1.

¢ Physical address causing SBI timeout.

» Cache parity error status register.

* SBI error register.

* PC of instruction that caused the machine check.

e PSL of machine at fault time.

The machine check summary parameter determines the specific action of the
machine check handler. If the machine check is an abort (PC left in an inde-
terminate state), then recovery is impossible. In addition, a subset of the
VAX-11 instruction opcodes on the VAX-11/780 cannot be restarted. (The list
of these instructions can be found in module MCHECK?780.)

There are also several error conditions on the VAX-11/780 that generate
interrupts instead of machine check exceptions.

* A corrected read data condition or a read data substitute condition inter-
rupts through SCB vector 54 (hex) and raises IPL to 26.

* An SBI alert interrupts through vector 58 at IPL 27.

* An SBI fault interrupts through vector 5C at IPL 28.

* An asynchronous write error is reported through SCB vector 60 at IPL 29.

The first three of these errors result in error log entries. An attempt is made
to continue from the error. The asynchronous write error causes a fatal bug-
check if it occurred in kernel or executive mode or if an error occurred while
updating a page table.

Machine Check Recovery Blocks

The VMS operating system provides a capability for a block of kernel mode
code to protect itself from machine checks while the protected code is exe-
cuting. For example, the VMS operating system uses this feature if an inter-
rupt is generated from a previously unconfigured adapter. If the code that read
the configuration register were not protected and the interrupt were spurious,
then the configuration register would not exist and the reference to a nonex-
istent I/O space address would crash the system.
There are several restrictions on the protected code.

8.3.4.1

8.3 Machine Check Mechanism

1. It must be executing in kernel mode.

2. The stack cannot be used across the entry into or the exit out of the pro-
tected code block. This restriction exists because a coroutine mechanism
is used to pass control between the protected block and the VMS routines
that establish the protected code.

3. VMS elevates IPL to 31 so a limited number of instructions should be
included in the block.

4. RO is destroyed by the mechanism.

Using the Recovery Mechanism. Several macros are provided in the macro
library SYS$LIBRARY:LIB.MLB to use this protection mechanism. The fol-
lowing macro defines the beginning of the block:

$PRTCTINI LABEL,MASK
The label argument is identical to the label argument associated with the
following macro, which defines the end of the block:

$PRTCTEND LABEL
If no error occurred while the protected code was executing, RO contains the
success code SS$_NORMAL. Otherwise, the low bit of RO is clear.

The mask argument allows the block of code to protect itself from different

classes of errors. The following list describes the specific types of protection
that are defined by the $MCHKDEF macro:

MCHK$M_LOG Inhibit error logging for the error

MCHK$M_MCK Protect against machine checks

MCHK$M_NEXM Protect against nonexistent memory

MCHK$M_UBA Protect against UNIBUS adapter
error interrupts

Two other features used by the VMS operating system are a part of this pro-
tection mechanism. The following macro allows the VMS system to deter-
mine whether a recovery block is in effect and take action accordingly:

$PRTCTEST ADDRESS,MASK

The status is returned in RO. The low bit set indicates that a recovery block is
in effect and that the specified mask is being used.

The following macro is used by the machine check handlers for the VAX-
11/730, the VAX-11/750, and the VAX-11/780 before issuing a fatal bugcheck.

$BUGPRTICT

If no recovery block is in effect, control is passed back to the location where
this macro was invoked, where a bugcheck is usually issued. If a recovery
block is in effect, control is passed to the end of the protected block with RO
containing an error code of SS$_MCHECK.

161

9.1

162

System Service Dispatching

Between the idea
And the reality
Between the motion
And the act

Falls the Shadow.

—T.S. Eliot, The Hollow Men

Many of the operations that the VMS operating system performs on behalf of
the user are implemented as procedures called system services. Most of these
procedures are linked as part of the executive and reside in system space;
others are contained in privileged libraries. System services have global entry
point names of the form EXE$service and typically execute in kernel or exec-
utive access mode so that they can read or write data structures protected
from access by less privileged access modes. Some services are invoked di-
rectly by application programs. Others are called on behalf of the user by
components such as RMS. This chapter describes how control is passed from
a user program to the procedures in the executive that execute service-spe-
cific code.

SYSTEM SERVICE VECTORS

The addresses 7FFEDEQO to 7FFEESFF (four pages of P1 space) are reserved for
entry points to the system services and to RMS service routines. The global
entry point name of each system service vector is SYS$service, as distin-
guished from EXE$service, the global name of the procedure in the executive
image that performs the actual work of the system service.

Previous to Version 3.0, the system service entry points were maintained in
the the lowest four pages of system virtual address space (addresses 80000000
to 800005FF). These entry points still exist in this location, in order that
programs that were linked before VAX/VMS Version 3.0 will still refer to the
correct entry points. The vectors were moved to process space so that system
services could be intercepted on a per-process basis.

As new services are added to future releases of the VAX/VMS operating
system, the vector area will grow to make room for new entry points. In
addition, the absolute locations of the SYS$service entry points of existing
services will remain fixed forever, so that existing user programs will not
have to be relinked each time there is a new release of the VMS operating
system.

Each service entry point contains eight bytes of code and data called a
system service vector. Each vector consists of a global entry point named

9.1 System Service Vectors

SYS$service, a register save mask, a single instruction that transfers control
eventually to a service-specific procedure in the executive, and an instruction
(usually a RET) that passes control back to the caller.

Note that the vectors for the “composite’” system services ($QIOW and
$ENQW] contain the number of bytes required to execute the service, test
return conditions, conditionally execute the $WAITER service, and pass con-
trol back to the caller.

Most of the system services execute in kernel mode and the vectors for
these services contain a CHMK instruction. A few system services and all of
the RMS services contain a CHME instruction. Some services such as the
text formatting services execute in the access mode of the caller and dispatch
directly to the service-specific code in the VMS operating system with a J]MP
instruction. The following examples illustrate the three sets of instructions
found in the system service vector area. The entry mask in each system serv-
ice vector is identical to the entry mask found at location EXE$service.
Table 9-1 lists the VMS system services that use each of the three illustrated
methods of initial dispatch.

Vectors for system services that change mode to kernel contain the follow-
ing code:

SYS$service:: ;Entry point
.WORD entry-mask
CHMK ~ I'#service-specific-code
RET) ;Return tocaller
.BLKB 1 ;Spare byte

The extra byte here and in the vector for executive mode is used to keep the
entry points on quadword boundaries.

Vectors for system services that change mode to executive contain the fol-
lowing code:

SYS$service:: ;Entry point
-WORD entry-mask
CHME I"#service-specific-code
RET = ;Return tocaller
.BLKB 1 ;Spare byte

Most vectors for RMS service calls replace these last two bytes with a branch
to an RMS synchronization routine.

Vectors for system services that do not change mode contain the following
code:

SY¥S$service:: ;Entry point
.WORD entry-mask ; of the caller
JMP @#EXE$service + 2 ;Transfer control to

; first instruction after
; the entry mask at
; EXE$service

This JMP instruction transfers control to the first instruction after the entry
mask at EXE$service.

163

System Service Dispatching

164

Table 9-1: System Services and RMS Services That Use Each Form of System Service
Vector

The following system services execute initially in kernel mode:

$ADJSTK
$ADJWSL
$ALLOC
$ASCEFC
$ASSIGN
$BRDCST
$CANCEL
$CANEXH
$CANTIM

$CANWAK

$CLREF
$CMKRNL
$CNTREG
$CRELOG

$CREMBX
$CREPRC
$CRETVA
$CRMPSC
$DACEFC
$DALLOC
$DASSGN
$DCLAST
$DCLCMH
$DCLEXH
$DELLOG
$DELMBX
$DELPRC
$DELTVA

$DEQ
$DERLMB
$DGBLSC
$DLCEEFC
$ENQ
$SENQW
$EXIT
$EXPREG
$FORCEX
$GETCHN
$GETDEV
$GETDVI
$GETJPI

$GETPTI
$GETSYI
$HIBER
$LCKPAG

- $LKWSET

$MGBLSC
$PURGWS
$QIO
$QIOW
$READEF
$RESUME
$RUNDWN
$SCHDWK

$SETAST
$SETEF
$SETEXV
$SETIME
$SETIMR
$SETPFM
$SETPRA
$SETPRI
$SETPRN
$SETPRT
$SETPRV
$SETRWM
$SETSFM

The following system services execute initially in executive mode:

$CMEXEC
$GETTIM
$IMGACT

$NUMTIM
$SNDACC

$SNDOPR
$SNDSMB

$SETSSF
$SETSTK
$SETSWM
$SNDERR
$SUSPND
$TRNLOG
$ULKPAG
$ULWSET
$UPDSEC
$WAITFR
$WAKE
$WFLAND
$WFLOR

The following system services execute in the access mode of the caller. The services marked
with a (1) can be called from any access mode; the services marked with a (2) can be called
from executive and outer access modes. Those not marked can only be called from supervi-
sor and user mode.

$ASCTIM (1) $FAOL (1) $IMGSTA
$BINTIM (1) $GETMSG (2) $PUTMSG
$EXCMSG (2) $IMGEFIX $UNWIND
$EAO (1)

The following RMS services execute in executive mode and branch to a synchronization
routine before returning to the caller:

$CLOSE $EXTEND $OPEN $REWIND
$CONNECT $FIND $PARSE $SEARCH
$CREATE $FLUSH $PUT $SPACE
$DELETE $FREE $READ $TRUNCATE
$DISCONNECT $GET $RELEASE $UPDATE
$DISPLAY $MODIFY $REMOVE SWAIT
$ENTER $NXTVOL $RENAME $WRITE
$ERASE

The following RMS services execute in executive mode. The vectors for these RMS services
contain RET instructions rather than a branch to an RMS synchronization routine.

$RMSRUNDWN $SETDDIR $SETDFPROT $SSVEXC

9.2

9.2.1

9.2.2

9.2 Change Mode Instructions

CHANGE MODE INSTRUCTIONS

When a change mode instruction is executed, an exception is generated that
pushes the PSL, the PC of the next instruction, and the code that is the single
operand of the change mode instruction onto the stack indicated in the in-
struction. (As pointed out in Chapter 4, the actual access mode is the mini-
mum of the access mode indicated by the instruction and the current access
mode contained in the PSL.) For example, the execution of a CHME #5 instruc-
tion will push a PSL, the PC of the instruction following the CHME instruc-
tion, and a 5 onto the executive stack. Control is then passed to the exception
service routine whose address is located in the appropriate entry in the sys-
tem control block (SCBJ.

The CHMK and CHME Instructions

At initialization time, the VMS operating system fills in the SCB entries for
CHMK and CHME with the addresses of change mode dispatchers that pass
control to the procedures that perform service-specific code. The action of
these two dispatchers is discussed in the next section.

The CHMS and CHMU Instructions

The SCB entries for CHMS and CHMU are filled in with the addresses of
exception service routines that usually pass control to the general exception
dispatcher described in Chapter 4. In this case, a CHMS or CHMU exception
would be reported to a process through the normal signal and mechanism
arrays. The particular exception names are SS$_CMODSUPR and
§S$_CMODUSER respectively.

However, a user can short circuit the normal exception dispatching in the
case of either of these exceptions by using the $DCLCMH system service to
establish a per-process change-mode-to-supervisor or change-mode-to-user
exception handler. This service fills location CTL$GL_CMSUPR or
CTL$GL_CMUSER in the P1 pointer page with the address of the user-writ-
ten change mode dispatcher. The exception service routines for the
CHMS and CHMU exceptions check these locations for nonzero contents
and dispatch accordingly.

The DCL and MCR command language interpreters use this service to
create a special change-mode-to-supervisor handler. This handler is used
when it is necessary to get to supervisor mode from user mode when an
image is interrupted with a CTRL/Y. The use of the change-mode-to-supervi-
sor handler is discussed in Chapter 23. The job controller uses a
change-mode-to-user dispatcher for its processing of error messages.

165

System Service Dispatching

9.3

166

CHANGE MODE DISPATCHING IN THE VMS EXECUTIVE

The change mode dispatcher that receives control from the CHMK or CHME
instruction in the system service vector must dispatch to the procedure indi-
cated by the code that is found on the top of the stack. In addition, because
the service routines are written as procedures, the dispatcher must construct
a call frame on the stack. Building the call frame could be accomplished by
using a CALLx instruction and a dispatch table of service entry points.

However, the call frame that must be built is identical for each service. In
addition, the registers that the service-specific procedure will modify have
already been saved because the register save mask in the vector area (at global
location SYS$service) is the same as the register save mask at location
EXE$service. So the dispatcher avoids the overhead of the general purpose
CALLx instruction and builds its call frame by hand.

Further speed improvement is achieved in this commonly executed code

PO P1 System Space
Space Space Change
Mode Dispatcher
EXE$CMODxxxx::
1) Build call frame
System 2) Check argument
Service Vector /(list Service-Specific
User Program | 3 casew Procedure
SYS$service:: Offsets \
. Entry mask . EXE$service::
. /V/ CHMx #code : ™| Entry mask
. / |~ RET : .
CALLX rd LY Offsets
. / Process illegal ’
. change mode RET
. codes /

Common Exit Path

snvex:/

REI

Figure 9-1
Control Flow of System Services That Change Mode

9.3.1

9.3 Change Mode Dispatching in the VMS Executive

path by overlapping memory write operations (building the call frame) with
register-to-register operations and instruction stream references. The actual
dispatch to the service-specific procedure is then accomplished with a
CASEW instruction that uses the CHMx code as its index into the case table.
Figure 9-1 pictures the control flow from the user program all the way to the
service-specific procedure. This flow is illustrated for both kernel and execu-
tive access modes. Figure 9-2 shows the corresponding flow for those services
that do not change mode.

Operation of the Change Mode Dispatcher

The operation of the change mode dispatchers is almost identical for kernel
and executive modes. This section discusses the common points of the dis-
patchers for kernel and executive modes. The next sections point out the
only differences between the dispatchers for the two access modes.

The first instruction of the dispatcher pops the exception code, unique for
each service, from the stack into RO. In both the kernel mode dispatcher and
the executive mode dispatcher, the call frame is built on the stack by the
following four instructions.

PUSHAB B'SRVEXIT
PUSHL FP

PUSHL AP
CLRQ —(SP)

PO P1 System Space
Space Space
System
Service Vector Service-Specific
User Program Procedure
SYS$service::
: | { Entry mask EXES$service::
. // JMP \L_\ Entry mask
CALLx >~
—_ RET
Figure 9-2
Control Flow of System Services That Do Not Change

Mode

167

System Service Dispatching

9.3.2

168

While the call frame is being built, two checks are performed on the argu-
ment list. The number of arguments actually passed (found in the first byte of
the argument list) is compared to a service-specific entry in a prebuilt table to
determine whether the required number of arguments for this service have
been passed. Read accessibility of the argument list is checked (with the
PROBER instruction generated by the IFINORD macro). If either of these
checks fails, control is passed back to the caller, with an error indication in
RO.

Finally, a CASEW instruction is executed, using the unique code in RO as
an index into the case table. The case table has been set up at assembly time
to contain the addresses of the first instruction of each service-specific rou-
tine. Because each service is written as a procedure with a global entry point
named EXE$service pointing to a register save mask, the case table contains
addresses of the form EXE$service + 2. This structure is illustrated in the
following examples of dispatchers. If control is passed to the end of the case
table, then a CHMx instruction was executed with an improper code and the
error processing described in the next section is performed.

Code Example 9-1 coimpares the code for the two dispatchers, copied
from the module CMODSSDSP. The entries containing the string /******”
indicate places where the change mode dispatchers differ. The instructions
are not listed in exactly the same order that they appear in the source mod-
ule. Rather, the instructions are shown in the order that they are found when
all the PSECTs have been sorted out at link time.

The examples shown in Code Example 9-2 contain the error routines to
which the change mode dispatchers branch. These routines are invoked if the
argument list is inaccessible or if an insufficient number of arguments was
passed to the service.

The routine in Code Example 9-3 is the common exit path for all system
service and RMS service calls. The usual exit path is the REI instruction. The
alternate exit path is to report a SS$_SSFAIL exception.

Change-Mode-to-Kernel Dispatcher

There are two steps performed by the change-mode-to-kernel dispatcher that
are not performed by the change-mode-to-executive dispatcher. Before con-
trol is passed to those services that execute in kernel mode, the address of the
PCB for the current process (found at global location SCH$GL_CURPCB) is
placed into R4. The second difference is that CHMK #0 is a special entry
path into kernel mode that is used by the AST delivery routine following the
call to the AST procedure. If the CHMK code removed from the stack is a
zero, control is passed to a routine called ASTEXIT. The action of this routine
is described in Chapter 7.

9.3 Change Mode Dispatching in the VMS Executive

Code Example 9-1

Change Mode to Kernel Dispatcher

EXE$CMODKRNL: :

POPL RO

BEQL ASTEXIT

PUSHAB B SRVEXIT

MOVZBL RO,RL

PUSHL FP

MOVZBL W B_KRNLARG[R1],R1

PUSHL AP

MOVAL @#4[R1], FP

CLRQ —(SP)

IFNORD FP, (AP),ACCVIO
prober #0,fp,(ap)
beql accvio

MOVL SP,FP

CMPB (AP),RL

BLSSU KINSARG

KERDSP:
MOVL SCH$GL_CURPCB, R4
CASEW RO, #1,#KCASMAX

10%:

20%:

ILLSER:

offset toEXE$service4—E

* oK kK K

check inhibit bits

BSBW

CHECKARGLIST
MOVL @#CTL$GL_USRCHMK,R1
BEQL 10%
JSB (R1)
MOVL L"EXE$GL_USRCHMK,R1
BEQL 20%
JSB (R1)
NOP
NOP
MOVZWL #SS$_ILLSER,RD
RET

Change Mode to Executive Dispatcher

10%:

20s$:

- EXE$CMODEXEC: :

POPL RO

% >k ok k k%

PUSHAB B"SRVEXIT

MOVZBL RO,R1

PUSHL FP

MOVZBL WB_EXECNARG[R1],R1

PUSHL AP

MOVAL @#4[R1], FP

CLRQ —(SP)

IFNORD FP, (AP),EXACCVIO
prober #0,fp,(ap)
beql exaccvio

MOVL SP,FP

CMPB (AP),R1

BLSSU EXINSARG

EXEDSP:
%k k kK XKk
CASEW RO, #0,S"ECASMAX

offset to EXE$service + 2

JSB

@CTL$GL_RMSBASE

check inhibit bits

BSBW CHECKARGLIST
MOVL @#CTL$GL_USRCHME, R1
BEQL 10%

JSB (R1)

MOVL L'EXE$GL_USRCHME, R1
BEQL 20%

JSB (R1)

BRW ILLSER

169

System Service Dispatching

Code Example 9-2

EXACCVIO:

MOVL

CMPW

BGEQU
BRW

EXINSARG:

CMPW

BGEQU
BRW

CHECKARGLIST:

10%:

20s$:

ACCVIO:

IFNORD
CVIBL
BLSS
ASHL
IFNORD
RSB
MOVZBL
ASHL
PUSHL
PUSHL
PUSHL
MOVAL
CLRL
JSB
POPL
POPL
BLBC

POPL
RSB
POPL
BRB

MOVL

ACCVIO_RET:

KINSARG:

INSARG:

170

MOVZWL
RET

CMPW
BGEQU

MOVZWL
RET

SP,FP
RO,#RCASCTR

EXEDSP
ACCVIO_RET

RO,#RCASCTR

EXEDSP
INSARG

#4,(RP),ACCVIO_RET
(AP),R1

10$

#2,R1,R1
R1,4(AP),ACCVIO_RET

R1,R1
#2,R1,R1
RO

R2

R3
4(AP),RO
R3
EXE$PROBER
R3

R2
RD,20%

RO

RO
ACCVIO_RET
SP,FP

#SS$_ACCVIO,RD

RO, #KCASCTR
KERDSP

#S5SS$_INSFARG,RO

;From EXESCMODEXEC

;Point FP to call frame

; so that RET works

;0nly report INSARG for RMS
; and built-in functions
;O0therwise, get back in line

;0nly report INSARG for RMS
; and built-in functions
;O0therwise, get back in line
;Report error to caller

;Check argument list for

; read accessibility

;First check count

;Then get count

;Branch if more than 128 arqguments
;Convert to byte count

;Now check rest of list

;Clear high three bytes
;Convert to byte count

;Get beginning of list
;Kernel mode

;Can addresses be read?
;restore registers
;Address could not be read,
; return access violation
;Address could be read,
;Return

;Set FP so that RET works

;Is this a recognized code?
;No. Get back in line

9.3 Change Mode Dispatching in the VMS Executive

Code Example 9-3

SRVEXIT:
BLBC RO, SSFAIL
SRVREI:
REI
SSFAIL:
BITL #7,R0O ;Check for mere warning
BEQL SRVREI ;I1f so, do not generate
; exception
BRW SSFAILMAIN ;6o to SSFAIL logic
SSFAILMAIN:
MOVL G'CTL$GL_PCB, R}
TSTW PCBSW_MTXCNT ;Check for ownership of a mutex
BNEQ 20% ;1f so, BUGCHECK
EXTZV #PSL$V_CURMOD, #PSL$S_CURMOD, 4 (SP) ,—(SP)
ADDL #PCB$V_SSFEXC, (SP) ;Are systenm service
; failure exceptions enabled
; for caller's access mode
BBC (SP+),PCBSL_STS(R1),10% ;If not, dismiss the
; exception
MOVPSL —(SP) ;Get current PSL
EXTZV #PSL$V_CURMOD, #PSL$S_CURMOD, (SP), (SP)+
;If the current mode is kernel
BNEQ 5%
SETIPL #0 ;IPL must be lowered to O
5%: JMP EXE$SSFAIL ;Pass control to the
;general exception dispatcher
10%: REI ;Return from service with
- ; error status
20$: BUG_CHECK MTXCNTNONZ,FATAL
9.3.3 Change-Mode-to-Executive Dispatcher
The change-mode-to-executive dispatcher performs one step unique to exec-
utive mode. If the CHME code is not a recognized system service, the
CASEW instruction passes control to the end of the case table. At that point,
the change-mode-to-executive dispatcher transfers control to the RMS dis-
patcher to determine whether this was a valid RMS call before dropping into
the error processing described in the next section.
9.3.4 RMS Dispatching

The RMS dispatcher, illustrated in Figure 9-3, consists of two instruc-
tions. The CASEW instruction will dispatch to RMS service-specific proce-
dures for legitimate RMS service codes. These procedures will exit with a
RET back to SRVEXIT. If an illegal code (that is, a code not recognized as
an RMS service call) was issued, the RSB instruction following the CASEW
instruction will pass control back to EXE§CMODEXEC for normal error
processing.

171

System Service Dispatching

9.3.5

172

PO P1 System Space
Space Space
Change
Mode Dispatcher RMS Dispatcher
RMSS$DISPATCH:
EXE$CMODEXEC:: CASEW
1) Build call frame Offsets
2) Check argument A
RMS Service Vector //(list
User Program 3) CASEW .
SYS$service:: Offsets Offsets
Entry mask . RSB
: |1 CHME #code
. 'l #— BRB :
CALLXx A \ Offsets
. JSB
wl
RMS Service-Specific
Procedure
RMSS$service::
Entry mask
RMS Synchronization > .
Routine Common Exit Path
RMSCHK_STALL: SRVEXIT: < RET
RET REI

Figure 9-3
Control Flow of RMS Dispatching

Return Path for System Services

When the service-specific procedure has completed its operation, it places a
status code in RO and issues a RET instruction. This instruction returns con-
trol to the code at label SRVEXIT (shown in the examples in Section 9.3.1)
because this address was put into the saved PC area of the call frame built by
the change mode dispatcher. The routine SRVEXIT first checks whether an
error occurred. If no error occurred or if the error was merely a warning
(R0>2:0<=0), the CHMx exception is dismissed with an REI instruction that
passes control to the instruction following the CHMx in the vector area. This
instruction is a RET which finally returns control to the user program follow-
ing the call to SYS$service (see the code examples in Section 9.1).

One additional step is taken by routine SRVEXIT when it is executed in
kernel mode: IPL is explicitly lowered to zero. This step is unnecessary un-
less the process has enabled system service failure exceptions because the

9.3.6

9.3.6.1

9.3 Change Mode Dispatching in the VMS Executive

REI instruction that dismisses the CHMK exception will lower IPL. How-
ever, if a system service failure exception is to be generated, the exception
code must be entered with IPL set to zero. (A similar check is not needed for
executive mode services because only kernel mode code can execute at ele-
vated IPL.)

If an error or severe error occurred, a check is made to see whether the
process owns any muteX. If so, the system service has not released all of its
mutexes on exit (an erroneous error path) and a fatal bugcheck is generated.
(Chapter 8 describes bugcheck processing. Mutexes are described in Chapter
2.) If the mutex check succeeds, a check is made to determine whether this
process has enabled system service exceptions for the calling access mode. If
it has, control is passed to the exception dispatcher at global label
EXE$SSFAIL. The exception that will be reported to the caller in the signal
array is SS$_SSFAIL. Otherwise, control is passed back to the caller with RO
containing the error status code.

Return Path for RMS Services

The return path for RMS services is slightly more complicated than the re-
turn path for system services. The last two bytes of the vector contain a
branch (BRB) to an RMS synchronization routine (contained in module
CMODSSDSP). This routine first checks whether the caller of the RMS serv-
ice wishes to wait. This is the usual case, but RMS does allow asynchronous
/O operations. {The return status code is set to RMS$_STALL by RMS in the
usual state, where the process must wait until the completion of the RMS
operation.)

Wait State Associated with RMS Requests. If a stall is indicated, the caller is
put into an event flag wait state, waiting for the event flag associated with
the I/0 request that RMS has just issued. The crucial point in this implemen-
tation is that the caller is waiting at the access mode associated with the
original call to RMS and not in executive access mode, thus allowing AST
delivery for all access modes at least as privileged as the caller of RMS. (In the
usual case where RMS is called from user mode, the access mode of the wait
state allows both user and supervisor ASTs as well as executive and kernel
ASTs to be delivered while waiting for the RMS operation to complete.)

When the original I/0 request completes, RMS gains control first in an
executive mode AST that it associated with its $QIO request. If it determines
that the original request is complete, it sets final status in the data structure
{FAB or RAB]| associated with the operation and returns from its AST. The
caller now drops through the event flag wait in the synchronization routine
(because the I/O completion routine set the event flag). The synchronization
routine determines that the RMS operation is complete (because the FAB or

173

System Service Dispatching

9.3.6.2

9.4

9.4.1

174

RARB status field contains nonzero), and executes a RET, passing control back
to the point where the initial call to RMS was issued.

If the RMS executive mode AST determines that more I/O is required to
complete the original request (such as occurs when reading a large record
from a sequential file with small internal buffers or when operating on an
ISAM file), RMS issues the next $QIO and returns from its AST. Because the
previous I/O completion set the associated event flag, the process is now
computable. However, the RMS operation is not yet complete. For this rea-
son, the RMS synchronization routine (executing in the caller’s access mode)
checks the status field in the RAB or FAB for zero, indicating that RMS has
more to do. In this case, the caller is again placed into the LEF state by the
RMS synchronization routine. In other words, at a primitive level, the proc-
ess is placed into a LEF state by RMS one or more times. However, the actual
indication that the RMS operation has completed is nonzero contents in the
status field of the FAB or RAB.

RMS Error Detection. When the RMS synchronization routine finally decides
that RMS has completed its work, it checks the final status. If this status
indicates either success or warning, a RET is executed. If either an error or a
severe error occurred, a special RMS call ($SSVEXC) is issued. This service
simply reports the error status through the normal VMS service exit path
(SRVEXIT) that determines whether the process has enabled system service
failure exceptions. Because RMS errors are reported through the system serv-
ice dispatcher, they are treated in exactly the same manner as system service
errors.

USER-WRITTEN SYSTEM SERVICE DISPATCHING

The VAX architecture reserves CHMx instructions with negative codes for
customer use. VMS system service dispatching acknowledges this in its dis-
patch scheme and contains hooks that allow a privileged user to write his
own system services. The method for doing this is described in the VAX/VMS
Real-Time User’s Guide. This section merely describes how control is passed
to user-written system services.

The code examples in Section 9.3.1 illustrate the error processing code that
follows the case table for the change-mode-to-kernel or change-mode-to-ex-
ecutive dispatcher. The only differences between these two routines are
the names of the global pointers that are referenced.

Per-Process User-Written Dispatcher

If the index into the case table is too large, the CHMK or CHME instruction
was executed with an invalid code (control is passed to the end of the case

9.4.2

9.4 User-Written System Service Dispatching

table). The VMS operating system attempts to pass control to a user-written
change mode dispatcher. First, a location in P1 space (CTL$GL_USRCHMK
or CTL$GL_USRCHME) is checked to see whether a per-process dispatcher
exists. Nonzero contents of this location are interpreted as the address of a
user-written dispatcher and control is passed to it with the stack as shown in
Figure 9-4. The assumption being made by the VMS operating system at this
point is that a valid change mode code will result in the eventual transfer of
control to SRVEXIT with a RET instruction. If the per-process dispatcher
rejects the code, it returns control to the code listed in Section 9.3.1 with an
RSB instruction.

Privileged Shareable Images

The usual contents of CTL§GL_USRCHMK and CTL$GL_USRCHME are
addresses within the two pages in P1 space set aside by the VMS operating
system for user-written system services and image-specific message process-
ing. Kernel mode and executive mode each have one half page (256 bytes)
devoted to system service dispatching. The initial content of the first byte of
each dispatch area (set up by PROCSTRT) is an RSB instruction. With the
dispatch scheme described in the previous section, there is effectively no
per-process change mode dispatching.

However, if an image executes that was previously linked with a privileged
shareable image (linked with the /PROTECT and /SHAREABLE options and
installed with the /PROTECTED and /SHARED options), the image activator
replaces the RSB instruction with a JSB to the user-written change mode
dispatcher specified as a part of the privileged shareable image (see Figure
9-5). The VMS operating system allows multiple privileged shareable images
to be linked into the same executable image. (There is a limit of 42 user-writ-

These two
longwords are
;eigz\:::e?{:;:re Return PC in Dispatch Vector
calling the Return PC in CMODSSDSP -«——SP
Sysiom service 0 (Condition Handler Address) | <—— FP
0 (PSW/Register Save Mask)
Saved AP
Saved FP
SRVEXIT (Return PC) Direction of
PC Following CHMX Instruction stack growth
PSL Following CHMXx Instruction
Figure 9-4

State of the Stack within a User-Written Dispatcher

175

System Service Dispatching

176

PO P1
Space Space System Space

User Program

. (3) ysB A ﬁ
‘® CALLx @ JSB B Change Mode
! Dispatcher
> : JSBC
EXE$CMODxxxx::
L P 1) Build call frame
1 r RSB 2) Check argument
list
Dispatcher A ' o 3) CASEW @
RSB @ | — This vector is built Offsets
by the image .
activator
z - (CTL$A _DISPVEC). .
T Offsets
3 - JSB
Dispatcher B Process illegal
change mode codes
L, .ENTRY
CHMXx @
RET

CASE @

[ENTRY
. @ —»| SRVEXIT:

RO-status . @

RET @ REI

Common Exit Path

Figure 9-5
Dispatching to User-Written System Services

ten dispatchers of each type. How these dispatchers are collected into
privileged shareable images determines the number of privileged shareable
images that can be included in a single executable image.) An RSB instruc-
tion follows the last JSB instruction in the dispatch area. The example pic-
tured in Figure 9-5 shows three privileged shareable images.

When the image activator (see Chapter 21) encounters a privileged share-
able image as a part of the executable image it is activating, it maps the
section(s) containing the user-written system services in the usual manner.
However, it also uses information stored in a protected image section or in
the first eight longwords of the image (a privileged library vector pictured in

9.4 User-Written System Service Dispatching

Figure 9-6) to modify the P1 space dispatch area. For example, if a privileged
shareable image contained a change-mode-to-kernel dispatcher, the image
activator would insert a JSB instruction in P1 space that transferred control to
the dispatcher specified by the PLV§L_KERNEL longword in the privileged
library vector. Once the image containing user-written system services is
‘activated, execution proceeds normally until one of the services is invoked.
Dispatching proceeds as follows (see Figure 9-5).

@ A CALLx instruction transfers control to a service-specific entry mask in
PO space. The CHMx (CHMK or CHME] instruction located there trans-

fers control to the VMS change mode dispatcher.

Privileged Shareable Image

l .ENTRY mask l
= CHMx #code '

RET

Vector Type

System Version

° Kernel Dispatcher

g Executive Dispatcher

Address Check

CASE RO,...

RSB

CASE Ro,...

RSB

ENTRY mask

” .
’ 2

A\

MOVL #status, RO
RET

Figure 9-6
Structure of Privileged Shareable Image

Entry Vectors
(1 per service)

Privileged
Library Vector
(1 per image)

Executive Dispatcher

Kernel Dispatcher

Functional Routines
(1 per service)

177

System Service Dispatching

9.4.3

9.5

178

(2) Execution proceeds as if a VMS service was invoked except that the
change mode code is not recognized by the VMS dispatcher and control
passes to the end of the case table (see the code examples in Section
9.3.1).

(3) The JSB instruction in CMODSSDSP passes control to the P1 space dis-
patch area where another JSB instruction passes control to the first dis-
patcher.

(4) The change mode code is rejected by the first dispatcher by simply exe-
cuting an RSB back to the P1 space vector where a second JSB is executed.

(5) The second dispatcher recognizes the change mode code as valid and dis-
patches (probably with a CASEx instruction) to a service-specific proce-
dure that is also a part of the second privileged shareable image.

(6) When the service completes (successfully or unsuccessfully), it loads a
final status into RO and exits with a RET which passes control to
SRVEXIT. At this point, user-written system service dispatching merges
with VMS system service dispatching.

If each dispatcher rejected the change mode code (by executing an RSB), con-
trol would eventually reach the RSB instruction in the P1 space vector. This
RSB instruction passes control back to the VMS change mode dispatcher in
CMODSSDSP where a system-wide dispatcher is checked for next.

System-Wide User-Written Dispatcher

If the P1 space location contains a zero, or if no per-process dispatchers are
invoked, or if the last per-process user-written dispatcher returns to the rou-
tine in CMODSSDSP with an RSB, a location in system space
(EXE$GL_USRCHMK or EXE$GL_USRCHME] is checked for the existence
of a system-wide user-written dispatcher. If none exists (contents are zero, its
usual contents in a VMS system), or if this dispatcher passes control back
with an RSB, an illegal system service call (SS$_ILLSER) is reported back to
the user in RO. This scheme assumes that user-written system services that
complete successfully will exit with a RET back to SRVEXIT, where an REI
instruction will dismiss the CHMK or CHME exception. Note that there is
no standard documented way to add a system-wide user-written dispatcher to
the system.

RELATED SYSTEM SERVICES

There are five system services in the VMS operating system that are closely
related to system service dispatching and the change mode instructions. The
$DCLCMH system service was briefly described in Section 9.2.2. This sec-
tion describes the $SETSFM service, the $SETSSF service, and the change

mode system services.

9.5.1

9.5.2

9.5.3

9.5 Related System Services

Setting System Service Failure Exceptions

The $SETSFM system service either enables or disables the generation of
exceptions when an error is detected by the system service common exit
path. The service itself simply sets (to enable) or clears (to disable) the bit in
the process status longword (at offset PCB$L_STS in the software PCB) for
the access mode from which the system service was called.

Change Mode System Services

The $CMKRNL and $CMEXEC system services provide a simple path for
privileged processes to execute code in kernel or executive mode. These serv-
ices check for the appropriate privilege (CMKRNL or CMEXEC) and then
dispatch (with a CALLG instruction) to the procedure whose address is sup-
plied as an argument to the service. (Note that if §CMKRNL is called from
executive mode, no privilege check is made.)

The procedure that executes in kernel or executive mode must load a re-
turn status code into RO. If not, the previous contents of RO will be used to
determine whether an error occurred.

System Service Filtering

In some applications, especially user-written CLIs, it is desirable to deny
access to system services that can be called from user mode. The Set System
Service Filter ($SETSSF) system service was provided for this purpose.

When the module CMODSSDSP is assembled, in order to create the sys-
tem service vectors, two tables of bytes are created, one for kernel mode
system services (at the symbol B_KMASK]), and one for executive mode sys-
tem services (at the symbol B_EMASK). Each entry in these tables contains a
mask that indicates whether or not the system service can be disabled by
$SETSSF. If the service can be disabled by $SETSSF, the mask also indicates
the system service filter groups for which the service is disabled. Group 0
specifies all services, except $EXIT; group 1 specifies most services, with the
exception of $EXIT and those services required for condition handling or
image rundown. The VAX/VMS System Services Reference Manual lists the
services that are not disabled by $SETSSE.

The byte at offset CTL$GB_SSFILTER in the per-process control region
contains the system service filter mask for a particular process. Usually this
mask contains the value zero. When $SETSSF is called, the mask value speci-
fied in the call to $SETSSF is written into this mask.

When the system is bootstrapped, module INIT checks the bit
EXE$V_SSINHIBIT at global location EXE$GL_DEFFLAGS. This bit corre-
sponds to the SYSBOOT paramter SSINHIBIT. If the bit is set, the entry

179

System Service Dispatching

180

points in the change mode dispatcher for CHME and CHMK are revectored to
the entry points EXESCMODEXECX and EXESCMODKRNLYX, respectively.

When control is passed to these alternate entry points (from a CHME or
CHMK instuction), the value in CTL$GB_SSFILTER is ANDed with the
value in the system service filter tables (found at locations B_EMASK or
B_KMASK). The CHMx code is used as an index into these tables. If the
result of the AND is zero, processing continues and control is passed to the
system service; if the result of the AND is nonzero, the call to the system
service fails with the exit status SS$ _INHCHME or SS$ _INCHMK, depend-
ing on whether the system service was an executive mode or kernel mode
service.

PART III/Scheduling and Timer Support

10

10.1

10.1.1

Scheduling

It is equally bad when one speeds on the guest unwilling to go,
and when he holds back one who is hastening. Rather one should
befriend the guest who is there, but speed him when he wishes.

—Homer, The Odyssey

Scheduling is concerned with the order of execution of processes and the
occurrence of events over time. The scheduler identifies and executes the
highest priority, memory-resident process. Processes may or may not be
scheduled, depending on the scheduling state of the process and the nature of
the event or resource for which the process is waiting. Transitions from one
state to another occur as the result of system events such as the setting of an
event flag, enqueuing an AST, calling the $WAKE system service, and so
forth. This chapter describes the interactions of software priorities, process
states, and system events, as well as the operation of the scheduler.

PROCESS STATES

The state of a process defines the readiness of the process to be scheduled for
execution. In addition, the process state may indicate whether the process is
memory resident or outswapped. If a process is waiting for the availability of
a system resource or the occurrence of an event, then the process state is one
of several distinct wait states. The wait state reflects the particular condition
that must be satisfied for the process to become computable again.

Process Control Block

The major data structure describing the state and priority of a process is the
software process control block (PCB). Figure 10-1 illustrates the fields of the
software PCB that are particularly important to scheduling. The field
PCB$W_STATE contains a numeric value associated with a particular proc-
ess state. The process state is established by moving the appropriate value
into PCB§W_STATE and inserting the PCB into the corresponding state
queue by means of the state queue link fields, PCB$L_SQFL and
PCBS$L_SQBL. Appendix B contains a complete description of the software
PCB. Table 10-1 lists the process state names and the corresponding
PCB$W _STATE values. Other software PCB fields define the scheduling or
software priority of the process and indicate whether the process is in mem-

183

Scheduling

10.1.2

184

Software PCB

SQFL
SQBL
PRI
PHYPCB
STS
PRIB | STATE
-

1 if

Figure 10-1
Process Control Block Fields Used in Scheduling

ory or outswépped. The location of a data structure containing the hardware
context of the process is also stored in the software PCB (PCB$L_PHYPCB).

Software Priority

Software priority (as distinct from interrupt priority, a hardware mechanism)
is used in determining the relative precedence of processes for execution and
memory residence. Software priority is a value in the range from 0 to 31. The
null process executes at software priority level 0, and the highest priority
real-time process executes at software priority level 31. The range of 32 soft-
ware priority levels is divided evenly between the normal process levels of 0
to 15 and the real-time process levels of 16 to 31. The execution behavior of
a process is significantly affected by the type of process (normal or real time)
and the assigned software priority level.

Two fields of the software process control block directly describe the
scheduling or software priority of the process. The field PCB$B_PRI (see Fig-
ure 10-1) defines the current software priority of the process, which is used to
make scheduling decisions. PCB$B_PRIB defines the base priority of the
process, from which the current priority is calculated. For normal or time-
sharing processes, these priority values are sometimes different, while real-

10.1.2.1

10.1 Process States

Table 10-1: Process Scheduling States

State Name Mnemonic Value
Collided Page Wait COLPG 1
Miscellaneous Wait MWAIT 2
Mutex Wait
Resource Wait
Common Event Flag Wait CEF 3
Page Fault Wait PFW 4
Local Event Flag Wait (Resident) LEF 5
Local Event Flag Wait (Outswapped) LEFO 6
Hibernate Wait (Resident) HIB 7
Hibernate Wait (Outswapped) HIBO 8
Suspend Wait (Resident) SUSP 9
Suspend Wait (Outswapped) SUSPO 10
Free Page Wait FPG o 11
Computable (Resident) COM 12
Computable (Outswapped) - COMO 13
Currently Executing Process CUR 14

time processes always have identical current and base priority values. Each
field may have a value from 0 to 31.

However, the values in these fields are stored internally in an inverted
order. That is, the base and current priorities of 0 for the null process are
stored internally in the PCB fields as 31. The highest priority process possible
would have internally stored software priority values of 0. Thus, the internal
field values are stored as 31 minus the software priority value. This inverted
value causes priority promotions or boosts to be implemented through sub-
tract or decrement instructions. System utilities such as SDA, MONITOR,
and the DCL command SHOW SYSTEM interpret these inverted values and
display external values, where 0 is the lowest priority and 31 is the highest.
External values are also returned by the $GETJPI system service when a proc-
ess priority is requested.

Note that all discussions in this book treat software priority as an increas-
ing entity from O (for the null process) to 31 (for the highest priority real-time
process). Please take this convention into account when relating descriptions
in this book to the actual routines in the listings, where inverted priorities
are used.

Real-Time Priority Range. Processes with software priority levels 16 through
31 are considered real-time processes. There are two scheduling characteris-
tics that distinguish real-time processes.

1. The software priority of a real-time process does not change over time,
unless there is a direct program or operator request to change it (with a Set

185

Scheduling

Priority system service or a SET PROCESS/PRIORITY command). The
fact that the priority does not change implies that the base priority and the
current priority of a real-time process are identical, and no dynamic prior-
ity adjustment (see Section 10.1.2.3) is applied by the operating system.

. A real-time process executes until it is either preempted by a higher or

equal priority process or it enters one of the wait states (see Section
10.1.3.2). Thus, a real-time process is not susceptible to quantum end
events (see Section 10.1.2.4) and is not removed from execution (resched-
uled) because some interval of execution time has expired.

Taken in isolation, the real-time range of VMS software priorities provides

a scheduling environment like traditional real-time systems: preemptive, pri-
ority-driven scheduling without time slices or quanta.

10.1.2.2 Normal Priority Range. Normal processes include interactive terminal ses-
sions, batch jobs, and all system processes except the swapper. The schedul-
ing behavior of a normal process is different from that of a real-time process.

1.

186

The current software priority of the process varies over time while the
base priority remains constant (unless altered by the Set Priority system
service or by a SET PROCESS/PRIORITY command). This behavior is the
result of dynamic priority adjustment applied by the VMS system to favor
I/0O-bound and interactive processes at the expense of compute-bound (and
frequently also batch) processes. The mechanism of priority adjustment is
discussed in the following section. Priority adjustment can also occur as a
result of locking a mutex (see Section 2.3.1) or as a result of action by the
routine EXE§TIMEOUT (see Section 11.3.5).

. Normal processes run in a time-sharing environment that allocates CPU

time slices (or quanta) to processes in turn. Therefore, an executing nor-
mal process will control the CPU until one of the following events occurs:

* It is preempted by a higher or equal priority, computable process (see
Figure 10-2, event 5, for example).

It enters a resource or event wait state (see Figure 10-2, event 7, for
example).

» The current quantum or time slice has been used (see Figure 10-2, event
17, for example).

Processes with identical current priorities are scheduled on a round robin
basis. That is, each process at a given software priority level executes in
turn before any other process at that level executes again. Although this
mechanism applies to real-time processes as well, it generally has no effect
because real-time processes are usually assigned to unique software prior-
ity levels and their priorities do not change. Normal processes do experi-
ence round robin scheduling both because there are usually more of them

10.1.2.3

10.1 Process States

Increasing
Software
Priority

20

) [

141

12

T
He

H_‘,
H_‘
©

‘
6
(D
4
J (P
0| Time —» x|
eensl (D) @ OO OEOOE® OO @ ® ® ® © @
@=SWAPPER Process ;rype Base Priority I Events
A Compute bound 4 ' f®|/o request
B 1/0 bound 4 @ Preemption
- C Real time 18 @Quantum end
Figure 10-2

Software Priorities and Priority Adjustments

on a given system and because the default behavior (from Create Process
system service arguments or from the user authorization file) is to assign a
base priority of four to all user processes. Thus software priority levels four
through nine tend to be occupied by several processes simultaneously.

Priority Adjustment. Normal processes do not generally execute at a single

software priority level. Rather, a process software priority changes over time
in a range of zero to six software priority levels above the base process prior-
ity. Two mechanisms provide this priority adjustment. As a condition for
which the process has been waiting is satisfied or a needed resource becomes
available, a boost or priority increment may be applied to the base priority to
improve the scheduling response for the process (see Section 10.2.4). Each
time the process executes without further system events (see Section 10.2) or
quantum expiration (see the next section) occurring, the current priority is
moved toward the base priority (or demoted) by one priority level (see Section
10.3). Over time, compute-bound process priorities tend to remain at their

187

Scheduling

10.1.2.4

188

base priority levels, while I/O-bound and interactive processes tend to have
average current priorities somewhat higher than their base priority. An ex-
ample of priority adjustment that occurs over time for several processes is
illustrated in Figure 10-2.

Quantum Expiration. The SYSBOOT parameter QUANTUM determines, for
most process states, the minimum amount of time a process can remain in
memory after an inswap operation, but it is not an absolute guarantee of
memory residence. (The swapper’s use of the initial quantum flag is de-
scribed in Chapter 17.) The quantum also defines the size of the time slice for
the round robin scheduling of normal processes. The value of QUANTUM is
the number of 10-millisecond intervals (clock ticks) in the quantum. The
default QUANTUM value of 30 therefore produces a scheduling interval of
300 milliseconds. After each 10-millisecond interval, the hardware clock in-
terrupt service routine updates the quantum-remaining field in the process
header of the current process. When this value becomes zero, the software
timer routine signals a quantum end event by invoking the subroutine
SCH$QEND in module RSE.

An additional deduction from the QUANTUM is governed by the special
SYSBOOT parameter IOTA. This value (in units of 10 milliseconds) is de-
ducted from the remaining quantum value each time a process enters a wait
state. Therefore, the default IOTA value of 2 charges 20 milliseconds against
the quantum of the process. This mechanism is provided to insure that all
processes experience quantum end events with some regularity. Processes
that are compute bound experience quantum end as a result of using a certain
amount of CPU time. Processes that are I/O bound experience quantum end
as a result of performing a reasonable number of I/O requests. This scheme
guarantees that processes that spend most of their time in some wait state
can also accomplish useful work before they are outswapped.

The routine SCH$QEND is executed at the end of every quantum, regard-
less of the software priority of the current process. For real-time processes,
however, the only action performed is to reset the process header quantum
field to the full quantum value and to clear the initial quantum bit in the PCB
status vector (bit PCB§V_INQUAN in the field PCB$L_STS, pictured in Fig-
ure 10-1). The cleared initial quantum bit makes a process more likely to be
outswapped, if process swap mode has not been disabled.

The following notes relate to the numbers at the bottom of Figure 10-2:

@ Process C becomes computable. Process A is preempted.

@ C hibernates. A executes again, one priority level lower.

(3) A experiences quantum end and is rescheduled at its base priority. B is
computable outswapped.

@ The Swapper process executes to inswap B. B is scheduled for execution.

10.1 Process States

@ B is preempted by C.

@ B executes again, one priority level lower.

() B requests an I/O operation (not terminal I/O). A executes at its base
priority.

A requests a terminal output operation. The Null process executes.

@ A executes following I/O completion at its base priority + 3. (The applied
boost was 4.)

A is preempted by C.

@D A executes again, one priority level lower.

@ A experiences quantum end and is rescheduled at one priority level
lower.

@3 A is preempted by B. A priority boost of 2 is not applied to B because the
result would be less than the current priority.

B is preempted by C.
B executes again, one priority level lower.

@ B requests an I/O operation. A executes at its base priority.

@? A experiences quantum end and is rescheduled at the same priority (its
base priority).

A is preempted by C.

For normal processes, however, the occurrence of quantum expiration in-
volves several different operations.

1. As with real-time processes, normal processes have the process header
quantum field reset and the initial quantum bit cleared.

2. If there are any inswap candidates (SCH$GL._COMOQS is nonzero, indi-
cating at least one nonempty COMO state queue), the current priority of
the process is set to its base priority. (If SCH$GL_COMOQS contains a
zero, the priority is left alone.)

3. Routine SCH§SWPWAKE is called to determine whether swapper activity
is required. The swapper process is awakened if any of the following are
true:

» There is at least one computable outswapped process.

* Modified page writing is required as indicated by the upper and lower
limit thresholds for the free and modified page lists.

» There is at least one process header of a deleted process still in the
balance slots.

* A powerfail recovery has just occurred.

These checks avoid needless awakening of the swapper, with the associ-
ated context switch overhead, only to determine that the swapper has no
useful work to do.

The swapper process does not execute immediately but must be sched-
uled for execution. As a computable (after waking), resident, real-time

189

Scheduling

190

process of software priority 16, the swapper is very likely to be the next
process scheduled.

. The CPU limit field of the process header is next checked to determine if

a CPU limit has been imposed and if that limit has expired. If the CPU
limit has expired, each access mode will have an interval of time to clean
up or run down before the image exits and the process is deleted. The size
of the warning interval given to each access mode is defined by the
SYSBOOT parameter EXTRACPU. (This parameter has a default value of
one second.)

. If no CPU limit expiration has occurred, then the automatic working set

adjustment calculations take place if they are enabled. The size of the
process working set may be expanded or contracted by amounts specified
by the SYSBOOT parameters WSINC or WSDEC. Five SYSBOOT parame-
ters determine threshold values to be applied to the automatic adjust-
ments:

» For a new adjustment to take place, this process must have accumu-
lated AWSTIME units of CPU time (each clock tick accounts for 10
milliseconds) since the last test for adjustment.

The page fault rate must be larger than PFRATH faults per 10 seconds or

less than PFRATL faults per 10 seconds.

» The working set cannot be contracted through automatic working set
adjustment below AWSMIN nor expand above a process-specific maxi-
mum number of pages (see the next item).

* If there are more than BORROWLIM free pages, the working set list can
grow up to WSEXTENT. If there are fewer than BORROWLIM free
pages, the working set list can only grow to WSQUOTA. Note that this
growth affects the working set list, not the actual working set size.
Pages can be added to the extended working set list when a page fault
occurs and there are more than GROWLIM pages on the free page list.

There are two possible courses of action that will disable automatic
working set adjustment, and a third method is available to keep working
set size less than or equal to WSQUOTA (disable borrowing) on a per-proc-
ess basis:

» Use the DCL command SET WORKING_SET/NOADJUST to disable it
on a per-process basis.

 Set the SYSBOOT parameter WSINC to zero to disable it on a system-
wide basis.

» Set WSEXTENT equal to WSQUOTA, or set BORROWLIM to —1, to
disable borrowing on a per-process basis.

Automatic working set adjustment is discussed from the memory man-
agement point of view in Section 16.4.1.3.

10.1.3

10.1.3.1

10.1.3.2

10.1.3.2.1

10.1 Process States

6. Finally, a scheduling interrupt at IPL 3 will be requested to remove the
current process from execution and schedule the highest priority, mem-
ory-resident, computable process for execution. Note that on a quiet sys-
tem, the currently executing process may be selected for execution again.

State Queues

With the exception of the single process executing at a given moment, all
processes in the system are in a process wait state, the computable resident
state, or the computable outswapped state. The process state is indicated by
the PCB§W _STATE field and the linking of the process control block into a
queue of similar PCBs. The listheads for all wait queues, computable resident
(COM) queues, and computable outswapped (COMO) queues, as well as the
pointer to the PCB of the current (CUR) process, are defined in the module
SDAT. ‘

Computable States. Processes in the computable or executable state are not
waiting for events or resources, other than acquiring control of the CPU for
execution. Computable resident (COM) processes are placed in one of 32 pri-
ority queues, with the queue chosen by the internal value for the current
software priority of the process (see Figure 10-3). There is a similar set of 32
quadword listheads for the computable outswapped (COMO) state. Processes
in the computable outswapped state are waiting for the swapper process to
bring them into memory. As computable resident processes, they can then be
scheduled for execution. Processes must be in the computable resident state
to be considered for scheduling. Processes are created in the computable out-
swapped (COMO) state. Deletion of processes occurs from the current (CUR)
state.

Wait States. The listheads for the process control block queues corresponding
to all process wait states except the common event flag wait state (CEF) look
like Figure 10-4. (Common event flag wait queues are described in Chapter
12.) The first two longwords are the longword links to the PCBs in this queue.
The STATE field of the queue header contains the numerical value corre-
sponding to the process state. All PCBs in a state queue have PCB§W _STATE
values identical to the STATE value of the wait state queue header. Recog-
nized STATE values and the corresponding state names are summarized in
Table 10-1. The COUNT field of the wait state queue header is simply the
number of process control blocks currently in this state and queue. -

Voluntary Wait States. There are two process states associated with local

event flag waits. Resident processes waiting for local event flags are placed
into the LEF state, while outswapped processes occupy the LEFO state. There

191

Scheduling

192

For State COM
Bits 31 0
Longword Queue Bit Map
::SCH$GL__COMQS
Priorities 0 31 (A clear bit implies an empty queue.)
Queue Headers
Queue 0 > ::SCH$AQ_COMH
Priority 31 -+ :SCH$AQ__COMT
1 *~—>
30 e
For State COMO
Bits 31 0
Longword Queue Bit Map
::SCH$GL_COMOQS
(A clear bit implies an empty queue.)
Priorities 0 31
Queue Headers
Queue 0 :SCH$AQ_COMOH
F— PRIORITY 31
Priority 31 : ::SCH$AQ__COMOT
1 3
— PRIORITY 30
30
T PRIORITY 29 —_—
Figure 10-3

Computable (Executable) State Queues

are separate queues maintained for these states, and an LEF state process
being outswapped must be removed from the LEF queue and placed into the
LEFO state queue. Processes enter the LEF state as a result of issuing
$WAITFR, $WFLOR, and $WFLAND system services directly or indirectly
(for example, with a $QIOW or $ENQW system service call, issued either by
the user or on his behalf by some system component such as RMS). Removal
from the LEF or LEFO states to the computable (COM) or computable
outswapped (COMO) states can occur as a result of matching the event flag
wait mask, enqueuing an asynchronous system trap (AST), or process dele-
tion.

Similarly, there are separate resident and outswapped states and queues for
hibernating and suspended processes. The Hibernate and Suspend system
services cause processes to enter the resident wait states. Hibernating proc-

10.1.3.2.2

10.1 Process States

Wait Queue
Forward Link ® >
Wait Queue
e)
Backward Link
State Count
Figure 10-4

Format of Wait State Queue Headers

esses can leave the HIB and HIBO states and enter the COM and COMO
states as a result of SWAKE system services, AST enqueuing, or process dele-
tion. Suspended processes are sensitive only to SRESUME system services
and process deletion (because ASTs cannot be delivered to processes while
they are suspended). The transitions between states are diagrammed in Figure
10-5.

Memory Management Wait States. Three process wait states are associated
with memory management. Each state is represented by a single queue and
listhead of the form shown in Figure 10-4. Differentiation of resident and
outswapped processes in these states is accomplished only by means of the
PCB$V_RES bit of the PCB$L_STS field. The outswapping of processes in
these states does not involve removal from and insertion into queues. The
PCBS$V_RES bit is simply cleared in the process control block. (Memory
management wait states are discussed from another point of view in Chap-
ter 15.)

The page fault wait state (PFW) is entered when a process refers to a page
that is not in physical memory. While the page read is in progress, the process
is placed into the PFW state. Completion of the page read, AST enqueuing, or
process deletion can cause the process to become computable (COM) or com-
putable outswapped (COMO), depending upon its PCB$V_RES bit value
when the satisfying condition occurs.

The free page wait state (FPG) is entered when a process requests a page to
be added to its working set, but there are no free pages to be allocated from
the free page list. This state is essentially a resource wait until the supply of
free pages is replenished through modified page writing, process outswap-
ping, or virtual address space deletion.

The collided page wait state (COLPG) usually occurs when several proc-
esses cause page faults on the same shared page at the same time. The initial
faulting process enters the PFW state, while the second and succeeding proc-

193

Scheduling

Outswap

ﬂ!
mo

€

Outswa
i LEFO
Event
AST, DEL
i Outswa
Wait CEF P > HIBO
Wait LEF Wake Create
AST, DEL
Hibernate Outswap SUSPO
Suspend” *
~_ Sched Inswap
CUR | = :
: Resched * Outswap Outswap AST, DEL
Page fault \ Page fault read
»X f
completion
Free page wait P
F
w AST, DEL
DEL Free page available
Collided page Outswap *
wait
E AST, DEL
P collided page
G available
Mutex wait or Outswap
resource wait AST, DEL
8 Mutex or
AST Represents AST enqueuing L :/Z?I:rt;:
DEL Represents process deletion g
* Transitions from memory-resident Outswap
wait states to COM are not
labeled to avoid cluttering
the figure. They are caused \'}ﬁv
by the same events shown for A
transitions to the COMO state. 1|_
Represents a process state
with a single queue
Represents a process state
with a multiple queues
Figure 10-5

State Transition Diagram

194

10.1 Process States

esses enter the COLPG state. The COLPG state can also be entered when a
process refers to a private page that is already in transition from the disk. All
COLPG processes are made computable or computable outswapped when the
read operation completes. (A more detailed discussion of collided pages is
contained in Chapter 15.)

10.1.3.2.3 Miscellaneous Wait State (MWAIT). The miscellaneous wait state [MWAIT)
is used to indicate processes waiting for resources not managed by any of the
‘other process wait states. There is a single MWAIT queue for memory-resi-
dent and outswapped processes. Table 10-2 lists the resources associated with
the two forms of the MWAIT state.
The miscellaneous resource wait state is used to wait for the availability of
a depleted or locked resource. A process may enter a resource wait if the
resource requested has already been allocated. Common examples are the
depletion of nonpaged dynamic memory or no room in mailboxes. The proc-
ess will become computable when the resource becomes available again. The
number of the resource (a small integer defined by the $RSNDEF macro) is
“stored in the PCB$L_EFWM field (see Table 10-2), and the PCB$W_STATE is -
changed to MWAIT to indicate a miscellaneous resource wait. Whether a
- process can be made executable by the enqueuing of an AST to the process is
dependent upon the interrupt priority level of the caller of the routine declar-
ing the resource wait. If the IPL in the saved PSL in the hardware process
control block is two or larger, the process will reexecute the resource wait
code and be placed back into the MWAIT state immediately. If the saved IPL
is smaller than two, an AST delivery interrupt will occur, resulting in the
execution of the previously enqueued AST.

The Set Resource Wait Mode system service ($SETRWM] can force the
immediate return of an error status code rather than placing the process in
the MWAIT state. $SETRWM does this by setting the PCB$V_SSRWAIT bit
of the PCB$L_STS field. Disabling resource waits affects many directly re-
quested operations (such as I/O requests or timer requests) but has no effect
on allocation requests by the system on behalf of the user. An example of this
situation is the pager requiring an I/O request packet to perform a page read
operation. If nonpaged dynamic memory is depleted, the process will enter
the MWALIT state, even if $SETRWM had been used to disable resource waits.
The reason for this distinction is that a process can respond to a depleted
resource error from a system service call or an RMS request but has no means
of reacting to a similar error in the event of an unexpected event such as a
page fault. ' :

System routines that access data structures protected by mutexes will
place a process in the MWAIT state if the requested mutex ownership cannot
be granted (see Chapter 2). Thus, the mutex wait state indicates a locked
resource and not necessarily a depleted one. The logical name system serv-

195

Scheduling

Table 10-2: Types of MWAIT State

Reason for Wait
Mutex Waits

System Logical Name Table
Group Logical Name Table

I[/O Database

Common Event Block List

Paged Dynamic Memory

Global Section Descriptor List
Shared Memory Global Section Descriptor Table
Shared Memory Mailboxes

(Not used)

Known File Entry Table

Line Printer Unit Control Block (2)

Resource Waits

AST Wait (Wait for system or special kernel AST)
Mailbox Full

Nonpaged Dynamic Memory

Page File Full

Paged Dynamic Memory

Breakthrough (Wait for broadcast message)
Image Activation Lock

Job Pooled Quota (Not currently used)
Lock Identification Database

Swap File Space

Modified Page List Empty

Modified Page Writer Busy

Contents of PCB§L_EFWM (1)

Symbolic

LOG$AL_MUTEX
80002754
IOC$GL_MUTEX
EXE$GL_CEBMTX

EXE$GL_PGDYNMTX

EXE$GL_GSDMTX
EXE$GL_SHMGSMTX

EXE$GL_SHMMBMTX

EXE$GL_ENQMTX
EXE$GL_KFIMTX
UCBSL_LP_MUTEX

Symbolic

RSN$_ASTWAIT
RSN$_MAILBOX
RSN$_NPDYNMEM
RSN$_PGFILE
RSN$_PGDYNMEM
RSN$_BRKTHRU
RSN$_IACLOCK
RSN$_JQUOTA
RSN$_LOCKID
RSN$_SWPFILE
RSN$_MPLEMPTY
RSN$_MPWBUSY

Numeric (hex)

80002750

800028C0
800028C4
800028C8
800028CC
800028D0
800028D4
800028D8
800028DC
(Note 2)

Numeric (hex)

00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
0000000A
0000000B
0000000C

(1) The symbolic contents of PCB$L_ EFWM will probably remain the same from release to release. The
numeric contents for mutex waits are almost certain to change with each major release of the operating

system.

(2) The mutex associated with each line printer unit does not have a fixed address like the other mutexes.
Its value depends on where the UCB for that unit is allocated.

ices operating on the system and group logical name tables are one example
of this type of operation. When the owner of the requested mutex releases it,
the requesting process becomes resident computable (COM), or computable
outswapped (COMO) if it has been outswapped, and requests ownership of
the mutex again. AST enqueuing cannot make a mutex-waiting process com-
putable for long because the IPL in the stored PSL is IPL$_ASTDEL (IPL 2,

blocking the AST delivery interrupt.

The mutex wait state is distinguished from the resource wait state by stor-
ing the system virtual address of the requested mutex in the PCB$L_EFWM
field. (When treated as a signed integer, the contents of this field are positive
and small when the process is waiting for a resource. When the process is

196

10.1.3.3

10.2

10.2 System Events

waiting for a mutex, the contents are negative, as listed in Table 10-2.) For
example, if a process wishes to allocate a block of paged dynamic memory, it
must first acquire the paged pool mutex to allow it to search the linked list of
available blocks (see Chapter 3). If another process is already looking at paged
pool, this process is put into a mutex wait state (with 800028CS8, the address
of the paged pool mutex, stored in PCB$L_EFWM). Once the mutex is availa-
ble and then owned by this process, paged pool is searched for a block of the
requested size. If there is no block large enough to satisfy the allocation re-
quest, the process is placed into a resource wait state (with 00000005, the
value of RSN$_PGDYNMEM, stored in PCB$L_EFWM). The process re-
mains in this state until a block of paged pool is deallocated.

Common Event Blocks. Processes. waiting for one or more common event
flags are enqueued to wait queues in data structures called common event
blocks (CEBs). These data structures are allocated from nonpaged dynamic
memory when processes create common event flag clusters. The contents of
a CEB include three longwords that exactly correspond to a wait state queue
header (see Figure 10-4). The entire format of the common event block is
shown in Chapter 12.

The number of CEF state queues depends upon the number of common
event flag clusters that exist on a particular system at any given time. (Addi-
tional processes associating with existing common event flag clusters do not
create further CEBs or CEF queues.) Outswapped processes waiting for com-
mon event flags are differentiated from similar memory resident processes by
the PCB$V_1RES bit of the PCB$L_STS field only. In addition to satisfying
the event flag wait mask, the system can also make a CEF process computa-
ble by AST enqueueing or process deletion.

SYSTEM EVENTS

System events are occurrences of operations that change the states of proc-
esses. A system event may make a process computable, memory resident, or
outswapped. System events provide the transitions among the process states
diagrammed in Figure 10-5.

A process initially enters a wait state from the current state (CUR). That is,
a process either directly or indirectly executes a request for a system opera-
tion for which it must wait. Direct requests such as $QIOW, $HIBER,
$SUSPND, and $WAITFR place the process in the voluntary wait states LEF,
CEF, HIB, and SUSP. Subsequent outswapping (from the process viewpoint an
unrequested system operation) may move a process to the LEFO, HIBO, or
SUSPO states.

197

Scheduling

10.2.1

10.2.2

10.2.2.1

198

Process State Changes

Indirect wait requests occur as a result of paging or contention for sys-
temresources. A process does notrequest PFW, FPG, COLPG, or MWAIT transi-
tions. Rather, the transitions to these wait states occur because direct service
requests to the system cannot be completed or satisfied at the moment.
A process can become computable for a variety of reasons. The availability
of a requested resource or the satisfaction of a wait condition (such as an
event flag setting or a $WAKE system service call] will make the process
computable. In all process states except SUSP and SUSPO, the enqueuing of
an AST will make a process computable even if the wait condition is not
satisfied. (Because processes are usually put into the MWAIT state at IPL 2,
the AST is not able to be delivered until the miscellaneous wait is satisfied.
Thus, the typical process in an MWAIT state will not become computable for
long, due to the enqueuing of an AST. In particular, processes waiting for
resources or mutexes typically cannot be deleted.) Process deletion, imple-
mented with a special kernel mode AST, will make all processes that are
being deleted computable (including processes in the SUSP or SUSPO states)
because the target process is resumed before the AST is queued.
Exchanges of processes between the current executing state (CUR) and the
computable, memory-resident state (COM) are performed by the scheduler
routine (see Section 10.3). The movement of a process into and out of the
balance set is the responsibility of the swapper process (see Chapter 17).

Wait States and AST Delivery

One of the responsibilities of the routines that place processes into wait
states is to insure that these processes will correctly enter their appropriate
wait states after successful delivery of an AST. There are three different tech-
niques used, depending on the particular wait state being entered.

System Service Wait States. In the case where a process is entering a wait
state as a result of executing a system service (HIB, LEF, or CEF), the wait
routine is entered with the PC and PSL of the the system service CHMK
exception (see Chapter 9) on the top of the stack. The first implication of this
arrangement is that the process will wait in the access mode in which the
system service was issued. Because ASTs are enqueued and delivered based
on access mode, a supervisor mode AST can be delivered to a process waiting
on an event flag as a result of a $QIOW call issued from user or supervisor
mode.

In addition, the wait code backs up the saved PC by four so that it points to
the CHMzx instruction in the system service vector (see the code examples in
Section 9.1). If a process receives an AST while in such a wait state, the AST
is delivered and executes. When the AST delivery routine releases its inter-

10.2.2.2

10.2.2.3

10.2 System Events

rupt through an REI instruction, the system service executes again, typically
placing the process right back into the wait state it was in before the AST was
delivered.

Memory Management Wait States. The page fault handler (see Chapter 15} is
solely responsible for placing processes into the three wait states associated
with memory management. This routine places a process into a wait state
with the PC and PSL associated with the page fault as the saved process
context. Once again, because the PSL reflects the access mode in which the
fault occurred, ASTs can be delivered for that and all inner access modes.
{Note that this routine does not need to change the PC that it finds on the
stack because page fault exceptions are faults and not traps. Faults, discussed
in full in Chapter 4, cause the PC of the faulting instruction and not the PC of
the next instruction to be pushed onto the exception stack.)

If an AST is delivered to and executes in such a process, the process will
execute the faulting instruction again. If the reason for the fault has been
removed (a free page became available or the page read completed) while the
AST was being delivered or was executing, the process will simply continue
with its execution. If, on the other hand, the situation that caused the process
to wait still exists, the process will reincur the page fault and be placed back
into one of the memory management wait states. (Note that a process that
was initially in a PFW state would be placed into a COLPG state by such a
sequence of events.)

Special Cases. The two remaining wait states (SUSP and MWAIT) are handled
in a special way by the wait routine. A process suspension occurs as a result
of executing a special kernel AST. ASTs cannot be delivered to suspended
processes. That is, an AST queued to a suspended process has its AST control
block inserted into the AST queue in the software PCB. However, the AST
event is ignored by the scheduler. (In fact, while a process is suspended, the
saved PC is an address in the special kernel AST that caused the process to
enter the suspend state. The saved PSL indicates kernel mode and IPL 2.

When a process is placed into a wait state waiting for a mutex (see Chapter
2), its saved PC is either SCHSLOCKR or SCH$LOCKW, depending on
whether it is attempting to lock the mutex for read access or write access.
The saved PSL indicates kernel mode and IPL 2, which implies that processes
in an MWAIT state waiting for a mutex cannot receive ASTs.

A process can also be placed into an MWAIT state while waiting for an
arbitrary system resource. In this case, the caller of SCH§RWAIT controls the
PC and PSL that are saved when the process is placed into the MWAIT state.
In particular, the current access mode and IPL in the saved PSL determine
whether any ASTs can be delivered to a process that is waiting for a resource.

199

Scheduling

10.2.3

200

Event Reporting

Events are reported to the scheduler from many system routines through the
RPTEVT macro, which generates the following code:

JSB SCHS$RSE
.BYTE EVT$_event-name

The byte value stored depends upon the event being declared by the system
routine. The address of the value will be pushed on to the stack by the BSBW
instruction. Additional parameters (priority increment class and PCB address
of the affected process) are passed in registers.

The routine SCH$RSE (in module RSE) performs the following operations:

1. The event number is loaded into a register and the return PC value (on the
stack as a result of the BSBW instruction) is adjusted to point to the ad-
dress after the stored byte event value.

2. The state and the event are checked for a significant transition. Each event
(or state transition) has a bit mask defining which states this event can
affect. The state of the process is obtained from the PCB$§W _STATE field.

» For example, a wake event is only significant for processes that are
hibernating (HIB or HIBO states).

» An outswap event is only significant for the four states (COM, HIB, LEF,
and SUSP) where a wait queue change is required.

» The enqueuing of an AST is significant to some process states. If the
process is in a SUSP or SUSPO, COM or COMO, or CUR state, the
enqueuing of an AST is ignored by SCH$RSE. If the event is not signifi-
cant for the current process state, the event is ignored (and SCH$RSE
simply issues an RSB).

3. For significant events, one of the following actions is taken:

* An outswap event producing an LEF to LEFO, HIB to HIBO, or SUSP to
SUSPO transition simply removes the PCB of the process from the resi-
dent wait queue and inserts it in the corresponding outswapped wait
queue. The corresponding wait queue header count fields and the proc-
ess state (PCB§W_STATE) are also adjusted.

* An outswap event producing a COM to COMO transition removes the
PCB from the COM priority queue corresponding to PCB$B_PRI and
inserts it into the corresponding COMO priority queue. The value in
PCB$SW_STATE is changed to the value SCH$C_COMO. The
SCH$GL_COMQS status bit vector is also modified if the COM queue
is now empty. The appropriate SCH$GL_COMOQS bit is uncondition-
ally set.

e For transitions from the LEF (implied resident) or CEF resident state to
the COM state, the saved PC in the hardware PCB stored in the process

10.2.4

10.2 System Events

header is incremented by four to point past the CHMx instruction. Sav-
ing the PC value allows the process to begin execution immediately
following the system service call rather than going through a Wait for
Event Flag system service for a flag that is already set. The residence
check is necessary because the saved PC of nonresident processes is
usually not available. (The saved PC is stored in the hardware PCB in
the process header, which may be outswapped if the process is not resi-
dent.)

* For the remaining transitions (all of which make a process computable),
the process is removed from the wait queue and the wait queue header
count is decremented. The PCB is inserted into a COM or COMO state
queue depending upon whether the process is memory resident or
outswapped, and the state field in the PCB is altered. The particular
priority queue of the COM or COMO state is selected for insertion after
a priority adjustment is attempted (see the following section). The
SCH$GL_COMQS or SCH$GL_COMOQS summary bit correspond-
ing to the selected priority queue is unconditionally set.

4. Subsequent scheduling or swapping activity is necessary to execute or
inswap the now computable process. The swapper is awakened [routine
SCH$SWPWAKE is called) if the now computable process is presently out-
swapped (see Section 10.1.2.4, item 3).

The scheduler is requested, through an IPL 3 software interrupt, if the
now computable process is memory resident and has a priority greater
than or equal to that of the currently executing process. This priority
check avoids needless context switches with their associated overhead,
only to have the previously executing process again execute.

System Events and Associated Priority Boosts

System routines that report events to the scheduler not only describe the
event and the process that is responsible, but also specify one of five classes
of priority increments or boosts that may be applied to the base priority of the
process. Table 10-3 lists the events, the priority class, and the potential
amount of priority increment applied to the process. The table does not show
AST enqueuing because system routines enqueuing ASTs to a process can
select any of the priority increment classes to be associated with the enqueu-
ing of an AST.

The actual software priority of the process is determined by the following
steps:

1. The priority increment for the event class (see Table 10-3) is added to the
base priority of the process (PCB$B_PRIB).

201

Scheduling

Table 10-3: System Events and Associated Priority Boosts

Priority Priority
Event Class (1) Boost
Page Fault Read Complete 0 (PRI$_NULL) 0
Quantum End 0 0
Other Events with No Boost 0 0
Direct I/O Completion 1 (PRI$_IOCOM) 2
Nonterminal Buffered I/O Completion 1 2
Update Section Write Completion 1 2
Set Priority Priority 2
Resource Available 2 (PRI$_RESAVL) 3
Wake a Process 2 3
Resume a Process 2 3
Delete a Process 2 3
Timer Request Expiration 2 (PRI$ _TIMER) 3
Terminal Output Completion 3 (PRI$_TOCOM) 4
Terminal Input Completion 4 (PRI$_TICOM) 6
Process Creation 4 6

(1) Routines that report system events pass an increment class to the sched-
uler. The scheduler uses this class as a byte index into a table of values
(local label B_PINC in module RSE) to compute the actual boost.

2. If the process has a current priority higher than the result of step one, the
current priority will be retained (such as occurs in Figure 10-2, event 13).

3. If the higher priority of steps one and two is above 15, then the base prior-
ity of the process is used. (Note that this test accomplishes two checks at
the same time. First, all real-time processes fit this criterion, with the
result that real-time processes do not have their priorities adjusted in re-
sponse to system events. Second, priority boosts cannot move a normal
process into the real-time priority range.)

A side effect of step three is that real-time processes always execute at
their base priorities. Further, note that normal processes with base priori-
ties from 10 to 15 will not always receive priority increments as events
occur. As the base priority of a normal process is moved closer to 15, the
process will spend a greater amount of time at its base priority. Priority 14
and 15 processes experience no priority boosts. Thus, this strategy benefits
those processes that most need it, I/O-bound and interactive processes
with base priorities of 4 through 9. Processes with elevated base priorities
do not require this assistance as they are always at these levels.

10.3 RESCHEDULING INTERRUPT

The IPL 3 interrupt service routine, SCHED, schedules processes for execu-
tion. The actual work of the scheduler is performed at IPL$ _SYNCH to block

202

10.3.1

10.3 Rescheduling Interrupt

concurrent access and modification of the scheduler’s database by other sys-
tem components. The principal purpose of this interrupt service routine is to
remove the currently executing process by storing the contents of the process
private processor (hardware) registers and replacing the register contents with
those of the highest priority computable resident process. This operation,
known as context switching, is accompanied by modifications to the affected
processes in terms of process state, current priority, and state queue.

Hardware Context

The definition of a process from the viewpoint of the hardware is contained
in the hardware context. This collection of data is the set of hardware proces-
sor registers whose contents are unique to the process. These include the
following categories of information:

» The general purpose registers, RO through R11, the argument pointer (AP),
the frame pointer (FP), and the program counter (PC).

» The per-process access mode stack pointers for kernel, executive, supervi-
sor, and user stacks. One of these four registers contains the current stack
pointer for the process, as indicated by the current mode field in the saved
PSL.

¢ The processor status longword (PSL).

o The AST level processor register (ASTLVL).

* The process page table registers for the program and control regions (POBR,
POLR, PIBR, and P1LR).

With the exceptions of the ASTLVL register value and the contents of the
memory management registers for the program and control regions, the cur-
rent values for the various registers forming the hardware context of the cur-
rent process are maintained only in the processor registers. When a process is
not executing, the complete hardware context is contained in a portion of the
process header called the hardware process control block.

The hardware process control block (see Figure 10-6) is a part of the fixed
portion of the process header for each process. It is resident in memory when-
ever the corresponding process is in the balance set. Access by the operating
system occurs normally through offsets from the starting address of the par-
ticular process header. However, during context switching operations, the
hardware must access this data structure directly without address transla-
tion. This access is accomplished by using the current value in the process
control block base register (PR$_PCBB). This register contains the physical
address of the hardware process control block for the currently executing
process. The VMS operating system stores the physical address of the hard-
ware process control block for each resident process (calculated when the
process is swapped into memory) in the PCB$L_PHYPCB field of the corre-
sponding software process control block (see Figure 10-1).

203

Scheduling

10.3.2

204

Hardware PCB

ESP The process control block

SSP base register contains

the physical address
use of this structure

RO for the currently

R1 executing process.

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

AP

FP

PC

PSL

POBR

26 24 21 0
AST POLR
LVL

P1BR

21 0
P1LR

Figure 10-6
Hardware Process Control Block

Removal of Current Process from Execution

The entry point SCH$RESCHED in the module SCHED performs the opera-
tions of rescheduling, preserving the hardware context of the currently exe-
cuting process, and removing it from execution. Rescheduling is accom-
plished by the following steps:

1. The hardware context of the current process is saved by the SVPCTX in-
struction. The destination of the data is the hardware process control
block whose physical address is contained in the process control block
base register, PR$ _PCBB. Additional operations of the SVPCTX instruc-
tion are described in Section 10.3.5.1.

2. The address of the software process control block for the current process is
obtained from the pointer SCH$GL_CURPCB in the module SDAT. (A

10.3.3

10.3 Rescheduling Interrupt

single longword pointer is required for the current state (CUR), rather than
a quadword listhead, because there is only one current process and not a
queue of several such processes.)

3. The current priority of the process is determined from the PCB$B_PRI
field. The current priority is used to determine which of the resident com-
putable state queues is to include this PCB. The process is inserted at the
tail of the corresponding priority queue.

4. The state of the process is changed to computable (COM) by updating the
PCB$SW _STATE field.

At this point, there is no current process, and the search for the next proc-
ess to execute begins.

Selection of Next Process for Execution

The entry point SCH$SCHED begins the portion of code that searches for the
next process to be scheduled for execution. Under some circumstances (such
as system initialization, placing the previous process into a wait state, or
deletion of the previous process) there may not be a current process to be
saved by SCH$RESCHED. In these cases, system routines transfer control
directly to SCH$SCHED for process selection. (The difference between the
two entry points is determined by whether the previous process is still com-
putable. Typically, a process entering a wait state will cause entry at
SCH$SCHED, while a higher priority process becoming computable will
cause entry, through a software interrupt, at SCH§RESCHED.)

The SCH$RESCHED logic flows directly into SCH§SCHED. As with re-
scheduling, the search for and modification of the next process to be executed
must be performed at IPL§_SYNCH to block other potential system opera-
tions on the scheduler database.

The following operations are involved in selecting and executing the next
process:

1. The first software process control block (PCB) in the highest priority, non-
empty, computable resident (COM) state queue is removed from the
queue and pointed to by SCH$GL_CURPCB as the current process. Con-
sistency checks are made to insure that the queue really had at least one
PCB and that the data structure removed was actually a PCB. Failure of
either of these tests results in a fatal bugcheck (BUG$_QUEUEMPTY).

2. The state of the process is made current by inserting the appropriate value
(SCH$C_CUR) into the PCB§W_STATE field.

3. The current process priority is examined and potentially modified. If the
process is a real-time process or if it is a normal process already at its base
priority, then the process is scheduled at its current or base priority (they
are the same). If the current process is a normal process above its base

205

Scheduling

priority, then a decrease of one software priority level is performed before
scheduling. Thus, priority ““demotions” always occur before execution,
and a process executes at the priority of the queue to which it will be
returned (and not the priority of the queue from which it was removed).
See Figure 10-2, event 2 for an example

. The physical address of the hardware process control block for the sched-

uled process is loaded into the PR$_PCBB register from the software proc-
ess control block PCB$L_PHYPCB field, and a load process context,
LDPCTYX, instruction is executed (see Section 10.3.5.2).

. Control is passed to the scheduled process by executing an REI instruc-

tion. This transfer of control is possible because the LDPCTX instruction
left the PC and PSL of the scheduled process on the kernel stack. When
control is passed to the process through the REI instruction, the following
operations are performed:

¢ The interrupt priority level is dropped from IPL$_SYNCH.

e The access mode is typically changed from kernel to a less privileged
one.

 If ASTs are queued to the process control block, they are likely to be
delivered at this time, depending on their access mode and the access
mode at which the process is reentered (see Chapter 7).

10.3.4 Summary Longword and Computable State Queues

The search for the highest priority computable resident process and the re-
moval of its PCB from the computable state (COM) queue is achieved in
three instructions (see Figure 10-7). The efficiency of this operation is due to
the instruction set and the design of the scheduler database for the computa-
ble (COM) and computable outswapped (COMO) states (see Figure 10-3).

(1) A find first set (FFS) instruction will locate the least significant set bit in

the longword SCH$GL_COMAQS. The located bit position indicates the
highest priority nonempty computable resident state queue. The
swapper’s search for the first PCB in the highest priority nonempty com-
putable outswapped (COMO) queue uses the same operations (see Chap-
ter 17).

One reason for storing the software priority in inverted or 31-comple-
ment form is the following. By making bit O correspond to software prior-
ity 31, and so on, the highest priority queues will be scanned first. Con-
version in the various user interfaces occurs because systems and users
generally associate higher priority numbers with higher priority jobs,
tasks, or processes.

@ The listhead of the selected computable resident queue is found by using

206

10.3.5

10.3.5.1

10.3 Rescheduling Interrupt

the nonempty queue bit position as an index into the contiguous list-
heads.

@ The first PCB in the selected queue is removed by indirect reference
through the forward link of the listhead.

@ If the removed PCB was the only one in the queue, the corresponding
SCH$GL_COMQS bit must now be cleared because the queue is now
empty.

Hardware Assistance in Context Switching

The VAX architecture was designed to assist the software in performing criti-
cal, commonly performed operations. One example is the delivery of asyn-
chronous system traps through the REI instruction (see Chapter 7). The
mechanism of replacing the hardware context of the current process with the
context of the highest priority resident process is another example of hard-
ware assistance to the operating system. The switching of hardware context
is performed by two special purpose instructions, SVPCTX and LDPCTX.

SVPCTX Instruction. The save process context instruction, SVPCTX, per-
forms several operations and assumes a special set of initial and final condi-
tions. The following initial conditions are assumed:

¢ The current access mode must be kernel.

+ The program counter (PC] and processor status longword (PSL) are on the
current stack (either kernel or interrupt stack). If the SVPCTX instruction
that executes is the one in the rescheduling interrupt service routine, both
the PC and PSL are on the kernel stack as a result of the IPL 3 software
interrupt.

» The process control block base register [PR$ _PCBB| contains the physical
address of the hardware PCB for the current process.

* The current values of ASTLVL, POBR, POLR, P1BR, and P1LR are already
stored in the hardware PCB.

When the SVPCTX instruction is executed, the following operations are
performed by the VAX hardware:

1. The per-process stack pointers for the four access mode stacks are moved
to the hardware PCB.

2. The general purpose registers, RO through R11, the argument pointer (AP),
and the frame pointer (FP) to the hardware PCB are moved to the hardware
PCB.

3. The program counter (PC) and the process status longword (PSL) are
popped from the current stack and moved to the hardware PCB.

207

80T

S1

0o
5¢

00 000O0'CF

53

2C Al
oooo
a3

00'CF
0B Al
52
oc
'CF4¢2
b1

.SBTTL SCH$RESCHED RESCHEDULING INTERRUPT HANDLER
s+
; SCHSRESCHED — RESCHEDULING INTERRUPT HANDLER
H
; THIS ROUTINE IS ENTERED VIA THE IPL 3 RESCHEDULING INTERRUPT.
; THE VECTOR FOR THIS INTERRUPT IS CODED TO CAUSE EXECUTION
; ON THE KERNEL STACK.
H
; ENVIRONMENT:
IPL=3 MODE=KERNEL IS=0
; INPUT:
H 00(SP)=PC AT RESCHEDULE INTERRUPT
H 04(SP)=PSL AT INTERRUPT.
;——
.ALIGN LONG
MPH$RESCHED: : ;MULTI-PROCESSING CODE HOOKS IN HERE
SCH$RESCHED: : ;RESCHEDULE INTERRUPT HANDLER
SETIPL #IPLS_SYNCH ;SYNCHRONIZE SCHEDULER WITH EVENT REPORTING
SVPCTX ;SAVE CONTEXT OF PROCESS
MOVL W SCH$GL_CURPCB,R1 ;GET ADDRESS OF CURRENT PCB
MOVZBL PCB$B_PRI(R1l),R2 ;CURRENT PRIORITY
BBSS R2,W " SCH$GL_COMQS,10$;MARK QUEUE NON-EMPTY
10%: MOVW #SCH$C_COM, PCBSW_STATE (R1) ;SET STATE TO RES COMPUTE
MOVAQ W " SCH$AQ_COMT[R2],R3 ;COMPUTE ADDRESS OF QUEUE
INSQUE (R1),@(R3)+ ;INSERT AT TAIL OF QUEUE
s+
; SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION
H
; THIS ROUTINE SELECTS THE HIGHEST PRIORITY EXECUTABLE PROCESS
; AND PLACES IT IN EXECUTION.
;-
MPH$SCHED: : sMULTI-PROCESSING CODE HOOKS IN HERE
SCH$SCHED: : ;s SCHEDULE FOR EXECUTION
SETIPL #IPL$_SYNCH ;SYNCHRONIZE SCHEDULER WITH EVENT REPORTING

Surnpayog

60T

5e 0000'CF 20 oo EA 0023 78 FFS #0,#32,W " SCH$GL_COMQS,R2

iD 13 D0O2A 79 BEQL SCH$IDLE
53 0O00'CF42 7E 002C an MOVAQ W " SCHSAQ_COMH[RZ],R3
54 93 QOF 0032 81 REMQUE @ (R3)+,R4
3c 1D 003s 82 BVS QEMPTY
0L 12 0037 83 BNEQ 20$
00 00DO'CF 52 ES 0039 a4 BBCC R2,W " SCH$SGL_COMQS,20$
003arF 85 20§:
OR A4 0OC 91 DO3F 8k CHMPB #DYN$C_PCB,PCBSB_TYPE (R4)
2E 12 0043 a7 BNEQ QEMPTY
2C B4 OE BO 0045 aa MOVW #SCH$C_CUR, PCBSW_STATE (R4)
D0DO'GF 5S4 DO 0049 aq MOVL R4,W " SCH$SGL_CURPCB
DB A4 2F A4 91 OO04E qo CHPB PCB$B_PRIB(R4),PCBSB_PRI(R4)
0053 a1
ps 13 0053 9z BEQL 30%
03 0B A4 04 E1 0OSS a3 BBC #4,PCBSB_PRI(R4),30%
OB A4 9L D0OSA a4 INCB PCB$B_PRI(R4)
0ODO'CF OB A4 90 0OSD 95 30%: MOVB PCB$B_PRI(R4),W ~ SCH$SGB_PRI
10 18 A4 DA 0063 E[3 MTPR PCB$SL_PHYPCB(R4),#PR$_PCBB
Dt D07 97 ‘LDPCTX
02 0068 98 REI
0069 aq
0069 100 SCH$IDLE:
00e9 101 SETIPL #IPL$_SCHED
0O00'CF 20 90 D0OLC 102 MOVB #32,W " SCH$GB_PRI
AD 11 0071 103 BRB SCH$SCHED
00?3 104
00?3 105 QEMPTY: BUG_CHECK QUEUEMPTY,FATAL
0o?? 106
p0o?? 107 .END
Figure 10-7

Scheduler Routine That Selects Next Execution Candidate

;FIND FIRST FULL STATE

;NO EXECUTABLE PROCESS??

;COMPUTE QUEUE HEAD ADDRESS

;GET HEAD OF QUEUE

;BR IF QUEUE WAS EMPTY (BUG CHECK)
;QUEUE NOT EMPTY

;SET QUEUE EMPTY

;MUST BE R PROCESS CONTROL BLOCK
;OTHERWISE FATAL ERROR

;SET STATE TO CURRENT

;NOTE CURRENT PCB LOC

;CHECK FOR BASE
;PRIORITY=CURRENT

;YES, DONT FLOAT PRIORITY
;DONT FLOAT REAL TIME PRIORITY
;MOVE TOWARD BASE PRIO

;SET GLOBAL PRIORITY

;SET PCB BASE PHYS ADDR
;RESTORE CONTEXT

; NORMAL RETURN

;NO ACTIVE, EXECUTABLE PROCESS

;DROP IPL TO SCHEDULING LEVEL

;SET PRIORITY TO -1(32) TO SIGNAL IDLE
;AND TRY AGAIN

;SCHEDULING QUEUE EMPTY

1dnirau] SuImpayosay €01

Scheduling

10.3.5.2

210

Finally, if the current stack is the kernel stack, the SVPCTX instruction
saves the current stack pointer (SP) in the kernel stack field of the hardware
process control block and switches to the interrupt stack (by setting the
PSL$V _IS bit and copying the PR$ _ISP register contents into the SP register).
Switching to the system-wide interrupt stack is essential because there is no
current process once the instruction completes.

The ASTLVL, POBR, POLR, P1BR, and P1LR fields of the hardware process
control block are not changed. It is the responsibility of the various system
components that alter these fields to always update both the hardware proc-
ess control block fields and the per-process processor registers. ASTLVL is
unusual in that it can be altered even when the process is not current. In that
case, only the hardware PCB field is altered. The processor register is not
altered because the process does not own that register when it is not the
current process. These fields do not change frequently compared to the fre-
quency of context switching. The overhead of storing these fields in the hard-
ware process control block is incurred only when the field values change.

The SVPCTX instruction occurs in several locations in the executive:

o The rescheduling interrupt service routine contains an instance of this
instruction when the current process remains computable after it is re-
moved from execution.

¢ Module SYSWAIT contains another example of the instruction when the
current process is being placed into a scheduling wait state.

* The pager (module PAGEFAULT) issues a SVPCTX instruction directly
when it places a process into one of the memory management wait states
(PFW, FPG, COLPG).

* One of the last steps of process deletion involves removing the process
being deleted from execution with a SVPCTX instruction.

LDPCTX Instruction. The load process context instruction, LDPCTX, per-
forms the operations required in establishing the hardware context of the
process. As with the SVPCTX instruction, assumptions are made about the
initial and final conditions of the instruction. The following initial condi-
tions are assumed:

» The processor must be in kernel mode, using either the kernel or the inter-
rupt stack. (The processor is always on the interrupt stack for the one
occurrence of the LDPCTX instruction in the VMS executive.)

» The process control block base register (PR$ _PCBB) must contain the
physical address of the hardware process control block to be used (from the
PCB$L_PHYPCB field of the software process control block].

When the LDPCTX instruction is executed, the following operations are
performed by the VAX hardware:

10.3 Rescheduling Interrupt

1. The per-process half of the translation buffer is invalidated. All of the
previous translation buffer entries belonged to the previous process. They
are invalidated to prevent mistranslation of virtual addresses and to pro-
tect the data of the previous process.

2. The per-process access mode stack pointers (KSP, ESP, SSP, and USP) are
loaded from the hardware process control block.

3. The general purpose registers, RO through R11, the argument pointer (AP),
and the frame pointer (FP) are loaded into the corresponding processor
registers.

4. The memory management mapping registers (POBR, POLR, P1BR, and
P1LR) are checked for legal values and loaded from the hardware process
control block. Note that although the SVPCTX instruction does not save
these registers, the LDPCTX must load them. Until they are loaded, the
values in the registers belong to the previous process.

5. The ASTLVL register is loaded. This register was also not saved by the
SVPCTX instruction.

6. If the instruction began execution using the interrupt stack, then the fol-
lowing operations are performed:

» The contents of the current stack pointer register (SP) are saved in the
interrupt stack pointer register (ISP).

» The PSL$V_IS bit is cleared to indicate the switch to the kernel stack.

» The current stack pointer is updated with the contents of the kernel
stack pointer register (KSP).

7. Finally, the saved program counter (PC) and processor status longword
(PSL) are pushed onto the kernel stack from the hardware process control
block. These values are not stored into the appropriate registers. This par-
ticular operation occurs because the next instruction (in the scheduler
routine) is expected to be an REI instruction. The REI pops the two long-
words, verifies the PSL format, and inserts the two longwords into the
appropriate registers.

The only occurrence of a LDPCTX instruction in the entire VMS system is
the one shown in Figure 10-7, the second half of the rescheduling interrupt
service routine.

211

11

11.1

11.1.1

11.1.1.1

212

Timer Support

Love, all alike, no season knows, nor clime,
Nor hours, days, months, which are the rags of time.

—John Donne, The Sun Rising

Support for time-related activities that require either the time of day and date
or the measurement of an interval of time is implemented both in the
VAX-11 hardware and in the VAX/VMS operating system.

TIMEKEEPING IN THE VAX/VMS OPERATING SYSTEM

Two hardware clocks are updated at regular intervals, the interval clock and
the time-of-day clock. These clocks are used by the VMS system to manage
two different times, the system time and the time since the system was last
bootstrapped. Additionally, the software timer interrupt service routine pro-
vides timer services, such as scheduled wakeups, by maintaining a time-or-
dered queue of requests and delivering them as the expiration times occur.

Hardware Clocks

The hardware clocks are a set of processor registers that are used or updated
regularly by timing circuitry. Initialization, calibration, and interpretation of
the registers are performed by VMS routines during system initialization and
normal operations.

The processor registers that implement the hardware clocks are summa-
rized in Table 11-1, along with the memory locations that implement the
various software time values.

Interval Clock. The interval clock is implemented as a set of three 32-bit
processor registers. The clock “ticks” at one microsecond intervals with an
accuracy of at least 0.01 percent (an error of less than nine seconds per day).
The frequency at which the interval clock causes an interrupt is determined
by the value in one of the processor registers, PR$ _NICR.

The three interval clock registers (see Table 11-1) are used as follows.

1. The interval clock control/status register (PR$_ICCS) controls the inter-
rupt status of the interval clock. This register is set by the CPU hardware
and then reset by the hardware clock interrupt service routine (see Section
11.2) each time the interval clock interrupts.

€1cT

Table 11-1: VAX/VMS Hardware Clocks and Software Timers

Name
PR$_ICR
PR$_NICR
PR$_ICCS

PR$_TODR

EXE$GQ_SYSTIME

EXE$GL_ABSTIM

EXE$GL_TODR

EXE$GQ_TODCBASE

Use

Interval clock
Next interval

Interval clock
control/status
Time-of-day
clock

System time

System absolute
time

Time-of-year
base value
Time-of-year
base value
(in system
time format)

Size
(bits)

32
32
32

32

64

32

32

64

Units

1 microsecond
1 microsecond

control/status
bits
10 milliseconds

100 nanoseconds

1 second

10 milliseconds

100 nanoseconds

Frequency

1 microsecond
(1)

10 milliseconds

10 milliseconds

10 milliseconds

1 second

2)

(2)

Updated by

CPU hardware
System initialization

Hardware clock interrupt
service routine

CPU hardware,
$SETIME system service

Hardware clock interrupt
service routine,

$SETIME system service
System initialization,
EXE$TIMEOUT repeating
system subroutine

$SETIME system service

$SETIME system service

(1) PR$_NICR is written only at system initialization time and after powerfail recovery.
(2) EXE$GL_TODR and EXE$GQ_TODCBASE are modified only when one of the following is true:
* The time-of-day value is changed by a $SETIME system service request (either explicitly or as an integral part of the system

bootstrap operation).

® The PR$_TODR has been lost due to a prolonged power failure.

wo1sAg SunvradQ SWA/XVA 243 ul Sutdoayowur], ['I[

Timer Support

11.1.1.2

214

2. The next interval count register (PR$ _NICR| defines how often the inter-
val clock will cause a hardware interrupt. During system initialization,
the routine INIT loads this processor register with a value of —10000. This
value defines the hardware clock interrupt interval to be 10 milliseconds
(10000 microseconds).

3. The interval count register (PR§_ICR) is incremented every microsecond
from the PR$_NICR value toward zero. When PR$_ICR becomes zero,
the register overflows, causing the following actions:

a. The PR$_NICR value is copied into PR$_ICR to define the next inter-
val.

b. The PR$_ICCS register is set to indicate the overflow condition. This
operation causes a hardware interrupt (IPL 24) to occur, serviced by the
hardware clock interrupt service routine.

The PR$_ICCS is reset by the hardware clock interrupt service routine
to indicate servicing of the interrupt and reenabling of the hardware
clock.

Time-of-Day Clock. The time-of-day clock is a hardware component consist-
ing of one 32-bit processor register and a battery backup supply for at least
100 hours of operation (the battery backup is not a standard feature on the
VAX-11/730). The time-of-day clock has an accuracy of at least 0.0025 per-
cent (an error of about 65 seconds per month) and a resolution of 10 millisec-
onds. The base time for the time-of-day clock is 00:00:00.00 hours on Jan-
ary first of the current year. The time-of-day clock overflows after 497
days.

Values in PR$_TODR are biased by 10000000 [hex]. Values smaller than
this indicate loss of power or time-of-day overflow, conditions causing the
system to prompt the operator to reset the time (through the $SETIME sys-
tem service). '

The validity of the time-of-day clock is determined at system initialization
time. If the contents of the time-of-day clock are valid, the initialization
process, SYSINIT, will not prompt the operator for the time. If the contents of
the time-of-day clock are not valid (the value is less than 10000000 [hex]), the
value of the SYSBOOT parameter TIMEPROMPTWALIT determines the proc-
essor action on recovery from a power failure (see Section 27.2.2).

Because the time-of-day clock has a better accuracy than the interval
clock, the time-of-day clock is used for recalibrating the system time
(EXE$GQ_SYSTIME) at system initialization and at other times when the
$SETIME system service is called (see Section 11.1.3). In addition, because
the time-of-day clock has battery backup (except on the VAX-11/730), it is
used to reset the system time after a power failure or after the machine has
been turned off.

11.1.2

11.13

11.1 Timekeeping in the VAX/VMS Operating System

Software Time

Software time is managed by VMS routines as a result of changes in the
hardware clocks. The system time is defined by a quadword value measuring
the number of 100-nanosecond intervals since 00:00 hours, November 17,
1858 (the time base for the Smithsonian Institution astronomical calendar).
EXE$GQ_SYSTIME (see Table 11-1) is updated every 10 milliseconds by the
hardware clock interrupt service routine (see Section 11.2). This quadword is
the reference for nearly all time-related software activities in the system. For
example, the $§GETTIM system service simply writes this quadword value
into a user-defined buffer.

EXE$GL_ABSTIM measures the number of one-second intervals that have
elapsed since the system was last bootstrapped. This absolute time is used to
periodically check for I/O device and lock request timeouts. The absolute
time is also the value for “system uptime” interpreted and displayed by the
DCL command SHOW SYSTEM. _

EXE$GL_TODR contains the base 32-bit time value. EXE$GQ-_
TODCBASE contains the base quadword system time value. These base time
values represent the more recent of the following times:

* 00:00 hours on January 1 of the current year
o The last time that the time-of-day was redefined by $SETIME

PR$_TODR (and EXE$GL_TODR) are biased by a factor of 10000000 (hex).
If a power failure occurs, the value in PR§_TODR will be zeroed and the
clock will start to count from there. If the value in PR§_TODR is less than
1000000 (hex), it can safely be assumed that a power failure has occurred.

Both the values in EXE$§GQ_TODCBASE and EXE$GL_TODR are main-
tained in the system image file as a semipermanent record of the base system
time on which the contents of the time-of-year clock (PR§_TODR) are based.
Both represent the same time (the last time they were adjusted), in different
formats. EXE$GQ_TODCBASE represents the time of last adjustment in
standard 64-bit time; EXE$GL_TODR represents the time of last adjustment
in the same 32-bit format as the time-of-year clock (PR$_TODR).
PR$_TODR cannot be set to zero (because of the 10000000 hex bias), rather
it is initialized to the contents of EXE§GL_TODR.

When a new system time is specified, EXE$GQ_TODCBASE,
EXE$GL_TODR, and PR$_TODR are modified, and the new base values are
written to the system image file. When the system time (EXE$GQ-
SYSTIME) is recalibrated, the values are modified only when more than a
year has passed since the last recalibration.

Set Time System Service

The $SETIME system service allows a system manager or operator to change
the system time while the operating system is running. This may be neces-

215

Timer Support

11.1.3.1

11.1.3.2

216

sary because of a power failure longer than the battery backup time of the
time-of-day clock or because of changes between standard and daylight sav-
ing time, for example. The new system time (absolute time, not relative
time) is passed as the optional single argument of the system service. The
$SETIME system service is also invoked during system initialization to reset
the system time (and possibly the time-of-day clock).

If the requesting process does not have the process privileges OPER and
LOG_IO, the routine returns with an SS§_NOPRIV error status code. If the
input quadword cannot be read, the routine returns with an SS§_ACCVIO
error status code.

$SETIME System Time Recalibration Requests. If no argument was passed to
the system service or the time argument is a zero value, then the request is
considered a request to recalibrate the system time (EXE$GQ_SYSTIME).
The following actions take place.

1. The new system time, EXE$GQ_SYSTIME, is computed by the following
equation:

EXE$GQ_SYSTIME = EXE$GQ_TODCBASE +
((PR$_TODR — EXE$GL_TODR) x 100000)

EXE$GQ_SYSTIME and EXE$GQ_TODCBASE are quadword system
times in units of 100 nanoseconds. PR$_TODR and EXE$GL_TODR are
longword time-of-day times in units of 10 milliseconds. The multiplier of
100000 is the number of 100-nanosecond intervals in 10 milliseconds.

2. The values in PR§ _TODR, EXE$GL_TODR, and EXE$GQ_TODCBASE
are corrected if more than one year has passed since the system time was
recalibrated (in order to prevent PR$_TODR from overflowing its 497-day
limit).

3. Each element in the timer queue (see Section 11.3.2) that specified a delta
time has its expiration time adjusted by the difference between the previ-
ous system time and the new system time. This modification prevents the
actual delta time value from being changed by a modification to system
time. TQEs containing absolute times are not adjusted so that the TQE
will come due at the time that was specified by the user.

4. The entire collection of system parameters, including EXE$GQ_
TODCBASE and EXE$GL_TODR, is written back to the system image
file.

$SETIME Time-of-Day Readjustment Requests. If a nonzero time value is
supplied as an argument to $SETIME, then the following operations occur.

1. The input argument, specified in system time units of 100 nanoseconds, is
converted into time-of-day units (the number of 10-millisecond intervals
after 00:00 hours on January 1 of the base year).

11.2

11.2.1

11.2.2

11.2 Hardware Clock Interrupt Service Routine

2. The converted specified time is written into PR$_TODR and
EXE$GL_TODR.

3. The unconverted specified time is written into EXE$GQ_TODCBASE and
EXE$GQ_SYSTIME. ‘

4. Finally, the timer queue is updated and the new values for the time-of-day
clock base are written to the system image file (along with the system
parameters). (See steps 3 and 4 described above in Section 11.1.3.1).

HARDWARE CLOCK INTERRUPT SERVICE ROUTINE

The hardware clock interrupt service routine, EXESHWCLKINT in module
TIMESCHDL, services the IPL 24 hardware interrupt signaled when the in-
terval clock, PR$_ICR, reaches zero. The interval clock is set (through
PR$_NICR) to interrupt every 10 milliseconds.

The hardware clock interrupt service routine has two major functions.

» Updating the system time (and possibly process accounting)
» Checking the timer queue for timer events that have timed out

System Time Updating

The updating of the system time and the potential updating of process ac-
counting fields requires several distinct actions.

1. The PR$_ICCS register is reset to indicate the servicing of the interrupt
and the reenabling of the hardware clock.

2. The system time, EXE$§GQ_SYSTIME, is updated by adding the equiva-
lent of 10 milliseconds to the quadword value.

3. If the hardware clock interrupts while a process is executing (the former
current stack was not the interrupt stack), then the accumulated CPU
utilization and quantum value are incremented in the process header. The
quantum value is used to determine quantum end (see Section 11.3.1 and
Chapter 10). If the quantum value reaches zero, an IPL 7 software inter-
rupt, serviced by the software timer routine, is requested. The check for
whether the interrupt occurred while already on the interrupt stack pre-
vents a process from being charged for CPU time that the system was
using to service interrupts.

Timer Queue Testing

The timer queue is discussed with the software timer in the next section.
The hardware clock interrupt service routine has the responsibility to deter-
mine if the software timer must be requested to service the timer queue. If
the first timer queue element has an expiration time less than or equal to the

217

Timer Support

11.3

11.3.1

11.3.2

218

newly updated system time, then the timer event is due. The software timer
routine is requested through the IPL 7 interrupt.

SOFTWARE TIMER INTERRUPT SERVICE ROUTINE

The software timer interrupt service routine, EXE$SWTIMINT in module
TIMESCHDL, is invoked through the IPL 7 software interrupt. The software
timer is requested because either the current process has reached quantum
end or the first timer queue element must be serviced.

Quantum Expiration

The expiration of the quantum interval for the current process is determined
by testing the PHD$W_QUANT field. This field is incremented by the hard-
ware clock service routine. A zero quantum value indicates quantum expira-
tion. The processing of the quantum end event is performed by the scheduler
in routine SCH$QEND, which is described in Chapter 10.

Timer Queue and Timer Queue Flements

If the system time, EXE$GQ_SYSTIME, is greater than or equal to the expi-
ration time of the first element in the timer queue, then the timer event is
due. The comparison with the system time must be performed at IPL 24 to

block the hardware clock interrupt.

If a timer request is due, then the TQE is removed from the timer queue,
the IPL dropped back to IPL$_TIMER (IPL 7), and one of three sequences of
code is performed (depending upon the type of request).

Timer requests are maintained in a doubly linked list that is ordered by the
expiration time of the requests. EXE$GL_TQFL and EXE$GL_TQBL are a
pair of longwords (defined in the module SYSCOMMON) that form the list-
head of the timer queue. Elements in the timer queue are data structures that
are generally allocated from nonpaged dynamic memory and initialized as a
result of $SETIMR system service calls {see Section 11.4.1). The allocation of
timer queue elements (TQEs) is governed by the pooled job quota
JIBSW_TQCNT.

The format of the timer queue element is shown in Figure 11-1. The link
fields (TQE$L_TQFL and TQE$L_TQBL), the TQE$W _SIZE field, and the
TQE$B_TYPE field are characteristic of system data structures allocated
from dynamic memory. The TQE$B_RQTYPE field defines the type of timer
request (process timer request, periodic system routine request, or process
wake request) and whether the request is a one-time or repeating request (see
the list of TQE request types in Figure 11-1). Bit <6> of TQE$B_RMOD is
set if an AST is to be delivered when the timer event occurs. This bit is

11.3 Software Timer Interrupt Service Routine

TQFL
TQBL
RATYPE [TYPE | SIZE
PID/PC
" AST/FR3
ASTPRM/FR4

| — TIME ———

| DELTA —

EFN RMOD
RQPID

RQTYPE Bits:
7 6 5 3 2 10

l 0 Process timer request
1 System subroutine request

2 Scheduled wake request

0 One-time request
< 1 Repeat request
(not allowed for process
timer requests)

< 0 Relative time request
1 Absolute time request

Figure 11-1
Layout of a Timer Queue Element

equivalent to the ACB$V_QUOTA bit of the AST control block described in
Chapter 7.

The interpretation of the next three longword fields depends upon whether
the request is from a system subroutine or a user process. For system subrou-
tine requests, the fields contain the PC, R3, and R4 register values to be
loaded before passing control to the subroutine. For process timer requests,
the fields define the process ID of the process to report the event, the address
of an AST routine to execute (if requested), and an optional AST parameter.

TQE$Q_TIME is the quadword absolute system time at which a particular
timer event is to occur. TQE$Q_DELTA is the quadword delta time for re-

219

Timer Support

11.3.3

11.3.4

220

peating requests. The access mode of the requesting process is stored in
TQE$B_RMOD. The event flag to set when the timer event occurs is defined
by TQE$B_EFN. The TQE$L _RQPID contains the process ID of the process
that made the initial timer request. (The requesting process is not necessarily
the same as the target process.)

If an AST is requested, the timer queue element will be reformatted into an
AST control block (ACB) when the event occurs.

Timer Request Servicing

If the TQE is a process timer request (created by a $SETIMR system service
call and indicated by a TQE$B_RQTYPE value of zero), then the following
operations are performed:

1. The event flag associated with this timer event is set by using the
TQES$L_PID and TQE$B_EFN fields and invoking the SCH§POSTEF rou-
tine. A software priority increment of three may be applied when the proc-
ess next executes (see Chapter 10).

2. If the target process is no longer in the system, the TQE is simply deallo-
cated without further action.

3. Otherwise, the JIBSW_TQCNT quota is incremented to indicate the de-
livery of the timer event and the impending deallocation of the TQE.

4. If an AST was requested (indicated by bit <6> of TQE$B_RQTYPE), then
the TQE$B_RMOD field is moved to TQE$B_RQTYPE to reformat the
TQE into an AST control block (ACB). The ACB is then queued to the
target process, in the access mode of the original timer request, by calling
the routine SCH$QAST (see Chapter 7).

When the processing of this timer queue element has been completed, the
software timer routine checks to see if another TQE element can be removed
from the queue.

Note that process timer requests are strictly one-time requests. Any repeti-
tion of timer requests must be implemented within the requesting process.

Scheduled Wakeup

The second type of timer queue element is associated with a request for a
scheduled $WAKE to a hibernating process. This type of request may be ei-
ther one-time or repeating and may be requested by a process other than the
target process.

The following operations are performed for scheduled wake TQEs.

1. The target process (indicated by TQE$L_PID) is awakened by executing
the routine SCH$WAKE. If the target process is no longer in the system,
the PCB§W_ASTCNT quota of the requesting process (TQE$L_RQPID) is

11.3.5

11.3 Software Timer Interrupt Service Routine

incremented and the control block is deallocated to nonpaged dynamic
memory.

2. If the request is a one-time request (indicated by a cleared TQE$V_
REPEAT bit in the TQE$B_RQTYPE field), then the deallocation opera-
tion is the same as that described in item 1.

3. If the request is a repeating type, then the repeat interval (TQE$Q_
DELTA) is added to the request time (TQE$Q_TIME), and the timer queue
element is reinserted in the timer queue.

The software timer routine then checks to see if the next timer request can
also be performed at this time.

Periodic System Procedures

The third type of timer queue element defines a system subroutine request. A
request of this type is not the result of any process request, but is a system-
requested time-dependent event. The software timer interrupt service rou-
tine handles this type of TQE by the following action:

* Loading R3 and R4 from the TQE$L_FR3 and TQES$L_FR4 fields (nor-
mally defined as the TQE$L_AST and TQESL_ASTPRM fields)

+ Executing a JSB instruction using the TQE$L_FPC field (normally defined
as the TQE$L_PID field)

On return from the system subroutine, the TQE$V_REPEAT bit is tested.
If the bit is set, then the TQE is reinserted in the timer queue using the
TQE$Q_DELTA time field. If the request was a nonrepeating one, then the
timer routine immediately checks the timer queue for further TQEs to serv-
ice. The TQE is not deallocated because these requests do not use dynamic
memory. This type of TQE is defined in static nonpaged portions of system
space, such as the module SYSCOMMON in the case of the EXE$TIMEQUT
subroutine.

One example of this type of request, a repeating system subroutine request,
is the once-per-second execution of the subroutine EXE$TIMEOUT.

1. The routine SCH§SWPWAKE is called to possibly awaken the swapper
process (see Chapter 17).

2. The EXE$TIMEOUT subroutine updates the EXE$GL_ABSTIM field to
indicate the passing of one second of system uptime.

3. The routine ERL$WAKE is called to possibly awaken the ERRFMT process
{see Chapter 8).

4. This subroutine scans the I/O database for devices that have exceeded
their timeout intervals. Drivers for such devices are called at their timeout
entry points at device IPL. A path through this subroutine checks for ter-
minal timed reads that have expired.

221

Timer Support

11.4

11.4.1

222

5. The first entry on the lock manager time out queue is checked to see if it
has expired. If it has, a deadlock search is initiated.

6. The PCB pointer list is searched for normal-priority (priority less than 16)
processes in the COM or COMO state, whose priority is less than that of
the current process (or the highest priority computable process). The cur-
rent priority of these lower priority processes is boosted so that they be-
come the highest priority COM or CUR process. This feature was imple-
mented to prevent a high-priority, compute-intensive job from causing
other processes to be unable to release system (or other) resources. The
number of processes that can receive this boost is determined by the spe-
cial SYSBOOT parameter PIXSCAN. The PCB pointer list is searched in a
circular fashion, in order that all processes will eventually receive the
priority boost.

The TQE for this subroutine is permanently defined in the module SYS-
COMMON, and the timer queue is initialized at bootstrap time with this
data structure as the first element in the queue.

The terminal driver also uses a repeating system timer routine to imple-
ment its modem polling. The controller initialization routine in the terminal
driver loads the expiration time field in a TQE in the terminal driver
with the current system time, sets the repeat bit, and loads the repeat
interval with the SYSBOOT parameter TTY_SCANDELTA. When the
timer routine expires, it polls each modem looking for state changes.

TIMER SYSTEM SERVICES

Two system services are used to insert entries in the timer queue, Schedule
Wakeup request ($SCHDWK) and Set Timer request ($SETIMR). Both of
these services are contained in the module SYSSCHEVT. Two comple-
mentary services delete entries from the timer queue, $CANWAK and

- $CANTIM. These system service routines are in the module SYSCANEVT.

$SETIMR Requests

The $SETIMR system service calls produce timer queue entries of the single
process request type, TQE$C_TMSNGL. The following steps are performed:

1. The event flag specified as an argument to the system service is cleared in
preparation for subsequent setting at expiration time.
2. The request is checked to make sure that the following are true:

» The delta time location is accessible by the requesting process.

» The PCB§W_ASTCNT of the requesting process is not exceeded (if an
AST is to be associated with this timer request).

» The JIB§W_TQCNT of the requesting job is not exceeded

11.4.2

11.4 Timer System Services

3. A timer queue element is allocated from nonpaged dynamic memory and
the TQE is initialized from the system service arguments (delta time, re-
quest type, and process ID).

4. 1f the expiration time was expressed as an interval (a negative argument),
then the absolute expiration time of the request is calculated by adding the
delta time of the request to the current system time, EXE$GQ_SYSTIME.
The absolute expiration time is stored in the TQE$Q_TIME field.

. 5. The JIB§W_TQCNT field of the pooled job quotas is decremented to indi-

cate the allocation of the TQE.

6. The access mode of the system service caller is stored in the
TQE$B_RMOD field. If an AST routine was specified as an argument to
the $SETIMR call, then the process PCB§W_ASTCNT is decremented to
indicate the future AST delivery and bit <6> of TQE$B_RMOD is set to
indicate the AST accounting.

7. The AST parameter (request identification) and event flag number argu-
ments are copied to the TQE.

8. The TQE is then inserted into the timer queue and the routine returns.

The $CANTIM system service removes one or more timer queue elements
before expiration. Two arguments, the request identification parameter and
the access mode, control the actions taken by this routine.

1. The access mode requested is maximized with that of the caller. (That is,
no requests can be deleted for access modes more privileged than the
caller.)

2. Each TQE in the timer queue that meets all of the following criteria is
removed and deallocated:

» The process ID of the $CANTIM system service caller is the same as
the process ID stored in the TQE.

» The access mode of the caller is at least as privileged as the access mode
stored in the TQE.

* The request identification parameter argument is the same as that
stored in the TQE. If the argument value is zero, then all TQEs meeting
the first two criteria are removed.

Scheduled Wakeup Operations

The logic for managing scheduled wakeup requests is similar to that for
$SETIMR requests. Two differences are the ability to specify repeating sched-
uled wakeup requests and the ability to schedule wakeup requests for an-
other process. The following steps create a scheduled wakeup request.

1. The target process ID is verified from a system service argument. If the
target process is not in the system, the scheduled wakeup request is ig-
nored.

223

Timer Support

224

2.

If the target process exists, and if the current process is suitably privileged
(GROUP or WORLD)] with respect to it, then the repeat time is tested to
determine whether the request is a one-time or repeating scheduled
wakeup, TQE$C_WKSNGL or TQE$C_WKREPT of the TQE$B_RQTYPE
field.

. The requested repeat time is formatted for insertion in the TQE. If the

repeat time is less than 10 milliseconds, it is increased to that value (the
resolution of the hardware clock interrupt).

A TQE is allocated from nonpaged dynamic memory.

The repeat time, request type, and target process ID are inserted into the
TQE.

If the initial scheduled wakeup time is expressed as an interval, then the
initial absolute expiration time is calculated as in $SETIMR from the ini-
tial delta time and the current system time.

The ASTCNT quota of the requesting process is decremented to account
for the allocation of the TQE.

The TQE is inserted into the timer queue.

When the expiration time is reached, a process wakeup is set to the target

process (see Section 11.3.4). Deallocation of the TQE occurs after delivery of a
one-time scheduled wakeup request or as a result of a §CANWAK system
service call.

The $CANWAK system service cancels all one-time and repeat scheduled

wakeup requests for a target process. Each canceled TQE is deallocated to
nonpaged dynamic memory and the PCB$W_ASTCNT of the initial request-
ing process is incremented to indicate the deallocation.

12

12.1

12.1.1

Process Control and
Communication

I claim not to have controlled events, but confess plainly that
events have controlled me.

—Abraham Lincoln, letter to A.G. Hodges, April 4, 1864

The VMS operating system provides many services that allow processes to
communicate with one another and allow one process to control the execu-
tion of another. Event flags are the most primitive control and communica-
tion tool available (in terms of amount of information). Other communica-
tion techniques include logical names, mailboxes, the VAX/VMS lock
management system services (lock manager), global shared data sections, and
shared files. (The lock manager is discussed only briefly here; for a full de-
scription, see Chapter 13.) System services allow a process to alter some of its
parameters (such as name or priority). Other services allow a process to affect
its own scheduling state or that of another process. A summary of process
control system services is listed in Table 12-1.

EVENT FLAG SERVICES

Event flags are used within a single process for synchronization of I/O re-
quests, enqueue lock requests, $GETJPI system service calls, and timer re-
quests. They can also be used either within a single process or among several
processes in the same group as application-specific synchronization tools.
System services are provided to read, set, or clear collections of event flags.
Other services allow a process to wait for one event flag or a collection of
event flags.

Local Event Flags

Each process has available to it 64 local (process-specific) event flags and 64
shareable event flags (among processes in the same group). The 64 local event
flags are stored directly in the software PCB, at offsets PCB$L_EFCS and
PCBS$L_EFCU (see Figure 12-1). Local event flags 0 to 31 are located in long-
word PCB$L_EFCS. Local event flags 32 to 63 are located in longword
PCBS$L_EFCU.

225

Process Control and Communication

Table 12-1: Summary of Process Control System Services

Service Name Affect Other Processes PIiVi16g6 Checks

Create Common Event Flag Cluster Same group only PRMCEB (for permanent
clusters only)

Delete Common Event Flag Cluster Same group only PRMCEB

Wait for Single Event Flag
Wait for Logical AND of Event Flags
Wait for Logical OR of Event Flags

Hibernate No (1) None

Wake YES GROUP or WORLD

Schedule Wakeup YES GROUP or WORLD

Cancel Wakeup YES GROUP or WORLD

Suspend YES GROUP or WORLD

Resume YES GROUP or WORLD

Exit No None

Forced Exit YES GROUP or WORLD

Create Process YES DETACH for other
than subprocesses

Delete Process YES GROUP or WORLD

Set AST Enable No Access Mode Check

Set Power Recovery AST No Access Mode Check

Set Priority YES ALTPRI and GROUP or
WORLD

Set Process Name No None

Set Resource Wait Mode No (2} None

Set Swap Mode No (2) PSWAPM

Set System Failure Mode No (2) Access Mode Check

Get Job/Process Information YES GROUP or WORLD

(1) As part of the Create Process system service, a process can specify that the process being created
hibernate before a specified image executes.
(2) These three features can each be specified as a part of the Create Process system service.

12.1.2 Common Event Flags

Common event flag clusters do not initially exist. They must be created by
the first process that calls the Associate Event Flag Cluster system service for
a given cluster. This service allocates a structure called a common event
block (see Figure 12-2) from nonpaged pool and loads its address into the PCB
pointer field (either PCB$L_EFC2P or PCB$L_EFC3P). The common event
block is linked into a system-wide list of common event blocks located by
global listhead SCH$GQ_CEBHD (see Figure 12-3).

As additional processes associate with this cluster, the CEB list is searched
in order to locate the CEB, the event flag cluster pointers in their PCBs are
updated, and the reference count for that cluster is updated. As processes

226

12.1 Event Flag Services

Software PCB
SQFL CEB Forward Link
SQBL
] CEB Backward Link
[Status Type Size
Process ID of Creator
Event Flags
Wait Queue Forward Link
WEFC STATE
Wait Queue Backward Link
CEF State Number Wait Count
UIC of Creator
[] Reference Count Protection Mask
EFWM/PQB

EFCS Count

EFCU

EFC2P Cluster Name

EFC3P (up to 15 characters)
1 i

Figure 12-2

Figure 12-1 Layout of Common Event Block
Software PCB Fields That Support.
Event Flags

disassociate from a cluster (with the $DACEFC system service), the reference
count is decremented. When the reference count for a temporary cluster goes
to zero, the cluster is automatically deleted and the CEB deallocated.

Permanent clusters must be explicitly deleted (using the $DLCEFC system
service) in order to cause the CEB to be deallocated when the reference count
goes to zero. Alternatively, permanent clusters can continue to exist without
requiring that they be associated with any processes. In fact, the only opera-
tion performed by the Delete Common Event Flag Cluster system service is
to turn off the CEB$V_PERM bit. (If the reference count of the cluster is zero
when the permanent bit is turned off, the cluster is deleted.)

227

Process Control and Communication

12.1.3

228

SCH$GQ__CEBHD::

| h o CEB

L - - 4—‘
WaitQueve | "1 pcB| [«—] PCB| |«— PCB
L ® b
CEB Name
CEB
Lt
Wait Queve | < > PCB
>
CEB
Ly ~— -
1 - -
Wait Queue | PCB Dl PCB
b b
CEB
Wait Queue No procgsseg are waiting
for flags in this
common event flag cluster.

Figure 12-3
Common Event Flag Wait Queues

Event Flag Wait States

Processes are placed into event flag wait states implicitly when any of the
following actions are performed:

* Executing a $QIOW or $ENQW system service

» Using the RMS services as synchronous operations (the usual way they are
called)

» Executing one of the three event flag wait services (§WAITFR, $WFLOR,
$WFLAND)

If the flag or flags in question are already set, the system service immedi-
ately returns successfully to its caller. Otherwise, the process is placed into
either a local or common event flag wait state. The saved PC in the hardware
PCB is backed up by 4 (see Chapter 10) to allow ASTs to be delivered to the
process while it is waiting for the flag(s) to be set. The event flag cluster
number (0 or 1 for local clusters and 2 or 3 for global clusters), indicating
which flags are being waited for, is stored in the PCB (at offset

12.1.4

12.1 Event Flag Services

PCB$B_WEFC). The list (mask) of event flags being waited for is stored (in
one’s complement form) in PCB$L_EFWM.

o If the process is waiting for a single event flag (SYS§WAITFR), the
PCB$L_EFWM mask contains a 1 in every bit except the bit number corre-
sponding to the specified flag.

* If the process is waiting for any one of several flags to be set (SYS§WFLOR),
the PCBSL_EFWM mask contains the one’s complement of the mask
passed to the SWFLOR system service. (The $WAITFR mask is thus a spe-
cial case of a wait for any one of a group of flags to be set.) If any of the flags
in the requested mask is set when $WFLOR is called, the process is not
placed into a wait state. Instead, the service immediately returns a success
code to its caller.

* If a process calls the SWFLAND system service, indicating a wait for all
flags in a given mask to be set, the wait mask is modified so that event
flags that are set when the service is called are not represented in the wait
mask. In addition, a bit in the process status longword (PCB$V_WALL in
PCB$L_STS) is set, indicating that all flags represented by the mask must
be set before the wait is satisfied.

There exist two local event flag wait states (LEF and LEFO) and two corre-
sponding wait queue listheads (SCH$GQ_LEFWQ and SCH$GQ_LEFOWQ)
for the entire system. On the other hand, there exists one common event flag
wait queue listhead for each common event cluster that currently exists.
Each common event flag wait queue listhead is located in the corresponding
common event block (see Figure 12-2) and has the same overall structure as
any other wait queue listhead (see Figure 12-3).

Setting and Clearing Event Flags

Event flags can be set directly by a process by calling the Set Event Flag
system service. A process could use this service at AST level to communicate
with its mainline code. It can also set common event flags to communicate
with other processes. Event flags are also set in response to I/O completion,
timer expiration, the granting of a lock request, and delivery of a §GETDVI,
$GETJPI, or $GETSYI request.

It should be noted here that when the VAX/VMS operating system uses
shared event flags to communicate information between processes, a strict
set of ownership rules is used. When a controlling process is getting ready to
set an event flag, it owns the flag. When the process has set the flag (thereby
allowing waiting processes to become computable), it relinquishes its owner-
ship of the flag to the other processes. It is then the responsibility of the other
processes to clear the flag and notify the controlling process that it has re-
gained ownership of the flag. In this scheme, ownership is maintained by
convention alone; it is not enforced by the software. DIGITAL recommends

229

Process Control and Communication

12.14.1

230

that applications that use shared event flags as a communications tool adhere
to these same conventions.

Both the system service and the special paths call the same routine
[SCH$POSTEF) to perform the actual event flag setting and check for possi-
ble scheduling implications.

The operation of SCH$POSTEF depends on what kind of event flag is being
set.

o If the event flag that is being set is local, a check is made to determine
whether this flag satisfies the process’s wait request. In a §WFLOR wait,
this flag merely has to match one of the flags being waited for. In a
$WFLAND wait, all of the flags being waited for must be set in order to
satisfy the process’s wait request and report an event to the scheduler.

¢ When a common event flag is set, the list of PCBs in the common event
block wait queue is scanned to determine if any of the processes waiting
for flags in this cluster satisfy its wait request as a result of setting this flag.
A system event is reported for each such process.

All such processes are made computable. If the priority of any one of
them is greater than the priority of the currently executing process, a re-
scheduling interrupt is requested. As with all other cases in the system
where several processes become computable as a result of the same sys-
tem-wide event, the process with the highest software priority will be se-
lected for execution.

» For common event flags located in shared memory, there is one more level
of complication. The event flag must be set in the master CEB located in
shared memory, and other processors connected to this shared memory
unit must be notified that a shared memory common event flag was just
set. (Shared memory common event flag data structures are discussed at
the end of this chapter. Other shared memory data structures are described
in Chapter 14.)

Any other processor connected to the same global event flag cluster re-
ceives initial notification through an MA780 interrupt. The interrupt serv-
ice routine determines that the interrupt was due to an event flag in shared
memory being set, copies the entire set of event flags from the master CEB
to the slave CEB, and checks whether any of the processes waiting for flags
in this cluster are now computable.

Other Event Flag Services. The Clear Event Flag system service simply clears
the specified event flag. Note that when clearing a flag in common event flag
clusters in shared memory, only the event flag in the master CEB is cleared. It
is not necessary to copy the set of flags from the master CEB to the slave
CEBs on other processors when an event flag is cleared for the following two
reasons:

12.2

12.2.1

12.2.2

12.2.2.1

12.2 Affecting the Computability of Another Process

» The event flag wait services only use the master CEB when checking
whether to place a process into a wait state or return immediate success.

+ The event flag posting routine copies the master set of flags to the local
slave CEB before testing whether any process wait requests are satisfied.
The master set of flags is copied into all other slave CEBs as a result of
notifying other processors that a flag has been set.

The Read Event Flag system service is simply informational. It has no
effect on the computability of any process on any processor. The event flag
cluster is read from the same destinations as those affected by the Clear
Event Flag system service. :

* Local event flag clusters are read from the software PCB.

* Regular common event flag clusters are read from the CEB.

* Common event flag clusters located in shared memory are read from the
master CEB located in shared memory.

AFFECTING THE COMPUTABILITY OF ANOTHER PROCESS

In any multiprocessing application, it is necessary for one process to control
whether and when other processes in the application can execute. The VMS
operating system contains several services that provide this control.

Common Event Flags

Common event flags described in the previous section are one method of
synchronization control. One process can reach a critical point in its: execu-
tion and wait on a global event flag. Another process can allow this process to
continue its execution by setting the flag in question.

Common event flags are also used as semaphores for more complicated
forms of interprocess communication that use logical names or global sec-
tions:

Process Control Services

Several system services allow one process to directly alter the scheduling
state of another process.

Privilege Checks. All system services that permit one process to directly af-
fect another allow the process to be specified either by process name or by
process identification (PID). In either case, the VMS operating system must
determine whether the specified process exists and whether the caller has the
proper privilege (GROUP, WORLD) or is part of the same process tree and can
thus affect the other process. This work is centralized in a routine called
EXE$NAMPID that is called by all such system services.

231

Process Control and Communication

12.2.2.2

12.2.2.3

232

If the specified process exists, and the caller can affect the specified proc-
ess, EXESNAMPID returns successfully (at IPL 7) with the PCB address of the
specified process in R4. Note that this return condition alters the contents of
R4, which usually contains the caller’s PCB address. If the specified process is
a part of the same process tree as the caller (the JIB address is identical),
EXE$NAMPID will return successfully. A second important use of
EXE$NAMPID is in obtaining a PID when the process name is known. If a
process name is specified and the PID address argument points to a zero long-
word, the PID of the named specified process is returned to the caller at the
designated location.

Process Creation and Deletion. A first step in a multiprocess application
requires that a controlling process create other processes for designated work.
These processes may be deleted when they have completed their work or
they may exist in some wait state in anticipation of additional work. The
detailed operation of process creation is described in Chapter 20. Process de-
letion is described in Chapter 22.

Hibernate/Wake. There are two different ways that a process can be tempo-
rarily halted, called hibernation and suspension. The differences between
these two wait states are described in the VAX/VMS System Services Refer-
ence Manual.

A process can only put itself into the hibernate state. (That is, a process
cannot put another process into the HIB state.) If the wake pending flag is not
set (this flag check also clears the flag), indicating that an associated wake has
not preceded the hibernate call, the process is placed into the hibernate wait
state. As described in Chapter 10, the saved PC is backed up by 4 so that the
process will be put back into the hibernate state in case it receives ASTs
while it is hibernating. (Note that the check of the wake pending flag by the
Hibernate system service includes the case where a process first hibernates
and then is awakened by a wake call issued from an AST.)

The $WAKE system service is the complementary service to Hibernate. A
process may awaken itself (by calling SWAKE from an AST) or it may be
awakened when another process calls $WAKE with the target process speci-
fied either by name (if the target process is in the same group, and the caller
has GROUP privilege) or by process ID (if the caller has GROUP or WORLD
privilege). This service sets the wake pending flag in the software PCB and
reports the awakening event to the scheduler. The process is removed from
the HIB or HIBO queue and placed into the COM or COMO state in the
queue corresponding to its updated priority. (A wake event results in a prior-
ity boost class of PRI$_RESAVL, which is equivalent to a boost of 3.)

The next time the process executes, the hibernate service executes again
(because the PC was backed up by 4). Because the wake pending flag is now

12.2.2.4

12.2.24.1

12.2.2.4.2

12.2 Affecting the Computability of Another Process

set, the process returns immediately from the hibernate call (with the wake
pending flag now clear). Notice that if the process is in any state other than
HIB or HIBO when it is awakened, the net result is to leave the wake pending
flag set with no other change in its scheduling state.

Suspend/Resume. Process suspension is slightly more complicated internally
than hibernation because a process can be placed into the SUSP state by other
processes. The scheduling philosophy of the VMS operating system, illus-
trated in Figure 10-5, assumes that processes enter various wait states from
the state of being the current process and in no other way. This assumption |
requires that the process being suspended (the target) become current, replac-
ing the currently executing process, the caller of the Suspend system service.

The VMS operating system accommodates this scheduling constraint by
using a special kernel AST, the same tool that it uses when it needs access to
a portion of process address space. In this case, it is not the process address
space that is so important. Rather, the process must first be made current
before it is placed into the SUSP state.

Process Suspension. Process suspension occurs in two pieces. The portion of
the service that executes in the context of the caller sets the suspend pending
bit in the software PCB of the target process and queues the special kernel
AST (the routine that performs the actual suspension) to that process. This
implementation includes the special case where a process suspends itself.

Through the normal scheduling selection process, the target process even-
tually executes. The special kernel AST that performs the suspension exe-
cutes first unless there are previously queued special kernel ASTs. This AST
first checks (and clears) the resume pending flag in PCB$L_STS. (This check
avoids the deadlock that could otherwise occur if the associated call to the
$RESUME service preceded the call to $SUSPEND.) If the resume pending
flagis set, the process simply clears the suspend pending bit, returns from the
AST, and continues with its execution.

Otherwise, it is placed into the SUSP wait state. The saved PSL contains
IPL 2, preventing delivery of ASTs while a process is suspended. (In addition,
the AST system event is ignored for processes in either the SUSP or the
SUSPO state.) The saved PC is an address within the suspend special kernel
AST. When the process is resumed (the only way that a suspended process
can continue with its execution), it reexecutes the check of the resume pend-
ing flag, which is now set, causing the process to return successfully from the
special AST.

Operation of the Resume System Service. The Resume system service is

very simple. The resume pending flag in PCB$L_STS of the target process is
set and (if the target process of the resume request is in either the SUSP or

233

Process Control and Communication

12.2.2.5

12.2.3

12.2.3.1

234

SUSPO state) a resume event is reported to the scheduler. As with all other
system events, this report may result in a rescheduling pass, a request to
wake the swapper process, or nothing at all. '

Exit and Forced Exit. The Exit system service terminates the currently exe-
cuting image. If the process is executing a single image (it is neither an inter-
active nor batch job), image exit usually results in process deletion. A de-
tailed discussion of the Exit system service, including the calling sequence of
termination handlers, is given in Chapter 21.

The Force Exit system service is a tool that allows one process to execute
the Exit system service on behalf of another process. The service simply sets
the force exit pending flag in PCB$L_STS and queues a user mode AST to the
target process. This AST, executing in user mode, calls the Exit system serv-
ice after clearing the AST active flag by executing the following instruction:

CHHK #ASTEXIT

(For more information on this instruction, see Chapter 7). The call to Exit is
executed in the context of the target process. Execution proceeds in exactly
the same manner as it would if the target process had called Exit itself.

Miscellaneous Process Attribute Changes

Finally, there are several system services that allow a process to alter its
characteristics, such as its response to system service failures, its software
priority, and its process name. Some of these changes (such as priority eleva-
tion or swap disabling) require privilege. The Set Priority system service is
the only service described in this section that can be issued for a process
other than the caller.

Set Priority. The Set Priority system service allows a process to alter its own
software priority or the priority of other processes that it is allowed (through
GROUP or WORLD privileges) to affect. If a process has the ALTPRI privi-
lege, it can change priority to any value between 0 and 31. A process without
this privilege is restricted to the range between 0 and its own base priority. In
VAX/VMS Version 3.0, the cell PHD$B_AUTHPRI was added to the process
header. Storing a process’s base priority in this cell allows the process to
lower its priority below its base priority and raise it again up to its base
priority.

For most scheduling states (everything except COM, COMO, and CUR|,
the Set Priority system service simply changes the base software priority in
the software PCB (at offset PCB$B_PRIB). If a process alters its own priority,
not only its base but also its current priority (at offset PCB$B_PRI) is
changed. When the priority of a computable process (either COM or COMO)

12.2.3.2

12.2.3.3

12.3

12.3 Interprocess Communication

is altered, the process is removed from the COM or COMO queue corre-
sponding to its current priority and placed into a COM or COMO queue
corresponding to its new priority (the new base with a boost of 2). In addition,
a scheduling event is reported. If the new process priority (new base plus a

. boost of 2) is greater than or equal to the current priority of the current proc-

ess, a rescheduling interrupt is requested.

Set Process Name. Both the Set Process Name system service and the DCL
command SET PROCESS/NAME= allows a process to change its process
name. The new name cannot contain more than 15 characters. If no other
process in the same group has the same name, the new name is placed into
the software PCB (at offset PCB§T_LNAME). (Note that this service allows
more flexibility in establishing a process name than is available from the
usual channels, such as the authorization file or a $JOB card, because there
are no restrictions imposed by the service on characters that can make up the
process name. Even the DCL command is limited by characters that are un-
acceptable to DCL.)

Process Mode Services. There are several miscellaneous system services
whose only action is to set or clear a bit in some field in the software PCB. In
particular, the software PCB contains a status longword (not to be confused
with the hardware entity, the PSL or processor status longword) that records
the current software status of the process. Table 12-2 lists each of the flags in
this longword, and the direct or indirect ways that these flags can be set or
cleared.

The Set Resource Wait Mode, Set System Service Failure Exception Mode,
and Set Swap Mode system services all set (or clear) bits in this status long-
word. The ability to disable swapping is protected by the PSWAPM privilege.
The other two services require no privilege. Several other system services
(such as $DELPRC, $FORCEX, $RESUME, or $SUSPND)] set or clear bits in
the status longword as an indication of their primary operation.

The Set AST system service sets or clears (enables or disables) delivery of
ASTs for a given access mode. The AST enable flags are stored at offset
PCB$B_ASTEN within the PCB. These flags are discussed in Chapter 7.

INTERPROCESS COMMUNICATION

In any application involving more than one process, it is necessary for data to
be shared among the several processes or for information to be sent from one
process to another. The VMS operating system provides several services that
accomplish this information exchange. The services vary in the amount of
information that can be transmitted, the transparency of the transmission,
and the amount of synchronization provided by the VMS operating system.

235

9¢T

Table 12-2: Meanings of Flags in PCB Status Longword (PCB$LSTS]

Symbolic Name

PCB$V_RES
PCB$V_DELPEN
PCB$V_FORCPEN
PCB$V_INQUAN

PCB$V_PSWAPM
PCB$V_RESPEN
PCB$V_SSFEXC
PCB$V_SSFEXCE
PCB$V_SSFEXCS
PCB$V_SSFEXCU

PCB$V_SSRWAIT
PCB$V_SUSPEN

Meaning of Flag if Set

Process is resident (in the balance set)

Process deletion is pending

Forced exit is pending

Process is in its initial quantum
(following inswap)

Process swapping is disabled

Resume is pending (skip suspend)

Enable system service exceptions
for kernel mode

Enable system service exceptions
for executive mode

Enable system service exceptions
for supervisor mode

Enable system service exceptions
for user mode

Disable resource wait mode

- Suspend is pending

Flag Set by
Swapper

$DELPRC

$FORCEX

Swapper

$SETSWM, $CREPRC
$RESUME

$SETSFM

$SETSFM

$SETSFM

$SETSFM, $CREPRC

$SETRWM, $CREPRC
$SUSPND

Flag Cleared by
Swapper

Image and process rundown
Quantum end routine
$SETSWM

Suspend special AST
$SETSFM, process rundown
$SETSFM, process rundown
$SETSFM, process rundown
$SETSFM, image and
process rundown

$SETRWM
Suspend special AST

UONDOTUNUIIO)) PUD [OIIUOD) SSII0I]

LE€T

Table 12-2: Meanings of Flags in PCB Status Longword (PCB$LSTS) (continued)

Symbolic Name
PCB$V_WAKEPEN

PCB$V_WALL
PCB$V_BATCH
PCB$V_NOACNT

PCB$V_SWPVBN

PCB$V_ASTPEN
PCB$V_PHDRES
PCB$V_HIBER
PCB$V_LOGIN
PCB$V_NETWRK
PCB$V_PWRAST

PCB$V_NODELET

PCB$V_DISAWS

Meaning of Flag if Set

Wake is pending (skip hibernate)

Wait for all event flags in mask

Process is a batch job

Do not write an accounting record

for this process

Modified page write to the swap file

is in progress

AST is pending (No longer used)

Process header is resident

Hibernate after initial image activation
Login without reading the authorization file
Process is a network job

Process has declared a power recovery AST

Do not delete this process (not used)
Do not perform automatic working
set adjustment on this process

Flag Set by

$WAKE, expiration of
scheduled wakeup
SWFLAND
$CREPRC

$CREPRC
Modified page writer

Swapper

$CREPRC
$CREPRC
$CREPRC
$SETPRA

SET WORKING_SET/NOADJUST

$CREPRC

Flag Cleared by
$HIBER

Next $WFLOR or $WAITFR

Modified page writer

Swapper

Routine that queues
recovery ASTs, image
and process rundown

SET WORKING_SET/ADJUST

uonvIIUNWIUIO)) ssaooidraiu; £z

Process Control and Communication

12.3.1

12.3.2

12.3.3

238

Event Flags

Global or common event flags can be treated as a method for several proc-
esses to share single bits of information. In fact, the typical use of common
event flags is as a synchronization tool for other more complicated communi-
cation techniques. The internal operations of common event flags are de-
scribed in the beginning of this chapter.

VAX/VMS Lock Management System Services

The lock management system services allow processes to name a shared re-
source and request locks on that resource. If access to a resource cannot be
immediately granted to a lock, a queuing mechanism is provided for a process
to wait until it can be granted access to the resource. The lock manager
provides a number of lock modes to control how the resource is to be shared
with other processes. Blocking ASTs and a lock value block are also provided
to pass information about, or synchronize access to, a resource. The internals
of the lock manager are described in Chapter 13.

Mailboxes

Mailboxes are I/O devices in that they are written to and read from by the
normal VMS I/O system, either through RMS or with the $QIO interface.
Although process-specific or system-wide parameters may control the
amount of data that can be written to a mailbox in one operation, there is no
limit to the total amount of information that can be passed through a mail-
box with a series of reads and writes.

There are two forms of synchronization provided for mailbox I/O. Because
mailboxes are I/O devices, a simple but restrictive technique would have the
receiving process issue a read from the mailbox and wait until the read com-
pletes. Of course, the read could not complete until the process writing to the
mailbox completed its transmission of data. The limitation of this technique
is that the receiving process cannot do anything else while it is waiting for
data. Even if the process issues asynchronous I/O requests, an I/O request
must be outstanding at all times in order to receive notification when some
other process writes to the mailbox. In some applications, these limitations
may be acceptable and so this technique can be used.

Other applications may have a receiving process that can perform different
tasks, depending on the information available to it. Putting such a process
into a wait state for one task prevents it from servicing any of its other tasks.
For such applications, the VMS operating system provides a special $QIO
request called Set Attention AST that allows a process to receive notification
through an AST when anyone writes into its mailbox. This technique allows

12.3.4

12.3.5

12.3.6

12.3 Interprocess Communication

a process to continue its mainline processing and handle requests from other
processes only when such work is needed, without having an I/O request
outstanding at all times. :

Logical Names

Logical names (see Chapter 29) are used extensively by the VMS operating
system to provide total device independence in the I/O system. However,
logical names can be used for many other purposes as well. Specifically, one
process can pass information to another process by creating a logical name (in
the group or system table) with information stored in the equivalence string.

- The receiving process simply translates the name to retrieve the data.

Although some form of synchronization is provided by an error return
(SS$_NOTRAN) from the Translate Logical Name system service, processes
using such a technique should use event flags (or an equivalent method) to
synchronize this communication technique. One use of this technique where
synchronization is not required occurs when a process creates a subprocess or
detached process and passes the new process data in the equivalence strings
for SYS$INPUT, SYS$OUTPUT, or SYSSERROR. Using this method, there is
no possibility for the translation to occur before the creation.

Global Sections

Global sections provide the fastest method for one process to pass informa-
tion to another process. Because the two processes have the data area mapped
into their address space, no movement of data takes place. Instead, the
method provides for a sharing of the data. The method is not transparent
because each process must map the global section that will be used to share
data. In addition, the processes must use event flags, the lock management
system services, or their own synchronization to prevent the receiver from
reading data before it has been made available by the sender.

Interprocessor Communication with the MA780

VMS support for the MA780 shared memory unit provides a transparent com-
munication path for interprocess communication even when processes are
located on different processors connected through a shared memory unit
(MA780). The three communication paths provided are common event flags,
mailboxes, and global sections. '

Each of these entities is described by a name. When a process connects to
one of them (with the Associate Common Event Flag Cluster system service,
the Create Mailbox system service, or the Create and Map Section or Map
Global Section system services), a logical name translation is performed on

239

Process Control and Communication

240

the name of the object. If the equivalence name is of the following form, the
service makes the appropriate connection between the process and the data
structure describing the object that exists in shared memory.

shared-memory-name:object-name

If the shared memory data structure does not exist, it is created (except that
the Map Global Section system service does not create global sections that do
not exist). The data structures that the VMS operating system uses to de-
scribe shared memory are pictured in Chapter 14. In addition, memory man-
agement data structures, including those structures that describe shared
memory global sections, are found in that chapter.

* For a common event flag cluster in shared memory, the event flag cluster
in the software PCB (PCB$L_EFC2P or PCB$L _EFC3P) points to the slave
CEB for the local processor. The slave CEB contains information that de-
scribes the master CEB that is located in the shared memory (see Figure
12-4). The following procedures are used to identify the slave PCB:

—If the slave CEB already exists, the system service simply points the
PCB to the CEB.

—If the slave CEB does not exist but the master does (there are currently
no references to this cluster on this CPU), then a slave CEB is created;
the address of the master is stored in the slave; and the address of the
slave is stored in the PCB.

—If the master CEB does not exist either, it is created first in the shared
memory. Then the slave is created and execution proceeds as described
in the previous case.

The way in which common event flags are set and cleared is described in
the beginning of this chapter. The differences between shared memory
common event blocks (master and slave) and local memory common event
blocks are pictured in Figure 12-5. (A local memory common event block
is pictured in Figure 12-2). :

» For a mailbox in shared memory, there are also three cases.

—If the mailbox already exists on this port, the Create Mailbox system
service simply assigns a channel to it. (The UCB pointer in an available
channel control block is loaded with the address of the UCB describing
the shared memory mailbox.)

—If the mailbox is being created on this node for the first time, a UCB is
allocated and loaded with parameters that describe the mailbox. A bit is
set in a mailbox-dependent field indicating that this mailbox UCB de-
scribes a mailbox in shared memory. Finally, the address of the shared
memory mailbox control block is loaded into the UCB.

e

Processor 1 Local Memory

SCH$GQ__CEBHD:: I |
ﬂl

Shared Memory

Slave CEB
PCB o L
- BETA
A
/
Local CEB
PCB e PCB >
<+ < ALPHA
4
Local CEB
PCB >
- GAMMA
Figure 12-4

Relationship between Master and Slave CEB

Processor 2 Local Memory

Master CEB [
for shared
me?lzge(r:EF ‘———I ::SCH$GQ__CEBHD
* A
Y
¢ 1 Slave CEB
BETA ~ .
> PcB PCB
BETA | J
\
|t /
Master CEB
for shared »| Slave CEB
memory CEF .
cluster ° PCB
GAMMA |
A
GAMMA Local CEB
™1 P
ALPHA | cB . PCB

UONIDOTUNUWILIO,) $S2001d121U] ©°21

Process Control and Communication

242

Master CEB
(resides in shared memory)

Valid and Interlock Bits .

Unused
Status | Type Size
Unused
Event Flags
Unused
Unused
Deleter | Creator Number Inter-
Port Port |of Processes| Processor
Lock
UIC of Creator Slave CEB
U 3] Protoction Mask (resides in processor local memory)
nuse rotection Masl|
I Count l : s
ame as
Cluster Name o Local Memory =
(up to 15 characters) 1 Common Event 1
Block
VA of Processor 0 Slave CEB VA of Shared Memory Control Block
J /L Index to
x 1T Master CEB
VA of Processor N Slave CEB VA of Master CEB
Processor 1 Processor 0
Reference Count Reference Count
T 7
Processor N Processor N-1
Reference Count Reference Count
Figure 12-5

Shared Memory Common Event Flag Data Structures

—If the shared memory mailbox control block (see Figure 18-2) does not
exist, it is created before the rest of the operations described in the previ-
ous step are performed.

Shared memory mailbox data structures are pictured in Figures 18-2 and
18-3. Mailbox creation is described in more detail in Chapter 18.
For a global section in shared memory, a special global section descriptor 1s
allocated that describes the global section in shared memory. Unlike glo-
bal sections that exist in local memory, there are no global page table
entries set up for global sections in shared memory.

When a process maps to the shared memory global section, its process
page tables are set up to contain the PFNs of the shared memory pages and

12.3 Interprocess Communication

marked as valid. Such pages are not counted against the process working
set. That is, pages in shared memory do not incur page faults. They are
always valid, and therefore they can be described with a simple descriptor
that is contained in the global section descriptor, rather than a set of global
page table entries required for global pages that exist in local memory.
Memory management data structures are described in Chapter 14. The
memory management system services are discussed in Chapter 16.

243

13

13.1

244

VAX/VMS Lock Manager

'Tis in my memory lock’d,
And you yourself shall keep the key of it.
—Hamlet 1,3

The VAX/VMS lock manager provides semaphores that cooperating processes
can use to synchronize access to shared resources. The lock manager allows
callers to specify one of six degrees of shareability (lock modes) ranging from
no access to exclusive access. Once the lock is granted, the owning process
can request a lock conversion to change the lock mode. The lock manager
provides a queuing mechanism by which processes can wait in turn until a
shared resource becomes available. Two queues are available: a waiting
queue for new locks and a conversion queue for lock conversions.
The lock modes are:

NL Null lock. Owner can neither read nor write; compatible with all
other locks.

CR Concurrent read. Read access and sharing with other readers and
writers.

Cw Concurrent write. Write access and sharing with other readers and
writers.

PR Protected read. Read access and sharing with other readers; no writ-
ers allowed.

PW Protected write. Write access and sharing with CR mode readers; no
other writers allowed.

EX Exclusive access. Write access; denies access to any other readers or
writers.

This chapter first discusses the data structures used by the lock manager. The
action of the lock manager when locks are queued and dequeued is then
described. The last section in this chapter describes deadlock detection. The
treatment in this chapter assumes that the reader is familiar with the descrip-
tion of the VAX/VMS lock management system services found in the VAX/
VMS System Services Reference Manual.

LOCK MANAGER DATA STRUCTURES
Essentially the lock database consists of the following four structures:

» Lock blocks that describe the locks requested by processes

13.1.1

13.1 Lock Manager Data Structures

» Resource blocks that describe the resource names for which locks have
been requested

¢ The lock ID table that locates the lock blocks

* The resource hash table that locates the resource blocks

Lock Blocks

Figure 13-1 shows the structure of the lock block (LKB). The lock block is
allocated from nonpaged pool, and is composed of two overlaying structures.
The first structure in the lock block contains an AST control block (ACB).
When a lock is granted, the ACB is used to queue a kernel mode AST to
perform kernel mode operations in the context of the caller; the ACB is also
used to queue completion ASTs. When a blocking AST is required, the ACB
is used to queue the blocking AST.

The second part of the lock block describes the information specific to the
lock request (for example, a blocking AST address, the event flag number, and
the address of the lock status block) and the current state of the lock (for
example, the lock mode and the queue links used to locate the lock). The

Lock Block

ASTQFL
ASTQBL
RMOD TYPE | SIZE
PID > ACB Portion
AST
ASTPRM

KAST

CPLASTADR

BLKASTADR

LKSB
STATUS | FLAGS

LKST1
LKST2

EFN STATE | GRMODE | RaMODE
SQFL
SQBL
OWNQFL

State Queue Links

Owner Queue Links

OWNQBL
PARENT
REFCHT

RSB

Figure 13-1
Layout of a Lock Block

245

VAX/VMS Lock Manager

13.1.2

246

state queue links in the lock block are used to link the LKB into a resource’s
state queue.
The lock block is created when a process requests a new lock-and is owned

only by that process. When a process dequeues a lock, the lock block is deal-
located.

Resource Blocks

A resource block describes a resource and contains listheads for the granted,
conversion, and waiting queues for the resource. The state queue links in the
lock block (LKB$L_SQFL and LKB$L_SQBL) link the lock blocks to these
queues. Note that the conversion and waiting queues are ordered first-in/
first-out; the granted queue has no order. Figure 13-2 shows the structure of
the resource block. The resource blocks are allocated from nonpaged pool. In
addition to queue heads, a resource block contains the lock value block for
the resource, the address of the resource’s parent resource block (if any), and

Resource Block

HSHCHN
HSHCNNBK
DEPTH | TYPE SIZE
PARENT
REFCNT
BLKASTCNT
GRQFL
GRQBL
CUTQFL
CUTQBL
WTQFL
WTQBL

Granted Queue Head

Conversion Queue Head

Waiting Queue Head

VALBLK

PROT CGMODE | GGMODE
RSNLEM RMOD GROUP

RESNAM

(31 bytes)

spare I

Figure 13-2
Layout of a Resource Block

13.1.3

13.1.3.1

18.1 Lock Manager Data Structures

the number of sublocks owned by the resource. Only one resource block will
exist for each resource being locked.

Resource blocks are deallocated when there are no locks associated with
the resource (the state queues in the resource block are empty).

Accessing the Lock and Resource Blocks

The VAX/VMS lock manager has two ways in which information in the lock
management database can be located, the lock ID table and the resource hash
table. The lock ID table is used to locate lock blocks; the resource hash table
is used to locate resource blocks. Both of these structures are allocated from
nonpaged pool. ‘ ‘

Once a resource block has been located through the resource hash table,
the lock blocks associated with the resource can be found through the state
queue pointers. Conversely, once a lock block has been located through the
lock ID table, the name of the resource that is locked can be located by the
resource block address field in the lock block. (A third way to locate informa-
tion in the lock management database using process control blocks is dis-
cussed in Section 13.1.4.)

The Lock ID Table. The lock ID table is used to locate locks when the lock ID
is known. When a caller requests a new lock, the $ENQ system service re-
turns a lock ID to the caller. The lock ID is actually an index into the lock ID
table. The caller can then use the lock ID to identify a specific lock when
performing conversions or dequeuing locks. The lock ID table is located by
the global symbol LCK$GL_IDTBL. Figure 13-3 shows the structure of the
lock ID table.

When an entry in the lock ID table is in use, it contains the address of the
lock block that is associated with the lock ID. When an entry in the lock ID
table is not used, the low-order word contains an index to the next unused
entry in the lock ID table. When the VAX/VMS operating system is initial-
ized, the module INIT loads each entry in the lock ID table with the index of
the subsequent entry in the table. The first entry in the table is initialized to
zero and is not used. A zero entry indicates an unusable lock ID table entry.

The global symbol LCK$GL_NXTID contains a lock ID table index that
points to the first free lock ID table entry. When a caller requests a new lock,
LCK$GL_NXTID is used to locate the new lock ID table entry. The low-
order word of LCK$GL_NXTID is returned to the caller as the new lock ID.
Two actions are then performed on the new lock ID table entry.

» The contents of the new lock ID table entry (which contains a pointer to
“the next free lock ID table entry) are copied into LCK$GL_NXTID.
¢ The address of the new lock block is written into the lock ID table entry.

Because it is possible that an error in a calling routine could pass an errone-

247

VAX/VMS Lock Manager

13.1.3.2

248

Lock ID Table
LKB Type Size
— D 0 | :LCK$GL_IDTBL
-
1
= The indexes do not always
® point forward.

LKB

jﬁ

LCK$GL__MAXID:: L l x—}——
LCK$GL__NXTID:: | l x-—]———

Figure 13-3
Structure of the Lock ID Table

ous value as the lock ID, the lock manager compares the caller’s process
identification and access mode with the process identification and access
mode stored in the lock block. If the comparison fails, the lock manager exits
with the return status code SS$_IVLOCKID.

When a lock block is deallocated, the lock ID table entry is located by its
lock ID. The contents of LCK$GL_NXTID are written into the lock ID table
entry (replacing the address of the deallocated lock block) and the lock ID is
written into LCK$GL_NXTID.

The global symbol LCK$GL_MAXID contains the index to the last entry
in the lock ID table. The lock ID table entry at that location always contains
a zero. The size of the lock ID table is controlled by the SYSBOOT parameter
LOCKIDTBL.

The Resource Hash Table. The resource hash table is used to locate resource
blocks. The resource name is hashed and the result of the hash is used as an

138.1 Lock Manager Data Structures

index into the resource hash table. Note that the entries in the resource hash
table are longword addresses, not quadword queue heads; the resource hash
table contains only forward pointers to the lists. The table is located by the
global symbol LCK$GL_HASHTBL. The size of the hash table is determined
by the SYSBOOT parameter RESHASHTBL. The hashing algorithm is similar
to the algorithm used for hashing logical names (see Section 29.1.4).

Each longword entry in the resource hash table points to the first resource
block in a resource hash chain. Because the resource blocks are maintained in
a list that is doubly linked, but not circular (the resource hash table contains
no backward pointers), the list of resource blocks is termed a chain. The first
two longwords in each resource block contain the forward and backward
pointers for the resource hash chain. The last block in the chain has a
zero forward pointer. If a longword entry in the resource hash table con-
tains a zero, there are no resource blocks associated with that hash table
entry.

Figure 13-4 shows the structure of the resource hash table and its relation-
ships to hash chains.

Resource Hash Table

Type] Size
0| :LCK$GL__HASHTBL
0
0 RSB RSB RSB
> > >
RSB
0
Figure 13-4

Resource Hash Table and Hash Chains

249

VAX/VMS Lock Manager

13.1.4

13.2

13.2.1

250

Relationships in the Lock Database
There are three ways in which the lock manager can access the lock database.

* Given a resource name, the lock manager can locate the RSB through the
resource hash table. Using the state queue heads, all locks associated with
the resource can be located.

» Given a lock ID, the lock manager can locate the lock block through the
lock ID table. Using the resource address field in the lock block, the re-
source associated with the lock can be located.

» Given a process control block, the lock manager can locate the lock queue
header (at offsets PCB§L_LOCKQFL and PCB$L_LOCKQBL). Using the
lock queue links, all locks owned by a specific process can be located.

A lock with a parent lock and resource is termed a sublock. When a sublock
is requested, the new lock block will contain the address of the parent lock
block (at offset LKB$L_PARENT); the resource block associated with the
sublock will point to the parent resource (at offset RSB§L_PARENT). This
relationship is shown in Figure 13-5. When a sublock is created, the reference
count fields in the parent lock block and resource block are incremented to
account for the sublocks. A lock block or resource block cannot be deal-
located unless the reference count equals zero. By the reference count, parent
locks can tell the number of sublocks they own; they do not have a list of
their sublocks.

QUEUING AND DEQUEUING LOCKS

The lock manager becomes active only when calls are made to the $ENQ or
$DEQ system services. When the $ENQ service is called, the lock manager
attempts to grant the requested new lock or the lock conversion immedi-
ately. If the new lock or conversion cannot be granted, the lock block is
placed on the waiting or conversion queue. When the $DEQ service is called,
the lock manager dequeues the lock from the resource and then searches the
resource’s state queues for locks that are compatible with the currently
granted locks. Lock compatibility is described fully in the VAX/VMS System
Services Reference Manual. The following sections describe the action of the
$ENQ and $DEQ services.

The $ENQ System Service

When a process calls the $ENQ system service, the event flag and lock mode
are validated and the lock status block is checked for read/write access. If
these checks are successful, the request type is checked (new lock or conver-
sion). Section 13.2.2 discusses in detail the action of the lock manager for
lock conversions.

13.2 Queuing and Dequeuing Locks

Resource Hash

Table Lock ID Table
LKB
I |
RSB
- 0 al
N
~
> State Queue —
> Owner Queue —
Granted
ad RSB
RSB
hd > 0
\\' ' LKB
o Parent
Waiting | _1»-+— State Queue —
> Owner Queue —=
- Parent
—® RSB

PCB

bl Owner Queue

Figure 13-5
Relationships between Locks and Sublocks

251

VAX/VMS Lock Manager

13.2.1.1-

252

If a new lock is requested, a lock block and a resource block are allocated.
The fields of the lock block are initialized, including the fields in the ACB at
the top of the lock block. A new resource block for the resource is allocated
and initialized (even if the resource exists already). After hashing the new
resource name and finding an index into the resource hash table, the lock
manager searches the hash chain for a resource block with the same resource
name. For each resource block encountered on the hash chain, the following
fields are compared with the new resource block:

¢ Parent resource block address

» UIC group number (the UIC group number is zero for system locks)
¢ Access mode (user through kernel mode)

¢ Name space (system or group wide)

» Length of the resource name string

* Resource name string

If the resource block for the named resource is not found, the new resource
block is added to the end of the hash chain and the new lock is granted (see
Section 13.2.1.1). If the flag bit LKB§M _SYNCSTS is set, the success status
code SS$_SYNCH is returned to the caller.

If the named resource block is found in the search for the resource name,
the new resource block is deallocated and the existing one is used. The re-
quested mode in the lock block is tested for compatibility with the currently
granted locks. If the new lock is compatible, the new lock is granted. Again, if
the bit LKB$M_SYNCSTS is set, the success status code SS$_SYNCH is
returned to the caller.

In order to speed checks for compatibility with the currently granted locks,
each resource block contains a field indicating the highest granted lock mode
of all locks in the granted and conversion queue for that resource. This field is
termed the group grant mode. Note that locks on the conversion queue retain
their granted mode; it is the granted mode of these locks that is used in
calculating the group grant mode, not their requested mode. The value of the
group grant mode is stored in the resource block at offset RSB$B_GGMODE.
Because this value is calculated only when a new lock is granted and is main-
tained in the resource block, compatibility checking involves only one com-
pare operation; the lock manager does not have to spend time comparing lock
modes each time it attempts to grant a lock.

Granting a Lock. The action of granting a lock involves five steps:

1. The compatibility of the locks (group grant mode) is recomputed.
2. The lock block is placed on the granted queue.
3. The event flag is set.

13.2.1.2

13.2.1.3

13.2 Queuing and Dequeuing Locks

4. If a completion AST was specified, it is queued.
5. If a blocking AST was specified and the lock is blocking another lock
request, the blocking AST is queued.

To place a lock on the granted queue, the listheads for the granted queue are
located in the resource block at offsets RSB$L _GRQFL and RSB$L_GRQBL.
The lock block is then linked into the granted queue. The order in which
locks are placed on the queue is unimportant. The only time that the granted
queue is traversed is when the group grant mode is computed, and, in that
case, no particular order is required.

The event flag number is stored in the lock block at offset LKB$B_EFN.
The global routine SCH$POSTEEF is called to set the event flag.

ASTs and the Lock Manager. Because the lock manager must modify informa-
tion in per-process space, a special kernel mode AST routine is required to
perform some actions when granting a lock. The following operations are
performed by the special kernel mode AST routine.

» The contents of the lock status block (and optionally the contents of the
lock value block) are copied to the caller’s lock status block.

o If a completion AST has been queued and if a blocking AST is required at
this time, the blocking AST is queued.

 If the NODELETE bit is clear in the ACB, the ACB is deallocated.

If no completion AST or blocking AST routine is specified by the caller, a
special kernel mode AST is used to perform these actions. However, if an
AST routine was specified by the caller, the special kernel AST is queued as a
piggyback special kernel AST in the caller's ACB (see Section 7.2.4).

Because the ACB can contain the address of only one AST routine, special
treatment is required when a the lock manager must signal both a comple-
tion AST and a blocking AST. When the lock is granted, the AST routine field
in the lock block ACB (offset LKB$L_AST) is loaded with the the address of
the completion AST routine (stored at offset LKB§L_CPLASTADR). When
the completion AST is delivered, the contents of the ACB are saved on the
stack and the piggyback special kernel AST is delivered. Because the contents
of the ACB were saved, it can be modified now to contain the address of the
blocking AST. The special kernel mode AST routine loads offset LKB§L_AST
with the address of the blocking AST routine (stored at offset
LKB$L_BLKASTADR) and requeues the AST. When the special kernel mode
AST routine exits, the completion AST routine is executed.

Waiting Locks. Before an incompatible lock can be placed on the waiting
queue, the flag LKB§M_NOQUEUE is checked. If the flag is set, the lock is

253

VAX/VMS Lock Manager

13.2.2

254

not queued and the failure return status SS§_NOTQUEUED is returned to
the caller. If the flag is not set, the lock block is queued to the end of the
waiting queue for the resource. The queue headers for the waiting queue are
found at offsets RSB§L_WTQFL and RSB$L_WTQBL.

Lock Conversions

When a caller requests a lock conversion, the lock manager is passed the lock
ID of the lock to be converted and the new lock mode for the conversion. The
new lock mode is compared with the value of the group grant mode. If the
new lock mode is compatible with the current granted locks, the lock is
granted (see Section 13.2.1.1).

If the requested mode of the conversion is not compatible with the group
grant mode, the requested lock mode is compared to the value of the conver-
sion grant mode (stored at offset RSB$B_CGMODE). If the lock is compatible
with the conversion grant mode, the lock is granted. If the lock is incompati-
ble, it is placed at the tail of the conversion queue.

Most of the time the conversion grant mode contains the same value as the
group grant mode. The only time the conversion grant mode is different from
the group grant mode is when both of the following are true:

» The current lock mode of the lock at the head of the conversion queue is
the most restrictive lock mode for the resource.
¢ That lock is the only lock at the current mode. -

If both of these conditions are true, the granted lock mode of the lock on
the conversion queue is omitted from the calculation of the conversion grant
mode. The use of the conversion grant mode insures that lock conversions
between incompatible lock modes will not block themselves.

Suppose that a resource has one lock in its granted queue at null (NL)
mode. If a lock request is issued for the resource at protected write (PW)
mode, the group grant mode is NL mode, so the PW mode lock is granted.
When the new lock is granted, the group grant and conversion grant modes

are recalculated; both equal PW mode.

Now the PW mode lock requests a conversion to exclusive (EX) mode. If
the group grant mode was used to determine compatibility, the conversion to
EX mode could not be granted, because the PW mode lock is actually block-
ing its own conversion (remember that group grant mode includes both the
granted and conversion queues). However, the lock at the head of the conver-
sion queue has the most restrictive lock mode currently granted. In calculat-
ing the conversion grant mode, the lock at the head of the conversion queue
is omitted. Thus, the conversion grant mode is NL mode, and the conversion
can be granted.

13.2.3

13.3

13.3 Handling Deadlocks

The $DEQ System Service

When making a call to the $DEQ system service, the caller passes the lock ID
of the lock to be dequeued to the lock manager. The $DEQ system service
uses the lock ID to locate the lock block and then verifies that the caller has
the correct access mode and PID to access the lock. The resource block ad-
dress in the lock block is used to locate the resource block. If the reference
count in the lock block is zero, the lock block is dequeued from its current
state queue and is deallocated. The lock manager then checks the state queue
headers in the resource block to which the lock was queued. If all of the state
queues in the resource block are empty and the reference count is zero, the
resource block is removed from the hash chain and is deallocated.

If the resource block reference count is nonzero, the lock manager attempts
to grant locks waiting on the conversion or waiting queues.

 The lock mode of the first lock in the conversion queue is compared with
the conversion grant mode.

—If the lock is incompatible, the $DEQ system service exits and returns
control to the user.

—If the lock is compatible, it is dequeued from the conversion queue and
is granted. : ‘

—When the lock is dequeued from the conversion queue, a new lock takes
its place as the first lock on the conversion queue.

This step is repeated for the new first entry in the conversion queue until
either the conversion queue is emptied or an incompatible lock is found
and the lock manager exits.

+ If the conversion queue is emptied, the lock mode of the first lock in the
waiting queue is compared against the group grant mode.

—If the lock is incompatible, the $DEQ system service exits and returns
control to the user.

—1If the lock is compatible, it is dequeued from the waiting queue and
granted.

—When the lock is dequeued from the waiting queue, a new lock takes its
place as the first lock on the waiting queue.

This step is repeated on the new first entry in the waiting queue until
either the waiting queue is emptied, or an incompatible lock is found.

HANDLING DEADLOCKS

A deadlock occurs when several locks are waiting for each other in a circular
fashion. The VAX/VMS lock manager resolves deadlocks by choosing a par-
ticipant in the deadlock cycle (a lock request that is waiting on the conver-

255

VAX/VMS Lock Manager

13.3.1

13.3.2

13.3.2.1

256

sion or waiting queue) and refusing that participant’s lock request. The par-
ticipant that is chosen to break the deadlock is termed the victim. The
victim’s lock or conversion request fails and the error status code
SS$_DEADLOCK is returned in the victim’s lock status block.

There are three parts to deadlock handling in the VAX/VMS lock manager.

o The lock manager suspects that a deadlock exists.
¢ A deadlock search proves that a deadlock actually exists.
¢ The victim is chosen.

Initiating a Deadlock Search

Because deadlock detection is a time-consuming task, it is not desirable to

search for deadlocks every time a lock or conversion is requested. It is far

better to search for a deadlock only when the system suspects that a deadlock
exists. The VAX/VMS lock manager searches for a deadlock only when a
process has been waiting for a resource for a specified amount of time. The
SYSBOOT parameter DEADLOCK_WAIT specifies the amount of time to
wait before initiating a deadlock search.

Whenever a lock is placed in the conversion or waiting queue, the lock
block is also queued to the lock manager timeout queue (located by the global
symbol LCK$GL_TIMOUTQ). The AST queue fields in the lock block are
used to link the lock block into the timeout queue. When a lock must wait
on the conversion or waiting queue, the value in DEADLOCK_WAIT is
added to the current absolute system time (EXE$GL_ABSTIM), and the re-
sult is stored in the lock block at offset LKB$L_DUETIME.
(LKB$L_DUETIME is actually a double use of the special kernel AST routine
address field, LKB$L_KAST.)

Once every second, the VAX/VMS operating system executes the routine
EXE$TIMEOUT. In addition to checking for device timeouts, this routine
checks to see if the the first entry in the lock manager timeout queue has
timed out. The value in LKB§L_DUETIME is compared with the absolute
system time. If the due time has not been reached, the routine exits. How-
ever, if the due time has passed, a deadlock search is initiated.

Deadlock Detection

There are two separate forms of deadlock that can occur in the VAX/VMS
lock manager. Each requires a different form of detection. One form (a con-
version deadlock) is easily detected, because it is restricted to a single re-
source. Multiple resource deadlocks require a more complex search to locate.

Conversion Deadlocks. Conversion deadlocks occur when there are at least
two locks in the conversion queue for a resource. When the requested mode

13.3.2.2

13.3 Handling Deadlocks

of the first lock in the conversion queue is incompatible with the granted
mode of the second lock in the conversion queue, a deadlock exists.

For example, assume that there are two protected read (PR) mode locks on a
resource. One PR mode lock requests a conversion to exclusive (EX) mode.
Because PR mode is incompatible with EX mode, the conversion request
must wait. While the first conversion request is waiting, the second PR mode
lock also requests a conversion to EX mode. Now, the first lock will never get
granted because its requested mode (EX) is incompatible with the second
lock’s granted mode (PR). The second conversion request will never get
granted because it is waiting behind the first.

In detecting a conversion deadlock, the search begins with the lock block
indicated by the lock manager timeout queue. The state queue backward link
is used to locate the previous lock in the conversion queue. The granted
mode of the previous lock is compared with the requested mode of the lock
that timed out. If the modes are compatible, the previous lock in the conver-
sion queue is located using the state queue backward link. The test is re-
peated until an incompatible lock is found or the beginning of the queue is
found.

If an incompatible lock is found, a deadlock exists and a victim is selected
(see Section 13.3.3). If the beginning of the queue is reached, a conversion
deadlock does not exist, and a search for a multiple resource deadlock is
initiated.

Multiple Resource Deadlocks. Multiple resource deadlocks occur when a cir-
cular list of processes are each waiting for one another on two or more re-
sources.

For example, assume Process A locks Resource 1 and Process B locks Re-
source 2. Process A then requests a lock on Resource 2 that is incompatible
with B’s lock on resource 2, and thus, Process A must wait. Note that at this
point, a circular list does not exist. When Process B then requests a lock on
Resource 1 that is incompatible with A’s lock on Resource 1, it must wait. A
multiple resource deadlock now exists. Processes A and B are both waiting
for each other to release different resources. These steps are shown in Figure
13-6. In the figure, locks that are blocking a resource (incompatible with
waiting locks) are shown beneath the resource block; locks that are waiting
on a resource are shown above the resource block.

This type of deadlock normally involves two or more resources, unless one
process locks the same resource twice. (Usually a process will not lock the
same resource twice; however, if the process is multithreaded, double
locking may occur. Double locking also represents a multiple resource
deadlock.)

To verify that a multiple resource deadlock exists, a recursive algorithm is

-used. The approach’is summarized as follows:

257

VAX/VMS Lock Manager

258

Q

Resource 1 Resource 1 Resource 1
B B B
Resource 2 Resource 2 Resource 2

'

Figure 13-6
Example of a Deadlock Occurring

» A waiting lock will be waiting for locks owned by other processes.

* Any of the other processes might themselves have waiting locks.

« Those waiting locks will be waiting for locks owned by other blocking
processes.

In implementation, the lock manager starts with the lock that timed out on
the lock manager timeout queue. The address of the PCB associated with the
lock that timed out is saved and the multiple resource deadlock routine
(SEARCH_RESDLCK)] is called. If a lock with the same owner PCB can be
found blocking a resource, a deadlock exists.

Each time SEARCH_RESDLCK is called, a stack frame is pushed onto the
stack. Each stack frame contains information on the current position in the
search. Figure 13-7 shows the the contents of the stack frame.

Each call to SEARCH_RESDLCK specifies the address of a waiting lock
block. The resource associated with the lock block is located and the re-
source state queues are searched for lock blocks whose granted or requested
lock mode is incompatible with that of the waiting lock block. If an incom-
patible lock block is found, that lock is considered to be blocking the waiting
lock block. : :

When a blocking lock is found, the owner PCB of the blocking lock is
located. If the owner PCB is the same as the PCB of the lock that initiated the
deadlock search, the list is proven to be circular and a deadlock exists. A
victim is chosen (see Section 13.3.3 for details on victim selection), and dead-

13.3.2.3

13.3 Handling Deadlocks

Saved R2

Saved R3

Saved R4 (PCB + LOCKQFL)

Saved RS

Saved R6 (Address of LKB)

Return Address

Figure 13-7
Stack Frame Built by the Lock Manager

lock detection returns control to EXE$TIMEOUT. If the PCB of the blocking
lock is not the same as the saved PCB, another call is made to
SEARCH_RESDLCK, specifying the address of the new blocking lock block.

Each time SEARCH_RESDLCK is called, it searches the state queues asso-
ciated with the specified lock block, to see if the lock block is waiting on a
resource.

When all the state queues for a given resource have been searched and no
blocking lock has been found for that lock block, the routine removes the
stack frame and returns control to its caller. If the caller itself was
SEARCH_RESDLCK, the previous search for blocked locks on the resource
can now be resumed.

A process bitmap is maintained by the VAX/VMS lock manager in order to
reduce the number of repeated searches for blocking locks on a particular
process. Each time a new blocking PCB is located, a bit corresponding to that
process is set. If the bit for the PCB is set already, the search for locks block-
ing that process is terminated, because its locks have been searched already.

Unsuspected Deadlocks. Note that the use of the process bitmap speeds the
location of the suspected deadlock, but prevents the accidental detection of
unsuspected deadlocks. An unsuspected deadlock is one that exists within
the lock management database, but has not been detected so far, because
none of its locks have timed out on the lock manager timeout queue. This
behavior is acceptable in the VAX/VMS lock manager for the following rea-
sons:

» Deadlocks should be rare.

 Finding a process a second time in a deadlock search does not necessarily
indicate that an unsuspected deadlock exists. ‘

» The occurrence of unsuspected deadlocks should be rarer still.

259

VAX/VMS Lock Manager

260

* Any deadlock search that does not find a deadlock is a waste of processor
time.

* The unsuspected deadlock will become a suspected deadlock when one of
its own locks times out on the lock manager timeout queue and a deadlock
search is initiated on its behalf.

Figure 13-8 shows two deadlocks. One deadlock is suspected and a search is
in progress (the path with the heavy arrows); the other is unsuspected. This
figure is an extension of the deadlock cycle shown in Figure 13-6. In this case,
the deadlock search was initiated as a search for the locks blocking Process A.
Because Process C is the first process found granted for Resource 2, it was the
first lock that is investigated for participation in the deadlock cycle. Process
C is waiting for Resource 3. The bit corresponding to Process C is set in the
process bitmap. The context of the search is saved on the stack and
SEARCH_RESDLCK is called to search for processes blocking Process C’s
lock.

Process D has a blocking lock on Resource 3. Process D is also waiting for
Resource 2. The bit corresponding to Process D is set in the process bitmap.
The context of the search is saved on the stack and SEARCH_RESDLCK is
called to search for processes blocking Process D’s lock. Process C has a
blocking lock on Resource 2. This situation is a deadlock. However, because
the bit corresponding to Process C was set in the process bitmap, the dead-
lock search for Process C is abandoned. One by one the stack frames are
removed and the search whose context was saved continues. Eventually the

7 7

Resource 3 Resource 1

Resource 2

Figure 13-8
Suspected and Unsuspected Deadlocks

13.3.2.4

13.3 Handling Deadlocks

deadlock search will continue with locks blocking Resource 2 and the dead-
lock cycle of Processes A and B will be discovered.

Eventually one of the locks requested by Processes C and D will time out,
and a deadlock search will be initiated for that deadlock.

Example of a Search for a Multiple Resource Deadlock. Figure 13-9 shows a
series of locks that result in a deadlock. The heavy arrows in the figure show
the path of the deadlock cycle. _

Assume that the lock owned by Process A timed out on the resource timer
queue. Process A is waiting for a lock on Resource 1. The deadlock search
routine saves Process A’s PCB and calls SEARCH_RESDLCK, passing the
address of Process A’s LKB.

The incompatible lock on Resource 1 is owned by Process C. Process C has
no other waiting locks, so SEARCH_RESDLCK moves on to the next incom-
patible lock. This lock is owned by Process D. When SEARCH_RESDLCK
follows the PCB queue for Process D, it finds that this process is waiting for a
lock on Resource 3.

SEARCH_RESDLCK calls itself, passing the address of the lock block
owned by process D. The new invocation of SEARCH_RESDLCK pushes a
stack frame detailing the position of the search on Resource 1, and
SEARCH_RESDLCK starts to search for locks on Resource 3 that are incom-
patible with Process D’s lock. Resource 3 has two incompatible locks, owned

7

Resource 1

i

= 1

Resource 3 Resource 2
é él
Figure 13-9

Example of a Multiple Resource Deadlock

261

VAX/VMS Lock Manager

13.3.3

262

by Processes E and F. Neither of these processes is waiting for a lock, so the
search on Resource 3 terminates. The contents of the stack frame are restored
and SEARCH_RESDLCK returns to its previous invocation. The search for
processes blocking Process A resumes.

The next incompatible lock found on Resource 1 is owned by Process G.
Process G has no waiting locks, so the search continues with Process B. The
PCB queue for Process B shows that it is waiting for a lock on Resource 2.

Again, SEARCH_RESDLCK calls itself, passing the address of the lock
block owned by Process B. The new invocation of SEARCH_RESDLCK
pushes a new stack frame onto the stack, and SEARCH_RESDLCK finds that
Process D owns a lock that is incompatible with the lock owned by process B.
However, because locks owned by Process D have been searched already (the
bit for Process D is set in the lock manager process bitmap), the search moves
on to the next process.

The next incompatible lock is owned by Process A. Because the PCB ad-
dress of Process A matches the PCB address that was saved initially, the list
is proven to be circular and a deadlock exists. Now a victim must be chosen.

Victim Selection

Because conversion deadlocks involve only two processes, the victim selec-
tion routine simply chooses the process with the lower deadlock priority
(stored in the PCB at offset PCB$L_DLCKPRI). ‘

For multiple resource deadlocks, the victim selection routine is only
slightly more complicated. The frames that were pushed onto the stack in
each recursion into the deadlock location routine are searched for the lowest
deadlock priority. Each time a lower deadlock priority value is found, the
priority and the owner PCB are noted. If a deadlock priority of zero is found,
that process is immediately chosen as the victim. When all frames have been
searched, or a deadlock priority of zero is found, the stack pointer is restored
and the process whose PCB had the lowest deadlock priority is chosen as the
victim.

Note that the current implementation of the VAX/VMS operating system
initializes the deadlock priority of all new processes to zero. Thus, it is not
possible to assume which process will be chosen as the victim. With the
current implementation, victim selection depends primarily on timing. How-
ever, other applications or implementations of the VAX/VMS operating sys-
tem may use the deadlock priority to determine victim selection. If other
applications need to use the deadlock priority scheme, they must write a
privileged shareable image that accesses the PCB and loads a value into the
deadlock priority field (PCB$L_DLCKPRI).

A last note on victim selection may be of interest to users intending to
implement a binary victim selection. In this search, specific processes are

18.3 Handling Deadlocks

always victims (their deadlock priority is zero); other processes are never
selected as victims (their deadlock priority is always set to a predetermined
value). If this victim selection scheme is used, the implementation must
make sure that at least one process exists in a deadlock cycle that can be
chosen as the victim to break the deadlock. Otherwise, the victim will be
chosen at random. '

263

PART IV/Memory Management

14

14.1

Memory Management Data
Structures

. . . but there’s one great advantage in it, that one’s memory
works both ways.

—The Queen in Lewis Carroll, Through the Looking Glass

Virtual memory support in the VAX/VMS operating system is implemented
by several distinct pieces of the executive. The translation-not-valid fault
handler (pager) is the exception service routine that responds to page faults
and brings process virtual pages into memory on behalf of a process. The
swapper process keeps the highest-priority computable processes in physical
memory. In order to keep processes in memory, the swapper is responsible for
shrinking process working set sizes and removing processes that are blocked
for some reason in order to gain more pages of memory. Several system serv-
ices allow a program to exercise some control over its behavior in memory
while it is executing.

The system maintains many tables, some process-specific and others sys-
tem-wide, that must be manipulated by the major components of the mem-
ory management subsystem. Before these components are described in the
following chapters of this section, this chapter will describe the tables used
by the components. The following structures are presented and described in
this chapter:

» The process-specific data, found mostly in the process header.

* The data that is used to account for physical memory, the so-called PFN
database. , - o A ,

+ The special structures that are used for system and global pages.

¢ The structures that are required to keep track of processes in memory.

+ The structures that are required to swap processes out of memory.

« The structures that are required to describe the page and swap files.

* The structures that support the MA780 shared memory.

PROCESS DATA STRUCTURES_(PROCESS HEADER)

- The most important process-specific data structures used by the memory

management subsystem are contained in the process header (Figure 14-1).
The process header contains all of the process-specific data that can be re-

‘moved from memory when a process is outswapped. The address of the proc-

ess header is stored in the software PCB.

267

Memory Management Data Structures

268

Contains pointers to variable
portions of the Process Header.

Contains valid page table entries
that can become invalid.

Describes pages in image file.

Reserved for expansion of the
working set list.

Describes pages in the process
header itself.

Describes the virtual address
space used by the process.

Figure 14-1

A
A\

Process Header (PHD)

Fixed Portion of Process Header

Working Set List

b

|
|
|

\X

) (-

N\
AN
Process Section Table

Empty Pages

Arrays for Process Header Pages -

/”’

PO Page Table

//

A\

P1 Page Table

Discrete Portions of the Process Header

Figure 14-1 shows the portions of the process header that are of special
interest to memory management. Chapter 26 describes how the sizes of the
pieces of the process header are related to SYSBOOT parameters. The smaller
figure to the right of the process header shows the relative sizes of the por-
tions of the process header on a typical system. The following pieces of the

process header are of interest to this discussion:

» The PO and P1 page tables are the largest contributors to the size of the
process header and contain the complete description of the virtual address

space currently being used by the process.

» The working set list describes the subset of process page table entries that
“are currently valid but can become invalid in the future. PFN-mapped
- pages and pages in shared memory are valid for the entire time that they

are mapped and do not appear in the working set list.

» The process section table contains information used by the pager when a

page resides in an image file.

14.1.1

14.1 Process Data Structures (Process Header)

» Because the sizes of the different pieces of the process header vary from
system to system, there must be some method of determining where each
piece is located. Pointers or indexes in the fixed portion of the process
header serve this purpose. Process accounting information, some of which
is used by the pager or the swapper, is also located in this area.

* There are several arrays that contdin information about each process
header page. This information is used by the swapper when it is necessary
to outswap the process header.

Process Page Tables

The process page tables are the first memory management data structures
encountered by either hardware or software. The contents of the page table
entries are used by the hardware to translate a virtual address to its physical
counterpart. When translation fails to determine the physical location of a
page, the page table entries are used by the page fault handler to locate the
invalid page.

Figure 14-2 shows the portion of the process header devoted to the PO and
P1 page tables. The figure also shows those fields in the fixed portion that are
used to locate different pieces of the PO or P1 page table.

» The PO page table contains page table entries for all pages currently defined
in PO space. The number of pages in PO space is stored in offset
PHDS$L_POLR (and moved into PR$_POLR by LDPCTX when the process
is selected for execution). The virtual page number of the first unmapped
page in PO space (the index of the first nonexistent POPTE) is stored at
offset PHD$L _FREPOVA.

¢ In a similar manner, the P1 page table contains page table entries for the
pages currently defined in P1 space. Like P1 space itself, the P1 page table

- grows toward smaller addresses. To simplify the address translation logic,
the P1 base register contains the virtual address of the page table entry that
would map virtual address 40000000. The P1 length register contains the
number of P1 page table entries that do not exist. The virtual page number
of the high address end of the unmapped portion of P1 space (Figure 14-2) is
stored at offset PHD$L_FREP1VA.

* The number of page table entries available for the expansion of either PO
space or P1 space is stored in offset PHD$L_FREPTECNT. The number of
entries here depends on the SYSBOOT parameter VIRTUALPAGECNT,
minus the current sizes of the PO and P1 page tables.

- When a process references a virtual address that is not valid, it incurs a page

fault, an exception that transfers control to the page fault handler. One of the
exception-specific parameters pushed onto the stack by the page fault handler
is the invalid virtual address. This address enables the pager to retrieve the

269

Memory Management Data Structures

270

Process Header (PHD)
PCB$L__PHD > J,
‘ : ~
1 7
FREPOVA=POBR+4 x POLR FREPOVA -
O FREPTECNT
FREP1VA=P1BR+4x P1LR FREP1VA *—
;E =
These four values —
are stored in the POBR hll
Hardware PCB, a ————0 PoLr %
part of the fixed P1BR L
portion of the J PILR X
process header.
/B ;F
PO Page Table
(Maps Virtual Addresses from
0 to FREPOVA-1)
Room for Expansion of Either
L PO Page Table _Y
or
P1 Page Table
P1 Page Table
(2Zq —P1LR) Entries (Maps Virtual Addresses from
(FREP1VA+2004¢) to 7FFFFFFF)

End of Process Header

Figure 14-2
Process Page Tables

page table entry for the invalid page in order to determine where the page is

located.

The page table entries for invalid pages are set up in such a way that they
contain either the location of the page or a pointer to further information
about the page. Figure 14-3 shows the different forms that an invalid page
table entry can take. A valid page table entry is included for comparison.
Notice that bits <31> (valid bit), <30:27> (protection code), and <24:23>
(owner access mode) have the same meaning in all possible forms of page
table entry. Table 14-1 lists the symbolic and numeric forms of possible pro-
tection codes.

The pager uses bits <26> and <22> in the invalid page table entry to
distinguish the different PTE forms. (Because protection checks are made
before the valid bit is checked, PTE <30:27> must contain a protection code,
even when the valid bit is clear.] The various forms are described in the
following paragraphs, starting with the entry at the bottom of the figure.

14.1.1.1

14.1.1.2

14.1 Process Data Structures (Process Header)

Modify Bit - Set by Hardware on Write or
Modify Access to Page
Window Bit - Indicates Page Mapped by PFN

31 30 27 2625 24 23 22 21 201918 17 16 15 0
. Owner .
. Protection Page Is Active
Vi
alid PTE 1 Code |M Ah:g:zs w Page Frame Number (PFN) and Valid
.
0 . Demand Zero
0 0 o Page
0 0 0 Page Frame Number (PFN Page s in
ge Frame Number (PFN) Transition
Different] . Owner
Forms of o|Protection [o N/ 4 cess | 1 Invalid Global
Invalid PTEs Code Moda Global Page Table Index Page
(See 1 0 D g Page Is in
rable 14-1 Page File Virtual Block Number Page File
w g ¢ p) Page Is in
0 1 1 R[g|R| Process Section Table Index Image File
\ T|lo|F
31 30 27 26 25 24 2322 212019181716 15 0
|—'> TYPO Bit - Low Order Bit of PTE Type
TYP1 Bit - High Order Bit of PTE Type
» Valid Bit - Page Table Entry Valid Bit
Figure 14-3

Different Forms of Page Table Entry

Process Section Table Index. When a page is located in an image file, the page
table entry contains an index into the process section table. This index lo-
cates a process section table entry, which contains information about where
the image file is located and which block in the image file contains the fault-
ing page. Control bits in the process section table entry indicate whether the
section is a global section <0> (process section table entries always have this
bit clear), whether it is writeable <3>, and whether the section is copy on
reference <1>. Process section tables are discussed in Section 14.1.3 and
further in Chapter 15.

Page File Virtual Block Number. When a virtual page resides in a page file, its
associated page table entry contains the virtual block number within the
page file where the page is located. The page file that is used by this process is
indicated by the field PHD$B_PAGFIL in the process header. PHD$L_
PAGFIL, a longword field that contains zero in its low-order three bytes and
overlaps PHD$B_PAGFIL in the high-order byte, is a skeleton for any page
table entry that acquires a page file backing store address. A virtual block

271

TLT

Table 14-1: Memory Access Protection Codes in Page Table Entries

Protection

No Access Allowed

Reserved

Kernel Write (Kernel Read)
Kernel Read (No Write)

User Write (User Read)

Executive Write (Executive Read)
Executive Read, Kernel Write
Executive Read (No Write)
Supervisor Write (Supervisor Read)
Supervisor Read, Executive Write
Supervisor Read, Kernel Write
Supervisor Read (No Write)

User Read, Supervisor Write
User Read, Executive Write

User Read, Kernel Write

User Read (No Write)

SYMBOL = binary value

PRT$C_NA = 0000
PRT$C_RESERVED = 0001
PRT$C_KW = 0010
PRT$C_KR = 0011
PRT$C_UW = 0100
PRT$C_EW = 0101
PRT$C_ERKW = 0110
PRT$C_ER = 0111
PRT$C_SW = 1000
PRT$C_SREW = 1001
PRT$C_SRKW = 1010
PRT$C_SR = 1011
PRT$C_URSW = 1100
PRT$C_UREW = 1101
PRT$C_URKW = 1110
PRT$C_UR = 1111

Protection Mask
PTE$SC_NA = 00000000

PTE$C_KW = 10000000
PTE$C_KR = 18000000
PTESC_UW = 20000000
PTE$C_EW = 28000000
PTE$SC_ERKW = 30000000
PTE$C_ER = 38000000
PTE$C_SW = 40000000

PTE$C_SREW = 48000000
PTE$C_SRKW = 50000000
PTE$C_SR = 58000000
PTE$C_URSW = 60000000
PTE$C_UREW = 68000000
PTE$C_URKW = 70000000
PTE$SC_UR = 78000000

Note that the following rules govern memory access protection:
* If a given access mode has write access to a specific page, then that access mode also has read access to that page.
* If a given access mode can read a specific page, then all more privileged access modes can read the same page.

* If a given access mode can write a specific page, then all more privileged access modes can write the same page.
Access that is implied (rather than explicitly a part of the symbolic protection name) is included in parentheses.

$2IN30111S VIV(J 1UWIIVUD N AIOUIIN

14.1.1.3

14.1.1.4

14.1.1.5

14.1.2

14.1.2.1

14.1 Process Data Structures (Process Header)

number of zero indicates that a block in the page file will exist for the page,
but has not yet been reserved.

Global Page Table Index. An invalid process page mapped to a global page
contains an index into the global page table, where an associated global page
table entry contains further information used to locate the page. The global
page table is described in Section 14.3. Page faults involving global pages are
discussed in Chapter 17.

Page in Transition. There are several different situations where a virtual page
can be associated with a physical page, and yet the page is not valid, not in
the process working set. For example, when a page is removed from a process
working set, it is not discarded but put on the free page list or modified page
list. Such a page is called a transition page. The process page table entry
contains a PEFN, but the valid bit is clear. The two type bits (PTE<26> and
PTE<22>) are also clear.

Transition pages are described by the entries for the physical page found in
the PFN database (see Section 14.2). In particular, the PFN STATE array des-
ignates the particular transition state the physical page is in.

Demand Zero Pages. A special form of the transition page table entry format
has a zero in the PFN field. This zero indicates a special form of page called a
demand-allocate zero-fill page or demand zero page for short. When a page
fault occurs for such a page, the pager allocates a physical page, fills the page
with zeros, inserts the PFN into the PTE, sets the valid bit, and dismisses the
exception. (For this reason, and a second reason explained in Section 14.2.5,
physical page zero cannot be used by memory management.)

Working Set List

The working set list contains the subset of a process’s page table entries that
are currently valid. The working set list is used by the pager and swapper to
determine which virtual page to discard (to mark invalid) when it is neces-
sary to take a physical page away from the process. The swapper also uses the
working set list to determine which virtual pages need to be written to the
swap file when the process is outswapped.

Figure 14-4 shows the working set list in the process header and the various
fields in the fixed portion that locate different pieces of the list. Each of these
fields, including the quota fields, contains a longword index (multiply con-
tents by four or use context index addressing) to the working set list entry in
question.

Division of the Working Set List. The working set list consists of three pieces:
the permanently locked portion of the working set list, the pages that are

273

Memory Management Data Structures

274

Process Header (PHD)
PCBS$L__PHD >
WSAUTH WSLIST
WSDYN WSLOCK
These values are longword
WSLAST WSNEXT indexes from the top of the
process header.
WSEXTENT WSAUTHEXT
DFWSCNT WSQUOTA
WSSIZE O-
P Rest of Fixed Portion P,
1 of Process Header r
PHD+ 4 x WSLIST > 3
Pages Permanently
Locked in
Working Set
PHD + 4 x WSLOCK >
Pages Locked by
User Request ><_ Working Set List
(SLKWSET)
PHD +4 x WSDYN: >
PHD + 4 x DFWSCNT——> Working Set
List
PHD + 4 x WSNEXT——1 Dynamic Space
PHD + 4 x WSLAST—>~ /
Room for Expansion of WSL
PHD + 4 x WSQUOTA >
PHD+4 x WSEXTENT P
Rest of Process Header

Figure 14-4
Working Set List

locked by user request, and the dynamic portion of the working set. The
quota fields in the fixed portion of the process header determine how large
the working set list may grow in response to different working set size adjust-
ments. The contents of the three pieces are as follows:

» The permanently locked portion of the working set list {from WSLIST to
WSLOCK] contains the pages that are forever a part of the process working
set. These include the following structures:

—The kernel stack.

—The P1 pointer page.

—The P1 page table page that maps the kernel stack and the P1 pointer
page.

—The P1 page table page that maps the P1 window to the process header.

—The process header pages that are not page table pages. These include

14.1 Process Data Structures (Process Header)

the fixed portion, the working set list, the process section table, and the
process header page arrays.

» The portion of the working set list between WSLOCK and WSDYN con-
tains all pages that are locked by user request, specifically with the Lock
Pages in Working Set or Lock Pages in Memory system services.

o The dynamic portion of the working set list is the portion that is used for
page replacement. It is delimited by WSDYN and WSEXTENT. The entry
that was just put into the table is pointed to by WSNEXT. The replacement
algorithm, explained in detail in Chapter 15, is a modified first-in/first-out
scheme.

The current size of the working set list is WSSIZE. The actual number of
pages that a process is currently occupying is the sum of the process private
page count (PCB$W_PPGCNT) and the global page count (PCB$W_
GPGCNT).

Normally, the maximum size to which the working set can grow is
WSQUOTA. However, if there are more than BORROWLIM pages on the free
page list, the working set list can be extended up to WSEXTENT (at quantum
end). If there are more than GROWLIM pages on the free page list, pages can
be added to a process’s working set above WSQUOTA (on resolution of a page
fault). WSQUOTA can be altered in interactive and batch jobs by the SET
WORKING _SET/QUOTA command. Part of the image reset logic, invoked
at image exit, resets the end of the working set list to DFWSCNT. The mean-
ings of the various working set list quotas and limits are summarized in
Table 16-1.

The format of a working set list entry (WSLE) is shown in Figure 14-5.
Notice that the virtual page number is contained in the upper 23 bits, in the
same location that virtual page numbers are found in virtual addresses. The
placement of the virtual page number allows the WSLE to be passed to sev-
eral utility routines as a virtual address, where the byte offset bits (WSLE
control bits) are not looked at. The meanings of the various control bits are as
follows:

<0> When the WSL Entry Valid bit is clear, the working set list
entry can be used without removing a page from the work-
ing set.

<1:3> The Page Type field (a duplicate of the contents of the PFN
TYPE array) distinguishes pages that require different action
when removed from a process working set.

<4> The Page Locked in Memory bit indicates that this page is
locked into physical memory with the Lock Pages in Mem-
ory system service. Such pages are also locked into the proc-
ess working set. (The working set lock bit is not set but the
WSLESs are moved into the portion of the working set list
that contains pages locked by user request.)

275

Memory Management Data Structures

14.1.3

276

31 9 8 7 6 54 3 10

Virtual Page Number

Saved Modify Bit <¢——

Page Locked in Working Set ~¢————
Page Locked in Memory ~——
Page Type

| WSL Entry Valid <&

* Page Type
Process Page
System Page
Global Read-Only Page
Global Read/Write Page
Process Page Table Page
Global Page Table Page

1%
nHhWN-=-O %

Figure 14-5
Format of Working Set List Entry

<5> The Page Locked in Working Set bit indicates those pages
that are permanently or dynamically locked into the process
working set. The only pages that can be dynamically locked
are page table pages that map currently valid pages. (Pages
that are permanently locked or locked into the working set
by user request also have this bit set in their working set list
entries.)

<8> The Saved Modify bit in the WSLE is used when the process
is outswapped to record the logical OR of the modify bit in
the page table entry and the saved modify bit in the PFN
STATE array.

Process Section Table

The process section table contains process section table entries (PSTEs).
PSTEs are data structures used to locate image sections within image files.
The location of the process section table within the process header is pic-
tured in Figure 14-6. Offset PHD$L_PSTBASOFF contains the byte offset to
the bottom of the process section table. All process section table entries
within the table are then located through negative longword indexes from the
bottom of the PST.

The PSTEs are maintained in two doubly linked lists. One list of PSTEs
contains those that are in use. The negative index PHD§W _PSTLAST points
to the most recent addition to the in-use list. Figure 14-6 shows a hypotheti-
cal list of free and allocated PSTEs; the allocated PSTEs are shaded. When a
section is deallocated, the PSTE that mapped the section is placed on a free
list so that it can be reused. The negative index PHD$W _PSTFREE points to

PCB$L__PHD

14.1 Process Data Structures (Process Header)

PSTLAST and PSTFREE are
both negative longword
indexes from the bottom
o Process Header (PHD) of the process section table.
/
i 1
)) //
PSTBASOFF X% //
@—-x PSTFREE | PSTLAST X A
/
»
= ;; //
/
/
X PSTBASMAX l
/
x Rest of Fixed Portion, A /
j Working Set List 17
Room for Expansion of PST)
Most Recently Freed PSTE %
Process Section Table
\\\
Empty Pages S~
~ ~ 3
Process Header Page Arrays, The process section table
PO Page Table, P1 Page Table cannot extend beyond
1 this point.
~

Figure 14-6

Process Section Table

the most recent addition to the free list. The first longword in the PSTEs on
the free list contains a negative index that can be used to find the previous
element on the free list. When sections are created, the allocation routine for
PSTEs first checks the free list. If there are no free PSTEs, a new PSTE is
created from the expansion region between the working set list and the PST.

When it is necessary to expand the working set list into the area already
occupied by the process section table, space is allocated from the empty page
area (if it exists). Then the entire PST is moved into the allocated space and a
new value of PSTBASOFF is inserted into the fixed portion of the process
header. All other references to individual process section table entries are
unaffected by this change. For more information on expansion of the working
set list see Chapter 15.

The format of a process section table entry is pictured in Figure 14-7. The
following steps are used to locate a block in an image file:

277

8.7

Pointer to Channel Control Block

Backward Link Forward Link
Index Index
E:ﬂ; Starting Virtual
Cluster Page Number (22 bits)

Address of Window Control Block

Base Virtual Block Number

Control

Count of PTEs Referencing
This Section

Number of Pages in
This Section

Figure 14-7
Layout of Process Section Table Entry

for This Section /

Flags /

15

Control Flags Word in Process/Global Section Table Entry
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LD | D[]]]

— Copy on Reference
— Demand Zero
' Wiriteable

__’ Shared Memory Global

» Access Mode for Writing

» Access Mode of Section

» Permanent

—3» Sy Global (Set)
Group Global (Clear)

§2IN301.13S DIV (] IUIWASVUD ATOWIW

14.1.4

14.2

14.2.1

14.2 PEN Database

1. The WCB address points to the window control block for the image file.
The WCB contains the mapping information that relates virtual block
numbers in a file to logical block numbers on a volume.

2. The starting virtual page number for the section, when subtracted from
the virtual page number of the faulting page, gives the page offset into the
section. :

3. The starting virtual block number of the section is added to the difference
computed in step 2 to give the virtual block number of the faulting page
within the image file.

Process Header Page Arrays

When a process header is outswapped, some information about each process
header page must be stored in the outswapped process header. The process
header page array portion of the process header provides an area where this
information can be stored (Figure 14-8). Two of the arrays, the BAK array and
the WSLX array, save information from the PEN database about each process
header page in the working set. The other two arrays {locked WSLE count and
valid WSLE count) keep statistics about each page table page. These four
arrays are described in greater detail in Chapter 17.

PFN DATABASE

The memory management data structures include information about the
available pages of physical memory. The fact that this information must be
available while the page is being used prevents this information from being
stored in the page itself. In addition, the caching strategy of the free page list
and modified page list requires physical page information to be available even
when pages are not currently active and valid. A portion of the nonpaged
executive is set aside for this accounting data, called the PFN database.

The PFN database, unlike many of the other executive data structures, is
not a table-oriented structure. Rather, the same item of information about all
physical pages is stored in successive elements of an array (see Figure 14-9).
The page frame number is then used as an index into each array. Table 14-2
lists each item of information in the PFN database, including the global name
of the pointer to the beginning of each array.

PTE Array

When a physical page is assigned to another use, the pager must be able to
find the PTE that maps the page. The PFN PTE longword array contains the
system virtual address of the page table entry that maps each physical page.

279

Memory Management Data Structures

14.2.2

280

Process Header (PHD)
PCB$L__PHD >
Z x)
~
WSLX L BAK
“ Pl
PTWSLELCK
> Fixed Portion of
PTWSLEVAL Process Header
PTCNTVAL PTCNTLCK
PTCNTMAX PTCNTACT -
5 Rest of Fixed Portion, L
a WSL, PST, T
Empty Pages J
PHD+4x WSLX — 4
(Longword Index) WSL Index Save Area
' (One Word for Each
Process Header Page)
PHD +4 x BAK >
(Longword Index) Backup Address Save Area P Head
(One Longword for Each P’°°°:s eader
Process Header Page) age Arrays
PHD + 4 x PTWSLELCK ———» (Eight bytes per
(Byte Index) Locked WSLE Counts Array process header
(One Byte per Page Table Page) page, rounded up
(—1->None) to page boundary)
PHD + PTWSLEVAL -
(Byte Index) Valid WSLE Counts Array
(One Byte per Page Table Page)
(—1—>None)
J
PO and P1 Page Tables
// //
Figure 14-8

Process Header Page Arrays

PEN PTE array elements for global pages point to the global page table
entries.

BAK Array

The PFN BAK longword array stores the original contents of the PTEs. When
a physical page is assigned to another use, all links with the PTE that cur-
rently maps the page must be broken. The PTE is set to indicate where the
contents of the page can be obtained the next time that they are needed. The
BAK array element contains the information that goes back into the PTE.
The PFN PTE array element is used to locate the PTE that must be altered.
Figure 14-10 shows the possible contents of a PFN BAK array element. In
terms of page table entry contents (see Figure 14-3), the only forms of PTE
that can go into the BAK array are a process section table index or a page file
virtual block number.

187

PFN Data for
Process or Global
Page in Process

Working Set
PFN . - - -
> BAK - ‘WSLX .| | SHRONT TYPE
< ’y” 71 z X fr g2 22 2z Z
L BAK BLINK - FLINK TYPE
Array Array Array Array
of of of of
Longwords Words Words Bytes PFN Data for Page
on Free or Modified
Page List
Both of these arrays
are overlaid.
Figure 14-9
PFN Database Arrays

9sDqUIVJ Ndd ¢S'VI

Memory Management Data Structures

Table 14-2: PEN Database Arrays

Global Address of
Pointer to Size of Array
Array Element Contents Start of Array Element Comment
System Virtual Address PFN$AL_PTE Longword Array
of Page Table Entry
Backing Store Address PFNSAL_BAK Longword Array (Figure 14-10)
Physical Page State PFN$AB_STATE Byte Array (Figure 14-11)
Page Type PFNSAB_TYPE Byte Array (Figure 14-12)
Forward Link PFN$AW_FLINK Word Array (Figure 14-13)
Overlays the
SHRCNT array
Backward Link PFN$AW_BLINK Word Array (Figure 14-13)
Overlays the
WSLX Array
Reference Count PFNSAW_REFCNT Word Array
Global Share Count PFNSAW_SHRCNT Word Array Overlays the
FLINK Array
Working Set List Index PFNSAW_WSLX Word Array Overlays the
BLINK Array

Swap File Virtual Block Number = PFN$AW_SWPVBN Word Array

14.2.3 STATE Array

The PEN STATE array (see Figure 14-11) indicates the physical state of each
physical page. The low three bits contain the page location code. The upper
bit in a STATE array element is extremely important. It is the setting of this
bit that determines whether a physical page is put on the free page list or the
modified page list when the page is released. ,

There are a number of paths that can cause the modify bit in the STATE
array to be set.

31 24 23 22 21 0

Page File Index (0|0 | Page File Virtual Block Number

31 24 23 22 21 0

0 o1 Process PTE <21:0>

Figure 14-10
Possible Contents of PFN BAK Array Element

282

14.2.4

14.2 PEN Database

STATE Array Element

[—> Location of Page (See Below.)

» Delete PFN Contents When
Reference Count Goes to 0

» Saved Modify Bit from PTE

Code Location
0 Page on Free Page List
1 Page on Modified Page List
2 Page on Bad Page List
3 Release Pending (When Reference Count Goes to 0, Put Page on
Free or Modified Page List)
4 Read Error Occurred While Page Read Was in Progress
5 Write in Progress by Modified Page Writer
6 Read in Progress by Page Fault Handler
7 Page Is Active and Valid
Figure 14-11

Contents of PFN STATE Array Element

¢ When a page is removed from a process working set, the modify bit in the
page table entry is logically ORed into the saved modify bit in the STATE
array.

* When pages are to be used as read buffers in direct I/O, the executive rou-
tine that locks down pages (IOLOCK) sets the modify bit in the PTE. When
the page is removed from the process’s working set, the OR operation will
cause the bit to be set in the PFN STATE array.

» When copy-on-reference pages are faulted into a process’s working set, the
modify bit in the STATE array is set. The set bit forces a write to the page
file when the page is removed from the process working set.

The delete bit in the PFN STATE array element affects physical page con-
tents. When the reference count of a physical page goes to zero, all ties with a
virtual page (PFN PTE array contents) are destroyed. The physical page is
then put at the front of the free page list where it will be reused as quickly as
possible.

TYPE Array

The PFN TYPE array (see Figure 14-12) distinguishes the different types of
valid pages. The reason for this distinction is that either the pager or swapper
must take different action depending on what type of page is being acted on.
The collided page bit in the TYPE array element is set when a page fault
occurs while the page is already being read in from its backing store address.
Collided pages are described briefly in Chapter 17.

283

Memory Management Data Structures

14.2.5

14.2.6

284

6 5 4 2 0

TYPE Array Element

l—> Page Type (See Below.)

»- Collided Page (Empty COLPG State
When Page Read Completes)

» Bad Page Bit (When Reference

Count=0, Put Page on Bad Page List)

Report Event on I/O Completion

Y

Code Page Type

Process Page

System Page

Global Read-Only Page
Global Read/Write Page
Process Page Table Page
Global Page Table Page

b WN-=O

Figure 14-12
Contents of PFN TYPE Array Element

Forward and Backward Links

The three page lists (free page list, modified page list, and bad page list) must
all be doubly linked lists because an arbitrary page is often removed from the
middle of the list. However, the links cannot exist in the pages themselves
because the original contents of each page must be preserved. Two word ar-
rays, the FLINK array and the BLINK array, contain elements that are inter-
preted as the physical page numbers of the successor and predecessor to a
given physical page. o ,

A zero in one of the link fields indicates the end of the list {and is not a
pointer to physical page zero). For this reason, physical page zero cannot be
used in any dynamic function by the VMS operating system but may be
mapped by some system virtual page that is always resident. The usual con-
tents of physical page zero are the restart parameter block (see Chapter 24).

Figure 14-13 shows an example of pages on the free list, along with the
corresponding FLINK and BLINK array elements. The STATE array elements
for all of these pages contain zero, indicating that the physical pages are on
the free page list.

REFCNT Atrray

The PFN REFCNT array counts the number of reasons why a page should not
be put on the free or modified page list. One reason for incrementing the
reference count is that a page is in a process working set. Pages are locked
down for direct I/O by incrementing the reference count.

14.2.7

14.2 PEN Database

::PFN$AX__BLINK ::PFN$AX__FLINK ::PFN$AB__STATE
Head of)
Free Page List
. BLINK PEN FLINK PEN STATE
Array — Array I Array
28
\ 28 5 15 5 0
5 15 1 33 1 0
A 5 15 1 15 0
)
15
A
\ Previous 28 5 28 0
1
1" 33 Next 33 0
A
33
Tail of

Free Page List

Figure 14-13
Example of Free Page List Showing Linkage Method

I/O completion and working set replacement use the same routine to dec-
rement the reference count. If the reference count goes to zero, the physical
page is released to the free or modified page list as indicated by the saved
modify bit in the PEN STATE array. Manipulations of the reference count are
illustrated in the discussion of paging dynamics in Chapter 17.

SHRCNT Array

A second form of reference count is kept for global pages. The PFN SHRCNT
array counts the number of process page table entries that are mapped to a
particular global page. When the SHRCNT for a particular page goes from
zero to one, the reference count is incremented. Further additions to the
share count do not affect the reference count.

As the global page is removed from the working set of each process mapped
to the page, the share count is decremented. When the share count finally

285

Memory Management Data Structures

14.2.8

14.2.9

14.3

14.3.1

286

reaches zero, the reference count for the page is also decremented.

When a physical page has a nonzero share count, it cannot be on one of the
page lists. The forward and backward link words are not needed. The global
share count array overlays the forward link array. (PEN$AX_FLINK and
PFN$AX_SHRCNT are the same global location in system space.) The global
share count is only used for global pages.

The SHRCNT array is used for a second purpose when the physical page in
question is a process page table page or a global page table page. In either of
these cases, the array element counts the number of active page table entries
in the process or global page table page. When this value passes from zero to
nonzero, process page table pages are dynamically locked into the process
working set and global page table pages are locked into the system working
set.

WSLX Array

The working set list index array contains an index into a process or system
working set list for valid pages. The content of an array element is a longword
index from the beginning of the process (or system) header to the working set
list element in question.

Because a physical page that is in some working set is not on one of the
page lists, the link words are available for other uses. The working set list
index array overlays the backward link array. (PFN$AX_BLINK and
PFN$AX_WSLX are the same global location in system space.} The WSLX
array is not used for global pages.

SWPVBN Array

The swap virtual block number array is used to support the outswap of a
process with I/O in progress. When such an outswap occurs, the virtual block
number in the swap file where the locked-down page would go is recorded in
the SWPVBN array. The modified page writer checks this array for nonzero
contents and, if they are nonzero, diverts the page from its normal backing
store address to the designated block in the swap file.

DATA STRUCTURES FOR GLOBAL PAGES

The treatment of global pages is not much different from that of process
private pages. However, the system is required to keep some system-wide
database of the various global pages in the system.

Global Section Descriptor

When a global section is created, a structure called a global section descriptor
(GSD) is allocated from paged dynamic memory and loaded with information

14.3.2

14.3 Data Structures for Global Pages

Regular Global Section Descriptor

,

GSD Forward Link \

GSD Backward Link \

Type Size \\
UIC of Creator of Section .
Extended Global Section Descriptor

UIC of File Owner \ for Map-by-PFN Global Sections
This portion of a GSD Global ?egtion Pr:;ect'ion J; Flegular Glo!?al jlﬁ
appears in extended Table Index asl Section Descriptor
GSDs (used for -
map-by-PFN) and Global Section Ident Base PEN
shared memory GSDs Count /
(see Figure 14-27). / Number of Pages in Section

/
Section Name / Reference Count
(Up to 15 Characters) /
(Counted ASCI!I String) /
/
/
- /
Section Flags
N

Figure 14-14
Layout of Global Section Descriptor

that describes the section (see Figure 14-14). The information about the sec-
tion stored in the GSD is only used when the section is created or deleted, or
when some process attempts to map to the section. The pager does not use
this data structure.

The GSD is linked into one of two GSD hsts maintained by the system. All
system global sections are put into one list; group global sections (independ-
ent of group number) are put into the other list. The global section table
index field of the GSD contains an index that allows a second structure
(called a global section table entry) to be located.

The System Header and Global Section Table Entries

The system maintains two data structures for itself that parallel structures
maintained for each process in the system. The system PCB and system
header are used by the pager to allow page faults of system pages to be treated
almost identically to page faults for process pages.

The system header (see Figure 14-15) contains the working set list that
governs page replacement for system pages. The section table area in the
system header contains section table entries for the image files that contain
pageable system pages. These include the executive image (SYS.EXE), the
record management services image (RMS.EXE), and the system message file
(SYSMSG.EXE).

287

Memory Management Data Structures

14.3.3

288

System Header
MMG$GL__SYSPHD—>

X PSTBASOFF

PSTFREE PSTLAST

System Working Set List
- <-— Movable Boundary

Room for Expansion of GST Between System Working Set
List and Global Section Table

Global (System)

Section <
Table GSTE ¢ |
GSTX
& |
System Page Table
- -

Figure 14-15
The System Header Containing the System Working Set
List and the Global Section Table

The section table area in the system header serves a second purpose. When
a global section is created, a section table entry that describes the global
image file is created. The new section table entry is placed into an area of the
system header called the global section table. The format of a global section
table entry (see Figure 14-16) is nearly identical to the format of a process
section table entry. The only difference is that the first longword points to
the global section descriptor (instead of the channel control block).

Global section table entries are accessed in exactly the same way as process
section table entries, with a negative longword index from the bottom of the
global section table. The global section table index in the global section de-
scriptor is such an index, associating a GSTE with a GSD.

Global Page Table Entries

A third set of data is also created for each global section. Each page in the
global section is described by a global page table entry in the global page table
(see Figure 14-17). The pager uses global page table entries just like process
page table entries to locate global pages.

Global page table entries are restricted to a subset of the forms illustrated
in Figure 14-3.

14.3.4

14.3 Data Structures for Global Pages

Global Section Descriptor Address

Backward Link Foward Link
Index Index

Page

Faglt Starting Virtual

Cluster Page Number (22 bits)

Pointer to Window Control Block
(for Virtual to Logical Mapping)

Base Virtual Block Number
for this Section

Control Flags

Count of PTEs Referencing
This Section

Number of Pages in the Section

Figure 14-16
Layout of Global or System Section Table Entry (Global
Page Table Entries)

» The global page table entry can be valid, indicating that the global page is
in at least one process working set.

» The global page table entry can indicate a demand zero page. Global de-
mand zero pages are used to initialize global page file sections.

e The global page table entry can indicate some transition state. The
PFN STATE array indicates which transition state is involved in the usual
way.

¢ The global page can be in a global image file, in which case the global page
table entry contains a global section table index.

Global Page Table and System Page Table

Global page table entries are located in exactly the same manner as process or
system page table entries. Location MMG$GL_GPTBASE contains the ad-
dress of the base of the global page table. All references to global page table
entries use what can be thought of as a virtual page number as an index into
the global page table.

The interesting thing to note about this approach is that the base of the
global page table'coincides with the base of the system page table. Further,
the virtual page numbers that are used as indexes into the global page table
are system virtual page numbers. In fact, when looking at system virtual
address space, the global page table simply appears as an extension to the
system page table. The global page table index associated with the first global

289

Memory Management Data Structures

290

MMG$GL_SYSPHD &——»
JF System =
Header
MMG$GL_SPTBASE o&——>
System
Page L
= Table =
MMG$GL_GPTE e >
Global
Page
l; Table /L;

A\
\

Global Page Table Entry Global Page Table Entries may
indicate pages that are:

GPTE
1. Valid

GPTE

GPTE 2. In Transition
Global Page Table Entries are GPTE 3. In a Global Image File
located with a virtual page (In this case, the
number from the beginning GPTE Global Page Table Entry
of the System Page Table. contains an index into

GPTE the Global Section Table

in the System Header.)
GPTE

T 1
Figure 14-17

Location of Global Page Table at Virtual End of System
Page Table

page is one greater than the largest system virtual page number for a given
configuration.

This logical extension of the system page table exists only when looking at
system virtual address space. The global page table does not exist in physical
pages adjacent to the system page table. The system length register only rec-
ords the number of real system page table entries, not the logical extensions.
In other words, global pages are not mapped into system virtual address space
and are not accessible through system virtual addresses. This pseudoexten-
sion to the system page table is only available to the software routines in the
memory management subsystem.

Figure 14-18 shows how the global page table relates to the system page

14.3 Data Structures for Global Pages

System Header

Global Section
Table Entry ~0 Fixed Size Portion
- = Y System Working
\\\ Set List

& || e]
. / -
WCB Address : Global Section Table Global

AN Page

Base VBN / ~ Table
/ L System L Entries

/ e Page Table 4)
y W B)/ GPTE
/ /
/ / GPTE
/ /
/ GPTE
. . P Global P d

Global Section Descriptor s Page Table e // ‘ GPTE
- / , GPTE

GPTE

||

Ol

Section
Name

L

Figure 14-18

Relationships among Global Section Data Structures

table. It also shows the relationship among the global section descriptor, the
global section table entry, and the global page table entries for a given sec-
tion. There are several relationships among these three structures.

» The central structure is the global section table entry (see Figure 14-16

The first longword in the GSTE points to the global section descriptor.
The virtual page number field (labeled (B) in Figure 14-18) contains the
pseudo system virtual page number that serves as a longword index to the
first global page table entry that maps this section. ‘
The global section descriptor contains a global section table index (labeled
(A) in the figure) that allows the GSTE to be located from the GSD.
The original form of each global page table entry is a section table index
{identical to the GSTX found in the global section descriptor], effectively
pointing to the GSTE. When any given GPTE is either valid or in transi-
tion, the GSTX is stored in the PFN BAK array. Note that GPTEs for global
page file sections contain the page file backing store address.

291

Memory Management Data Structures

14.3.5

14.4

14.4.1

292

Global Page Table

Process Page Table MMG$GL__GPTBASE> }
1’ Z 7 N Entries
0 GPT index=N % >
GPTE
0 GPT Index=N+1 % >
GPTE
Z Entries
0 GPTIndex=N+Z X% >
GPTE
)/ -
- /L J’

Figure 14-19
Relationship between Process PTEs and Global PTEs

Process PTEs for Global Pages

When a process maps a portion of its virtual address space to a global section,
its process page table entries that map the section are in the form used for
global page table indexes. The process PTE that maps the first global section
page contains the GPTX of the first page in the global section. Each succes-
sive process page table entry contains the next pseudo system virtual page
number (GPTX), so that each PTE effectively points to the GPTE that maps
that particular page in the global section. This concept is shown in Figure
14-19. Assume that the section shown in the figure contains Z number of
pages.

Figure 14-3 shows the possible forms for process page table entries.

All of the data structures associated with global sections will be described
in detail in Chapter 17 where page faults for global pages are discussed. The
initial allocation of these structures is briefly described along with the Create
and Map Section and Map Global Section system services in Section 16.3.1.

SWAPPING DATA STRUCTURES

There are three data structures that are used primarily by the swapper but
indirectly by the pager. The SYSBOOT parameter BALSETCNT determines
the maximum number of concurrently resident processes. In particular, it
determines the amount of system address space set aside for process headers.

Balance Slots

When the system is initialized, an amount of virtual address space equal to
the size of a process header times BALSETCNT is allocated exclusively for
process headers (see Figure 14-20). Each of these process header areas is called

14.4.2

14.4 Swapping Data Structures

LPFN$AL__PTE . LSWP$GI_BALBASE
Balance
Process Header (PHD) Slot 0
| All balance slots
- \ Balance
SVAPTE ® PHVINDEX \ Slot 1 > a_re exactly the same
: \\ size.
Working Set List \
\ | i
Process Section Table \ﬂr a
\
J ; ~ Process Header \ The size of a
Page Arrays Bal balance slot in
PTE Longword Salatnht;‘le pages is stored in
Array in PFN PO Page Table o global location
Database
L, l PEN ; / SWP$GL__BSLOTSZ.
/ 7 =
2 ¥/
P1Page Table |/
Last There are
Balance Slot BALSETCNT slots.

Figure 14-20
Balance Slots Contain Process Headers

a balance slot. The location of the first balance slot is stored in global loca-
tion SWP$GL_BALBASE. The size of a process header (in pages) is stored in
global location SWP$GL_BSLOTSZ. The calculations that are performed by
SYSBOOT to determine the size of the process header are described in Chap-
ter 26.

Balance Slot Arrays

The system maintains two word arrays describing each process with a proc-
ess header stored in a balance slot (see Figure 14-21). Both of the word arrays
are indexed by the balance slot number occupied by the resident process. The
balance slot number is stored in the fixed portion of the process header at
offset PHD$W_PHVINDEX. Entries in the first array contain the number of
references to each process header; entries in the second array contain an
index into a longword array that points to the process control block for each
process header.

The entries in the reference count array (based at the global pointer
PHV$GL_REFCBAS) count the number of reasons why the process header
cannot be removed from memory. Specifically, this array element counts the
number of page table pages that contain either valid or transition PTEs.

The entries in the process index array (based at the global pointer
PHV$GL_PIXBAS) contain an index into the longword array based at the

293

Memory Management Data Structures

14.4.3

294

I PHV$GL_REFCBAS I PHV$GL_PIXBAS

> .

The contents of

PHD$W__PHVINDEX,

are used as a >

word index into PCB of Process

each of these arrays. BALS,ET,CNT Whose PHD is
Entries in in Balance Slot
Each Array M

Ref. Count Process Index
J

[::SCH$GL__PCBVEC

- A

@SCH$GL__PCBVEC

+4 x (Process Index) Pointer to PCB e

MAX PROCESSCNT
? Entries

PCB Vector

Figure 14-21
Process Header Vector Arrays

global pointer SCH$GL _PCBVEC. The entries in the longword array contain
pointers to the process control blocks of the processes with a process header
in a balance slot. Figure 14-21 illustrates how the executive turns the address
of a process header into the address of the PCB for that process, using the
entry in the process index array.

If the process header address is known, the balance slot index can be calcu-
lated (as described in the next section). By using this as a word index into the
process index array, the longword index into the PCB vector is found. The
array element in the PCB vector is the address of the PCB (whose PCB$L_PHD
entry points back to the process header). A more detailed description of the
PCB vector can be found in Chapter 20, where its use by the Create Process
system service is discussed.

Comment on Equal-Size Balance Slots

The choice of equal-size balance slots, at first sight seemingly inefficient, has
some subtle benefits to portions of the memory management subsystem.

14.5

14.5.1

14.5 Data Structures that Describe the Page and Swap Files

There are several instances, most notably within the modified page writer,
when it is necessary to obtain a process header address from a physical page’s
page frame number (PFN). With fixed size balance slots, this operation is
straightforward.

The contents of the PFN PTE array point to a page table entry somewhere
in the balance slot area. Subtracting the contents of SWP$GL_BALBASE
from the PFN PTE array contents and dividing the result by the size of a
balance slot (the size of a process header) in bytes produces the balance slot
index. If this index is multiplied by the size of the process header in bytes and
added to the contents of SWP$GL_BALBASE, the final result is the address of
the process header that contains the page table entry that maps the physical
page in question.

DATA STRUCTURES THAT DESCRIBE THE PAGE AND
SWAP FILES

Page and swap files are used by the memory management subsystem to save
physical page contents or process working sets. Page files are used to save the
contents of modified pages that are not in physical memory. Both the swap
and page files are used to save the working sets of processes that are not in the
balance set.

Structure of Page and Swap Files

Figure 14-22 illustrates the data structures used to access page and swap files.
Location MMGS$GL_PAGSWPVC contains the address of an array of long-
word pointers, called the page and swap file vector. The number of pointers in
the array is the maximum number of page and swap files allowed on the
system (SYSGEN parameters SWPFILCNT and PAGFILCNT) plus one.

INIT initializes the page and swap file vector and loads the pointers with
the address of a null page file control block. The first pointer in the array is
loaded with the address of the page file control block for the shell process.
When SYSINIT initializes the primary page file control blocks, the pointer
located by the index SWPFILCNT+1 is redirected to the control block for the
primary page file (SYS$SYSTEM:PAGEFILE.SYS).

The second pointer in the page and swap file vector is redirected to point to
the control block for the primary swap file (SYS$SYSTEM:SWAPFILE.SYS). If
there is no swap file, or if the value of the SYSGEN parameter SWPFILCNT
equals zero, this pointer is not redirected. In this case all swap operations are
performed to the primary page file.

The page file control blocks and pointers for the alternate page and swap
files are created by SYSGEN.

Page file control blocks are used to describe both page and swap files. When

295

96T

MMG$GL__PAGSWPVC
T 1
[Entry for
SWPFILCNT +1 . (N?)'t*lE.llstd)
Entry for

SWAPFILE.SYS
(Initialized by SYSINIT)

Entries for
Alternate
Swap Files
(Initialized by SYSGEN)

Process Header (PHD)

PHD$B__PAGFIL:

Page File or Swap File

Page File Control Block

Address of Start of Bitmap

Starting Byte Offset to Scan

Page Fault
Cluster

Type Size

PCB$L_WSSWP:
y

Figure 14-22

|

L L

Entry for
PAGEFILE.SYS
(Initialized by SYSINIT)

\

T 1

Process Control Block (PCB)

Entries for

Alternate

Page Files
(Initialized by SYSGEN)

~ |

\
\
Ay

R

Page and Swap File Database

ad

Pointer to Window Control Block

Base Virtual Block Number

Size in Bytes of Bitmap

Count —1 of Pages Which May Be
Aliocated

Count —1 of Pages Which May Be
Reserved

Bitmap
One Bit per Block in Page or Swap
File
(A bit set means a block is available.)

A\N

ANY

§2IN30N11S DID(] IUIWISDUDA] AIOTII

14.5.2

14.5.3

14.5 Data Structures that Describe the Page and Swap Files

the SYSINIT process initializes the page file control blocks for the primary
page and swap files, the following operations are performed:

1. The file is opened.

2. The address of the window control block is stored in the control block.

3. The page file bitmap is allocated from nonpaged pool and initialized to all
bits set.

4. The address of the control block is stored in the appropriate location in the
page and swap file vector.

The SYSINIT process is described in more detail in Chapter 25. ,
Note that the locations of the window control block field, the virtual block
number field, and the page fault cluster factor field are in the same relative
offsets in these structures as they are in a section table entry. Because the
offsets are the same, I/O requests can be processed by common code, inde-
pendent of the data structure that describes the file being read or written.
When any page or swap file is opened, all mapping information for the file
is copied into the window control block. These so-called cathedral windows
insure that the memory management subsystem does not have to take a
window turn (see Section 19.1.4), which could lead to system deadlock.

The Shell Process

The first longword in the page and swap file vector points to the control block
for the shell process. This control block is initialized by the module INIT (see
Chapter 25) and contains the starting VBN of the shell process and the sys-
tem window control block. This information is used in process creation to
read copies of the shell process into the system. When INIT initializes the
shell control block, it adds one to the value of the SYSGEN parameter
SWPFILCNT and stores the result in the global location SGN$GW_
SWPFILCT. For more information on the shell process, see Chapter 20.

Structure of Swap Files

When a process is created, it is assigned a swap space within the swap or page
file. This swap space contains room for the process header and the process
body (the PO and P1 pages belonging to the process). The initial size of the
swap space is equal to the value of the SYSGEN parameter MPW_
WRTCLUSTER. If the value of MPW_WRTCLUSTER is less than the size of
the shell process, the initial size of the swap space is set to the size of the
shell (16 pages). This initial swap space size insures that a system being
bootstrapped can create processes. The structure of swap spaces is illustrated
by Figure 14-23.

If a process’s working set list grows so that it no longer fits its swap space,

297

86T

From Page and Page File Control Block
Swap File

Vector Array —>]
(Figure 14-22)

1

Pointer to Window Control Block @-

PCB

X |VBN of Slote

1) The upper byte contains an

index into the swap and

page file vector. | APTCNT
2) The lower three bytes

contain the virtual

block number of the Bit PCB$V_RES in PCB$L__STS
beginning of the slot indicates residency of process:
allocated to this 1=Resident

process. 0= Outswapped

Figure 14-23
Swap File Database

~-
-

SLOT
// ~~
~
v ~
v ~—
- ~
Process eadsr |, Actve Process Body
Pages Page Tables (PO and P1 pages)
-)
N
PCB$W__APTCNT
Pages

$2IN30N11§ DID(J IUUWISVUD A AIOWIN

14.5.4

14.6

14.6.1

14.6 Swapper and Modified Page Writer Page Table Arrays

the process is reassigned to a new swap space, which is MPW_WRTCLUSTER
pages bigger. In this manner, the process’s swap space is increased in multi-
ples of MPW_WRTCLUSTER. A process’s swap space can grow up to
WSQUOTA pages. At image exit, the process’s working set is reduced back to
PHD$W_DFWSCNT, and the process is reassigned to an initial size swap
space.

Dynamically allocated swap spaces represent a significant change from
previous versions of the VAX/VMS operating system. Previously, swap files
were composed of a number of fixed size areas known as swap slots. These
swap slots were permanently allocated. The size of the swap slots was tied
directly to the SYSGEN parameter WSMAX. This rigidity placed some re-
strictions on the system. The fixed size of the swap slots limited the possible
growth of process working sets; because each swap slot was the maximum
required size (for WSMAX), this limited the number of processes that could
be created. VAX/VMS Version 3.0 decoupled the link with WSMAX, in part
to accommodate the new working set expansion provided with the new sys-
tem. Now the size of the swap spaces is limited only by WSQUOTA.

Alternate Page and Swap Files

Alternate page and swap files can be created by the SYSGEN commands
INSTALL/PAGEFILE and INSTALL/SWAPFILE. A system with alternate
swap files can support a greater number of processes or processes with larger
working sets. In a system with alternate page files, newly created processs are
assigned to the page file that contains the most free pages. The assignment
lasts for the life of the process. Thus, adding alternate page files enhances
system performance by reducing paging activity to the existing page files (and
again, making more space available for swap spaces).

SWAPPER AND MODIFIED PAGE WRITER PAGE TABLE
ARRAYS

The VAX/VMS 1/O subsystem allows direct I/O requests (DMA transfers) to

~ virtually contiguous buffers. There is no requirement that pages in the buffer

be physically contiguous or even have any relationship to each other.

Direct I/0 and Scatter/Gather

The 1/0 locking mechanism invoked at the FDT level brings each page into
the working set of the requesting process, makes it valid, and increments that
page’s reference count (in PFN REFCNT array) to reflect the pending read or
write. The buffer is generally described in the I/O request packet through
three fields.

299

Memory Management Data Structures

14.6.2

14.6.3

300

o IRP$L_SVAPTE contains the system virtual address of the first PTE that
maps the buffer.

+ IRP$W_BOFF and IRP§W_BCNT together describe the buffer size that is
used to calculate how many PTEs are required to map the buffer.

When a driver processes this I/O request, it allocates the required number of
MBA or UBA mapping registers and loads them with the page frame numbers
found in the page table entries. The adapter hardware handles the mapping
from its address space to VAX physical addresses. The ability to transfer to
discontiguous physical pages (the so-called scatter-read/gather-write capabil-
ity) is a beneficial side effect of this mapping.

Swapper I/O

The swapper is presented with a more difficult problem. It must write a col-
lection of pages to disk that are not even virtually contiguous. It solves this
problem elegantly.

When the system is initialized, an array of WSMAX longwords is allocated
from nonpaged pool for use as the swapper’s I/O table. The starting address of
this array is stored in global pointer SWP$GL_MAP. (The address is also
stored in the saved PO base register in the swapper’s process header so the
pages mapped by this array are effectively the swapper’s PO space. This use is
discussed in Chapter 20.)

When the swapper scans the working set list of the process being
outswapped, the page frame numbers in each valid PTE are moved to succes-
sive entries in the swapper’s I/O table. The address of the base of the table is
put into the SVAPTE field of the IRP by the swapper before the IRP is passed
on to the driver. (The swapper can exercise this control because it builds a
portion of its own IRP, rather than using the entire $QIO mechanism.) The
I/0 table looks just like any other page table to the mapping register subrou-
tines called by the driver. The PFNs are extracted from this array and loaded
into adapter mapping registers. '

What the swapper has succeeded in doing is making pages that are not
virtually contiguous appear to be virtually contiguous to the I/O subsystem.
(A different interpretation is that the pages are virtually contiguous in the PO
space of the swapper, the process that is actually performing the I/O.) At the
same time that each PTE is being processed, any special actions based on the
type of page are also taken care of. The whole operation of outswap and the
complementary steps taken when the process is swapped back into memory
are discussed in Chapter 17. '

Modified Page Writer PTE Array

The modified page writer, in its attempt to write many pages to backing store
with a single write request (so-called modified page write clustering), is faced

14.6.4

14.6 Swapper and Modified Page Writer Page Table Arrays

SWP$GL__MAP e— Swapper's
(This address is stored 110
in the swapper’s PO Page Table WSMAX
base register.) P Entry EI:ments bor i)
A Array of /r (This number is stored in
Longwords the.swapper's PO length
register.)
- 3 (T
MPWS$AL__PTE &—| Modified MPW's | <«—eMPWSAW_PHVINDEX
Page Writer's Process
[[[e} Header
| PageTable L \MPW_WRTCLUSTER)). Vector [
; Entry T > Elements 2(Index ; i
Array of Array
Longwords of
Words
/ \

Figure 14-24
Swapper and Modified Page Writer PTE Arrays

with a problem similar to the swapper’s problem, with one additional twist.
When the modified page writer is building an I/O request, there are three
forms of page that it can encounter. Pages that are bound for the swap file
(SWPVBN nonzero) are written individually. Pages that are bound for an
image file are not necessarily virtually contiguous, these pages will be writ-
ten as a group only if they are contiguous. Pages on the modified page list that
are to be written to a page file may be not only discontiguous within a process
address space but may also belong to several processes. The modified page
writer builds a table of PTEs in a manner similar to the swapper.

At initialization time (in module INIT), two arrays are allocated from
nonpaged pool for the modified page writer (see Figure 14-24). Each array
contains MPW_WRTCLUSTER elements. The longword array will be filled
with page table entries containing PFNs analogous to the swapper map. The
word array contains an index into the process header vector for each page in
the map. In this way, each page that is put into the map and written to its
backing store location is related to the process header containing the PTE
that maps this page. The operation of the modified page writer, including its
clustered writes to a page file, is discussed in detail in Chapter 17.

Nonreentrancy of Swapper and Modified Page Writer -

The use of these arrays to hold page table entries for the I/O subsystem
makes the swapper and the modified page writer not reentrant. That is, the
swapper process can perform only the following simultaneous operations:

¢ An inswap or outswap operation that uses the swapper map. This action is
recorded by setting the swap in progress flag (SCH$V_SIP) in location
SCH$GB_SIP.

301

Memory Management Data Structures

14.7

14.7.1

302

» A modified page write to a page file, an image file, or a swap file VBN. The
modified page write in progress flag (SCH§V_MPW) in the same global
location (SCH$GB_SIP) records this action.

DATA STRUCTURES USED WITH SHARED MEMORY

The MA780 shared memory unit can be used as an interprocessor communi-
cation path with common event flags, mailboxes, or global sections. This
VMS support requires data structures located in the shared memory that de-
scribe the shared memory itself and the shared memory common event flag
clusters, mailboxes, or global sections used. In addition, each processor con-
nected to the shared memory requires data structures located in local mem-
ory that describe processor-specific information (such as the starting PFN or
port number). Information common to both processors (for example, the size
of the global section descriptor tables) is maintained in the shared memory
data structures.

Note that the shared memory described in this section differs significantly
from the MA780 shared memory used in the VAX-11/782. In the VAX-11/
780, shared memory is used as a common data area or communications path
between two processors; in the VAX-11/782, the MA780 is used as main
memory.

Shared Memory Control Structures

The shared memory unit consists of a series of pages of physical memory.
The bootstrap sequence records the presence of the shared memory unit but
does not configure the physical pages into the system (unless the processor is
a VAX-11/782), allowing the user to include shared memory in a site-specific
way (for example, whether to reinitialize the MA780 shared memory after
each reboot or not). In either case, the physical memory pages must be virtu-
ally mapped so that they are accessible to program code (because memory
management is enabled).

The virtual mapping used by one processor to access shared memory pages
may be different from the virtual mapping used by another processor. For this
reason, some of the data structures that the VMS operating system uses to
manipulate its data structures located in shared memory are self-relative
queue elements. (Self-relative queue elements are described in the VAX-11
Architecture Reference Manual.)

Note that the VMS operating system cannot use one of its usual synchroni-
zation techniques, elevated IPL, to control access to shared memory data
structures. Elevated IPL blocks interrupts, but only on one processor. Instead,

" all accesses to shared memory data that must be synchronized are done with

one of the interlocked instructions provided for just this purpose in the VAX
architecture. These instructions are:

14.7.1.1

14.7 Data Structures Used with Shared Memory

INSQHI Insert Entry into Queue at Head, Interlocked
INSQTI Insert Entry into Queue at Tail, Interlocked
REMQHI Remove Entry from Queue at Head, Interlocked
REMQTI Remove Entry from Queue at Tail, Interlocked

BBSSI Branch on Bit Set and Set Interlocked
BBCCI Branch on Bit Clear and Clear Interlocked
ADAWI Add Aligned Word Interlocked

The four instructions that manipulate self-relative queues actually provide
two levels of interlocking. Because self-relative queue elements must be
quadword aligned, the low three address bits (all zero) are available for other
uses. The low-order bit in the forward link is used as a secondary interlock.
When this bit is set, interlocked access to the head or tail of the queue is
denied. This interlock bit is read in a interlocked fashion that is used by the
other three inteructions in the list (BBSSI, BBCCI, and ADAWI).

Physical Layout of Shared Memory. If the shared memory is to be supported
by the VMS operating system, it must be configured into the system with the
SYSGEN utility. This installation step is described in the VAX/VMS System
Management and Operations Guide. The resulting physical layout of shared
memory is illustrated in Figure 14-25. The VMS data areas are initialized
when the first processor (port) connects the shared memory unit. As other
ports make their connection, their local memory data structures are simply
initialized to point to the shared structures.

Lowest Physical
Balance of Memory Address

Available for »

Shared Memory e

Global Section
Pages

A\
A\

Global Page Allocation Bitmap

Pool Space

Table for Shared Memory CEBs

Mailbox Table

Table for Shared Memory GSDs

Shared Memory Common Data Page Highest Physical
Address

‘Figure 14-25
Physical Layout of Shared Memory

303

Memory Management Data Structures

14.7.1.2

14.7.1.3

14.7.2

304

Shared Memory Common Data Page. The shared memory page with the high-
est physical address is used by the VMS operating system to contain the
information that describes this shared memory unit. This page is called the
common data page. Because this page may be virtually mapped in different
ways on each port (and may not even exist at the same physical address), each
pointer in the common data page is a relative pointer from the base virtual
address of the common data page. The contents of the common data page are
listed in Table 14-3.

Processor-Specific Control. As each processor connects itself to the shared
memory unit, a data structure in processor local memory is initialized that
allows that processor to locate the common data page. That structure also
contains physical page information that allows the shared physical memory
to be virtually mapped on that processor. The layout of the shared memory
control block is pictured in Figure 14-26.

Global Sections in Shared Memory

The creation and mapping of a global section in shared memory are slightly
different from the corresponding actions for local memory global sections.
The global section is recognized as a shared memory global section because
its name translates to an equivalence name of the form:

shared-memory-name:section-nane

The Create and Map Section system service then creates the data structures
necessary to describe this section.

» The global section descriptor for such a section (see Figure 14-27) is located
in shared memory and contains information used to map the section.

¢ Only the port that creates the global section has a global section table
entry (in the local memory of the creating processor) describing the sec-
tion. This section table entry is used by the VMS operating system to load
the physical pages of the section with the contents of the designated file
when the section is created. The GSTE is also used if the Delete Global
Section or Update Section system services are called to write the contents
of a writeable global section located in shared memory back to its original
file. (Either system service will not have any effect if it is issued from any
port other than the creator port.)

» Because the pages of a shared memory global section are always valid,
there is no need to page those pages; therefore, no global page table entries
are created for the section. Instead, when a process maps to such a section,
its process page table entries are loaded with the page frame numbers of
the shared memory section pages and marked valid. These pages are not
charged against the process’s working set.

14.7 Data Structures Used with Shared Memory

Table 14-3: Contents of Shared Memory Common Data Page

Mnemonic

SHDS$L_MBXPTR
SHDS$L_GSDPTR

- SHDS$L_CEFPTR
SHDS$L_GSBITMAP
SHDSL_GSPAGCNT
SHDS$L_GSPFN
SHD$W_GSDMAX
SHD$W_MBXMAX
SHD$W_CEFMAX

SHD$T_NAME

SHD$Q_INITTIME

Item

Relative Pointer to Mailbox Table
Relative Pointer to GSD Table
Relative Pointer to CEB Table
Relative Pointer to Global Page Bitmap
Total Count of Pages for Global Sections
Relative PFN of First Global Section Page
Number of entries in GSD Table
Number of entries in MBX Table
Number of entries in CEB Table

(spare word for alignment)
Name of Shared Memory

(counted ASCII string)
Initialization Time

Size
Longword
Longword
Longword
Longword
Longword
Longword
Word
Word
Word
Word

16 Bytes

Quadword

This is the end of the constant area of the shared memory common data page.

SHD$L_CRC
SHD$W_GSDQUOTA
SHD$W_MBXQUOTA
SHD$W_CEFQUOTA
SHD$B_PORTS
SHD$B_INITLCK
SHD$B_BITMAPLCK
SHD$B_FLAGS
SHD$B_GSDLOCK
SHD$B_MBXLOCK
SHD$B_CEFLOCK

SHD$W_PRQWAIT
SHD$W_POLL

SHD$W_RESWAIT

SHD$W_RESAVAIL

SHD$W_RESSUM

SHD$Q_PRQ
SHD$Q_POOL
SHD$Q_PRQWRK

CRC of Fields in Constant Area
Count of GSDs Created (one word per port)
Count of Mailboxes Created (one word per port)
Count of CEBs Created (one word per port)
Number of Ports
Owner of Initialization Lock
Owner of Global Page Bitmap Lock
Flags for Locking Data Structures
Owner of GSD Table Lock
Owner of MBX Table Lock
Owner of CEF Table Lock
(spare byte for alignment)
Ports Waiting for Interprocessor
Request Blocks (one bit per port)
Ports Actively Using the Memory
(one bit per port|
Ports Waiting for a Resource
(one bit per port)
(one word mask per resource)
Ports Needing to Report Resource Available
(one bit per port)
(one word mask per resource)
Ports with Resources to Report
(one bit per port)
(three spare words for alignment]|
Free Interprocessor Request Block Listhead
Free Pool Block Listhead
Interprocessor Request Work Queue Listheads
{one listhead per port) :

Longword
16 Words
16 Words
16 Words
Byte
Byte
Byte
Byte
Byte
Byte
Byte

Word
Word

16 Words

16 Words

Word

3 Words
Quadword
Quadword

16 Quadwords

305

Memory Management Data Structures

306

Shared Memory Control Block

Link to Next SHB

VA of Common Data Page

Flags l Type l

Size

Reference Count

Base PFN for Global Section Pages

Port
Number

TR Number
of Memory

Address Past Last Byte of Shared Memory Pool

Address of Adapter Control Block

Figure 14-26

Contents of Shared Memory Control Block

Because of the way in which the VMS operating system uses shared memory
for global sections, putting global sections into shared memory, even when
the memory unit is not connected to another processor, improves system
utilization. Each process using the shared sections is getting a free extension
to its working set. There is no demand placed on the global page table. The
local physical memory that would otherwise be required to contain such

Shared Memory Flags

A\
AN

Rest of Regular »
Global Section Descriptor a1
Deleter Creator Number of Inter-
Port Port Processor | processor
Ref. Counts Lock

Base PFN for Section Pages

Number of Pages

The assembly-

Second Base PFN
Page Count Pair

time parameter
GSD$C__PFNBASMAX
(currently = 4)

defines the

Third Base PFN
Page Count Pair

number of
discontiguous

Fourth Base PFN
Page Count Pair

pieces in a
single section.

PTE Count for First Processor

PTE Count for Second Processor

PTE Count for Third Processor

PTE Count for Fourth Processor

Figure 14-27

Contents of Shared Memory Global Section Descriptor

See Figure 14-14.

14.7.3

14.7.4

14.7 Data Structures Used with Shared Memory

entities as DCL or the Run-Time Library is available for other uses such as an
expanded physical page cache (free page list).

Mailboxes in Shared Memory

When a mailbox is created in shared memory, it is described by a shared
memory mailbox descriptor block (MBX) located in the shared memory (see
Figure 18-2). In addition, each port connected to the shared memory mailbox
has a unit control block (UCB) in its local memory I/O database that makes
the connection between the local I/O system and the shared memory mail-
box. The relationships of shared memory mailbox data structures are pic-
tured in Figure 18-3.

Common Event Flag Clusters in Shared Memory

As with global sections and mailboxes (and the shared memory itself), there
are data structures in shared memory and other structures in local memory
required to fully describe a common event flag cluster located in shared
memory. The shared memory data structure is called a master CEB (common
event block) and contains the only valid set of event flags. Each port con-
nected to this common event flag cluster has a slave CEB that locates the
master. The relationship between the master CEB and the slave CEBs is pic-
tured in Figure 12-4. The layouts of the master and slave common event
blocks are pictured in Figure 12-5.

307

15

15.1

15.1.1

308

Paging Dynamics

I consider that a man’s brain originally is like a little empty attic,
and you have to stock it with such furniture as you choose. . . .
Now, the skillful workman is very careful indeed as to what he
takes into his brain-attic. He will have nothing but the tools
which may help him in doing his work, but of these he has a large
assortment, and all in the most perfect order. It is a mistake to
think that the little room has elastic walls and can distend to any
extent. Depend upon it, there comes a time when for every
addition of knowledge you forget something that you knew
before. It is of highest importance, therefore, not to have useless
facts elbowing out the useful ones.

—Sir Arthur Conan Doyle, A Study in Scarlet

In the previous chapter, the various data structures that are maintained by
memory management were described apart from the context in which they
are used. This chapter shows how the various structures are manipulated by
the pager in response to different forms of page faults.

Although pager action is described here, it is not presented in a flowchart
or decision fashion. Rather, the actions are described in terms of modifica-
tions to data structures.

OVERVIEW OF PAGER OPERATION

Before discussing how the pager reacts to different forms of page faults, this
chapter will briefly describe the overall operation of the pager.

Hardware Action

All program references generated by the CPU are virtual addresses. Each ad-
dress must be translated to a physical address before a reference to memory
(or an I/O space page) can be made. The virtual address (see Figure 15-1) is
used by the address translation mechanism to find the page table entry that
will be used to translate the address.

If the page table entry is valid, its contents are used to translate the virtual
address to a physical address and execution continues. If the page table entry
is invalid (PTE<31> = 0), then a translation-not-valid fault is generated.
Figure 15-2 shows the state of the kernel stack following a page fault.

15.1 Overview of Pager Operation

31 .30 29 98 0

Virtual Page Number Byte.Offset

P1 Space Indicator if VA <31> =0

> System Virtual Address Space
Indicator

VA <31:30> Selects the page table:
0=PO0 Page Table
1=P1 Page Table
2=_System Page Table
3=Reserved
VA <29:9> is used as a longword
index into the selected table.

Figure 15-1
Format of Virtual Address Showing Fields Used
to Locate Page Table Entry That Maps the Page

Direction of
stack growth
\-<—SP
Reason Mask \\
\\
Invalid Virtual Address \ \
\\ \
\
i i \
PC of Faulting Instruction \\ \ 2 1 0
\ Reason Mask for
i \
PSL at Time of Fault \\ Translation - Not - Valid Fault
L This Bit Is Always 0 for

State of the Kernel Stack
Following a
Translation - Not - Valid Fault

Translation - Not - Valid Faults

—— PTE Reference
0—»Virtual Address Not Valid
1—Associated PTE Not Valid
L————— Intended Access Type
0—>Read Access
1—>Modify or Write Access

Figure 15-2
State of the Kernel Stack Following
Translation-Not-Valid Fault

15.1.2 Initial Pager Action

Before the pager does any work, it performs a consistency check by demand-
ing that the IPL be no higher than 2. If the IPL is higher than 2, a fatal bug-
check is generated. This check is made for the following two reasons:

309

Paging Dynamics

15.2

310

» Code that is executing at a higher IPL needs to perform a series of instruc-
tions without being interrupted. If a page fault happens, the faulting proc-
ess might be removed from execution, allowing another process to execute
the same routine or access the same protected data structure.

* Page faults are exceptions that happen to a process. When the system is
executing at IPL higher than 2, it is often on the interrupt stack, acting in
response to an external trigger. There is not necessanly a process that can
be charged for the page fault.

The next step that the pager takes is to retrieve the invalid virtual address
from the kernel stack. It uses this address to locate the page table entry that
maps this page by performing the same operations that the address transla-
tion mechanism uses.

1. The upper two bits of the virtual address (VA<31:30>) select which page
table (or which base register) to use.

2. The virtual address field (VA<29:9>) is used as a longword index into the
page table.

Before the page table entry is examined, the pager determines whether the
system virtual page containing the page table entry is itself valid. (This check
avoids the necessity of making the pager recursive.) If not, the page table page
is made valid first. Note that the pager does not perform this check using the
page table valid bit in the exception parameter; rather, it checks the valid bit
in the page table entry for the system virtual page.

Once the page table entry is available, the pager takes different actions
depending on the nature of the invalid page table entry. (See Figure 14-3 for
the different forms of invalid page table entry.) The next several sections
describe some of the major paths through the pager. Extraordinary conditions
such as read and write errors are only mentioned in passing.

PAGE FAULTS FOR PROCESS PRIVATE PAGES

The first set of page faults concern process private pages. The different path
through the pager when sharing is involved is discussed in the next section.
There are four cases that must be described.

» Two of the cases involve a page that is originally faulted from an image
file. The two cases are distinguished by whether or not the section is copy
on reference. : '

* A third private section can consist of a series of demand zero pages.

* Finally, an intermediate state that can result from both copy-on-reference
pages and demand zero pages has the faulting page residing in a page file.

15.2.1

15.2.1.1

15.2 Page Faults for Process Private Pages

Page Located in an Image File

There are two different types of page that can initially reside in a private
image file, pages that are copy-on-reference, and those that are not. The page
table entry for either page contains a process section table index. The only
initial difference between the two pages is the setting of the copy-on-refer-
ence bit in the page table entry (see Figure 14-3).

Image Page That Is Not Copy on Reference. The first type of page fault in-
volves a page in an image file that is not copy on reference. The various
transitions that such a page can possibly make are illustrated in Figure 15-3.

- The numbers in circles are keyed to explanations of each transition listed

below. (For simplicity, clustered reads and writes are ignored in the discus-
sion that follows. Section 15.5 discusses all aspects of paging I/0.) The page
table entry is initially set to the form illustrated at the top of Figure 15-3. It
contains a process section table index (PSTX) with the copy-on-reference bit
(PTE<16>) clear. '

@ A page fault occurs. The pager uses the virtual address exception parame-
ter to locate the page table entry. The page table entry contains a process
section table index. Information contained in the process section table
entry indicates which virtual block in the image file should be read. The

" pager allocates a physical page from the head of the free page list. The
page is added to the process working set. This step may require the pager
to remove another page from the working set in order to make room for
the page currently being added. ‘

The PEN arrays are initialized. The STATE array element indicates
that a read is in progress. The PTE array element points to the process
page table entry. The working set list index array element locates the
working list entry just set up. The BAK array element is loaded with the
initial contents of the page table entry, the process section table index.
The reference count array element contains a two, one for being in the
working set and one for the read in progress.

The pager builds an I/0 request packet (see Section 15.5) that describes
the read that is being done. The process is placed into a page fault wait
state. '

@ Because most of the work was done in response to the initial fault, there
is little left to do when the page read completes. The reference count is
decremented (but stays above zero, so nothing special happens). The state
of the page is changed to active and valid. Finally, the valid bit is set in
the process page table entry and the process is removed from the page
fault wait state. The next time that the process is selected for execution,
it will execute the same instruction that caused the initial page fault.

311

Paging Dynamics

312

START

\

PTE contains
Process Section
Table Index (PSTX)

From bottom
C) of page

Legend

——

Page Fault Transition

Other Transitions
- PTE—Transition
- In Working Set
- PTE is valid - PTE is valid
—> - In Working Set - In Working Set -
- Modify Bit Clear - Modify Bit Set
L@—l [_O_‘ ®
®
PTE—Transition
< @ Saved Modify l Saved Modify [~ P
Bit Clear | Bit Set
l Y
PTE—Transition
Saved Modify Bit Set
O— PTE—Transition
- P }—-
Saved Modify Bit Clear
\ \ o
PTE—Transition

(P

Saved Modify Bit Clear

| (:) » Totop
of page

Figure 15-3

State Diagram Showing Page Transitions for Private
Section Page That Is Not Copy on Reference

2Cs

PFN Data

Page NOT in
physical memory;
na PFN data

Read in Progress
REFCNT=2
BAK=PSTX

Active and Valid
REFCNT>0
BAK=PSTX

Release Pending
REFCNT>0
BAK=PSTX

Modified Page List
REFCNT=0
BAK=PSTX

Write in Progress
REFCNT=1
BAK=PSTX

Free Page List
REFCNT=0
BAK=PSTX

15.2 Page Faults for Process Private Pages

(3) One transition that a valid page can undergo (and still remain valid) oc-
curs when the page is modified as a result of instruction execution. The
hardware sets the modify bit in the page table entry. The change is not
noted at this time in the PFN database. :

(4) When the page is removed from the process working set, several things
happen.

a. The working set list entry is made available.

b. The WSLX array element is cleared.

c. The modify bit in the page table entry is logically ORed into the PFN
state array element.

d. The VALID, TYPO, and TYPI bits in the PTE are all cleared. The PFN
field is left alone.

e. The REFCNT array element is decremented. If the reference count
goes to zero, the page is put the free or modified page list, according to
the setting of the saved modify bit in the PFN STATE array element.
The new location of the page is inserted into the STATE array.

Note that pages are not removed from the working set until room is
required for other pages, until the virtual pages are deleted, or in response
to a $PURGWS system service call.

(5) If the reference count does not go to zero, there is outstanding I/O for this
page. The state is changed to release pending. The ultimate destination
for the page (free or modified list) is recorded in the saved modify bit in
the STATE array.

(6) The I/O completion routine decrements reference counts for pages that
are locked down. When this routine detects that the count has gone to
zero, it places the page on either the free list or the modified list as appro-
priate. The STATE array element is changed.

If the page is placed on the modified list and if it has a backing store
address already, the page file index is cleared and the page file dealloca-
tion routine is called to release the page in the page file. Because the page
has been modifed, it is assumed that the contents at its backing store
address are now invalid.

(7) The modified page writer will eventually write this physical page to its
backing store address, which is located in the PFN BAK array. Writeable
pages that are not copy on reference are written back to the image file
from which they originally came.

The state of the page is set to write in progress. The saved modify bit is
cleared. The reference count of one reflects this outstanding output oper-
ation.

It is worth noting at this time that writeable private pages that are not
copy on reference are not usual products of the linker. Such sections must
be created with the Create and Map (Private) Section system service.

313

Paging Dynamics

15.2.1.2

314

When the modified page write completes, the page is placed on the free
page list. The same routine decrements the reference count, notes that
the reference count went to zero, and notes that the saved modify bit is
clear.

(9) While the physical page has remained attached to the process, the page
table entry has always contained a PFN and the PFN PTE array has al-
ways contained the address of the process page table entry.

When the physical page is reused for another purpose, several steps
must be taken to break the ties between the process virtual page and the
physical page that is about to be reused.

The process PTE must be altered to reflect the backing store address of

the page. (The PFN PTE array is used to locate the page table entry.) In
this case, the PTE is reset so that it contains a process section table index
[PSTX), the same contents that it had before the initial page fault.
The PFN array elements for this physical page are all cleared before the
page is passed on to the new owner of the physical page. In particular, the
PTE array element, the only connection from the PFN database to the
process page table, is cleared.

Page Faults Out of Transition States. Figure 15-3 also shows the transitions
that a page makes when a page fault occurs while the physical page is in the
transition state. While the changes back to the active state are somewhat
straightforward, there are details about each fault that should be mentioned.
Note that each of these page faults requires that a new working set list entry
be acquired, and the acquisition may involve the removal of some other page
from the process working set.

1. A page fault from the free page list is resolved by placing the page back
into the active and valid state, resetting the PTE, and incrementing the
reference count.

2. A page fault from the modified list has exactly the same effect. The fact
that the page was previously modified but never written to its backing
store address is shown in the figure by putting the page back into its modi-
fied state. :

In fact, the modify bit in the PTE is not actually turned on by the pager.
Rather, the saved modify bit in the PFN STATE array records the fact that
the page has not been backed up.

3. A page fault from the release pending state has no special effects. Again,
the state is changed to active, the valid bit in the PTE is turned on, and the
reference count is incremented.

Artistic license is taken in the figure to differentiate physical pages that
were modified from pages that were not. Again, the only difference be-
tween the two pages is the setting of the saved modify bit in the PFN
STATE array, not the setting of the modify bit in the PTE.

15.2.1.3

15.2 Page Faults for Process Private Pages

4. The transition that deserves special comment is a page fault that occurs
while the modified page writer is writing the page to its backing store
address. The saved modify bit is cleared before the write begins so that the
page will be placed on the free list when the write completes. Although
the page has not yet been completely backed up, the assumption is made
that the write will complete successfully. Page faults can thus put the page
into the active but unmodified state. The only difficulty occurs in the
event of a write error. The I/O completion routine detects this state of
affairs and turns the saved modify bit back on.

Copy-on-Reference Page. A more common type of writeable process private
page is called copy on reference. Figure 15-4 illustrates the transitions that
such a page makes from its initial page fault until it is written to some back-
ing store address.

Many of the transitions that occur here are no different from the case just
described. This section will note each transition but only elaborate on those
areas that are different.

(1) The initial setting of the page table entry (START1 in the figure| is again
the process section table index, but the copy-on-reference bit (PTE>16<)
is now set. When a page fault occurs, the pager again allocates a physical
page, sets its PFN into the PTE, and initiates the read. Two important
steps are taken at this time that differ from the previous case.

First, the saved modify bit in the PFN STATE array is turned on. Set-
ting the bit guarantees that the page will be written to its backing store
address when removed from the process working set, regardless of what
instructions or I/O operations the process chooses to execute.

Second, the BAK array element is set to point to the page file, with an
indication that no block has yet been allocated. At this time, all ties to
the original image file are broken. When the modified page writer wants
to write this page to its backing store address (as it certainly will because
the saved modify bit was just turned on), it will allocate a block in the
page file and write the contents of the physical page there.

(2) When the read completes, the page is marked as active and valid (and
effectively modified).

(3) When the page is removed from the process working set (and the refer-
ence count. is zero), the page is unconditionally placed on the modified
page list.

(4) If the reference count did not go to zero when the page was removed from
the process working set, the physical page is placed into the release pend-
ing state until the I/O completes.

@ At that time, the page is placed on the modified page list.

A page fault from either the release pending state or from the modified page
list puts the page back into the active (but effectively modified) state. That is,

315

Paging Dynamics

316

START 3 ' (START 2 ' ‘ START 4 ’

START 1
Y r————V}*——'——ﬁ A ———=) —-‘——";
| . .
PTE contains || PTE ontains GPTX PTE— PTE contains GPTX || ::3; ot ory:
PSTX,CRF | GSTX.CRF Demand Zero Page GPTE contains 0 : no PEN data
|
|
|

- PTE—Transition
- In Working Set
- Saved Modify Bit Set

I
The area within these

dotted lines is also

shown in Figure 15-7.

Figure 15-4

&) |

| Read in Progress
} REFCNT=2
| BAK=PGFLX,0

The area within

\

- PTE is Valid
- In Working Set
- Modify Bit Set

<———

PTE—Transition
Saved Modify Bit Set

E

[

PTE—Transition
Saved Modify Bit Set

/

To Figure 15-5

State Diagram Showing Page Transitions for Private
and Global Copy-on-Reference Pages and for Demand Zero

Pages

these dotted lines is

also shown in Figure 15-8.

Active and Valid
REFCNT>0
BAK=PGFLX,0

Release Pending
REFCNT>0
BAK=PGFLX,0

Modified Page List
REFCNT=0
BAK=PGFLX,0

15.2.2

15.2.3

15.2 Page Faults for Process Private Pages

the saved modify bit in the PEN STATE array remains set, causing the page to
be put back on the modified page list when it is removed from the working
set again.

The transition from the modified page list that is taken when the modified
page writer writes the page to its backing store address {in the page file) fits
into the transition diagram for faults from the page file (see Figure 15-5). The
connection between Figure 15-4 and Figure 15-5 is indicated by path C in the
two figures.

Demand Zero Pages

The initial setting of a page table entry can be set to demand zero as a result
of a Create Virtual Address Region system service. One of these services can
be issued explicitly by the process or on its behalf by the system (as part of
image activation or in the LIBSGET_VM Run-Time Library procedure).

When the pager detects a page fault for a demand zero page, it takes the
following steps.

1. A physical page is allocated from the beginning of the free page list.

2. The PFN array elements are initialized. The PTE array element points to
the process page table entry.

3. The BAK array element denotes a not-yet-allocated block in the page file.

4. The page is filled with zeros. This is done with a MOVCS5 instruction that
uses a zero-length source string and a null fill character.

5. The reference count is incremented; the page is added to the process work-
ing set; and the state is set to active.

6. Finally, the fault is dismissed and control is passed back to the user proc-
ess without interruption.

These steps all take place along path 3 in the upper righthand portion of
Figure 15-4.

Global Copy-on-Reference and Page-File Pages

There are two forms of pages that merge into the same set of state transitions
as private copy-on-reference sections and demand zero pages. These forms are
global copy-on-reference pages and global page-file backing-store pages. The
details of global page fault resolution are discussed in Section 15.3.

Suffice it to say here that that global copy-on-reference pages are initially
faulted from a global image file but, from that time on, are indistinguishable
from other global writeable pages. Global page-file backing-store pages are
initially faulted as global demand zero pages and from then on are indistin-
guishable from private demand zero pages.

317

Paging Dynamics

318

PTE contains

Legend

——3

Page Fault Transition

Other Transitions

Page File Virtual 4_@___ From bottom
Block Number (PGFLVB) of page

PTE—Transition
in Working Set
- PTE is Valid - - PTE is Valid
- - In Working Set ____@___> - In Working Set.
- Modify Bit Clear - Modify Bit Set
4

®

PTE—>Transition

Bit Set

Bit Clear |

B - (P> saved Modiy | Saved Modity -~(P)-

o e |

PTE—>Transition
Saved Modify Bit Set

1Cig

PTE—Transition
Saved Modify Bit Clear

L

From

Y Y

PTE—>Transition

®

g

Saved Modify Bit Clear

‘ To top
of page

Figure 15-5 :
Transitions for Pages Located in a Page File

Figure 15-4

Page NOT in
physical memory;
no PFN data

Read in Progress
REFCNT=2
BAK=PGFLVB

Active and Valid
REFCNT>0
BAK=PGFLVB

Release Pending
REFCNT>0
BAK=PGFLVB

Modified Page List
REFCNT=0
BAK=PGFLVB

Write in Progress
REFCNT=1
BAK=new PGFLVB

Free Page List
REFCNT=0
BAK=new PGFLVB

15.2.4

15.3

15.3.1

15.3 Page Faults for Global Pages

Page Located in the Page File

The transitions that a page faulted from the page file goes through (see Figure
15-5) are no different from the transitions described for pages that are not
copy on reference (see Figure 15-3). The only difference in the PFN data be-
tween the two figures is that the BAK array element in Figure 15-5 indicates
that the page belongs in the page file. The BAK array element in Figure 15-3
contains a process section table index.

The other difference between the two figures is the entry point into the
transition diagram. Pages can start out in an image file (PTE contains PSTX)
but pages can never start out in a page file. The entry into Figure 15-5 is from
Figure 15-4, from one of three initial states that eventually result in the phys-
ical page contents being written to the page file.

PAGE FAULTS FOR GLOBAL PAGES

The page fault resolution for global pages can be described in exactly the
same way as process private pages are described. Following the transition of a
global page table entry and its associated PFN database entries adds nothing
to the information already presented in Figure 15-3.

A more interesting approach is to look at the interaction of the process
page table entries and the global page table entries that they point to. The
following discussion uses a specific example rather than a general case, to
allow specific numbers to be used.

Page Fault for Global Read-Only Page

Figure 15-6 illustrates the transitions that occur for a global read-only page
that is mapped by two processes. The mapping is shown separately from the
operation of section creation to simplify the figure. A second simplification
in the figure is that the page is assumed to be read only. The implications of
a read/write global page are described in the next section without the benefit
of a figure.

(START)
When the global section is initially created, the data structures described
in the previous chapter are all set up. The global page table entry for the
page we will follow contains a global section table index, which locates
the global section table entry containing information about the global
image file.

@ When Process A maps to the section, the process page table entry con-
tains a global page table index, effectively a pointer to the global page
table entry.

319

Paging Dynamics

320

START
Y
GPTE contains
Global Section Table
Index (GSTX)
Process A
PTE contains
Global Page Table GPTE=GSTX
Index (GPTX)
Process B T
@ No Change é)
|
Y Y Y
PTE=GPTX PTE=GPTX GPTE=GSTX
T
A\ No Change ,J\
hd { Y
PTE=GPTX PTE=GPTX GPTE—>Transition
é No Change é
- PTE is Valid . .
- In Working Set PTE=GPTX GPTE is Valid
No Change @
- PTE is Valid - PTE is Valid . .
- In Working Set - In Working Set GPTE is Valid
No Change é
- PTE is Valid .)
PTE=GPTX - In Working Set GPTE is Valid
No Change ¢
PTE=GPTX PTE=GPTX GPTE—>Transition
No Change No Change ‘
ang rang (8)
Y Y Y
PTE=GPTX PTE=GPTX GPTE=GSTX
Figure 15-6
Example of Page Transitions Made by a Global Page
Mapped by Two Processes

These two states are exactly the same.

Page NOT in
physical memory;
no PFN data

No PFN data

No PFN data

Read in Progress
REFCNT=2
SHRCNT=1
BAK=GSTX
PTE—GPTE

Active and Valid
REFCNT=1
SHRCNT=1
BAK=GSTX
PTE—>GPTE

Active and Valid
REFCNT=1
SHRCNT =2
BAK=GSTX
PTE—~GPTE

Active and Valid
REFCNT=1
SHRCNT=1
BAK=GSTX
PTE—>GPTE

Free Page List
REFCNT=0
SHRCNT=0
BAK=GSTX
PTE—>GPTE

No PFN data

15.3 Page Faults for Global Pages

(2) When Process B maps to the section, its page table entry contains exactly
the same global page table index as found in Process A’s PTE.

(3 Process B happens to incur a page fault on this global page first. Several
things happen.

a.

Q -0 0

The pager notes that the process PTE contains a global page table index
(GPTX). This index is used to locate the global page table entry
(GPTE).

. The GPTE contains a global section table index (GSTX], indicating

that the global page resides on disk somewhere. Exactly the same
things are done to initiate the read here as in the case of a process
private page.

A physical page is allocated.

. The state of that page is set to read in progress.

. The reference count is incremented.

. The BAK array element is loaded with the GSTX.

. Note that the PFN PTE array element is loaded with the address of the

GPTE, not the address of the process PTE. Note also that, while the
read is in progress, the GPTE contains the transition PTE but the proc-
ess PTE still contains the GPTX.

. The reference count is two, one for the read in progress and one for

recording the fact that the page is in some process working set (the
global share count is nonzero). The global share count array element
contains a one while the read is in progress.

@ Several steps are taken when the read completes.

a.

b.

C.

d.

The state of the page is changed to active and valid.

The global page table entry is set to valid, to record the fact that this
page is in some process working set.

The process page table entry, located through its address stored in the
I/O request packet, is set up to contain the low-order 21 bits from the
global page table entry, with the valid bit set and bits 21 and 26
cleared.

The reference count and share count are both one at this point.

(5) When Process A faults the same global page, the initial pager action is the
same as it was in Step 3, because the page table entry is again a global
page table index. Now, however, the pager finds a valid GPTE. Resolution
of this page fault is simple.

A working set list is created for Process A. The global page table entry

is simply copied to Process A’s page table. The share count is incre-
mented, and the fault is-dismissed. ‘
(6) When the global page is removed from Process B’s working set, the share

321

Paging Dynamics

15.3.2

322

count is decremented. Because the share count is still positive, nothing
dramatic happens to the physical page.

At this time, Process B’s page table entry must be restored to its previ-
ous state. (The page table entry does not assume some transition form.)
The PTE array element contains the address of the global page table entry
so the global page table index must be recalculated.

The calculation is straightforward. The contents of MMGS$GL_
GPTBASE are subtracted from the PTE array element, the result is di-
vided by four (to create a longword index), and the quotient stored in the
process page table entry in the GPTX field.

(7) When the global page is removed from Process A’s working set, the proc-
ess page table entry is restored as described in Step 6.

The share count is decremented. Now the share count reaches zero, so
the reference count is also decremented. If the page is unmodified and
there is no outstanding I/0O, the physical page is placed on the free page
list.

The GPTE contains a transition PTE. The STATE array element indi-
cates the free page list. The other PFN array elements are unchanged.

When the physical page is reused, the ties must be broken between the

physical page and, in this case, the global page table entry. (None of the
processes mapped to this page are affected in any way by this step.)
" The contents of the BAK array element (a GSTX) are inserted into the
GPTE located by the contents of the PEN PTE array element. The PFN
PTE array element is then cleared, breaking the connection between the
physical page and the global page table.

These steps put the process and global page tables back to the state they
were in following Step 2 (although it is pictured here as a different state to
make the figure simpler).

Global Read/Write Pages

The transitions that occur for global writeable pages are no different from the
transitions for a process private page that is not copy on reference. The only
difference between such transitions and the transitions illustrated in Figure
15-3 is that the global page table entry, not the process page table entry, is
affected by the transitions of the physical page.

The process page table entry for global pages contains a global page table
index up until the time that the page is made valid. Only then is a PFN
inserted into the process PTE. As soon as the page is removed from the proc-
ess working set, the GPTX is placed back into the process PTE. All ties to the
PFN database are made through the global page table entry, which retains the
PFN while the physical page is in the various transition states.

15.3.3

15.8 Page Faults for Global Pages

Global Copy-on-Reference Pages

The global pages previously described are all shared pages. One form of global
page is shared only in its initial state. As soon as the fault occurs, the page is
treated exactly like a process private page.

These pages are global copy-on-reference pages and commonly occur in
shareable images-that contain impure data areas. For example, all of the local
variables in a FORTRAN shareable image would be in a global copy-on-refer-
ence section. Each process that uses the image would get its own private copy
of the local variables, but all processes. would get the same initial values for
the variables. o

Figure 15-7 illustrates the transitions that occur for a global copy-on-refer-
ence page. ‘

(D The initial conditions are identical to those used in Figure 15-6. The sec-
tion is created and the GPTEs contain a GSTX, although here the copy-
on-reference bit is set.

@ Process A maps the page and has its PTE set to contain a GPTX.

(3) Process B maps the page and gets the same GPTX i in its PTE. Up to this
point nothing is different from Figure 15-6.

(49) Now when Process B incurs a page fault, the pager follows the GPTX to
the GPTE, noting that the page is located in a global image file and is
copy on reference. A read is initiated and the following modifications are
made to the process PTE and the PFN database.

a. The global page table entry is not touched. It retains its GSTX con-
tents.

b. The process page table entry is set to a transition PTE.

. The state of the physical page is set to read in progress.

d. The BAK array element contains a page file index (with no block allo-
cated yet).

e. The PTE array element contains the address of Process B’s PTE.

o

Note that all ties between Process B and the global section are broken.
The page is now treated exactly like a private copy-on-reference page. The
two boxes outlined for Process B in Figure 15-7 are the boxes within the
dashed outline in Figure 15-4.

5 When Process A faults the same page, exactly the same steps are taken,
this time with a totally different physical page.

Thus, both Process A and Process B get exactly the same initial copy of

the global page from the global image file, but, from that point on, each
process has its own private copy of the page to modify as it wishes.

323

Paging Dynamics

15.3.4

324

START
Y
GPTE contains
Global Section Table
Index (GSTX),CRF
Process A @
PTE contains GPTE=GSTX, CRF
Global Page Table
Index (GPTX)
Process B
No Change
"""y 7~ 1
| |
| PTE=GPTX | PTE=GPTX GPTE=GSTX, CRF
| |
| ' I
| : No Change No Change
' |
| — |
- PTE—Transition
11 - In Working Set I PTE=GPTX GPTE=GSTX, CRF
: - Saved Modify Bit Set :
_ —_—d
L _= r No Change
|
l' I
Vol - PTE—>Transition
To - In Working Set GPTE=GSTX, CRF
Figure 15-4 - Saved Modify Bit Set
To
Figure 15-4
Figure 15-7

Example of Page Transitions for Global

Copy-on-Reference Pages

Global Page-File Backing-Store Pages

Page NOT in
physical memory;
no PFN data

No PFN data

No PFN data

Read in Progress
REFCNT=2
BAK=PGFLX,0
PTE—Process B's
page table entry
Read in Progress
REFCNT=2
BAK=PGFLX,0
PTE—>Process A’s
page table entry

One PFN

A Different PFN

Global page-file backing-store pages provide a means by which processes can
share global pages without requiring a file for backing store. By their nature
these pages have no initial contents, and are thus initialized as demand zero
pages.
Figure 15-8 illustrates the transitions that occur for a global page-file back-
ing-store page.

(D The initial conditions are identical to those used in Figure 15-6. The sec-
tion is created and the GPTEs contain a zero in the PEN field.

15.3 Page Faults for Global Pages

START
4
Page NOT in
GPTE contains physical memory;
Zero no PFN data
Process A @
PTE contains
Global Page Table GPTE=0 No PFN data
Process B Index :GPTX)
@ No Change
[——————N/~——=— +
I ! Y
! 1
: PTE=GPTX | PTE=GPTX GPTE=0 No PFN data
! |
!] |
! | No Change
! I
| ! Y
[- PTE is Valid | Active and Valid
: - In Working Set | PTE=GPTX GPTE is Valid REFCNT>0
] - Modity Bit Set ! . BAK=PGFLX,0
I] I
1‘ | No Change
| |
| @ | * Active and Valid
CERETL - PTE is Valid REFCNT>0
To - In Working Set GPTE is Valid BAK=PGFLX,0
Figure 15-4 - Modify Bit Set PFN in PTE(A) and
| PTE(B) is identical
To
Figure 15-4
Figure 15-8

Example of Page Transitions for Global
Page-File Backing-Store Pages

(2) Process A maps the page and has its PTE set to contain a GPTX.

@ Process B maps the page and has its PTE set to contain a GPTX.

(4) When Process B incurs a page fault, the pager follows the GPTX to the
GPTE and notes that the GPTE is demand zero. The following modifica-
tions are made to the PTEs and to the PEN database.

a. An entry in the PFN database is allocated.

b. The PTE array element in the PFN database points to the GPTE.

c. The BAK array element in the PFN database contains the system page
file index (with no. block allocated). '

325

Paging Dynamics

15.4

15.4.1

15.4.2

326

d. The new PEN is stored in the GPTE.
e. The valid bit is set in the GPTE.
f. The PFN in inserted into Process B’s PTE and the valid bit is set.

® When Process A incurs a fault on the page, the pager follows the GPTX to
the GPTE and finds that the GPTE is valid. The valid GPTE is copied to
Process A’s PTE. :

Transitions for a global page-file backing-store page are no different from the
transitions for a page located in a page file (see Figure 15-5). However, in
global page-file backing store pages, the GPTE, not the process PTE, is af-
fected by the transitions that the physical page makes. Once the global page
is removed from the working set, the process PTE reverts to the GPTX form.

WORKING SET REPLACEMENT

The working set list replacement algorithm that the VMS executive uses is a
modified first-in/first-out scheme. The page that has been in the working set
list for the longest time is the one first considered for replacement.

Scan of Working Set List

When the pager needs an empty working set list entry, it calls routine
MMGS$FREWSLE. This routine manipulates the working set list (see Figure
14-4) in the following fashion:

1. If the WSLE indexed by PHD$W _WSNEXT is already available (contents
are zero), that entry is used. (For details on checks that are made before a
page is used, see Section 15.4.3.)

2. If not, the WSNEXT pointer is incremented. If the WSNEXT pointer ex-
ceeds the end of the list (WSLAST), it is reset to the beginning of the
dynamic working set list (WSDYN), thus implementing the working set
list as a circular buffer.

3. If the newly indexed WSLE is available, then it is simply used. {Again, see
the checks made before it can be used.)

4. If the new WSLE is locked into the dynamic portion of the working set list,
that entry is skipped (which means going back to Step 2.) Only process
page table pages can be locked into the dynamic portion of the working set
list. Pages locked by user request result in a shuffling of the working set
list (see Chapters 14 and Chapter 16).

Reusing Working Set List Entries

Dropping through the previous checks indicates that the virtual page indi-
cated by the WSLE must be removed before this WSLE can be reused. If work-

15.4.3

15.4 Working Set Replacement

ing set list skipping (described in Section 15.4.4) is disabled, the working set
list entry is reused, whatever its state.

For global pages, the share count is decremented. If the share count goes to
zero, the reference count is decremented.

For process private pages, the reference count is decremented. If the page is
placed into a transition state, the balance slot reference count for this process
header is incremented to prevent the outswap of the process header.

Using an Available Entry in the Working Set List

If an available WSLE is found, checks must be made to see if the page can be
added to the working set. If there are fewer pages in the working set than are
indicated by WSQUOTA, a new physical page can always be added to the
working set. It may also be possible to add physical pages to the working set
list above WSQUOTA (up to WSEXTENT), depending on the size of the free
page list.

The following checks are made before an available working set entry can be
used:

1. If the size of the working set (process page count plus global page count)
equals the size of the working set list (WSSIZE), the next WSLE is reused.
(In other words, the working set is full.)

2. If the WSNEXT pointer exceeds the end of the list (WSLAST), WSNEXT is
reset to the beginning of the dynamic working set list. If an available
WSLE is found at the end of the list, and if the working set is full, WSLAST
is reset to point to the last unavailable (nonzero) WSLE in the working set
list. In other words, the working set list is shrunk if it contains more
entries than the size of the working set will allow.

3. If the working set is not full, the size of the working set is compared to
WSQUOTA. If the size of the working set is less than WSQUOTA, a new
page is allowed in the working set.

4. 1f there are more than WSQUOTA pages in use, the number of pages on
the free page list is compared to the SYSBOOT parameter GROWLIM. If
there are more than GROWLIM pages on the free page list, a new page is
allowed in the working set.)

Note that in order to extend the working set above WSQUQOTA, the
working set list itself must have been extended above WSQUOTA. To
extend the working set list above WSQUOTA, the free page list must con-
tain more than the SYSBOOT parameter BORROWLIM pages. For more
information on BORROWLIM and automatic working set adjustment, see
Section 16.4.1.3.

5. If there are fewer than GROWLIM pages on the free page list, the next
WSLE in the working set list is reused. Again, if the WSNEXT pointer

327

Paging Dynamics

15.4.4

15.5

328

exceeds the end of the list, the pointer is reset to the beginning of the list
and WSLAST is shrunk back over available entries at the end of the list (as
in Step 2).

Skipping Working Set List Entries

The special SYSBOOT parameter TBSKIPWSL (which has a default value of
eight) is used by the working set removal routine to permit frequently refer-
enced pages to remain in the working set, thereby allowing the operating
system to modify its strict first-in/first-out page replacement algorithm with
some frequency of use information.

The modified algorithm works in the following manner. Before a WSLE can
be reused, a check is made to see if the virtual address contained in that
WSLE is still valid in the translation buffer. If the virtual address is valid, the
search for an available WSLE starts again with the next WSLE. After
TBSKIPWSL WSLEs have been skipped in this manner, the translation buffer
checks are abandoned and the next WSLE is simply reused. If the value of
TBSKIPWSL is set to zero, no entries are checked in the translation buffer and
the scheme is defeated.

The following pages in the working set are skipped over in this scan:

» Pages that are valid in the translation buffer
* Pages that are locked in the working set

INPUT AND OUTPUT THAT SUPPORT PAGING

There is very little special-purpose code in the I/O subsystem to support
pager I/O and swapper I/O. The pager and swapper each build their own 1/0
request packets, but these packets are queued to the device driver in the
normal fashion. These are the only differences.

* Module SYSQIOREQ contains special entry points for pager and swapper
I/O that insert special I/O function codes into the I/O request packet.

* These codes are detected by the I/0 postprocessing service routine. There
are special completion paths for page read (the process is removed from
PFW state and made computable) and for other forms of I/O (the address of
a special kernel mode AST stored in IRP$L_ASTPRM field is used to no-
tify modified page writer or swapper that I/O has completed).

In order to make reading and writing as efficient as possible, the pager
supports a feature called clustering, where it checks to see whether pages
adjacent to the virtual page that it is reading are located in the same file in
adjacent virtual blocks. If so, a multiple block read is issued and several
pages are brought into the working set at one time.

The modified page writer and the Update Section system service also

15.5.1

15.5.1.1

15.5.1.2

15.5 Input and Output That Support Paging

cluster their write operations, both to make their writes as efficient as
possible and to allow subsequent clustered reads for the pages that are
being written.

Page Reads and Clustering

When the pager determines that a read is required to satisfy a page fault, it
allocates an I/O request packet and fills it with parameters that describe the
read. Table 15-1 lists those fields that are used for special purposes by the
pager.

The pager attempts to create a cluster of pages to read. The manner in
which this cluster is formed depends on the initial state of the faulting page
table entry.

Terminating Condition for Clustered Reads. The pager scans PTEs that map
larger virtual addresses, checking for more virtual pages that are located in
the same backing-store location, until the desired cluster size is reached or
until one of the following other terminating conditions is reached:

A page table entry different from the original faulting PTE is encountered.

» The page table page is itself not valid. (Satisfying this fault would offset the
benefits gained by clustering.) v

* No more working set list entries are available. (Each page in the cluster is
added to the working set.)

¢ No physical page is available.

If, after scanning the adjacent page table entries toward higher virtual ad-
dresses, no pages have been clustered, the process is repeated toward lower
virtual addresses with the same terminating conditions. The scan is made
initially toward higher virtual addresses because programs typically execute
sequentially toward higher virtual addresses and these pages are likely to be
needed soon. If the forward attempt fails, the pager attempts to read pages
adjacent to the faulting page on the assumption that even pages at lower
virtual addresses but near the faulting page are likely to be needed soon.

Matching Conditions While Scanning Page Table. The match that is looked
for when scanning the adjacent page table entries depends on the form of the
initial page table entry. .

« If the original PTE contains a process section table index, successive PTEs
must contain exactly the same PSTX. ~

o If the original PTE contains a page file virtual block number, successive
PTEs must contain PTEs with successively increasing (or decreasing) vir-
tual block numbers.

329

Paging Dynamics

Table 15-1
Description of I/O Requests Issued by Memory Management
Type of/Description of Priority Process ID System Virtual AST Address
I/O Request Address of PTE
IRP$B_PRI IRP$L_PID IRP$L_SVAPTE IRPS§L_AST
Process Page Read Priority of PID of
Faulting Faulting
1. Page in Image File(1) Process Process 1. POPT/P1PT 1.0
2. Page in Page File 2. POPT/P1PT 2.0
3. Page Table Page 3. SPT 3.0
System Page Read Priority of PID of
““System”’ “System”’
1. System Page(2) Process Process 1. SPT 1.0
16
2. Global Page . 2. GPT 2. Slave PTE
Address(<0)
3. Global CRF Page 3. Process Page 3. Master PTE
Table
Contents(>0)
4. Global Page 4, SPT 4.0
Table Page
Modified Page Write MPW_PRIO PID of Points to 0
Modified Modified
1. To Page File Page Writer Page Writer’s
2. To Image File(3) (PID of Map
Swapper)
3. To Swap File
(SWPVBN=0)
Update Section Priority PID of a. Process Page Table ~ AST Address
Page Write(4) of Caller Caller b. Global Page Table (if specified)
Swapper 1/0 SWP_PRIO PID of Points to 0
Swapper Swapper Map

(1) One field in the I/O request packet (IRPSL_ASTPRM) for page reads from a private section is sensitive
to whether the section is copy on reference. These two cases are distinguished as:
a. Not Copy on Reference
b. Copy on Reference
(2) Pageable executive routines originate in one of three image files (SYS.EXE, RMS.EXE, and
SYSMSG.EXE) described by three system section table entries (SSTE) located in the system header.
The static executive data is all located in the nonpaged executive. The only pageable writeable data
is the paged pool area, which starts out as a series of demand zero pages. Paged pool pages are written
to and subsequently faulted from the page file.
These two cases are distinguished as:
a. Pageable executive routines
b. Paged pool pages :
(3) The modified page writer takes special note of whether pages that are written back to an image file are
part of a
a. Private section
b. Global section

330

15.5 Input and Output That Support Paging

Table 15-1 (continued)
Description of I/0 Requests Issued by Memory Management

AST Parameter Address of Window Cluster Priority
Control Block Factor Boost at I/0
Completion
IRP$L_ASTPRM IRP$L_WIND — —
la.0 1. From PSTE 1. pfc/PFCDEFAULT|(6) Class=0
1b. PSTX Boost=0
2.0 2. From PFL 2. PFCDEFAULT
3.0 3. From PFL(5) 3. PAGTBLPFC
Class=0
Boost=0
1.0 la. From SSTE la. SYSPFC
1b. From PFL 1b. PFCDEFAULT
2.0 2. From GSTE 2. pfc/PFCDEFAULT(6)
3. GSTX 3. From GSTE 3. pfc/PFCDEFAULT(6)
(PFN$V_GBLBAK
is set)
4.0 4. From PFL(5) 4.1
Address of None(7)
MPW's special
kernel AST 1. From PFL 1. MPW_WRTCLUSTER
(WRITEDONE) 2a. From PSTE 2. MPW_WRTCLUSTER
2b. From GSTE
3. From SFTE 3.1
AST Parameter a. PSTE MPW_WRTCLUSTER Class=1
(if specified) b. GSTE Boost=2
Swapper’s KAST SFTE Not Applicable None(7)
(IODONE)

(4) In a similar manner, the Update Section system service behaves differently depending on whether the
pages are part of a
a. Private section
b. Global section

(5) Process page tables and global page tables originate as demand zero pages that are written to and
faulted from the page file.

(6) The cluster factor for a private section or a global section can be specified at link time or when the
section is mapped by explicitly declaring a cluster factor (pfc). In the absence of such a specification,
the pager uses the default system cluster factor determined by the SYSBOOT parameter
PFCDEFAULT.

(7) The swapper (and by implication the modified page writer) is a real-time process and is therefore not
subject to priority boosts.

331

Paging Dynamics

* If the original page table entry contains a global page table index, succes-
sive PTEs must contain successively increasing (or decreasing) indexes. In
addition, the global page table entries must all contain exactly the same
global section table index.

15.5.1.3 Maximum Cluster Size for Page Read. The maximum number of pages that
can be in a cluster is determined in several ways, depending on the type of
page being read.

o Global page table pages are not clustered.

o The cluster factor for process page table pages is taken from offset
PHD$B_PGTBPFC in the fixed portion of the process header. Unless some
user-written kernel mode routine has modified this field, the value of this
field is taken from the special SYSBOOT parameter PAGTBLPFC for all
processes in the system. The default value for this parameter is two. This
value is chosen to avoid an artificial end to building a cluster when the
page table page also had to be faulted. Two page table pages are guaranteed
to span 127 pages, regardless of the initial faulting virtual address. Decreas-
ing this value may defeat clustered reads. Increasing it above two is likely
to have negligible effect in most systems.

+ The cluster factor for page file pages is taken from the PFL$B_PFC field of
the page file control block (see Figure 14-22). The usual contents of this
field are zero. In that case the cluster factor is taken from the
PHD$B_DFPFC field of the process header. In the absence of user-written
modification, the value placed into this field is the SYSBOOT parameter
PFCDEFAULT.

» The cluster factor for process or global sections is taken from the
SEC$B_PFC field of the process or global section table entry (see Figures
14-7 and 14-16). These fields usually contain values of zero, in which case
the default page fault cluster is used. (Just as for clustered reads from the
page file, this default is taken from the PHD$B_DFPFC field in the process
header. The value of this field is usually equal to the PFCDEFAULT SYS-
BOOT parameter.)

There are two methods available to the user to control the cluster factor
of process or global sections. By including the following line in the linker
options file, the page fault cluster factor in the image section descriptor
can be set to nonzero contents: :

CLUSTER = cluster-name,[base-address],[pfc], tfile—spec, el

Sections that are mapped by the user (with a Create and Map [Private or
Global] Section system service) can have their page fault cluster factor
specified by including the optional PFC argument in the system service
call.

15.5.1.4 Page Read Completion. The page read completion is detected by the I/O post-
processing routine (IPL 4 software interrupt service routine) by the special
code inserted in the IRP before the request was queued.

332

15.5.2

15.5.2.1

15.5 Input and Output That Support Paging

Page read completion is not reported to the faulting process in the normal
fashion with a special kernel mode AST because none of the postprocessing
has to be performed in the context of the faulting process. Instead, the work is
done by this service routine and the process made computable by reporting a
page read completion event to the scheduler.

The details that the service routine takes care of when a page read success-
fully completes include the following steps for each page:

1. The reference count is decremented, indicating that the read in progress
has completed.

2. The physical page state is set to active and valid.

The valid bit in the page table entry is set.

4. If the page is a global page, the valid bit set in Step 3 was in the global page
table entry. In this case, the process (slave) PTE must be loaded with the
PFN and made valid.

@

After the individual pages have been tended to, the scheduler is notified that
a page read has completed (by reporting a page fault completion event with a
null priority increment) so that the process that was put into a page fault wait
state when the read was initiated can be made computable. (If any of the
pages just read were collided pages, the collided page wait queue is also emp-
tied. That is, all processes in that state are made computable. Collided pages
are discussed in Section 15.6.3.)

Modified Page Writing

The modified page writer (a subroutine of the SWAPPER process) also at-
tempts to cluster when writing modified pages to their backing store ad-
dresses. There are not so many special cases here as there are in the page read
situation. The three different cases encountered by the modified page writer
depend on the three possible backing store locations that pages on the modi-
fied page list can have.

Operation of the Modified Page Writer. The modified page writer proceeds in
approximately the following fashion:

1. The first page is removed from the modified page list. Its page table entry
address is retrieved from the PEN PTE array.

2. Adjacent page table entries are scanned (first toward lower virtual ad-
dresses and then toward higher virtual addresses) to look for transition
page table entries that map pages on the modified page list either until the
desired cluster size is reached or until one of the other terminating condi-
tions is reached.

This scan begins first toward smaller virtual addresses for the same rea-
son that the read cluster routine begins toward larger addresses. If the

333

Paging Dynamics

15.5.2.2

15.5.2.3

334

program is more likely to reference higher addresses, the modified page
writer does not want to initiate a write operation, only to have the page
immediately faulted (and likely modified again). The modified page writer
chooses to first write those pages with a smaller likelihood of being refer-
enced in the near future.

. The write is initiated, the state of all of the pages is changed to write in

progress, and their reference counts are incremented.

. The modified page writer returns to the SWAPPER process until notified

by its special kernel mode AST that the modified page write has com-
pleted.

Modified Page Write Clustering. The terminating conditions for the scan of
the page table include the following:

The page table page is not valid, implying that there are no transition pages
in this page table page. The special check is made to avoid an unnecessary
page fault.

The page table entry does not indicate a transition format.

The page table entry indicates a page in transition, but the physical page is
not on the modified page list.

The physical page number is greater than the contents of global location
MMGS$GL_MAXPEN. This check avoids pages in shared memory, which
have no PFN data associated with them.

The SWPVBN array element must be zero. Pages with nonzero SWPVBN
contents are treated in a special way by the modified page writer.

If the contents of the BAK array indicate that the backing store location for
the page is a (private or global) image file, the section index must be the
same for all pages in the cluster.

If the BAK array element indicates that the pages are to be written to the
page file, the contents of the virtual block number field are ignored. How-
ever, all pages must contain the same page file index in their BAK array
elements.

Backing Store Addresses for Modified Pages. There are three different kinds of
backing store address that the modified page writer encounters as the modi-
fied page writer removes pages from the modified page list.

If the SWPVBN array element is nonzero, this indicates that the process is
outswapped and this page remained behind, probably due to an outstand-
ing read request. The modified page writer does not attempt to cluster.
Instead, a write of a single page to the designated block in the swap file is
issued. A description of how the SWPVBN array element can be loaded is
found in Chapter 17, where the entire outswap operation is discussed.
If the backing store address is a section, the modified page writer creates a

15.5.2.4

15.5 Input and Output That Support Paging

cluster (up to the value of the SYSBOOT parameter MPW_WRTCLUSTER).
Any of the terminating conditions listed in the previous section will limit
the size of the cluster.

o If the backing store address is a page file, adjacent pages bound for the same
page file are also written at the same time.

The modified page writer attempts to allocate a number of blocks in the
page file equal to MPW_WRTCLUSTER. The desired cluster factor is re-
duced to the number of blocks actually allocated. Section 15.5.2.4 de-
scribes allocation of space within the page file.

The actual cluster created for a write to the page file consists of several
smaller clusters, each one representing a series of virtually contiguous
pages (see Figure 15-9).

—The modified page writer creates a cluster of virtually contiguous pages,
all bound for the same page file.

—1If the desired cluster size has not yet been reached, the modified page
list is searched until another physical page bound for the same page file
is found.

—Pages virtually contiguous to this page form the second minicluster that
is added to the eventual cluster to be written to the page file.

- —This process continues until either the cluster size is reached or no
more pages on the modified page list have the designated page file as
their backing store address. The modified page writer is building a large
cluster that consists of a series of smaller clusters. The large cluster
terminates only when the desired size is reached or the modified page
list contains no more pages bound to the page file in question. Each
smaller cluster can terminate on any of the conditions listed in the pre-
vious section, or on the two terminating conditions for the large cluster.

Page File Space Allocation. Before the modified page writer searches for pages
to write, it must first determine the size of the write cluster. To do this, it
must determine the number of contiguous blocks in the page file that can be
allocated. :

When the modified page writer attempts to allocate blocks in the page file,
it looks for a cluster of blocks that is the current allocation size in length (the
current allocation size is stored in the page file control block at the offset
PFL$L_ALLOCSIZ and is usually equal to MPW_WRTCLUSTER). If the de-
sired number of blocks is not available, the allocation size is reduced by 16
blocks and the search for contiguous blocks starts again at the beginning of
the page file. If the page file deallocation routine determines that it has freed
a large enough cluster, it increases the allocation size by 8 (up to
MPW_WRTCLUSTER).

When the allocation size for the page file is less than or equal to 16, a
special-case allocation routine is called. This special-case allocation routine

335

Paging Dynamics

336

Modified Page List

SWP$GL__BALBASE PTE BAK
Balance Slot Area . pgfix A
\d pafix B
:5 #; pstx [
° pgfix D
t:
9P pafix | E
7 pgfix F
pgfix G
0 PFN D
pgfix H
P pgfix |
pgfix J
Correct pgfix but Cluster Is Full
=
MPWSAL__PTE
Transition PTE (free list) Modified Page Writer's Map
0 PEN H 1 PFN H
o PEN F 1 PFNF
0 PEN A 1 PFN A
L
1 ;r
0 PEN E 1 PFNE
1 PFN (valid) 1 PFN G
< 7
Process Section Table Index ! PFNB
0 PFN G =z
-
[
“ 1 PFNJ
0 PFN B 7
4
=
1 1 PFN D
0 PFNJ 2
Demand Zero PTE T
Ve r e
Figure 15-9

Example of Clustered Write to a Page File

15.5.2.5

15.5 Input and Output That Support Paging

searches for and allocates the first available cluster of blocks that it encoun-
ters. The routine can allocate between 1 and 16 contiguous blocks. If the
special-case allocation routine determines that more than 65 percent of the
page file is in use, the following message is issued on the console terminal:

SYSTEM-W-PAGEFRAG, Page file £S5 full, system continuing

If the allocation routine determines that more than 90 percent of the page file
is in use, the following message is issued on the console terminal:

SYSTEM-W-PAGECRIT, ‘Page file 90 full, system trying to continue

If you see either of these messages on the console terminal, it is a good indica-
tion that the system requires an(other) alternate page file.

Example of Modified Page Write to a Page File. Figure 15-9 illustrates a sample
cluster for writing to a page file. The modified page list (pictured in the upper
right-hand corner of the figure) is shown as a sequential array to simplify the
figure.

1. The first page on the modified page list is PEN A. By scanning backward,
first PFN F and then PEN H are located. The PTE preceding the one that
contains PEN H is also a transition PTE, but the page is on the free page
list. This page terminates the backward search.

2. The modified page writer map begins with PFN H, PEN F, and PFN A. The
search now goes in the forward direction, with each page bound for the
page file added to the map up to and including PEN E. The next page table
entry is valid so the first minicluster is terminated.

3. The next page on the modified page list, PFN B, leads to the addition of a
second cluster to the map. This cluster begins with PFN G and ends with
PFN J. The backward search was terminated with a PTE containing a sec-
tion table index. The forward search terminated with a demand zero PTE.

Note that this second cluster consists of pages belonging to a different
process from the first cluster. The difference is reflected in the word array
element for each PTE in the map that contains a process header vector
index for each page (see Figure 14-24).

4. The next page on the modified page list is PEN C. This page belongs in a
global image file and is skipped over during the current write attempt.

5. PEN D leads to a third cluster that was terminated in the backward direc-
tion with a page table entry that contains a global page table index. The
search in the forward direction terminated when the desired cluster size
was reached, even though the next PTE was bound to the same page file.
This size is either MPW_WRTCLUSTER or a number of virtually contigu-
ous blocks available in the page file, whichever is smaller. In any case, this
cluster will be written with a single write request.

6. Note that reaching the desired size resulted in leaving some pages on the
modified page list bound for the same page file, such as PFN I in the figure.

337

Paging Dynamics

15.5.2.6

15.5.3

15.5.3.1

338

Modified Page Write Completion. The modified page writer is notified that
the write is complete by a special kernel mode AST (whose address was
stored in the ASTPRM field of the IRP while the write was in progress).
Modified page writing is recorded in the IRP as a swap write to allow this
completion method to be used. For the purposes of the I/O postprocessing
routine, the only form of page write request is the one issued by the Update
Section system service.

This kernel mode AST decrements various reference counts that indicated
the write in progress. If the reference count is now zero, the pages are placed
on the free page list. If the number of pages on the modified page list
(SCH$GL_MFYCNT) is still above the low limit threshold for the modified
page list (SCH$GL_MFYLOLIM), then the modified page writer removes the
new first page from the modified page list and starts all over.

Update Section System Service

The Update Section system service allows a process to write pages in a sec-
tion to their backing store addresses in a controlled fashion, without waiting
for the modified page writer to do the backup. This system service is espe-
cially useful for frequently accessed pages that may never be written by the
modified page writer, because they are always being faulted from the modi-
fied page list back into the working set before they are backed up.

This system service is a cross between modified page writing and a normal
write request. Like any Queued I/O request, this service can receive comple-
tion notification with an event flag, an AST, or through an I/O status block.
The number of pages written is specified by the address range passed as an
input parameter to the service. The cluster factor is the minimum of
MPW_WRTCLUSTER and the number of pages in the input range. The di-
rection of search for modified pages is determined by the order that the ad-
dress range is specified to the service.

Page Selection. If the section that is being backed up is a process private
section, only those pages that have the modified bit set in the page table entry
(or in the PFEN state array for transition pages) are written out.

If the section is a global section, then information about whether the page
is modified is found in both the PFN database and the page table entries of all
processes mapped to this global page. (The modify bit in the global page table
entry is inaccessible to hardware and contains no useful information.) Be-
cause there are no back pointers for valid global pages, this information is
unavailable. Therefore, all pages in a global section are written to their back-
ing store location, regardless of whether the pages have been modified.

If the flags parameter passed to Update Section has its low bit set, the set
bit indicates that the caller is the only process capable of modifying the sec-

15.5.3.2

15.6

15.6.1

15.6.2

15.6 Paging and Scheduling

tion. In that case, the process page table entries (and the PFN database) are
used to select candidate pages for backing up, and only modified pages are
written.

Write Completion. The process that issued the Update Section system serv-
ice is first notified about write completion with a special kernel mode AST.
This AST first checks whether all the pages requested by the original call
have been written or whether another write is required. If more pages have to
be written, another cluster is set up and queued. If all requested pages have
been written, the normal I/O completion path involving event flags, /O sta-
tus blocks, and user-requested ASTs is entered, and the process is notified.

PAGING AND SCHEDULING

Page fault handling can influence the scheduling state of processes in several
different ways. If a read is required to satisfy a page fault, the faulting process
is placed into a page fault wait state. If a resource such as physical memory or
page file space is not available, the process is placed into an appropriate wait
state. There are several other wait states that a process may be placed into as
a result of a page fault.

Page Fault Wait State

The most obvious wait state is page fault wait (PFW), which is required if a
read is required to resolve the fault. The process that requires the read to
resolve its page fault is placed into a page fault wait state. The I/0 comple-
tion routine detects that a page read has completed and reports a page fault
completion event to the scheduler. The scheduler removes the process from
the page fault wait state and makes it computable. There is no priority incre-
ment due to page fault read completion so the scheduling decision is made
based on the process’s current priority.

Free Page Wait State

If there is not enough physical memory available to satisfy the page fault, the
process is placed into a free page wait state (FPG). The physical page manager
(module ALLOCPFN] checks for processes in this state whenever pages are
added to an empty list. If the free page wait state is not empty, all processes in
the state are made computable.

The physical page manager makes no scheduling decision about which
process will get the page. There is no first-in/first-out approach to the free
page wait state. Rather, all processes waiting for the page are made computa-
ble. The next process to execute will be chosen by the scheduler, using the

339

Paging Dynamics

15.6.3

340

normal algorithm that the highest priority resident computable process exe-
cutes next.

Collided Page Wait State

It is possible for a page fault to occur for a page which is already being read
from disk. Such a page is referred to as a collided page. The collided bit (in the
PEN TYPE array)is set and the process placed into the collided page (COLPG)
wait state.

One of the details that the page read completion routine checks is the
collided bit in the TYPE array element for the page. If the collided bit is set,
the collided page wait state is emptied. There is no check for the page that is
being waited for by each process as it is made computable.

This lack of check has two advantages.

* As was the case for free page availability, there is no special code to deter-
mine which process will get the page first. All processes are made comput-
able, and the normal scheduling algorithm selects the process that exe-
cutes next. ;

* The probability of a collided page is small. The probability of two different
collided pages is even smaller. If a process waiting for another collided page
is selected for execution, that process will incur a page fault and get put
right back into the collided wait state. Nothing unusual occurs and the
operating system avoids a lot of special-case code to handle a situation that
rarely, if ever, occurs.

16

16.1

Memory Management System
Services

Confusion now hath made his masterpiece!
—Macbeth 2,3

The previous two chapters discussed the data structures used by the memory
management subsystem to describe physical and virtual memory and the
action of the page fault handler when a page was referenced in which the
valid bit was not set. This chapter describes the system services available to
the user (and also used internally by the operating system) to allocate these
structures and initialize their contents.

1. Some system services create or delete virtual address space within
the limitations imposed by process quotas and limits and SYSBOOT
parameters.

2. Private and global sections can be created that allow the blocks of a file to
be mapped as a portion of a process address space. Although the section
services are also associated with the layout of virtual address space, they
are treated separately because of their added level of complexity.

3. System services allow users to lock portions of their working sets into
memory, avoiding the overhead of page faults or allowing portions of code
to execute at elevated IPL. A process can also disable swapping, preventing
itself from being removed from memory.

4. There are other miscellaneous operations associated with the memory
management available to a process. For example, a process may force the
contents of all modified pages to be written to their backing store ad-
dresses (Update Section system service) or purge some or all pages from its
working set (Purge Working Set system service).

DISPATCH METHOD FOR MEMORY MANAGEMENT
SYSTEM SERVICES

Almost all of the memory management system services specify a desired
address range as an input parameter. The page table entries associated with
‘these addresses contain an owner field (see Figure 14-3), indicating whether
the caller of each service can manipulate the pages in the desired fashion.
Another peculiarity of the memory management system services is that
many of the services can partially succeed (because they are done on a page-

341

Memory Management System Services

16.2

16.2.1

342

by-page basis). This partial success is indicated by returning an error code
combined with the address range over which the operation was completed (in
the retadr argument).

A common dispatch method is used by most of the memory management
system services to reflect the similarity of the services:

* Information about the specific service, including the input parameters, is
placed on the stack for later retrieval.

» Page ownership is checked to insure that a less privileged access mode is
not attempting to alter the properties of some pages owned by a more
privileged access mode.

» The address of a page-by-page routine to accomplish the desired action of
the original service is placed into R6.

* A common routine is called that performs general page processing and
calls the single page service-specific routine for each page in the desired
range.

» The address range actually operated on is returned to the caller (if it is
requested).

VIRTUAL ADDRESS CREATION AND DELETION

The first level of memory management available to a process is the creation
or deletion of virtual address space. These services are also used by the sys-
tem when an image first begins executing (the image activator calls several
services to create process address space) and as part of image exit (the image
reset routine deletes all of PO space and a small part of P1 space). The memory
management performed by the system as part of image activation or process
deletion is described in Chapter 21.

Address Space Creation

Address space creation is essentially a simple operation. A series of demand
zero pages is created, either at the end of the designated address space (the
Expand Region [$EXPREG] system service) or in the specified address range
({the Create Virtual Address Space [SJCRETVA] system service). If any pages
already exist in the requested range, they must be deleted first.

These two system services can partially succeed. That is, a number of
pages smaller than the number originally requested may be created. Once the
specified address range is determined, the demand zero pages are created one
at a time. It is possible to run into one of the limits on the number of pages
that can be created after several pages have already been successfully created.
For this reason, it is especially important for the caller of either SCRETVA or
$EXPREG to look at the retadr argument to determine whether the service
(SCRETVA or $EXPREG) was partially successful.

16.2.1.1

16.2.1.2

16.2.1.3

16.2 Virtual Address Creation and Deletion

Limits on Virtual Address Space Creation. There are three limitations on the
amount of virtual address space that can be created.

¢ The SYSBOOT parameter VIRTUALPAGECNT controls the total number
of page table entries (POPTEs plus P1PTEs) that any process can have in its
process header. The division of these pages between PO space and P1 space
is totally arbitrary and process specific. It is only the sum of PO and P1
pages that is limited by the SYSBOOT parameter.

 The size of a process working set also controls the size of that process’s
address space. When a process page is valid, the page table page for that
page is not only valid but also dynamically locked into the working set. For
small address spaces, the set of valid process pages can be represented by a
small number of page table pages.

As the address space grows, the probability that a given page table page
maps more than one valid process page decreases. (The limiting case, one
that can usually be reached only with very large process address spaces,
requires two working set list entries for each valid process page.) In any
case, there is an implicit limit to the process address space imposed by the
process working set quotas.

The specific check that is made is whether the size of the dynamic
working set list can lock down all the page table pages necessary to map
the process address space and still leave enough fluid working set
(PHD$W _FLUID), plus the worst case number of page table pages required
to map PHD$W_FLUID pages, in order to allow the process to perform
useful work. The number of page table pages that results is the minimum
of PHD$W _FLUID and the number of page table pages not already locked
down. If this check fails, the working set list is expanded. If the working
set is at its limit, the virtual address creation fails with the status of
SS$_INSFWSL.

* The third constraint on the total size of the process address space is the
page file quota. Each demand zero page and each copy-on-reference section
page is charged against the job’s page file quota (JIBSL_PGFLCNT).

Expand Region System Service. The Expand Region system service is a special
case of the Create Virtual Address Space system service. The requested num-
ber of pages is simply converted into a PO or P1 page range and control is
passed to a page creation routine that is common between the two services.

Automatic User Stack Expansion. A special form of P1 space expansion oc-
curs when a request for user stack space exceeds the remaining size of the
user stack. Such a request can be reported by the hardware as an access viola-
tion exception or by software when insufficient user stack space is detected.
(Software detection is done by the AST delivery routine and the Adjust Stack
system service if the request is for user mode stack space.)

343

Memory Management System Services

16.2.2

344

The routine EXE§EXPANDSTK is called directly by the two software rou-
tines and invoked by the access violation exception handler if the access
violation occurred in user mode. This routine checks that a length violation
(as opposed to a protection violation) occurred and that the inaccessible ad-
dress is in P1 space. If so, P1 space is expanded from its current low address
end to the specified inaccessible address. For the usual case, one in which a
program requires more user stack space than requested at link time, the ex-
pansion typically occurs one page at a time.

Because this automatic expansion cannot be disabled on a process-specific
or system-wide basis, a runaway program (one that is using stack space with-
out returning it) will not be aborted until it exceeds the virtual address size
determined by the SYSBOOT parameter VIRTUALPAGECNT (a quota viola-
tion which is indicated by $CRETVA returning an error status of SS$_
VASFULL). In addition, a program that makes a random {and probably incor-
rect) reference to an arbitrary P1 address smaller than the top of the user stack
will probably continue to execute (after the creation of many demand zero
pages) rather than exiting with some error status.

If the stack expansion fails for whatever reason (the Create Virtual Address
system service can fail for several reasons), the process is notified in a way
that depends on who originally called EXE$EXPANDSTK.

» The Adjust Stack system service for user mode can fail with several of the
error codes returned by $CRETVA.

¢ An attempt to deliver an AST to a process with insufficient user stack
space results in an AST delivery stack fault exception being reported to the
process. (Enough information is removed from the stack by the error rou-
tine that the exception dispatcher can at least get started in reporting the
exception.)

» If the user stack cannot be expanded in response to a P1 space length viola-
tion, then an access violation fault is reported to the process. If there is not
enough user stack to report the exception, the normal condition handler
search is bypassed and the exception is reported directly to the last chance
handler (see Chapter 4). In the default case, this handler causes the cur-
rently executing image to terminate.

Address Space Deletion

For a couple of reasons, page deletion is more complicated than page creation.

* Creation involves taking the process from one known state (address space
does not yet exist) to another known state (the page table entries contain
demand zero PTEs). Page deletion must deal with initial conditions that
include all the possible states that a virtual page can be in.

¢ Page creation may first require that the specified pages be deleted in order

16.2.2.1

16.2.2.2

16.2.2.3

16.2 Virtual Address Creation and Deletion

to put the process page tables into their known state. That is, page deletion
is often an integral part of page creation.

Delete Virtual Address Space System Service. When a page is deleted, all proc-
ess and system resources associated with the page must be returned. These
include the following forms:

* A page frame for valid and transition pages

* A page file virtual block for pages whose backing store address indicates an
already allocated block

+ A working set list entry for a page in the process working set list

 Page file quota for all pages with a page file backing store address, includ-
ing pages that have not yet allocated a block in the page file

Private section pages that are deleted cause the reference count in the process
section table entry (see Figure 14-7) to be decremented. If the reference count
goes to zero, the PSTE itself can be released.

In addition, valid or modified pages with a section backing store address (as
opposed to a page file backing store address) must have their latest contents
written back to the section file. (The contents of pages with a page file back-
ing store address are unimportant after the virtual page is deleted and do not
have to be saved before the physical page is reused.)

Page Deletion and Scheduling. Pages that have I/O in progress cannot be dele-
ted until the I/O completes. Such processes are placed into a page fault wait
state (requesting that a system event be reported when I/O completes) until
the page read or write completes. Pages in the write-in-progress transition
state will cause the same effect. Pages in the read-in-progress transition state
are faulted, with the immediate result that the process is placed into the
collided page wait state. Special action must be taken for global pages with
/0 in progress because there is no way to determine if the process deleting
the page is also responsible for the I/O. In such cases, the process is placed
into a miscellaneous wait state [MWAIT) until its direct /O completes. (If
the process has no direct I/O in progress, the problem does not arise in the
first place, and the deletion is allowed to proceed.)

Once all reasons for keeping the page around have been taken care of, the
page is deleted. Deletion of a physical page means that the contents of the
PFN PTE array are cleared, destroying all ties between the physical page and
any process virtual address. In addition, the page is placed at the head of the
free page list, causing it to be used before other pages whose contents are still
useful.

Contract Region System Service. The Contract Region system service is a
special case of the Delete Virtual Address Space system service. The re-

345

Memory Management System Services

16.2.3

16.3

16.3.1

346

quested number of pages is simply converted into a PO or P1 page range and
control is passed to a page deletion routine that is common between the two
services.

Controlled Allocation of Virtual Memory

There is a second level of memory management available to a process. The
Run-Time Library procedures LIBSGET_VM and LIB$FREE_VM provide a
mechanism for allocating small blocks of virtual memory in a controlled
fashion. Allocation from the free memory pool is performed in much the
same way as pool space is allocated by the VMS operating system (see Chap-
ter 3). If there is not a block of memory in the pool large enough to satisfy the
request, PO space is expanded (by calling $EXPREG), and the pool is extended
to include the newly created virtual address space.

PRIVATE AND GLOBAL SECTIONS

A second method of creating address space is available. The Create and Map
Section system service allows a process to associate a portion of its address
space with a specified portion of a file. The section may be specific to a
process (private section) or shared among several processes (global section).
The Map Global Section system service allows a process to map a portion of
its virtual address space to an already existing global section. These two ser-
vices are used by the image activator (see Chapter 21) to map portions of
process address space to either the image file or previously installed global
sections.

The Create and Map Section system service also provides two special op-
tions. Rather than mapping a portion of process address space to a file, a
suitably privileged process (with PENMAP privilege) can associate (map) vir-
tual addresses to specific physical addresses. Global sections can be created
and mapped in shared memory as well as in local memory.

Create and Map Section System Service

The Create and Map Section system service is the system service that per-
forms all of these operations. (In a sense, the Map Global Section system
service is a special case of §CRMPSC where the section does not have to be
created.) The particular path that is taken through the service is determined
by the contents of the flags argument passed to the service. (The VAX/VMS
System Services Reference Manual lists those flags that can be used together
and those that are incompatible.) One way of looking at the action of this
service is to examine the data structures that are created as a result of exercis-
ing one of the several options available to it.

16.3.1.1

16.3.1.2

16.3 Private and Global Sections

Private Section Creation. When a process private section is created, a process
section table entry (see Figure 14-7) is allocated from the area of the process
header set aside for PSTEs. The information that associates the virtual ad-
dress range with virtual blocks in the file is loaded into the PSTE. (When the
private section is being created as a part of image activation as described in
Chapter 21, the original source for much of the data stored in the PSTE is an
image section descriptor contained in the image file.) In addition, each proc-
ess page table entry in the designated address range is loaded with identical
contents, namely a process section table index (see Figure 14-3).

The memory management subsystem cannot take a window turn on pages
within a section (see Section 19.1.4). Therefore, it requires that all the map-
ping information for the newly mapped file be available in the window con-
trol block. If the Create and Map Section system service determines that not
all mapping information is available, its operations are temporarily sus-
pended while a request is made to the ACP for all mapping information for

the file. Because the window control block occupies nonpaged pool, the ex-

tension of the window control block is charged against the process’s BYTLM
quota.

Because of the way space is allocated in the process header (see Chapter 26),
it is possible that the space to hold a section table entry may extend into the
working set list. When this occurs, the entire process section table can slide
down into one of the empty pages set aside in the process header for exactly
this purpose. All references to process section table entries are relative to the
bottom (high address end) of the table that is located through offset
PHD$L_PSTBASOFF. That is, the entire structure is position independent.
Header expansion involves mapping the first empty page, moving the entire
structure down one page, and changing PHD$L_PSTBASOFF to locate the
new bottom of the table.

Global Section Creation. The creation of a global section (located in local
memory) is similar to the creation of a private section except that the data
structures are located in the system header (see Figures 14-15 and 14-18) in-
stead of the process header:

1. A global section descriptor (see Figure 14-14) is allocated from paged dy-
namic memory and loaded with information that describes the name and
protection attributes of the section. This data structure is used by subse-
quent Map Global Section system service calls to determine whether the
named section exists and to locate the global section table entry in the
system header that more fully describes the section.

- 2. A global section table entry (see Figure 14-16) in the system header (see

Figure 14-15) is the analogous structure to the process section table entry.
3. A series of global page table entries are created in a virtual extension to the

347

Memory Management System Services

16.3.1.3

16.3.1.4

348

system header (see Figure 14-17). These page table entries contain infor-
mation that describes the current state of each global page in the section.
They are not available to the memory management hardware but are used
by the page fault handler when a process incurs a page fault for a global
page.

4. A global section can be created and mapped by a single system service call.
Alternatively, the section can be created in one step and mapped later on
by either the creating process or by any other process allowed to map the
section. In any case, mapping to a global section results in no changes to
the global database. Rather, the process page table has a series of page table
entries that contain a global page table index (see Figure 14-19) added to
describe the designated address range. The process page table entries for
global pages can be in one of two states, either valid or containing the
appropriate global page table index.

Global Sections in Shared Memory. Global sections that are located in shared
memory are treated in a slightly different fashion from local memory global
sections. The sections are created by the Install Utility (INSTALL) after
shared memory has been initialized. (See Chapter 14 for a description of the
data structures that describe global sections in shared memory.) Global sec-
tions in shared memory have the following characteristics:

1. A special global section descriptor (see Figure 14-27) is created that
contains, among other things, a list of the physical pages in shared memory
that will contain the section. The section is temporarily mapped by
INSTALL and each page of the section is loaded from the image file.

2. A global section table entry is created only on the CPU that originally
creates the section. This GSTE allows the initial read to be performed and
allows subsequent section updates (with SYS§UPDSEC) for writeable sec-
tions. Pages are also written back to the image file on the creating CPU
when the section is deleted.

3. No global page table entries are needed for global sections in shared mem-
ory because the state of each page is known to be valid. The PFN informa-
tion necessary to allow processes to map into this section is contained in
the shared memory GSD.

4. When a process maps to the shared memory global section, the process
page table entries are set to valid with the appropriate page frame numbers
loaded into the PTEs. These pages are not counted against the process
working set.

Map by PFN. The Create and Map Section system service allows a privileged
process (one with PENMAP privilege) to map a portion of its virtual address
space to specific physical addresses. Although the primary intention of this

16.3.2

16.3.3

16.3 Private and Global Sections

service is to allow process address space to be mapped to I/O addresses, it can
also be used to map specific physical memory pages.

When a private PFN-mapped section is created, the only effect is to add a
series of valid PTEs to the process page table. The PFN fields in these PTEs
contain the requested physical page numbers. The PTE§V_WINDOW bit in
the PTE (see Figure 14-3) is set in each PTE to indicate that each of these
virtual pages is PFN mapped. These pages are not counted against the process
working set. In addition, no record is maintained in the PFN database that
such pages are PFN mapped.

When a global PFN mapped section is created, the only data structure cre-
ated to describe such a mapping request is a special form of global section
descriptor (see Figure 14-14). There are no global page table entries nor is
there a global section table entry. When a process maps to such a section, its
process page table entries are set to valid, mapped by PFN (PFN$V_
WINDOW is set), and the PEN fields are filled in according to the contents
of the extended GSD (see Figure 14-14).

Map Global Section System Service

The Map Global Section system service can be considered a special case of
the Create and Map (Global) Section system service, where the global section
already exists. This service usually has no effect on the global database (other
than to include the latest mapping in various reference counts). Rather, this
service allows a range of process addresses to become mapped to the named
global section.

The actual effect of this service is to load each of the designated process
PTEs with a global page table index (see Figures 14-3 and 14-19). These global
page table indexes are effectively pointers to global page table entries in the
system header, where the current state of each global page is actually re-
corded.

When a process maps to a global section in shared memory or to a section
that is PFN-mapped, there are no global page table entries to be pointed to.
Instead, each process page table entry is set to valid with the PFN field con-
taining a physical page number either in shared memory (for shared memory
global sections) or anywhere in physical address space (as indicated by the
extended GSD for PFN-mapped global sections).

Delete Global Section System Service

Like the Delete Virtual Address Space system service, the Delete Global Sec-
tion system service is more complicated than global section creation because
the section must be reduced from one of many states to nothing. In addition,
global writeable pages must be written to their backing store addresses before

349

Memory Management System Services

16.3.4

350

a global section can be fully deleted. For these reasons, the global section
deletion is often separated in time from the system service call.

When the Delete Global Section system service is called, the named sec-
tion is marked for deletion, which means that the GSD is moved from the
normal doubly linked GSD list to the delete pending list. The delete pending
bit in the GSD is set. In addition, the permanent indicator in the GSD is
turned off. However, the actual section deletion cannot occur until the refer-
ence in the global section table entry, the count of process page table entries
mapped to the section, goes to zero. Although it is possible for the reference
count to be zero when the section is marked for deletion, the more typical
global section deletion occurs as a side effect of virtual address deletion
(which itself might occur as a result of image exit or process deletion).

A reference count of zero indicates that no more process page table entries
are mapped to the section. At that time, the following data structures that
describe the system can be deallocated:

¢ The global page table entries in the system header are freed for further use.
If an entire page of global page table entries is freed, that page can be un-
locked from the system working set.

» The global section table entry in the system header is removed from the
active list and placed on the free list of system section table entries for
possible later use.

* The global section descriptor is placed on the free list of GSDs. When a
global section is later created, this list is checked for a GSD before a new
structure is allocated from paged dynamic memory.

Global sections in shared memory and PFN-mapped global sections exercise
some of the same logic when the sections are deleted, but the effects are
different because not all of the global data structures exist for these special
global sections. A PFN-mapped section is described entirely by an extended
global section descriptor (see Figure 14-14). In addition, no reference counts
are kept for such sections, so the GSD can be placed on the free list of GSDs
immediately.

When a shared memory global section is deleted, there are no global page
table entries to delete. In addition, a global section table entry only exists on
the port from which the section was created (to allow the section to be loaded
when it was initially created and to allow the Update Section system service
or Delete Global Section system service to preserve its contents).

Update Section System Service

The Update Section system service requests that a specified range of process
private or global pages be written to their backing store addresses. When a
private section is being updated, only those pages that have been modified (as

16.4

16.4.1

16.4.1.1

16.4 Related System Services

indicated either by the PTE$V_MODIFY bit in the PTE or by the
PEN$V_MODIFY bit in the PFN STATE array) are written. With global
pages, the modify state of a physical page is the logical OR of the PFN STATE
array modify bit and the modify bits in all of the process page table entries
mapped to the section. Because there are no back pointers to all of these
PTEs, this information is not available. Instead, when a global section is up-
dated, all pages in the designated address range are written back to the global
image file. (When the “exclusive writer”” flag is passed to the Update Section
system service, only those pages modified by the caller are written.) The
interaction between the Update Section system service and the I/O subsys-
tem is described in Chapter 17.

RELATED SYSTEM SERVICES

Other memory management system services allow a process to control its
working set, alter page protection, and lock pages into the working set or into

‘physical memory.

Working Set Size Adjustment

It is possible to make the process working set either larger or smaller, either
manually with the Adjust Working Set Limit system service or automatically
as a part of the quantum end routine. When the working set is expanded, new
pages can be added to the working set without removing already valid entries.
Adding pages to a process’s working set decreases the probability that the
process will incur a page fault.

It is unlikely that a program will voluntarily reduce its working set limit,
unless it has a good understanding of its paging behavior. The system reduces
a process working set as a part of the automatic working set adjustment. The
swapper process can shrink a process’s working set in an attempt to gain
more pages, before resorting to swapping a process out of the working set. In
addition, a process working set limit is reset to its default value as a part of
the image rundown procedure (see Chapter 21) that is invoked when an
image exits. Table 16-1 lists the process-specific and system-wide working
set list parameters.

Adjust Working Set Size System Service. The effective result of altering the
process working set size is to change the value of the WSSIZE working set list
counter (see Figure 14-4).

In the case of working set list expansion, the working set size is limited by
the maximum working set size (PHD$W_WSEXTENT). If the expanded
working set extends into the process section table (see Figure 14-1), the proc-
ess section table is moved down in exactly the same manner as is done to

351

5¢e

Table 16-1: Working Set Lists: Limits and Quotas

Description Location or Name Comments
Beginning of Working Set List PHD$W_WSLIST Always has the value 60 (hex)
(This is PHD$K_LENGTH / 4)
Size of the entire working set PHD$W _WSSIZE Set by LOGINOUT, altered by
call to SYSSADJWSL or by
automatic working set
adjustment
Beginning of list of PHD$W _WSLOCK The same for all processes
permanently locked entries in a given system
Beginning of dynamic portion PHD$W_WSDYN Identical to WSLOCK unless this
of working set list process has called SYS§LKWSET
or SYS$LCKPAG
Index of most recently inserted PHD$W_WSNEXT Updated each time an entry
working set list entry is added to the working set
End of current working set list PHD$W_WSLAST Updated by calling SYSSADJWSL,

by image exit, by pager, or
by automatic working set

adjustment
Default working set size PHD$W_DFWSCNT Set by LOGINOUT, altered

by SET WORKING _SET/LIMIT command
Normal limit to working set size PHD$W_WSQUOTA Set by LOGINOUT, altered

by SET WORKING_SET/QUOTA command
Maximum limit to working set size PHD$W_WSEXTENT Set by LOGINOUT, altered

by SET WORKING _SET/EXTENT command
Upper limit to working set quota PHD$W _WSAUTH Set by LOGINOUT, cannot be altered
Upper limit to working set extent PHD$W_WSAUTHEXT Set by LOGINOUT, cannot be altered
Lower limit to size of dynamic PHD$W _WSFLUID Set up by SHELL, equal to the value

working set size of MINWSCNT SYSBOOT parameter

§20IAT2S UI91SAS MIWISDUDN AIOWIN

€qe

Table 16-1: Working Set Lists: Limits and Quotas (continued)

Description

Size of dynamic working set after
allowing room for PHD$W _WSFLUID
process page entries and a
reasonable number of page table pages

Number of pages in use by process

Authorized default working set size
Authorized default working set limit

Authorized default working set maximum

System-wide minimum working set size
System-wide maximum working set size
Working set size for system paging

Default value for working set size
default (used by SYS§CREPRC)

Minimum value for working set size
default (used by SYS$CREPRC)

Default value for working set quota
(used by SYSSCREPRC)

Minimum value for working set quota

SYSBOOT parameter
(used by SYS$CREPRC)

Location or Name
PHDS$SW_EXTDYNWS

PCB$W_PPGCNT
+ PCB$W_GPGCNT

UAF$W_DFWSCNT
UAF$W_WSQUOTA

UAF$W_WSEXTENT

MINWSCNT
WSMAX
SYSMWCNT
PQL_DWSDEFAULT

PQL_MWSDEFAULT
PQL_DWSQUOTA

PQL_MWSQUOTA

Comments

Updated each time size of dynamic
working set is changed

Updated each time a page is
added to or removed from
the working set

Loaded into PHD$W _DFWSCNT

Loaded into both PHD$W _WSQUOTA
and PHD$W_WSAUTH

Loaded into both PHD$W _WSEXTENT
and PHD$W_WSAUTHEXT

SYSBOOT parameter
SYSBOOT parameter
SYSBOOT parameter
SYSBOOT parameter

SYSBOOT parameter

SYSBOOT parameter

SPITAIIS WIIISAS PaID[aY H'9]

Memory Management System Services

16.4.1.2

16.4.1.3

354

accommodate process section table expansion. However, there is not always
enough room in the process header to accommodate the expanded work-
ing set list. The process header size is determined by WSMAX (and
PROCSECTCNT]) and the working set parameters (PHD$W _WSEXTENT
and PHD$W_WSAUTHEXT) are minimized with WSMAX. (The calculation
of the size of each piece of the process header is described in Chapter 26.)
Note that there is no check to determine how many process section table
entries in the process header are allocated; thus, the process section table can
grow so large that there is not enough working set list area available.

In the case of working set list contraction, the working set cannot be con-
tracted below MINWSCNT. In addition, the extra dynamic working set size
(PHD$W_EXTDYNWS] cannot be reduced below zero. If the
PHD$W_WSNEXT pointer locates an entry beyond the new end of the list, it
is reset to point to the new end. The contracted list can have holes in it; the
PHD$W _WSLAST pointer is only moved back as a side effect of freeing ex-
cess working set list entries (above the new limit).

SET WORKING _SET Command. The SET WORKING _SET command al-
lows the default working set size (PHD$W_DFWSCNT) or the working set
maximum (PHD$W_WSEXTENT)] to be altered at the command level. Nei-
ther the default size nor the maximum can be set to a value larger than the
authorized upper limit (PHD$W_WSAUTHEXT).

If the working set maximum is altered, it changes the upper limit for future
calls to the Adjust Working Set Limit system service. If the limit (default
size) is altered, it affects the working set list reset operation performed by the
routine MMGS$IMGRESET invoked as a result of image exit. If the limit is set
to a value larger than the current quota, both the quota and the limit are
altered to the new value. (Note that automatic working set adjustment is
disabled for any process that has its quota and default (limit) set to the same
value.)

Automatic Working Set Size Adjustment. In addition to working set adjust-
ment as a result of explicit calls to SYSSADJWSL or as a side effect of image
exit, the operating system also provides automatic working set adjustment to
keep a process’s page fault rate within limits set by one of several SYSBOOT
parameters (see Table 16-2). All of the SYSBOOT parameters listed in this
table are dynamic and can be altered without rebooting the system.

The automatic working set adjustment takes place as part of the quantum
end routine (see Chapter 10), because a process that cannot execute for even a
single quantum will not benefit from an increased working set size. (Note
that no adjustment takes place for real-time processes.) The adjustment takes
place in several steps:

16.4 Related System Services

Table 16-2: Automatic Working Set Size Adjustments: Process and System Parameters

Description
Total amount of CPU time charged
to this process

Amount of CPU time when last
adjustment took place

Total number of page faults
for this process

Number of page faults when last
adjustment took place

Most recent page fault rate
for this process

Amount of CPU time that process
must accumulate before a page
fault rate check is made

Lower limit page fault rate

Amount by which to decrease
working set list size

Lower bound for decreasing
working set list size

Upper limit page fault rate

Amount by which to increase
working set list size

Free page list size to allow
.growth of working set

Free page list size to allow
extension of working set list

Location or Name
PHDS$L_CPUTIM

PHD$L_TIMREP
PHDS$L_PAGEFLTS
PHDS$L_PFLREF
PHDS$L_PFLTRATE
AWSTIME (S)
PFRATL (S)
WSDEC ()
AWSMIN (S)

PFRATH (S)
WSINC (S

GROWLIM ()

BORROWLIM (S)

Comments

Updated by hardware clock
service routine

Updated by quantum end routine
when adjustment check is made

Updated each time this
process incurs a page fault

Updated by quantum end routine
when adjustment check is made

Recorded but not used each time
an adjustment check is made

Do not adjust if PCB§W _PPGCNT is
less than or equal to this value

Disables automatic adjustment for
entire system if zero

Do not adjust working set size if
@SCH$GL_FREECNT is less
than or equal to this value

Do not adjust working set list size
if @SCH$GL_FREECNT is less
than or equal to this value

(S) These values are SYSBOOT parameters.

1. If the WSINC parameter is set to zero, the adjustment is disabled on a
system-wide basis, so nothing is done. If automatic working set adjust-
"ment has been turned off by the DCL command SET WORKING_SET/
NOADJUST, the adjustment is disabled for the process, and, again, noth-

ing is done.

2. If the process default working set size (PHD$W_DFWSCNT] is equal to its
quota (PHD$W_WSQUOTA), then adjustment is disabled for this process,
s0, again, nothing is done.

3. If the process has not been executing long enough since the last adjust-
ment (the difference between accumulated CPU time, PHD$L_CPUTIM,
and the time of the last adjustment attempt, PHD$L_TIMREEF, is less than
the SYSBOOT parameter AWSTIME), no adjustment is done at this time.

355

Memory Management System Services

356

If the process has accumulated enough CPU time, the reference time is
updated (PHD$L_CPUTIM is loaded into PHD$L_TIMREF), and the rate
checks are made.

. The current page fault rate is calculated. The philosophy for automatic

working set adjustment consists of two premises. If the page fault rate is
too low, the system can benefit from a smaller working set size (because
more physical pages become available) without harming the process (by
causing it to incur many page faults). If the page fault rate is too high, the
process can benefit from a larger working set size (by incurring fewer
faults), without degrading the system.

o If the current page fault rate is too high (greater than or equal to
PFRATH), a determination is made to see if the working set list can be
extended. If the size of the working set list is below WSQUOTA, the
working set list is extended by WSINC. If the size of the working set list
is greater than or equal to WSQUOTA, the number of pages on the free
page list is compared to the SYSBOOT parameter BORROWLIM. If
there are more than BORROWLIM pages on the free page list, the work-
ing set list is increased by WSINC. However, if there are fewer than
BORROWLIM pages on the free page list, the working set list is not
extended. The working set list can only be extended up to WSEXTENT.

Note the adjustment taking place here affects only the working set
list, not the working set itself. Once the working set list has been ex-
tended, newly faulted pages can be added to the working set. The page
fault exception handler will add pages to the working set above
WSQUOTA only when there are more than the SYSBOOT parameter
GROWLIM pages on the free page list (see Section 15.4.3).

+ If the current page fault rate is too low (strictly, less than PFRATL), the
working set is decreased (by WSDEC). However, if the contents of
PCB$W _PPGCNT are less than or equal to AWSMIN, no adjustment
takes place. This decision is based on the assumption that many of the
pages in the working set are global pages and that therefore the system
will not benefit (and the process may suffer) if the working set is de-
creased. Note that in the update for VAX/VMS Version 3.1, PFRATL
was set to zero, effectively turning off this method of working set reduc-
tion in favor of swapper working set trimming. The rationale for this
change is explained at the end of this list.

5. The actual working set adjustment is accomplished by a regular kernel

mode AST that executes an Adjust Working Set system service. The AST
parameter passed to this AST is the amount of previously determined in-
crease or decrease. This step is required because the system service must
be called from process context (at IPL 0) and the quantum end routine is
executing in response to the IPL 7 software timer interrupt.

16.4.1.4

16.4.2

16.4.2.1

16.4 Related System Services

Two other pieces of the executive control the size of a process’s working set:
the page fault routines and the swapper. As described in the previous list, the
page fault handler can add a page to a process’s working set if the size of the
free page list is greater than GROWLIM. In an effort to gain pages, the swap-
per will reduce the working sets of processes in the balance set before actu-
ally removing processes from the balance set. This working set reduction is
known as swapper trimming or working set shrinking. Process selection is
performed by a table-driven, prioritized scheme (see Section 17.2.2).

Two problems are inherent in using the quantum end scheme of automatic
working set adjustment: processes that are compute-intensive will reach
quantum end many times and images that have been written to be efficient
with respect to page faults (a low page fault rate) will qualify for working set
reduction, because their page fault rate is lower than PFRATL. In both of
these cases, working set reduction is not desirable. By contrast, swapper trim-
ming selects its processes starting with those that are least likely to need
large working sets. S

In what can be seen as an evolutionary change to the operating system,
working set reduction at quantum end was turned off in the VAX/VMS Ver-
sion 3.1 update. The default value of PFRATL has been set to zero. In this
manner, swapper trimming and the image exit reset are the only methods
used to reduce working set size.

Purge Working Set System Service. The Purge Working Set system service
requests that all virtual pages in the specified address range that happen to be
in the working set be removed from thé working set. A program could use
this service if it recognized that a certain set of routines or data was no longer
required. By voluntarily removing entries from the working set, a process can
exercise a little control over the working set list replacement algorithm, in-
creasing the chances for frequently used pages to remain in the working set.
The VMS executive uses this service as part of the image startup sequence
{see Chapter 21) to insure that a program starts its execution without unnec-
essary pages (such as CLI command processing routines in its working set).

Locking and Unlocking Pages

For time-critical applications and other situations where a program wishes to
access code or data without incurring a page fault, system services are pro-
vided to lock pages into the process working set or into memory.

Locking Pages in the Working Set. A set of virtual pages can be locked into the
process working set to prevent page faults from occurring on references to
these pages. Locking pages in the working set guarantees that when this proc-
ess is executing (is the current process), the locked pages are always in the

357

Memory Management System Services

16.4.2.2

358

process working set. In addition to the obvious benefit of this service, it can
also be used by routines that execute at elevated IPL (above IPL 2), because
the operating system does not allow page faults to occur above IPL 2. There is
no implication that these pages remain resident when the process is not cur-
rent because the entire working set can be outswapped. (Residency is guaran-
teed by either a combination of this system service and the Set Swap Mode
system service or by using the Lock Pages in Memory system service.)

All pages in the specified range are faulted into the working set if they are
not already valid. The working set list (see Figure 14-4) must be reorganized
so that the locked pages appear in the list following the WSLOCK pointer.
This reorganization is accomplished by exchanging the locked WSLE with
the entry pointed to by WSDYN, and then incrementing WSDYN to point to
the next element in the list. The WSLX PEN array elements for the two valid
pages must also be exchanged. In addition, the WSL$V_WSLOCK bit is set in
the working set list entry.

A check is made to insure that the process will be left with enough dy-
namic working set after the specified number of pages are locked. Enough
dynamic working set means that the extra dynamic working set size, the size
of the dynamic working set after space has been allocated for page table pages
and a minimum working set size, is greater than zero. (Like most of the
memory management system services, this service can partially succeed. In
this case, the address range that is actually locked is returned to the caller by
means of the retadr argument.)

When a process is being outswapped, global read/write pages are dropped
from the process working set (see Chapter 17) to avoid cumbersome account-
ing problems about whether the outswapped page contains the most up-to-
date information. For this reason, global read/write pages cannot be locked
into the process working set. (Such pages can be locked into memory because
the Lock Pages in Memory system service prevents outswap of either the
process header or the locked pages, avoiding the swapping situation alto-
gether.) The swapper also performs an optimization with global read-only
pages by dropping them from the working set on outswap if the global share
count is larger than one. If such pages are locked into the working set, they
are not dropped from the working set, regardless of the contents of the PFN
SHRCNT array. ‘

Locking Pages in Memory. The Lock Page in Memory system service is simi-
lar to the Lock Page in the Working Set service except that the
WSL$V_PENLOCK bit in the WSLE is set and the process header is locked
into memory. This service performs an implicit working set lock in addition
to guaranteeing permanent residency to the specified virtual address range.
Because this operation is permanently allocating a system resource, physical
memory, it requires a privilege (PSWAPM).

16.4.2.3

16.4.3

16.4.4

16.4 Related System Services

Unlocking Pages. The converse of either of the two locking services unlocks
pages from either the working set or physical memory. In addition, the work-
ing set list entries may have to be exchanged with other locked entries to
place the unlocked entries back into the dynamic portion of the list. As with
the exchange associated with locking pages, the WSLX PFN array elements
must also be exchanged. Finally, the appropriate bit in the WSLE
(WSL$V_WSLOCK or WSL$V_PFNLOCK] is cleared.

Process Swap Mode

A process with PSWAPM privilege can prevent itself from being removed
from memory. The set process swap mode ($SETSWM) system service simply
sets the PCB§V_PSWAPM bit in the status longword (PCB$L_STS) in the
software PCB. When the swapper is searching for suitable outswap candi-
dates, processes with this bit set are passed over.

Altering Page Protection

It is possible for a process to alter the page protection of a set of pages in its
address range with the Set Protection on Pages system service ($SETPRT). In
general, the operation of this service is straightforward. However, there is one
interesting side effect. If a section page for a read-only section has its protec-
tion set to writeable, the copy-on-reference bit is set. This set bit will force
the page to have its backing store address changed to the page file when the
page is faulted, preventing a later attempt to write the modified section pages
back to a file to which the process may be denied write access.

The symbolic debugger uses this service to implement its watchpoint facil-
ity. The page containing the data element in question is set to no write access
for user mode. When the program attempts to access the page, an access
violation occurs, which is fielded by the debugger’s condition handler. This
handler performs the following actions:

1. Checks whether the inaccessible address is the one being watched and
reports the modification if it is

2. Sets the page protection to PRT$C_UW to allow the modification

3. Sets the TBIT in the PSL to give the debugger control after the instruction
completes '

4. Dismisses the exception

When the instruction completes, the debugger’s TBIT handler gains control,
sets the page protection back to no write access for user mode, and allows the

‘program to continue its execution.

359

17

17.1

17.1.1

360

Swapping

A time to cast away stones and a time to gather stones
together. . .

—Ecclesiastes 3:5

The VAX/VMS operating system does not allow the amount of physical
memory to limit totally the number of processes allowed in the system.
Physical memory is effectively extended by keeping only a subset of the total
number of active processes resident at a given time. This number is kept at a
maximum by controling the number of pages that any one process has in
memory at any given time. The remaining processes work with reduced
working sets or reside in backing store locations. The reduction in size of low
priority working sets, movement of low priority processes to backing store,
and the subsequent filling of memory with high priority computable proc-
esses is the responsibility of the swapper. In fact, the swapper process can be
viewed as the system-wide memory manager.

In VAX/VMS Version 3.0 the responsiblities of the swapper changed con-
siderably. Previous to Version 3.0, the swapper was solely responsible for
moving processes in and out of physical memory. The swapper in Version 3.0
attempts not to swap processes out of physical memory. Rather it will shrink
process working sets in order to gain free pages.

SWAPPING OVERVIEW

Before discussing the details of swapper operation {moving a process into or
out of memory), some basic swapper concepts will be reviewed. The specific
uses of each of the memory management data structures manipulated by the
swapper will be pointed out.

Swapper Responsibilities

The swapper has two main responsibilities:

» The subset of processes that are currently resident should represent the
highest priority executable processes in the system. When nonresident
processes become computable, the swapper must bring them back into
memoty.

» The swapper is also responsible for keeping the number of pages on the free
page list above the low limit threshold established by the SYSBOOT pa-
rameters FREELIM and FREEGOAL. Requests for physical pages come

17.1.2

17.1 Swapping Overview

from several sources. One request comes from the pager in resolving a page
fault for a page that is not currently in memory. Another originates with
an attempt by the swapper to acquire enough physical pages to inswap a
computable but outswapped process. There are four operations that the
swapper performs to keep pages on the free page list.

1. Process headers of previously outswapped process bodies may be eligi-
ble for outswap. If so, they will be outswapped. (Process headers for
already deleted processes are simply deleted.)

2. The swapper will write modified pages until the number of pages on the
modified list falls below the low limit threshold stored in global loca-
tion SCH$GL_MFYLOLIM. However, the swapper will not write modi-
fied pages if there are fewer than the SYSBOOT parameter MPW_
THRESH pages on the modified list. The value of SCH$GL_MFYLOLIM
ensures that a certain number of pages will be available on the modified
list for page faults; MPW_THRESH simply sets a lower bound to be
met before the swapper can write the modified page list to gain pages.

3. In an attempt not to outswap processes, the swapper will shrink work-
ing set sizes. The table used to determine outswap selection is also used
to determine the order by which working sets will be reduced. See Sec-
tion 17.2.2 for more information on outswap selection.

4. As a last resort to maintaining the size of the free page list, the swapper
will select an eligible process for outswap and remove that process from
memory. The table used to determine outswap selection is also used in
reducing working set sizes.

Swapper Implementation

The swapper is a separate process in the operating system. As such, it can be
selected for execution just like any other process in the system. It also has its
own resources and quotas that are charged when the swapper does I/0.

By making the swapper a separate process, the pieces of the system that
detect a need for one of the swapper’s duties simply have to wake the swapper
up (by issuing a JSB to routine SCH$SWPWAKE). As already noted in Chapter
10, this routine does not simply wake the swapper. Instead, it performs a
series of checks to determine whether there is a need for swapper activity. If
s0, the swapper process is awakened. If not, the routine simply returns. By
performing these checks in this routine rather than in the swapper process
itself, the overhead of two needless context switches is avoided.

When the swapper is the current process, it executes entirely in kernel
mode. All of the swapper code resides in system space. (The swapper makes
use of its PO space when it creates a new proces by using the module SHELL
in the executive image. This operation is described in Chapter 20.)

361

Swapping

17.1.3

17.2

17.2.1

362

Comparison of Paging and Swapping

The VMS operating system uses two different techniques to make efficient
use of available physical memory. The ability to support programs with vir-
tual address spaces larger than physical memory is the responsibility of the
pager. The swapper allows a running system to support more active processes
than can fit into physical memory at one time. The swapper’s responsibilities
are more global or system wide than the pager’s. Table 17-1 compares and
contrasts the pager and swapper in several details.

SWAP SCHEDULING

The swapper is a part of the system that performs both memory management
and scheduling functions. The scheduling aspects of the swapper are here
discussed from two points of view. First, the actions that the swapper takes
to determine whether to inswap, outswap, or shrink a particular process are
discussed. Then, those system events that trigger swapper activity are briefly
described.

Selection of Inswap Candidate

The scheduler maintains 32 quadword listheads for outswapped computable
(COMO) processes, one for each software priority (see Figure 10-3). These
queues are identical to the 32 queues maintained for the computable resident
(COM) processes. The steps that the swapper takes to locate an inswap candi-
date (once it has decided that an inswap can be performed) exactly parallel the
steps that the rescheduling interrupt service routine takes (see Chapter 10) to
select the next candidate for execution.

1. A FFS instruction on the COMO queue summary longword (SCH$GL_
COMOQS) locates the highest priority nonempty COMO queue.

2. The first process in this queue is removed and prepared for being swapped
into memory.

Figure 17-1 shows the parallel between the inswap candidate selection and
the operation of the rescheduling interrupt service routine. The key instruc-
tions in the two routines are identical. The only differences are in the global
data items referenced by the instructions.

After a process has been chosen for inswap, the swapper checks if there are
enough pages on the free page list to hold the inswap candidate and leave at
least FREELIM pages remaining on the list. If so, the inswap proceeds. If not,
the swapper attempts to make more pages available by shrinking working
sets, outswapping one or more processes, writing modified pages, or deleting
process headers of already deleted process bodies.

17.2 Swap Scheduling

Table 17-1: Comparison of Paging and Swapping

Differences
Paging
The pager is a process-wide
component of the executive that
moves pages into and out of
process working sets.

The page fault handler is an
exception service routine that
executes in the context of the
process that incurred the page
fault.

The unit of paging is the

page, although the pager
attempts to read more than one
page with a single disk read.

Page read requests for process
pages are queued to the driver
according to the base priority
of the process incurring the
page fault. Modified page
write requests are queued
according to the SYSBOOT
parameter MPW_PRIO.

Paging supports programs with
very large address spaces.

Similarities

Swapping

The swapper is a system-wide
component of the executive
that moves entire processes
into and out of physical
memory.

The swapper is a separate
process that is awakened from
its hibernating state by
components that detect a need
for swapper activity.

The unit of swapping is the
process (or more accurately,
the process working set).

Swapper I/O requests are
queued according to the value
of the SYSBOOT parameter
SWP_PRIO.

Swapping supports a large
number of concurrently active
processes.

1. The pager and swapper work from a common database. The most impor-
tant structures that are used for both paging and swapping are the proc-
ess page tables, the working set list, and the PFN database.

2. The pager and swapper do conventional 1/O. There are only slight differ-
ences in detail between pager I/O and swapper I/O on the one hand and
normal Queued I/O requests on the other.

3. Both components attempt to maximize the number of blocks read or
written with a given I/O request. The pager accomplishes this with read
and write clustering. The swapper attempts to inswap or outswap the
entire working set in one (or a small number of} I/O request(s).

363

9¢€

The routine SCH$SCHED), that selects the next execution candidate has an exact parallel in the swapper. The first half of the parallel shows the
swapper’s selection of the next inswap candidate and the nearly identical instructions in the scheduler.

Swapper’s Selection of Inswap Candidate Notes Scheduler’s Selection of Execution Candidate
QEMPTY: BUG_CHECK QUEUEMPTY, FATAL SCH$IDLE:
SETIPL #IPL$_SCHED
MOVB #32,W SCH$GB_PRI
BRB SCH$SCHED
SWAPSCHED: SCH$SCHED: :
DSBINT #IPL$_SYNCH (1) SETIPL #IPL$_SYNCH
BBSS S"#SCH$V_SIP, W SCH$GB_SIP,SS
FFS #0,#32,W SCH$GL_COMOQS, R2 (2) FFS #0,#32,W SCH$GL_COMQS, R2
BNEQ 10% BEQL SCH$IDLE
BBCC S"#SCH$V_SIP,W SCH$GB_SIP,5$
5$: ENBINT
RSB
10$: PUSHR # M(R&L,R?,RA,R9,R10,R11,AP,FP)
MOVAQ W'SCH$RQ_COMOH[RZ], R3 (3) MOVAQ WSCH$AQ_COMOH[R2], R3
MOVL (R3),R4 (4) REMQUE @(R3)+,R4
CMPB #DYNC_PCB,PCBB_TYPE(R4)
BNEQ QEMPTY

At this point, the swapper has found an inswap candidate. It then takes the steps necessary to bring this process into memory. The scheduler, on
the other hand, continues execution. The REMQUE instruction shown above for the scheduler is duplicated below to emphasize that, while a
long time elapses between inswap candidate selection and completion of the inswap, there is no time lapse for execution selection.

Some time later, the inswap operation.completes. The swapper rebuilds the working set list and the process page tables. The parallel resumes when
the swapper calls the scheduler to make the newly inswapped process computable.

(1) IPL is raised to synchronize access to the scheduler’s database. (3) The address of its forward pointer is loaded into R3.
(2) The highest priority (COMO/COM]) queue is selected. (4) The address of the selected PCB is loaded into R4.

Surddvmg

g9¢

State Change from COMO to COM Notes State Change from Computable to Current

SCH$SCHEP:

REMQUE (R4),RL (5) REMQUE @(R3)+,R4

© BVS QEMPTY

BNEQ 10% BNEQ 20$

MOVZWL PCB$W_STATE(R4),R1

BBC R1,EXESTATE, 10$

MOVZBL PCB$B_PRI(R4),R1

BLBC PCB$W_STATE(R4),5$

ADDL #32,R1 (6)
5%: BBCC R1,W'SCH$GL_COMQS, 10$ (7 BBCC R2,W SCH$GL_COMQS,20$
10$: MOVB RO,PCB$B_PRI(R4)

MOVL #SCH$C_COM, R1

20$:
CMPB #DYNC_PCB,PCBB_TYPE(R4)
. « BNEQ QEMPTY

30%: MOVW R1,PCBSW_STATE(R4) (8) MOVW #SCHC_CUR,PCBW_STATE (R4)

MOVAQ L"SCH$RAQ_COMT[RO],R1

BBSS RO, W SCHGL_COMQS,40$% :
40%: INSQUE (R4),@(RL)+ (9) MOVL R4, W SCH$GL_CURPCB

RSB

At this point, the parallel ends. If the process just made computable is of higher priority than the swapper, that process will be scheduled as soon
as the IPL is lowered below 3 and the rescheduling interrupt occurs. In other cases, the process will not execute until it becomes the highest
priority computable process. The scheduler’s service routine continues its operation, placing the selected process into execution.

(5) Remove the selected PCB from former state (COMO/COM). (8) Load the STATE field in the PCB with the new state (COM/CUR) of
{6) Bias R1 so that it points to SCH$GL_.COMOQS, the summary the process.
longword for the COMO state. (This is noted so the BBCC instruc- (9) Finally, place the PCB into its new scheduling queue.

tion makes sense.)
(7) 1f the removal of the PCB emptied the queue, clear the associated
priority bit in the summary longword.

Figure 17-1
Parallels between Inswap Candidate Selection by the Swapper and Execution Candidate Selection by the Scheduler

Surmpoayos dvms g/

Swapping

17.2.2

366

There is one optimization that the swapper performs that may prevent an
eventual outswap. The swapper only inswaps compute-bound low priority
processes at a rate determined by the special SYSBOOT parameter SWPRATE.
(The definition of such a process is one whose current priority is equal to its
base priority, which priority is less than or equal to the SYSBOOT parameter
DEFPRI.) The inswap is abandoned if all of the following are true:

» The swapper is attempting to inswap such a process.
» The process will not fit.
» The SWPRATE interval has not yet expired.

Each time that the swapper successfully inswaps one of these so-called
cruncher processes, it resets its inswap clock to contain the current time plus
SWPRATE.

Selection of Shrink or Outswap Candidates

When the swapper must resort to shrinking or swapping resident processes to
make room for a computable (but outswapped) process, it must determine
which process to select first. The examination order for potential outswap
candidates attempts to modify last those processes that would suffer the
most from a working set reduction or an outswap. Note that this algorithm is
not altogether straightforward; some processes benefit from being swapped,
rather than having their working sets reduced.

Any time that free pages are gained by action of the swapper, a check is
made to see if there are enough pages on the free and modified page lists to
satisfy the deficit. If enough pages are available, the swapper completes its
actions and hibernates.

The swapper maintains a table {in module OSWPSCHED) that determines
the order and conditions for which the various resident scheduling states are
examined. When the swapper searches for candidates, it starts at the first
section in its table and evaluates all the processes indicated by that section.
For each section in the table, the swapper makes three passes looking for
candidates. On each pass, the criteria for a process to remain inswapped in-
crease in severity. When all three passes have been completed for all the-
processes represented by the section, the swapper evaluates the next section
in the table.

The selection table is shown in Table 17-2. Note that the table may have
more than one scheduling state in each section of the table. These states are
viewed by the determination algorithm as being more or less equivalent in
their requirements. Processes cannot be outswapped if they have locked
themselves into the balance set.

In addition to the process’s scheduling state, the following characteristics
can be used to select processes:

17.2 Swap Scheduling

Table 17-2: Selection of Shrihk and Outswap Candidates

Selection dependent on: FLAGS
Process Direct Initial
State I/0¢ Priority! Quantum! LONGWAIT SWAPASAP SWPOGOAL
SuUsp No No - No 0 0 0
LEF No No No 1 0 1
HIB No No No 1 0 1
CEF No No No 0 0 1
LEF No No No 0 0 1
HIB No No No 0 0 1
FPG No Yes No 0 1 0
COLPG No Yes No 0 1 0
MWAIT No No No 0 1 0
CEF Yes Yes Yes 0 0 0
LEF Yes Yes = Yes 0 0 0
PFW No Yes Yes 0 1 0
0 1 0

COM No Yes Yes

» In some entries, processes that have not completed their initial quantum
(those that have the initial quantum flag PCB$V_INQUAN set in
PCBSL_STS) are not considered as candidates for outswap. There are two
circumstances under which the swapper does not make the initial quan-
tum check: a real-time process (a process whose priority is greater than or
equal to 16) must be swapped in, or the swapper has failed to swap out a
process on the SYSBOOT parameter SWPFAIL number of tries.

The swapper maintains a failure counter that records the number of
times that it attempted to locate an outswap candidate and failed. When
this count reaches a value equal to SWPFAIL, the swapper ignores the
setting of the initial quantum flag. The counter is reset each time that an
outswap candidate is successfully located. :

* In some entries, processes can be considered for swapper action if their
priority is less than or equal to that of the potential inswap process (stored
in global location SWP$GB_ISWPRI).

* Processes that are performing direct I/O are selected later than those that
are not. If a process is doing direct I/O and is waiting on an event flag, the
swapper assumes that the event flag wait is associated with the direct I/O.
The motivation behind delaying direct I/O process selection is the desire
to avoid the overhead of swapping the process, only to have the process’s
state change to COM, even before the outswap completes.

» The following three flags are used in the selection of processes. The flags
are maintained for table entries and direct the swapper to include specific
processes in the table entry or to take specific action on one of the passes
through the table entry.

367

Swapping

368

LONGWAIT

SWAPASAP

SWPOGOAL

When this flag is set, processes can be included in the
table entry if they have been waiting in a scheduling state
for longer than the SYSBOOT parameter LONGWAIT.
This flag is only applicable to processes in the LEF or HIB
scheduling states.

The effect of the LONGWALIT flag is to subdivide the
processes in LEF and HIB scheduling states into processes
that have been waiting a long time to become computable
and those that have been waiting a short time. The philos-
ophy here is that processes that have been waiting a long
time will probably wait longer still, whereas those that
have only been waiting a short time could become com-
putable rather quickly.

This flag indicates that the swapper must swap out proc-
esses indicated by this state, after reducing their working
set to WSQUOTA. The processes indicated by a table
entry with SWAPASAP set are computable or are likely to
become computable very soon. If the system needs mem-
ory badly enough, one of these processes will be swapped
out at its current size. When the outswapped process be-
comes computable again, it will not have to waste com-
pute time rebuilding its working set.

This flag indicates that the swapper must shrink the

working set size of processes indicated by the table entry
to SWPOUTPGCNT.

The three passes made on each table section are as follows:

1. The first pass reduces extended working sets to WSQUOTA. If the
SWAPASAP flag is set for the table section, processes are shrunk and then
outswapped as they are processed.

2. If the current section of the selection table is affected by the SWPOGOAL
flag, the second pass reduces the working set size of processes indicated by
this section. Working sets are reduced to the SYSBOOT parameter
SWPOUTPGCNT.

3. In the third pass, processes selected by this section are swapped out of
physical memory.

When the swapper scans a series of processes queued to a particular priority
within a scheduling state, the scan begins with the most recently queued
entry (at the tail of the queue). This starting point insures that the longer a
process has been waiting in a queue, the less chance it has of being shrunk or

swapped.

17.2 Swap Scheduling

Table 17-3: Events That Cause the Swapper or Modified Page Writer to Be Awakened

Event

Process that is outswapped
becomes computable

Quantum End

CPU Time Expiration

Process Enters Wait State

Modified Page List Exceeds
Upper Limit Threshold

Free Page List Drops Below
Low Limit Threshold

Free Page Limit Exceeds
Upper Limit Threshold

Balance Slot of Deleted
Process Becomes Available

Process Header Reference
Count Goes to Zero

System Timer Subroutine
Executes

Module
RSE

RSE

RSE

SYSWAIT

ALLOCPEN

ALLOCPEN

ALLOCPFN

SYSDELPRC

PAGEFAULT

TIMESCHDL

Additional Comments

The swapper will attempt to make
this process resident.

An outswap previously blocked by
initial quantum flag setting may
now be possible.

The process may be deleted, allowing a
previously blocked inswap to occur.

The process that entered a wait state
may be a suitable outswap candidate.
(For example, priority may not be
important for this wait state.)

Modified page writing is performed
by swapper.

The swapper must balance free page
count by:

1. Writing modified pages

2. Swapping headers of previously
outswapped process bodies

3. Swapping more processes

A process that could not be inswapped
due to lack of physical pages
may now fit.

A previously blocked inswap may now
be possible.

A process header can now be outswapped
to join a previously outswapped
process body.

The swapper is awakened every second
to check if there is any work
to be done.

17.2.3

System Events that Trigger Swapper Activity

The swapper spends its idle time in a hibernating state. Those components
that detect a need for swapper activity wake the swapper (by calling routine
SCH$SWPWAKE). Table 17-3 lists the system events that trigger a need for
swapper activity, the module that contains the routine that detects each
need, and the reason why the swapper needs to be informed about these sys-

tem events.

The swapper does not worry about why it was awakened. Every time that it
is awakened, it tends to all of its responsibilities. The main loop of the swap-
per performs the following steps:

369

Swapping

17.3

17.3.1

370

1. If the free page count is too low, the list is replenished, which might result
in an outswap of a process if modified page writing (Step 2] will not free
enough physical pages.

2. Modified pages are written. Every time the swapper is awakened, the mod-
ified page writer is called. If the size of the modified page list exceeds its
upper limit threshold (SCH$GL _MFYLIM), modified pages will be written
until the size of the list falls below the low limit threshold (SCH$GL _
MFYLOLIM).

There are times when the swapper wants to flush the entire modified
page list. The logic of the modified page writer requires that both of these
threshold parameters be zeroed for the list to be flushed. The last step that
the modified page writer takes before exiting is to restore the two modified
page list thresholds to the values described by the SYSBOOT parameters
MPW _HILIMIT and MPW _LOLIMIT.

3. The swapper attempts to inswap a process in the COMO state (if one
exists). This attempt can fail if there are not enough physical pages to
accommodate the outswapped process and none of the resident processes
are suitable outswap candidates.

4. The fact that the swapper is a separate process that executes fairly fre-
quently (at least once a second) makes it a convenient vehicle for testing
whether a powerfail recovery has occurred and, if so, notifying all proc-
esses that have requested power recovery AST notification (with the Set
Powerfail Recovery AST system service]. The details of this delivery
mechanism are described in Chapter 27. _

5. Finally, the swapper puts itself into the hibernate state, after checking its
wake pending flag. If anyone (including the swapper itself in one of its
three main subroutines) has requested swapper activity since the swapper
began execution, the hibernate is skipped and the swapper goes back to
Step 1.

SWAPPER’S USE OF MEMORY MANAGEMENT DATA
STRUCTURES

In Chapter 16, the memory management data structures that are used by
both the pager and the swapper were described. The discussion here will
review those structures and add descriptions of those structures that are used
exclusively by the swapper.

Process Header

The bulk of information that the swapper uses in managing the details of
either inswapping or outswapping is contained in the process header. The
process page tables contain a complete description of the address space for a
given process.

17.3.1.1

17.3.1.2

17.3.1.3

17.3 Swapper’s Use of Memory Management Data Structures

The working set list describes those PTEs that are valid. This list is crucial
for the swapper because it is only the process working set that will be written
to backing store when the process is outswapped. In a similar fashion, when
it is time for a process to be inswapped, the working set list in the process
header in an outswapped process describes what the rest of the process looks
like in the swap file.

Working Set List. The working set list describes the portion of a process vir-
tual address space that must be written to the swap file when the process is
outswapped. A page in the process working set can be in one of the following
three states: ’

1. The page is valid.

2. The page is currently being read into memory. The swapper treats page
reads like any other I/O in progress when swapping a process. This treat-
ment is described in Section 17.4.

3. The process page table contains a global page table index and the indexed
global page table entry indicates a transition state. The swapper handles
global pages in a special manner when outswapping a process. This treat-
ment is also described in Section 17.4.

The operation of the swapper’s scan of the process working set list at outswap
is discussed in Section 17.4.

Process Page Tables. The working set list does not supply the swapper with
all the information necessary to outswap a process. Other information is con-
tained in either the valid (or transition) PTE or in one of the PFN array ele-
ments associated with the physical page. Each working set list entry effec-
tively points to a different process (or system) page table entry that contains a
page frame number. The PTE is copied to the swapper’s I/O map and then the
contents of the BAK array element for this physical page are put back into the
process PTE. These actions eliminate any ties between an outswapped
process’s page tables and physical memory.

Process Header Page Arrays. The breaking of ties between process PTEs and
physical memory is straightforward for process pages. The contents of the
BAK array element are simply merged into the PTE. However, process header
pages are also a part of the process working set. These pages reside in system
space and are mapped by system page table entries that map the balance slot
in which the process header resides.

The relinquishing of the balance slot implies that these SPTEs must also be
surrendered. There is no analogous way to store the BAK array contents for
process header pages. For this reason, the process header page arrays (see Fig-
ure 14-8) exist in the process header. There exists an array element for each

371

Swapping

17.3.2

17.3.2.1

17.3.2.2

17.3.2.3

372

page in the process header. When a process is outswapped, those process
header pages currently in the working set have their BAK addresses put into
the corresponding array elements in the process header page BAK array.
When the process is swapped back into memory, the process header pages can
be scanned and the BAK contents copied from the array back into the PFN
BAK array elements for the physical pages that contain the process header.

In a similar manner, it is necessary to remember where each process header
page fits into the working set. This record keeping is done by storing the
WSLX PFN array element into the corresponding process header page WSLX
array element. The use of this array while the process header is being rebuilt
following inswap prevents a prohibitively long search of the working set list
for each process header page.

Swapper I/0 Data Structures

Like the pager, the swapper uses the conventional VMS I/O subsystem. It
allocates its own I/O request packet and fills in some of the fields that will be
interpreted in a special manner by the I/O postprocessing routine. After these
fields have been filled in, it jumps to one of the swapper I/O entry points in
module SYSQIOREQ (EXE$BLDPKTSWPR or EXE$§BLDPKTSWPW) that fills
in an appropriate function code and queues the packet to the appropriate disk
driver. Table 15-1 shows how the I/O request packet is used by the swapper
for its I/O activities.

Two other structures are used by the swapper. The system maintains a
page file control block for each page and swap file in the system. The swapper
uses a special I/0 array that allows it to read or write a process working set, a
collection of virtually discontiguous pages, in one or a small number of I/O
requests.

Page File Control Blocks Used by the Swapper. Figure 14-23 shows the layout
of a page file control block, the structure that allows a page or swap file to be
located on disk. Notice that the window control block pointer and virtual
block number field are located at the same offsets in page file control blocks
and in process or global section table entries, which allow these data struc-
tures to be used by common routines that need not distinguish the type of
structure being used to describe a memory management I/O request.

Swap File Initialization. When the system is initialized, the SYSINIT process
initializes the swap file SYS$SYSTEM:SWAPFILE.SYS. If alternate swap files
are installed (with the SYSGEN command INSTALL), the page file control
block for the new swap file is initialized by SYSGEN.

Allocation of Swap Space. For each process, the indication of which page file
control block to use is contained in the software PCB in field PCB$L_

17.3.24

17.4

17.4 QOutswap Operation

WSSWP. The page file control block then indicates the file in which swap-
ping space is assigned to the process. The upper byte is a longword index into
the array of pointers to page file control blocks (see Figure 14-22).

When a process is first created, its initial swap space is allocated for the
process in a call to the Create Process (JCREPRC) system service. The initial
size of the swap space is the SYSBOOT parameter MPW_WRTCLUSTER
(minimized by the size of the SHELL process). The page file index and the
virtual block number of the beginning of the space are recorded in the process
control block as negative values. A negative value indicates to the swapper
that this PCB requires an inswap from the SHELL. After the SHELL has been
swapped in, the values are restored to their positive form.

If a process control block contains a zero at location PCB$L_WSSWP, the
swapping and paging systems assume that the process is permanently mem-
ory resident. Only the processes that are created before the page and swap
files are located (NULL process, SWAPPER process, and SYSINIT process) are
permanently memory resident.

When a process’s working set list is extended, a check is made to see if the
new working set will fit in the currently allocated swap space. If the new
sized working set list will not fit in the current swap space, a new swap space
(that is MPW_WRTCLUSTER pages larger) is allocated. The old swap space
is deallocated. =

Swapper PTE Array. The need for the swapper PTE array that allows it to
write pages that are virtually discontiguous in the context of the process
being swapped was described in Chapter 16. This array contains WSMAX
longwords and is used for both outswap and inswap operations.

At outswap, the PEN of each page that will be written to the swap file is
loaded into the array. This array is then passed on to the I/O system to per-
form the write. At inswap, the swapper allocates a number of PFNs to hold
the process and reads the swap image into these pages. Each PFN is then
placed into the appropriate page table as the working set list and process page
tables are rebuilt.

OUTSWAP OPERATION

Outswap is described before inswap because it is easier to explain inswap in
terms of what the swapper put into the swap file. The swapper does not
remove processes from the balance set indiscriminately. In fact, the swapper
tries hard not to swap. Processes are only removed if there is a need for physi-
cal pages that cannot be satisfied by shrinking working sets and flushing the
modified page list.

373

Swapping

17.4.1

17.4.2

17.4.2.1

374

Selection of Outswap Candidate

As is mentioned in Section 17.2, the outswap selection is driven by tables
that contain a weight for each resident scheduling state. The swapper selects
the process that it judges will benefit the least from remaining in memory.
Once a candidate is selected, the swapper prepares the working set of that
process for outswap.

Outswap of the Process Body

The swapper outswaps the process body (PO and P1 pages) separately from the
process header. There are two reasons for doing this:

* Fields in the process header (most notably working set list entries and
process page table entries) are modified as the working set list is processed.

¢ The process header may not be swappable at this time due to outstanding
I/O, pages on the modified page list, or some other reason.

Scanning the Working Set List. The process body is prepared for outswap by
scanning the working set list. Each page in the working set list must be
looked at to determine if any special action is required. The swapper looks at
a combination of the page type (found in the working set list entry as well as
the PEN TYPE array) and the valid bit. Table 17-4 lists all combinations of
page type and valid bit setting that the swapper encounters and the action
that it takes for each. Several cases are discussed further here.

The basic step that the swapper must take as it scans the working set list is
to move each swappable page into the swapper’s I/O map. This causes the
virtually discontiguous pages in the process’s working set to appear virtually
contiguous to the I/O system (see Figures 17-3 and 17-6). For each page, the
swapper performs the following steps:

1. Locates the page table entry from the virtual page number field in the
working set list entry.

2. Determines any special action based on page validity and page type.

Moves the PFN from the page table entry to the swapper map.

4. Records the modify bit (logical OR or PTE modify bit and PFN STATE
array saved modify bit) in the working set list entry.

5. Sets the Delete Contents bit in the PEN STATE array element. This set bit
will cause the page to be placed at the head of the free page list when its
reference count goes to zero (which in normal circumstances will be when
the swap write completes).

Rl

Note that the swapper does not have to explicitly put the contents of the PFN
BAK array into each PTE. The contents are replaced when the page is released
(after the swap write completes and all other references to the page have been
eliminated). :

17.4 Qutswap Operation

Table 17-4: Scan of Working Set List of Qutswap

The scan of the working set list on outswap is determined by a combination of the physical
page type (WSL<3:1>) and the valid bit (PTE<31>).

Type of Page Valid Bit Action of Swapper for This Page

1. Process Page Transition a. (STATE = Read in Progress)
Treat as page with I/O in progress.
Special action may be taken at inswap
or by modified page writer.
b. (STATE = Active)
Outswap. The page will be put back into
active transition state at inswap time.
c. (STATE = Read Error}
Drop from working set.
d. No other transition states are possible
for a page in the working set.
2. Process Page Valid Outswap page. .
If there is outstanding I/O and
the page is modified, load SWPVBN array
element with block in swap file where
the updated page contents should be
written when the I/O completes.

3. System Page It is impossible for a system page to be in
process working set. The swapper generates
an error.

4. Global Read Only Transition a. If the process page table entry

still contains a PEN, this page is in

active transition page. Outswap the page.
b. If the process page table entry contains

a global page table index, then the

global page table must contain a

transition PTE. The page is dropped

from the process working set.

5. Global Read Only Valid a. If SHRCNT = 1, then outswap.
b. If SHRCNT > 1, drop from working set.

It is highly likely that a process can fault
a page later without I/0O. This check avoids
multiple copies of same page in swap file.

6. Global Read/Write Drop from working set. It is extremely

B difficult to determine whether the page in
memory was modified after this copy was
v ’ written to the swap file. ’

7. Page Table Page : Not part of the process body. However, while
the swapper is scanning the process body, the
VPN field in the WSL is modified to reflect
the offset from the beginning of the process
header because page table pages will
probably be located at different virtual
addresses following inswap.

375

Swapping

17.4.2.2

17.4.2.3

17.4.2.4

376

Pages with Direct I/0 in Progress. If a (modified) page has outstanding I/O
while the process is being outswapped, the swapper takes note of this by
loading the SWPVBN PEN array element with the virtual block number in
the swap file where the page is being written to. The page is nevertheless
swapped at this time to reserve a place for it in the swap file.

If the I/O operation is a read (or it is a write and some other action has
caused the page to be modified), the physical page will be placed on the modi-
fied page list when the I/O completes. MMGS$RELPEFN, the routine that re-
leases the page, puts pages on the modified page list either if the modify bit
in the PFN STATE array is set or if the PFN SWPVBN array has nonzero
contents.

The modified page writer takes special action for modified pages with non-
zero contents in the SWPVBN array. That is, it writes each page to the desig-
nated block in the swap file rather than to its normal backing store address.

If the I/O operation is a write (from memory to mass storage) and the page
was not otherwise modified, the contents that are currently being written to
the swap file are good. The page will be placed on the free list when the write
completes.

Global Pages. Global pages are also given special treatment at outswap. If the
global page is writeable, it is dropped from the process working set before the
process is swapped to disk. The task of recording whether the contents that
are swapped are up to date when the process is brought back into memory is
more complicated than simply refaulting the page (often without I/0) when
the process is swapped back into memory.

Global read-only pages are only swapped if the global share count (PEN
SHRCNT array) is one. In all other cases, the page is dropped from the work-
ing set and must be refaulted (most likely without I/O) when the process is
inswapped. (Global pages that are explicitly or implicitly locked into the
process working set are not dropped from the working set.) Global transition
pages are also dropped from the process working set.

Example of Process Body Outswap. Figures 17-2 through 17-4 show some of
the special cases encountered by the swapper while it is scanning the process
working set list. As mentioned in connection with Table 17-4, the key infor-
mation about each page is a combination of the PTE valid bit and the physical
page type. The order of the scan is determined by the order defined by the
working set list. Figure 17-2 shows the process working set, the process page
tables, and the associated PFN database entries before the swapper begins its
working set scan. Figure 17-3 shows the modified working set and the
swapper map after the working set list scan but before the I/O request is
initiated. Figure 17-4 shows the state of the page table entries after the swap
write has completed and the physical pages have been released.

17.4 Outswap Operation

Process Header for

Swapped Process WSLX PTE BAK STATE TYPE other

Fixed Portion AI . | | gpte Q H gstx I I act | IGROI SHRCNT=1 I
Working Set List
B[. J l J r gsix] l act I Lenwl [sc—mcm:ﬂ
vpn Y GRO |wsle 1
PPG |wsle 2 c[wsle 2 J I pteZ—” pgfix] | act] LPPG] LREFCNT:iI

z
ven W | GRW |wsle3 Dl wsle 4 H pte X ” pstx ILact] IPPG1
X

PFN Database Arrays

vpn

vpn PPG |wsle 4

Process Section
Table, etc.

PO Page Table

ven W . pin B pte W
vonX[t . piD - |pteX Global Page Table SWPSGL__MAP::
Swapper’s <
- 110 Map
gpte Q valid, pfn A
vpnY (1 pinA ~|{ptey
gpte R ~ valid, pin B
vonZ|t -~ pinC pte Z
P1 Page Table

Figure 17-2
Example Working Set List before Qutswap Scan

1. The first working set list entry is a global read-only page. The VPN field of
the working set list entry locates the page table entry. The PFN field of the
PTE locates the PFN data associated with this physical page. In particular,
the global share count for this page is one. (This process is the only process
that currently has this page in its working set.) The swapper will write this
page out as part of the swap image for this process. Thus, PEN A is the first
page in the swapper’s PTE array (see Figure 17-3).

When the swapper’s write operation completes, the page will be deleted.
That is, the PTE array element will be cleared and the page will be placed
at the head of the free page list (see Figure 17-4).

2. The second working set list entry is a process page that also has I/O in
progress (REFCNT = 2). This page will be swapped. This fact is illustrated
by the inclusion of PFN C in the swapper map.

If the page was previously modified (either the PTE modify bit or saved
modify bit in the PEN STATE array was set), the virtual block number in

377

Swapping

Process Header for

Swapped Process WSLX PTE BAK STATE TYPE other
Fixed Portion A[-] l gpte Q I | gstx] I act J IGRO] EHHCNT=1J
Working Set List ——
- | t| GRWJ [HRONT
von Y | GRO | wsle 1 BI I Lgpteﬂ H gstx] ac I SHADNT =3

ven Z | PPG |wsle2 Cl wsle 2 I | pteZ] [pgfix] I act I |PPG| FlEFCNT:ZJ
X o fwsle3 D[wsle 4 l | pte X I r pstx l I act | IPPGI

PFN Database Arrays

von X | PPG |wsle4

Process Section
Table, etc.

PO Page Table

vpn W o 1 wxfﬁi | pte w
SWP$GL__MAP::
vpn X |1 pfn D pte X Global Page Table
Swapper’s <
/0 Map
gpte Q valid, pfn A
vpnY |1 pfn A pte Y
gpte R valid, pfn B
vpnZ |1 pfn C pte Z
P1 Page Table

Figure 17-3
Example Working Set List after Outswap Scan

the swap file will be loaded into the SWPVBN array. Loading the SWPVBN
array will force the page to the modified page list when it is released. If the
process is still outswapped by the time that the modified page writer gets
around to writing this page, the page will be written to the block reserved
for it when the process is first outswapped.

The page is marked for deletion. That is, when the reference count for
the page reaches zero (due to completion of both the outstanding I/O and
the swapper’s write), the page is placed at the head of the free page list and
its PTE array element cleared.

3. The third working set list entry is a global read/write page. The page is
dropped from the process working set {see Figure 17-3), meaning that the
process page table entry is replaced with a global page table index (that
locates global page table entry R} and the share count for PFN B is decre-
mented. Notice that PFN B is not a part of the swapper map, which con-
tains a list of the physical pages that will be written to the swap file.

378

17.4.3

17.4 Outswap Operation
Process Header for
Swapped Process WSLX PTE BAK STATE TYPE other

Fixed Portion A tmm‘i | gpte Q I | gstx | l] lGRo] im wéj

Working Set List

vpn Y | GRO [wsle 1 Bl —H gpte R IL gstx Jlact]WISHRcm al

CI wsle 2] Lptez l I pgfix

vpn Z PPG |wsle 2

wsle 3

vpn X PPG | wsle 4

PFN Database Arrays

Process Section
Table, etc.

PO Page Table

vpnW |0 gptx(R) pte W

SWP$GL__MAP::

‘, ' pte X Global Page Table

vpn X Q.

Swapper’s -
1/0 Map

gpte Q [tims. PfﬂA

vonY [0 gptx(@. - |pteY
gpte R valid, pfn B
vpn Z O ‘: pnC . | ptez

P1 Page Table

Figure 17-4
Process Page Table Changes after Swapper’s Write
Completes

4. The last working set list entry in this example is a process page with
nothing special about it. This page is added to the swapper map (PFN D)
and its contents marked for deletion. The deletion will actually occur
when the swapper’s write operation completes.

Outswap of Process Header

The process header is not outswapped until after the process body has been
successfully written to the swap file. The reason for this illustrates two other
cases that can keep the process header in memory. Before the process header
can be outswapped, all ties to physical memory that exist in the process page
tables must be severed, including not only those pages that were in the proc-
ess working set and written to the swap file but also those pages that are in
some transition state, most notably pages on the free and modified page lists.

379

Swapping

17.4.3.1

17.4.3.2

17.4.3.3

380

Partial Outswap. After the process body has been outswapped, the process
header becomes eligible for outswap. In fact, the header of an outswapped
process is the first thing that the swapper looks for in an attempt to balance
the free page list.

The indication that the process header cannot be outswapped yet is found
in the process header vector reference count array (see Figure 14-21). This
array counts the number of reasons (transition pages, active page table pages,
and so on) that prevent the process header from being outswapped.

Because the outswap of the header does not have to immediately follow the
body outswap, it is possible (even probable) that a process header will not be
swapped in the time between when a process body is outswapped and when
that process is brought back into memory. Such a situation is referred to as a
partial outswap. It has an obvious counterpart, a partial inswap, where the
swapper does not have to allocate a balance slot and bring the process header
into memory because the header is already resident.

An important system management point is illustrated here. Process bodies,
which consume physical memory, are relatively easy to remove from mem-
ory. Process headers consume a smaller amount of physical memory but they
also occupy a balance slot. The balance slot is not freed for other use until the
entire header is outswapped. If the SYSBOOT parameter BALSETCNT is set
to too small a value, the system can reach the unfortunate state where there
is more than enough physical memory, but computable processes cannot be
brought into memory because the balance slots are still tied to already
outswapped processes. This situation can be avoided by setting BALSETCNT
to an adequate value. See the VAX/VMS System Management and Oper-
ations Guide for details on determining the correct value for SYSBOOT
parameters.

Scanning the Free Page List. When the swapper locates a process header that
can be removed from its balance slot, it takes whatever actions are required
to remove the ties that bind the process header to physical memory. The first
such step is to eliminate any transition PTEs where the physical page is on
the free page list.

Transition PTEs are located by scanning the entire free page list and look-
ing for pages whose PTE array contents lie within the PO or P1 page tables of
the process header being examined. Whenever such a page is found, the proc-
ess PTE is reset to the contents of the BAK array; the reference count and PTE
array elements are cleared, and the page is moved from its current location to
the head of the free page list.

Flushing the Modified Page List. Because the free page list is only one of
several transition states, the scan of the free page list may not free the process
header for removal. Pages may be in some other transition state. Transition

17.43.4

17.5

17.5 Inswap Operation

states that represent some form of I/O in progress (release pending, read in
progress, write in progress) are left alone because there is nothing that the
swapper can do until the I/O completes.

However, the modified page list can be manipulated. The desired effect is
removal of all pages from the modified page list, which is triggered by setting
to zero both the lower and upper limit thresholds for the modified page list.
Clearing the upper limit guarantees that a nonempty list has exceeded its
threshold, initiating a request for modified page writing, Clearing the lower
limit causes modified page writing to continue until the list is empty (below
the low limit threshold).

Outswap of the Process Header. Once the reference count for the process
header reaches zero, the header can be outswapped and the balance slot freed.
The outswap of the process header is entirely analogous to the outswap of a
process body. That is, the header pages that are not page table pages and the
active page table pages are scanned and put into the swapper’s PTE array to
form a virtually contiguous block for the I/O subsystem.

There are several differences between the outswap of a process header and a
process body. When a process body is outswapped, the header that maps that
body is still resident. When the swapper’s write completes and each physical
page is deleted, the contents of the BAK array element for each page are put
back into the process PTE.

Process header pages are mapped by system page table entries for that bal-
ance slot. The SPTEs are not available to hold the BAK array contents be-
cause they will be used by the next occupant of this balance slot. One of the
process header page arrays (see Chapter 14) is set aside for exactly this pur-
pose. As the process header is processed for outswap, the contents of the BAK
array for each active header page are stored in the corresponding process
header page array element.

At the same time, the location of each header page within the working set
list is stored in the WSLX array. This array prevents a prohibitively long
search to rebuild the process header when the process is swapped back into
memory.

Once the header is successfully outswapped, the header resident bit
(PCB$V_PHDRES) in the PCB is cleared and the balance slot is available for
further use.

INSWAP OPERATION

The inswap is exactly the opposite of the outswap operation. The swapper
brings the process header, including active page tables, and the process body
back into physical memory. It then uses the contents of the working set list
to rebuild the process page tables, an operation that primarily involves updat-

- 381

Swapping

ing each valid PTE to reflect the new PFN used by that PTE. At the same time
that each page is being processed, the swapper can resolve any special cases
that existed when the process was outswapped.

17.5.1 Selection of an Inswap Candidate

As mentioned earlier in the chapter, the swapper selects a process for inswap
exactly as the scheduler selects a candidate for execution. The following
processes may be potential candidates for inswap:

* Newly created processes
» Processes in some outswapped wait state that were just made computable
» Processes that were outswapped while in the computable state

The highest priority process in this collection is the one selected for inswap.

17.5.2 Inswap of the Process Header

If the process header was outswapped when the body was outswapped, it
must be brought back into memory before the process body can be recon-
structed. Unlike the special operations that took place when the process was
outswapped, an outswapped process header merely adds two details to the
inswap operation.

1. If the header is resident, the number of header pages is subtracted from the
size of the outswap image in the swap file. That is, whether the header is
resident or not determines the total number of blocks that must be read
from the swap file and the virtual block number where the read should
begin.

2. If the header was swapped, those process parameters that are tied to a
specific balance slot (that is, specific system virtual or physical addresses)
must be adjusted to reflect the new locations in virtual or physical address
space. These include the following:

¢ Each SPTE must be loaded with the PFN that contains the contents of
each process header page.

 The virtual addresses of the PO and P1 page tables must be calculated
and loaded into their locations in the hardware PCB.

» The physical address of the hardware PCB must be calculated and
loaded into the software PCB (in field PCB$L_PHYPCB|.

* Finally, the P1 pages that double map the process header pages that are
not page table pages must be loaded with the new page frame numbers
that contain these pages.

17.5.2.1 Rebuilding the Process Header. When a process header is read from the swap
image into a new balance slot, the SPTEs that map each balance slot page

382

17.5.2.2

17.5.3

17.5 Inswap Operation

must be loaded with the PFNs from the swapper map that contain each
header page. In addition, the PFN database must be set up for each of these

- physical pages. The swapper does all this work in a very simple loop that it

executes for each header page.

The simplicity (and speed) of the loop results from the use of the two proc-
ess header page arrays that exist in the process header. These arrays allow the
PFN BAK and WSLX arrays to be loaded with their previous contents (be-
cause the two header arrays were loaded when the process was outswapped).

P1 Window to the Process Header. All of the process header pages except
process page tables are double mapped with a range of P1 addresses. This
double mapping is done for the following reason. When a process header is
outswapped and subsequently inswapped, it probably resides in a different
balance slot. Any routine that stores that process header address in a register
and then references header locations with a displacement from this register
might be referencing the header of another process if some scheduling and
swapping occurred between obtaining the header base address and later refer-
ences using it.

To avoid this problem, a range of P1 space is set up by the swapper to map
these same header pages. The P1 pages are mapped in such a way that, even if
an outswap and later inswap occur between two instructions, the P1 virtual
addresses of the process header pages do not change. The conventions that
the operating system observes about header references are these:

» Any reference to the process header should use the P1 address (CTL$SGL_
PHD contents point to the P1 map of the process header).

» Any reference to the system space header must execute at IPL 7 (IPL§_
SYNCH) to prevent a swap.

* Any reference to process page tables must execute at IPL 7 because the
page table pages are not double mapped.

There are two implications for the operating system here.

» These physical pages are not kept track of in any way through reference
counts or any other technique. However, all of these header pages are a
permanent part of the process working set.

o The P1 page table page that maps these pages must also be a permanent
member of the process working set.

Rebuilding the Process Body

The process header must be put into a known state before the process body
can be put back into the approximate shape it was in before the process was
outswapped. If the header was never outswapped, there is very little that has
to be done. If the header was outswapped, the steps just described are taken to
put the process header back together again.

383

Swapping

17.5.3.1

17.5.3.2

17.5.3.3

384

Rebuilding the Working Set List and Process Page Tables. The rebuilding of
the process body involves a simple scan of both the swapper map and the
process working set list. Recall that at outswap, the key to each special case
was the combination of physical page type and the setting of the valid bit in
the page table entry. On inswap, the key to each special case is the contents
of the page table entry located by the virtual page number field in the work-
ing set list entry. An approximation of swapper activity for each page is as
follows:

1. The page table entry is located from the VPN field of the WSLE.

2. In the usual case, the original contents of the PTE are put into the PFN
BAK array and the PFN from the swapper map is loaded into the now valid
PTE.

3. If for some reason a copy of the page already exists in memory, then that
page is put into the process working set, and the duplicate page from the
swapper map is released to the front of the free page list.

Table 17-5 contains a detailed list of the different cases that the swapper can
encounter when rebuilding the process page tables. Three of the cases deserve
special comment.

Pages with I/0 in Progress When Outswap Occurred. Pages that had I/O in
progress when the process was outswapped were written to the swap file
anyway to reserve space. If the page was previously unmodified, then it
would be put onto the free page list when both the swap write and the out-
standing write operation completed. If the page was previously modified,
then it would be put onto the modified page list when both the swap write
and the outstanding write operation completed (because the contents of the
SWPVBN array were nonzero).

In either case, it is possible for the process to be swapped back in before one
of these physical pages was reused. The swapper uses the physical page that is
already contained in the process PTE {as a transition page) and releases the
duplicate physical page from the swapper map to the front of the free page
list.

In the case of a page on the free page list, this decision is simply one of
convenience. In the case of a page on the modified page list, the contents of
the page in the swap image are out of date and the swapper has no choice but
to use the physical page that is already in memory.

Resolution of Global Read-Only Pages. The only possible global page that
could be in the swap file is a global read-only page that had a share count of
one when the process was outswapped (or a page that was explicitly locked).
All other global pages were dropped from the process working set before the
process was outswapped.

17.5 Inswap Operation

Table 17-5: Rebuilding the Working Set List and the Process Page Tables at Inswap
At inswap time, the swapper uses the contents of the page table entry to determine what

action to take for each particular page.

Type of Page Table Entry
1. PTEis valid.

2. PTE indicates a transition page
(probably due to outstanding I/O
when process was outswapped).

3. PTE contains a global page table
index (GPTX).
(Page must be global read-only
because global read/write pages
were dropped from the working
set at outswap time.)

4. PTE contains a page file index or a
process section table index.

Action of Swapper for This Page

Page is locked into memory and was never

outswapped.

Fault transition page into process working

set. Release duplicate page that was just

swapped in.

Swapper action is based on the contents of

the global page table entry (GPTE)

a. If the global page table entry is valid, add
the PFN and the GPTE to the process
working set and release the duplicate
page.

b. If the global page table entry indicates a
transition page, make the global page
table entry valid, add that physical page
to the process working set, and release
the duplicate page.

c. If the global page table entry indicates a
global section table index, then keep the
page just swapped in, and make that the
master page in the global page table
entry as well as the slave page in the
process page table entry.

These are the usual contents for pages that

did not have outstanding I/O or other page

references when the process was outswapped.

The PFN in the swapper map is inserted
into the process page table. The PFN arrays
are initialized for that page.

There are two different cases that the swapper will find when rebuilding
the process page tables. In either case, the process page table entry contains a
global page table index so the determining factor is the contents of the global

page table entry.

1. The global page table entry contains a global section table index. In this
case, the physical page from the swapper map is added to the global page
table entry as well as the process page table entry.

2. It is possible that the global page was referenced by some other process
while this process was outswapped. In that case, the global page table
entry might contain a transition or valid PTE. In either case, the PFN that
is already in the global page table entry is kept. (If the GPTE is in transi-

385

Swapping

tion, it is made valid.) The duplicate PFN from the swapper map is re-

leased to the front of the free page list.

17.5.3.4

vpn W

vpn X [@

Process Header for
Swapped Process

Fixed Portion

Working Set List
vpn X GRO
vpn W PPG
vpn Y GRO
vpn Z PPG

Process Section
Table, etc.

PO Page Table

vpn Z [0

P1 Page Table

Figure 17-5

Working Set List and Swapper Map before Physical Page

Allocation

386

wsle 1
wsle 2
wsle 3

wsle 4

T pte W

A pte X

, WSLX PTE

Example of an Inswap Operation. To illustrate at least some of the special
cases that the swapper encounters when a process body is swapped back into
memory, Figures 17-5 through 17-7 contain an example of an inswap opera-
tion. Note that this example is not related to the outswap example used
before (see Figures 17-2 to 17-4). This example is tailored to illustrate the
interesting cases the swapper can encounter during an inswap operation.

Figure 17-5 shows the state of the process header after the process has been
selected as an inswap candidate. Figure 17-6 shows that four physical pages
have been allocated to contain the four working pages that the example is
describing. Figure 17-7 shows the rebuilt process page tables and the PFN

STATE TYPE

A[BUNKH pte Z || pafix 1 Ifree”

BI . ngtesH gsth[acrHGRO

CIBLINK” 0 H Hfreell
D| BLINKH 0 || Ilfree”
PFN Database Arrays .
SWP$GL__MAP::
Global Page Table
Swapper's
/0 Map

Process Header for
Swapped Process

Fixed Portion
Working Set List
vpn X | GRO
vpn W | PPG
vpn Y | GRO
vpn Z | PPG

Process Section
Table, etc.

PO Page Table

vpnW | O pstx
venX | 0 gptx(T)
vpnY | 0 gptx (é)
vpnZ | O pfn A

P1 Page Table

Figure 17-6

wsle 1

wsle 2 -

wsle 3

wsle 4

17.5 Inswap Operation

WSLX PTE BAK STATE TYPE
AIBLONKH pte Z J[pgfix Jlfree” I

BI - |IgpteS” gstleactJL(?h_O”SHRCNT=3|
| I 5 .

other

o

o

o

PFN Database Arrays

pte W
pte X Global Page Table SWPSGL_MAP:: I
- Swapper’s
/0 Map

gpte S valid, pfn B
pteY

gpte T gstx
pte Z

Working Set List and Swapper Map after Physical Page

Allocation

database changes that result from rebuilding the working set and process

page tables.

1. The first working set list entry locates virtual page number X. This PTE
contains a global page table index. The referenced global page table entry
(GPTE T} contains a global section table index, indicating that the global
page table entry is not valid.

The page frame number (PFN D) is put into the process page table. It is
also added to the global page database by making the GPTE valid (see
Figure 17-7), putting PFN D into the GPTE, and updating the PFN data for
physical page D to reflect its new state.

2. The next working set list entry is a process page mapped by PTE W (see
Figure 17-6). This PTE contains a process section table index. The PTE is

387

Swapping

vpn W

vpn X

vpn Y

vpn Z

Process Header for

Swapped Process WSLX PTE BAK STATE TYPE other

| pte Z H pgfIxJ

Fixed Portion
Working Set List

vpn X GRO |[wsle 1

vpn W | PPG |wsle?2

vpn Y | GRO |wsle3

vpn Z PPG |wsle 4

Process Section
Table, etc.

PO Page Table

PFN Database Arrays

Global Page Table SWPSGL_MAP::

Swapper's
110 Map

gpte S valid, pfn B

P1 Page Table

Figure 17-7
Working Set List and Rebuilt Page Tables

updated to contain PFN C and the PSTX is stored in the BAK array ele-
ment for that page (see Figure 17-7). Other PFN-arrays are updated accord-
ingly.

The next working set list entry (that locates PTE Y) is exactly like the
first, as far as the process data is concerned. However, the global page table
entry (GPTE S) is valid, indicating that another copy of this page already
exists. (This second copy could only have happened if another process
faulted the page while this process was outswapped.)

The duplicate page (PFN E) is released to the front of the free page list.
The process page table entry is updated to contain the physical page that
already exists (PFN B) and the share count for that page is incremented
{from three to four).

4. The fourth working set list entry looks just like the second. However, the

388

17.5.3.5

17.5 Inswap Operation

process page table entry indicates a transition page. (This implies that the
header in this example was never outswapped.)

The action taken here is similar to step 3, where a duplicate global page
was discovered. The page just read (PFN F) is released to the head of the
free list. The transition page (PFN A) is faulted back into the process work-
ing set by removing the page from the free list, setting its state to active,
and turning the valid bit in the PTE back on.

Final Processing of the Inswap Operation. After the working set list has been
scanned and the process page tables rebuilt, the process is ready to have its
state changed from computable but outswapped to computable and resident.
Several other scheduling details must be taken care of before the scheduler is
notified. ‘

1.

w

A new value of ASTLVL is calculated and loaded into the hardware PCB in
the process header. ASTs may have been enqueued to the process while it
was outswapped. The hardware PCB, which contains a copy of the
ASTLVL register, was not available while the header was not resident.

. The resident bit and the initial quantum bit in the status longword in the

software PCB are set.

. A new quantum interval is loaded into the process header.
. Finally, the scheduler is called to make the process computable.

389

PART V/Input/Output

18

18.1

18.1.1

I/0 System Services

Delay not, Caesar. Read it instantly.

— Julius Caesar 3,1

Here is a letter, read it at your leisure.

—Merchant of Venice 5,1

All I/O operations performed on a device are requested using the I/0 system
services. Sometimes, in addition to being called directly by the user, the I/O
system services are called on behalf of a user by system components, such as
RMS.

This chapter describes the following topics:

* What must be done before an I/O request can be made (channel assignment
and device allocation)

* How an I/O request is sent to a device driver

* How a user is notified of the completion of an I/O request

» How a user can obtain information about a particular device or I/O request

ASSIGNING AND DEASSIGNING CHANNELS

In order to request an I/O operation on a device, a process needs to identify
the device to the system. The software mechanism used to link a process to a
device is called a channel. Once a user establishes a channel to a device (using
the $ASSIGN system service), the user may issue I/O requests (with the
$QIO system service) for that device by specifying the channel number as-
signed to the device. If the user no longer wants to use the device, the
$DASSGN system service can be used to deallocate the channel assigned to
the device.

Channel Assignment

A channel is described by a channel control block (CCB]) table, located in a
dedicated portion of P1 space (see Figure 1-7 and Table 26-4). When a channel
is assigned to certain nonshareable devices, the user may also associate a
mailbox with that device to receive status information such as the arrival of
unsolicited input from a terminal. It is up to the device driver for each device
to either use or ignore this associated mailbox. The VAX/VMS Guide to Writ-
ing a Device Driver contains a complete description of the CCB.

The $ASSIGN system service calls on the system routines IOC$FFCHAN

393

I/0O System Services

18.1.1.1

394

and IOC$SEARCHDEV (in IOSUBPAGD) to find a free I/O 'channel (CCB),
and to find the unit control block {UCB) for the device that is being assigned.
After that, one of the paths described in the following sections is taken, de-
pending on whether the device is one of the following:

* A local device (not located on another node)

* A spooled device

* The network device NET

« A remote process or task (located on another node)

Local Device Assignment. This is the normal path through the Assign Chan-
nel system service.

1.

2.

A check is made to see if the device is allocated to another process that is
not a parent process of the process assigning the channel.
The DEV$V_SHR bit in UCB$L_DEVCHAR is checked to see if the de-
vice is a shareable device. If the device is nonshareable and the volume
protection and owner UIC allow it, the device is implicitly allocated to the
process (by placing the process ID, from PCB$L_PID, into UCB$L_PID).
The UCB address is stored in CCB$L_UCB. Whenever the user issues an
1/0 request, this pointer is used to locate the device.

. If an associated mailbox was requested, it is identified by placing the UCB

address (of the mailbox) in the UCB$L_AMB field of the UCB for the de-
vice to which the channel is being assigned. The UCB$W _REFC field of
the associated mailbox is incremented, and the CCB$V_AMB flag is set in
CCB$B_STS to indicate that an associated mailbox is present. Note that
no association is made if one of the following is true:

—The device is a file-oriented device (identified by the DEV$V_FOD bit
in UCBSL_DEVCHAR).

—The device is shareable (DEV$V_SHR in UCB$L_DEVCHAR|.

—The device already has an associated mailbox (the UCB$L_AMB field is
nonzero). '

. The device reference count (UCB$W_REFC) is incremented.
. The access mode (plus one) at which the channel is being assigned is

stored in CCB$B_AMOD. IOC$FFCHAN identifies an unused CCB by
looking in the CCB$B_AMOD field. If the value stored there is a zero, the
CCB is not being used.

. Any flags associated with the channel (such as'CCB$V_AMB indicating

that an associated mailbox is present) are stored in CCB$B_STS.

. The channel number (really an index into the CCB table in process P1

space, provided by IOC$FFCHAN) is returned to the user at the address
specified in the CHAN argument to $ASSIGN.

. The normal successful completion code (SS$_NORMAL] is returned to

the user.

18.1.1.2

18.1.1.3

18.1.2

18.1 Assigning and Deassigning Channels

Special Action When Assigning A Spooled Device. If the DEV$§V_SPL bit in
UCBSL_DEVCHAR is set, then the device being assigned is a spooled device.
The only difference in channel assignment for spooled devices is that the
status field in the channel control block (CCB$B_STS) is cleared. The device
associated with the spooled device had its UCB address stored in the
UCBS$L_AMB field when the device was set to spooled. When an I/0 request
is passed to a spooled device, the $QIO system service recognizes that the
device is spooled and actually performs the I/O request to the associated
device.

Assigning a Channel to the Network Device. If the device being assigned is a
network device (that is, the user is assigning a channel to the NET device,
probably to perform task-to-task communication), the following steps are
taken:

1. A check is made to see that the calling process has NETMBX privilege.

2. A network UCB is created by IOC$CREATE_UCB (in IOSUBPAGD).

3. The UCB is made to look like a mailbox UCB that is marked for deletion
{the UCB$V_DELMBX bit in UCB$W_DEVSTS is set). When the user
deassigns the channel, the UCB will be deleted.

4. The user’s byte count quota and limit are reduced by the size of the UCB.

. The NETDRIVER unit initialization routine is called.

6. Further processing proceeds as in the case of a local, nonshareable device.

a1

Channel Deassignment

The $DASSGN system service deassigns a previously assigned I/O channel
and clears the linkage and control information in the corresponding CCB.
These tasks are accomplished with the following steps:

1. Any outstanding I/O is canceled.

2. If a file is open on the channel (indicated by CCB$L_WIND being non-
zero), then that file is closed (by issuing a $QIOW with the
I0$_DEACCESS function code, and specifying event ﬂag number 30).
This method is also used to dissolve logical links.

3. If any I/O is still outstanding (indicated by CCB§W _IOC bemg nonzero),
the process is placed into an RSN$_ASTWAIT wait state (waiting for the
I/O completion AST(s) to be delivered). Chapter 10 discusses wait states in
detail.

4. The channel is actually deassigned by clearing the CCB$B AMOD fleld

5. If this was the last channel assigned to the device ([UCB$W_REFC con-
tains a 0), the device is implicitly deallocated (by clearing UCB$L_PID).

6. If the device is marked for dismount (the DEV$V_DMT bit in
UCB$L_DEVCHAR is set) and it was not mounted with a VMS ACP (the
foreign bit DEV§V_FOR is set), the dismount (DEV$V_DMT), mounted

395

I/0O System Services

18.2

18.2.1

396

(DEV$V_MNT), read check (DEV$V_RCK), write check (DEV$V_WCK),
and software write locked (DEV$V_SWL) bits in UCB$L_DEVCHAR are
cleared. The UCB$L_VCB field is cleared, and if that field was not zero,
the volume control block pointed to by that field is deallocated. Also, the
volume protection mask (UCB$W_PROT) and the software volume valid
bit (UCB$V_VALID in UCB$W_STS) are cleared.

. If UCB$W_REFC equals zero, or if the calling process has allocated the

device, the associated device driver’s cancel I/O routine is called to per-
form any device-dependent operations (see the VAX/VMS Guide to Writ-
ing a Device Driver). The reason code CAN$C_DASSGN is passed to the
cancel I/O routine.

. If a mailbox was associated with the device when the channel was as-

signed (indicated by CCB$V_AMB in CCB$B_STS), then the linkage with
the mailbox is cleared by taking these steps:

a. Clearing UCB$L_AMB

b. Decrementing UCB$W _REFC for the mailbox UCB

c. Calling IOC$DELMBX (in IOSUBNPAG)] to see if the mailbox UCB
should be deleted (in case this was the last process referencing a tempo-
rary mailbox)

. If the device to which the channel was assigned was a mailbox (indicated

by the DEV$V_MBX bit in UCBSL_DEVCHAR), IOC$DELMBX is called
to see if that mailbox should be deleted.

DEVICE ALLOCATION AND DEALLOCATION

A process allocates a device (using the $ALLOC system service) to reserve
that device for exclusive use. A process deallocates a device (using the
$DALLOC system service) to relinquish exclusive ownership. The code
for the $ALLOC and $DALLOC is found in module SYSDEVALC.

Device Allocation
The following steps are taken by EXE$ALLOC to allocate a device:

L.

P »

The generic allocation routine IOC$SEARCHGEN is called to perform
logical name translation and select a device, if generic allocation was re-
quested.

The process ID (PCB$L_PID) is stored in the device owner field
(UCBS$L_PID).

The device allocated bit (DEV$V_ALL in UCB$L_DEVCHAR| is set.
The device reference count (UCB$W _REFC) is incremented.

The access mode at which the device is allocated is placed in
UCB$B_AMOD.

18.2.2

18.2 Device Allocation and Deallocation

Any of the following conditions will prevent device allocation:

» The device is already allocated by another process (UCB$L_PID is non-
zero).

» The device reference count (UCB$W _REFC) is nonzero.

» The mounted bit (UCB$V_MNT in UCBSL_DEVCHAR| is set.

» The spooled bit ([UCB$V_SPL in UCB$L_DEVCHAR) is set, and the proc-
ess does not have ALLSPOOL privilege.

» The device is nonshareable, and the requesting process does not have ac-
cess rights (located through PCB$L_ARB] allowing it to allocate the de-
vice, as determined by the device’s owner UIC and volume protection
(UCB$L_OWNUIC and UCB$W_VPROT).

Device Deallocation

A process may choose to deallocate a single device or all devices allocated to
it. For each device that is to be deallocated, EXE$DALLOC finds its UCB
address either directly, from the DEVNAM argument in the $DALLOC call,
or by examining each UCB in the system. The routine IOC$SEARCHDEYV is
used to relate device names to UCB addresses and to perform logical name
translations. ‘ ’

Each UCB in the system can be found by following a linked list of device
data blocks (DDBs), that name each device controller in the system (the first
DDB is pointed to by global symbol IOC$GL_DEVLIST). Each DDB contains
a pointer to the first device UCB on the controller, and all of the UCBs for the
devices on a given controller are linked together.

A device is deallocated when the following are true:

e The UCBS$L_PID field matches the PCB$L_PID field of the process issu-
ing the $DALLOC.

e The access mode at which the deallocate request is being made is at least
as privileged as the access mode at which the device was allocated.

» The allocated bit (DEV§V_ALL in UCB$L_DEVCHAR|) is set.

» The device mounted bit (DEVSV_MNT in UCB$L_DEVCHAR)| is clear.

» The reference count (UCB$W_REFC) equals 1, indicating that no more
channels are assigned to the device.

The device is deallocated by taking these steps:

1. Clearing the device allocated bit (DEV$V_ALL in UCB$L_DEVCHAR|

2. Clearing the device owner process id field (UCB$L_PID)

3. Decrementing the device reference count (UCB$W _REFC)

4. Calling the device driver’s cancel I/O routine with the reason code
CANSC_CANCEL

5. Returning the normal successful completion code to the user in RO
(SS$_NORMAL)

397

I/O System Services

18.3

18.3.1

398

$QIO SYSTEM SERVICE

The $QIO system service |in module SYSQIOREQ) allows a user to initiate
an I/0 operation by queuing a request to the device’s associated driver. Once
the I/O operation has been initiated, control will be returned to the user, who
can synchronize I/O completion in one of three ways:

» The process can enter an event flag wait state until the I/O request com-
pletes, waiting for the specified event flag to be set.

o The address of an AST routine that will be executed when the I/O com-
pletes can be passed to $QIO. In this case, the process can continue execut-
ing or wait, depending on the particular method of synchronization.

» The I/O status block can be polled for a completion status. The status field
in the IOSB is cleared by $QIO and set by the special kernel mode AST that
completes an I/O request in process context. This last method is not rec-
ommended.

As an alternative to $QIO, the $QIOW system service may be used, which is
equivalent to the $QIO system service followed by a $WAITEFR system serv-
ice. Using the $QIOW system service guarantees that the I/O operation will
complete before control is transferred back to the user.

Device-Independent Preprocessing

EXE$QIO begins preprocessing an I/0 request with the following steps:

1. Clearing the specified event flag (or event flag number 0 if no event flag
was specified)

2. Validating the device-independent $QIO parameters (event flag number,
channel number, I/O function code, and I/O status block)

3. Verifying that the device is online (UCB$V_ONLINE in UCB$W_STS
must be set)

4. Clearing the I/O status block (if one was specified)

An I/O request packet (IRP) is allocated from nonpaged pool. If possible, this
allocation is done from a queue of preallocated IRPs (pointed to by
IOC$GL_IRPFL). Otherwise, routine EXESALLOCIRP in MEMORYALC is
called to allocate an IRP from the general nonpaged pool area. Obtaining an
IRP from the preallocated queue takes less time than calling the allocation
routine.

The device-independent section of the IRP is initialized, including the fol-
lowing fields:

» The device-independent $QIO parameters
» The process base priority (from PCB$B_PRIB)

18.3.2

18.3 $QIO System Service

* The process ID

» The device UCB address

o The IRP§V_BUFIO flag in IRP§W_STS (which is set for a buffered I/0O
operation, and cleared for a direct I/O operation) :

The process’s privileges are checked to guarantee that it may perform the
requested I/O function. In the course of checking process privileges,
EXE$QIO converts a read or write virtual I/O request function code into the
corresponding read or write logical function code (unless the virtual request
is for a file-oriented device, DEV$V_FOD in UCBS$L_DEVCHAR is set).

If an AST was requested, the AST quota (PCB§W_ASTCNT) is decre-
mented, and the AST quota update flag (ACB§V_QUOTA) is set in
IRP$B_RMOD.

Control is then transferred to a function decision table (FDT) routine (by a
JSB) in the selected device driver. This routine is responsible for interpreting
the device-dependent $QIO parameters (P1 to P6). If the FDT routine returns
control.to EXE$QIO (by issuing an RSB), EXE$QIO calls another FDT routine
in the driver. Successive FDT routines are called until an FDT routine exits
turning control over to a subroutine other than EXE$QIO (for example,
EXE$QIODRVPKT, EXE$SQIOACPPKT, or the user’s routine).

FDT Routines

Function decision table (FDT) routines are device-specific extensions to
$QIO. Their primary purpose is to validate the device-dependent $QIO pa-
rameters (P1 to P6). A device driver can include customized FDT routines or
use some of the general purpose routines that are a part of the system image.
Although some FDT routines are included in a driver image, they are logi-
cally device-dependent extensions of the $QIO system service.

FDT routines execute in the context of the process that issued the $QIO
request. Therefore, they have access to data in the user’s PO and P1 address
space. FDT routines communicate information about the I/O request to the

- driver by passing information in the device-dependent section of the IRP.

FDT routines for direct I/O (/O done directly to a user buffer) ensure that
each buffer page is valid and locked into memory. (Buffer pages are locked
into memory by incrementing the reference count in the PFN database for
each physical page involved in the transfer.] FDT routines for buffered I/0O
operations must allocate a buffer from nonpaged pool that will be used by the
driver for the actual transfer. If the operation is a buffered write, the data that
is being written is copied into this-buffer. System space buffers are required
because the driver processes the I/O request in system context and only has
access to system virtual address space. FDT routines are described in detail in
the VAX/VMS Guide to Writing a Device Driver.

399

I/O System Services

18.3.3

18.3.3.1

400

I/0 Postprocessing

After a device driver completes an I/0 operation, it invokes the REQCOM
macro. This macro jumps to the routine IOC$REQCOM, which places the
IRP on the I/O postprocessing queue and requests a software interrupt at
IPL$_IOPOST (IPL 4). The I/O postprocessing routine {IOC$IOPOST, in
IOCIOPOST) runs as a response to the software interrupt. It implements the
device-independent facets of I/O completion, and handles paging I/O comple-
tion as well (see Chapter 15)..

Some of the I/O postprocessing operations {for example, unlocking buffer
pages, and deallocating buffers) are performed in the I/O postprocessing inter-
rupt service routine (IOC$IOPOST), while other operations (such as writing
the I/0 status block and setting event flags) are performed by a special kernel
mode AST routine (which executes in process context, and therefore has ac-
cess to process address space).

When an IRP is removed from the I/O postprocessing queue (with list head
IOC$GL_PSFL), IOC$IOPOST first determines if the I/O operation was a
buffered or direct request.

Direct I/0O Completion. Portions of a direct I/O request can be completed in
the IPL 4 I/O postprocessing interrupt service routine without the benefit of
process context. The following steps are performed <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>