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Preface 

This book explains how the VAX/VMS executive works. It describes the data 
structures maintained and manipulated by the VMS operating system, dis­
cusses the mechanisms that transfer control between user processes and the 
VMS operating system (and among the components of the operating system 
itself), and describes some of the features of the VAX hardware as they are 
used by the VMS operating system. It also describes the VMS executive, in­
cluding all the major components of the executive, as well as system initiali­
zation and the operation of all system services. It does not include a general 
discussion of the I/O subsystem, because that subject is already described in 
the VAX/VMS Guide to Writing a Device Driver (Digital Equipment Corpora­
tion, 1982 ). However, the details of some VAX/VMS device drivers, as well as 
the operations of 1/0-related system services are included in this book. 

This book is intended for system programmers and other users of the VAX/ 
VMS operating system who wish to understand the internal workings of the 
executive. The detailed description of data structures should help system 
managers make better informed decisions when they configure systems for 
space-or time-critical applications. It will also help application designers to 
appreciate the effects (in speed or in memory consumption) of different de­
sign and implementation decisions. This book assumes that the reader is 
familiar with the VAX architecture and the VMS operating system, particu­
larly with its use of system services and its techniques of memory manage­
I}.1ent. 

In explaining the operation of a subsystem of the executive, this book em­
phasizes the data structures manipulated by that component, rather than de­
tailed flow diagrams of major routines. 

This book differs from the reference manuals that make up the VAX/VMS 
documentation set in that it describes internal operations and data struc­
tures. While it is unlikely that any component described in this book will be 
drastically changed with any major release of the VAX/VMS operating sys­
tem, there is no guarantee th;it a particular data structure or subroutine de­
scribed here will remain the same from release to release. With each new 
version of the operating system, privileged application programs that rely on 
details contained in this book must be tested before they are used for produc­
tion work with a standard load of users. 

This book is divided into nine parts, each of which describes a different 
aspect of the operating system. 

• Part 1 presents an overview of the VAX/VMS operating system and reviews 
those concepts that are crucial to understanding the workings of that sys­
tem. 
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• Part 2 describes the mechanisms used to pass control between user pro­
grams and the operating system and within the VMS system itself. 

• Part 3 describes scheduling and timer support, concluding with a discus-
sion of the internals of the VAX/VMS lock manager. 

• Part 4 discusses memory management. 
• Part 5 describes the 1/0 subsystem. 
• Part 6 describes the creation and deletion of a process and the activation 

and termination of an image in the context of a process. 
• Part 7 deals with system initialization and also includes a discussion on 

the VAX-11/782. 
• Part 8 discusses miscellaneous topics that are not conveniently classified 

in any conventional catalog of operating systems: 

- The implementation of logical names 
- The functions of miscellaneous system services 
- The use of listing and map files 
- The conventions used in naming symbols 

• Part 9 provides information on VMS data structures. 

Most of the operations of the VMS executive can be easily understood once 
the contents of the various data structures are known. Although selected 
structures are described throughout the book, Appendix B describes (or pro­
vides pointers to) all the structures used by the operating system. The struc­
tures related to device drivers and the file system are not described. The data 
structures related to device drivers are described in the VAX/VMS Guide to 
Writing a Device Driver. Data structures specific to the file system have yet 
to be documented. 

Several documents in the VAX/VMS document set supply important back­
ground information for the topics discussed in this book. The following pro­
vide an especially valuable foundation: VAX/VMS System Services Reference 
Manual, the VAX-11 software installation guides, and the chapter in the 
VAX-11 Run-Time Library Reference Manual that describes condition han­
dling. 

The concepts underlying the operating system are discussed in the VAX/ 
VMS Summary Description and Glossary, and the VAX Software Handbook. 
The following documents are also helpful references: the VAX/VMS Guide to 
Writing a Device Driver, the VAX-11 Architecture Reference Manual, and 
the VAX Hardware Handbook. 

An excellent description of the VAX architecture, as well as a discussion of 
some of the design decisions made for its first implementation, the VAX- ll/ 
780, can be found in Computer Programming and Architecture: The VAX-11 
by Henry M. Levy and Richard H. Eckhouse, Jr. (Digital Press, 1980). This 
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book also contains a bibliography of some of the literature dealing with oper­
ating system design. 

The reader should be aware of several conventions used throughout this 
book. In all diagrams of memory, the lowest virtual address appears at the top 
of the page and addresses increase toward the bottom of the page. This con­
vention means that the direction of stack growth is toward the top of the 
page. In diagrams that display more detail, such as bytes within longwords, 
addresses also increase from right to left. That is, the lowest addressed byte 
(or bit) in a longword is on the righthand side of a figure and the most signifi­
cant byte (or bit) is on the lefthand side. 

The words "system" or "VMS system" are used to describe the entire soft­
ware package that is a part of a VAX-11 system, including privileged proc­
esses, utilities, and other support software as well as the executive itself. 

The word "executive" refers to those parts of the VMS operating system 
that reside in system virtual address space. The executive includes the con­
tents of the file SYS.EXE, device drivers, and other code and data structures 
loaded at initialization time, including RMS and the system message file. 

When either "process control block" or "PCB" is used without a modifier, 
it refers to the software structure used by the scheduler. The data structure 
that contains copies of the general registers (that the hardware locates 
through the PRLPCBB register) is always called the "hardware PCB." 

When referring to access modes,. the term "inner access modes" means 
those access modes with more privilege. The term "outer access modes" 
means those access modes with less privilege. Thus, the innermost access 
mode is kernel and the outermost access mode is user. 

The term "SYSBOOT parameter" is used to describe any of the adjustable 
parameters that are used by the secondary bootstrap program SYSBOOT to 
configure the system. The adjustable parameters include both the dynamic 
parameters that can be changed on the running system and the static parame­
ters that require a reboot in order for their values to change. These parame­
ters are referred to by their parameter names rather than by the global loca­
tions where their values are stored. Appendix A relates the SYSBOOT 
parameter names to their corresponding global locations. 

The terms "byte index," "word index," "longword index," and so on, refer 
to a method of access that uses the VAX-11 context indexing addressing capa­
bility. That is, the index value will be multiplied by one, two, four, or eight 
(depending on whether a byte, word, longword, or quadword is being refer­
enced) as part of operand evaluation in order to calculate the effective address 
of the operand. 

In general, the component called INIT refers to a module of that name in 
the executive and not the volume initialization utility. When that utility 
program is being referenced, it will be clearly specified. 
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Three conventions are observed for lists. 

• In lists such as this one, where there is no order or hierarchy, list elements 
are indicated by leading bullets ( • ). Sublists without hierarchy are indi­
cated by dashes (-). 

• Lists that indicate an ordered set of operations are numbered. Sublists that 
indicate an ordered set of operations are lettered. 

• Numbered lists with the numbers enclosed in circles indicate a corre­
spondence between individual list elements and numbered items in a 
figure. 
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PART I/Introduction 



1 System Overview 

For the fashion of Minas Tirith was such that it was built on 
seven levels, each delved into a hill, and about each was set a 
wall, and in each wall was a gate. 

-J.R.R. Tolkien, The Return of the King 

This chapter introduces the basic concepts that are used to describe the 
VAX/VMS operating system. Special attention is paid to the features of the 
VAX architecture that are either exploited by the operating system or exist 
solely to support an operating system. In addition, some of the design goals 
that guided the implementation of the VMS operating system are discussed. 

1.1 PROCESS, JOB, AND IMAGE 

The fundamental unit in the VAX/VMS operating system, the entity that is 
selected for execution by the scheduler, is the process. If a process creates 
subprocesses, the collection of the creator process, all the subprocesses cre­
ated by it, and all subprocesses created by its descendants, is called a job. The 
programs that a process executes in order to accomplish meaningful work are 
called images. 

1.1.1 Process 

1.1.1.1 

A process is fully described by hardware and software context and a virtual 
address space description. This information is stored in several data struc­
tures located in different places in the process address space. The data struc­
tures that contain the various pieces of process context are pictured in Figure 
1-1. 

Hardware Context. The hardware context consists of copies of the general 
purpose registers, the four per-process stack pointers, the program counter 
(PC), the processor status longword (PSL), and the process-specific processor 
registers, including the memory management registers and the AST level 
register. The hardware context resides in a data structure called the hardware 
process control block that is used primarily when a process is removed from 
or selected for execution. 

Another part of process context that is related to hardware is the existence 
of four per-process stacks, one for each of the four access modes. When any 
code executes in the context of a process, the code uses the stack associated 
with the code's current access mode. 

3 



1 . Hardware context is stored 
in hardware PCB. 

2. Software context is spread 
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3. Virtual address space 
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1.1.1.2 

1.1.1.3 

1.1.2 

1.1 Process, fob, and Image 

Software Context. Software context consists of all the data required by vari­
ous parts of the operating system to make scheduling and other decisions 
about a process. This data includes the process software priority, its current 
scheduling state, process privileges, quotas and limits, and miscellaneous in­
formation such as process name and process identification. 

The information about a process that must be in memory at all times is 
stored in a data structure called the software process control block (PCB). 
This data includes the software priority of the process, its unique process 
identification (PIO), and the particular scheduling state that the process is in 
at a given point in time. Some process quotas and limits are stored in the 
software PCB. The quotas and limits shared among all processes in the same 
job are stored in a shared data structure called the job information block. 

The information about a process that does not have to be permanently 
resident (swappable process context) is contained in a data structure called 
the process header. This information is only needed when the process is resi­
dent and consists mainly of information used by memory management when 
page faults occur. The data in the process header is also used by the swapper 
when the process is removed from memory (outswapped) or brought back 
into memory (inswapped). The hardware PCB, which contains the hardware 
context of a process, is a part of the process header. Some information in the 
process header is available to suitably privileged code whenever the process is 
resident (is in the balance set), and some information is only accessible from 
that process's context. 

Other process-specific information is stored in the Pl portion of the process 
virtual address space (the control region). This data includes exception dis­
patching information, RMS data tables, and information about the image that 
is currently executing. Information that is stored in Pl space is only accessi­
ble when the process is executing (is the current process) because Pl space is 
process specific. 

Virtual Address Space Description. The virtual address space of a process is 
described by the process PO and Pl page tables, stored in the high address end 
of the process header. The process virtual address space is altered when an 
image is initially activated, during image execution through selected system 
services, and when an image terminates. The process page tables reside in 
system virtual address space and are in turn described by entries in the sys­
tem page table. Unlike the other portions of the process header, the process 
page tables are themselves pageable, and they are faulted into the process 
working set only when they are needed. 

Image 

The programs that execute in the context of a process are called images. 
Images usually reside in files that are produced by the VAX/VMS linker. 

5 
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When the user initiates image execution (as part of process creation or 
through a DCL or MCR command in an interactive or batch job), a compo­
nent of the executive called the image activator sets up the process page 
tables to point to the appropriate sections of the image file. The VMS operat­
ing system uses the same paging mechanism that implements its virtual 
memory support to read image pages into memory as they are needed. 

1.1.3 Job 

The collection of subprocesses that have a common root process is called a 
job. The concept of a job exists solely for the purpose of sharing resources. 
Some quotas and limits, so-called pooled quotas, are shared among all proc­
esses in the same job. The current values of these quotas are contained in a 
data structure called a job information block (Figure 1-1) that is shared by all 
processes in. the same job. 

1.2 FUNCTIONALITY PROVIDED BY THE VAX/VMS SYSTEM 

The VAX/VMS operating system provides services at many levels so that user 
applications may execute easily and effectively. The layered structure of the 
VAX/VMS operating system is pictured in Figure 1-2. In general, components 
in a given layer can make use of the facilities in all inner layers. 

1.2.1 Operating System Kernel 

1.2.1.1 

6 

The main topic of this book is the operating system kernel: the 1/0 subsys­
tem, memory management, the scheduler, and the VAX/VMS system serv­
ices that support and complement these components. The discussion of these 
three components and other miscellaneous parts of the operating system ker­
nel focuses on the data structures that are manipulated by a given compo­
nent. By discussing what each major data structure represents, and how that 
structure is altered by different sequences of events in the system, we will 
describe the detailed operations of each major piece of the executive. 

1/0 Subsystem. The 1/0 subsystem consists of device drivers and their associ­
ated data structures, device-independent routines within the executive, and 
several system services, the most important of which is the $QIO request, 
the eventual 1/0 request that is issued by all outer layers of the system. The 
1/0 subsystem is described in great detail from the point of view of adding a 
device driver to a VMS operating system in the VAX/VMS Guide to Writing a 
Device Driver. Chapters 18 and 19 of this book describe features of the 1/0 
subsystem that are not described in that manual. 
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1.2.1.2 

1.2.1.3 

1.2.1.4 

1.2.2 
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Memory Management. The main components of the memory management 
subsystem are the page fault handler, which implements the virtual memory 
support of the VAX/VMS operating system, and the swapper, which allows 
the system to more fully utilize the amount of physical memory that is avail­
able. The data structures used and manipulated by the pager and swapper 
include the PFN database and the page tables of each process. The PFN data­
base describes each page of physical memory that is available for paging and 
swapping. Virtual address space descriptions of each currently resident proc­
ess are contained in their respective page tables. 

System services are available to allow a user (or the system on behalf of the 
user) to create or delete specific portions of virtual address space or map a file 
into a specified virtual address range. 

Scheduling and Process Control. The third major component of the kernel is 
the scheduler, which selects processes for execution and removes processes 
from execution that can no longer execute. The scheduler also handles clock 
servicing and includes timer-related system services. System services are 
available to allow a process (G> programmer) to create or delete other proc­
esses. Other services provide one process the ability to control the execution 
of another. 

Miscellaneous Services. One area of the operating system kernel that is not 
pictured in Figure 1-2 involves the many miscellaneous services that are 
available in the operating system kernel. Some of these services, for such 
tasks as logical name creation or string formatting, are available to the user in 
the form of system services. Others of these miscellaneous services, such as 
pool manipulation routines and synchronization techniques, are only used by 
the kernel and privileged utilities. 

Data Management 

The VAX/VMS operating system provides data management facilities at two 
levels. The record structure that exists within a file is interpreted by the 
VAX-11 Record Management Services (RMS), which exists in a layer just 
outside the kernel. RMS exists as a series of procedures located in system 
space, so it is in some ways just like the rest of the operating system kernel. 
Most of the procedures in RMS execute in executive access mode, providing a 
thin wall of protection between RMS and the kernel itself. 

The placement of files on mass storage volumes is controlled by one of the 
disk or tape ACPs (Ancillary Control Process). ACPs are implemented as 
separate processes because many of their operations must be serialized to 
avoid synchronous access conflicts. These processes interact with the kernel 



1.2 Functionality Provided by the VAX/VMS System 

both through the system service interface and by using some of the utility 
routines that are not accessible to the general user. 

1.2.3 User Interface 

1.2.3.1 

1.2.3.2 

1.2.3.3 

The interface that is presented to the user (as distinct from the application 
programmer who is using system services and Run-Time Library procedures) 
is one of the command language interpreters (CLI). Some of the services per­
formed by a CLI call RMS or the system services directly. Others result in the 
execution of an external image. These images are generally no different from 
user-written applications because their only interface to the executive is 
through the system services and RMS calls. 

Images Installed with Privilege. Some of the informational utilities and disk 
and tape volume manipulation utilities require that selected portions of pro­
tected data structures be read or written in a controlled fashion. Images that 
require privilege to perform their function can be installed (made known to 
the operating system) by the system manager so that they can perform their 
function in an ordinarily nonprivileged process environment. Images that fit 
this description are MAIL, MONITOR, VMOUNT (the volume mount util­
ity), SET, and SHOW. Table 1-1 lists all those images that are installed with 
privilege in a typical VMS system. 

Other Privileged Images. Other images that perform privileged functions are 
not installed with privilege because their functions are less controlled and 
could destroy the system if executed by naive or malicious users. These im­
ages can only be executed by privileged users. Examples of these images in­
clude SYSGEN (for loading device drivers), INSTALL (which makes images 
privileged or shareable), or the images invoked by a CLI to manipulate print 
or batch queues. Images that require privilege to execute but are not installed 
with privilege in a typical VAX/VMS system are also listed in Table 1-1. 

Images That Link with SYS$SYSTEM:SYS.STB. Table 1-1 also lists those 
components that are linked with the system symbol table (SYS$SYSTEM: 
SYS.STE). These images access known locations in the system image 
(SYS.EXE) through global symbols and must be relinked each time the sys­
tem itself is relinked. User applications or special components such as device 
drivers that include SYS.STE when they are linked must be relinked when­
ever a new version of the symbol table is released, usually at each major 
release of the VAX/VMS operating system. 
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Table 1-1: System Processes and Privileged Images 

Linked with 
Image Name SYS.STE Description 

Fl lAACP.EXE Yes Files-11 Structure Level 1 ACP 
Fl lBACP.EXE Yes Files-11 Structure Level 2 ACP 
MTAAACP.EXE Yes Magnetic Tape ACP 
REMACP.EXE Yes Remote Terminal ACP 
NETACP Yes NetworkACP 
ERRFMT.EXE Yes Error Log Buffer Format Process 
INPSMB.EXE Yes Card Reader Input Symbiont 
JOBCTL.EXE Yes Job Controller/Symbiont Manager 
OPCOM.EXE Yes Operator Communication Facility 
PRTSMB.EXE Yes Print Symbiont 

Images Installed with Privilege (in a typical VMS system) 

Linked with 
Image Name SYS.STE Description 

DISMOUNT.EXE Yes Volume Dismount Utility 
!NIT.EXE Yes Volume Initialization Utility 
LOGINOUT.EXE Yes Login/Logout Image 
MAIL.EXE No Mail Utility 
MONITOR.EXE Yes System Statistics Utility 
PHONE.EXE No Phone Utility 
REQUEST.EXE Yes Operator Request Facility 
SET.EXE Yes SET Command Processor 
SETPO.EXE Yes SET Command Processor 
SHOW.EXE Yes SHOW Command Processor 
SUBMIT.EXE No Batch and Print Job Submission 

Facility 
VMOUNT.EXE Yes Volume Mount Utility 

Images That Require Privilege That Are Typically Not Installed 

Linked with 
Image Name SYS.STE Description 

AUTHORIZE.EXE Yes Authorize Utility 
INSTALL.EXE Yes Known Image Installation Utility 
NCP.EXE Yes Network Control Program 
OPCCRASH.EXE Yes System Shutdown Facility 
QUEMAN.EXE No Queue Manipulation Command Processor 
REPLY.EXE No Message Broadcasting Facility 
RMSSHARE.EXE Yes File Sharing Utility 
RUND ET.EXE No RUN Process Command Processor 
SD A.EXE Yes System Dump Analyzer 
SYSGEN.EXE Yes System Generation and Configuration Utility 

10 
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Table 1-1: System Processes and Privileged Images (continued) 

Images Whose Operations Are Protected by System UIC or Volume Ownership 

Linked with 
Image Name SYS.STE Description 

BAD.EXE No Bad Block Locator 
BACKUP.EXE No Backup Utility 
DSC I.EXE No Disk Save and Compress Utility 

for Structure Level 1 
DSC2.EXE No Disk Save and Compress Utility 

for Structure Level 2 
DISKQUOTA.EXE Yes Disk Quota Utility 
VERIFY.EXE No File Structure Verification Utility 

Miscellaneous Images Linked with SYS$SYSTEM:SYS.STB 

Image Name 

DCL.EXE 
MCR.EXE 
MP.EXE 
RMS.EXE 

Linked with 
SYS.STE 

Yes 
Yes 
Yes 
Yes 

Description 

DCL Command Interpreter 
MCR Command Interpreter 
Multiprocessing Loadable Code 
Record Management Services Image 

1.2.4 Interface among Kernel Subsystems 

1.2.4.1 

1.2.4.2 

The coupling among the three major subsystems pictured in Figure 1-2 is 
somewhat misleading because there is actually little interaction between the 
three components. In addition, each of the three components has its own 
section of executive data structures that it is responsible for. When one of the 
other pieces of the system wishes to access such data structures, it does so 
through some controlled interface. Figure 1-3 shows the small amount of 
interaction that occurs between the three major subsystems in the operating 
system kernel. 

1/0 Subsystem Requests. The I/O subsystem makes a request to memory 
management to lock down specified pages for a direct I/O request. The pager 
or swapper is notified directly when the I/O request that just completed was 
initiated by either one of them. 

I/O requests can result in the requesting process being placed in a wait 
state, until the request completes. This change of state requires that the 
scheduler be notified. In addition, 1/0 completion can also cause a process to 
change its scheduling state. Again, the scheduler would be called. 

Memory Management Requests. Both the pager and swapper require input 
and output oper~tions in order .to fulfill their functions. Neither calls $QIO 

11 
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Figure 1·3 
Interaction between Components of VMS Kernel 

directly because many of the protection checks that $QIO makes are unnec­
essary and would slow down page 1/0 and swap 1/0. Instead, the pager and 
swapper use special entry points into the 1/0 subsystem, and these points 
allow prebuilt 1/0 requests to be queued directly to a driver. 

If a process incurs a page fault that results in a read from disk, or if a process 
requires physical memory and none is available, the process is put into one of 
the memory management wait states by the !'rheduler. When the page read 
completes or physical memory becomes available, the process is made com­
putable again. 

Scheduler Requests. The scheduler interacts very little with the rest of the 
system. It serves a more passive role when cooperation with memory man­
agement or the 1/0 subsystem is required. One exception to this passive role 
is that the scheduler awakens the swapper when a process that is not cur­
rently memory resident becomes computable. 



1.3 Hardware Implementation of the Operating System Kernel 

1.3 HARDWARE IMPLEMENTATION OF THE OPERATING 
SYSTEM KERNEL 

The method of implementing the many services provided by the VAX/VMS 
operating system illustrates the close connection between the hardware de­
sign and the operating system. Many of the general features of the VAX archi­
tecture are used to advantage by the VAX/VMS operating system. Other fea­
tures of the architecture exist entirely to support an operating system. 

1.3.1 VAX Architecture Features Exploited by VMS 

Several features of the VAX architecture that are available to all users are 
used for specific purposes by the operating system. 

• The general purpose calling mechanism is the primary path into the oper­
ating system from all outer layers of the system. Because all system serv­
ices are procedures, they are available to all native mode languages. 

• The memory management protection scheme is used to protect code 
and data used by more privileged access modes from modification by less 
privileged modes. Read-only portions of the executive are protected in the 
same manner. 

• There is implicit protection built into special instructions that may only 
be executed from kernel mode. Because only the executive (and suitably 
privileged process-based code) executes in kernel mode, such instructions 
as MTPR, LDPCTX, and HALT are protected from execution by non­
privileged users. 

• The operating system uses interrupt priority level (IPL) for several pur­
poses. At its most elementary level, IPL is elevated so that certain inter­
rupts are blocked. For example, clock interrupts must be blocked while the 
system time (stored in a quadword) is checked because this checking takes 
more than one instruction. Clock interrupts are blocked to prevent the 
system time from being updated while it is being checked. 

• IPL is also used as a synchronization tool. For example, any routine that 
accesses a system-wide data structure must raise IPL to 7 (called 
IPL$_SYNCH). The assignment of various hardware and software inter­
rupts to specific IPL values establishes an order of importance to the hard­
ware and software interrupt services that the VMS operating system per­
forms. 

• Several other features of the VAX architecture are used by specific compo­
nents of the operating system and are described in later chapters. They 
include the following: 

-The change mode instructions (CHME and CHMK), which are used to 
decrease access mode (to greater privilege) (see Figure 1-4). Note that 
most exceptions and all interrupts result in changing mode to kernel (a 
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Figure 1-4 

• Nearly all of the system services execute in kernel mode. 
• RMS and some system services execute in executive mode. 
• Command Language Interpreters normally execute in supervisor mode. 
• Utilities, application programs, Run-Time Library procedures, and so on 

normally execute in user mode. Privileged utilities sometimes execute in 
kernel or executive mode. 

Methods for Altering Access Mode 

brief introduction to exceptions and interrupts is presented in Section 
1.3.5). 

- The inclusion of many protection checks and pending interrupt checks 
in the single instruction that is the common interrupt exit path, REI. 

-Software interrupts. 
-Hardware context and the single instructions (SVPCTX and LDPCTX) 

that save and restore it. 
- The use of ASTs to obtain and pass information. 

VAX-11 Instruction Set 

While the VAX-11 instruction set, data types, and addressing modes were 
designed to be somewhat compatible with the PDP-11, several features that 



1.3 Hardware Implementation of the Operating System Kernel 

were missing in the PDP-11 were added to the VAX architecture. True con­
text indexing allows array elements to be addressed by element number, with 
the hardware accounting for the size (byte, word, longword, or quadword) of 
each element. Short literal addressing was added in recognition of the fact 
that the majority of literals that appear in a program are small numbers. 
Variable length bit fields and character data types were added to serve the 
needs of several classes of users, including operating system designers. 

The instruction set includes many instructions that are useful to any de­
signer and occur often in the VMS executive. The queue instructions allow 
the construction of doubly linked lists as a common dynamic data structure. 
Character string instructions are useful when dealing with any data structure 
that can be treated as an array of bytes. Bit field instructions allow efficient 
operations on flags and masks. 

One of the most important features of the VAX architecture is the calling 
standard. Any procedure that adheres to this standard can be called from any 
native language, an advantage for any large application that wishes to make 
use of the features of a wide range of languages. The VMS operating system 
adheres to this standard in its interfaces to the outside world through the 
system service interface, RMS entry points, and the Run-Time Library proce­
dures. All system services and RMS routines are written as procedures that 
can be accessed by issuing a CALLx to absolute location SYS$service in the 
process Pl virtual address space. Run-Time Library procedures are included 
in a user's image instead of being located in system space. 

1.3.3 Implementation of VMS Kernel Routines 

1.3.3.1 

In Section 1.2.1, the VMS kernel was divided into three functional pieces plus 
the system service interface to the rest of the world. Alternatively, the oper­
ating system kernel can be partitioned according to the method used to gain 
access to each part. Three classes of routines within the kernel are proce­
dure-based code, exception service routines, and interrupt service routines. 
Other system-wide functions, the swapping and modified page writing per­
formed by the swapper, are implemented as a separate process that resides in 
system space. Figure 1-5 shows the various entry paths into the operating 
system kernel. 

Process Context and System State. The first section of this chapter discussed 
the pieces of the system that are used to describe a process. Process context 
includes a complete address space description, quotas, privileges, scheduling 
data, and so on. Any portion of the system that executes in the context of a 
process can count on all of these process attributes being available. 

There is a portion of the kernel, however, that operates outside the context 
of a specific process. The largest class of routines that fall into this category is 
that of interrupt service routines, invoked in response to external events with 
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no regard for the currently executing process. Portions of the initialization 
sequence also fall into this category. In any case, there are no process features 
such as a kernel stack or a page fault handler available when these routines 
are executing. 

Because of the lack of a process; this system state or interrupt state can be 
characterized by the following limited context. 

• All stack operations take place on the system-wide interrupt stack. 
• The primary description of system or interrupt state is contained in the 

processor status longword (PSL). The PSL will indicate that the interrupt 
stack is being used, that the current access mode is kernel mode, and that 
the IPL is higher than IPL 2. 

• The system control block, the data structure that controls the dispatching 
of interrupts and exceptions, can be thought of as the secondary structure 
that describes system state. 
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• Code that executes in this so-called system context can only refer to sys­
tem virtual addresses. In particular, there is no Pl space available, so the 
system-wide interrupt stack must be located in system space. 

• No page faults are allowed. The page fault handler generates a fatal bug­
check if a page fault occurs and the IPL is above IPL 2. 

• No exceptions are allowed. Exceptions, like page faults, are associated 
with a process. The exception dispatcher generates a fatal bugcheck if an 
exception occurs above IPL 2 or while the processor is executing on the 
interrupt stack. 

• ASTs, asynchronous events that allow a process to receive notification 
when external events have occurred, are not allowed. (The AST delivery 
interrupt is delivered when IPL' drops below IPL 2, an indication that the 
processor is leaving the interrupt state.) 

• No system services are allowed in the system state. (In fact, most system 
services can only be called from process context at IPL O; only the memory 
management system services can be called at IPL 2. Process deletion re­
quires that these system services be callable at IPL 2; doing so requires a 
great deal of care and is not recommended.) 

Process-Based Routines. Procedure-based code (RMS services and the system 
services) and exception service routines usually execute in the context of the 
current process (on the kernel stack when in kernel mode). 

The system services are implemented as procedures and are available to all 
native mode languages. In addition, the fact that they are procedures means 
that there is a call frame on the stack. Thus, errors detected by a utility 
subroutine used by a system service can return an error simply by putting the 
error status into RO and issuing a RET instruction. All superfluous informa­
tion is cleaned off the stack by the RET instruction. The system service dis­
patchers, actually the dispatchers for the CHMK and CHME exceptions, are 
exception service routines. 

System services must be called from process context. They are not availa­
ble from interrupt service routines or other code (such as portions of the 
initialization sequence) that executes outside the context of a process. One 
reason for requiring process context is that the various services assume that 
there is a process whose privileges can be checked and whose quotas can be 
charged as part of the normal operation of the service. Some system services 
reference locations in Pl space, a portion of address space only available 
while executing in process context. System services also make assumptions 
about IPL and synchronization that would be violated if they were called 
from other than process-based code executing at IPL 0. 

The pager (the page fault exception handler) is an exception service routine 
that is invoked in response to a translation-not-valid fault. The pager thus 
satisfies page faults in the context of the process that incurred the fault. Be-
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cause page faults are associated with a process, the system cannot tolerate 
page faults that occur in interrupt service routines or other routines that 
execute outside the context of a process. The actual restriction imposed by 
the pager is even more stringent. Page faults are not allowed above IPL 2. This 
restriction applies to process-based code executing at elevated IPL as well as 
to interrupt service code. 

Interrupt Service Routines. By their asynchronous nature, interrupts execute 
without the support of process context (on the system-wide interrupt stack). 

• I/O requests are initiated through the $QIO system service, which can be 
issued directly by the user or by some intermediary, such as RMS, on the 
user's behalf. Once an I/O request has been placed into a device queue, it 
remains there until the driver is triggered, usually by an interrupt gener­
ated in the external device. 

Two classes of software interrupt service routines exist solely to support 
the 1/0 subsystem. The fork level interrupts allow device drivers to lower 
IPL in a controlled fashion. Final processing of I/O requests is also done in 
a software interrupt service routine. 

• The timer functions in the operating system include support in both the 
hardware clock interrupt service routine and a software interrupt service 
routine that actually services individual timer requests. 

• Another software interrupt performs the rescheduling function, where one 
process is removed from execution and another selected and placed into 
execution. 

Special Processes-Swapper and Null. The swapper and the null process are 
different from any other processes that exist in a VAX/VMS system. The 
differences lie not in their operations, which are completely normal, but in 
their limited context. 

The limited context of either of these processes is due, in part, to the fact 
that these two processes exist as part of the system image SYS.EXE. They do 
not have to be created with the Create Process system service. Specifically, 
their PCBs and process headers are assembled (in module POAT) and linked 
into the system image. Other characteristics of these two processes are listed 
here. 

• Their process headers are static. There is no working set list and no process 
section table. Neither process supports page faults. All code executed by 
either process must be locked into memory in some way. In fact, the code 
of both of these processes is part of the nonpaged executive. 

• Both processes execute entirely in kernel mode, thereby eliminating the 
need for stacks for the other three access modes. 



1.3.3.5 

1.3 Hardware Implementation of the Operating System Kernel 

• Neither process has a Pl space. The kernel stack for either process is lo­
cated in system space. 

• The null process does not have a PO space either. The swapper uses an 
array allocated from nonpaged pool as its PO page table for a special portion 
of process creation, the part that takes place in the context of the swapper 
process. 

Despite their limited contexts, both of these processes behave in a normal 
fashion in every other way. The swapper and the null process are selected for 
execution by the scheduler just like any other process in the system. The 
swapper spends its idle time in the hibernate state until some component in 
the system recognizes a need for one of the swapper functions, at which time 
it is awakened. The null process is always computable, but set to the lowest 
priority in the system (priority O). All CPU time not used by any other proc­
ess in the system will be used by the null process. 

Special Subroutines. There are several utility subroutines within the operat­
ing system related to scheduling and resource allocation that are called from 
both process-based code such as system services and from software interrupt 
service routines. These subroutines are constrained to execute with the lim­
ited context of interrupt or system state. 

1.3.4 Memory Management and Access Modes 

The address translation mechanism is described in the VAX Hardware Hand­
book. Two side effects of this operation are of special interest to the VMS 
operating system. When a page is not valid, a translation-not-valid exception 
is generated that transfers control to an exception service routine that can 
take whatever steps are required to make the page valid. This exception 
transfers control from a hardware mechanism, address translation, to a soft­
ware exception service routine, the page fault handler, and allows the operat­
ing system to gain control on address translation failures in order to imple­
ment its dynamic mapping of pages while a program is executing. 

Before the address translation mechanism checks the valid bit, a protection 
check is made to determine whether the requested access will be granted. 
The check uses both the current access mode in the PSL (PSL<25:24>), a 
protection code that is defined for each virtual page, and the type of access 
(read, modify, or write) to make its decision. This protection check allows the 
operating system to make read-only portions of the executive inaccessible to 
anyone (all access modes) for writing, preventing corruption of operating sys­
tem code. In addition, privileged data structures can be protected from even 
read access by nonprivileged users, preserving the integrity of the operating 
system. 
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Before mentioning other features of the exception and interrupt mechanisms 
used by the VMS operating system, it would be helpful to compare and con­
trast these two mechanisms. 

Comparison of Exceptions and Interrupts. The following list summarizes 
some of the characteristics of exceptions and interrupts. 

• Interrupts occur asynchronously to the currently executing instruction 
stream. They are actually serviced between individual instructions or at 
well-defined points within the execution of a given instruction. Excep­
tions occur synchronously as a direct effect of the execution of the current 
instruction. 

• Both mechanisms pass control to service routines whose addresses are 
stored in the system control block. These routines perform exception­
specific or interrupt-specific processing. 

• Exceptions are generally a part of the currently executing process. Their 
servicing is an extension of the instruction stream that is currently execut­
ing on behalf of that process. Interrupts are system-wide events that can­
not rely on support of a process in their service routines. 

• Because exceptions are usually caused by an executing process, the sys­
tem-wide interrupt stack is usually used to store the PC and PSL of the 
process that was interrupted. Exceptions are usually serviced on the per­
process kernel stack. Which stack to use is actually determined by control 
bits in the system control block entries for each exception or interrupt. 

• Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions 
often cause exception-specific parameters to be stored along with a PC/PSL 
pair. 

• Interrupts cause the IPL to change. Exceptions usually do not have an IPL 
change associated with them. (Machine checks and kernel-stack-not-valid 
exceptions elevate IPL to 31.) 

• A corollary of the previous step is that interrupts can be blocked by elevat­
ing IPL to a value at or above the IPL associated with the interrupt that is 
to be blocked. Exceptions, on the other hand, cannot be blocked. However, 
some exceptions can be disabled (by clearing associated bits in the PSW). 

• When an interrupt or exception occurs, a new PSL is formed that summa­
rizes the new IPL, the current access mode (almost always kernel), the 
stack being used (interrupt or other), and so on. One difference between 
exceptions and interrupts, a difference that reflects the fact that interrupts 
are not related to the interrupted instruction stream, is that the previous 
access mode field in the new PSL is set to kernel for interrupts, while the 
previous mode field for exceptions reflects the access mode in which the 
exception occurred. 
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Other Uses of Exceptions and Interrupts. In addition to the translation-not­
valid fault used by memory management software, the operating system also 
uses the change-mode-to-kernel and change-mode-to-executive exceptions as 
entry paths to the executive. System services that must execute in a more 
privileged access mode use either the CHMK or CHME instruction to gain 
access mode rights (see Figure 1-4). The system handles most other excep­
tions by passing them through a common exception dispatcher described in 
Chapter 4. 

Hardware interrupts temporarily suspend code that is executing so that an 
interrupt-specific routine can service the interrupt. Interrupts have an IPL 
associated with them. The internal processor priority level (IPL) is raised 
when the interrupt is recognized. High level interrupt service routines thus 
prevent the recognition of lower level interrupts. Lower level interrupt serv­
ice routines can be interrupted by subsequent higher level interrupts. Kernel 
mode routines can also block interrupts at certain levels by specifically rais­
ing the IPL. 

The VAX architecture also defines a series of software interrupt levels that 
can be used for a variety of purposes. The VMS operating system uses them 
for scheduling, I/O completion routines, and for synchronizing access to cer­
tain classes of data structures. 

The REI Instruction. The REI instruction is the common exit path for inter­
rupts and exceptions. Many protection and privilege checks are incorporated 
into this instruction. Because most fields in the processor status longword 
are not accessible to the programmer, the REI instruction provides the only 
means for changing access mode to a less privileged mode (see Figure 1-4). It 
is also the only way to reach compatibility mode. 

Although the IPL field of the PSL is accessible through the PR$_IPL proces­
sor register, execution of an REI is a common way that IPL is lowered during 
normal execution. Because a change in IPL can alter the deliverability of 
pending interrupts, many hardware and software interrupts are delivered 
after an REI instruction is executed. 

Process Structure 

The VAX architecture also defines a data structure called a hardware process 
control block that contains copies of all a process's general registers when the 
process is not active. When a process is selected for execution, the contents of 
this block are copied into the actual registers inside the processor with a 
single instruction, LDPCTX. The corresponding instruction that saves the 
contents of the general registers when the process is removed from execution 
is SVPCTX. 
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1.4 OTHER SYSTEM CONCEPTS 

This chapter began by discussing the most important concepts in the VMS 
operating system, process and image. There are several other fundamental 
ideas that should be mentioned before beginning a detailed description of 
VMS internals. Some of these ideas are briefly described here. 

1.4.1 Resource Control 

1.4.1.1 

1.4.1.2 
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The VAX/VMS operating system protects itself and other processes in the 
system from careless or malicious users with hardware and software protec­
tion mechanisms, software privileges, and software quotas and limits. 

Hardware Protection. The memory management protection mechanism that 
is related to access mode is used to prevent unauthorized users from modify­
ing (or even reading) privileged data structures. Access mode protection is 
also used to protect system and user code, and other read-only data struc­
tures, from being modified by programming errors. 

A more subtle but perhaps more important aspect of protection provided by 
the memory management architecture is that the process address space of 
one process (PO space and Pl space) is not accessible to code running in the 
context of another process. When such accessibility is desired to share com­
mon routines or data, the operating system provides a controlled access 
through global sections. System virtual address space is available to all proc­
esses (although page-by-page protection may deny read or write access to 
specific system virtual pages for certain access modes). 

Process Privileges. Many operations that are performed by system services 
could destroy operating system code or data or corrupt existing files if per­
formed carelessly. Other services allow a process to adversely affect features 
in other processes in the system. The VMS operating system requires that 
processes wishing to execute these potentially damaging operations be suita­
bly privileged. Process privileges are assigned when a process is created, ei­
ther by the creator or through the user's record in the authorization file. 

These privileges are described in the VAX/VMS System Management and 
Operations Guide and in the VAX/VMS System Services Reference Manual. 
The privileges themselves are specific bits in a quadword that is stored in the 
beginning of the process control block. (The locations and manipulations of 
the several process privilege masks that the operating system maintains are 
discussed in Chapter 21.) When a VMS service that requires privilege is 
called, the service checks to see whether the associated bit in the process 
privilege mask is set. 
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Quotas and Limits. The VMS operating system also controls allocation of its 
system-wide resources, such as nonpaged dynamic memory and page file 
space, through the use of quotas and limits. These process attributes are also 
assigned when the process is created. By restricting such items as the number 
of concurrent I/O requests or pending ASTs, the executive exercises control 
over the resource drain that a single process can exert on system resources 
such as nonpaged dynamic memory. In general, a process cannot perform 
certain operations (such as queue an AST) unless it has sufficient quota 
(nonzero PCB$W _ASTCNT in this case). The locations and values of the 
various quotas and limits used by the operating system are described in 
Chapter 20. 

User Identification Code (UIC). The VMS operating system uses user identifi­
cation code (UIC) for two different protection purposes. If a process wishes to 
perform some control operation (Suspend, Wake, Delete, and so on) on an­
other process, it requires WORLD privilege in order to affect any process in 
the system. A process with GROUP privilege can affect only other processes 
with the same group number. A process with neither WORLD nor GROUP 
privilege can affect only other processes that are part of the same job. (A 
process with neither GROUP nor WORLD privilege cannot affect any other 
process in the system, even if it has the same UIC, unless the target process is 
in the same job as the process in question.) 

The UIC is also the parameter that determines whether a user can read 
from or write to a given file. The owner of a file can determine how much 
access to his files he grants to himself, to other processes in the same group, 
and to other processes in the system. 

The same UIC protection that exists for files is also used for other data 
structures in the system. Both logical names and global sections exist in two 
varieties, group names and sections or system names and sections. The group 
variety is only available to other processes in the same group. Common event 
flags, flags that can be shared among several processes, are restricted to proc­
esses in the same group. 

Other System Primitives 

Several other simple tools used by the VMS operating system are mentioned 
freely throughout this book and are described in Chapters 2, 3, and 29. 

Synchronization. Any multiprogramming system must take measures to pre­
vent simultaneous access to system data structures. The executive uses two 
simple synchronization techniques. By elevating IPL, a subset of interrupts 
can be blocked, allowing unrestricted access to system-wide data structures. 
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1.4.2.2 

1.4.2.3 

1.5 

The most common synchronization IPL used by the operating system is IPL 
7, called IPL$_SYNCH. 

For some data structures, elevated IPL is either an unnecessary tool or a 
potential system degradation. For example, processes executing at or above 
IPL 3 cannot be rescheduled (removed from execution). Once a process gains 
control of a data structure protected by elevated IPL, it will not allow another 
process to execute until it gives up its ownership. In addition, page faults are 
not allowed above IPL 2 and so any data structure that exists in pageable 
address space cannot be synchronized with elevated IPL. 

The VMS executive requires a second synchronization tool to allow syn­
chronized access to pageable data structures. This tool must also allow a 
process to be removed from execution while it maintains ownership of the 
structure in question. The synchronization tool that fulfills these require­
ments is called a mutual exclusion semaphore (or mutex). Synchronization, 
including the use of mutexes, is discussed in Chapter 2. 

Dynamic Memory Allocation. The system maintains three dynamic memory 
areas from which blocks of memory can be allocated and deallocated. 
Nonpaged pool contains those system-wide structures that might be manipu­
lated by (hardware or software) interrupt service routines or process-based 
code executing above IPL 2. Paged pool contains system-wide structures that 
do not have to be kept memory resident. The process allocation region, a 
portion of the process Pl space, is used for pageable data structures that will 
not be shared among several processes. Dynamic memory allocation and 
deallocation are discussed in detail in Chapter 3. 

Logical Names. The system uses logical names for many purposes, including 
a transparent way of implementing a device-independent I/O system. The use 
of logical names as a programming tool is discussed in the VAX/VMS System 
Services Reference Manual. The internal operations of the logical name sys­
tem services, as well as the internal organization of the logical name tables, 
are described in Chapter 29. 

LAYOUT OF VIRTUAL ADDRESS SPACE 

This section shows the approximate contents of the three different parts of 
virtual address space. 

1.5.1 System Virtual Address Space 
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The layout of system virtual address space is pictured in Figure 1-6. Details 
such as the no-access pages at either end of the interrupt stack are omitted to 
avoid cluttering the diagram. Table 26-2 gives a more complete description of 
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system space, including these guard pages, system pages allocated by disk 
drivers, and other details. 

This figure was produced from two lists provided by the system dump ana­
lyzer (the system page table and the contents of all global data areas in system 
space) and from the system map SYS$SYSTEM:SYS.MAP. The relations be­
tween the variable size pieces of system space and their associated SYSBOOT 
parameters are given in Chapter 26. 

1.5.2 The Control Region (Pl Space) 

Figure 1-7 shows the layout of Pl space. This figure was produced mainly 
from information contained in module SHELL, which contains a prototype of 
a Pl page table that is used whenever a process is created. An SDA listing of 
process page tables was used to determine the order and size of the portions of 
Pl space not defined in SHELL. 

Some of the pieces of Pl space are created dynamically when the 
process is created. These include a Pl map of process header pages, a 
command language interpreter if one is being used, and a symbol table 
for that CLI. 

The two pieces of Pl space at the lowest virtual addresses (the user stack 
and the image I/O segment) are created dynamically each time an image exe­
cutes and are deleted as part of image rundown. Chapter 26 contains a de­
scription of the sizes of the different pieces of Pl space. Table 26-4 gives a 
complete description of Pl space, including details such as memory manage­
ment page protection and the name of the system component that maps a 
given portion. 

1.5.3 The Program Region (PO Space) 
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Figure 1-8 shows a typical layout of PO space for both a native mode image 
(produced by the VAX-11 Linker) and a compatibility mode image (produced 
by the RSX-llM task builder). This figure is much more conceptual than the 
previous two illustrations because PO space does not contain pieces of the 
executive as Pl space and system space do. 

By default, the first page of PO space (Oto lFF) is not mapped (protection set 
to No Access). This no-access page allows easy detection of two common 
programming errors, using zero or a small number as the address of a data 
location or using such a small number as the destination of a control transfer. 
(A link-time request or a system service call can alter the protection of vir­
tual page zero. Note also that page zero is accessible to compatibility mode 
images.) 
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1.5 Layout of Virtual Address Space 

The main image is placed into PO space, starting at address 200 (hex). Any 
shareable libraries that are position independent and shared (for example, 
VMSRTL) are placed at the end of the main image. The order in which these 
libraries are placed into the image is determined in image activation. 

If the debugger or the traceback facility is required, these images are added 
at execution time (even if /DEBUG was selected at link time) by procedure 
SYS$IMGSTA. This mapping is described in detail in Chapter 21. 
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2 Synchronization Techniques 

And now I see with eye serene 
The very pulse of the machine. 

-William Wordsworth, She Was a Phantom of Delight 

One of the most important issues in the design of an operating system is 
synchronization. Especially in a system that is interrupt driven, certain se­
quences of instructions must be allowed to execute without interruption. 
The VMS operating system uses special IPL values to block certain interrupts 
during the execution of critical code paths. 

Any operating system must also take precautions to insure that shared data 
structures are not being simultaneously modified by several routines or being 
read by one routine while another routine is modifying the structure. The 
VMS executive uses a combination of software techniques and features of the 
VAX hardware to synchronize access to shared data structures. The following 
techniques are described in this chapter: 

• Elevated IPL 
• Serialized access 
• Mutual exclusion semaphores, called mutexes 
• VAX/VMS lock management system services 

2.1 ELEVATED IPL 
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The primary purpose of raising IPL is to block interrupts at the selected IPL 
value and all lower values of IPL. For example, by raising IPL to 23, all device 
interrupts are blocked; but the clock, which interrupts at IPL 24, can still 
cause interrupts. The operating system also uses selected IPL values for per­
forming certain actions or for accessing certain structures. 

The IPL, stored in PSL<20:16>, is altered by writing the desired IPL value 
to the privileged register PR$_IPL with the MTPR instruction. This change 
in IPL is usually accomplished in the operating system with one of two 
macros, SETIPL or DSBINT, whose macro definitions are as follows: 

. MACRO SETI PL IPL = #31 
MTPR IPL, s'#PR$_IPL 
.ENDM SETIPL 

. MACRO DSBINT IPL= #31 , DST= -(SP) 
MFPR s'#PR$_IPL,DST 
MTPR IPL,S'#PR$_IPL 
.ENDM DSBINT 



2.1 Elevated IPL 

The SETIPL macro changes IPL to the specified value. If no argument is pres­
ent, IPL is elevated to 31. The DSBINT macro first saves the current IPL 
before elevating IPL to the specified value. If no alternate destination is speci­
fied, the old IPL is saved on the stack. The default IPL value is 31. 

The DSBINT macro is usually used when a later sequence of code must 
restore the IPL to the saved value (with the ENBINT macro). This macro is 
especially useful when the caller's IPL level is unknown. The SETIPL macro 
is used when the IPL will later be explicitly lowered with another SETIPL or 
simply as a result of executing an REI instruction. That is, the value of the 
saved IPL is not important to the routine that is using the SETIPL macro. 

The ENBINT macro is the counterpart of the DSBINT macro. It restores 
the IPL to the value found in the designated source argument . 

• MACRO ENBINT SRC =(SP)+ 

MTPR SRc,s'#PR$_IPL 

.ENDM ENBINT 

Occasionally it is necessary to save an IPL value (to be restored later by the 
ENBINT macro) without changing the current IPL. 

• MACRO SAVIPL DST = -(SP) 

MFPR S'#PR$_IPL,DST 

.ENDM SAVIPL 

The successful use of IPL as a synchronization tool requires that IPL be raised 
(not lowered) to the appropriate synchronization level. Lowering IPL defeats 
any attempt at synchronization and runs the risk of a reserved operand fault 
when an REI instruction is later executed. (An REI instruction that attempts 
to elevate IPL causes a reserved operand fault.) 

2.1.1 Use of IPL$_ SYNCH 

IPL 7 (IPL$_SYNCH) is used as the interrupt level for the software timer 
routines, those routines that service timer queue entries and handle quantum 
expiration. IPL 7 is also used as the level to which IPL must be raised for any 
routine to access a system-wide data structure. By raising IPL to 7, all other 
routines that might access the same system-wide data structure are blocked 
from execution until IPL is lowered. 

While the processor is executing at IPL 7, certain system-wide events such 
as scheduling and 1/0 postprocessing are blocked. However, other, more im­
portant operations, such as hardware interrupt servicing and device driver 
fork processing, can continue. Thus, the amount of time that the operating 
system spends at IPL 7 does not affect more important activities such as 
servicing 1/0 requests. The fact that 1/0 processing, including fork process­
ing, is more important than other system operations (such as satisfying a page 
fault) reflects one of the underlying philosophies of the executive, to keep 
external devices as busy as possible. 
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2.1.2 Other IPL Levels Used for Synchronization 

2.1.2.1 

2.1.2.2 
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Table 2-1 lists several IPL levels that are used for synchronization purposes 
by the system. Some of these levels are used to control access to shared data 
structures. Other levels are used to prevent certain events, such as a clock 
interrupt or process deletion, from occurring while a block of instructions is 
executed. 

IPL 31. Routines in the operating system will raise IPL to 31 to block all 
interrupts for a short period of time (usually less than ten instructions once 
the system is initialized). 

• Device drivers use IPL 31 just before they call IOC$WFixxCH to prevent a 
powerfail interrupt from occurring. 

• The entire bootstrap sequence operates at IPL 31 in order to put the system 
into a known state before allowing interrupts to occur. 

• Because the error logger routines can be called from anywhere in the exec­
utive, including fault service routines that execute at IPL 31 (such as ma­
chine check handlers), allocation of an error log buffer can only execute at 
IPL 31. A corrolary of this requirement demands that the ERRFMT process 
execute at IPL 31 when it is altering data structures that describe the state 
of the error log buffer. (As Chapter 8 describes, the copy is done at two IPL 
levels. The error log buffer status flags and message counts are modified at 
IPL 31. Then IPL is lowered to zero; the contents of the error log buffer are 
copied to the ERRFMT process PO space, and the messages are formatted 
and written to the error log file.) 

IPL 24. When IPL is raised to 24, the level at which the hardware clock inter­
rupts, clock interrupts are blocked. The software timer interrupt service rou-

Table 2-1: Common IPL Values Used by the Executive for Synchronization 

Name 

IPL$_POWER 
IPL$_HWCLK 
UCB$B_DIPL (1) 
UCB$B_FIPL (1) 
IPL$_ SYNCH 

IPL$_QUEUEAST 

IPL$_ASTDEL 

Value 
(decimal) 

31 
24 
20-23 
8-11 
7 

6 

2 

Meaning 

Disable all interrupts 
Block clock and device interrupts 
Block interrupts from specific devices 
Device driver fork levels 
Synchronize access to any system-wide 
data structures 
Device driver fork IPL that allows drivers 
to elevate IPL to 7 
Block delivery of ASTs (prevent process 
deletion) 

(1) These symbols are offsets into a device unit control block. 



2.1.2.3 

2.1.2.4 

2.1 Elevated IPL 

tine uses this IPL level when it is comparing two quadword system time 
values. An IPL value of 24 prevents the system time from being updated 
while it is being compared with some other time value. (This precaution is 
required because the VAX architecture does not contain a CMPQ-compare 
quadword-instruction.) 

Device IPL. Device drivers will raise IPL to the level at which the associated 
device will interrupt in order to prevent other devices from generating inter­
rupts while device registers are being read or written. This step usually pre­
cedes the further elevation of IPL to 31 just described. 

Fork IPL. Fork IPL (a value specific to each device type) is used by the execu­
tive to synchronize access to each unit control block. These blocks are 
accessed by device drivers and by procedure-based code, such as the comple­
tion path of the $QIO system service and the Cancel 1/0 system service. 

Qevice drivers also use their associated fork IPL as a synchronization level 
when accessing data structures that control shared resources, such as multi­
unit controllers or datapath registers or map registers. In order for this syn­
chronization to work properly, all devices sharing a given resource must use 
the same fork IPL. 

The use of fork IPL to synchronize access to unit control blocks works the 
same way that elevating IPL to 7 does. That is, one piece of code elevates IPL 
to the specified fork IPL (found at offset UCB$B_FIPL) and blocks all other 
potential accesses to the UCB. Fork processing, the technique whereby de­
vice drivers lower IPL below device interrupt level in a manner consistent 
with the interrupt nesting scheme, also uses the serialization technique de­
scribed in Section 2.2. 

2.1.3 IPL$_QUEUEAST 

Perhaps the example that best illustrates the synchronization rules followed 
by the operating system is the use of IPL 6 (IPL$_QUEUEAST) by device 
drivers. There are instances where device drivers find it necessary to interact 
with the scheduler. For example, the terminal driver may notify a requesting 
process about unsolicited input or a CTRL/Y through an AST (see Chapter 7). 
The mailbox driver also can notify requesting processes about reads or writes 
to a mailbox. 

The enqueuing of an AST must occur at IPL$_SYNCH to synchronize ac­
cess to the scheduler's database. As already pointed out, IPL must be elevated 
(not lowered) to 7 to achieve this synchronization. The fork level at IPL 6 
allows device drivers that execute at IPL 8 through IPL 11 to make these 
scheduling requests. Specifically, the driver calls a routine called 
COM$DELATTNAST that creates an IPL 6 fork request. That is, a fork block 
is placed into the IPL 6 fork queue and an IPL 6 software interrupt requested 
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(software interrupts are described in Chapter 6). When that interrupt occurs, 
the fork block is used as an AST control block and passed to SCH$QAST, 
which will elevate IPL to 7, in keeping with the rule that IPL must be raised 
to IPL$_SYNCH to preserve proper interrupt nesting. 

An obvious question in response to the above description is why the IPL 7 
fork interrupt cannot be used to achieve the same result. The answer is that if 
the IPL 7 software interrupt were not being used for another purpose, that 
would be a perfectly acceptable solution. However, the software timer service 
routine is entered as a result of the IPL 7 software interrupt. So this synchro­
nization technique uses the first free IPL below 7, the IPL 6 software inter­
rupt called IPL$_QUEUEAST. 

IPL 6 is used in a second instance by device drivers that interact with the 
scheduler. As described in the next chapter, nonpaged pool cannot be deallo­
cated from code executing in response to an interrupt above IPL 7, because 
nonpaged pool is a system-wide resource whose availability must be reported 
to the scheduler. Routine COM$DRVDEALMEM creates an IPL 6 fork proc­
ess that allows the deallocation to take place in response to an IPL 6 software 
interrupt, allowing the scheduler to properly synchronize its database ac­
cesses. The actual pool manipulation takes place at IPL 11 to synchronize 
with the allocation routine. 

2.1.4 ~PL 2 
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IPL 2 is the level at which the software interrupt associated with AST deliv­
ery occurs. When system service procedures raise IPL to 2, they are blocking 
the delivery of all ASTs, but particularly the special kernel AST that causes 
process deletion. In other words, if a process is executing at IPL 2 (or above), 
that process cannot be deleted. 

This technique is used in several places to prevent process deletion be­
tween the time that some system resource (such as system dynamic memory) 
is allocated and the time that ownership of that resource is recorded (such as 
the insertion of a data structure into a list). For example, the $QIO system 
service executes at IPL 2 from the time that an I/O request packet is allocated 
from nonpaged dynamic memory until that packet is queued to a unit control 
block or placed into the I/O postprocessing queue. 

The memory management subsystem uses IPL 2 in order to inhibit the 
special kernel mode AST that is queued on I/O completion. This inhibition is 
necessary at times when the memory management subsystem has some 
knowledge of the process's working set and yet the execution of the I/O com­
pletion AST could cause a modification to the working set, thereby invalidat­
ing that knowlege. 

IPL 2 also has significance for an entirely different reason: it is the highest 
IPL level at which page faults are permitted. If a page fault occurs at IPL above 



2.2 Serialized Access 

2, a fatal bugcheck (BUG$_PGFIPLHI) is issued. If there is any possibility 
that a page fault can occur, because either the code that is executing or the 
data that it references is pageable, then that code cannot execute above IPL 2. 
The converse of this constraint is that any code that executes above IPL 2, 
and all data referenced by such code, must be locked into memory in some 
way. Chapter 31 shows some of the techniques that the VMS executive uses 
to dynamically lock code or data into memory so that IPL can be elevated 
above IPL 2. 

2.2 SERIALIZED ACCESS 

The software interrupt capability described in Chapter 6 provides no method 
for counting the number of requested software interrupts. The VMS operating 
system uses a combination of software interrupts and doubly linked lists to 
cause several requests for the same data structure or procedure to be serial­
ized. The most important example of this serialization in the operating sys­
tem is the use of fork processes by device drivers. The 1/0 postprocessing 
software interrupt is a second example of serialized access. 

2.2.1 Fork Processing 

Fork processing is the technique that allows device drivers to lower IPL in a 
manner consistent with the interrupt nesting scheme defined by the VAX 
architecture. When a device driver receives control in response to a device 
interrupt, it performs whatever steps are necessary to service the interrupt at 
device IPL. For example, any device registers whose contents would be de­
stroyed by another interrupt must be read before the driver dismisses the 
device interrupt. 

Usually, there is some processing that can be deferred. For DMA devices, 
an interrupt signifies either completion of the operation or an error. The code 
that distinguishes these two cases and performs error processing is usually 
lengthy, and to execute at device IPL for extended periods of time would slow 
down the system. For non-DMA devices that do not interrupt at too rapid a 
rate, interrupt processing can be deferred in favor of other, more important 
device servicing. 

In either case, the driver signals that it wishes to delay further processing 
until the IPL in the system drops below a predetermined value, the fork IPL 
associated with this driver. This signaling is accomplished by calling a rou­
tine in the executive that saves the address of the next instruction in the 
driver in a data structure called a fork block (see Figure 6-2). The fork block is 
then inserted at the end of the fork queue for that IPL value. A software 
interrupt at the appropriate IPL is requested. 
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2.2.2 1/0 Postprocessing 

Upon completion of an I/O request, there is a series of cleanup steps that 
must be performed. The event flag associated with the request must be set. A 
special kernel AST that will perform final cleanup in the context of the proc­
ess that initially issued the $QIO call must be queued to the process. This 
cleanup must be completed for one I/O request before another is handled. In 
other words, 1/0 postprocessing must be serialized. 

This serialization is accomplished by performing the postprocessing opera­
tion as a software interrupt service routine (at IPL 4). When a request is recog­
nized as being complete, the 1/0 request packet is placed at the tail of the I/O 
postprocessing queue (at global listhead IOC$GL_PSBL), and a software in­
terrupt at IPL 4 is requested. 

When the device driver recognizes that an I/O request has completed (ei­
ther successfully or unsuccessfully), it calls routine IOC$REQCOM, which 
makes the IPL 4 software interrupt request at fork IPL (IPL 8 to IPL 11 ), so the 
postprocessing interrupt is deferred until the IPL drops below 4. 

Some 1/0 requests do not require driver action. When the Queue I/O Re­
quest ($QIO) system service or device-specific FDT routines detect that the 
request can be completed without driver intervention, or if they detect an 
error, they call one of the routines EXE$FINISHIO or EXE$FINISHIOC. 
These two routines execute at IPL 2 and so the requested software interrupt 
is taken immediately. ACPs also place I/O request packets directly into the 
postprocessing queue and request the IPL 4 software interrupt. 

2.3 MUTUAL EXCLUSION SEMAPHORES (MUTEXES) 
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The synchronization techniques described so far all execute at elevated IPL, 
thus blocking certain operations, such as a rescheduling request, from taking 
place. There are some shared data structures that must be protected from 
multiple access where elevated IPL is an unacceptable technique for synchro­
nization, because the processor would have to remain at an elevated IPL for 
an unspecified length of time. For example, two processes cannot allocate 
paged pool at the same time. In addition, when a system is low on paged pool 
or when the pool is highly fragmented, a search for an unused block that is 
the correct size can be very time consuming. 

A second situation where elevated IPL is not acceptable as a synchroniza­
tion tool occurs when the data structure that is being protected is paged. The 
memory management subsystem does not allow page faults to occur when 
IPL is above 2. Thus, any pageable data structure cannot be protected by 
elevating IPL to 7. For these two reasons, another mechanism is required for 
controlling access to shared data structures. 

The VMS operating system uses mutexes, mutual exclusion semaphores, 
for this purpose. Mutexes are essentially flags that indicate whether a given 
data structure is being examined or modified by one of a group of cooperating 



2.3 Mutual Exclusion Semaphores {Mutexes) 

Table 2-2: List of Data Structures Protected by Mutexes 

Global Address Value in 
Data Structure of Mutex (1) Version 3.0 

System Logical Name Table LOG$ALMUTEX 80002750 

Group Logical Name Table 80002754 

I/O Database (2) IOC$GLMUTEX 800028CO 

Common Event Block List EXE$GLCEBMTX 800028C4 

Paged Dynamic Memory EXE$GLPGDYNMTX 800028C8 

Global Section Descriptor List EXE$GLGSDMTX 800028CC 

Shared Memory Global Section EXE$GLSHMGSMTX 800028DO 
Descriptor Table 

Shared Memory Mailbox EXE$GLSHMMBMTX 800028D4 
Descriptor Table 

Enqueue/Dequeue Tables EXE$GLENQMTX 800028D8 
(Not Currently Used) 

Known File Entry Table EXE$GLKFIMTX 800028DC 

Line Printer Unit Control UCB$LLP _MUTEX (3) 
Block (3) 

( 1) When a process is placed into an MWAIT state waiting for a mutex, the address 
of the mutex is placed into the PCB$L_EFWM field of the PCB. The symbolic 
contents of PCB$L_EFWM will probably remain the same from release to re­
lease. The numeric contents are almost certain to change with each major re­
lease of the operating system. 

(2) This mutex is used by the Assign Channel and Allocate Device system services 
when searching through the linked list of device data blocks for a device with a 
given name. It is also used by the Mount Utility and the file system ACPs to 
lock the file system data structures. 

(3) The mutex associated with each line printer unit does not have a fixed address 
like the other mutexes. Its value depends on where the UCB for that unit is 
allocated. 

processes. The implementation allows either multiple readers or one writer 
of a data structure. Table 2-2 lists those data structures in the system that are 
protected by mutexes. 

The mutex itself consists of a single longword that contains the number of 
owners of the mutex (MTX$W _OWNCNT) in the low-order word and status 
flags (MTX$W _STS) in the high-order word (see Figure 2-1). The owner count 
begins at -1 so that a mutex with a zero in the low-order word has one 
owner. The only flag currently implemented indicates whether a write opera­
tion is either in progress or pending for this mutex (MTX$V _ WRT). 

2.3.1 Locking a Mutex for Read Access 

When a process wishes to gain read access to a data structure that is protected 
by a mutex, it passes the address of that mutex to a routine called 
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SCH$LOCKR. If there is no write operation either in progress or pending, the 
owner count of this mutex (MTX$W _OWNCNT) is incremented, the count 
of mutexes owned by this process (stored at offset PCB$W _MTXCNT in the 
software PCB) is also incremented, and control is passed back to the caller, 
unless this is the only mutex owned by this process (mutex count equals 
one). 

If the mutex count for this process (PCB$W _MTXCNT) is one, indicating 
that the process owns no other mutexes, the current and base priorities are 
stored in the PCB at offsets PCB$B_PRISAV and PCB$B_PRIBSAV. In addi­
tion, if the process is not a real-time process (priority is less than 16), the 
software priority (both current priority and base priority) of the process is 
elevated to 16 to insure that the mutex will be owned for as little time as 
possible. Notice that the check on the number of owned mutexes prevents a 
process that gains ownership of two or more mutexes from receiving a perma­
nent priority elevation into the real-time range. 

Routine SCH$LOCKR always returns successfully in the sense that, if the 
mutex is currently unavailable, the process is placed into a mutex wait state 
(MWAIT) until the mutex is available for the process. When the process even­
tually gains ownership of the mutex, control will then be passed to the proc­
ess. IPL is set to IPL$_ASTDEL (IPL 2) to prevent process deletion while the 
mutex is owned by this process. This preventative step must be taken be­
cause the Delete Process system service has no internal checks on whether 
the process being deleted owns any mutexes. If the deletion succeeded, the 
locked data structure would be lost to the system. 

2.3.2 Locking a Mutex for Write Access 
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A process wishing to gain write access to a protected data structure passes 
the address of the appropriate mutex to a routine called SCH$LOCKW. This 
routine returns control to the caller with the mutex locked for write access 
if the mutex is currently unowned. In addition, both mutex counts 
(MTX$W _OWNCNT and PCB$W _MTXCNT) are incremented, the process 
software priority is possibly altered, and IPL is set to 2. An alternate entry 
point, SCH$LOCKNOWAIT, returns control to the caller with RO<O> 
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cleared (indicating failure) if the requested mutex is already owned. For the 
regular entry point (SCH$LOCKW), if this mutex is owned, the process is 
placed into the mutex wait state (MWAIT). However, the write pending bit is 
set so that future requests for read access will also be denied. In a sense, this 
scheme is placing requests for write access ahead of requests for read access. 
However, all that this check is really doing is preventing a continuous stream 
of read accesses keeping the mutex count (MTX$W _OWNCNT) nonzero. 
When the mutex count goes to -1 (no owners), it is declared available, and 
the highest priority process waiting for the mutex is the one that will get first 
access to the mutex, independent of whether it is requesting a read access or 
a write access. 

2.3.3 Mutex Wait State 

When a process is placed into a mutex wait state, its stack is set up so that 
the saved PC is the entry point of either the read-lock routine or the write­
lock routine. (In the latter case, the PC points to a branch to SCH$LOCKW.) 
The PSL is adjusted so that the saved IPL is 2. The address of the mutex that 
is being requested is placed into the software PCB at offset PCB$LEFWM. 
(Because the process is not waiting on an event flag, this field is available for 
other purposes.) Table 2-2 and part of Table 10-2 list the contents of the 
PCB$L_EFWM field for each MWAIT state. 

2.3.4 Unlocking a Mutex 

A process relinquishes ownership of a mutex by passing the address of the 
mutex to be released to a routine called SCH$UNLOCK. This routine decre­
ments the number of mutexes owned by this process recorded in its PCB. If 
this process does not own any more mutexes (PCB$W _MTXCNT contains 
zero), the saved base and current priorities (in fields PCB$B_PRIBSAV and 
PCB$B_PRISAV) are established as the process's new base and current priori­
ties. If there are computable (COM) processes with higher priorities than this 
process's new current priority, a rescheduling interrupt is requested. 

SCH$UNLOCK also decrements the number of owners of this mutex 
(MTX$W _OWNCNT). If the owner count of this mutex does not go to -1, 
there are other outstanding owners of this mutex, so control is simply passed 
back to the caller. 

If the count does become -1, this value indicates that this mutex is cur­
rently unowned. If the write-in-progress bit is clear, this indicates that there 
are no processes waiting on this mutex, and control is passed back to the 
caller. (A waiting writer would set this bit. A potential reader is only blocked 
if there is a current or pending writer.) If there are other processes waiting for 
this mutex, they are all made computable by scanning the MWAIT queue for 
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all processes whose PCB$L_EFWM field matches the address of the unlocked 
mutex. 

If the priority of any of the processes removed from the mutex wait state is 
greater than the priority of the current process, a rescheduling pass will occur 
that will select the highest priority process for execution. As noted above, 
there is no difference between processes waiting for read access and processes 
waiting for write access. The criterion that determines who will get first 
chance at ownership of the mutex is software priority. 

2.3.5 Resource Wait State 

The routines that place a process into a resource wait state and make re­
sources available share some code with the mutex locking and unlocking 
routines and will be briefly described here. Details of resources that one proc­
ess can access at a time can be found in Chapter 10. 

When a process requires a resource that is unavailable, it is placed into a 
resource wait state, which shares the same scheduling state number and wait 
queue header with the mutex wait state. The resource number is stored in 
the PCB (at offset PCB$L_EFWM) instead of the mutex address (see Table 
10-2). In addition, a bit corresponding to this resource is set in a resource wait 
mask (found at global location SCH$GL_RESMASK). The saved PC and PSL 
are determined by the caller of routine SCH$RWAIT. SCH$RWAIT saves the 
process's context, inserts the PCB into the MWAIT queue, and causes a new 
process to be selected for execution. 

When a resource becomes available, the appropriate bit in the resource wait 
mask is cleared. If the bit was previously set, there are other processes wait­
ing on this resource. The same routine that frees processes waiting on a 
mutex is entered at this point. Offset PCB$L_EFWM now contains a resource 
number instead of a mutex address, but this difference is a conceptual differ­
ence that is invisible to the code that is actually executing. 

The MWAIT state queue is scanned for all processes whose PCB$L_EFWM 
field matches the number of the recently freed resource. All such processes 
are made computable. If the new priority of any of these processes is larger 
than the priority of the currently executing process, a rescheduling interrupt 
is requested. In any event, all processes waiting for the now available re­
source will compete for that resource based on software priority. 

2.4 VAX/VMS LOCK MANAGEMENT SYSTEM SERVICES 
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So far, the methods of synchronization described in this chapter have re­
quired elevated IPL or execution in kernel access mode, or both. Though both 
are powerful and effective in synchronizing access to system data structures, 
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there are other system applications in which elevated IPL or kernel mode 
access are not really necessary or desirable (for example, RMS). 

The VAX/VMS lock management system services (or the lock manager) 
provide synchronization tools that can be invoked from all access modes. 
The use of the VAX/Vfy1S lock management system services is described fully 
in the VAX/VMS System Services Reference Manual; the internals of the 
lock manager are described in Chapter 13 of this book. 
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3 Dynamic Memory Allocation 

In this bright little package, now isn't it odd? You've a dime's 
worth of something known only to God! 

-Edgar A. Guest, The Package of Seeds 

Some of the data structures described in this book are created when the sys­
tem is initialized; many others are created when they are needed and de­
stroyed when their useful life is finished. In order to store the data structures, 
virtual memory needs to be allocated and deallocated in an orderly fashion. In 
addition, different data structures have differing memory requirements; the 
VAX/VMS operating system maintains three separate areas for dynamic allo­
cation of storage. 

• The process allocation region holds data structures that are required only 
by a single process. 

• Paged dynamic memory contains data structures that are used by several 
processes but are not required to be permanently memory resident. 

• The nonpaged pool contains data structures and code that are used by the 
portions of the VMS operating system that are not procedure based, such as 
interrupt service routines and device drivers. These portions of the operat­
ing system can use only system virtual address space and usually execute 
at elevated IPL, requiring nonpaged pool space rather than paged pool 
space. 

The nonpaged pool also contains data structures and code that are 
shared by several processes and must not be paged. This requirement is 
usually dictated by the constraint that page faults are not permitted 
above IPL 2. 

3.1 ALLOCATION STRATEGY AND IMPLEMENTATION 
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Each of the three pool areas has the same structure, so common allocation 
and deallocation routines can be used. The first two longwords of each un­
used block in one of the pool areas are used to describe the block. As illus­
trated in Figure 3-1, the first longword in a block contains the virtual address 
of the next unused block in the list. The second longword contains the size in 
bytes of the unused block. Each successive unused block is found at a higher 
virtual address. Thus, each pool area forms a singly linked memory ordered 
list. 



3.1 Allocation Strategy and Implementation 

Used 

Size of this Block 

First Unused 
Block 

Used 

Size of this Block 

Next Unused 
Block 

v-

Used 

0 

Size of this Block 

Last Unused 
Block 

Figure 3-1 

Beginning of Pool Area 
(Filled in when 
system is initialized) 

0 

Address of First 
Free Block 
(Modified by allocation 
and deallocation routines) 

(Zero in pointer 
signifies end of list) 

Layout of Unused Areas in Dynamic Memory Pools 

3.1.1 Allocation of Dynamic Memory 
When the allocation routine is called, it searches from the beginning of the 
list until it encounters the first unused block large enough to satisfy the call. 
If the fit is exact, the allocation routine simply adjusts the previous pointer to 
point to the next free block. If the fit is not exact, it subtracts the allocated 
size from the original size of the block, puts the new size into the remainder 
of the block, and adjusts the previous pointer to point to the remainder of the 
block. The two possible allocation situations (exact and inexact fit) are illus­
trated in Figure 3-1. 

43 



Dynamic Memory Allocation 

3.1.2 Example of Allocation of Dynamic Memory 
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The first part of Figure 3-2 (Initial Condition) shows a section of paged pool, 
including the pointers MMG$GL_PAGEDYN, which points to the beginning 
of paged pool, and EXE$GL_PAGED, which points to the first available block 
of paged pool. In this example, allocated blocks of memory are indicated only 
as the total number of bytes being used, ignoring either the number or size of 
the individual data structures within each block. 

Following the allocation of a block of 60 bytes (an exact fit), the structure of 
the paged pool looks like the second part of Figure 3-2 (60 Bytes Allocated). 

Initial Condition 60 Bytes Allocated 48 Bytes Allocated 

From listhead From listhead 

G$GL_PAGEDYN 

176 Bytes J 176 Bytes l J 176 Bytes J, 
in Use 1 in Use 

,,. 
in Use 1 

... ... 
32 32 32 

32 Bytes 
Unused 1 32 Bytes -'. 

Unused ~ 
32 Bytes {: 
Unused 

96 Bytes 
in Use 

J... 144 Bytes in Use ,.,,... 
1 (96+48 Bytes) 

224 Bytes in Use 
.. 

60 (96+60+68 Bytes),., 12 

60 Bytes 
Unused 

1 
,( 12 Bytes Unused {: 

(60-48 Bytes) 

68 Bytes 
in Use ~ 68 Bytes ~ 

in Use 

48 48 

48 Bytes 
Unused 

208 Bytes 
in Use 

-',.. 48 Bytes 

J Unused 

~ 208 Bytes 1:-
in Use 

); 

! 
48 Bytes 

1 Unused 

208 Bytes 

1 in Use t 
Figure 3·2 
Examples of Allocation from Dynamic Memory 
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Note that the discreet portions of 96 bytes and 68 bytes inuse and the 60 
bytes that were allocated are now combined to show simply a 224-byte block 
of paged pool in use. 

The third part of Figure 3-2 (48 Bytes Allocated) shows the case where a 
48-byte block was allocated from the paged pool structure shown in the first 
part of the figure. The 48 bytes were taken from the first unused block large 
enough to contain it. (Note that allocation is done from the low address end 
of the unused block.) Because this allocation was not an exactfit, an unused 
block, 12 bytes long, remains. 

3.1.3 Deallocation of Dynamic Memory 

When a block is deallocated, 'it must be placed back into, the list in its proper 
place, according to its address. This replacement is accomplished by follow­
ing the unused area pointers until an address larger than the address of the 
block to be deallocated is encountered. If the deallocated block is adjacent to 
another unused block, the two blocks are merged into a single unused area. 
This merging, or agglomeration, can occur at t.he end of the preceding unused 
block or at the beginning of the following block (or both). Three sample 
deallocation situations, two of which illustrate merging, are shown in Figure 
3-3 and are described in Section 3.1.4. Because merging occurs automatically 
as a part of deallocation, there is no need for any externally triggered cleanup 
routines. 

The deallocation routine assumes that the word at offset 8 from the begin­
ning of a block contains the size of the block being deallocated. All of the 
dynamically allocated blocks used by the executive adhere to this conven­
tion. The type code located in the byte at offset 10 is also used by the deallo­
cation routine to distinguish between structures allocated from local mem­
ory (type code i!! positive) and structures allocated from shared memory (type 
code is negative). This size word and the type code stored in the adjacent byte 
at offset 10 allow SDA to correctly interpret the portions of nonpaged pool 
that are currently in use. 

3.1.4 Example of Deallocation of Dynamic Memory 

The first part of Figure .3-3 (Initial Condition) shows the structure of an area 
of paged pool containing logical name blocks for three logical names: ADAM, 
GREGORY, and ROSAMUND. These three logical name blocks are 
braeketed by two unused portions of paged pool, one 64 bytes long, the other 
176 bytes long. 

If the logical name ADAM were deleted, the structure of the pool would be 
altered to look like the structure shown in the second part of Figure 3-3 
(ADAM Deleted). Because the logical name block was adjacent to the high 
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address end of an unused block, the blocks are merged. The size of the 
deallocated block is added to the size of the unused block. 

If the logical name GREGORY were deleted, the structure of the pool 
would be altered to look like the structure shown in the third part of Figure 
3-3 (GREGORY Deleted). The pointer in the unused block of 64 bytes is 
altered to point to the deallocated block; a new pointer and size longword are 
created within the deallocated block. 

The fourth part of Figure 3-3 (ROSAMUND Deleted) shows the case where 
the logical name ROSAMUND was deleted. In this case the deallocated 
block is adjacent to the low address end of an unused block, so the blocks are 
merged. The pointer to the next unused block that was previously in the 
adjacent block is moved to the beginning of the newly deallocated block. The 
following longword is loaded with the size of the merged block (240 bytes). 

3.1.5 Synchronization 

Some method is required to synchronize access to the pool areas to avoid 
several processes or executive routines searching one of these lists simulta­
neously. 

There is no locking mechanism currently used for either the process alloca­
tion region or any of the lists (such as the process logical name table or the 
private mounted volume list) found there. However, the allocation routine 
executes in kernel mode at IPL 2, effectively blocking any other mainline or 
AST code from executing and perhaps attempting a simultaneous allocation 
from the process allocation region. 

Paged pool is protected by a mutex. Before a block of memory is either 
allocated or deallocated from the paged pool, this mutex, found at global label 
EXE$GL_PGDYNMTX, is locked for write access. 

Elevated IPL is used to control allocation of nonpaged pool. The IPL that is 
used is stored in the longword immediately preceding the pointer to the first 
unused block in the nonpaged pool (see Table 3-1). The allocation routine for 
nonpaged pool raises IPL to the value found here before proceeding. While the 
system is running, this longword usually contains an 11. The value of 11 was 
chosen because device drivers running at fork level frequently allocate dy­
namic storage, and IPL 11 represents the highest fork IPL currently used in 
the operating system. (An implication of this synchronization IPL value is 
that device drivers must not allocate nonpaged pool while executing at de­
vice IPL in response to a device interrupt.) 

During initialization, the contents of this longword are set to 31 because 
the rest of the code in the system initialization routines (module INIT) exe­
cutes at IPL 31 to block all interrupts. INIT is described in detail in Chapter 
25. Changing the contents of this longword avoids lowering IPL as a side 
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Table 3-1: Global Listheads for Each Pool Area 

Pool Area 

N onpaged Pool 

N onpaged Pool 

Lookaside Lists 

Paged Pool 

Paged Pool 

Process Allocation 
Region 

Process Allocation 
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Global Address 
of Pointer 
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There is no global pointer that locates the 
beginning of the process allocation region. 

I l) Static pointers are loaded at initialization time. The contents of these locations do not change during the life of the system. Dynamic pointers 
generally change their contents each time a block is allocated from or deallocated to a pool area. 
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effect of allocating space from nonpaged pool. The value of this longword is 
reset to 11 after INIT has finished its allocation .but before INIT passes con­
trol to the scheduler. 

IPL is also a consideration for deallocation of nonpaged pool, but for a dif­
ferent reason. Although nonpaged pool can be allocated from fork processes 
running at IPL levels up to IPL 11, it cannot be deallocated as a result of an 
interrupt above IPL 7. The reason for limiting the IPL is that nonpaged pool is 
a system-wide resource that processes might be waiting for. The deallocation 
routine notifies the scheduler that a resource is available. The scheduler in 
tum checks whether any processes are waiting for the nonpaged pool re­
source. All of this scheduling must take place at IPL$_SYNCH, and the in­
terrupt nesting scheme requires that IPL never be lowered below the IPL 
value at which the current interrupt occurred. This rule dictates that all pool 
.be deallocated at IPL 7 or lower. 

There may be instances where code executing above IPL 7 must deallocate 
nonpaged pool. Routine COM$DRVDEALMEM exists for this purpose. This 
routine takes the block that is to be deallocated, turns it into a fork block (see 
Figure 6-2), and requests an IPL 6 software interrupt. The code that executes 
as the fork process (the saved PC in the fork block) simply issues a JMP 
to EXE$DEANONPAGED to deallocate the block. However, because 
EXE$DEANONPAGED is entered at IPL 6 and not at fork IPL, the synchro­
nized access to the scheduler's database is preserved. (This technique is simi­
lar to the one used by device drivers that need to interact with the scheduler 
by declaring ASTs. The attention AST mechanism is briefly described in 
Chapter 2 and discussed in greater detail in Chapter 7.) 

3.1.6 Granularity of Allocation 

The allocation routines for both paged and nonpaged pool round the re­
quested size up to the next multiple of 16 bytes to impose a granularity on 
both the allocated and unused areas. Because both pool areas are initially 
page aligned, this rounding causes every structure allocated from one of the 
two system-wide pool areas to be at least quadword aligned. 

There is no granularity imposed on the allocation size for the process allo­
cation region. However, the two structures allocated from this pool by the 
system (logical name blocks for process logical names and mounted volume 
list entries for private volumes) are both an integral number of quadwords 
long so that any block allocated from the process allocation region is quad­
word aligned. Also, the smallest possible size of an unallocated block is eight 
bytes. Any user-written privileged program that allocates space from the 
process allocation region should insure that it requests an integral number of 
quadwords to keep this region quadword aligned. 
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3.2 PREALLOCATED REQUEST PACKETS 

While most of the structures found in the nonpaged pool are allocated and 
deallocated infrequently, pool is constantly being allocated and deallocated 
for 1/0 request packets and other system data blocks. To avoid the overhead 
of searching for blocks of free memory of sufficient size to accommodate 
specific request packets, portions of nonpaged pool (called the lookaside lists) 
are dedicated to the allocation and deallocation of 1/0 request packets (IRPs), 
small request packets (SRPs), and large request packets (LRPs). 

Specifically, at initialization time, a portion of the nonpaged system space 
following the main portion of pool is partitioned into three pieces. One piece 
is reserved for the IRP list, one is for the LRP list, and one is for the SRP list. 
The pieces are then structured into a series of elements. The size of the IRP 
list element is determined by the symbol IRP$C_LENGTH. The sizes of the 
elements in the LRP and SRP lists are contained in the cells IOC$GL _ LRPSIZE 
and IOC$GL_SRPSIZE, which are defined in module SYSCOMMON. INIT 
determines the values for LRPSIZE and SRPSIZE from SYSBOOT parameters. 
In each of the lists, the elements are entered into a doubly linked list (with 
the INSQUE instruction) so that the each list is a doubly linked list contain­
ing fixed size list elements. 

3.2.1 Allocation from One of the Lookaside Lists 

50 

When a routine (such as the $QIO system service) needs an 1/0 request 
packet, it simply issues a REMQUE from the beginning of this list (found 
through global label IOC$GL_IRPFL). The SRP and LRP lookaside lists are 
located by the global labels IOC$GL_SRPFL and IOC$GL_LRPFL respec­
tively. Only if the list is empty (indicated by the V-bit set in the PSW) would 
the more general allocation routine have to be called. Because allocation and 
deallocation from the lookaside list are so much more efficient than the gen­
eral routines that allow any size block to be allocated or deallocated, a special 
check is built into the general nonpaged pool allocation routine to determine 
whether the requested block can be allocated from one of the lookaside lists. 
The logic of this routine is approximately the following. 

1. The allocation size is rounded up to the next multiple of 16. 
2. If the rounded size is greater than the size of an IRP (IRP$C_LENGTH), an 

attempt is made to allocate a packet from the LRP list. If the rounded size 
is still greater than the size of an LRP, the general allocation routine is 
called to search for the first free block large enough to accommodate the 
request. If the rounded size is less than the smallest request size for which 
an LRP can be allocated (IOC$GL_LRPMIN), the general allocation rou­
tine is called. 

3. The cell IOC$GL_IRPMIN indicates the smallest request size that can be 
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allocated an IRP. If the rounded size is less than IOC$GL_IRPMIN, an 
attempt is made to allocate a packet from the SRP list. If the rounded size 
is greater than the size of an SRP (IOC$GL_SRPSIZE), the general alloca­
tion routine is called. 

4. Once the appropriate lookaside list is found, and if the list is not empty, 
the first packet is removed from the list and returned to the caller. 

5. If a lookaside list is empty, an attempt is made to extend the list (see 
Section 3.3.3.2). If the list is extended, the allocation is attempted again. If 
the list cannot be extended, the general allocation routine is called. 

Note that because allocation is done with a single instruction, there is no 
need for any other synchronization than that provided by the REMQUE in­
struction; however, IPL is raised to IPL$_SYNCH before determining if the 
allocation can be made from one of the lookaside lists or the main portion of 
pool (allocation from the main portion does require synchronization). The 
other concern of the general allocation routines, the block granularity, is also 
irrelevant here because all blocks on the lookaside list are the same size. 

3.2.2 Deallocation to the Lookaside List 

When the routine to deallocate a block of nonpaged pool is called, it first 
checks whether the block was allocated from the main portion of the pool or 
from one of the lookaside lists. The lookaside lists are divided by the follow­
ing symbols, beginning with the smaller addresses: 

IOC$GL_LRPSPLIT 

EXE$GL_SPLITADR 
IOC$GL_SRPSPLIT 

Boundary between the main part of pool and the 
LRP list 
Boundary between the LRP and the IRP list 
Boundary between the IRP list and the SRP list 

These addresses were determined by INIT when the lookaside lists were 
initialized. Figure 3-4 shows the relationship of the lookaside lists to the rest 
of nonpaged pool. 

The deallocation routine determines the list to which the piece of pool is 
being returned by the following steps: 

• The address of the block being deallocated is compared to the contents of 
global location IOC$GL_SRPSPLIT. If the address of the block is greater 
than IOC$GL_SRPSPLIT, the block came from the SRP list. 

• If the address was less than IOC$GL_SRPSPLIT, the address is compared 
to EXE$GL_SPLITADR. If the address is greater, the block came from the 
IRP list. 

• If the address was less than EXE$GL_SPLITADR, the address is compared 
to IOC$GL_LRPSPLIT. If the address is greater, the block came from the 
LRP list. 
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: :EXE$GL_SPLITADR 

~--~-~____, ~: :IOC$GL_IRPFL 

Room for Expansion of IRP List 

SRP Lookaside List 
: :IOC$GL_SRPSPLIT 

~--~-~____, ~: :IOC$GL_SRPFL 

Room for Expansion of SRP List 

Preallocated Request Packets 

• If the address was less than IOC$GL_LRPSPLIT, the block came from the 
main part of pool. 

If the block was originally allocated from one of the lookaside lists, it is 
returned there by inserting it at the end of the list with an INSQUE instruc­
tion. The ends of the lookaside lists are indicated by the global labels 
IOC$GL_SRPBL, IOC$GL_IRPBL, and IOC$GL-LRPBL. Note that by allo­
cating packets from one end of the list and putting them back at the other 
end, a transaction history as long as the list itself is maintained. If the block 
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was originally allocated from the general pool area, the general deallocation 
routine is called. The differences between the lookaside list and the general 
nonpaged pool are summarized in Table 3-2. 

Although the allocation from the lookaside list required no additional syn­
chronization in addition to the REMQUE instruction, deallocation must 
be done at IPL 7 or below, because nonpaged pool is a resource whose avail­
ability must be reported to the scheduler, which will elevate IPL to 7. All 
deallocation to nonpaged pool is accomplished through the routines 
EXE$DEANONPAGED (which should not be called above IPL 7), and 
COM$DRVDEALMEM (which can be called from any IPL). 

3.3 USE OF DYNAMIC MEMORY 

Almost all of the data structures that are dynamically configured are placed 
in either the nonpaged or paged pool areas. Only the PFN database, the global 
and system page tables, the system header, and the interrupt stack have sepa­
rate virtual address space allocated. Most per-process data structures, on the 
other hand, are assigned to dedicated areas of Pl space, as defined in the 
module SHELL and illustrated in Figure 1-7 and listed in Tabl.e 26-4. One 
per-process data structure, the process header, resides in the area of system 
space called the balance slot area. 

3.3.1 Process Allocation Region 

The process allocation region is currently 46 pages long. Its size is fixed by an 
assembly time parameter in module SHELL. Its protection is set to UREW 
(the page protection codes are described in Table 14-1). That is, it can be 
written from executive and kernel modes and read from any access mode. 
Only the process logical name table and the mounted volume list for private 
volumes are found in the process allocation region. There is enough room in 
the process allocation region for privileged application software to allocate 
reasonably sized process-specific data structures. 

3.3.2 Paged Dynamic Memory 

The following data structures are located in the paged pool area: 

• The group and system logical name tables. 
• Global section descriptors, which are required only when a section is 

mapped or unmapped. 
• Data structures required by the Install Utility to describe known images. 

Any image that is installed has a known file entry created to describe it. 
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Table 3-2: Comparison of Different Pool Areas 

Pool Area 

Nonpaged Pool 

Lookaside Lists 
SRP 

IRP 

LRP 

Allocation 
Quantum 

16 bytes 

Type of List 
(1and2) 

Variable size 
(1) 

Synchronization 
Technique 

Elevated IPL 

Fixed size blocks None required 
@IOC$GLSRPSIZE (2) 

156 bytes 

@IOC$GLLRPSIZE 

Typical Structures 
Allocated Here 

Buffered I/O buffer (GTRU 96 bytes) 
Driver Prolog Table (Driver Structure) 
Job Information Block 
Network Data Structures 
Process Control Block 
Process Quota Block 
Unit Control Block (Driver Structure) 

Buffered I/O buffer (LEQU @IOC$GLIRPMIN bytes) 
Channel Request Block (Driver Structure) 
Device Data Block (Driver Structure) 
File Control Block 
Interrupt Dispatch Block (Driver Structure) 
Timer Queue Element 
Window Control Block 

Buffered I/O buffer (GTR @IOC$GLIRPMIN bytes) 
Common Event Block 
I/O Request Packet 
Volume Control Block 

DECnet buffer 



Table 3-2: Comparison of Different Pool Areas (continued) 

Allocation 
Pool Area Quantum 

Paged Pool 16 bytes 

Process Allocation none 
Region 

Type of List 
(1and2) 

Variable size 
(1) 

Variable size 
(1) 

Synchronization 
Technique 

Mutex 

Access mode 

Typical Structures 
Allocated Here 

Global Section Descriptors 
Known File Entries 
Known File Headers 
Logical Name Blocks for group 

and system logical names 
Mounted Volume List Entry for volumes 

mounted /SYSTEM or /GROUP 

Logical Name Blocks for 
process logical names 

Mounted Volume List Entry for private 
volumes (/SHARE OR /NOSHARE) 

(l) The lookaside list has extremely efficient (single instruction) allocation and dealloca.tion routines. Because the blocks are fixed size, internal 
fragmentation (unused space within individual blocks) can result. 

(2) The general pool areas allow variable sized allocation requests (and contain variable sized empty areas). The allocation and deallocation routines 
must search at least a portion of the empty list. External fragmentation (unused blocks equal to the allocation quantum) near the beginning of 
the list can result from this type of allocation, scheme. 
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Some frequently accessed known images also have their image headers 
permanently resident. These data structures are described in more detail in 
Chapter 21. 

• The mounted volume list for volumes shared among several processes. 

The size of paged dynamic memory is determined by the SYSBOOT parame­
ter PAGEDYN. Its protection is set to URKW. The pages of paged dynamic 
memory used by RMS for the shared file database have their protection al­
tered to EW (either read or write access from executive or kernel mode) by 
RMSSHARE, the image that executes as part of STARTUP.COM to initialize 
the shared file database. 

3.3.3 Nonpaged Dynamic Memory 

3.3.3.1 
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Nonpaged pool serves several purposes. At initialization time, data structures 
whose size and contents depend on SYSBOOT parameters will be allocated 
from nonpaged pool and initialized. These structures include the PCB vector 
and sequence vector, the swapper's 1/0 page table, the page file bitmap, modi­
fied page writer arrays, and the adapter control blocks for all external adapters 
located at bootstrap time. The detailed use of nonpaged pool by the initializa­
tion routines is described in Chapter 25. 

A second general, somewhat static use of nonpaged pool is to contain de­
vice driver code and associated data structures for all devices that are either 
located through the autoconfigure phase of SYSGEN or explicitly loaded with 
the SYSGEN commands LOAD or CONNECT. The details of these struc­
tures are described in the VAX/VMS Guide to Writing a Device Driver. 

The Sizes of Nonpaged Dynamic Memory Regions. The sizes of the variable 
nonpaged pool and the lookaside lists are determined by SYSBOOT parame­
ters. Nonpaged dynamic memory differs from the paged dynamic area (and 
the process allocation area) in that it is potentially extensible during normal 
system operation (see Section 3.3.3.2). For each of the four regions of non­
paged pool there exist two SYSBOOT parameters, one to specify the initial 
size of the region, and another to specify the maximum size of the region. 

The size in bytes of the variable length region of nonpaged pool is con­
trolled by the SYSBOOT parameters NPAGEDYN and NPAGEVIR, both of 
which are rounded down to an integral number of pages. During system ini­
tialization, sufficient contiguous system page table entries (SPTEs) are allo­
cated for the maximum size of the region (the larger of NPAGEDYN and 
NPAGEVIR). Physical pages of memory are allocated for the initial size of the 
region and are mapped using the first portion of allocated SPTEs. The protec­
tion of the valid pages is ERKW. The remaining SPTEs are left invalid. SPTEs 
and other memory management data structures are described in Chapter 14. 



3.3.3.2 

3.3 Use of Dynamic Memory 

Table 3-3: SYSBOOT Parameters Controlling Lookaside List Sizes . . . . ' . 
List Type 

IRP 
SRP 
LRP. 

Size of Packet 

160 
SRPSIZE· 
LRPSIZE+64 

Initial Count 

IRPCOUNT 
SRPCOUNT 
LRPCOUNT 

Maximum Count 

IRPCOUNTV 
SRPCOUNTV 
LRPCOUNTV 

. /' 

During system operation, failure to allocate from the variable nonpaged 
pool region will result in an attempted expansion of the region, with physical 
page(s) allocated to fill in the next invalid SPTE(s). The deallocation merge 

· strategy described in Section 3.2.2 requires that the newly extended nonpaged 
dynamic area be virtually contiguous with the existing area and that the four 
•regions be adjacent. It is because of these restrictions that the maximum 
number of SPTEs are allbcated for each region, even if some of them are 
initially unused. 

The lookaside lists are allocated during system initialization in the same 
manner as the variable length region. Table 3-3 lists the SYSBOOT parame­
ters for each lookaside list. In each case, the initial count and maximum 
count are maximized. SRPSIZE'is rounded·up to a 16-byte boundary, and the 
maximum size in bytes of the SRP lookaside list is rounded up to a page 
boundary. The value 64 is added to LRPSIZE and the ~um is rounded Up to a 
16-byte boundary, and the maximum size in bytes of the LRP lookaside list 
region is rounded up to a page boundary. 

The parameter LRPSIZE is intended to be the DECnetbuffer size, exelusive 
of a 64-byte internal buffer header. (Note that the output of SHOW MEM­
ORY displays the inclusive packet size.) 

Dynamic nonpaged pool expansion enables automatic system tuning. The 
penalty for setting an inadequate initial allocation size is the increased over­
head encountered in allocating requests that cause expansion. An additional 
minor physical penalty is that unnecessary PFN database is built for those 
physical pages that are subsequently added to nonpaged pool as a result of 
expansion. The cost is about four percent of the size of the page ( 18 bytes) per 
added page. The penalty for a maximum allocation that is too large is one 
SPTE for each unused page, or less than one percent. If the maximum size of 
a lookaside list is too small, system performance may be adversely affected 
when the system is prevented from using the lookaside mechanism for pool 
requests. If the maximum size of the variable length region is too small, 
processes may be placed into the MWAIT state, waiting for nonpaged pool to 
become available. 

Expansion of Nonpaged Dynamic Pool. When routine EXE$ALONONPAGED 
(in module MEMORYALC) fails to allocate nonpaged pool from any of the 
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four regions, it attempts to expand nonpaged pool by invoking the routine 
EXE$EXTENDPOOL (found in module MEMORYALC). 

EXE$EXTENDPOOL examines each lookaside list in turn. If a list is empty 
and is not at its maximum size, EXE$EXTENDPOOL attempts to allocate a 
page of physical memory. First a check is made to see if a physical page can be 
allocated without reducing the number of physical pages available to the 
system, that is, sufficient pages to accommodate the sum of the maximum 
working set size, the modified list low limit, and the free list low limit. If a 
page can be allocated, EXE$EXTENDPOOL places its page frame number 
(PFN) in the first invalid SPTE for that list, setting the valid bit. The new 
virtual page and any fragment from the previous virtual page are formatted 
into packets of the appropriate size and placed on the list. EXE$EXTENDPOOL 
records the size and address of any fragment left from the new page. 

If EXE$EXTENDPOOL was called due to a failure to allocate space from 
the variable length region, EXE$EXTENDPOOL attempts to expand the re­
gion by a page and reports that the resource RSN$_NPAGEDYN is available 
for any waiting processes. (See Chapter 10 for more information on schedul­
ing and event reporting.) 

For proper synchronization of system databases, the resource availability 
report and the allocation of physical memory must not be done from a thread 
of execution running as the result of an interrupt above IPL 7. For this reason, 
EXE$EXTENDPOOL checks to see whether it has been entered in system 
context (that is, on the interrupt stack) as the result of attempted pool alloca­
tion from a device driver. If the interrupt stack bit in the PSL is set, 
EXE$EXTENDPOOL creates an IPL 6 fork process to expand the lists at some 
later time when IPL drops below 6 and returns an allocation failure status to 
its invoker. 
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4 Co11dition Handling 

"Would you tell me, please, which way I ought to go from here?" 
"That depends a good deal on where you want to get to," said the Cat. 

-Lewis Carroll, Alice's Adventures in Wonderland 

One of the design ,goals of the VAX architecture was a generalized uniform 
condition handling facility for both hardware-detected exceptions and soft­
ware-ge:perated conditions. In addition to making this facility available to 
users, the .VAX/VMS operatjng system uses many of the features of the condi­
tion handling facility for its own purposes. 

4.1 OVERVIEW OF THE CONDITION HANDLING FACILITY 

The generalized condition handling facility that is included as part of the 
VAX architecture provides users and the system with a powerful tool in han­
dling exceptional conditions that arise during normal program execution. In · 
addition, software-detected conditions (not necessarily indicating an error) 
can be passed to the operating system to allow them to be handled in exactly 
the same manner as hardware-detected exceptions. 

The options that are available to user programs to allow them to use the 
features of the VAX-11 condition handling facility are described in the 
VAX/VMS System Services Reference Manual and the VAX-11 Run-Time 
Library Reference Manual. This chapter discusses how the tools described in 
those two manuals actually implement their features. 

4.1.1 Goals of the VAX-ll Condition Handling Facility 

Some of the goals of the VAX~ll condition handling facility reflect goals of 
·the VAX-11 procedilre calling standard. Other goals reflect the desire to place 
an easy-to-use, general purpose mechanism into the operating system so that 
applicatiori programs and other layered products such as compilers can use 
this mechanism rather than inventing their own application-specific tools. 
Some of the explicit and implicit goals of the VAX-11 condition handling 
facility are the following. · 

1. The condition handling facility should be included in the base machine 
architecture so that it is available as a part of the base machine and not as 
part of some software component. The space reserved for condition han­
dler addresses in the first longword of• the call frame accomplishes this 
goal. 
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2. By including the handler specification as a part of the call frame, signal 
handling is an integral part of a procedure, rather than a global facility 
within a process. Including the handler specification as part of the call 
frame contributes to the general goal of modular procedures and allows 
condition handlers to be nested. The nested inner handlers can either serv­
ice a detected exception or pass it along to some outer handler in the 
calling hierarchy. 

3. Some languages such as BASIC and PL/I have signaling and error handling 
as part of the language specification. These languages can use the general 
mechanism rather than inventing their own procedures. 

4. There should be little or no cost to procedures that do not establish han­
dlers. Further, procedures that do establish handlers should incur little 
overhead for establishing them, with the expense in time being incurred 
when an error actually occurs. 

5. As far as the user or application programmer is concerned, there should be 
no difference in the appearance of exceptions initially detected by the 
hardware and signals generated by software. 

4.1.2 Features of the VAX-11 Condition Handling Facility 
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Some of the features of the VAX-11 condition handling facility show how 
these goals were attained. Others show the general desire to produce an easy­
to-use but general condition handling mechanism. Features of the VAX-11 
condition handling facility include the following. 

1. A condition handler has three options available to it. The handler can fix 
the condition (continuing). The handler may not be capable of fixing the 
condition, so it passes the condition on to the next handler in the calling 
hierarchy (resignaling). The handler can alter the flow of control (unwind­
ing the call stack). 

2. Because condition handlers are themselves procedures, each has its own 
call frame with its own slot for a condition handler address. This condition 
handler address gives handlers the ability to establish their own handlers 
to field errors that they might cause. 

3. The goals related to cost in space and time were realized by using only a 
single longword per procedure activation for handler address storage. 
There is no cost in time for procedures that do not establish handlers. 
Procedures that do establish handlers can do so with a single MOVAx 
instruction. No time is spent looking for condition handlers until a signal 
is actually generated. 

4. The mechanism is designed to work even if a condition handler is written 
in a language that does not produce reentrant code. Thus, if a condition 
handler written in FORTRAN generated an error, that error would not be 
reported to the same handler. 

In fact, the special actions that are taken if multiple signals are active 
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have a second benefit, namely that no condition handler has to worry 
about errors that it generates, because a handler would never be called in 
response to its own signals. 

5. Uniform exception dispatching for hardware and software exceptions is 
accomplished by providing parallel mechanisms for the two forms of ex­
ceptions. Software-detected exceptions are generated by calling a proce­
dure in the Run-Time Library. Hardware exceptions transfer control to an 
exception dispatcher in the executive. While the initial execution of these 
two mechanisms differs slightly to reflect their differing initial conditions, 
they eventually execute identical instruction sequences so that the infor­
mation reported to condition handlers is independent of the initial detec­
tion mechanism. 

6. By making condition handling a part of a procedure, high level languages 
can establish handlers that can examine a given signal and determine 
whether the signal was generated as a part of that language's support li­
brary. If so, the handler can attempt to fix the error in the manner defined 
by the language. If not, the handler passes the signal along to procedures 
further up the call stack. 

4.2 GENERATION OF EXCEPTIONS 

One way of classifying the conditions that occur in a running VAX/VMS 
system is to separate those conditions that originate in the VAX-11 hardware 
from those that are initiated by software. The primary differences between 
the two sets of initial conditions are the initial state of the stack that con­
tains the exception parameters and the location of the routine that performs 
the dispatching. 

4.2.1 Exceptions That Originate in the Hardware 

When an exception is detected by the hardware, the exception PC and PSL 
(and possible exception-specific parameters) are pushed onto the appropriate 
stack. The appropriate stack is determined by the access mode in which the 
exception occurred and whether the CPU was previously executing on the 
interrupt stack. 

• If the exception occurred in any mode other than kernel and the exception 
was not a CHMU, CHMS, or CHME exception, the kernel stack is used. 
(The interrupt stack is not a consideration in this case because it is impos­
sible to be on the interrupt stack in other than kernel mode.) 

• If the exception occurred in kernel mode and the kernel stack was in use, 
the kernel stack is also used as the exception stack. 

• If the exception occurred in kernel mode and the interrupt stack was in 
use, the interrupt stack is used as the exception stack. The VMS system 
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does not expect exceptions to occur when it is operating on the interrupt 
stack. If an exception should occur on the interrupt stack, the exception 
dispatcher generates a VMS-requested system crash called a bugcheck (see 
Chapter 8) with a BUG$_INVEXCEPTN code. 

The actual stack (interrupt or kernel) that is used to service an exception 
or interrupt is determined by the low-order two bits in the system control 
block (SCB) entry and whether the interrupt stack is already in use. These 
rules reflect the behavior of the VMS executive, where exceptions are asso­
ciated with a process and serviced on that process's kernel stack (because 
the low-order two bits in the SCB entry are zero). The interrupt stack is 
only used if it was already in use when the exception occurred. Note that 
two serious aborts (machine check and kernel stack not valid), exceptions 
that also change IPL to 31, are serviced on the interrupt stack by the sys­
tem. 

After all of the exception information has been pushed onto the stack, 
control is then passed to an exception-specific service routine whose ad­
dress is stored in the SCB (see Figure 4-1 ). The use of the first twenty 

System Control Block 

Exceptions (20) 

Processor Faults (12) 

Software Interrupts (16) 

Clock and Console (16) 

External Adapter 
Interrupts 

Figure 4-1 
System Control Block 

~ :PR$_SCBB 

The System Control Block 
Base Register (SCBB) 
contains the physical 
address of the page-
aligned System Control 
Block (SCB). 

l J l 
::EXE$GL_SCB 

The system virtual address 
of the SCB is stored 

scli. in global location EXE$GL 

The VAX-11/730 and VAX-11/ 
block is two pages long: The 
for directly vectored \,JNIBUS 

750 system control 
second page is used 
device. interrupts. 
VAX-11/750 The system control block in a 

with a second UNIBUS is thre e pages long. 

The.VAX-11/760 system contr ol block is one 
page long. 
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4.2 Generation of Exceptions · 

locations of this table are listed in Table 4-1. Most of the exceptions that 
are listed in this table are handled in a uniform way by the operating sys­
tem. The actions that the VMS executive takes in response to these excep­
tions are the subject of most of this chapter. Some of the exceptions, how­
ever, result in special action on the part of the operating system. These 
exceptions are discussed in the paragraphs that follow and are indicated in 
Table 4-1 by an asterisk. 

Exceptions That the VMS Executive Treats in a Special Way. Although the 
operating system provides uniform handling of most exceptions generated by 
users, several possible exceptions are used as entry points into privileged 
system procedures. Other exceptions can only be acted upon by the execu­
tive. It makes no sense for these procedures to pass information about the 
exceptions along to user's programs. 

1. The machine check exception is a processor-specific condition that may or 
may not be recoverable. The machine check exception service routine is 
discussed in Chapter 8. 

2. A kernel-stack-not-valid exception indicates that the kernel stack was not 
valid while the processor was pushing information onto the stack during 
the initiation of an exception or interrupt. The exception service routine 
for this exception generates a fatal bugcheck with a BUG$-KRNLSTAKNV 
code. 

3. The powerfail entry point that appears as one of the first twenty entries in 
the SCB is not an exception. Because a power fluctuation occurs 
asynchronously with respect to the currently executing instruction 
stream, it is actually an interrupt. The fact that powerfail is an interrupt, 
with an associated IPL, implies that the powerfail interrupt can be blocked 
simply by raising IPL to 30 or 31. The steps that the VMS system takes in 
response to power failure as well as on power recovery are described in 
Chapter 27. 

4. The translation-not-valid exception is a signal that a reference was made 
to a virtual address that is not currently mapped to physical memory. The 
page fault handler that is invoked in response to this exception is dis­
cussed in detail in Chapter 15. 

S. The change-mode-to-kernel and change-mode-to-executive exceptions are 
the mechanisms used by the VMS system services and by RMS to reach a 
more privileged access mode. The dispatching scheme for system services 
and RMS calls is described in Chapter 9. 

The last two exceptions in the list (the two change mode exceptions) are 
paths into the operating system that allow nonprivileged users to reach a 
privileged access mode in a controlled fashion. 
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Table 4-1: Use of First 20 Locations in System Control Block 

Byte Offset Exception Name Extra 
from SCB Base Parameters 

0 Unused 
4 *Machine Check Note 1 
8 *Kernel Stack Not Valid 0 

12 *Powerfail 0 
16 Reserved/Privileged Instruction 0 
20 Customer Reserved Instruction 0 
24 Reserved Operand 0 
28 Reserved Addressing Mode 0 
32 Access Violation 2 
36 *Translation Not Valid 2 
40 Trace Pending 0 
44 BPT Instruction 0 
48 Compatibility Mode 1 
52 Arithmetic 1 

Type (Abort, 
Fault, Trap) 

Note 1 
Abort 
Interrupt 
Fault 
Fault 
Abort/Fault 
Fault 
Fault 
Fault 
Fault 
Fault 
Abort/Fault 
Fault/Trap 

Notes on VMS 
Dispatching 

Note 1 
Note2 
Note3 

Note4 
Notes 
Note 5 

Comments 

(See Chapter 8.) 
IPL=31, Interrupt Stack 
IPL=30 (See Chapter 27.) 

XFC Instruction 

(See Chapter 14.) 

VMS modifies code 
(See Table 4-3.) 



Table 4-1: Use of First 20 Locations in System Control Block (continued) 

Byte Offset Exception Name Extra Type (Abort, Notes on VMS Comments 
from SCB Base Parameters Fault, Trap) Dispatching 

56 Unused 
60 Unused 
64 *CHMK Trap Note6 Uses Kernel Stack 

(See Chapter 9.) 
68 *CHME Trap Note6 Uses Executive Stack 

(See Chapter 9.) 
72 CHMS Trap Uses Supervisor Stack 
76 CHMU Trap Uses User Stack 

*These exceptions result in special action on the part of the operating system. 
( 1) The machine check exception indicates a processor-detected internal error. Machine checks in executive and kernel mode cause bugchecks. 

Machine checks in supervisor and user mode are reported through the normal exception dispatch method. 
(2) The exception service routine for the kernel-stack-not-valid abort issues a bugcheck. 
(3) Powerfail causes an interrupt that passes control to the powerfail handler. 
(4) The translation-not-valid fault is the entry path into the paging facility in VMS. 
(5) If executive debugging (XDELTA) is selected at SYSBOOT time, the exception vectors for BPT and trace pending are altered to point into 

{(DELTA fault handlers (see Chapter 25). 
(6) The change-mode-to-kernel and change-mode-to-executive traps are the entry paths into system service and RMS procedures. 
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4.2.1.3 
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Other Hardware Exceptions. The rest of the exceptions detected by hardware 
are handled uniformly by their exception service routines. These exceptions 
are all reported to condition handlers established by the user or by the sys­
tem, rather than resulting in special system action such as occurs following a 
change-mode-to-kernel exception or a translation-not-valid fault (page fault). 

When a hardware-detected exception occurs, the PSL and PC at the time of 
the exception are pushed onto the stack. The usual stack that is used is the 
kernel stack but the CHMx exceptions use the stack of the destination mode. 
For example, a CHMS exception pushes the PC and PSL of the exception onto 
the supervisor stack. Note that a CHMx instruction issued from an inner 
access mode in an attempt to reach a less privileged (outer) access mode will 
not have the desired effect. The mode indicated by the instruction is mini­
mized with the current access mode to determine the actual access mode 
that will be used. For example, a CHMS instruction issued from kernel mode 
will generate an exception through the correct SCB vector (the one for 
CHMS), but the final access mode will still be kernel. In other words, as 
illustrated in Figure 1-4, the CHMx instructions can only reach equal or more 
privileged access modes. 

The PC that is pushed depends on the nature of the exception, that is, 
whether the exception is a fault, a trap, or an abort. 

• Exceptions that are faults (see Table 4-1) cause the PC of the faulting in­
struction to be pushed onto the stack. When faults are dismissed with an 
REI instruction, the faulting instruction will execute again. 

• Exceptions that are traps (see Table 4-1) push the PC of the next instruc­
tion onto the destination stack. Instructions that cause traps do not 
reexecute when the exception is dismissed with an REI instruction. 

• A third class of exception, an abort, causes a PC in the middle of the in­
struction to be pushed onto the stack. Aborts are not restartable. Some 
aborts also raise IPL to 31, blocking all other activity on the system. IPL is 
usually not affected when exceptions occur. Independence from IPL is one 
of the features that distinguishes exceptions from interrupts. Exceptions 
that are aborts include kernel-stack-not-valid, some machine check codes, 
and some rese:rved operand exceptions. 

For all exceptions that will eventually be reported to condition handlers, 
the hardware has pushed a PC/PSL pair onto the destination stack. In addi­
tion, from zero to two exception-specific parameters are pushed onto the 
destination stack (see Table 4-1 ). Finally, the hardware passes control to 
the exception service routine whose address VMS placed into the SCB 
when the system was initialized. 

Initial Action of Exception Service Routines. These exception service rou­
tines all perform approximately the same action. The exception name (of the 
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form SS$_exception-name) and the total number of exception parameters 
(from the exception name to the saved PSL inclusive) are pushed onto the 
stack so that the destination stack now contains a list, called the signal array, 
that resembles a VAX-11 argument list used by the CALLx instructions (see 
Figure 4-2). The exceptions that the operating system handles in this uniform 
way, including their names and total number of signal array elements, are 
listed in Table 4-2. 

After the VMS system has built this array, control is passed to a general 
exception dispatcher that must locate any condition handlers that have been 
established in the access mode of the exception. The search method and the 
list of information passed to condition handlers is described in Section 4.3 
below. 

All hardware exceptions (except for CHME, CHMS, and CHMU) are ini­
tially reported on the kernel stack (assuming the processor is not already on 
the interrupt stack). In addition, the hardware exception reporting mecha­
nism assumes that the kernel stack is valid. The decision to use the kernel 
stack was made to avoid the case of attempting to report an exception on, for 
example, the user stack, only to find that the user stack is corrupted in some 
way (invalid or otherwise inaccessible), resulting in another exception. If a 
kernel-stack-not-valid exception is generated while reporting an exception, 
the operating system causes a fatal bugcheck to occur. 

However, the exception must eventually be reported back to the access 
mode in which the exception occurred. Before the dispatcher begins its 
search, it create~ space on the stack of the mode in whi.ch the exception 
occurred. The exception parameter lists are then copied to that stack, where 
they will become the argument list that is passed to condition handlers. 

N 

SS$_exception-name 

From Oto 2 
Exception-Specific 

Parameters (Table 4-1) 

Exception PC 

Exception PSL 

Figure 4-2 

Pushed 
by software 

Pushed 
by hardware 

N is the number of longwords from 
SS$_exception-name to the exception 
PSL. It ranges from 3 to 5. 

Arguments are pushed onto the kernel 
stack except for CHMS and CHMU 
exceptions where the supervisor or 
user stack is used. 

Signal Array Built by Hardware and Exception Routines 

69 



--..i CJ 
0 § 

i:::i... ....... ...... ....... 
§ 
::r:: 

Table 4-2: Exceptions That Use the Dispatcher in Module EXCEPTION 
!::. 
:::J 

Exception Name Namein Notes on VMS Size of Extra Parameters e:: ....... 
:::J 

Signal Array Dispatching Signal Array in Signal Array Oq 

(Section 4.2.1.4) (Note 1) 

Access Violation SS$_ACCVIO Item 1 s Signal (2) = Reason Mask 

Signal (3) = Inaccessible Virtual Address 

Arithmetic Exception (See Table 4-3.) Item 2 3 Note2 

AST Delivery Stack Fault SS$_ASTFLT Item 3c 7 Signal (2) = SP Value at Fault 
(Software exception) Signal (3) =AST Parameter of failed AST 

(Note 3) 
Signal (4) = PC at AST delivery interrupt 
Signal (S) = PSL at AST delivery interrupt 
Signal (6) = PC to which AST would have 

been delivered 
Signal (7) = PSL at which AST would have 

been delivered 

BPT Instruction SS$_BREAK 3 
Change Mode to Supervisor SS$_CMODSUPR Item 4 4 Signal (2) = Change mode code 

Change Mode to User SS$_CMODUSER Item 4 4 Signal (2) = Change mode code 

Compatibility Mode SS$_ COMP AT Item4 4 Signal (2) =Compatibility exception code 

Debug Signal SS$_DEBUG Item3 3 
(Software exception) 

Machine Check SS$_MCHECK 3 Note4 

Customer Reserved Instruction SS$_0PCCUS 3 

Reserved/Privileged Instruction SS$_0PCDEC Item S 3 



Table 4-2: Exceptions That Use the Dispatcher in Module EXCEPTION (continued) 

Exception Name 

Page Fault Read Error 
(Software exception) 

Reserved Addressing Mode 

Reserved Operand 

System Service Failure 
(Software exception) 

Trace Pending 

Namein 
Signal Array 

SS$_PAGRDERR 

SS$_RADRMOD 

SS$_ROPRAND 

SS$_SSFAIL 

SS$_ TBIT 

Notes on VMS 
Dispatching 
(Section 4.2.1.4) 

Item 3b 

Item 3a 

(1) Additional parameters in the signal array are represented in the following way. 
Signal (O) = N Number of additional longwords in signal array 
Signal ( l) Exception name 
Signal 121 First additional parameter 
Signal 131 Second additional parameter 

Signal IN - 1) Exception PC 
Signal (N) Exception PSL 

Size of 
Signal Array 

5 

3 

3 

4 

3 

Extra Parameters 
in Signal Array 
(Note 1) 

Signal (2) =Reason Mask 
Signal (3) = Inaccessible Virtual Address 

Signal (2) = System service final status 

121 The arithmetic exception has no extra parameters, despite the fact that the hardware pushes an exception code onto the kernel stack. VMS Q.. 
modifies this hardware code into an exception-specific exception name (see Table 4-31. t:r:I 
Signal (1) = 8 *code+ SS$_ARTRES ~ 

13 I The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would have been delivered. ,g 
(4) Machine check exceptions that are reported to a process do not have any extra parameters in the signal array. The machine check parameters have ....,. 

been examined, written to the error log, and discarded by the machine check handler (see Chapter 81. g· 
Cl'.> 
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More Special Cases in Exception Dispatching. Although the procedure de­
scribed above is a reasonable approximation to the operation of the exception 
service routines in the operating system, there are detailed differences that 
occur in the dispatching of several exceptions that deserve special mention. 
These special cases are listed here. 

1. User Stack Overflow is detected by the hardware as an access violation at 
the low address end of Pl space. The access violation fault handler tests 
whether the inaccessible virtual address is at the low end of Pl space. If it 
is, the stack is expanded and the exception dismissed. User and system 
condition handlers would only be notified about such an exception if the 
stack expansion were unsuccessful. 

2. There are ten possible arithmetic exceptions that can occur. They are dis-
. tinguished in the hardware by different exception parameters. However, 
the exception service routine does not simply push a generic exception 
name onto the stack, resulting in a four-parameter signal array. Rather, the 
exception parameter is used by the exception service routine to fashion a 
unique exception name for each of the possible arithmetic exceptions. The 
exception parameters and their associated signal names are listed in Table 
4-3. 

3.There are three exceptions listed in Table 4-2 that are detected by software 
rather than by hardware. However, these conditions are not generated by 
LIB$SIGNAL. Rather, they are detected by the executive, and control is 
passed to the same routines that are used for dispatching hardware­
detected exceptions. The conditions are dispatched through the executive, 
because they are typically detected in kernel mode but must be reported 
back to some other access mode. The code to accomplish this access mode 

.. switch is contained in EXCEPTION. LIB$SIGNAL has no corresponding 
· function. The three exceptions that fall into this category are system serv­
. ice failure exceptions, page fault read errors, and insufficient stack space 
while attempting to deliver an AST. 

• The SS$_SSFAIL exception is reported when a process has enabled sys­
tem service failure exceptions and a system service returns unsuccess­
folly with a status of either STS$K_ERROR or STS$K_SEVERE. 

• The SS$_PAGRDERR exception is reported when a process incurs a 
page fault for a page on which a read error occurred in response to a 
previous page fault. 

• The SS$_ASTFLT exception is reported when an inaccessible stack is 
detected while attempting to deliver an AST to a process. 

A fourth software-deteeted. exception is listed in Table 4-2 although it 
_does not have a global entry point in module EXCEPTION. The signal 
SS$_DEBUG is generated by either the DCL or MCR command language 
interpreter in response to a DEBUG command while an image exists in an 



4.2 Generation of Exceptions 

Table 4-3: Signal Names for Arithmetic Exceptions 

Exception Type Code Pushed Resulting Exception 
by Hardware Reported by VMS 

Traps 

Integer Overflow 1 SS$_INTOVF 
Integer Divide by Zero 2 SS$_INTDIV 
Floating Overflow 3 SS$_FLTOVF 
Flaa ting/Decimal 

Divide by Zero 4 SS$_FLTDIV 
Floating Underflow 5 SS$_FLTUND 
Decimal Overflow 6 SS$_DECOVF 
Subscript Range 7 SS$_SUBRNG 
Faults 
Floating Overflow 8 SS$_FLTOVLF 
Floating Divide by Zero 9 SS$_FLTDIV _F 
Floating Underflow 10 SS$_FLTUND_F 

Notes 

3 

3 

2,3 
1 

3 

3 

3 

(1) Integer overflow enable and decimal overflow enable bits in the PSW can be al­
tered either directly or through the procedure entry mask. 

(2) The floating underflow enable bit in the PSW can only be altered directly. There is 
no corresponding bit in the procedure entry mask. 

(3) On the VAX-111730 and VAX-11/750, these three floating point exceptions are 
faults. On the VAX-11/780 earlier than microcode revision (rev) level 7, they are 
traps. Rev level 7 ECO changes them to faults. 

interrupted state. The DEBUG command processor pushes the PC and PSL 
of the interrupted image, the exception name (SS$_DEBUG), and the size 
of the signal array (3) onto the supervisor stack and jumps to 
EXE$REFLECT, a global entry address in module EXCEPTION. 

The reason that a CLI uses this mechanism for the DEBUG signal rather 
than simply calling LIB$SIGNAL is that the DEBUG command is issued 
while in supervisor mode but the exception has to be reported back to user 
mode. Reporting information back to user mode involves moving the excep­
tion parameters from one stack to another (a function that does not exist 
in LIB$SIGNAL but does exist in EXCEPTION), because most hardware­
detected exceptions are reported on the kernel stack. 

4. The exception dispatching for the CHMS and CHMU exceptions and for 
compatibility mode exceptions can be short-circuited by use of the De­
clare Change Mode or. Compatibility Mode Handler system service. When 
this system service is executed, one of three longword locations in the Pl 
pointer page (see Appendix A) is loaded with the address of the handler 
passed as a parameter to the system service. 
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When the dispatcher for the change-mode-to-supervisor or change­
mode-to-user exception finds nonzero contents in the associated longword 
in Pl space, it transfers control to the routine whose address is stored in 
that location with the exception stack (supervisor or user) in exactly the 
same state it was in following the exception. That is, the change mode 
code is on the top of the stack, and the exception PC and exception PSL 
occupy the next two longwords. 

The dispatcher for compatibility mode exceptions transfers control to 
the user-declared compatibility mode handler (if one was declared) with 
the user stack in the same state it was before the compatibility mode 
exception occurred. That is, no parameters are passed to the compatibility 
mode handler on the user stack. The compatibility mode code, the excep­
tion PC and PSL, and the contents of RO through R6 are saved in the first 
ten longwords of the compatibility mode context page in Pl space at global 
location CTL$AL_CMCNTX (see Appendix A). 

5. The reserved instruction fault is generated whenever an unrecognized op­
code is detected by the instruction decoder. The same exception is gener­
ated when a privileged instruction is executed from other than kernel 
mode. 

VMS uses this fault as a path into the operating system crash code called 
the bugcheck mechanism. Opcode FF, followed by FE or FD, tells the re­
served instruction exception service routine that the exception is actually 
a bugcheck. Control is passed to the bugcheck routine that is described in 
Chapter 8. 

4.2.2 Exceptions Detected by Software 

4.2.2.1 
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One of the goals of the design of the VAX architecture was to have a common 
condition handling facility for both hardware-detected and software-detected 
conditions. The dispatching for conditions that are initially detected by the 
hardware (and for four special software-detected exceptions) is performed by 
the routines in the executive module EXCEPTION. The Run-Time Library 
procedure called LIB$SIGNAL provides a similar capability to any user of a 
VAX/VMS system. 

Passing Status from a Procedure. There are usually two methods available 
for a procedure to indicate to its caller whether it completed successfully. 
One method is to indicate a return status in RO. The other is the signaling 
mechanism. The signaling mechanism involves a call to the VAX-11 Run­
Time Library procedure LIB$SIGNAL to initiate a sequence of events exactly 
like those that occur in response to a hardware-detected exception. One of 
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4.3 
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the choices that must be made when designing a modular procedure is the 
method for reporting exceptional conditions back to the caller. 

There are two reasons why signaling may be chosen over completion sta­
tus. In some procedures, such as the mathematics procedures in the Run­
Time Library, RO is already used for another purpose, namely the return of a 
function value, and is therefore unavailable for error return status. In this 
case, the procedure must use the signaling mechanism to indicate excep­
tional conditions, such as an attempt to take the square root of a negative 
number. 

The second common use of signaling occurs in an application that is using 
an indeterminate number of procedure calls to perform some action, such as 
a recursive procedure that parses a command line, where the use of a return 
status is often cumbersome and difficult to code. In this case, the V AX-11 
signaling mechanism provides a graceful way not only to indicate that an 
error has occurred but also to return control (through SYS$UNWIND) to a 
known alternate return point in the calling hierarchy. 

Initial Operation of LIB$SIGNAL. When the procedure that detects an error 
wishes to signal it, the procedure calls LIB$SIGNAL with the name of the 
exception and whatever additional parameters it wishes to pass to the condi­
tion handlers that have been established by the user and by the system. The 
state of the stack following a call to LIB$SIGNAL is pictured in Figure 4-3. 

Before LIB$SIGNAL begins its search for condition handlers, itremoves the 
call frame (and possibly the argument list) from the stack. Removing the call 
frame causes the stack to appear almost exactly the same to LIB$SIGNAL as 
it does to EXCEPTION following a hardware exception (see Figure 4-3). After 
building the exception argument list, LIB$SIGNAL uses the routines in EX­
CEPTION to search for condition handlers. The only difference between this 
procedure and the code contained in the executive is that no stack switch is 
required here. The search for condition handlers takes place on the stack of 
the caller of LIB$SIGNAL. 

UNIFORM EXCEPTION DISPATCHING 

Once information concerning the exception has been pushed onto the stack, 
the differences between hardware and software exceptions are no longer im­
portant. In the following discussion, the operation of exception dispatching 
will be discussed in general terms and explicit mention of EXCEPTION or 
LIB$SIGNAL will only be made where they depart from each other in their 
operation. 

Before the search for a condition handler begins, the exception dispatcher 
must build a second data structure on the stack that will be used to report the 
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These two longwords are { 
used and modified by 
handler search procedure. 

Because the VAX-11 calling { 
standard dictates that 
RO and R1 are not saved 
across calls, they must be 
preserved in some other way. 

Exception generated by 

l 2 

Address of 
Signal Array 

Address of 
Mechanism Array 

l 4 

FP of Establisher Frame 

Depth Argument 

Saved RO 

Saved R1 

Signal/Stop Code 
1 = LIB$SIGNAL; 2 = LIB$STOP 

l N 

Exception or Signal Name 

Additional exception parameters 

LJ 

} Condition handlers can pass 
status back to mainline code 
by modifying saved RO (and R1). 

.}_ 
") Argument count (N) is the 

number of longwords in a signal 
array (N " 3). 

"I 

call to LIB$SIGNAL or 
LIB$STOP. The argument 
list is passed by call to 
LIB$SIGNAL or LIB$STOP. 
The PC and PSL are added 
before handlers are called. 
See Figure 4-3. 

pushed by hardware or ~ 

additional arguments passed to 

Exception dispatr,~ed through 
hardware dispatcher. Parameters 

LIB$SIGNAL or LIB$STOP are pushed initially onto the kernel 

Exception PC or PC following 
> stack (except for CHMS and CHM 

by hardware and copied to the 
U) 

call to LIB$SIGNAL or LIB$STOP exception stack by software. The 
exception name and argument co uni 

Exception PSL 
are added by software before 
handlers are called, 

I-Value of SP before 
exception 

Figure 4-4 
Signal and Mechanism Arrays 

exception. The address of this structure, called the mechanism array, along 
with the address of the table containing the exception arguments will be the 
two arguments that are passed to any condition handlers that are called by 
the dispatcher (see Figure 4-4). 

Establishing a Condition Handler 

The VMS operating system provides two different methods for establishing 
condition handlers. 
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• One method uses the call stack associated with each access mode. Each 
call frame includes a longword to contain the address of a condition han­
dler associated with that frame. 

• The second method uses software exception vectors, set aside in the con­
trol region (Pl space) for each of the four access modes. Vectored handlers 
do not possess the modular properties associated with call frame handlers 
and are intended primarily for debuggers and performance monitors. 

Call frame handlers are established by placing the address of the handler in 
the first longword of the currently active call frame. Thus, in assembly lan­
guage, call frame handlers can be established with a single instruction: 

MOVAB new-handler, ( FP) 

Because the frame pointer is generally not available to high level language 
programmers, the Run-Time Library procedure LIB$ESTABLISH can be 
called in the following way to accomplish the same result: 

old-handler= LIB$ESTABLISH (new-handler) 

Condition handlers are removed by clearing the first longword of the current 
call frame, as in the following assembly language instruction: 

CLRL (FP) 

The Run-Time Library procedure LIB$REVERT removes the condition 
handler established by LIB$ESTABLISH. 

Exception vector handlers are established and removed with the Set Excep­
tion Vector system service, which simply loads the address of the specified 
handler into the specified exception vector, located in the pointer page in Pl 
space. 

4.3.2 The Search for a Condition Handler 

4.3.2.1 
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At this point in the dispatch sequence, the signal and mechanism arrays have 
been set up on the stack of the access mode that the exception will be re­
ported to. The establisher frame argument in the mechanism array (see Fig­
ure 4-4) will be used by the search procedure to indicate how far along the 
search has gone. The depth argument in the mechanism array not only serves 
as useful information to condition handlers that wish to unwind but also 
allows the search procedure to distinguish call frame handlers (nonnegative 
depth) from exception vector handlers (negative depth). 

Primary and Secondary Exception Vectors. The search for a condition handler 
begins with the primary exception vector of the access mode in which 
the exception occurred. If the vector contains the address of a condition han­
dler (any nonzero contents), the handler is called with a depth argument of 
-2 (third longword in mechanism array, Figure 4-4). If that handler resignals 
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or if none exists, the same step is performed for the secondary exception 
vector, where the depth argument is now -1. 

Call Frame Condition Handlers. If the search is to continue (no handler yet 
passed back a status of SS$_CONTINUE), the contents of the current call 
frame are examined next. If the first longword in the current call frame is 
nonzero, that handler is called next. If no handler is found there or if that 
handler resignals, the previous call frame is examined by using the saved 
frame pointer in the current call frame (see Figure 4-5). As each handler is 
called, the depth longword in the mechanism array is set to the number of 
frames that have already been examined for a handler. 

The search continues until some handler passes back a status code of 
SS$_ CONTINUE or until a saved frame pointer of zero is found (indicating 
the end of the call frame chain). When the exception dispatcher receives a 
return status of SS$_CONTINUE (any code with the low bit of RO set will 
do), the stack is cleaned off, RO and Rl are restored from the mechanism 
array, and the exception is dismissed by issuing an REI, using the saved PC 
and PSL that form the last two elements of the signal array. 

Note that control is passed back with an REI instruction, even if the excep­
tion was caused by a call to LIB$SIGNAL, because it discarded the call frame 
that was set up when it was called. That is, LIB$SIGNAL modifies its stack to 
look just like the stack used by EXCEPTION (see Figure 4-3). 

Last Chance Condition Handler. In the event that all handlers resignal, the 
search terminates when a saved frame pointer of zero is located. The excep­
tion dispatcher then calls the handler whose address is stored in the last 
chance exception vector with a depth argument of -3. (This handler is also 
called in the event that any errors occur while searching the stack for the 
existence of condition handlers.) The usual handler found in the last chance 
vector is the so-called catch-all condition handler established as part of image 
initiation. The action of this system-supplied handler is described at the end 
of this chapter. 

If the last chance handler returns to the dispatcher (its status is ignored) or 
if the last chance vector is empty, the exception dispatcher indicates that no 
handler was found. This notification is performed by a procedure called 
EXE$EXCMSG (see Chapter 30) in the executive. Its two input parameters 
are an ASCIZ string containing message text and the argument list that was 
passed to any condition handlers. Following the call to EXE$EXCMSG (see 
Chapter 30), the image is terminated with a status indicating either that no 
handler was found or that a bad stack was detected while searching for a 
condition handler. 
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4.3.3 Multiply Active Signals 

4.3.3.1 

4.3.3.2 

If an exception occurs in a condition handler or in a procedure called by a 
condition handler, a situation called multiply active signals is reached. To 
avoid an infinite loop of exceptions, the procedure that searches for condition 
handlers modifies its search algorithm so that frames searched while servic­
ing the first condition are skipped while servicing the second condition. 

In order for this skipping to work correctly, call frames of condition han­
dlers must be uniquely recognizable. The frames are made unique by always 
calling the condition handlers from a standard call site, located in the system 
service vector area. 

Common Call Site for Condition Handlers. Before the dispatch to the handler 
occurs, the stack is set up to contain the signal and mechanism arrays and the 
handler argument list (see Figure 4-4). The handler address is loaded into Rl 
by the handler search procedure and control is passed to the common dis­
patch site with the following instruction: 

JSB @#SYS$CALL_HANDL 

The code located at SYS$CALL_HANDL simply calls the procedure whose 
address is stored in Rl and returns to its caller with an RSB. 

SYS$CALL_HANDL:: 
CAL LG L;(SP),(RL) 
RSB 

The call instruction leaves the return address SYS$CALL_HANDL + 4, 
the address of the RSB instruction, in its call frame. Thus, the unique identi­
fying characteristic of a condition handler is the address SYS$CALLHANDL 
+ 4 in the saved PC of its call frame. This signature is used not only by the 
search procedure but also by the Unwind system service, as described below. 

Example of Multiply Active Signals. The modified search procedure can best 
be illustrated through an example. Figure 4-5 shows the stack after procedure 
C, called from B called from A, has generated signal S. We are assuming that· 
the primary and secondary condition handlers (if they exist) resignaled. Con­
dition handler CH also resignaled. 

CD Procedure A calls procedure B, which calls procedure C. 
@ Procedure C generates signal S. 
@ The search procedure modifies the depth argument and establisher frame 

argument. If handler CH resignals, the depth argument is 1 when BH is 
called. 

@) The call frame for handler BH is located (at lower virtual addresses) on 
top of the signal and mechanism arrays for signal S (see Figure 4-6). (The 
only intervening items are the saved registers and stack alignment bytes 
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indicated by the register save mask in the upper byte of the second long­
word of the call frame for handler BH.) Th.e saved frame pointer in the call 
frame for BH points to the frame for procedure C. 

® Handler BH now calls procedure X, which calls procedure Y (see Figure 
4-6). 

@ Procedure Y generates signal T. The desired sequence of frames to be 
examined is: frame Y, frame X, frame BH, and then frame A. Frames B and 
C should be skipped because they were examined while servicing condi­
tion S. 

<J) The search procedure proceeds in its normal fashion. The primary and 
secondary vectors are examined first (no skipping here). Then frames Y, 
X, and BH are examined, resulting in handlers YH, XH, and BHH being 
called in turn. Let us assume that all these handlers·resignal. After han­
dler BHH returns to the dispatcher with a code of SS$_RESIGNAL, the 
search procedure notes that this is the frame of a condition handler, be­
cause its saved PC is SYS$CALL_HANDL + 4 (see Figure 4-6). 

® The skipping is accomplished by locating the frame that established this 
handler. The address of that frame is located in the mechanism array for 
signal S. 

To locate the mechanism array for signal S, the value of SP before the 
call to BH must be calculated, using the register save mask and stack 
alignment bits in the call frame. 

® One extra longword, the return PC from the JSB to SYS$CALL_HANDL, 
· must be skipped to locate the argument list (and thus the mechanism 

array) for signal S. 
@ Because the frame pointed to by the mechanism array element has al­

ready been searched, the next frame examined by the search procedure is 
the frame pointed to by the saved frame pointer in the call frame of proce­
dure B, which in this case is the frame for procedure A. The depths that 
are passed to handlers as .a result of the modified search are 0 for YH, 1 for 
XH, 2 for BHH, and 3 for AH. 

@ The frame for the search procedure, or for any of the handlers YH, XH, 
BHH, and AH when they are called, will be located on top of the signal 
and mechanism arrays for signal T (at lower virtual addresses). (One ex­
ample is shown in Figure 4-8, which illustrates the operation of 
SYS$UNWIND.) 

4.4 CONDITION HANDLER ACTION 

Condition handlers have several options available to them. 

• They can fix the exception and allow execution to continue at the inter­
rupted point in the program. 
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• They can pass the exception along to another handler by resignaling. 
• They can also allow execution to resume at any arbitrary place in the 

calling hierarchy by unwinding a number of frames from the call stack. 

4.4.1 Continue or Resignal 

A handler first determines the nature of the exception by examining the sig­
nal name in the signal array (see Figure 4-4). If the handler determines that it 
is not capable of resolving the current exception for whatever reason, it in­
forms the exception dispatcher that the search for a handler must go on. This 
continuation is called resignaling and is performed by passing a return status 
code of SS$_RESIGNAL back to the dispatcher. (Recall that condition han­
dlers are function procedures that return a status to their caller in RO.) 

On the other hand, if the condition handler is able to resolve the exception 
(in some unspecified way), it indicates to the dispatcher that the program that 
was interrupted when the exception occurred can continue. To indicate that 
the program can continue, the return status code of SS$_CONTINUE is 
passed back to the caller. 

When the dispatcher detects this return status code, it removes the argu­
ment list and mechanism array from the stack (see Figure 4-4), restoring RO 
and RI in the process. It then removes all of the signal array except the excep­
tion PC and PSL from the stack. Finally, these are removed with the REI 
instruction that dismisses the exception and passes control back to the pro­
gram that was interrupted when the exception occurred. 

If the exception that occurred was a hardware fault (such as an access viola­
tion), the instruction that caused the exception will be repeated because the 
PC of that instruction was pushed onto the stack when the exception oc­
curred. If the exception was a hardware trap (such as integer overflow), the 
next instruction in the instruction stream will be the first to execute. In the 
event that a condition handler continues from an exception that was initi­
ated through a call to LIB$SIGNAL, the first instruction to execute will be 
the instruction following the CALLx instruction. 

4.4.2 Unwinding the Call Stack 
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Another powerful tool available to condition handlers allows them to alter 
the flow of control when an exception occurs. This tool is called unwinding 
and allows the condition handler to pass control back to a previous level in 
the calling hierarchy by throwing away a specified (or default) number of call 
frames. 

The Unwind Call Stack system service is called with two optional argu­
ments, the first of which indicates the number of frames to remove from the 
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call stack and the second of which gives an alternate return PC to which 
control will be returned. 

The Unwind system service does not actually remove frames from the 
stack. Rather, it changes the return PC in the specified number of frames to 
point to a special routine in the executive that will be entered as each proce­
dure exits with a RET instruction. The effect of calling Unwind is pictured in 
Figure 4-7. If the alternate PC argument has also been passed to Unwind, the 
return PC in the next call frame is altered to the specified argument (see 
Figure 4-7). 

As each procedure issues a RET instruction, control is passed to the execu­
tive routine that examines the current frame for the existence of a condition 
handler. If such a handler exists, it is called with the exception name 
SS$_ UNWIND. When the condition handler returns to the unwind routine, a 
RET is issued by the unwind routine on behalf of the procedure to discard the 
current call frame. This sequence goes on until the specified number of call 
frames have been discarded. This technique of calling handlers as a part of the 
unwind sequence allows handlers that previously resignaled an exception to 
regain control and perform procedure-specific cleanup. 

4.4.3 Example of Unwinding the Call Stack 

An example of an unwind sequence is illustrated here with the help of Figure 
4-7. The situation begins with a sequence exactly like the one pictured in 
Figure 4-5. Procedure A calls procedure B, which calls procedure C. Procedure 
C generates signal S. The primary and secondary handlers (if they exist) sim­
ply resignal. Handlers CH and BH, located next by the search procedure, also 
resignal. 

Finally, handler AH is called. AH decides to unwind the call stack back to 
its establisher frame. (This unwinding is not the default case.) To accomplish 
the unwinding , AH must call SYS$UNWIND with a depth argument equal 

.. to the value contained in the mechanism array. In this example, the depth 
argument is 2. After the call to SYS$UNWIND, which executes in the access 
mode of its caller, but before the frame modification occurs, the stack has the 
form pictured on the left-hand side of Figure 4-7. The operation of frame 
modification by the $UNWIND system service now proceeds as follows. 

CD Unwind looks down the call stack until it locates a condition handler. 
Recall that a condition handler is identified by a saved PC of 
SYS$CALL_HANDL + 4. If handler AH had called another procedure in 
this example, nothing would have happened to that procedure's call 
frame. The first call frame modified by Unwind is the frame of the 
first handler that it encounters, which in the example in this figure is 
the frame for AH. 
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@ Unwind does not modify its own frame. When it issues a RET, control is 
passed back to handler AH. 

@ The first frame that Unwind modifies is the frame of the first condition 
handler that it encounters by tracing back the call stack. It replaces the 
return address found there with the address of a routine (STAR TUNWIND) 
internal to itself. 

When handler AH issues its RET, control will not go back to the excep­
tion dispatcher. Instead, the instructions beginning at STARTUNWIND 
execute. Note that not returning to the exception dispatcher means that 
control will never get back to procedure C, because its return PC is stored 
in the mechanism array and would be restored by the REI instruction 
issued by the exception dispatcher. 

@) Unwind continues to modify the saved PC longwords in successive 
frames on the call stack until the number of frames specified (or implied) 
in the SYS$UNWIND argument list have been modified. All frames ex­
cept the first have their saved PC replaced with address LOOPUNWIND, 
another label in the internal unwind routine (see Figure 4-7). It is this 
routine that checks whether the current frame has a handler established 
and, if so, calls that handler with the signal name SS$_UNWIND to 
allow the handler to perform procedure-specific cleanup. 

If a handler called in this way calls SYS$UNWIND (with the signal 
array containing SS$_UNWIND as the signal name), an error status of 
SS$_ UNWINDING is returned, indicating that an unwind is already in 
progress. 

® If the alternate PC argument was also supplied to SYS$UNWIND, the 
call frame into which this argument would be inserted is the next frame 
beyond the last frame specified (or implied) in the first SYS$UNWIND 
argument. In this case; if an alternate PC argument were present, it 
would be placed into the call frame for procedure A. 

Now that all the frames have been modified, the actual unwinding occurs. 
The sequence of steps is approximately the following. 

1. Unwind returns control to handler AH. 
2. Handler AH does whatever else it needs to do to service the condition. 

When it has completed its work, it returns to the code beginning at label 
STARTUNWIND in module SYSUNWIND. (Because none of the unwind 
routines check return status, it does not matter what status is passed back 
by AH as it returns.) 

3. The routine beginning at STARTUNWIND first restores RO and Rl from 
the mechanism array. It then performs the following three steps. 

a. If a handler is established for this frame, the handler is called with the 
signal name SS$_UNWIND. 
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b. If either RO or Rl is specified in the register save mask, the unwind 
routine replaces the value of that register in the register save area of the 
call frame with the current contents of the register. Note that this is 
rather an unusual case; the procedure calling standard specifies that RO 
and Rl are to be used to return status codes and function values. 

c. Control is returned to whatever address is specified in the saved PC 
longword of the current call frame by issuing a RET. 

4. The .RET issued in step 3c discards the call frame for procedure C, passing 
control to LOOPUNWIND where the thr.ee steps 3a through 3c are again 
executed. 

5. The RET that discards the call frame for procedure B passes control back 
to the point in procedure A following the call to procedure B (if we assume 
no alternate PC argument) where execution will resume. 

In effect, STARTUNWIND and LOOPUNWIND simulate returns from 
each nested procedure that is being unwound. These procedures never receive 
control again. However, the outermost procedure receives control as if all of 
the nested procedures had returned normally. 

4.4.4 Potential Infinite Loop 

There is one possible pitfall that can happen with this implementation. The 
previous section pointed out that the exception dispatcher takes care (when 
multiple signals are active) not to search frames for the second condition that 
were examined on the first pass. If a condition handler generates an excep­
tion, it is not called in response to its own signal (unless it establishes itself 
to handle its own signals!). 

However, Unwind cannot perform such a check. It must call each condi­
tion handler that it encounters as it removes frames from the stack. Thus, a 
poorly written condition handler (one that generates an exception) could re­
sult in an infinite loop of exceptions if a handler higher up in the calling 
hierarchy unwinds the frame in which this poorly written handler is de­
clared. This loop has no effect on the system but effectively destroys the 
process in which this handler exists. 

4.4.5 Unwinding Multiply Active Signals 
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There is a slight change to the Unwind system service when multiple signals 
are active. While modifying saved PCs in call frames, Unwind counts the 
number of frames that have been modified until the requested number has 
been reached. The only change that occurs with multiply active signals is 
that the loop stops counting while the skipped frames are being modified. 

The example of multiply active signals pictured in Figures 4-5 and 4-6 can 
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be used to illustrate the unwinding. Recall that procedure A called procedure 
B, which called procedure C, which signaled S. Handler CH resignaled. Han­
dler BH called procedure X, which called procedure Y, which signaled T. 
Handlers YH, XH, and BHH all resignaled. Finally, handler AH was called for 
signal T with a depth of 3. 

If AH calls SYS$UNWIND, the top of the stack is as pictured in Figure 4-8, 
with the continuations of this figure in Figure 4-6. Assume that the depth 
argument passed to SYS$UNWIND is 3 (taken from the mechanism array 
and meaning unwind to the establisher of AH), and the alternate PC argu­
ment is not present. 

The end result of the operation of Unwind in this case is as follows. 

1. Unwind looks down the call stack until it locates a condition handler, 
which in this case is AH. The saved PC is modified to STARTUNWIND. 

2. The saved PC longwords in frames Y and X are altered to contain address 
LOOPUNWIND. Note that SYS$UNWIND has now altered three frames. 

3. Because the next frame on the stack, BH, indicates a condition handler 
(saved PC of SYS$CALL_HANDL + 4), its associated mechanism array is 
located (by climbing over saved registers, stack alignment bytes, and a 
saved PC from the JSB instruction). The saved PCs in all frames up to the 
frame pointed to by the mechanism array are modified (but not counted 
toward the number specified in the argument passed to SYS$UNWIND) to 
contain address LOOPUNWIND. This modification causes frames.BB and 
C to get their saved PCs altered in the example. 

4. The saved PC in the frame for procedure B is not altered so that when the 
unwind takes place, control will return to the call site of procedure B in 
procedure A. 

4.4.6 Correct Use of Default Depth in SYS$UNWIND 

A default depth argument to SYS$UNWIND (DEPADR = O) specifies that the 
stack is to be unwound to the caller of the handler's establisher. In most 
cases, the caller of the handler's establisher is equivalent to the depth of the 
handler plus 1. However, because of an inherent ambiguity in counting the 
stack frames when multiply active signals are present, it is important that 
the default be used when unwinding to the caller of the establisher, rather 
than an explicit depth. 

Consider the two following cases of nested exceptions. In Figure 4-9, rou­
tine A calls routine B. An exception causes handler BH to be invoked. An 
exception within BH causes handler AH to be invoked (because frame B is 
skipped, as described in Section 4.3.3). The depth of the mechanism vector in 
AH's argument list is 1. For AH to unwind to its establisher, it must specify 
an explicit depth of 1 to SYS$UNWIND. Then SYS$UNWIND removes one 
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frame, as specified by the count. The handler AH then notices that the next 
frame is a handler frame, and therefore continues to remove stack frames 
until it finds the establisher of the handler. This discovery completes the 
unwind to frame A. 

Now consider Figure 4-10, in which routine A incurs an exception, result­
ing in the invoking of handler AH. Handler AH then causes an exception, 
causing its handler AHH to be invoked. The depth of AHH is zero. Now let us 
suppose that AHH wishes to unwind to the caller of its establisher. Now the 
establisher of AHH is AH Since AH is a handler, its caller is the condition 
dispatcher, NOT routine A. 

Compare Figure 4-10 with Figure 4-9 carefully and consider what happens 
if AHH calls SYS$UNWIND with an explicit depth of 1 (its depth plus 1 ). The 
depth of 1 causes AHH's frame to be removed. SYS$UNWIND then notices 
that the next frame is a handler frame and, therefore, unwinds it back to its 
establisher (frame A). Note that once AHH's frame is removed, the stack is 
indistinguishable from the stack in Figure 4-9 (down to frame B). Thus, 
SYS$UNWIND with an explicit depth of 1 results in control returning to 
routine A, which is incorrect. 

Therefore, for AHH to unwind to the caller of its establisher (the condition 
dispatcher), it must specify a default depth. When this is done, $UNWIND's 
behavior upon encountering a handler frame after the count has been ex­
hausted is modified so that the stack is not unwound further and control 
passes correctly back to the condition dispatcher. 

Because of the inherent ambiguity of these two cases, it is important that 
handlers always use the default depth when unwinding to the caller of their 
establisher. 

4.4.7 Unwinding ASTs 
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In VAX/VMS Version 3.0, the behavior of $UNWIND was changed so that it 
correctly handles unwinding out of ASTs. Doing so requires some special 
processing, because simply peeling off the stack frames ignores the presence 
of the AST and fails to dismiss the AST properly. The result is that execution 
continues in the user's main level code, with delivery of further ASTs 
blocked. 

This situation is depicted in Figure 4-11. If handler XH unwinds to the 
caller of its establisher (procedure A), it will also unwind out of the AST. The 
problem is handled by having the $UNWIND service recognize the return PC 
of the AST call frame, which is set to the value EXE$ASTRET, the AST 
return point in the executive. When this PC is seen in a call frame, $UN­
WIND knows that located immediately beneath it is the AST parameter list. 
In this case, the unwind PC (STARTUNWIND or LOOPUNWIND) is stored 
not in the call frame, but rather in the PC of the AST parameter list. 
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When the AST call returns during the actual unwinding of the stack, it 
returns to EXE$ASTRET, which dismisses the AST and returns to the inter­
rupted code with an REI. The REI then returns back to STARTUNWIND or 
LOOPUNWIND because of the modified PC. In addition, immediately before 
returning to EXE$ASTRET, $UNWIND stores the current RO and RI in the 
AST parameter list so that they will propagate through the unwind process. 

While it is technically possible to unwind out of an AST, doing so must be 
done with some caution. If the AST routine has any sort of side effects, it is 
essential to have a condition handler declared by the AST routine to clean up 
the side effects when the AST is unwound. (Note that issuing an 1/0 opera­
tion is a side effect of the highest order!) Note also that cleaning up any 
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subroutines of the :main line program from which an unwind was executed 
may be more difficult, because the asynchronous nature of ASTs means that 
unwinding could take place at any instant during the execution of a program. 

4.5 DEFAULT (VMS-SUPPLIED) CONDITION HANDLERS 

Although the use of condition handlers is totally general and completely in 
the hands of the user, some actions will always occur as the result of default 
condition handlers that are established by the executive as a part of process 
creation or image activation. 

The discussions of process creation in Chapter 20 and image initiation in 
Chapter 21 point out exactly when and how each of the handlers described in 
this section is established. The action of each of these handlers, once they are 
invoked, is briefly described here. 

4.5.1 Traceback Handler Established by Image Startup 

When an image includes either the debugger or the traceback handler, an­
other frame is put on the user stack before the image itself is called (see 
Chapter 21). The code that executes before calling the image places the ad­
dress of a condition handler into this frame so that subsequent conditions 
that are not handled by an intervening condition handler will be picked up by 
this tracebackhandler. 

This handler first checks whether the exception that occurred was 
SS$_DEBUG. If so, it maps the debugger into PO space (if not already mapped) 
and passes control to it. This condition is signaled by a CLI in response to a 
DEBUG command. This feature allows an image that was not linked or run 
with debugger support to be interrupted and have that support added. 

For all other exceptions, if the severity level is warning, error, or severe 
error, the handler maps the traceback facility into the top of PO space and 
passes control to it. The traceback facility passes information about the ex­
ception to SYS$0UTPUT and terminates the image . 

. Jf the severity level is other than the three listed above, the traceback con­
dition handler resignals the condition, which usually means that the condi­
tion is being passed on to the catch-all condition handler. 

4.5.2 Catch-All Condition Handler 

The address of this handler is placed in an initial call frame on the user stack 
and in the last chance exception vector for user mode either by PROCSTRT 
when the process is created or by a command language interpreter before an 
image is called. This handler is always called if no other handlers exist or if 
all other handlers resignal. Because the address of the handler is duplicated in 
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the last chance vector, it will also be called in the event of some error while 
looking through the user stack. 

The first step that this handler takes is to call SYS$PUTMSG (see Chapter 
30). If the handler was called through the last chance exception vector (the 
depth argument in mechanism array is -3), or if the severity level of the 
exception name in the signal array indicates severe (exception name <2:0> 
GEQU 4), then SYS$EXCMSG (see Chapter 30) is called to print a summary 
message and the image is terminated. Otherwise, the image is continued. 

4.5.3 Handlers Used by Other Access Modes 

4.5.3.1 
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In addition to the handlers that the operating system supplies to handle ex­
ceptions that occur in user mode, it also sets up handlers that will determine 
system behavior if an exception occurs in one of the other three access 
modes. 

Exceptions in Kernel or Executive Mode. In response to an exception in kernel 
mode, the exception dispatcher makes special checks to determine 
whether the processor was operating on the interrupt stack when the excep­
tion occurred, whether the process was the swapper process or null process, 
or whether IPL was above IPL$_ASTDEL (IPL 2). Any of these conditions 
could indicate that the exception is not associated with a normal process. In 
any case, if either of these conditions holds, an Invalid Exception fatal bug­
check (BUG$_INVEXCEPTN) is generated. Routines that forbid exceptions 
include interrupt service routines, device drivers (except for their FDT rou­
tines), and process-based code that happens to be executing above 
IPL$_ASTDEL (such as portions of certain system services). 

If a kernel mode exception is associated with process-based code for which 
exceptions are allowed (IPL is less than or equal to 2 and the exception oc­
curred on the kernel stack), then exception dispatching proceeds in its usual 
manner. The last chance exception vectors for both kernel and executive 
modes are initialized in module SHELL (see Chapter 20) to contain the ad­
dresses of routines that generate a bugcheck code of Unexpected System 
Service Exception. The difference between the bugchecks for the two access 
modes is that the bugcheck generated by the kernel mode primary exception 
handler is fatal while the corresponding bugcheck generated by the executive 
mode primary exception vector is not. Fatal bugchecks cause the system to 
crash. Nonfatal bugchecks generally result in error log entries and the dele­
tion of the process that caused the bugcheck. The bugcheck operation is de­
scribed in Chapter 8. 

Routines that execute in executive mode include RMS, parts of the execu­
tive, and any user-written procedure that is entered through either a user­
written system service dispatcher or through the Change Mode to Executive 
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system service. Routines that execute in kernel mode (that can cause this 
bugcheck and not the Invalid Exception bugcheck because they execute at 
IPL 0 or IPL 2) include portions of all system services, many exception service 
routines, device driver FDT routines, including those that are written by 
users, and procedures that are called either by the user-written system serv­
ice dispatcher or by the Change Mode to Kernel system service. 

Condition Handler Used by DCL or MCR. The DCL and MCR command 
language interpreters establish nearly identical condition handlers at the begin­
ning of their command loops to field exceptions that occur in supervisor 
mode. 

Part of process creation involves image activation of the CLI (DCL or 
MCR). The first step that the CLI takes after image activation is to establish 
the supervisor mode condition handler that the CLI uses to handle its own 
internal errors. The condition handler performs two tasks when it is called: 

• It cancels any exit handlers that have been established. 
• It resignals the error. 

The CLI is then allowed to run to completion, as a result of which the 
process is deleted. 
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While I nodded, nearly napping, suddenly there came a tapping, 
As of some one gently rapping, rapping at my chamber door. 

-Edgar Allan Poe, The Raven 

The VMS operating system is an interrupt-driven operating system. It con­
tains a collection of interrupt service routines that execute in response to 
hardware interrupts from external devices and internal devices such as the 
clock. The VMS operating system does not have a software-based central 
dispatching module that receives notification of all system events (that is, 
interrupts) and decides what to do next. Instead, the VMS operating system 
relies on a hardware-controlled interrupt dispatching scheme that always 
forces the highest priority interrupt on the system to be serviced first. 

5.1 HARDWARE INTERRUPT DISPATCHING 
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The VAX architecture provides 16 hardware interrupt priority levels (IPL), 
from IPL 31 down to IPL 16. The top eight levels are for use by urgent condi­
tions including serious errors (such as machine check), the system clock, and 
_,:iower failure. These conditions are discussed in Chapters 8, 11, and 27 re­
spectively. The lower eight levels are used by peripheral devices. 

When a peripheral device generates an interrupt, that interrupt is requested 
at a particular hardware IPL (fixed for a given device). As in the case of soft­
ware interrupts, if the requested IPL value is higher than the level at which 
the processor is currently running (as determined by PSL <20:16>), then the 
interrupt service routine whose address is in the selected vector in the sys­
tem control block (SCB) is entered immediately. Otherwise, servicing of the 
interrupt is deferred until IPL drops below the level associated with the inter­
rupt. 

When an interrupt is serviced, the current processor status must be pre­
served so that the interrupted thread of execution (either process-based code 
or an interrupt service routine executing at lower IPL) can continue normally 
after the interrupt is dismissed. Preserving the processor status is accom­
plished (by the hardware) by automatically saving the PC and PSL on the 
stack. These are later restored with an REI instruction that dismisses the 
interrupt. Other elements of the process context, such as general registers, 
must be saved and restored by the routine(s) handling the interrupt. In order 
to reduce interrupt overhead, no memory mapping information is changed 
when an interrupt occurs. Therefore, the instructions and data referenced by 
an interrupt service routine must be in system address space. 
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5.1.1 Interrupt Dispatching 

The following list outlines the primary sequence of events that occur in in­
terrupt dispatching. 

1. An interrupt is requested. 
2. The current instruction finishes or reaches a well-defined point where the 

instruction state is completely contained in the general registers, PC, and 
PSL (which happens in the execution of the string instructions). (Some 
instructions can also be interrupted at well-defined points so that, after 
the interrupt dismissal, they are restarted, rather than continued.) 

3. The interrupt sequence is initiated by the hardware, pushing the current 
PC and PSL onto the stack. The VMS operating system uses the interrupt 
stack for all hardware interrupt servicing. Hardware interrupts are indi­
cated by placing a 01 in bits <1:0> of each hardware interrupt vector in 
the system control block (see Figure 5-1 ). 

Most software interrupts are also serviced on the interrupt stack. On the 
other hand, the per-process interrupt associated with AST delivery and 
nearly all exceptions are serviced on the per-process kernel stack. 

4. A new PC is loaded (from the appropriate SCB vector), and a new PSL is 
created (with PSL <20: 16> containing the IPL associated with the inter­
rupt, and the previous access mode, current access mode, CM, TP, FPO, 
DV, FU, IV, T, N, Z, and C bits cleared by the hardware). The current 
access mode bits are cleared to indicate that the service routine will run in 
kernel mode. 

5. The interrupt service routine identified by the PC in the SCB executes 
and, eventually, exits with an REI instruction that dismisses the interrupt. 

6. The PC and PSL are restored by the execution of the REI instruction, and 
the interrupted thread of execution (process or less important interrupt 
service routine) continues where it left off. 

31 

Address of Longword-Aligned 
Interrupt Service Routine 

Code 

0 

SCBvector 

Code Meaning 

00 Service the event on the kernel stack unless currently on the interrupt stack; in that 
case, use the interrupt stack. 

01. Service the event on the interrupt stack; if the event is an exception, raise IPL to 31. 

10 Service the event in the Writeable Control Store (WCS), passing bits< 15:2> 
to the microcode; if the WCS does not exist or is not loaded, the operation is undefined 
(the processor will halt). 

11 The operation is undefined (the processor will halt). 

Figure 5-1 
System Control Block Vector Format 
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Unlike software interrupt dispatching, there is not a one-to-one corre­
spondence between hardware IPL and an interrupt service routine vector in 
the SCB (see Figure 5-2). The SCB contains the addresses of several interrupt 
service routines for a given device IPL. There are no registers corresponding 
to the Software Interrupt Request Register (PR$_SIRR) or Software Interrupt 
Summary Register (PR$_SISR); rather, the processor notes that a lower prior­
ity interrupt has been requested, but not granted. When IPL falls below the 
device interrupt level, and the device is still requesting the interrupt, the 
interrupt will be granted. 

If, however, the device is no longer requesting an interrupt, the system will 
be unable to determine which interrupt service routine to call; such occur­
rences are called passive releases. If the adapter to which the device is 
connected is still requesting an interrupt, an adapter-specific error routine is 
called. If the adapter is no longer requesting an interrupt, the system is un­
able to determine which adapter requested the interrupt; in this case a nexus 
0 interrupt service routine is called. In either case, the system increments the 
counter 10$GL_SCB_INTO. 

5.1.2 System Control Block 
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The system control block (SCB) contains the vectors used to dispatch (soft­
ware and hardware) interrupts and exceptions. The starting physical address 
of the SCB is found in the System Control Block Base Register (PR$_SCBB). 
The size of the SCB varies depending on processor type. The VAX-11/7 50 and 
the VAX-11/730 system control blocks are two pages long; a VAX-11/750 
with a second UNIBUS has a three-page system control block; the 
VAX-11/780 system control block consists of a single page. 

The first page of the system control block is the only page defined by the 
VAX architecture. It contains the addresses of software and hardware inter­
rupt service routines as well as exception service routines. The layout of the 
first SCB page is pictured in Figure 4-1. Table 6-1 contains more details about 
the SCB vectors used for software interrupts. Figure 5-2 shows how the sec­
ond half of the first page is divided among 16 possible external devices, each 
interrupting at four possible IPL values. The second SCB page on the VAX-
11/730 and VAX-11/750 is used for directly vectored UNIBUS device inter­
rupts. The third page on a VAX-11/750 with a second UNIBUS is used for 
directly vectored UNIBUS device interrupts to the second UNIBUS. 

Each vector in the SCB is a longword that is examined by the processor 
when an exception or interrupt occurs, to determine how to service the 
event. Figure 5-1 illustrates the format of a vector in the SCB, and indicates 
which stack is used to service an exception or interrupt. In the VAX/VMS 
operating system, all hardware interrupts (and all software interrupts above 
IPL 3) are serviced on the system-wide interrupt stack. The rescheduling soft-
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ware interrupt (IPL 3) begins execution on the kernel stack but immediately 
changes to the interrupt stack when it executes a SVPCTX instruction (see 
Chapter 10). AST delivery (IPL 2) is serviced using a process-specific kernel 
stack. 

VAX-11/730 External Adapters. On the VAX-11/730 the CPU, the UNIBUS 
adapter, and the memory controller are connected by the Array Bus. In addi­
tion to the Array Bus, communications between the CPU and the integrated 
disk controller (IDC) are performed over the Accelerator Bus (the floating 
point accelerator also communicates over the Accelerator Bus). The IDC con­
trols RL02 and R80 disks. The VAX-11/730 is not expandable and does not 
use expansion slots. 

Because there are no expansion slots in the VAX-11/730, the first page of 
the SCB contains only one set of SCB vectors. The longwords located at SCB 
+ 08 through SCB + OB in the first page of the SCB are used as external 
adapters, one for each IPL value from 20 to 23. The second SCB page on the 
VAX-11/730 is used for directly vectored UNIBUS device interrupts. Each 
SCB vector corresponds to a UNIBUS vector in the range from 0 to 774 (octal). 

VAX-11/750 External Adapters. The backplane interconnect on the 
VAX-11/750, called the CMI (CPU to memory interconnect), connects the 
CPU, memory controllers, and UNIBUS or MASSBUS adapters. Each connec­
tion to the CMI is identified by its slot number. There is a total of 32 slots, 
the first 16 of which are used for the optional writeable control store (WCS). 
The next 10 slots are reserved for memory controllers and UNIBUS or MASS­
BUS adapters. These 10 slots are called fixed slots because the mapping of 
controller/adapter to slot number is fixed. That is, a particular slot can have 
only a particular adapter placed in it. Five of the ten fixed slots are currently 
used by external adapters. The following list details these adapters: 

Memory Controller 
Up to three MASSBUS Adapters 
UNIBUS Adapter 

Slot 0 
Slots 4 through 6 
Slot 8 

The last six slots are reserved for adapters with configuration registers and 
are called floating slots. 

Each slot has four SCB vectors in the first SCB page assigned to it, one for 
each IPL value from 20 to 23. As shown in Figure 5-2, the first 16 vectors are 
assigned to IPL 20. The second SCB page on the VAX-11/750 is used for di­
rectly vectored UNIBUS device interrupts. Each SCB vector corresponds to a 
UNIBUS vector in the range from 0 to 774 (octal). The third SCB page on a 
VAX-11/750 in a two-UNIBUS configuration is used for directly vectored 
UNIBUS device interrupts on the second UNIBUS. 
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VAX-11/780 External Adapters. On the VAX-11/780, the Synchronous Back­
plane Interconnect (SBI) connects the CPU, memory controllers (including 
MA780s), DR780s, CI780s, and UNIBUS or MASSBUS adapters. Each con­
nection to the SBI is assigned a transfer request (TR) number that identifies 
its SBI priority. TR numbers range from 0 (highest priority) to 15 (lowest 
priority). There is a limit of 15 connections to the SBI (see Table 5-1). TR 
number 14 is reserved for the CI780; TR number 0 is used for a special pur­
pose on the SBI and has no corresponding external adapter. The TR number 
defines the physical address space through which the device's registers are 
accessed and through which vectors the device will interrupt. 

An adapter is not restricted to having a specific TR number. However, the 
relative priorities of the various adapters may not change. That is, a system 
cannot have an MBA with a higher priority (lower TR number) than a UBA. 
For instance, if a system has two local memory controllers and an MA780 

Table 5-1: Standard SBI Adapter Assignments on the VAX-11/780 

External Adapter Type 
VAX-111780 
Assignment 

TRO 

First Memory Controller TR 1 

Second Memory Controller TR 2 

First MA780 Shared Memory 

Second MA780 Shared Memory 

First UNIBUS Adapter TR 3 

Second UNIBUS Adapter TR 4 

Third UNIBUS Adapter TR 5 

Fourth UNIBUS Adapter TR 6 

TR 7 
First MASSBUS Adapter 

Second MASSBUS Adapter 

Third MASSBUS Adapter 

Fourth MASSBUS Adapter 

DR780 SBI Interface 

CI 

TR8 

TR9 

TR 10 

TR 11 

TR 12 

TR 13 

TR14 

TR 15 

TR 16 

Comments 

Hold Line for next cycle. 
TR 0 is the highest 
TR level and is not 
assigned to a device. 

Reserved 

Reserved 

Reserved 

The CPU has implicit 
TR 16. Level 16 is the 
lowest TR level. 
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shared memory controller, the first UNIBUS adapter on that system could 
have TR number 4, with the MA780 having TR number 3, and the memory 
controllers having TR numbers 1 and 2. 

Adapter Configuration. On the VAX-11/750 and VAX-11/780, the presence of 
an adapter at a particular slot or TR number is checked by testing the first 
longword in the adapter's I/O register space, and checking for nonexistent 
memory. The presence or absence of an external adapter is determined by the 
primary bootstrap program VMB (see Chapter 24) as part of that program's 
memory sizing operation. Specifically, VMB loads the machine check vector 
in the SCB with the address of a special routine while it is sizing memory and 
determining which external adapters are present. If a nonexistent memory 
machine check occurs, there is no connected adapter at the location being 
tested. The result of this testing is stored in a 16-byte array in a data structure 
called a restart parameter block (RPB). The later stages of system initializa­
tion use the information obtained by VMB and stored in the RPB when they 
configure specific adapters into the system. 

On the VAX-11/730, VAX-11/750, and VAX-11/780, only IPL levels 20 
through 23 are used for device interrupts. Within the SCB, vectors are re­
served for each IPL level available to each adapter (see Figure 5-2). Whenever 
an adapter generates an interrupt for a device connected to it, the slot number 
or TR number of the adapter and the device IPL are used by the hardware to 
index into the SCB for the appropriate interrupt service routine. Some adapt­
ers such as local memory controllers do not generate interrupts. 

VAX/VMS INTERRUPT SERVICE ROUTINES 

The interrupt service routines used by the VMS operating system operate in 
the limited system context or interrupt context described in Chapter 1. 
These routines execute at elevated IPL on the interrupt stack outside the 
context of a process. 

5.2.l Restrictions Imposed on Interrupt Service Routines 
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There are several restrictions imposed on interrupt service routines either by 
the VAX architecture or by synchronization techniques used by the VMS 
operating system. These restrictions result from the limited context that is 
available to any routine that executes outside the context of a process. The 
following list of items indicates some of the specific operations and data 
references that cannot occur in an interrupt service routine. The description 
of interrupt context in Chapter 1 contains a more general list of these and 
other restrictions. 
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• Interrupt service routines should be very short and do as little processing 
as possible at elevated IPL. 

• Any registers used by an interrupt service routine must first be saved. 
• Although an interrupt service routine can elevate IPL, it cannot lower IPL 

below the level at which the original interrupt occurred. 
• The size of the interrupt stack, the stack used by all hardware interrupt 

service routines, is controlled by the SYSBOOT parameter INTSTKPAGES 
(which has a default value of two pages). This parameter determines the 
amount of stack storage available to interrupt service routines. 

• Any elements pushed onto the stack by an interrupt service routine must 
be removed before the interrupt is dismissed in order that REI works cor­
rectly. 

• Because the low two bits of interrupt service routine addresses in the sys­
tem control block are use.cl for stack selection, interrupt service routines 
called directly by the hardware must be longword aligned. 

• No pageable routines or data structures can be referenced above IPL 2. 
• Data structures that are synchronized by either IPL$_SYNCH or by 

mutexes cannot be referenced by interrupt service routines without de­
stroying the synchronization (unless the interrupt service routine is exe­
cuting at IPL$_SYNCH with the express purpose of accessing the data 
structure). 

• No references to per-process address space (PO space or Pl space) are al­
lowed. 

5.2.2 Servicing UNIBUS Interrupts 

5.2.2.1 

Each device on the UNIBUS has one (or more) vector number(s) to identify 
the device, and a bus request (BR) priority to allow the UNIBUS to arbitrate 
among devices when multiple interrupts occur. There are 4 BR levels, called 
BR4, BRS, BR6, and BR7. BR7 has the highest priority. If multiple interrupts 
occur for devices with the same BR level, the device electrically closest to the 
UNIBUS interface has the highest priority. The device IPL used equals the BR 
priority + 16. For example, BR4 corresponds to IPL 20. 

VAX-11/730 and VAX-11/750 UNIBUS Interrupt Service Routines. UNIBUS 
interrupts on the VAX-11/730 and VAX-111750 are directly vectored through 
the second page of the system control block. The system control block con­
tains separate addresses for the interrupt service routines for all of the UNI­
BUS interrupt vector locations. When a unit is connected (using SYSGEN), 
the appropriate fields in the SCB are initialized to point to the interrupt serv­
ice routines for the device vectors. The interrupt service routines eventually 
transfer control to the appropriate device driver interrupt service routines. 
The VAX/VMS Guide to Writing a Device Driver describes the data struc-

105 



Hardware Interrupts 

5.2.2.2 

106 

tures in the I/O database, and contains a more complete discussion of driver 
interrupt service routines than that presented here. 

When a UNIBUS device generates an interrupt on the VAX-11/730 or 
VAX-ll/7SO, the interrupt is vectored directly through the SCB, and control 
is immediately transferred to the following instruction in the appropriate 
device controller's channel request block (CRB). 

PUS HR #0M<RD,R1,R2,R3,R~,R5> 

The next instruction in the CRB is a JSB to the driver interrupt service 
routine (see Figure S-3). The longword following the JSB instruction contains 
the address of another data structure (the IDB, interrupt dispatch block). This 
address is pushed onto the stack (as the return PC for the JSB instruction). 
However, control is never returned there because that address is removed 
from the stack by the driver interrupt service routine. 

After the JSB instruction in the CRB transfers control to the driver inter­
rupt service routine, the following events take place. 

1. The driver interrupt service routine removes the IDB pointer from the 
stack and uses it to obtain both the address of the device controller's con­
trol/status register (CSR) and the address of the UCB for the device gener­
ating the interrupt. 

2. Having found the UCB, the interrupt service routine determines whether 
the interrupt was expected or not, and, if expected, restores the driver 
context stored in the UCB and transfers control to the saved PC. 

3. When the driver finishes processing the interrupt, it issues an RSB. 
4. Control is transferred back to the driver interrupt service routine, which 

restores the registers (RO through RS) saved by the PUSHR instruction and 
dismisses the interrupt with an REI. 

If the interrupt was unsolicited, the driver may either take some appropriate 
action or simply dismiss the interrupt by restoring RO through RS and issuing 
an REI. 

VAX-11/780 UNIBUS Interrupt Service Routines. When a device on the 
UNIBUS requests an interrupt, the UBA converts that request into an inter­
rupt on the SBI. The SBI interrupt is vectored through the SCB to a UNIBUS 
adapter interrupt service routine. In the case of interrupts generated by a 
UNIBUS device on the VAX-111780, the corresponding adapter receives de­
vice interrupt requests, determines which has the highest priority, and gener­
ates an interrupt of its own for the CPU (on behalf of the interrupting device). 
It is actually the adapter interrupt that is vectored through the SCB (using the 
interrupting device's IPL and the adapter's TR number), to an adapter inter­
rupt service routine. The adapter interrupt service routine saves registers RO 
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through RS, determines which device actually requested the interrupt, and 
then passes control to an interrupt service routine in the device driver for the 
interrupting device. The driver interrupt service routine can then respond to 
the interrupt in a device-dependent fashion. After servicing the interrupt, the 
registers saved by the adapter interrupt service routine must be restored, and 
an REI instruction issued to dismiss the interrupt. 

There are four interrupt service routines for each UBA, one for each BR 
level at which UNIBUS devices request interrupts. They differ only in which 
internal UBA register they read to determine which device requested the 
interrupt. These interrupt service routines are found in a data structure de­
scribing the UBA (the adapter control block) that is created when the system 
is bootstrapped (from module INITADP). 

UNIBUS interrupt servicing on the VAX- l l /780 begins in one of four UNI­
BUS adapter interrupt service routines. 

1. The UBA interrupt service routines (see Figure S-3) save registers RO 
through RS. 

2. A UBA internal register (BRRVR) is read to determine the identity of the 
interrupting device. Each BRRVR register contains either the vector num­
ber corresponding to the device interrupt or an indication that the UBA is 
interrupting on behalf of itself, not for some device. (There are four 
BRR VRs in the UBA, one for each BR level.) 

3. If the UBA is interrupting on behalf of itself, it is normally indicating an 
adapter error condition. These errors usually result when a reference is 
made to a nonexistent address in UNIBUS 1/0 space. They may indicate 
only a transient hardware error or a bug in a device driver. These errors are 
logged, up to a maximum of 3 in any given lS-minute period, and the 
interrupt is dismissed. 

4. For a device interrupt, the vector number is used as an index into a vector 
table. The vector table contains a pointer to the JSB instruction inside the 
CRB. Control is transferred to the JSB instruction by a JMP instruction in 
the adapter interrurt service routine. 

The vector table entry pointing to the CRB, as well as the address fields 
in the CRB, are filled in by SYSGEN at the time the device driver is loaded 
into the system with the SYSGEN command CONNECT. 

The instruction inside the CRB is a JSB to the driver interrupt service routine. 
The longword following the JSB instruction contains the address of another 
data structure (the IDB, interrupt dispatch block). This address is pushed onto 
the stack (as the return PC for the JSB instruction). However, control is never 
returned there because that address is removed from the stack by the driver 
interrupt service routine. 

After the JSB instruction in the CRB transfers control to the driver inter­
rupt service routine, the following events take place: 
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1. The driver interrupt service routine removes the IDB pointer from the 
stack and uses it to obtain both the address of the device controller's con­
trol/status register (CSR) and the address of the UCB for the device gener­
ating the interrupt. 

2. Having found the UCB, the interrupt service routine determines whether 
the interrupt was expected or not, and, if expected, restores the driver 
context stored in the UCB and transfers control to the saved PC. 

3. When the driver process finishes processing the interrupt; it issues an RSB. 
4. Control is transferred back to the driver interrupt service routine, which 

restores the registers (RO through RS) saved by the UBA interrupt service 
routine and dismisses the interrupt with an REI. 

If the interrupt was unsolicited, the driver may either take some appropriate 
action or simply dismiss the interrupt by restoring RO through RS and issuing 
an REI. 

At this point, interrupt dispatching proceeds exactly as it does in the case 
of the VAX-11/7SO. Note that device drivers need not concern themselves 
with whether they are on a VAX-U/730, a VAX-11/7SO, or a VAX-111780, 
because their interrupt service routines will be entered in a transparent man­
ner. 

5.2.3 MASSBUS Interrupt Service Routines 

Unlike UNIBUS interrupt dispatching, the MASSBUS interrupt sequences for 
the VAX-11/7SO and the VAX-11/780 MASSBUS are identical. The 
VAX,11/730 has no MASSBUS. When the system is bootstrapped, entries are 
made in the SCB to transfer control to locations in the CRB for the MASSBUS 
adapter. The instructions in the MBA CRB are a PUSHR for R2 to RS and a 
JSB to the MBA interrupt service routine MBA$INT (which is part of module 
MBAINTDSP). 

MBA interrupts are handled differently from UNIBUS interrupts, partly 
because one MBA interrupt may indicate that multiple devices on the adapter 
need servicing. The MBA interrupt service routine reads an attention sum­
mary register to determine what it must do to respond to an interrupt. 

If the interrupt enable bit in the MBA is set, an MBA interrupt can be 
caused by any of the following operations. 

• A data transfer completes. 
• An attention line is asserted while the MBA is not busy. 
• An MBA error occurs while the MBA is not busy. 
• The power is turned on for the MBA. 

Devices on the MASSBUS can assert the attention line under the following 
circumstances: 

109 



Hardware Interrupts 

110 

• If an error occurs, whether or not a transfer is taking place 
• When a mechanical motion such as a disk seek or tape rewind completes 
• When a device changes its state 

In general, MASSBUS device drivers do not request ownership of the MBA 
until they need it to perform a transfer. The MBA interrupt service routine 
assumes that if the MBA owner is expecting an interrupt, then the interrupt 
currently being serviced indicates that a transfer has completed or been 
aborted. That is, when an MBA interrupt occurs and the current owner of the 
MBA is expecting an interrupt, MBA$INT dispatches immediately to the 
owner's driver. It then checks whether other devices on the MASSBUS need 
attention. The UCB list contained in the IDB allows MBA$INT to associate 
UCB addresses with devices that are requesting service. 

MBA$INT responds to an interrupt in one of three ways (see Figure S-4). It 
may perform all three of these actions to service multiple attention requests 
in response to a single interrupt. 

• For an expected interrupt for a single-unit controller (a disk), MBA$INT 
issues a JSB instruction that transfers control directly to the fork PC stored 
in the UCB of the interrupting device. The driver returns to MBA$INT 
when it has completed its work. 

• For an unsolicited interrupt for a single-unit controller, MBA$INT issues a 
JSB instruction that transfers control to a driver-supplied unexpected inter­
rupt service routine, which will return to MBA$INT. 

• For a multidevice controller (a magtape), MBA$INT transfers control to 
the CRB for the device controller. The device controller CRB dispatches to 
a controller interrupt service routine that saves R2 to RS and transfers 
control to the driver interrupt service routine. This service routine eventu­
ally returns control to MBA$INT. 

The way MBA$INT decides whether an entry in the MBA IDB is a UCB 
address (single-unit controller), or a pointer into a CRB (multidevice control­
ler) is by checking the low-order bit of the entry in the MBA IDB for the 
controller. If the bit is set, then the entry is for a multidevice controller. If the 
bit is clear, the entry represents the UCB address for the device on a single­
device controller. UCBs, like CRBs, are always longword aligned (the low 
order two bits are clear). When a CRB is created for a multidevice controller, 
and its address stored in the MBA IDB, the address is incremented by 1 so the 
low order bit will be set. Control is actually transferred to the PUSHR in­
struction in the multidevice controller CRB using the following instruction 
(where RS contains the MBA IDB entry) so that the low-order bit is cleared 
before control is actually transferred: 

JSB -(RS) 
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Because data transfer functions block the interrupts from nontransfer func­
tions until the data transfer completes, MBA$INT always checks the MBA 
attention summary register after a driver interrupt service routine returns 
control. This check is made to determine if another device on the MASSBUS 
requested an interrupt either while the MASSBUS owner was transferring 
data or while the current interrupt was being processed. 

5.2.4 DR32 Interrupt Service Routine 

DR32 (or DR7SO and DR780) interrupt dispatching is handled similarly to 
MBA interrupt dispatching. When the system is bootstrapped, entries are 
made in the SCB to transfer control to locations in the CRB for the DR32. 
The instructions in the CRB are a PUSHR for R2 to RS, and a JSB. The DR32 
IDB address follows the JSB instruction in the DR32 CRB (see Figure S-S). 

Initially, the JSB in the DR32 CRB transfers control to routine DR$INT in 
module DRINTHAND. This routine simply performs the following opera­
tions: 

1. It clears the adapter power up and power down bits in a DR32 control 
register. 

2. It calls a controller initialization routine to reset the DR32 (and disable 
DR32 interrupts). 

3. It restores registers R2 to RS. 
4. It issues an REI instruction. 

When the DR32 driver (XFDRIVER) is loaded by SYSGEN (as part of 
AUTOCONFIGURE when the system is bootstrapped, or by an explicit 
CONNECT command), the JSB instruction is overwritten to point to the 
interrupt service routine in the driver. This routine performs the following 
operations: 

1. It responds to the various types of DR32 interrupts. 
2. It restores registers R2 to RS. 
3. It issues an REI instruction. 

5.2.5 MA780 Interrupt Dispatching 
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Although the standard MS780 memory controller does not generate inter­
rupts, the shared memory (MA780) controller does. Interrupts are requested 
by a driver or the executive to interrupt another processor connected to the 
shared memory. Interrupts occur whenever a shared memory event flag is set 
or a shared memory mailbox message is written, or whenever there is inter­
processor communication in the VAX-11/782. Note that this discussion de­
scribes MA780 used as shared memory among VAX-ll/780s; interrupt han-
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dling in the VAX-11/782 is somewhat different and is briefly discussed in 
Section S.2.6. Chapter 28 gives a more complete description of MA780 inter· 
rupts in the VAX-11/782. 

When the system is bootstrapped, module INITADP places entries into the 
SCB to transfer control to locations in the MA780 ADP when MA780 inter­
rupts occur (see Figure S-6). The locations in the ADP contain a PUSHR in­
struction saving RO to RS, and a JSB instruction that transfers control to 
routine MA$INT (in MAHANDLER). 

1. When MA$INT obtains control, it removes the value pushed onto the 
stack by the JSB instruction in the ADP and uses it to determine the ad­
dress of the MA780's ADP. 

2. It uses fields in the ADP to locate adapter registers in the MA780 and to 
determine which port requested an interrupt (and what kind of interrupt 
was requested). 

3. If the interrupt is for a processor being connected to the memory, the 
interrupt is dismissed by restoring RO to RS and issuing an REI. 

4. Otherwise, MA$INT services the interrupt. 
S. Finally, the interrupt is dismissed by restoring RO to RS and issuing an 

REI. 

5.2.6 MA780 Interrupts on the VAX-11/782 
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The VAX-11/782 multiprocessing system uses interrupts from the MA780 to 
allow the processors to interrupt one another. Thus, the MA780 interrupts 
must be handled somewhat differently on the VAX-11/782. 

When the multiprocessing code is loaded, the MA780 interprocessor inter­
rupt vectors in the primary processor's SCB are redirected to point to a multi-
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processing MA780 interrupt routine (only for the first MA780). The interrupt 
routine serves interrupts from the secondary processor. A new SCB is created 
in nonpaged pool for the secondary processor. The new SCB contains vectors 
that point to multiprocessing MA780 interrupt routines for the secondary 
processor. The interprocessor interrupt vector for the remaining MA780s is 
pointed to an unexpected interrupt handler. 

When multiprocessing code is loaded, the operating system debugger 
(XDELTA) is moved from interrupt vector 5 to interrupt vector 15. Interrupt 
vector 5 is used for the multiprocessing rescheduling routine. 

For more information on the VAX-111782 multiprocessing system, see 
Chapter 28. 

5.3 CONNECT-TO-INTERRUPT MECHANISM 

The connect-to-interrupt mechanism allows a process to be notified of a 
UNIBUS device interrupt by the delivery of an AST, by the setting of an event 
flag, or both. The process can also specify an interrupt service routine that 
will respond to device interrupts. 

A suitably privileged process (with CMKRNL and PFNMAP privileges) can 
respond to an interrupt by reading or writing device registers and, possibly, by 
initiating further device activity. However, in order to directly manipulate 
device registers, the process must first map the UNIBUS I/O page(s) contain­
ing the registers for the device into its own process space (PO or Pl). The 
VAX/VMS Real-Time User's Guide contains a discussion of mapping the 
UNIBUS I/O page and using the connect-to-interrupt capability. Chapter 16 
of this book contains more detailed information on how the mapping is actu­
ally performed. 

Note that the physical addresses of the UNIBUS 1/0 page differ among the 
VAX-11/730, VAX-11/750, and VAX-11/780. Therefore, different PFNs must 
be used when mapping the UNIBUS I/O page. The details of mapping to the 
1/0 page are described in the VAX/VMS Real-Time User's Guide. Appendix B 
contains a list of symbols defined by the $I0730DEF, $I0750DEF, and 
$I0780DEF macros to make this mapping as symbolic as possible. 

The connect-to-interrupt facility is an extension of the interrupt dispatch­
ing scheme. In order to use it, the connect-to-interrupt driver (CONINTERR) 
must be associated with the interrupt vector. The association is made using 
the SYSGEN command CONNECT, specifying all of the following: 

• A name for the device (to be used by the process that connects to the 
interrupt) 

• The address of the device 
• The interrupt vector at which the device generates interrupts 
• The CONINTERR driver, which initially responds to the device interrupts 
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When the device generates an interrupt, the normal UNIBUS interrupt dis­
patching sequence is followed, as discussed in Sections 5.2.l and 5.2.2. How­
ever, the CONINTERR interrupt service routine transfers control to the 
user-supplied interrupt service routine (if one was supplied) using a JSB or 
CALL instruction (as requested by the user). This transfer is illustrated in 
Figure 5-7. When the user-supplied interrupt service routine issues an RSB (or 
RET), the CONINTERR interrupt service routine regains control. Before re­
storing RO to RS and issuing an REI, the CONINTERR interrupt service rou­
tine queues an AST to the process (if requested) to notify the process that an 
interrupt has occurred (via the AST, or by setting an event flag). 

In order for the process-supplied interrupt service routine to be accessible 
to. the CONINTERR interrupt service routine, the CONINTERR driver dou­
ble-maps the user routine into system address space. The double mapping 
requires enough system page table entries (reserved by the REALTIME_SPTS 
SYSBOOT parameter) to map the user-supplied routines (other driver rou­
tines besides an interrupt service routine may be specified when connecting 
to an interrupt). When the process disconnects from the interrupt, the SPTEs 
used to map the routines for that process are made available for later use by 
other processes. 



6 Software Interrupts 

Noise is the most impertinent of all forms of interruption. It is 
not only an interruption, but also a disruption of thought. 

-Schopenhauer, Studies in Pessimism: On Noise 

The software interrupt mechanism that is provided as an integral part of the 
VAX architecture is relied on heavily by the VAX/VMS. operating system for 
several purpos.es. The scheduler is. invoked as a software· interrupt service 
routin!}; Software interrupts provide device drivers a clean method for lower­
ing IPL. Several J/O completion routines run as software interrupt service 
routines. This chapter first describes the general software interrupt mecha­
nism and then lists several uses of software interrupts in the VAX/VMS oper­
ating system. 

6.1 THE SOFTWARE INTERRUPT 

A software interrupt is actually a hardware mechanism, similar to an inter­
rupt generated by an external device. It causes a PC/PSL pair to be pushed 
onto an appropriate stack (usually the interrupt stack) and passes control to 
an interrupt service routine whose address is stored in the system control 
block. Like· hardware interrupts, the VMS operating system interprets soft­
ware interrupts as system-wide events that are serviced independently of the 
context of a specific process. The AST interrupt, discussed briefly at the end 
of this chapter and in greater detail in Chapter 7, is the only variation from 
this sequence of events. 

The big difference between software interrupts and hardware interrupts, 
and the reason for the name, is that software interrupts are generated by an 
explicit request from software. The typical software interrupt request occurs 
as the result of a hardware interrupt or within another software interrupt 
service routine. However, there are examples within the VMS operating sys­
tem of software interrupts being issued from code executing in process con­
text. 

6.1.1 Hardware Mechanism of Software Interrupts 

The VAX architecture provides 15 software interrupt levels, from IPL 15 
down to IPL I. There are 15 entries in the system control block (SCB) for 
addresses of software interrupt service routines, one for each IPL level. A 
software routine (usually a hardware or software interrupt service routine) 
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requests a software interrupt at a given IPL level by writing the desired IPL 
value into the privileged register Software Interrupt Request Register 
(PR$_SIRR). Writing to this register causes a bit in the Software Interrupt 
Summary Register (PR$_SISR) to be set. The bit in the SISR is cleared when 
the interrupt is finally taken. The layout of these two processor registers is 
pictured in Figure 6-1. All software interrupt requests in the VMS operating 
system use the SOFTINT macro to write the SIRR. This macro expands into 
the following instruction: 

• MACRO SOFTINT IPL 
MTPR IPL, S'#PR$_SIRR 

.ENDM SOFTINT 

The usual situation in the VMS operating system is that the requested IPL 
level is less than or equal to the current IPL (as determined by PSL>20: 16< ). 
In this case, the interrupt is deferred until the IPL drops below the requested 
level. The deferral of pending software interrupts based on current IPL is 
exactly the way that pending hardware interrupts are treated. This lowering 
of IPL usually occurs as the result of an REI instruction but could also occur if 
privileged code directly altered the current IPL by writing to the PR$_IPL 
register (with the SETIPL or the ENBINT macros, described in Chapter 2). 

If the requested IPL value is higher than the level at which the processor is 
currently running, then the interrupt service routine whose address is in the 
selected slot in the SCB is entered immediately. (This is the same way that 
pending hardware interrupts are treated.) 

There are a few occurrences in the VMS operating system of a software 
interrupt request at an IPL level greater than that at which the processor is 
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currently running. For example, device driver FDT routines may signal com­
pletion by calling the routines EXE$FINISHIO or EXE$FINISHIOC. These 
routines execute at IPL 2 and terminate by requesting the I/O postprocessing 
software interrupt at IPL 4. In this case, the interrupt is taken immediately. 
The file system ACP uses the same technique to signal I/O completion for 
requests in which it was involved. 

6.1.2 Software Interrupt Service Routines 

There are several features about the use of software interrupts in the VMS 
operating system that are independent of the purposes of individual interrupt 
service routines. Some of these are dictated by the particular way that soft­
ware interrupts are treated in the hardware. 

Because the VAX architecture supplies no mechanism for determining how 
many times a software interrupt has been requested before it is taken, soft­
ware must supply some protocol for determining this number. The VMS op­
erating system uses queues (doubly linked lists manipulated by the INSQUE 
and REMQUE instructions) for this purpose. In general, each queue element 
represents a specific operation that must be performed. The use of queues, 
particularly the use of the INSQUE and REMQUE instructions, allows other 
optimizations to be made. 

• The software interrupt service routine can use the information provided by 
condition code settings, this time as the result of executing a REMQUE 
instruction. That instruction returns the V-bit set if the queue was empty 
before the instruction began execution, an indication that the work of this 
particular interrupt service routine is complete. 

• By coding software interrupt service routines so that they keep removing 
work list elements from a queue until there is no more work to do, it is 
possible to simply ignore spurious software interrupt requests. In fact, all 
of the software interrupt service routines in the VMS operating system, 
including those that do not use queues, handle interrupts, even in the 
event of spurious interrupts requests. 

6.2 SOFTWARE INTERRUPT LEVELS IN THE VAX/VMS 
OPERATING SYSTEM 

The VMS operating system uses the software interrupt mechanism for sev­
eral purposes. 

• Mount verification cancellation executes above driver fork IPL and below 
device IPL so that DMA operations will work, yet drivers cannot interfere 
with the device data structures. 

• Device drivers use forks in order to execute at an IPL below device IPL. 
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Table 6-1: Software Interrupt Levels Used by the Executive 

IPL Use Stack 

15 XDELTA on VAX-11/782 Interrupt 

14-13 ·unused Interrupt 

12 Mount Verification Cancellation Interrupt 

11 IPL= 11 Fork Dispatching Interrupt 

10 IPL= 10 Fork Dispatching Interrupt 

9 IPL=9 Fork Dispatching Interrupt 

8 IPL=8 Fork Dispatching Interrupt 

7 Software Timer Service Routine Interrupt 

6 IPL=6 Fork Dispatching Interrupt 

5 Used to Enter XDELTA, also Interrupt 
Scheduling on VAX-11/782 

4 1/0 Postprocessing Interrupt 

3 Rescheduling Interrupt Kernel 

2 AST Delivery Interrupt Kernel 

Unused na 

• The software timer service routine performs timer operations that would 
bog the system down (because 1/0 device interrupts are blocked) if they 
were performed at IPL 24, the level at which the hardware clock interrupts. 

• The need for 1/0 postprocessing can be flagged by device driver interrupt 
service routines but the actual processing deferred while another pending 
1/0 request is started. 

• Rescheduling, the removal of the current process from execution and the 
selection of a new process for execution, is implemented as a software 
interrupt service routine. 

• The AST delivery interrupt is the only software interrupt that is treated as 
a process-specific interrupt rather than a system-wide event. 

Table 6-1 lists all the software interrupt levels used by the VAX/VMS operat­
ing system. 

6.2.1 Mount Verification Cancellation 
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If a Files-11 volume is mounted in a drive, and the corresponding device 
driver generates one of a select set of errors, mount verification is invoked. 
Mount verification allows the system to recover gracefully from certain er­
rors, rather than wait indefinitely or report a bugcheck. While mount verifi­
cation is in progress on a particular device, no other requests will be serviced 
by the ACP associated with that device. 
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If the device undergoing mount verification uses the same ACP as the sys­
tem disk, mount verification can effectively stall the system until the mount 
verification either completes or times out. This stall can occur because the 
ACP will not service any other requests. 

In order to abort mount verification, an IPL 12 interrupt must be requested 
from the console terminal. The interrupt service routine that serves the IPL 
12 interrupt prompts with the following prompt: 

IPC> 

At this point, commands can be issued to cancel mount verification or enter 
XDELTA. More information about canceling mount verification can be found 
in the VAX/VMS System Management and Operations Guide. 

6.2.2 Fork Processing 

Another use of software interrupts is found in the mechanism called fork 
processing employed by device drivers. The interrupt nesting scheme defined 
by the VAX architecture will not work correctly if an interrupt service rou­
tine lowers IPL below the level at which the interrupt occurred. However, 
device driver interrupt service routines, initially entered or invoked at device 
IPL (typically 20 to 23 decimal), often must perform lengthy processing that 
does not require device interrupts to be blocked, the usual reason for main­
taining high IPL. Some mechanism is required to allow device drivers to 
lower IPL without destroying the interrupt nesting scheme. 

Several IPL values ( 6, and 8 to 11) and their associated SCB slots are used by 
device drivers to allow them to continue their execution at lower IPL, as 
so-called fork processes. There are also six quadword listheads associated 
with the fork IPLs. (Because IPL 7 software interrupts are used by the soft­
ware timer, this listhead is not used by the fork processor but merely serves 
as a place saver so that context indexed addressing can be used by the fork 
processor and the fork dispatcher with the IPL value as an index.) The queue 
elements that describe each individual operation that must be performed at 
lower IPL are called fork blocks and are used to pass context between driver 
interrupt service routines and the fork level software interrupt service rou­
tines. A fork block (pictured in Figure 6-2) is often part of a larger structure 
such as a unit control block. 

When a driver must lower its IPL (by creating a fork process), it calls rou­
tine EXE$FORK with RS containing the address of the fork block. That rou­
tine saves the driver context (R3, R4, and saved PC) in the fork block, inserts 
the fork block into the appropriate fork queue, and requests a software inter­
rupt at the requested IPL level. The actual instructions in routine EXE$FORK 
that perform these functions are listed here to illustrate how work queues 
and software interrupt requests are managed. 
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Figure 6-2 
Layout of Fork Block 

EXE$FORK:: 
MOVQ 
POPL 
MOVZBL 
MOVAQ 
INSQUE 
SOFT INT 
RSB 

R3,FKB$L_FR3(RS) 
FKB$L_FPC(RS) 
FKB$B_FIPL(RS),R~ 

w'sWT$GL_FQFL-<6*B>[R~), R3 
(RS),@~(R3) 

R~ 

The fork dispatcher, which is the software interrupt service routine that exe­
cutes in response to the requested interrupt, executes the following sequence 
of instructions (or a sequence much like it), which removes each queue ele­
ment in turn from the associated queue and processes it. This processing 
continues until the queue is empty, at which time the software interrupt is 
dismissed with an REI. R6 is loaded with the address of the fork queue lis­
thead before this sequence is executed. 

.ALIGN LONG 
EXE$FORKDSPTH:: 

PUSHL RS 
PUSHL R~ 

PUSHL R3 
PUSHL R2 
PUSHL R1 
PUSHL RD 
REM QUE @(R6) ,RS 
BVS 20$ 

10$: MOVQ FKB$L_FR3(RS),R3 
JSB @FKB$L_FPC(RS), 
REM QUE @(R6) ,RS 
BVC 10$ 
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20$: 

6.2.3 Software Timer 

POPR 
REI 

.END 

#AM<RO,R1,R2,R3,R~,RS,R6> 

Most of the timer operations in the VMS operating system execute in re­
sponse to a software interrupt at IPL 7. These operations are described in 
detail in Chapter 11. The use of software interrupts by the timer support 
routines is described here. 

When the hardware clock interrupt service routine (executing at IPL 24) 
determines that further service is required (due to quantum expiration or 
because the first element in the timer queue has come due), it requests a 
software interrupt at IPL 7 (IPL$_ TIMER). Unlike the fork queue described in 
the previous section, timer queue elements (TQEs) are not placed into the 
timer queue by an interrupt service routine. Rather, they are usually placed 
there by one of the timer-related system services (such as $SETIMR or 
$SCHDWK). The key to the timer queue is that the queue elements are or­
dered by expiration time so that only the first TQE has to be examined by the 
hardware clock service routine. 

The software interrupt service routine rechecks for quantum expiration 
and takes action if necessary. After any required quantum end processing has 
occurred, the software timer service routine examines the timer queue for 
any timer requests that have expired. Any timer queue element that has an 
expiration time earlier than the current system time is then removed from 
the timer queue and serviced. Because of the time ordering of the timer 
queue, this removal takes place from the beginning of the list. When no more 
expired timer queue elements remain (the expiration time of the first TQE in 
the queue is later than the current system time), the software interrupt is 
dismissed. Note that a second difference between this software interrupt 
service routine and fork processing is that the software timer service routine 
may leave timer queue elements (the ones that have not yet expired) in the 
queue when it dismisses the interrupt. For more information on timers and 
timer queues, see Chapter 11. 

6.2.4 1/0 Postprocessing 

When a device driver or FDT routine detects that a particular I/O request is 
complete, it calls a routine that places the I/O request packet (pointed to by 
R3) at the tail of the 1/0 postprocessing queue (located through global pointer 
IOC$GL_PSBL) and requests a software interrupt at IPL 4 (IPL$_IOPOST) if 
the queue was previously empty. The following instructions (from routine 

123 



Software Interrupts 

IOC$REQCOM in module IOSUBNPAG) show the similarities between the 
software interrupt requests for fork processing and 1/0 postprocessing. (Other 
routines that request an IPL$_IOPOST software interrupt, $QIO completion 
code and ACP routines, execute similar instructions.) 

INS QUE 
SOFTINT 

( R3) ,@l(IOC$GL_PSBL 
#IPL$_IOPOST 

The 1/0 postprocessing software interrupt service routine removes each IRP 
in tum from the beginning of the queue (located through global pointer 
IOC$GL_PSFL) and processes it. When the queue is empty, the IPL 4 soft­
ware interrupt is dismissed. The similarities between fork processing and I/O 
postprocessing are also found in their respective software interrupt service 
routines. The following instructions from module IOCIOPOST illustrate 
these similarities. 

IOC$IOPOST: : 
MOVQ 
MOVQ 
MOVQ 

IOPOST: REMQUE 
BVC 
MOVQ 
MOVQ 
MOVQ 
REI 

10$: 

RL; ,-(SP) 
R2 ,-(SP) 
RO,-(SP) 
@W'IOC$GL_PSFL, RS 
10$ 
(SP)+,RD 
(SP)+,R2 
(SP)+,RL; 

BRx IO POST 

; Complete processing of 
; this request 

6.2.5 Rescheduling Interrupt 
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The routine that removes a process from execution and selects the highest 
priority process for execution is invoked as a software interrupt service rou­
tine at IPL 3 (IPL$_SCHED) by the routine that makes a process computable. 
Whenever the state of a resident process becomes computable and its priority 
is greater than or equal to the priority of the current process, this software 
interrupt is requested. Because several processes could all become computa­
ble at effectively the same time, there could be multiple requests for this 
software interrupt service routine. 

The rescheduling interrupt is not totally independent of process context 
like the fork processing and 1/0 postprocessing interrupts, The SCB entry for 
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this interrupt indicates that it should be serviced on the kernel stack (see 
Table 6-1 ). In fact, its first operation is to remove the current process from 
execution with a SVPCTX instruction. However, that instruction performs a 
stack switch from the kernel stack to the interrupt stack so the rest of the 
rescheduling interrupt service routine is performed in system context. The 
operation of the scheduler, including a detailed description of the reschedul­
ing interrupt, is discussed in Chapter 10. 

Unlike fork processing or 1/0 postprocessing requests, there is no need to 
count requests for the rescheduling interrupt, because only one process can 
become current at a given time. The software priorities of the computable 
processes determine which of them is chosen for execution. The scheduler 
will select the process with the highest software priority. The rest of the 
processes will remain in the computable state until some system event oc­
curs that alters the scheduling balance of the system and causes one of these 
processes to be selected for execution. For example, if a higher priority proc­
ess were to become computable, an IPL 3 software interrupt would be re­
quested. (If the current process were to enter a wait state, a different path is 
taken through the scheduler, one that bypasses the software interrupt request 
and executes the code contained in the second half of the rescheduling inter­
rupt service routine.) 

6.2.6 AST Delivery Interrupt 

The software interrupt that indicates that there is an AST to deliver differs in 
several respects from the other software interrupts. 

• The AST delivery interrupt is associated with a specific process and is 
serviced on the kernel stack of that process. 

• The interrupt request is made in two steps. Routines that recognize that 
there is an AST that can be delivered to a process indicate that by writing 
the access mode associated with the AST into a per-process privileged reg­
ister called the AST level register (PR$_ASTLVL). The REI instruction 
compares the contents of this register with the access mode that it is re­
storing to determine whether to request an IPL 2 software interrupt. 

• As this mechanism suggests, IPL 2 software interrupts have a second di­
mension associated with them, namely access mode. 

The use of ASTs in the VMS operating system is so important and complex 
that it is described in a separate chapter (Chapter 7). 
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There's absolutely no reason for being rushed along with the 
rush. Everybody should be free to go very slow .... What you 
want, what you're hanging around in the world waiting for, is for 
something to occur to you. 

-Robert Frost 

Asynchronous system traps (ASTs) are a mechanism for signaling asynchro­
nous events to a process. Specifically, a procedure (or routine) designated by 
either the process or the system executes in the context of the process. ASTs 
are created in response to system services such as $QIO, $SETIMR, and 
$DCLAST. Additionally, unrequested ASTs occur as implicit results of other 
operations such as I/O completion, process suspension, and obtaining infor­
mation about another process with the Get Job/Process Information 
($GETJPI) system service. The reason that ASTs are used for these operations 
is that it is necessary for code to execute in the context of a specific process. 
ASTs fulfill this need. 

AST enqueuing is a system event that may result in a rescheduling inter­
rupt. AST delivery occurs in the context of the process that is to actually 
receive the AST. This chapter discusses how ASTs are enqueued and deliv­
ered to a process. Several examples of how ASTs are used by the VMS operat­
ing system are also included. 

7.1 HARDWARE ASSISTANCE TO AST DELIVERY 

The delivery of ASTs is an example of the VAX hardware providing assistance 
to the VMS operating system. Three hardware components or mechanisms 
contribute to AST delivery: 

• The REI instruction 
• The PR$_ASTL VL processor register 
• The IPL 2 software interrupt 

The first two features are discussed in this section. The IPL 2 interrupt 
service routine, ASTDEL, is discussed in Section 7.3. 

7.1.1 REI Instruction 
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The return from exception or interrupt routine instruction, REI, provides the 
initial step in the delivery of an AST to a process. Among the operations 
performed by the REI microcode are the following. 



7.2 Queuing an AST to a Process 

1. A check is made to determine which stack will be active after the return. 
No ASTs are delivered if the interrupt stack is active. 

2. The value in the AST level processor register, PR$_ASTLVL, is compared 
with the access mode to which control is being passed. If the destination 
access mode number is less than the value in PR$ _AS TL VL (that is, more 
privileged), no ASTs can be delivered. 

3. If the interrupt stack is not going to be used and the access mode number 
is greater than or equal to the PR$_ASTLVL value, then an AST can be 
delivered. The REI instruction microcode requests a software interrupt at 
IPL 2. (Note that the requested IPL 2 interrupt will not actually be granted 
until the IPL drops below 2.) The IPL 2 software interrupt service routine 
is found at global location SCH$ASTDEL (see Section 7.3). 

7.1.2 ASTLVL Processor Register (PR$_ASTLVL} 

The processor register, PR$_ASTLVL, is a per-process hardware register indi­
cating the deliverability of ASTs to the current process. PR$_ASTLVL is part 
of the hardware context of the process (loaded by LDPCTX) and is recorded in 
the hardware process control block (see Chapter 10). PR$_ASTLVL can con­
tain the following values: 

0 A kernel mode AST is deliverable. 
1 An executive mode AST is deliverable. 
2 A supervisor mode AST is deliverable. 
3 A user mode AST is deliverable. 
4 No AST is deliverable. 

Thus, if multiple ASTs are deliverable, PR$_ASTL VL contains the access 
mode value for the AST that has the innermost access mode. The null value 
of four is chosen so that the REI test, described above, will fail, regardless of 
the destination access mode of the REI instruction. If the access mode of the 
deliverable AST is at least as privileged as the destination access mode of the 
REI instruction, the AST delivery interrupt will be requested. 

7.2 QUEUING AN AST TO A PROCESS 

ASTs are queued to a process as the corresponding events· (I/O completion, 
timer expiration, and. so on) occur. The AST queue is maintained as a list 
structure of AST control blocks (ACBs) with the listhead contained in the 
software process control block (PCB) (see Figure 7-1). 

7.2.1 AST Control Block 

The AST control block (ACB) contains the following information necessary 
to deliver an AST to a process: 
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• The process identification and AST routine address 
• The correct access mode 
• The appropriate parameter to pass to the routine 

The ACB is allocated from nonpaged dynamic memory before the queuing 
of an AST to a process is requested. 

Figure 7-1 shows the format of an AST control block and the relevant soft­
ware PCB fields. ACB$L_ASTQFL and ACB$L_ASTQBL link the ACB into 
the AST queue for the process. The listhead of this queue is the pair of 
longwords PCB$L_ASTQFL and PCB$L_ASTQBL. The field ACB$B_RMOD 
provides five types of information. 

1. Bits <0:1> (ACB$V _RMOD) contain the value corresponding to the ac­
cess mode in which the AST routine is to execute. 

2. Bit <4> (ACB$V _PKAST) indicates the presence of a piggyback special 
kernel mode AST (see Section 7.2.4). 
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3. Bit <5> (ACB$V _NODELETE) indicates that the ACB should not be 
deallocated after the AST is delivered. Typically this bit indicates that the 
ACB is a portion of a larger structure. 

4. Bit <6> (ACB$V _QUOTA) indicates whether the allocation of the data 
structure is accounted for in the process AST quota, PCB$W _ASTCNT. 

5. Bit <7> (ACB$V _KAST) indicates the presence of a special kernel mode 
AST (see Sections 7.2.3 and 7.4). 

ACB$L_PID identifies which process is to receive the AST. ACB$L_AST 
and ACB$L_ASTPRM are the entry point of the designated AST routine and 
the AST parameter, respectively. ACB$L_KAST contains the entry point of a 
system-requested special kernel mode AST routine if the ACB$V _PKAST or 
ACB$V _KAST bit of ACB$B_RMOD is set (items 2 and 5 above). 

ACBs can be created by three types of action. 

1. The process explicitly declares an AST. The $DCLAST system service 
simply allocates an ACB, fills in the ACB information from its argument 
list, and requests the queuing of the ACB. The following checks are made 
before the ACB is queued: 

• The AST quota for the process is checked to make sure it is not ex­
ceeded by the request. 

• The access mode in which the AST routine is to execute is checked to 
make sure that it is no more privileged than the access mode from 
which the system service was called. 

The ACB$V _QUOTA bit is set to indicate that this AST is counted 
against the process AST quota, PCB$W _ASTCNT. 

2. The process requests an AST to be associated with an event such as the 
completion of a request (I/O or update section, lock management, or timer 
requests). System services such as these have arguments that include an 
AST routine entry point and an AST parameter. The delivery of an AST is 
accounted for in the PCB$W _ASTCNT field. The control block (ACB) is 
actually a reuse of the 1/0request packet (IRP), lock block (LKB), or timer 
queue element (TQE) used in the initial operation. (Compare the ACB 
format pictured in Figure 7-1 with the TQE format shown in Figure 11-1, 
the LKB format shown in Figure 13-1, or the IRP layout shown in the 
VAX/VMS Guide to Writing a Device Driver.) 

3. The system, or another process, can request an AST to execute code in the 
context of the selected process. Examples of this type of action include 1/0 
completion, Get Job/Process Information system service executed from 
another process, Forced Exit system service, expiration of CPU time 
quota, and working set adjustment as part of the quantum end event (see 
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Chapter 10). AST control blocks used in these situations are not deducted 
from the AST quota of the target process because of their involuntary 
nature. 

7.2.2 Access Mode and AST Queuing 

The ACB$V _RMOD bits of the ACB$B_RMOD field determine the inser­
tion position of an AST control block when it is queued to a process. The 
AST queue is maintained as a first-in/first-out (FIFO) list for each access 
mode. ASTs of different access modes are placed into the queue in ascending 
access mode order, that is, kernel mode ASTs first and user mode ASTs last. 
Special kernel mode ASTs precede normal kernel mode ASTs. 

When the subroutine SCH$QAST (in module ASTDEL) is invoked, the pre­
allocated and preinitialized AST control block is inserted into the AST queue 
of the appropriate process at IPL$_SYNCH. The following steps are then 
performed. 

1. If the process is nonexistent, the ACB is deallocated and the AST event is 
ignored. An error status code is returned. 

2. If the AST queue is empty (the contents of PCB$L_ASTQFL are equal to 
its address), the ACB is inserted as the first element in the AST queue. 

3. Otherwise, the queue elements (ACBs) are scanned until either the end of 
the queue is reached or an ACB is found with an access mode less privi­
leged than the one being inserted (that is, the ACB$V _RMOD value is 
higher). The new AST control block is inserted at this point. Thus, ASTs 
are first-in/first-out within an access mode and grouped by access mode in 
decreasing amount of privilege. User mode ASTs are always placed at the 
tail of the queue. 

7.2.3 Special Kernel Mode ASTs 

Special kernel mode ASTs represent a fifth type of AST. They are maintained 
as a separate group in the AST queue. Special kernel mode ASTs are indicated 
by the ACB$V _KAST bit of the ACB$B_RMOD field. Insertion of a special 
kernel mode AST will occur after any previous special kernel mode ASTs, 
but before any normal ASTs of any access mode (including kernel). The orga­
nization of the AST queue is shown in Figure 7-2. 

Section 7.4 discusses special kernel mode ASTs more fully and provides 
several examples. 

7.2.4 Piggyback Special Kernel Mode ASTs 

130 

Piggyback special kernel mode ASTs (PKASTs) are a new form of AST deliv­
ery used in VAX/VMS Version 3. PKASTs allow a special kernel mode AST to 
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ride piggyback in the ACB$L_KAST field of a normal mode AST. Piggyback 
special kernel mode ASTs are inserted in the AST queue according to the 
mode of the normal mode AST on which they ride. 

When the normal AST becomes deliverable, the information in the ACB is 
saved and the special kernel mode AST is delivered first. When the special 
kernel mode AST returns, the normal mode AST is called. 

There are reasons for using piggyback special kernel mode ASTs: 

1. It is faster to deliver two ASTs from one interrupt than to deliver two 
ASTs separately. 

2. There are times when delivering an AST requires some additional work in 
kernel mode in the context of the calling process. Piggyback special kernel 
mode ASTs reduce the work involved in this operation. 

The lock manager uses piggyback special kernel mode ASTs to load the 
fields of the caller's lock status block and lock value block. In order to 
copy the information from the lock manager's database to the caller's 
process space, a piggyback special kernel mode AST is required. 

3. A piggyback special kernel AST can be used to queue other normal mode 
ASTs to a process. The lock manager uses this feature to deliver both 
blocking and completion ASTs to one process. The terminal driver uses 
piggyback special kernel mode ASTs to requeue out-of-band ASTs (thus 
making them repeating). 

7.2.5 Computation of a New Value for ASTLVL 
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An AST can be enqueued to a process at any time, because the software PCB 
and the AST control blocks are neither paged nor swapped. Each time an AST 
control block is inserted into the queue, the assignment of a value to 
ASTL VL (processor register and hardware PCB field) is attempted. However, 
the process can be in any one of three possible situations that determine to 
what degree the state of the AST queue can be updated. 

• If a process is outswapped, the ASTLVL cannot be updated because the 
process header (including the hardware process control block) is not availa­
ble. When the process becomes resident and computable at a later time, 
ASTL VL will be calculated by the swapper (by invoking SCH$NEWL VL in 
module ASTDEL). 

• If the process is memory resident but not currently executing, the new 
value for ASTLVL will be recorded in the hardware PCB field but not in the 
processor register. 

• If the process is currently executing, the new ASTL VL value will be stored 
in both the hardware PCB field and the processor register, PR$_ASTL VL. 
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The ASTLVL value indicates the deliverability and access mode of the first 
pending AST in the queue, There is no indication of the deliverability of any 
other pending ASTs. ASTLVL is calculated in the following steps: 

• If the AST queue is empty, ASTLVL is set to 4. 
• If the AST queue is not empty and the first ACB is for a special kernel 

mode AST (see Sections 7.2.3 and 7.4), then ASTLVL is set to O. 
• If the AST queue is not empty and the first ACB is for a normal mode AST, 

ASTLVL is set to the access mode of that ACB (the value contained in 
RMOD). 

7.3 DELIVERING AN AST TO A PROCESS 

An AST is delivered to a process when an REI instruction determines (from 
the destination access mode and the PR$_ASTLVL register) that a pending 
AST is deliverable (see Sections 7.1 and 7.2). A software interrupt is requested 
at IPL 2. The amount of time before the AST is actually delivered is depend­
ent upon the interrupt activity of the system. When IPL finally drops below 
two, the AST delivery interrupt service routine will be executed. 

Note that a rescheduling interrupt at IPL 3 may be requested and granted, 
prior to the granting of the IPL 2 AST delivery interrupt request. Thus, it is 
possible for a spurious AST delivery interrupt to be granted in the context of 
a different process than was originally requested. Such spurious AST inter­
rupts are detected and ignored. 

7.3.1 AST Delivery Interrupt 

Routine SCH$ASTDEL (in module ASTDEL) is the IPL 2 interrupt service 
routine. Its function is to remove the first pending AST from the queue and 
execute the appropriate AST routine in the correct access mode. 

SCH$ASTDEL performs the following operations: 

1. After raising the IPL to SYNCH, the first AST control block is removed 
from the AST queue of the process. If the queue was empty, the routine 
sets ASTL VL to 4 and exits with an REI instruction. This test detects 
spurious AST delivery interrupts. 

2. The removed ACB is tested for a special kernel mode AST (using 
ACB$V _KAST in ACB$B_RMOD). If the AST is a special kernel mode 
AST, a shortened sequence of steps occurs: 

a. IPL is dropped from SYNCH to IPL$_ASTDEL (IPL 2). 
b. The special kernel mode routine is executed by a JSB instruction with 

the ACB address in RS and the PCB address in R4. 
c. On return from the special kernel mode routine, SCH$ASTDEL returns 

to step 1. 

133 



AST Delivery 

134 

3. If the AST removed from the queue is not a special kernel mode AST, then 
a check is made to confirm that the mode of the AST is at least as privi­
leged as the destination of the REI instruction that initiated AST delivery. 
This test is accomplished by checking the saved PSL on the kernel stack. If 
the mode of the AST is not correct, the ACB is reinserted at the head of the 
queue and the routine exits through the REI instruction, setting the new 
ASTLVL; these tests detect spurious AST delivery interrupts. Similar 
checks are made for already active ASTs (PCB$B_ASTACT, which insures 
that an AST is not interrupted by another AST at the same access mode) 
and for disabled access modes (cleared bits in PCB$B_ASTEN indicate 
that the access mode that corresponds to the bit cannot receive .ASTs). 

4. If the AST is deliverable, then the following operations are performed be­
fore dispatching to the AST routine. 

a. The bit corresponding to the current access mode in PCB$B_ASTACT 
is unconditionally set. 

b. If the ACB is accounted for in the PCB$W _ASTCNT quota, then the 
count is incremented to show delivery of the AST and deallocation of 
the ACB to nonpaged pool. 

c. ASTL VL is recomputed because the removal of the first ACB alters the 
state of the AST queue. The new value of ASTL VL is the access mode of 
the current process plus one (the next outer mode). The access mode is 
calculated in this manner in order to prevent another AST interrupt 
when SCH$ASTDEL executes its REI to EXE$ASTDEL. ASTL VL is 
computed more precisely when the AST procedure is done, based on the 
access mode of the first ACB in the queue. 

d. IPL is dropped to ASTDEL. 
e. A kernel mode AST does not require changing access mode, and the 

appropriate stack is already active. For executive, supervisor, and user 
mode ASTs, however, the inactive stack pointer is obtained. 

f. An argument list (described in the next section) is built on the stack of 
the AST's access mode. 

g. For ASTs for the outer three access modes, a PC/PSL pair of longwords 
is built on the kernel stack. The stored PC is the location EXE$ASTDEL, 
the AST dispatcher. The stored PSL contains the access mode in which 
the AST is to be delivered in both its current mode and previous mode 
fields. 

h. If a piggyback special kernel mode AST is associated with the current 
AST, the special kernel mode AST routine is dispatched through a JSB 
instruction with the ACB address in RS and the PCB address in R4. 
When the AST routine returns, processing continues with the next 
step. 

i. If a piggyback special kernel mode AST does not exist, the bit 
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ACB$V _NODELETE is tested. If the bit is set, processing continues 
with the previous step; if the bit is not set, the ACB is deallocated and 
returned to nonpaged dynamic memory. 

j. EXE$ASTDEL executes in the access mode of the AST. For kernel 
mode, this merely requires dropping the IPL to zero. For the other ac­
cess modes, transfer of control and change of access mode is accom­
plished through an REI instruction, the only way to reach a less privi­
leged access mode (see Figure 1-4). (The PC and PSL used by the REI 
instruction are described above in item 4g.) A CALLG instruction is 
executed, transferring control to the AST procedure, with the argument 
pointer (AP.) pointing to the argument list. 

7.3.2 Argument List 

User-written ASTs are procedures, which means that they can be written in 
any language. The procedures must begin with an entry mask and return 
control to their caller (the AST dispatcher) with a RET instruction. 

Figure 7-3 shows the argument list passed to an AST procedure by the 
interrupt service routine, ASTDEL. The AST parameter is obtained from the 
ACB where it was initially stored by a system service such as $QIO, 
$SETIMR, or $DCLAST. The parameter was originally an argument to that 
system service. The interpretation of the AST parameter is dependent on the 
application. 

The general purpose registers, RO and Rl, are saved in the argument list 
because the procedure calling convention does not require that they be saved. 
The asynchronous nature of ASTs implies that the RO and Rl contents are 
unpredictable and cannot be destroyed. The registers are saved and restored 
by the AST delivery mechanism. 

The saved PC and PSL values are the register contents originally saved 
when the IPL 2 interrupt was initiated by the hardware. The values are nor-
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Argument List Passed to AST by Dispatcher 
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mally the pair that was about to be used by the original REI instruction re­
questing the AST delivery. 

7.3.3 AST Exit Path 
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When the AST routine issues the RET instruction, control is returned to the 
location EXE$ASTRET in the access mode of the AST. The call frame, but 
not the argument list, was removed from the current stack by the RET in­
struction. The argument list remains because a CALLG rather than a CALLS 
instruction was used to execute the AST routine. The following steps then 
occur. 

1. The argument count and the AST parameter are removed from the stack, 
leaving the RO, Rl, PC, and PSL values. 

2. The following instruction is executed: 

CHMK #ASTEXIT 

This instruction invokes the change-mode-to-kernel system service dis­
patcher, CMODSSDSP (described in Chapter 9). The service code of zero 
(ASTEXIT = O) causes the normal kernel mode dispatching mechanism to 
be bypassed. 

3. In place of the kernel mode dispatching mechanism, the following actions 
are performed while in kernel mode: 

• The IPL is raised to SYNCH. 
• The appropriate PCB$B_ASTACT bit is cleared to signal AST comple­

tion. 
• The ASTL VL value is recomputed. 

These fields can only be written from kernel mode. Thus, it is necessary 
for the AST dispatcher to reenter kernel mode after the AST returns con­
trol to the dispatcher and before the AST delivery interrupt is dismissed. 

4. An REI instruction, still in module CMODSSDSP, drops the IPL to zero, 
and returns the access mode to that of the AST. 

5. Code in the module ASTDEL resumes at the previous access mode and IPL 
0 with the following steps: 

• The saved values in RO and Rl are restored. 
• Another REI instruction is issued. 

The REI instruction returns control to the access mode and location origi­
nally interrupted by AST delivery. 

Note that the REI instructions in CMODSSDSP and ASTDEL may cause 
another IPL 2 interrupt to occur, depending upon the ASTL VL value and the 
access mode transitions. 
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7.4 SPECIAL KERNEL MODE ASTs 

Special kernel mode ASTs are different from normal ASTs in several ways: 

1. The ASTs represent system actions that must occur in the context of the 
process. These actions are frequently requested when the process is not 
currently executing. 

2. The special kernel mode AST routines are dispatched at IPL 2 and execute 
at that level or higher. Synchronization is provided by the interrupt mech­
anism itself, rather than requiring additional PCB$B_ASTACT and 
PCB$B_ASTEN bits. Only one special kernel mode AST can be active at 
any moment because the AST delivery interrupt is blocked. 

3. The special kernel mode AST routines are invoked by a JSB instruction 
rather than a CALLG instruction. There is no argument list (the PCB ad­
dress is in R4 and the ACB address is in RS). When the special kernel mode 
AST routine executes its RSB instruction, the stack must be in its original 
state (when the special kernel mode AST routine was called). The routine 
must also save and restore general registers R6 through Rl l. 

4. The AST routine is responsible for the deallocation of the ACB (to non­
paged pool). (For normal ASTs, this deallocation is done by the AST deliv­
ery routine.) 

5. On return from the AST routine (with an RSB instruction), the AST queue 
is checked once more (in case a special kernel mode AST queued a normal 
AST to the process). If the queue is empty, an REI instruction is executed. 
This instruction attempts to pass control to the originally interrupted 
PC/PSL pair. IPL will drop from two to zero at the same time. 

The next five sections briefly describe five examples of the special kernel 
mode AST mechanism. 

7.4.1 1/0 Postprocessing in Process Context 

Part of the sequence of completing an I/O request involves the delivery of a 
special kernel mode AST to the requesting process. I/O postprocessing is 
described in the. VAX/VMS Guide to Writing a Device Driver. This request is 
made by the IPL 4 (I/O postprocessing) interrupt service routine by queuing 
the former I/O request packet as an ACB. The operations performed by the 
I/O completion AST routine are those that must execute in process context, 
particularly those that reference process virtual addresses. The primary oper­
ations (executed at IPL 2) are the following. 

1. For buffered read I/O operations only, the data is moved from the system 
buffer to the user buffer, and the system buffer is deallocated to nonpaged 
dynamic memory. 

2. The buffered or direct 1/0 count field of the process header is incremented 
for accounting information. 
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3. If a user diagnostic buffer was specified, the diagnostic information is 
moved from the system diagnostic buffer before it is deallocated. 

4. The channel control block (in the control region) is updated to show I/O 
completion. Updating the CCB may make the channel idle. 

5. The event flag associated with the I/O request is set. 
6. If an I/O status block (IOSB) was specified, the IOSB is written using infor­

mation in the I/O request packet. 
7. If an AST was specified with the $QIO request, then the ACB$V _QUOTA 

bit was set in the IRP. The AST procedure address and the optional AST 
parameter were originally stored in the IRP (now an ACB). The former IRP 
is queued to the process once again in the access mode of the requesting 
process. 

8. Otherwise, the IRP/ACB is deallocated to nonpaged dynamic memory. 

7.4.2 Process Suspension 

When a $SUSPND system service request specifies a process other than the 
requesting process, the suspend mechanism requires a special kernel mode 
AST to enter the context of the target process. 

When the special kernel mode AST is delivered, the following actions are 
performed: 

1. The ACB is deallocated to nonpaged dynamic memory. 
2. After raising IPL from ASTDEL (IPL 2) to SYNCH, the PCB$V _RESPEN 

bit is cleared. If a request to resume from the $RESUME system service 
was pending, then the resume request has precedence. That is, the AST 
routine exits without suspending the process (after dropping IPL back to 
ASTDEL). 

3. If no resume request was pending, then the process is placed into the SUSP 
wait state. The process hardware context is saved with a SVPCTX instruc­
tion (described in detail in Chapter 10). The process quantum field in the 
process header is charged with a voluntary wait interval (determined by 
the special system parameter IOTA, described in Chapter 10). The time at 
which the process enters the wait state is stored in the process header at 
offset PHD$W _ WAITIME. Control is passed to the scheduler at 
SCH$SCHED to select the next process for execution. 

When the process finally executes again (after a $RESUME system service 
call), the PCB$V _SUSPEN bit is unconditionally cleared and the process is 
made computable. 

7.4.3 Process Deletion 
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The major portion of the steps involved in process deletion occur in a special 
kernel mode AST routine queued in response to a $DELPRC system service 
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call. A detailed explanation of process deletion is provided in Chapter 22. The 
use of the special kernel mode AST mechanism provides the following: 

• Execution as the current process is accomplished by AST delivery. Almost 
all waiting processes are made computable by AST delivery (see Chapter 
10), with the exception of suspended processes. The $DELPRC service en­
sures the deletion of a suspended process by issuing a $RESUME first. 

Execution as the current process is required for process virtual address 
translation and other operations that require process context (particularly 
in obtaining the information contained in the control region). 

• The delivery of deletion ASTs cannot be prevented by the $SETAST sys­
tem service. A process can only avoid deletion by raising IPL to ASTDEL 
(IPL 2) or above to prevent all AST deliveries. Because IPL can only be 
elevated while in kernel mode, only privileged processes, or the system 
acting on behalf of some process, can explicitly prevent process deletion. 

7.4.4 $GETJPI System Service 

The $GETJPI system service is described in Chapter 30. When information is 
requested for a process other than the requesting process, the targe.t process 
must execute to establish process context. In addition, if the target process is 
outswapped, the enqueuing of the special kernel mode AST will make the 
process an inswap candidate. This action brings in both the working set and 
the process header (where much of the accounting information is main­
tained). 

In general terms, the $GETJPI AST activity is as follows. 

1. An ACB is constructed for a special kernel AST. A system buffer is also 
allocated and a pointer to it is placed in the ACB. 

2. When the special kernel mode AST routine executes in the context of the 
target process, the requested information is moved into the system buffer. 
(The requests had been encoded in the ACB.) The ACB is then reset to 
deliver a special kernel mode AST back to the requesting process. 

3. The second special kernel mode AST moves data from the system buffer 
into a user buffer in the requesting process. Other actions include the 
following: 

• Deallocating the system buffer 
• Setting an event flag 
• Delivering an AST in the access mode of the caller, if requested 

4. If an AST is delivered, the ACB is used for the third time. If no AST is 
delivered, then the ACB is deallocated. 
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7.4.5 Power Recovery ASTs 

Another example of the use of special kernel mode ASTs occurs in the imple­
mentation of power recovery ASTs, a tool that enables processes to receive 
notification that a power failure and successful restart have occurred. (Power 
failure and power recovery are described in Chapter 27.) 

When a successful power recovery occurs, all processes that have estab­
lished a power recovery AST are notified first with a special kernel mode 
AST. This AST retrieves information from the Pl pointer page that allows 
the user-requested AST to be delivered. The AST is required because Pl space 
information is only available from process context. 

7.4.6 Other System Use of ASTs 

Three other features within the executive are implemented through ASTs, 
but these ASTs are not special kernel mode ASTs. The automatic working set 
adjustment that takes place at quantum end is implemented with normal 
kernel ASTs. (See Chapter IO for information on quantum end activities and 
Chapter 16 for detailed description of of automatic working set adjustment.) 
CPU time limit expiration is implemented with potentially multiple ASTs. 
Beginning with user mode, the AST procedure calls the $EXIT system serv­
ice. If the process is not deleted, a supervisor mode time expiration AST is 
queued. This loop continues with higher access modes until the process is 
deleted. The Force Exit system service (see Chapters 12 and 21) causes a user 
mode AST to be delivered to the target process. 

7.5 ATTENTION AND OUT-OF-BAND ASTs 

Two other categories of AST use are the mechanisms for serving attention 
and out-of-band ASTs. Attention ASTs and out-of-band ASTs are used in 
association with I/O operation to notify processes or routines that an unsolic­
ited event has occurred on a device. Out-of-band ASTs are described in Sec­
tion 7.5.5. 

7.5.1 Set Attention Mechanism 
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In order to establish an attention AST for a particular device (whose driver 
supports this function), the user must issue a $QIO system service request 
with the I/O function IO$_SETMODE (or IO$_SETCHAR for some devices). 
The kind of attention AST requested is indicated by a function modifier. 

The following steps are provided by the routine COM$SETATTNAST in 
module COMDRVSUB. (This routine requires process context and so is 
called only from device driver FDT routines.) 
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1. If the user AST routine address (the $QIO Pl parameter) is zero, the re­
quest is interpreted as a flush attention AST list request (see Section 7.5.3). 

2. An expanded ACB is allocated from nonpaged dynamic memory. The ACB 
is deducted from the process quota, PCB$W _ASTCNT. 

3. Information from the I/O request packet (such as the AST routine entry 
point, AST parameter, device channel number, and process ID) is moved 
into the ACB. 

4. IPL is raised to UCB$B_DIPL, the IPL at which this list is synchronized. 
The ACB is linked to the unit control block (UCB) of the associated device 
in a singly linked, last-in/first-out (LIFO) list. 

7.5.2 Delivery of Attention ASTs 

The occurrence of a situation for which attention ASTs have been defined 
causes the delivery of all such attention ASTs. The mechanism of delivery is 
implemented in the routine COM$DELATTNAST of module COM­
DRVSUB. COM$DELATTNAST is usually invoked by a device driver at de­
vice IPL (IPL 20 through 23), after specifying which list of attention AST fork 
blocks/ ACBs is to be used. 

Each ACB is originally formatted as a fork block with the AST information 
located at different offsets. Figure 6-2 shows the layout of a fork block. The 
control block contains relevant additional information such as saved PC, R3, 
and R4 values, the channel number for the device, and the IPL value for 
processing the AST (IPL$_QUEUEAST =IPL 6). During fork processing, the 
control block is reformatted into a standard ACB. 

When COM$DELATTNAST begins execution, the CPU is usually execut­
ing at device IPL. The queuing of ASTs is an operation using IPL$_SYNCH as 
a synchronization mechanism (see Chapter 2). Specifically, IPL must be 
raised to SYNCH. To accomplish correct synchronization, the IPL 6 fork dis­
patcher is used. 

The following steps summarize the delivery of attention ASTs: 

1. At IPL 20 through 23, each attention AST fork control block/ ACB is re­
moved from the appropriate list in the reverse order of declaration. 

2. The routine invokes the FORK system macro to dispatch to EXE$FORK. 
EXE$FORK queues the fork block to the listhead defined by the fork IPL 
field and requests an interrupt at that IPL. 

3. As the interrupt priority level of the CPU drops below six, the fork inter­
rupt is taken. The IPL$_QUEUEAST fork dispatcher removes each fork 
control block from its queue and passes the control block back to a loca­
tion in COM$DELATTNAST at IPL 6. 

4. At IPL 6, the fork control block is then reformatted into an ACB, repre­
senting an AST in the access mode of the original requesting process. 
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5. The ACB is then queued to the process through SCH$QAST (which will 
immediately raise IPL to IPL$_SYNCH in order to synchronize access to 
the ACB listhead and the scheduler database). 

7.5.3 Flushing an Attention AST List 

The list of attention ASTs is flushed as the result of an explicit user request, a 
cancel 1/0 request, or a deassign channel request for the associated device. 

An explicit user request to flush the attention AST list is performed as the 
result of a set attention AST request with an AST routine address of zero (see 
Section 7.5.1). COM$SETATTNAST then branches to COM$FLUSHATTNS. 

Device drivers can request the flushing of the attention AST list by either 
invoking COM$SETATTNAST with an AST routine address of zero or by 
directly invoking COM$FLUSHATTNS with the channel number of the de­
vice in R6. 

COM$FLUSHATTNS performs the following operations. 

1. The IPL is raised to the hardware IPL of the device (IPL 20 through 23). 
2. As each control block in the attention AST list is found, the process ID of 

the process requesting the flushing operation is compared with the process 
ID stored in the control block. An AST control block is retained in the 
attention AST list if the process IDs do not match. 

3. If the process IDs match, then the channel numbers must match. One 
channel number is passed in R6 from the flush request, and the other is in 
the control block from the declaration of the AST. If the channel numbers 
do not match, then the control block is retained in the attention AST list. 
Otherwise, the control block is removed from the attention AST list. 
Control blocks are therefore removed for a specific process on a specific 
channel. 

4. IPL is dropped from device interrupt level (IPL 20 through 23). 

5. The ASTCNT quota is incremented to indicate deallocation of the control 
block. 

6. The control block is deallocated to nonpaged dynamic memory. This oper­
ation requires execution through the fork dispatcher at IPL$_QUEUEAST 
to insure proper synchronization with IPL. (Actual deallocation is done at 
IPL 11 as described in Chapter 3.) 

7. Processing continues until the entire attention AST list has been scanned. 

7.5.4 Examples in the VAX/VMS Executive 
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Two devices that commonly have attention ASTs associated with them are 
terminals and mailboxes. Brief descriptions of the support for attention ASTs 
in these device drivers are given here. 
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Terminal Driver and CTRL/Y Notification. The terminal IO$_SETMODE 
and IO$_SETCHAR functions may take either I0$M_CTRLCAST or 
IO$M_CTRLYAST function modifiers. When a CTRL/C is typed on a termi­
nal, the CTRL/C attention AST list is emptied by delivering each CTRL/C 
AST associated with the terminal. If no CTRL/C attention AST is declared, 
then the CTRL/C is interpreted as a CTRL/Y and the CTRL/Y AST list is 
searched instead. If a CTRL/Y is typed, only the CTRL/Y attention AST list 
is emptied. 

Because the list is emptied each time a CTRL/Y or a CTRL/C is typed, both 
CTRL/C and CTRL/Y attention ASTs must be reenabled each time they are 
delivered to a process. In contrast, out-of-band ASTs are repeating. That is, 
once declared, out-of-band ASTs can be delivered to the process for the life of 
the process, or until the Cancel system service is called to flush the AST list. 

Mailbox Driver. The IO$M_READATTN and I0$M_WRTATTN function 
modifiers provide notification of mailbox requests from other processes. 
I0$M_ WRTATTN provides notification of unsolicited input to a mailbox. 
IO$M_READATTN notifies the enabling process when any process issues a 
read to a mailbox when no message is available. 

Multiple attention ASTs of each type may be declared by processes for the 
same mailbox. When a condition corresponding to an attention AST occurs 
in a mailbox, all ASTs of the appropriate type are delivered. Only the first 
process to issue a responding I/O request will be able to complete the transfer 
of data signaled by the attention ASTs. 

Read and write attention ASTs must be reenabled after delivery because 
the entire attention AST list is delivered (and removed) after each occurrence 
of the specified condition. 

7.5.5 Out-of-Band ASTs 

7.5.5.1 

In VAX/VMS Version 3.0 a new form of AST mechanism was introduced 
specifically for the terminal driver. Routines establish out-of-band ASTs in 
order to intercept control characters received from the terminal (ASCII codes 
00 through 20 [hex]) and to perform special processing as a result of the con­
trol character being typed. This mechanism is intended to supplement the 
attention AST mechanism described in Section 7.5, which applies only to the 
characters CTRL/C and CTRL/Y (ASCII codes 03 and 19 [hex]) in the termi­
nal driver. 

Set Out-of-Band AST Mechanism. The mechanism of out-of-band ASTs is 
similar in many ways to that of attention ASTs. Out-of-band ASTs are estab­
lished by issuing the $QIO system service, specifying IO$_SETMODE (or 
IO$_SETCHAR) with the function modifier IO$M_OUTBAND. Like atten-
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tion ASTs, the list of out-of-band ASTs is linked to the unit control block 
(UCB) of the associated terminal. 

The following steps are performed by the routine COM$SETCTRLAST in 
module COMDRVSUB. (This routine requires process context, so it can be 
called from device driver FDT routines only.) 

• If the user AST routine address (the $QIO Pl parameter) is zero, or if the 
character mask (the $QIO P2 parameter) is zero, the request is interpreted 
as a flush out-of-band AST list request (see Section 7.5.5.3). 

• The list of out-of-band ASTs is scanned, searching for an out-of-band AST 
control block with the same characteristics as the caller. The following 
items are checked: 

-The process ID (PID). Out-of-band ASTs can be issued to the same ter­
minal device from a process and its subprocesses (which will have differ­
ent PIDs). 

- The channel number. 
- The character mask. 

If an out-of-band AST control block is found with the same characteristics, 
the request is interpreted as a request to modify the existing out-of-band AST 
control block. If a similar out-of-band AST control block is not found, a new 
control block is allocated from nonpaged dynamic memory. The ACB in the 
out-of-band AST control block is deducted from the process AST quota, 
PCB$W _ASTCNT. 

• Information from the I/O request packet (such as the AST routine entry 
point, AST parameter, device channel number, and process ID) is moved 
into the out-of-band AST control block. 

• The out-of-band AST control block is placed on the tail of the control 
block list. 

• The character mask is ORed into the out-of-band AST summary mask. 

Delivery of Out-of-Band ASTs. When a control key is typed at a terminal, a 
check must be made to see if an out-of-band AST has been enabled for that 
key. The character typed is compared with the out-of-band AST summary 
mask. If the bit in the summary mask is set, an out-of-band AST has been 
declared for that control character and the AST is delivered. The mechanism 
of delivery is implemented in the routine COM$DELCTRLAST of module 
COMDRVSUB. COM$DELCTRLAST is invoked by the terminal driver at 
device IPL. 

Each out-of-band AST control block is originally formatted as a fork block 
with the AST fields located at different offsets. (The first six longwords of the 
unit control block pictured in the VAX/VMS Guide to Writing a Device 
Driver are the most common example of a fork block.) The control block 
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contains relevant additional information, such as: the saved PC, R3, and R4 
values; the channel number for the device; and the IPL value for processing 
the AST (IPL$_QUEUEAST =IPL 6). During fork processing, the out-of-band 
AST control block is reformatted into a standard ACB. 

When COM$DELCTRLAST begins execution, the CPU is executing at 
device IPL. ASTs are queued using IPL$_SYNCH as a synchronization mech­
anism (see Chapter 2). Specifically, IPL must be raised to SYNCH. To accom­
plish correct synchronization, the IPL 6 fork dispatcher is used. 

The following steps summarize the delivery of out-of-band ASTs. 

1. At device IPL, the list of out-of-band AST control blocks is searched for a 
block whose character mask contains the character typed at the terminal. 
When a match is found, a bit in the out-of-band AST control block is 
checked to see if the control block is already in use. If the block is in use, it 
is skipped; if the block is not in use, it is marked in-use, the control block 
is modified to act as a fork block, and the block is queued to the IPL6 fork 
queue listhead. 

2. The routine invokes the FORK system macro to notify the fork dispatcher 
through the IPL 6 software interrupt. 

3. As the interrupt priority level of the CPU drops below six, the fork inter­
rupt is taken. The IPL$_QUEUEAST fork dispatcher removes each fork 
control block from its queue and passes the control block back to a loca­
tion in COM$DELCTRLAST at IPL 6. 

4. At IPL 6 the fork control block is then reformatted into an ACB, represent­
ing an AST in the access mode of the original requesting process. The no 
delete and piggyback special kernel mode AST flags are set in the ACB, 
and the special kernel mode AST field is loaded with the address of the 
piggyback special kernel mode AST. 

5. The ACB is then queued to the process through SCH$QUAST (which will 
immediately raise IPL to IPL$_SYNCH). 

6. When the process receives the ASTs, the piggyback special kernel mode 
AST is delivered first. The piggyback special kernel mode AST performs 
two functions: 

• It clears the busy bit. 
• If the out-of-band AST is marked as "lost," it is deallocated. "Lost" 

control blocks occur when a request to flush the AST list cannot deallo­
cate a control block because the busy bit is set (see Section 7.5.5.3). 
Once the AST is delivered and the busy bit is clear, the control block is 
no longer needed and can be deallocated. 

Flushing an Out-of-Band AST List. The list of out-of-band ASTs is flushed as 
the result of an explicit user request, a cancel I/O request, or a deassign chan­
nel request for the associated device. 
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An explicit user request to flush the out-of-band AST list is performed as 
the result of a set out-of-band AST request with an AST routine addresss of 
zero or a character mask of zero (see Section 7.5.5.1). COM$SETCTRLAST 
then branches to COM$FLUSHCTRLS. 

Device drivers can request the flushing of the out-of-band AST list by ei­
ther invoking COM$SETCTRLAST with an AST routine address of zero (or a 
character mask of zero) or by directly invoking COM$FLUSHCNTRLS with 
the channel number of the device in R6. 

COM$FLUSHCTRLS performs the following operations. 

1. The IPL is raised to the device IPL for the terminal. 
2. The list of out-of-band AST control blocks is scanned. As each control 

block is found, the process ID of the process requesting the flushing opera­
tion is compared with the process ID stored in the control block. An AST 
control block is retained in the out-of-band AST list if the process IDs do 
not match. 

3. If the process IDs match, then the channel numbers must match. One 
channel number is passed in R6 from the flush request; the other is in the 
control block from the declaration of the AST. If the channel numbers do 
not match, then the control block is retained in the out-of-band AST list. 

4. If the channel numbers match, the busy bit is checked. If the busy bit is 
set, the "lost" bit is set so that the control block will be deallocated once 
its AST is delivered. Otherwise, the control block is removed from the 
out-of-band AST list. 

5. IPL is dropped from device interrupt level. 
6. The ASTCNT quota is incremented to indicate deallocation of the control 

block. 
7. The control block is deallocated to nonpaged dynamic memory. This oper­

ation requires execution through the fork dispatcher at IPL$_QUEUEAST 
to insure proper synchronization with IPL. (The actual deallocation is 
done at IPL 11 as described in Chapter 3.) 

8. Processing continues until the entire out-of-band AST list has been 
scanned. 



8 Error Handling 

There is always something to upset the most careful of human 
calculations. 

-!hara Saikaku, The fapanese Family Storehouse 

There are several levels for reporting system-wide errors in the VMS operat­
ing system. (Process-specific and image-specific errors are handled by the ex­
ception mechanism described in Chapter 4.) 

• The error logging subsystem allows device drivers and other system com­
ponents to record errors and other events for later inclusion in an error log 
report. 

• The BUGCHECK mechanism is used by the VMS operating system to shut 
down the system in an orderly fashion when internal inconsistencies or 
other irrecoverable errors are detected. 

• A machine check is an exception that indicates that the processor has 
detected some CPU-specific error. 

8.1 ERROR LOGGING 

The error logging subsystem is used to record device errors, processor­
detected conditions, and other noteworthy events, such as volume mounts 
and system startups. 

8.1.1 Overview of the Error Logging Subsystem 

Error logging occurs in three steps. 

1. Components such as device drivers that wish to log an error call routines 
in the executive that write error messages into one of two buffers perma­
nently allocated in the executive image. 

2. When the buffer allocation routine detects that a buffer is full, it awakens 
the ERRFMT process so that the buffer contents can be written to the 
error log file SYS$ERRORLOG:ERRLOG.SYS. 

3. The contents of this file can be assembled into a report by the report gener­
ator utility SYE. 

8.1.2 Device Driver Errors 

There are two routines in the error log subsystem used by device drivers. 
ERL$DEVICERR is used to report device-specific errors. ERL$DEVICTMO 
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can be called by a driver to report a device timeout. In either case, the follow­
ing action is performed by the routines: 

1. An error message buffer is allocated. 
2. The buffer is loaded with information obtained from the unit control 

block and from the current 1/0 request packet. 
3. The driver is called at its register dump routine entry point to store de­

vice-specific information into the error message buffer. 

8.1.3 Other Error Log Messages 

The VMS operating system uses the error log subsystem to record other infor­
mation besides device errors. The kinds of items written to the error log 
include the following: 

• Warm start entries. These entries record successful recoveries from power 
failure. 

• Cold start entries. These entries record all successful system bootstrap 
attempts. 

• All bugchecks, fatal and otherwise. Bugchecks are described in the next 
section. 

• Machine check occurrences. 
• Volume mounts and dismounts. 
• Any messages written to the error message buffer by the Send Message to 

Error Logger system service. The use of this system service requires 
BUGCHK privilege. 

8.1.4 Operation of the Error Logger Routines 
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Error message buffer allocation occurs at IPL 31. This high IPL allows the 
allocation routine (ERL$ALLOCEMB) to be called from anywhere in the sys­
tem (including machine check handlers, which execute at IPL 31) without 
causing IPL problems. IPL is restored to the caller's IPL before control is 
passed back to the caller. 

There are two 512-byte buffers used for holding messages. A flip-flop 
switch (ERL$GB_BUFIND) indicates which of the two buffers is currently 
active. Allocation involves finding enough free space in the buffer indicated 
by ERL$GB_BUFIND to hold a message. When the current buffer is filled, 
the switch is thrown to activate the other buffer and the ERRFMT process is 
awakened to write the filled buffer to the error log file. 

After a message buffer is successfully allocated, its address is returned to 
the caller of the allocation routine, which loads the buffer with information 
specific to the message being logged. Once the information has been stored, a 
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second routine (ERL$RELEASEMB) is called to write more information into 
the message header, indicating that the message is valid. 

Waking the ERRFMT Process. The routine ERL$WAKE is called at least once 
a second from EXE$TIMEOUT (see Chapter 11 ). This routine is also called 
when one of the two log buffers is filled. The routine does not automatically 
wake the ERRFMT process. Rather, it decrements a counter (ERL$GB_ 
BUFTIM) and only wakes ERRFMT if the counter goes to zero. 

If the counter goes to zero, it is also reset. The current starting value for the 
error log timer is 30. (This value is an assembly-time parameter, not adjusta­
ble with SYSGEN.) That is, the routine can be called a maximum of 30 times 
before ERRFMT is awakened. Thus, a maximum of thirty seconds can elapse 
without ERRFMT's becoming computable, forcing error messages to be writ­
ten to the error log file at reasonable intervals, even on systems that have 
very few errors occurring. 

This timing mechanism· is exploited by the allocation and deallocation 
routines if they wish to force an awakening of ERRFMT. Either of these rou­
tines simply loads a 1 into ERL$GB_BUFTIM. The next call to ERL$WAKE 
(which must be done at IPL 7 and, thus, cannot be done directly either by the 
allocation or deallocation routine) is guaranteed to wake ERRFMT. 

The allocation routine forces a wake whenever it is forced to switch buffers 
because the current buffer is full. The buffer release routine forces a wake if 
the current message buffer contains ten or more messages. 

8.1.5 Cursory Overview of the ERRFMT Process 

The ERRFMT process copies a previously filled error message buffer to the 
error log file SYS$ERRORLOG:ERRLOG.SYS, as described by the following 
steps: 

• The contents of the message buffer are copied into the PO space of ERRFMT. 
This copying occurs at iPL 31 to synchronize with the allocation' subrou­
tine. 

• Once the message buffer contents are accessible in ERRFMT's address 
space, they can be put into a format acceptable to SYE, the error log report 
generator. The reformatted error messages are written to SYS$ERRORLOG: 
ERRLOG.SYS. 

• If a process has declared an error log mailbox, each message in the error log 
buffer is also sent to that mailbox. 

• If ERRFMT detects volume mounted or volume dismounted messages 
within the message buffer, it will send volume mounted or volume dis­
mounted message to terminals enabled as disk or tape operators. 

· After ERRFMT has completed its output operations, it reenters the hibernate 
(HIB) state. 
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8.1.6 Error Log Mailbox 

8.1.6.1 

8.1.6.2 

8.2 

The error logging subsystem provides the capability (currently available for 
internal use by DIGITAL) for a process to monitor error logging activity as it 
is happening rather than wait for offline processing with the formatting pro­
gram SYE. This capability is provided through an unsupported system service 
called Declare Error Log Mailbox (SYS$DERLMB). 

System Service Call. A process that has DIAGNOSE privilege can call the 
$DERLMB system service with a single argument, the unit number of the 
mailbox to receive error log messages. If the error log mailbox is not in use 
(the error log mailbox descriptor EXE$GQ_ERLMBX contains a zero), the 
unit number is stored in the first word of the mailbox descriptor and the PID 
of the requesting process is stored in the second longword. 

Note that the Declare Error Log Mailbox ($DERLMB) system service is not 
supported by DIGITAL, and is not documented in the VAX/VMS System 
Services Reference Manual. 

If this service is called with a unit number of zero, the descriptor is cleared, 
disabling the error log mailbox feature. The descriptor is also unconditionally 
cleared by the image rundown routine (see Chapter 21). 

Action of the ERRFMT Process. If the ERRFMT process detects that the error 
log mailbox feature is enabled, it sends each message that it extracts from the 
error log buffer to that established mailbox. Thus a process can monitor mes­
sages that the ERRFMT process is writing to the error log file. 

SYSTEM CRASHES (BUGCHECKS) 

When the VMS operating system detects an internal inconsistency, such as a 
corrupted data structure or an unexpected exception, it declares a bugcheck. 
If the system can continue running, a nonfatal bugcheck is declared, which 
results in an error log entry. Serious errors result in fatal bugchecks, through 
which the system is shut down in a controlled fashion. 

1. The contents of physical memory are written to the system dump file 
(unless inhibited by a SYSBOOT flag, DUMPBUG). 

2. After the system is halted, it may restart itself (again according to the 
setting of a SYSBOOT flag, BUGREBOOT). 

8.2.1 Bugcheck Mechanism 
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The path into the bugcheck routine appears in source code as the invQcation 
of the BUG_CHECK macro. This macro expands into opcode AXFF, a byte 
containing AXFE, and a word containing the particular bugcheck code. 
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The execution of opcode AXFF results in a reserved instruction exception 
(SS$_0PCDEC, opcode reserved to DIGITAL), causing control to be trans­
ferred through the system control block to an exception-specific service rou­
tine. This routine checks for both of the following: 

• If the opcode is AXFF. 
• If the byte following the reserved opcode is either AXFE or XFD. (A XFE 

indicates that the bugcheck code is contained in the next word. A AXFD 
indicates that the bugcheck code is contained in the next longword. The 
VMS operating system does not currently use longword bugcheck codes.) 

If both of these checks succeed, the VMS operating system interprets this 
exception as a bugcheck and transfers control to routine EXE$BUG_CHECK. 
Otherwise, the illegal opcode exception is treated in the usual manner de­
scribed in Chapter 4. 

8.2.2 Operation of Bugcheck Routine 

8.2.2.1 

The bugcheck routine performs several steps, depending on the access mode 
in which the bugcheck occurred and whether the bugcheck was fatal. (The 
fatality of the bugcheck is determined by the severity field, bits <2:0> in the 
bugcheck code. If the BUG_CHECK macro call includes the parameter 
FATAL, a code of STS$K_SEVERE [value of 4] is placed into this field. Other­
wise, a zero is placed there.) If the SYSBOOT flag BUGCHECKFATAL is set, 
all bugchecks are treated as fatal, independent of the severity code in the 
low-order three bits of the bugcheck code. The BUGCHECKFATAL flag is 
clear by default, which means that nonfatal bugchecks do not cause the sys­
tem to crash. 

Bugchecks from User and Supervisor Mode. If a bugcheck is generated from 
either user or supervisor mode, and the process has BUGCHECK privilege, a 
message (of type user-generated bugcheck) is written to the error log buffer. 

• If the bugcheck is fatal, the $EXIT system service is called with the code 
SS$_BUGCHECK as the final image status. What happens as a result of 
this call depends on whether the process is executing a single image (no 
supervisor mode termination handler has been established) or the process 
is an interactive or batch job. 

-If the process is executing a single image, a fatal bugcheck from user or 
supervisor mode results in process deletion. 

-With the current use of supervisor mode termination handlers, a fatal 
bugcheck issued from an interactive or batch job causes the currently 
executing image to exit and control to be passed to the CLI to receive 
the next command. 
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In either case, the only difference between user and supervisor mode is 
that user mode termination handlers are not called if a fatal bugcheck is 
issued from supervisor mode. 

• If the bugcheck code is not fatal, the exception (the initial path into the 
bugcheck code) is dismissed, and execution continues with the instruction 
following the BUG_CHECK macro. 

The BUGCHECKFATAL flag has no effect on bugchecks issued from user or 
supervisor mode. The severity field in the bugcheck C()de is used to deter­
mine whether a given bugcheck is fatal. In addition, neither user nor supervi­
sor mode bugchecks cause the system to shut down. 

VMS Use of Bugchecks. The bugchecks that the VMS operating system uses 
for its own purposes are issued from executive or kernel mode. If the bugcheck 
is not fatal and the SYSBOOT parameter flag BUGCHECKFAT AL was turned 
off, the bugcheck routine proceeds as it does for nonfatal bugchecks for the 
outer two access modes, A message is sent to the error logger and the excep­
tion is dismissed, passing control back to the caller at the instruction follow­
ing the bugcheck invocation. 

A fatal bugcheck results in an orderly shutdown of the system. Rather than 
describe each step that the bugcheck routine takes to accomplish this shut­
down, several items of general interest in the operation of the orderly shut­
down are described. 

• All disk I/O performed by the bugcheck routine uses the bootstrap disk 
driver used by the initialization programs VMB and SYSBOOT (see Chap­
ter 24) and loaded into nonpaged pool by INIT (see Chapter 25). The use of 
this driver allows a dump file to be written even if the system disk driver is 
corrupted. 

• Most of the bugcheck routine and all the bugcheck codes and associated 
text are not resident. They are stored in the executive image SYS.EXE and 
read into memory (by the boot driver). 

This code and data are read into system space on top of a read-only 
portion of the executive. Global label BUG$FATAL defines the beginning 
of the buffer into which the bugcheck code and data will be read. This label 
immediately precedes the blank program section (named". BLANK." and 
located at address 80007A6E in VAX/VMS Version 3.0). 

The code and data that are r.ead into memory at this time include the 
following: 

- The bulk of the bugcheck service routine 
-A template for the message that is typed on the console terminal 
-Some primitive console terminal output routines 
- The textual description of all possible bugcheck messages 
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There are two implications of reading code into memory on top of existing 
code. 

-None of the routines destroyed by BUGCHECK is available for use by 
the bugcheck code. This requirement is most important in deciding how 
the nonpaged executive is laid out. 

- Portions of the dump may look strange when inspected by SDA. For 
example, it is impossible to determine if a portion of the instruction 
stream is corrupted because SDA displays bugcheck code and data in­
stead of the original instructions and read-only data. 

• A header block for the dump file is constructed in the 512 bytes immedi­
ately preceding the area into which the bugcheck code and data were writ­
ten. This area contains more read-only portions of the nonpaged executive. 
(The system virtual address range whose contents are altered by the opera­
tion of bugcheck, including the 512-byte dump file header block, extends 
from 8000786£ to 8000A26E. These numbers are valid for VAX/VMS Ver­
sion 3.0 but are almost certain to change with the next major release of the 
system.) 

The contents of the dump file header block are listed in Table 8-1. Note 
that the error log entry associated with this bugcheck is written into the 
header to avoid loss of information if the error log buffers were full when 

Table 8-1: Contents of the Dump File Header Block 

Description 

Last error log sequence number (unused) 
Dump file flag 

(Low bit set if dump file analyzed) 
Dump file version 

(Contains 1 if Version 2.0 format) 
Contents of SBR, SLR, KSP, ESP, SSP, USP, ISP 
Quadword memory descriptors for up to eight 

memory controllers (each quadword is 
broken down as follows: 

Page count 
TR number for this controller 
Base PFN for this controller 

System version number 
One's complement of previous longword 
Error log entry for crash/restart 

(See Table 8-2) 
Contents of software PCB of current process 

(See Table B-2) 

Size 

Longword 
Word 

Word 

7 Longwords 
8 Quadwords 

24 Bits 
8 Bits 
32 Bits 
Longword 
Longword 
125 Words 

156 Bytes 
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the bugcheck occurred. This error log entry will be written into one of the 
error log buffers by SYSINIT (see Chapter 25) when the rest of the error log 
messages (blocks 2 and 3 in the dump file) are put back into the buffers. (If 
there is no room in the error log buffers, the bugcheck entry will never be 
written to the error log file, although it is preserved in the dump file.) 

• A small amount of information describing the bugcheck is written to the 
console terminal. This information includes the contents of general regis­
ters, the kernel and executive stacks, the contents of processor internal 
registers, and a summary of the reason for the bugcheck. This output oc­
curs before the dump file is written and should not be interrupted by halt­
ing the VAX processor from the console terminal. Such an interruption 
would prevent the dump file from being written. 

• The dump header, the contents of the two error log buffers, and the con­
tents of physical memory are written to the system dump file. This step 
can be inhibited by clearing the SYSBOOT parameter flag DUMPBUG. 
The system dump file is described in. some detail in the next section. 

• The last step in the bugcheck routine reboots the system. This is accom­
plished by writing a special code (XF02) into the console transmit data 
buffer (PR$_ TXDB). (The special uses of the console registers are described 
in Chapter 19.) After the bootstrap code is written, a HALT instruction is 
executed that allows console microcode to gain control and process the 
bootstrap command. 

-On a VAX-11/730 processor, the AUTO RESTART/BOOT switch must 
be in the AUTO RESTART ON position in order for the system to auto­
matically reboot following a bugcheck. 

-On a VAX-11/750 processor, the bootstrap device selector switch must 
be properly set and the system disk must be unit 0 in order for the 
system to automatically reboot following a bugcheck. 

-On a VAX-11/780 processor, the contents of the file DEFBOO.CMD on 
the console floppy must contain commands to direct a reboot from the 
system disk. 

The automatic reboot following a bugcheck can be prevented by clearing 
the SYSBOOT parameter flag BUGREBOOT. This flag is also manually 
cleared by OPCCRASH, the program that executes as part of the orderly 
shutdown procedure SHUTDOWN.COM. When automatic rebooting is 
inhibited, the system loops at IPL 31, waiting for a command to be entered 
at the console terminal. 

8.2.3 System Dump File 
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The most important operation that is performed by the bugcheck routine is 
writing the contents of physical memory and other important information to 



8.2 System Crashes (BUGCHECKS) 

Table 8-2: Contents of Error Message Buffer for Crash/Restart Entry 

Description 

Error message buffer header 
Size in bytes of buffer 
Allocation buffer indicator 
Error message valid indicator 

Entry type (contains EMB$K_CR = 37 decimal) 

System time when crash occurred 
(from EXE$GQ_SYSTIME) 

Error log sequence number 
(low order word of ERL$G1-SEQUENCE) 

Contents of KSP, ESP, SSP, USP, ISP 

Contents of RO to Rl 1, AP, FP, SP, PC, PSL 

Contents of POBR, POLR; PlBR, PlLR, SBR, SLR, 
PCBB, SCBB, ASTLVL, SISR, ICCS, ICR, 
TODR,ACCS 

Contents of CPU-specific registers 

There are no CPU-specific registers saved for 
the VAX-11/730. 

For the V AX-11/750 this area contains the following: 
Translation buffer disable register (PR$_ TBDR) 
Cache disable register (PR$_CADR) 
Machine check error summary (PR$_MCESR) 
Cache error register (PR$_CAER) 
CMI error summary register (PR$_CMIERR) 

For the V AX-11/780 this area contains the following: 
SBI fault status (PR$_SBIFS) 
SBI comparator register (PR$_SBISC) 
SBI maintenance register (PR$_SBIMT) 
SBI error register (PR$_SBITA) 
SBI timeout address register (PR$_SBIS) 

Bugcheck crash code 

Length in bytes of software PCB 

Size 

Longword 
Word 
Byte 
Byte 

Word 

Quadword 

Word 

5 Longwords 

17 Longwords 

14 Longwords 

21 Longwords 

Longword 
Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Word 

NOTE. The error log entry for a nonfatal bugcheck contains the same information as the 
entry for a fatal bugcheck except for the 35 longwords set aside for architectural and CPU­
specific processor registers. 

the dump file. In the case of system crashes, the dump file can be examined 
by the System Dump Analyzer (SDA) to determine the reason for the crash. 
SDA is invoked by the DCL command ANALYZE/CRASH_DUMP. The 
dump file contains three distinct pieces. 

1. The previously constructed dump header (see Table 8-1) is written to the 
first block in the file. 

2. The two error log buffers are written to the next two blocks. These buffers 
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will be copied back into the error log buffers in memory from the dump 
file by SYSINIT (see Chapter 25) as part of the initialization code. In this 
way, no error log information is lost across a system crash or an operator­
requested shutdown. 

3. The rest of the dump file is filled with the current contents of physical 
memory. Bugcheck uses the memory descriptors in the restart parameter 
block (RPB) constructed by VMB (see Chapter 24) to provide an accurate 
layout of physical address space. If a MA780 shared memory adapter is 
present on the system, its contents are also written to the dump file. 

The size of the dump file must be four blocks larger then the number of 
physical pages in the system. (The fourth block is not currently used.) In 
order to insure that a crash dump can be analyzed with SDA, it is important 
that the dump file be large enough. If a dump file is too small, only the 
physical pages that fit into the underconfigured dump file will be written. In 
a typical VMS configuration, the most crucial contents of physical memory, 
the system page table, are located at the largest physical addresses (see Chap­
ter 24) and will not be written, making a partial dump useless. That is, SDA 
cannot be used to examine a dump file that does not contain all of physical 
memory. 

8.3 MACHINE CHECK MECHANISM 
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A machine check is an exception that is reported when the CPU or an exter­
nal adapter detects an internal error. The initial processing of a machine 
check exception is CPU specific. This section contains an overview of ma­
chine check handling. Consult the VAX Hardware Handbook or other hard­
ware-related literature for information about a specific type of machine 
check. 

The basic philosophy of any of the machine check handlers is to keep as 
much of the system running as possible. There are two important pieces of 
information that determine how serious a particular machine check is: the 
nature of the machine check itself and the access mode in which the machine 
check occurred. 

• If the machine check is recoverable, the simple action is to log an error. 
This step is taken no matter what access mode was active when machine 
check occurred. In addition, the error time is recorded. If machine checks 
start occurring too quickly (more than one machine check per IO-millisec­
ond interval), then the handler assumes that something is seriously wrong 
and treats a recoverable machine check in the same way that it treats an 
abort. The distinction between recoverable machine checks and aborts is 
CPU specific. The VAX Hardware Handbook or the module MCHECKxxx 
(where xxx represents the processor number) contains information about 
the machine checks that can occur on a particular processor. 
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• If the machine check has put the system into a state from which it cannot 
recover, the action taken by the machine check handler depends on the 
access mode in which the machine check occurred. If the previous mode 
was supervisor or user, a machine check exception is reported to that ac­
cess mode. (Unless the process has taken special action, this step will re­
sult in image exit.) If the previous mode was executive or kernel, an irre­
coverable machine check causes a fatal bugcheck (with the bugcheck code 
BUG$_MACHINECHK). 

8.3.1 VAX-11/730 Machine Check 

When a machine check occurs on a VAX-11/730, IPL is elevated to 31 and the 
interrupt stack contains the following information. 

• The length in bytes of the exception-specific information pushed on the 
stack. (This count does not include either the PC/PSL pair or the count 
longword itself.) There are currently 3 longwords in this list, which result 
in a value of OC hex onto the stack. 

• Machine check error code. 
• Two parameters, the contents of which depend on the machine check error 

code. The machine check codes and the information passed in these two 
parameters are detailed in Table 8-3. 

• PC of aborted opcode. 
• PSL at the time of the abort. 

The machine check error code (the second item on the stack) determines the 
specific action of the machine check handler. If the machine check is an 
abort (PC left in an indeterminate state), then recovery is impossible. In addi­
tion, a subset of the VAX-11 instruction opcodes on the VAX-11/730 cannot 
be restarted. (The list of these instructions can be found in module 
MCHECK730.) 

In addition to the VAX-11/730 machine checks that appear as exceptions 
(through the SCB vector at offset 4), one type of machine check can appear as 
an interrupt through a dedicated SCB vector. When this machine check oc­
curs, only the PC and PSL are pushed onto the interrupt stack. 

This machine check is a corrected memory data condition (CRD) and will 
interrupt at IPL 26 through SCB vector 54 (hex). This exception simply causes 
an error log entry (indicating a soft memory error) to be written. (If errors 
occur too quickly, the CRD interrupt bit in the memory controller is turned 
off by the machine check handler.) 

8.3.2 VAX-11/750 Machine Check 

When a machine check occurs on a VAX-11/750, IPL is elevated to 31 and the 
interrupt stack contains the following information. 
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Table 8-3: VAX-11/730 Machine Check Codes and Their Associated Parameters 

Code Explanation MC$LP1 

MICRO_ERRORS Microcode detected errors O:No information available 
2:Unable to set PTE modify bit 
3:Bad microprocessor interrupt 

TB_PARITY Translation Buffer Parity PTE in error 
Error 

BAD_MEM_CSR Illegal format for memory CSR VA referenced 

NO_FAST _INT Fast interrupts with no IDC zero 
present 

FPA_PARITY Floating Point Accelerator FPA parity information 
Parity Error 

SPTLREADCHK Hard Memory Error on SPTE read Physical Address of SPTE 

RDATASUBS Uncorrectable ECC Errors Physical Address Referenced 
Read Data Substitute 

NX_MEM Nonexistent Memory Physical Address Referenced 

UNALIGNED_IQ Unaligned or non-longword Physical Address Referenced 
reference to I/O space 

UNK_JQ_ADDR Illegal I/O space address Physical Address Referenced 
BAD_UB_ADDR Illegal UNIBUS reference Physical Address Referenced 

MC$LP2 

zero 

VA of PTE in TB 

Bad CSR value 

zero 

zero 

Memory Controller 
Diagnostics 

Memory Controller 
Diagnostics 

zero 

zero 

zero 
zero 
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• The length in bytes of the exception-specific information pushed on the 
stack. (This count does not include either the PC/PSL pair or the count 
longword itself.) There are currently 10 longwords in this list, which result 
in a value of 28 hex on the stack. 

• Machine check error code. 
• Virtual address of the last fetch or store operation. 
• Program counter at the time of the error. 
• Memory data of the last fetch or store operation. 
• Saved mode register. 
• Read lock timeout register. 
• Translation buffer parity error register. 
• Cache error register. 
• Bus error register. 
• Error summary register. 
• PC of aborted opcode. 
• PSL at the time of the abort. 

The machine check error code (the second item on the stack) determines the 
specific action of the machine check handler. If the machine check is an 
abort (PC left in an indeterminate state), then recovery is impossible. In addi­
tion, a subset of the VAX-11 instruction opcodes on the VAX-11/750 cannot 
be restarted. (The list of these instructions can be found in module 
MCHECK750.) 

In addition to the VAX-11/750 machine checks that appear as exceptions 
(through the SCB vector at offset 4) there are two machine checks that appear 
as interrupts through dedicated SCB vectors. When either of these occurs, 
only the PC and PSL are pushed onto the interrupt stack. 

• A corrected memory data condition (CRD) will interrupt at IPL 26 through 
SCB vector 54 (hex). This exception simply causes an error log entry (indi­
cating a soft memory error) to be written. (If errors occur too quickly, the 
CRD interrupt bit in the memory controller is turned off by the machine 
check handler.) 

• A write bus error condition will interrupt at IPL 29 through SCB vector 60 
(hex). This error is treated as an irrecoverable error and further processing 
depends on the previous access mode. 

8.3.3 VAX-11/780 Machine Check 

When a machine check occurs on a VAX-11/780, IPL is elevated to 31 and the 
interrupt stack contains the following information. 

• The length in bytes of the exception-specific information pushed on the 
stack. (This count does not include either the PC/PSL pair or the count 
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longword itself.) There are currently 10 longwords in this list, which result 
in a value of 28 hex on the stack. 

• Machine check summary parameter. 
• CPU error status. 
• Trapped micro PC, the microcode error location. 
• Virtual address at fault time. 
• CPU D register at fault time. 
• Translation buffer status register 0. 
• Translation buffer status register 1. 
• Physical address causing SBI timeout. 
• Cache parity error status register. 
• SBI error register. 
• PC of instruction that caused the machine check. 
• PSL of machine at fault time. 

The machine check summary parameter determines the specific action of the 
machine check handler. If the machine check is an abort (PC left in an inde­
terminate state), then recovery is impossible. In addition, a subset of the 
VAX-11 instruction opcodes on the VAX-11/780 cannot be restarted. (The list 
of these instructions can be found in module MCHECK780.) 

There are also several error conditions on the VAX-11/780 that generate 
interrupts instead of machine check exceptions. 

• A corrected read data condition or a read data substitute condition inter-
rupts through SCB vector 54 (hex) and raises IPL to 26. 

• An SBI alert interrupts through vector 58 at IPL 27. 
• An SBI fault interrupts through vector SC at IPL 28. 
• An asynchronous write error is reported through SCB vector 60 at IPL 29. 

The first three of these errors result in error log entries. An attempt is made 
to continue from the error. The asynchronous write error causes a fatal bug­
check if it occurred in kernel or executive mode or if an error occurred while 
updating a page table. 

8.3.4 Machine Check Recovery Blocks 
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The VMS operating system provides a capability for a block of kernel mode 
code to protect itself from machine checks while the protected code is exe­
cuting. For example, the VMS operating system uses this feature if an inter­
rupt is generated from a previously unconfigured adapter. If the code that read 
the configuration register were not protected and the interrupt were spurious, 
then the configuration register would not exist and the reference to a nonex­
istent I/O space address would crash the system. 

There are several restrictions on the protected code. 



8.3.4.1 

8.3 Machine Check Mechanism 

1. It must be executing in kernel mode. 
2. The stack cannot be used across the entry into or the exit out of the pro­

tected code block. This restriction exists because a coroutine mechanism 
is used to pass control between the protected block and the VMS routines 
that establish the protected code. 

3. VMS elevates IPL to 31 so a limited number of instructions should be 
included in the block. 

4. RO is destroyed by the mechanism. 

Using the Recovery Mechanism. Several macros are provided in the macro 
library SYS$LIBRARY:LIB.MLB to use this protection mechanism. The fol­
lowing macro defines the beginning of the block: 

$PRTCTINI LABEL, MASK 

The label argument is identical to the label argument associated with the 
following macro, which defines the end of the block: 

$PRTCTEND LABEL 

If no error occurred while the protected code was executing, RO contains the 
success code SS$_NORMAL. Otherwise, the low bit of RO is clear. 

The mask argument allows the block of code to protect itself from different 
classes of errors. The following list describes the specific types of protection 
that are defined by the $MCHKDEF macro: 

MCHK$M_LOG 

MCHK$M_MCK 

MCHK$M_NEXM 

MCHK$M_UBA 

Inhibit error logging for the error 

Protect against machine checks 

Protect against nonexistent memory 

Protect against UNIBUS adapter 
error interrupts 

Two other features used by the VMS operating system are a part of this pro­
tection mechanism. The following macro allows the VMS system to deter­
mine whether a recovery block is in effect and take action accordingly: 

$PRTCTEST ADDRESS,MASK 

The status is returned in RO. The low bit set indicates that a recovery block is 
in effect and that the specified mask is being used. 

The following macro is used by the machine check handlers for the VAX­
ll /730, the VAX-11/750, and the VAX-11/780 before issuing a fatal bugcheck. 

$BUGPRTCT 

If no recovery block is in effect, control is passed back to the location where 
this macro was invoked, where a bugcheck is usually issued. If a recovery 
block is in effect, control is passed to the end of the protected block with RO 
containing an error code of SS$_MCHECK. 
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9 System Service Dispatching 

Between the idea 
And the reality 
Between the motion 
And the act 
Falls the Shadow. 

-T.S. Eliot, The Hollow Men 

Many of the operations that the VMS operating system performs on behalf of 
the user are implemented as procedures called system services. Most of these 
procedures are linked as part of the executive and reside in system space; 
others are contained in privileged libraries. System services have global entry 
point names of the form EXE$service and typically execute in kernel or exec­
utive access mode so that they can read or write data structures protected 
from access by less privileged access modes. Some services are invoked di­
rectly by application programs. Others are called on behalf of the user by 
components such as RMS. This chapter describes how control is passed from 
a user program to the procedures in the executive that execute service-spe­
cific code. 

9.1 SYSTEM SERVICE VECTORS 
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The addresses 7FFEDEOO to 7FFEESFF (four pages of Pl space) are reserved for 
entry points to the system services and to RMS service routines. The global 
entry point name of each system service vector is SYS$service, as distin­
guished from EXE$service, the global name of the procedure in the executive 
image that performs the actual work of the system service. 

Previous to Version 3.0, the system service entry points were maintained in 
the the lowest four pages of system virtual address space (addresses 80000000 
to 800005FF). These entry points still exist in this location, in order that 
programs that were linked before VAX/VMS Version 3.0 will still refer to the 
correct entry points. The vectors were moved to process space so that system 
services could be intercepted on a per-process basis. 

As new services are added to future releases of the VAX/VMS operating 
system, the vector area will grow to make room for new entry points. In 
addition, the absolute locations of the SYS$service entry points of existing 
services will remain fixed forever, so that existing user programs will not 
have to be relinked each time there is a new release of the VMS operating 
system. 

Each service entry point contains eight bytes of code and data called a 
system service vector. Each vector consists of a global entry point named 
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SYS$service, a register save mask, a single instruction that transfers control 
eventually to a service-specific procedure in the executive, and an instruction 
(usually a RET) that passes control back to the caller. 

Note that the vectors for the "composite" system services ($QIOW and 
$ENQW) contain the number of bytes required to execute the service, test 
return conditions, conditionally execute the $WAITFR service, and pass con­
trol back to the caller. 

Most of the system services execute in kernel mode and the vectors for 
these services contain a CHMK instruction. A few system services and all of 
the RMS services contain a CHME instruction. Some services such as the 
text formatting services execute in the access mode of the caller and dispatch 
directly to the service-specific code in the VMS operating system with a JMP 
instruction. The following examples illustrate the three sets of instructions 
found in the system service vector area. The entry mask in each system serv­
ice vector is identical to the entry mask found at location EXE$service. 
Table 9-1 lists the VMS system services that use each of the three illustrated 
methods of initial dispatch. 

Vectors for system services that change mode to kernel contain the follow­
ing code: 

SYS$service:: ;Entry point 
.WORD entry-mask 
CHMK 
RET 
.BLKB 

I'#service-specific-code 

1 
; Return to caller 
; Spare byte 

The extra byte here and in the vector for executive mode is used to keep the 
entry points on quadword boundaries. 

Vectors for system services that change mode to executive contain the fol­
lowing code: 

SYS$service:: 
.WORD 
CHME 
RET 
.BLKB 

entry-mask 
I'#service-specific-code 

1 

;Entry point 

; Return to caller 
; Spare byte 

Most vectors for RMS service calls replace these last two bytes with a branch 
to an RMS synchronization routine. 

Vectors for system services that do not change mode contain the following 
code: 

SYS$service:: 
.WORD 
JMP 

entry-mask 
@#EXE$service + 2 

;Entry point 
; of the caller 
; Transfer control to 
; first instruction after 
; the entry mask at 
; EXE$service 

This JMP instruction transfers control to the first instruction after the entry 
mask at EXE$service. 
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Table 9-1: System Services and RMS Services That Use Each Form of System Service 
Vector 

The following system services execute initially in kernel mode: 

$ADJSTK 
$ADJWSL 
$ALLOC 
$ASCEFC 
$ASSIGN 
$BRDCST 
$CANCEL 
$CANEXH 
$CANTIM 
$CANWAK 
$CLREF 
$CMKRNL 
$CNTREG 
$CRELOG 

$CREMBX 
$CREPRC 
$CRETVA 
$CRMPSC 
$DACEFC 
$DALLOC 
$DASSGN 
$DCLAST 
$DCLCMH 
$DCLEXH 
$DELLOG 
$DELMBX 
$DELPRC 
$DEL TVA 

$DEQ 
$DERLMB 
$DGBLSC 
$DLCEFC 
$ENQ 
$ENQW 
$EXIT 
$EXPREG 
$FORCEX 
$GETCHN 
$GE TD EV 
$GE TD VI 
$GETJPI 

$GETPTI 
$GETS YI 
$HIBER 
$LCKPAG 
$LKWSET 
$MGBLSC 
$PURGWS 
$QIO 
$QIOW 
$READEF 
$RESUME 
$RUNDWN 
$SCHDWK 

$SET AST 
$SETEF 
$SETEXV 
$SE TIME 
$SETIMR 
$SETPFM 
$SETPRA 
$SETPRI 
$SETPRN 
$SETPRT 
$SETPRV 
$SETRWM 
$SETSFM 

The following system services execute initially in executive mode: 

$CMEXEC 
$GETTIM 
$IM GA CT 

$NUMTIM 
$SNDACC 

$SNDOPR 
$SNDSMB 

$SETSSF 
$SETSTK 
$SETS WM 
$SNDERR 
$SUSPND 
$TRNLOG 
$ULKPAG 
$ULWSET 
$UPDSEC 
$WAITFR 
$WAKE 
$WFLAND 
$WFLOR 

The following system services execute in the access mode of the caller. The services marked 
with a (1) can be called from any access mode; the services marked with a (2) can be called 
from executive and outer access modes. Those not marked can only be called from supervi­
sor and user mode. 

$ASCTIM (1) 
$BINTIM (1) 
$EXCMSG(2) 
$FAQ (1) 

$FAOL (1) 
$GETMSG (2) 
$IMGFIX 

$IMGSTA 
$PUTMSG 
$UNWIND 

The following RMS services execute in executive mode and branch to a synchronization 
routine before returning to the caller: 

$CLOSE $EXTEND $OPEN $REWIND 
$CONNECT $FIND $PARSE $SEARCH 
$CREATE $FLUSH $PUT $SPACE 
$DELETE $FREE $READ $TRUNCATE 
$DISCONNECT $GET $RELEASE $UPDATE 
$DISPLAY $MODIFY $REMOVE $WAIT 
$ENTER $NXTVOL $RENAME $WRITE 
$ERASE 

The following RMS services execute in executive mode. The vectors for these RMS services 
contain RET instructions rather than a branch to an RMS synchronization routine. 

$RMSRUNDWN $SE TD DIR $SETDFPROT $SSVEXC 



9.2 Change Mode Instructions 

9.2 CHANGE MODE INSTRUCTIONS 

When a change mode instruction is executed, an exception is generated that 
pushes the PSL, the PC of the next instruction, and the code that is the single 
operand of the change mode instruction onto the stack indicated in the in­
struction. (As pointed out in Chapter 4, the actual access mode is the mini­
mum of the access mode indicated by the instruction and the current access 
mode contained in the PSL.) For example, the execution of a CHME #5 instruc­
tion will push a PSL, the PC of the instruction following the CHME instruc­
tion, and a 5 onto the executive stack. Control is then passed to the exception 
service routine whose address is located in the appropriate entry in the sys­
tem control block (SCB). 

9.2.1 The CHMK and CHME Instructions 

At initialization time, the VMS operating system fills in the SCB entries for 
CHMK and CHME with the addresses of change mode dispatchers that pass 
control to the procedures that perform service-specific code. The action of 
these two dispatchers is discussed in the next section. 

9.2.2 The CHMS and CHMU Instructions 

The SCB entries for CHMS and CHMU are filled in with the addresses of 
exception service routines that usually pass control to the general exception 
dispatcher desqibed in Chapter 4. In this case, a CHMS or CHMU exception 
would be reported to a process through the normal signal and mechanism 
arrays. The particular exception names are SS$_CMODSUPR and 
SS$_CMODUSER respectively. 

However, a user can short circuit the normal exception dispatching in the 
case of either of these exceptions by using the $DCLCMH system service to 
establish a per-process change-mode-to-supervisor or change-mode-to-user 
exception handler. This service fills location CTL$GL_CMSUPR or 
CTL$GL_CMUSER in the Pl pointer page with the address of the user-writ­
ten change mode dispatcher. The exception service routines for the 
CHMS and CHMU exceptions check these locations for nonzero contents 
and dispatch accordingly. 

The DCL and MCR command language interpreters use this service to 
create a special change-mode-to-supervisor handler. This handler is used 
when it is necessary to get to supervisor mode from user mode when an 
image is interrupted with a CTRL/Y. The use of the change-mode-to-supervi­
sor handler is discussed in Chapter 23. The job controller uses a 
change-mode-to-user dispatcher for its processing of error messages. 

165 



System Service Dispatching 

9.3 CHANGE MODE DISPATCHING IN THE VMS EXECUTIVE 
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The change mode dispatcher that receives control from the CHMK or CHME 
instruction in the system service vector must dispatch to the procedure indi­
cated by the code that is found on the top of the stack. In addition, because 
the service routines are written as procedures, the dispatcher must construct 
a call frame on the stack. Building the call frame could be accomplished by 
using a CALLx instruction and a dispatch table of service entry points. 

However, the call frame that must be built is identical for each service. In 
addition, the registers that the service-specific procedure will modify have 
already been saved because the register save mask in the vector area (at global 
location SYS$service) is the same as the register save mask at location 
EXE$service. So the dispatcher avoids the overhead of the general purpose 
CALLx instruction and builds its call frame by hand. 

Further speed improvement is achieved in this commonly executed code 
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path by overlapping memory write operations (building the call frame) with 
register-to-register operations and instruction stream references. The actual 
dispatch to the service-specific procedure is then accomplished with a 
CASEW instruction that uses the CHMx code as its index into the case table. 
Figure 9-1 pictures the control flow from the user program all the way to the 
service-specific procedure. This flow is illustrated for both kernel and execu­
tive access modes. Figure 9-2 shows the corresponding flow for those services 
that do not change mode. 

9.3.1 Operation of the Change Mode Dispatcher 

The operation of the change mode dispatchers is almost identical for kernel 
and executive modes. This section discusses the common points of the dis­
patchers for kernel and executive modes. The next sections point out the 
only differences between the dispatchers for the two access modes. 

The first instruction of the dispatcher pops the exception code, unique for 
each service, from the stack into RO. In both the kernel mode dispatcher and 
the executive mode dispatcher, the call frame is built on the stack by the 
following four instructions. 

PUSHAB B~RVEXIT 
PUSHL FP 
PUSHL AP 
CLRQ -(SP) 
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User Program 

I 
I 
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I.-------. 
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SYS$service:: 

I ~ Entry mask EXE$servlce:: 
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-ii1~~~~-f~~~~~~R~ 
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While the call frame is being built, two checks are performed on the argu­
ment list. The number of arguments actually passed (found in the first byte of 
the argument list) is compared to a service-specific entry in a prebuilt table to 
determine whether the required number of arguments for this service have 
been passed. Read accessibility of the argument list is checked (with the 
PROBER instruction generated by the IFNORD macro). If either of these 
checks fails, control is passed back to the caller, with an error indication in 
RO. 

Finally, a CASEW instruction is executed, using the unique code in RO as 
an index into the case table. The case table has been set up at assembly time 
to contain the addresses of the first instruction of each service-specific rou­
tine. Because each service is written as a procedure with a global entry point 
named EXE$service pointing to a register save mask, the case table contains 
addresses of the form EXE$service + 2. This structure is illustrated in the 
following examples of dispatchers. If control is passed to the end of the case 
table, then a CHMx instruction was executed with an improper code and the 
error processing described in the next section is performed. 

Code Example 9-1 coi>::..pares the code for the two dispatchers, copied 
from the module CMODSSDSP. The entries containing the string "* * * * * *" 

indicate places where the change mode dispatchers differ. The instructions 
are not listed in exactly the same order that they appear in the source mod­
ule. Rather, the instructions are shown in the order that they are found when 
all the PSECTs have been sorted out at link time. 

The examples shown in Code Example 9-2 contain the error routines to 
which the change mode dispatchers branch. These routines are invoked if the 
argument list is inaccessible or if an insufficient number of arguments was 
passed to the service. 

The routine in Code Example 9-3 is the common exit path for all system 
service and RMS service calls. The usual exit path is the REI instruction. The 
alternate exit path is to report a SS$_SSFAIL exception. 

9.3.2 Change-Mode-to-Kernel Dispatcher 
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There are two steps performed by the change-mode-to-kernel dispatcher that 
are not performed by the change-mode-to-executive dispatcher. Before con­
trol is passed to those services that execute in kernel mode, the address of the 
PCB for the current process (found at global location SCH$GL_CURPCB) is 
placed into R4. The second difference is that CHMK #0 is a special entry 
path into kernel mode that is used by the AST delivery routine following the 
call to the AST procedure. If the CHMK code removed from the stack is a 
zero, control is passed to a routine called ASTEXIT. The action of this routine 
is described in Chapter 7. 
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Code Example 9-1 

Change Mode to Kernel Dispatcher Change Mode to Executive Dispatcher 

EXE$CMODKRNL:: EXE$CMODEXEC:: 
POPL RD POPL RD 
BEQL ASTEXIT ****** 
PUSH AB B'SRVEXIT PUSHAB B'SRVEXIT 
MOVZBL RD,R1 MOVZBL RD,R1 
PUSHL FP PUSHL FP 
MOVZBL l(B_KRNLARG[R1], R1 MOVZBL W'B_EXECNARG[R1], R1 
PUSHL AP PUSHL AP 
MO VAL @#L;[R1],FP MO VAL @#L;[R1],FP 
CLRQ -(SP) CLRQ -(SP) 
IFNORD FP, (AP) ,ACCVIO IFNORD FP,(AP),EXACCVIO 

prober #D,fp,(ap) prober #D,fp,(ap) 
beql accvio beql exaccvio 

MOVL SP,FP MOVL SP,FP 
CMPB (AP) ,R1 CMPB (AP),R1 
BLSSU KINSARG BLSSU EXINSARG 

KERDSP: EXEDSP: 
MOVL SCH$GL_CURPCB,RL; ****** 
CA SEW RD,#1,#KCASMAX CA SEW RD, #D, s'EcASMAX 

offset to EXE$service + 2 offset to EXE$service + 2 

***** JSB @CTL$GL_RMSBASE 

check inhibit bits check inhibit bits 

BSBW CHECKARGLIST BSBW CHECKARGLIST 
MOVL @#CTL$GL_USRCHMK,R1 MOVL @#CTL$GL_USRCHME,R1 
BEQL 1D$ BEQL 1D$ 
JSB (R1) JSB (R1) 

1D$: MOVL L'EXE$GL_USRCHMK, R1 1D$: MOVL L'EXE$GL_USRCHME I R1 
BEQL 2D$ BEQL 2D$ 
JSB (R1) JSB (R1) 

2D$: NOP 2D$: BRW ILLSER 
NOP 

ILL SER: MOVZWL #SS$_ILLSER I RD 
RET 
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Code Example 9-2 

EXACCVIO: 
MOVL 

CMPW 

BGEQU 
BRW 

EXINSARG: 
CMPW 

BGEQU 
BRW 

CHECKARGLIST: 

IFNORD 
CVTBL 
BLSS 
ASHL 
IFNORD 
RSB 

10$: MOVZBL 
ASHL 
PUSHL 
PUSHL 
PUSHL 
MO VAL 
CLRL 
JSB 
POPL 
POPL 
BLBC 

POPL 
RSB 

2D$: POPL 
BRB 

ACCVIO: 
MOVL 

ACCVIO_RET: 

KINSARG: 

INSARG: 
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MOVZWL 
RET 

CMPW 
BGEQU 

MOVZWL 
RET 

SP,FP 

RD,#RCASCTR 

EXEDSP 
ACCVIO_RET 

RD,#RCASCTR 

EXEDSP 
INSARG 

#~,(AP),ACCVIO_RET 

(AP), R1 
1D$ 
#2,R1,R1 
R1,~(AP),ACCVIO_RET 

R1,R1 
#2,R1,R1 
RD 
R2 
R3 
~(AP),RD 

R3 
EXE$PROBER 
R3 
R2 
RD,2D$ 

RD 

RD 
ACCVIO_RET 

SP,FP 

#SS$_ACCVIO,RD 

RD,#KCASCTR 
KE RD SP 

#SS$_INSFARG,RD 

; From EXE$CMODEXEC 
; Point FP to call frame 
; so that RET works 
;Only report INSARG for RMS 
; and built-in functions 
;Otherwise, get back in line 

; Only report INSARG for RMS 
; and built-in functions 
;Otherwise, get back in line 
; Report error to caller 

;Check argument list for 
; read accessibility 
;First check count 
;Then get count 
;Branch if more than 1211 arguments 
; Convert to byte count 
;Now check rest of list 

;Clear high three bytes 
;Convert to byte count 

;Get beginning of list 
; Kernel mode 
; Can addresses be read? 
; restore registers 

; Address could not be read, 
; return access violation 
; Address could be read, 
;Return 

; Set FP so that RET works 

; Is this a recognized code? 
; No. Get back in line 
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Code Example 9-3 

SRVEXIT: 

SRVREI: 

SSFAIL: 

BLBC RO,SSFAIL 

REI 

BITL 
BEQL 

BRW 

#7,RO 
SRVREI 

SSFAILMAIN 

; Check for mere warning 
;If so, do not generate 
; exception 
; Go to SSFAIL logic 

SSFAILMAIN: 

5$: 

10$: 

MOVL 
TSTW 
BNEQ 
EXTZV 
ADDL 

BBC 

MOVPSL 
EXTZV 

G'CTL$GL_PCB, R1 
PCB$W_MTXCNT ; Check for ownership of a mutex 
20$ ;If so, BUGCHECK 
#PSL$V_CURMOD,#PSL$S_CURMOD,~(SP),-(SP) 

#PCB$V_SSFEXC, (SP) ;Are system service 
; failure exceptions enabled 
; for caller 1 s access mode 

(SP+) ,PCB$L_STS(R1) ,10$ ;If not, dismiss the 
; exception 

-(SP) ;Get current PSL 
#PSL$V_CURMOD,#PSL$S_CURMOD,(SP),(SP)+ 

;If the current mode is kernel 
BNEQ 5$ 
SETI PL #0 
JMP EXE$SSFAIL 

REI 

; IPL must be lowered to O 
;Pass control to the 
; general exception dispatcher 
;Return from service with 
; error status 

20$: BUG_CHECK MTXCNTNONZ,FATAL 

9.3.3 Change-Mode-to-Executive Dispatcher 

The change-mode-to-executive dispatcher performs one step unique to exec­
utive mode. If the CHME code is not a recognized system service, the 
CASEW instruction passes control to the end of the case table. At "that point, 
the change-mode-to-executive dispatcher transfers control to the RMS dis­
patcher to determine whether this was a valid RMS call before dropping into 
the error processing described in the next section. 

9.3.4 RMS Dispatching 

The RMS dispatcher, illustrated in Figure 9-3, consists of two instruc­
tions. The CASEW instruction will dispatch to RMS service-specific proce­
dures for legitimate RMS service codes. These procedures will exit with a 
RET back to SRVEXIT. If an illegal code (that is, a code not recognized as 
an RMS service call) was issued, the RSB instruction following the CASEW 
instruction will pass control back to EXE$CMODEXEC for normal error 
processing. 
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When the service-specific procedure has completed its operation, it places a 
status code in RO and issues a RET instruction. This instruction returns con­
trol to the code at label SRVEXIT (shown in the examples in Section 9.3.1) 
because this address was put into the saved PC area of the call frame built by 
the change mode dispatcher. The routine SRVEXIT first checks whether an 
error occurred. If no error occurred or if the error was merely a warning 
(R0>2:0< =OJ, the CHMx exception is dismissed with an REI instruction that 
passes control to the instruction following the CHMx in the vector area. This 
instruction is a RET which finally returns control to the user program follow­
ing the call to SYS$service (see the code examples in Section 9.1). 

One additional step is taken by routine SRVEXIT when it is executed in 
kernel mode: IPL is explicitly lowered to zero. This step is unnecessary un­
less the process has enabled system service failure exceptions because the 
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REI instruction that dismisses the CHMK exception will lower IPL. How­
ever, if a system service failure exception is to be generated, the exception 
code must be entered with IPL set to zero. (A similar check is not needed for 
executive mode services because only kernel mode code can execute at ele­
vated IPL.) 

If an error or severe error occurred, a check is made to see whether the 
process owns any mutex. If so, the system service has not released all of its 
mutexes on exit (an erroneous error path) and a fatal bugcheck is generated. 
(Chapter 8 describes bugcheck processing. Mutexes are described in Chapter 
2.) If the mutex check succeeds, a check is made to determine whether this 
process has enabled system service exceptions for the calling access mode. If 
it has, control is passed to the exception dispatcher at global label 
EXE$SSFAIL. The exception that will be reported to the caller in the signal 
array is SS$_SSFAIL. Otherwise, control is passed back to the caller with RO 
containing the error status code. 

9.3.6 Return Path for RMS Services 

9.3.6.1 

The return path for RMS services is slightly more complicated than the re­
turn path for system services. The last two bytes of the vector contain a 
branch (BRB) to an RMS synchronization routine (contained in module 
CMODSSDSP). This routine first checks whether the caller of the RMS serv­
ice wishes to wait. This is the usual case, but RMS does allow asynchronous 
I/O operations. (The return status code is set to RMS$_ STALL by RMS in the 
usual state, where the process must wait until the completion of the RMS 
operation.) 

Wait State Associated with RMS Requests. If a stall is indicated, the caller is 
put into an event flag wait state, waiting for the event flag associated with 
the 1/0 request that RMS has just issued. The crucial point in this implemen­
tation is that the caller is waiting at the access mode associated with the 
original call to RMS and not in executive access mode, thus allowing AST 
delivery for all access modes at least as privileged as the caller of RMS. (In the 
usual case where RMS is called from user mode, the access mode of the wait 
state allows both user and supervisor ASTs as well as executive and kernel 
ASTs to be delivered while waiting for the RMS operation to complete.) 

When the original I/O request completes, RMS gains control first in an 
executive mode AST that it associated with its $QIO request. If it determines 
that the original request is complete, it sets final status in the data structure 
(FAB or RAB) associated with the operation and returns from its AST. The 
caller now drops through the event flag wait in the synchronization routine 
(because the I/O completion routine set the event flag). The synchronization 
routine determines that the RMS operationis complete (because the FAB or 
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9.3.6.2 

RAB status field contains nonzero), and executes a RET, passing control back 
to the point where the initial call to RMS was issued. 

If the RMS executive mode AST determines that more 1/0 is required to 
complete the original request (such as· occurs when reading a large record 
from a sequential file with small internal buffers or when operating on an 
ISAM file), RMS issues the next $QIO and returns from its AST. Because the 
previous 1/0 completion set the associated event flag, the process is now 
computable. However, the RMS operation is not yet complete. For this rea­
son, the RMS synchronization routine (executing in the caller's access mode) 
checks the status field in the RAB or F AB for zero, indicating that RMS has 
more to do. In this case, the caller is again placed into the LEF state by the 
RMS synchronization routine. In other words, at a primitive level, the proc­
ess is placed into a LEF state by RMS one or more times. However, the actual 
indication that the RMS operation has completed is nonzero contents in the 
status field of the FAB or RAB. 

RMS Error Detection. When the RMS synchronization routine finally decides 
that RMS has completed its work, it checks the final status. If this status 
indicates either success or warning, a RET is executed. If either an error or a 
severe error occurred, a special RMS call ($SSVEXC) is issued. This service 
simply reports the error status through the normal VMS service exit path 
(SRVEXIT) that determines whether the process has enabled system service 
failure exceptions. Because RMS errors are reported through the system serv­
ice dispatcher, they are treated in exactly the same manner as system service 
errors. 

9.4 USER· WRITTEN SYSTEM SERVICE DISPATCHING 

The VAX architecture reserves CHMx instructions with negative codes for 
customer use. VMS system service dispatching acknowledges this in its dis­
patch scheme and contains hooks that allow a privileged user to write his 
own system services. The method for doing this is described in the VAX/VMS 
Real-Time User's Guide. This section merely describes how control is passed 
to user-written system services. 

The code examples in Section 9 .3.1 illustrate the error processing code that 
follows the case table for the change-mode-to-kernel or change-mode-to-ex­
ecutive dispatcher. The only differences between these two routines are 
the names of the global pointers that are referenced. 

9.4.1 Per· Process User-Written Dispatcher 
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If the index into the case table is too large, the CHMK or CHME instruction 
was executed with an invalid code (control is passed to the end of the case 
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table). The VMS operating system attempts to pass control to a user-written 
change mode dispatcher. First, a location in Pl space (CTL$GL_USRCHMK 
or CTL$GL_USRCHME) is checked to see whether a per-process dispatcher 
exists. Nonzero contents of this location are interpreted as the address of a 
user-written dispatcher and control is passed to it with the stack as shown in 
Figure 9-4. The assumption being made by the VMS operating system at this 
point is that a valid change mode code will result in the eventual transfer of 
control to SRVEXIT with a RET instruction. If the per-process dispatcher 
rejects the code, it returns control to the code listed in Section 9.3.1 with an 
RSB ·instruction. 

9 .4.2 Privileged Shareable Images 

The usual contents of CTL$GL_ USRCHMK and CTL$GL_ USRCHME are 
addresses within the two pages in Pl space set aside by the VMS operating 
system for user-written system services and image-specific message process­
ing. Kernel mode and executive mode each have one half page (256 bytes) 
devoted to system service dispatching. The initial content of the first byte of 
each dispatch area (set up by PROCSTRT) is an RSB instruction. With the 
dispatch scheme described in the previous section, there is effectively no 
per-process change mode dispatching. 

However, if an image executes that was previously linked with a privileged 
shareable image (linked with the /PROTECT and /SHAREABLE options and 
installed with the /PROTECTED and /SHARED options), the image activator 
replaces the RSB instruction with a JSB to the user-written change mode 
dispatcher specified as a part of the privileged shareable image (see Figure 
9-5). The VMS operating system allows multiple privileged shareable images 
to be linked into the same executable image. (There is a limit of 42 user-writ-
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ten dispatchers of each type. How these dispatchers are collected into 
privileged shareable images determines the number of privileged shareable 
images that can be included in a single executable image.) An RSB instruc­
tion follows the last JSB instruction in the dispatch area. The example pic­
tured in Figure 9-5 shows three privileged shareable images. 

When the image activator (see Chapter 21) encounters a privileged share­
able image as a part of the executable image it is activating, it maps the 
section(s) containing the user-written system services in the usual manner. 
However, it also uses information stored in a protected image section or in 
the first eight longwords of the image (a privileged library vector pictured in 
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Figure 9-6) to modify the Pl space dispatch area. For example, if a privileged 
shareable image contained a change-mode-to-kernel dispatcher, the image 
activator would insert a JSB instruction in Pl space that transferred control to 
the dispatcher specified by the PLV$L_KERNEL longword in the privileged 
library vector. Once the image containing user-written system services is 

·activated, execution proceeds normally until one of the services is invoked. 
Dispatching proceeds as follows (see Figure 9-5). 

CD A CALLx instruction transfers control to a service-specific entry mask in 
PO space. The CHMx (CHMK or CHME) instruction located there trans­
fers control to the VMS change mode dispatcher. 
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l {.ENTRY 
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RET 
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-}'. 
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@ Execution proceeds as if a VMS service was invoked except that the 
change mode code is not recognized by the VMS dispatcher and control 
passes to the end of the case table (see the code examples in Section 
9.3.1). 

@ The JSB instruction in CMODSSDSP passes control to the Pl space dis­
patch area where another JSB instruction passes control to the first dis­
patcher. 

@) The change mode code is rejected by the first dispatcher by simply exe­
cuting an RSB back to the Pl space vector where a second JSB is executed. 

@ The second dispatcher recognizes the change mode code as valid and dis­
patches (probably with a CASEx instruction) to a service-specific proce­
dure that is also a part of the second privileged shareable image. 

@ When the service completes (successfully or unsuccessfully), it loads a 
final status into RO and exits with a RET which passes control to 
SRVEXIT. At this point, user-written system service dispatching merges 
with VMS system service dispatching. 

If each dispatcher rejecte<l the change mode code (by executing an RSB), con­
trol would eventually reach the RSB instruction in the Pl space vector. This 
RSB instruction passes control back to the VMS change mode dispatcher in 
CMODSSDSP where a system-wide dispatcher is checked for next. 

9.4.3 System-Wide User-Written Dispatcher 

If the Pl space location contains a zero, or if no per-process dispatchers are 
invoked, or if the last per-process user-written dispatcher returns to the rou­
tine in CMODSSDSP with an RSB, a location in system space 
(EXE$GL_USRCHMK or EXE$GL_USRCHME) is checked for the existence 
of a system-wide user-written dispatcher. If none exists (contents are zero, its 
usual contents in a VMS system), or if this dispatcher passes control back 
with an RSB, an illegal system service call (SS$_ILLSER) is reported back to 
the user in RO. This scheme assumes that user-written system services that 
complete successfully will exit with a RET back to SRVEXIT, where an REI 
instruction will dismiss the CHMK or CHME exception. Note that there is 
no standard documented way to add a system-wide user-written dispatcher to 
the system. 

9.5 RELATED SYSTEM SERVICES 
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There are five system services in the VMS operating system that are closely 
related to system service dispatching and the change mode instructions. The 
$DCLCMH system service was briefly described in Section 9.2.2. This sec­
tion describes the $SETSFM service, the $SETSSF service, and the change 
mode system services. 
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9.5.1 Setting System Service Failure Exceptions 

The $SETSFM system service either enables or disables the generation of 
exceptions when an error is detected by the system service common exit 
path. The service itself simply sets (to enable) or clears (to disable) the bit in 
the process status longword (at offset PCB$L_STS in the software PCB) for 
the access mode from which the system service was called. 

9.5.2 Change Mode System Services 

The $CMKRNL and $CMEXEC system services provide a simple path for 
privileged processes to execute code in kernel or executive mode. These serv­
ices check for the appropriate privilege (CMKRNL or CMEXEC) and then 
dispatch (with a CALLG instruction) to the procedure whose address is sup­
plied as an argument to the service. (Note that if $CMKRNL is called from 
executive mode, no privilege check is made.) 

The procedure that executes in kernel or executive mode must load a re­
turn status code into RO. If not, the previous contents of RO will be used to 
determine whether an error occurred. 

9.5.3 System Service Filtering 

In some applications, especially user-written CLis, it is desirable to deny 
access to system services that can be called from user mode. The Set System 
Service Filter ($SETSSF) system service was provided for this purpose. 

When the module CMODSSDSP is assembled, in order to create the sys­
tem service vectors, two tables of bytes are created, one for kernel mode 
system services (at the symbol B_KMASK), and one for executive mode sys­
tem services (at the symbol B_EMASK). Each entry in these tables contains a 
mask that indicates whether or not the system service can be disabled by 
$SETSSF. If the service can be disabled by $SETSSF, the mask also indicates 
the system service filter groups for which the service is disabled. Group 0 
specifies all services, except $EXIT; group 1 specifies most services, with the 
exception of $EXIT and those services required for condition handling or 
image rundown. The VAX/VMS System Services Reference Manual lists the 
services that are not disabled by $SETSSF. 

The byte at offset CTL$GB_SSFILTER in the per-process control region 
contains the system service filter mask for a particular process. Usually this 
mask contains the value zero. When $SETSSF is called, the mask value speci­
fied in the call to $SETSSF is written into this mask. 

When the system is bootstrapped, module INIT checks the bit 
EXE$V _SSINHIBIT at global location EXE$GL_DEFFLAGS. This bit corre­
sponds to the SYSBOOT paramter SSINHIBIT. If the bit is set, the entry 
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points in the change mode dispatcher for CHME and CHMK are revectored to 
the entry points EXE$CMODEXECX and EXE$CMODKRNLX, respectively. 

When control is passed to these alternate entry points (from a CHME or 
CHMK instuction), the value in CTL$GB_SSFILTER is ANDed with the 
value in the system service filter tables (found at locations B_EMASK or 
B_KMASK). The CHMx code is used as an index into these tables. If the 
result of the AND is zero, processing continues and control is passed to the 
system service; if the result of the AND is nonzero, the call to the system 
service fails with the exit status SS$_INHCHME or SS$_INCHMK, depend­
ing on whether the system service was an executive mode or kernel mode 
service. 
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10 Scheduling 

It is equally bad when one speeds on the guest unwilling to go, 
and when he holds back one who is hastening. Rather one should 
befriend the guest who is there, but speed him when he wishes. 

-Homer, The Odyssey 

Scheduling is concerned with the order of execution of processes and the 
occurrence of events over time. The scheduler identifies and executes the 
highest priority, memory-resident process. Processes may or may not be 
scheduled, depending on the scheduling state of the process and the nature of 
the event or resource for which the process is waiting. Transitions from one 
state to another occur as the result of system events such as the setting of an 
event flag, enqueuing an AST, calling the $WAKE system service, and so 
forth. This chapter describes the interactions of software priorities, process 
states, and system events, as well as the operation of the scheduler. 

10.1 PROCESS STATES 

10.1.1 

The state of a process defines the readiness of the process to be scheduled for 
execution. In addition, the process state may indicate whether the process is 
memory resident or outswapped. If a process is waiting for the availability of 
a system resource or the occurrence of an event, then the process state is one 
of several distinct wait states. The wait state reflects the particular condition 
that must be satisfied for the process to become computable again. 

Process Control Block 

The major data structure describing the state and priority .of a process is the 
software process control block (PCB). Figure 10-1 illustrates the fields of the 
software PCB that are particularly important to scheduling. The field 
PCB$W _STATE contains a numeric value associated with a particular proc­
ess state. The process state is established by moving the appropriate value 
into PCB$W _STATE and inserting the PCB into the corresponding state 
queue by means of the state queue link fields, PCB$L_SQFL and 
PCB$L_SQBL. Appendix B contains a complete description of the software 
PCB. Table 10-1 lists the process state names and the corresponding 
PCB$W _STATE values. Other software PCB fields define the scheduling or 
software priority of the process and indicate whether the process is in mem-
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Figure 10-1 
Process Control Block Fields Used in Scheduling 

ory or outswapped. The location of a data structure containing the hardware 
context of the process is also stored in the software PCB (PCB$L_PHYPCB). 

Software Priority 

Software priority (as distinct from interrupt priority, a hardware mechanism) 
is used in determining the relative precedence of processes for execution and 
memory residence. Software priority is a value in the range from 0 to 31. The 
null process executes at software priority level 0, and the highest priority 
real-time process executes at software priority level 31. The range of 32 soft­
ware priority levels is divided evenly between the normal process levels of 0 
to 15 and the real-time process levels of 16 to 31. The execution behavior of 
a process is significantly affected by the type of process (normal or real time) 
and the assigned software priority level. 

Two fields of the software process control block directly describe the 
scheduling or software priority of the process. The field PCB$B_PRI (see Fig­
ure 10-1) defines the current software priority of the process, which is used to 
make scheduling decisions. PCB$B_PRIB defines the base priority of the 
process, from which the current priority is calculated. For normal or time­
sharing processes, these priority values are sometimes different, while real-
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Table 10-1: Process Scheduling States 

State Name Mnemonic Value 

Collided Page Wait CO LPG 
Miscellaneous Wait MWAIT 2 

MutexWait 
Resource Wait 

Common Event Flag Wait CEF 3 
Page Fault Wait PFW 4 
Local Event Flag Wait (Resident) LEF 5 
Local Event Flag Wait (Outswapped) LEFO 6 
Hibernate Wait (Resident) HIB 7 
Hibernate Wait (Outswapped) HIBO 8 
Suspend Wait (Resident) SUSP 9 
Suspend Wait (Outswapped) SUSPO 10 
Free Page Wait FPG 11 
Computable (Resident) COM 12 
Computable (Outswapped) COMO 13 
Currently Executing Process CUR 14 

time processes always have identical current and base priority values. Each 
field may have a value from 0 to 31. 

However, the values in these fields are stored internally in an inverted 
order. That is, the base and current priorities of 0 for the null process are 
stored internally in the PCB fields as 31. The highest priority process possible 
would have internally stored software priority values of 0. Thus, the internal 
field values are stored as 31 minus the software priority value. This inverted 
value causes priority promotions or boosts to be implemented through sub­
tract or decrement instructions. System utilities such as SDA, MONITOR, 
and the DCL command SHOW SYSTEM interpret these inverted values and 
display external values, where 0 is the lowest priority and 31 is the highest. 
External values are also returned by the $GETJPI system service when a proc­
ess priority is requested. 

Note that all discussions in this book treat software priority as an increas­
ing entity from 0 (for the null process) to 31 (for the highest priority real-time 
process). Please take this convention into account when relating descriptions 
in this book to the actual routines in the listings, where inverted priorities 
are used. 

10.1.2.1 Real-Time Priority Range. Processes with software priority levels 16 through 
31 are considered real-time processes. There are two scheduling characteris­
tics that distinguish real-time processes. 

1. The software priority of a real-time process does not change over time, 
unless there is a direct program or operator request to change it (with a Set 
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Priority system service or a SET PROCESS/PRIORITY command). The 
fact that the priority does not change implies that the base priority and the 
current priority of a real-time process are identical, and no dynamic prior­
ity adjustment (see Section 10.1.2.3) is applied by the operating system. 

2. A real-time process executes until it is either preempted by a higher or 
equal priority process or it enters one of the wait states (see Section 
10.1.3.2). Thus, a real-time process is not susceptible to quantum end 
events (see Section 10.1.2.4) and is not removed from execution (resched­
uled) because some interval of execution time has expired. 

Taken in isolation, the real-time range of VMS software priorities provides 
a scheduling environment like traditional real-time systems: preemptive, pri­
ority-driven scheduling without time slices or quanta. 

10.1.2.2 Normal Priority Range. Normal processes include interactive terminal ses­
sions, batch jobs, and all system processes except the swapper. The schedul­
ing behavior of a normal process is different from that of a real-time process. 
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1. The current software priority of the process varies over time while the 
base priority remains constant (unless altered by the Set Priority system 
service or by a SET PROCESS/PRIORITY command). This behavior is the 
result of dynamic priority adjustment applied by the VMS system to favor 
1/0-bound and interactive processes at the expense of compute-bound (and 
frequently also batch) processes. The mechanism of priority adjustment is 
discussed in the following section. Priority adjustment can also occur as a 
result of locking a mutex (see Section 2.3.1) or as a result of action by the 
routine EXE$TIMEOUT (see Section 11.3.5). 

2. Normal processes run in a time-sharing environment that allocates CPU 
time slices (or quanta) to processes in turn. Therefore, an executing nor­
mal process will control the CPU until one of the following events occurs: 

• It is preempted by a higher or equal priority, computable process (see 
Figure 10-2, event 5, for example). 

• It enters a resource or event wait state (see Figure 10-2, event 7, for 
example). 

• The current quantum or time slice has been used (see Figure 10-2, event 
17, for example). 

3. Processes with identical current priorities are scheduled on a round robin 
basis. That is, each process at a given software priority level executes in 
turn before any other process at that level executes again. Although this 
mechanism applies to real-time processes as well, it generally has no effect 
because real-time processes are usually assigned to unique software prior­
ity levels and their priorities do not change. Normal processes do experi­
ence round robin scheduling both because there are usually more of them 
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on a given system and because the default behavior (from Create Process 
system service arguments or from the user authorization file) is to assign a 
base priority of four to all user processes. Thus software priority levels four 
through nine tend to be occupied by several processes simultaneously. 

10.1.2.3 Priority Adjustment. Normal processes do not generally execute at a single 
software priority level. Rather, a process software priority changes over time 
in a range of zero to six software priority levels above the base process prior­
ity. Two mechanisms provide this priority adjustment. As a condition for 
which the process has been waiting is satisfied or a needed resource becomes 
available, a boost or priority increment may be applied to the base priority to 
improve the scheduling response for the process (see Section 10.2.4). Each 
time the process executes without further system events (see Section 10.2) or 
quantum expiration (see the next section) occurring, the current priority is 
moved toward the base priority (or demoted) by one priority level (see Section 
10.3). Over time, compute-bound process priorities tend to remain at their 
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base priority levels, while I/0-bound and interactive processes tend to have 
average current priorities somewhat higher than their base priority. An ex­
ample of priority adjustment that occurs over time for several processes is 
illustrated in Figure I0-2. 

10.1.2.4 Quantum Expiration. The SYSBOOT parameter QUANTUM determines, for 
most process states, the minimum amount of time a process can remain in 
memory after an inswap operation, but it is not an absolute guarantee of 
memory residence. (The swapper's use of the initial quantum flag is de­
scribed in Chapter 17.) The quantum also defines the size of the time slice for 
the round robin scheduling of normal processes. The value of QUANTUM is 
the number of IO-millisecond intervals (clock ticks) in the quantum. The 
default QUANTUM value of 30 therefore produces a scheduling interval of 
300 milliseconds. After each IO-millisecond interval, the hardware clock in­
terrupt service routine updates the quantum-remaining field in the process 
header of the current process. When this value becomes zero, the software 
timer routine signals a quantum end event by invoking the subroutine 
SCH$QEND in module RSE. 
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An additional deduction from the QUANTUM is governed by the special 
SYSBOOT parameter IOTA. This value (in units of IO milliseconds) is de­
ducted from the remaining quantum value each time a process enters a wait 
state. Therefore, the default IOTA value of 2 charges 20 milliseconds against 
the quantum of the process. This mechanism is provided to insure that all 
processes experience quantum end events with some regularity. Processes 
that are compute bound experience quantum end as a result of using a certain 
amount of CPU time. Processes that are 1/0 bound experience quantum end 
as a result of performing a reasonable number of I/O requests. This scheme 
guarantees that processes that spend most of their time in some wait state 
can also accomplish useful work before they are outswapped. 

The routine SCH$QEND is executed at the end of every quantum, regard­
less of the software priority of the current process. For real-time processes, 
however, the only action performed is to reset the process header quantum 
field to the full quantum value and to clear the initial quantum bit in the PCB 
status vector (bit PCB$V _INQUAN in the field PCB$L_STS, pictured in Fig­
ure I0-1 ). The cleared initial quantum bit makes a process more likely to be 
outswapped, if process swap mode has not been disabled. 

The following notes relate to the numbers at the bottom of Figure I0-2: 

CD Process C becomes computable. Process A is preempted. 
@ C hibernates. A executes again, one priority level lower. 
@ A experiences quantum end and is rescheduled at its base priority.Bis 

computable outswapped. 
@) The Swapper process executes to inswap B. B is scheduled for execution. 
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@ B is preempted by C. 
@ B executes again; one priority level lower. 
(!) B requests an 1/0 operation [not terminal 1/0). A executes at its base 

priority. 
@ A requests a terminal output operation. The Null process executes. 
® A executes following 1/0 completion at its base priority+ 3. [The applied 

boost was 4.) 
@ A is preempted by C. 
@ A executes again, one priority level lower. 
@ A experiences quantum end and is rescheduled at one priority level 

lower. 
@ A is preempted by B. A priority boost of 2 is not applied to B because the 

result would be less than the current priority. 
@ B is preempted by C. 
@ B executes again, one priority level lower. 
@ B requests an 1/0 operation. A executes at its base priority. 
@ A experiences quantum end and is rescheduled at the same priority [its 

base priority). 
@) A is preempted by C. 

For normal processes, however, the occurrence of quantum expiration in­
volves several different operations. 

1. As with real-time processes, normal processes have the process header 
quantum field reset and the initial quantum bit cleared. 

2. If there are any inswap candidates (SCH$GL_COMOQS is nonzero, indi­
cating at least one nonempty COMO state queue), the current priority of 
the process is set to its base priority. [If SCH$GL_COMOQS contains a 
zero, the priority is left alone.) 

3. Routine SCH$SWPWAKE is called to determine whether swapper activity 
is required. The swapper process is awakened if any of the following are 
true: 

• There is at least one computable outswapped process. 
• Modified page writing is required as indicated by the upper and lower 

limit thresholds for the free and modified page lists. 
• There is at least one process header of a deleted process still in the 

balance slots. 
• A powerfail recovery has just occurred. 

These checks avoid needless awakening of the swapper, with the associ­
ated context switch overhead, only to determine that the swapper has no 
useful work to do. 

The swapper process does not execute immediately but must be sched­
uled for execution. As a computable (after waking), resident, real-time 
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process of software priority 16, the swapper is very likely to be the next 
process scheduled. 

~. The CPU limit field of the process header is next checked to determine if 
a CPU limit has been imposed and if that limit has expired. If the CPU 
limit has expired, each access mode will have an interval of time to clean 
up or run down before the image exits and the process is deleted. The size 
of the warning interval given to each access mode is defined by the 
SYSBOOT parameter EXTRACPU. (This parameter has a default value of 
one second.) 

5. If no CPU limit expiration has occurred, then the automatic working set 
adjustment calculations take place if they are enabled. The size of the 
process working set may be expanded or contracted by amounts specified 
by the SYSBOOT parameters WSINC or WSDEC. Five SYSBOOT parame­
ters determine threshold values to be applied to the automatic adjust­
ments: 

• For a new adjustment to take place, this process must have accumu­
lated AWSTIME units of CPU time (each clock tick accounts for 10 
milliseconds) since the last test for adjustment. 

• The page fault rate must be larger than PFRATH faults per 10 seconds or 
less than PFRATL faults per 10 seconds. 

• The working set cannot be contracted through automatic working set 
adjustment below AWSMIN nor expand above a process-specific maxi­
mum number of pages (see the next item). 

• If there are more than BORROWLIM free pages, the working set list can 
grow up to WSEXTENT. If there are fewer than BORROWLIM free 
pages, the working set list can only grow to WSQUOTA. Note that this 
growth affects the working set list, not the actual working set size. 
Pages can be added to the extended working set list when a page fault 
occurs and there are more than GROWLIM pages on the free page list. 

There are two possible courses of action that will disable automatic 
working set adjustment, and a third method is available to keep working 
set size less than or equal to WSQUOTA (disable borrowing) on a per-proc­
ess basis: 

• Use the DCL command SET WORKING_SET/NOADJUST to disable it 
on a per-process basis. 

• Set the SYSBOOT parameter WSINC to zero to disable it on a system­
wide basis. 

• Set WSEXTENT equal to WSQUOTA, or set BORROWLIM to -1, to 
disable borrowing on a per-process basis. 

Automatic working set adjustment is discussed from the memory man­
agement point of view in Section 16.4.1.3. 
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6. Finally, a scheduling interrupt at IPL 3 will be requested to remove the 
current process from execution and schedule the highest priority, mem­
ory-resident, computable process for execution. Note that on a quiet sys­
tem, the currently executing process may be selected for execution again. 

State Queues 

With the exception of the single process executing at a given moment, all 
processes in the system are in a process wait state, the computable resident 
state, or the computable outswapped state. The process state is indicated by 
the PCB$W _STATE field and the linking of the process control block into a 
queue of similar PCBs. The listheads for all wait queues, computable resident 
(COM) queues, and computable outswapped (COMO) queues, as well as the 
pointer to the PCB of the current (CUR) process, are defined in the module 
SDAT. 

10.1.3.1 Computable States. Processes in the computable or executable state are not 
waiting for events or resources, other than acquiring control of the CPU for 
execution. Computable resident (COM) processes are placed in one of 32 pri­
ority queues, with the queue chosen by the internal value for the current 
software priority of the process (see Figure 10-3). There is a similar set of 32 
quadword listheads for the computable outswapped (COMO) state. Processes 
in the computable outswapped state are waiting for the swapper process to 
bring them into memory. As computable resident processes, they can then be 
scheduled for execution. Processes must be in the computable resident state 
to be considered for scheduling. Processes are created in the computable out­
swapped (COMO) state. Deletion of processes occurs from the current (CUR) 
state. 

10.1.3.2 Wait States. The listheads for the process control block queues corresponding 
to all process wait states except the common event flag wait state (CEF) look 
like Figure 10-4. (Common event flag wait queues are described in Chapter 
12.) The first two longwords are the longword links to the PCBs in this queue. 
The STATE field of the queue header contains the numerical value corre­
sponding to the process state. All PCBs in a state queue have PCB$W _STA TE 
values identical to the STATE value of the wait state queue header. Recog­
nized STATE values and the corresponding state names are summarized in 
Table 10-1. The COUNT field of the wait state queue header is simply the 
number of process control blocks currently in this state and queue. 

10.1.3.2.1 Voluntary Wait States. There are two process states associated with local 
event flag waits. Resident processes waiting for local event flags are placed 
into the LEF state, while outswapped processes occupy the LEFO state. There 
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are separate queues maintained for these states, and an LEF state process 
being outswapped must be removed from the LEF queue and placed into the 
LEFO state queue. Processes enter the LEF state as a result of issuing 
$WAITFR, $WFLOR, and $WFLAND system services directly or indirectly 
(for example, with a $QIOW or $ENQW system service call, issued either by 
the user or on his behalf by some system component such as RMS). Removal 
from the LEF or LEFO states to the computable (COM) or computable 
outswapped (COMO) states can occur as a result of matching the event flag 
wait mask, enqueuing an asynchronous system trap (AST), or process dele­
tion. 

Similarly, there are separate resident and outswapped states and queues for 
hibernating and suspended processes. The Hibernate and Suspend system 
services cause processes to enter the resident wait states. Hibernating proc-
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esses can leave the HIB and HIBO states and enter the COM and COMO 
states as a result of $WAKE system services, AST enqueuing, or process dele­
tion. Suspended processes are sensitive only to $RESUME system services 
and process deletion (because ASTs cannot be delivered to processes while 
they are suspended). The transitions between states are diagrammed in Figure 
10-5. 

10.1.3.2.2 Memory Management Wait States. Three process wait states are associated 
with memory management. Each state is represented by a single queue and 
listhead of the form shown in Figure 10-4. Differentiation of resident and 
outswapped processes in these states is accomplished only by means of the 
PCB$V _RES bit of the PCB$L_STS field. The outswapping of processes in 
these states does not involve removal from and insertion into queues. The 
PCB$V _RES bit is simply cleared in the process control block. (Memory 
management wait states are discussed from another point of view in Chap­
ter 15.) 

The page fault wait state (PFW) is entered when a process refers to a page 
that is not in physical memory. While the page read is in progress, the process 
is placed into the PFW state. Completion of the page read, AST enqueuing, or 
process deletion can cause the process to become computable (COM) or com­
putable outswapped (COMO), depending upon its PCB$V _RES bit value 
when the satisfying condition occurs. 

The free page wait state (FPG) is entered when a process requests a page to 
be added to its working set, but there are no free pages to be allocated from 
the free page list. This state is essentially a resource wait until the supply of 
free pages is replenished through modified page writing, process outswap­
ping, or virtual address space deletion. 

The collided page wait state (COLPG) usually occurs when several proc­
esses cause page faults on the same shared page at the same time. The initial 
faulting process enters the PFW state, while the second and succeeding proc-
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esses enter the COLPG state. The COLPG state can also be entered when a 
process refers to a private page that is already in transition from the disk. All 
COLPG processes are made computable or computable outswapped when the 
read operation completes. (A more detailed discussion of collided pages is 
contained in Chapter 15.) 

10.1.3.2.3 Miscellaneous Wait State (MWAIT). The miscellaneous wait state (MWAIT) 
is used to indicate processes waiting for resources not managed by any of the 
other process wait states. There is a single MWAIT queue for memory-resi­
dent and outswapped processes. Table 10-2 lists the resources associated with 
the two forms of the MWAIT state. 

The miscellaneous resource wait state is used to wait for the availability of 
a depleted or locked resource. A process may enter a resource wait if the 
resource requested has already been allocated. Common examples are the 
depletion of nonpaged dynamic memory or no room in mailboxes. The proc­
ess will become computable when the resource becomes available again. The 
number of the resource (a small integer defined by the $RSNDEF macro) is 
stored in the PCB$L_EFWM field (see Table 10-2), and the PCB$W_STATE is 
changed to MWAIT to indicate a miscellaneous resource wait. Whether a 
process can be made executable by the enqueuing of an AST to the process is 
dependent upon the interrupt priority level of the caller of the routine declar­
ing the resource wait. If the IPL in the saved PSL in the hardware process 
control block is two or larger, the process will reexecute the resource wait 
code and be placed back into the MWAIT state immediately. If the saved IPL 
is smaller than two, an AST delivery interrupt will occur, resulting in the 
execution of the previously enqueued AST. 

The Set Resource Wait Mode system service ($SETRWM) can force the 
immediate return of an error .status code rather than placing the process in 
the MWAIT state. $SETRWM does this by setting the PCB$V _SSRWAIT bit 
of the PCB$L_STS field. Disabling resource waits affects many directly re­
quested operations (such as I/O requests or timer requests) but has no effect 
on allocation requests by the system on behalf of the user. An example of this 
situation is the pager requiring an I/O request packet to perform a page read 
operation. If nonpaged dynamic memory is depleted, the process will enter 
the MWAIT state, even if $SETRWM had been used to disable resource waits. 
The reason for this distinction is that a process can respond to a depleted 
resource error from a system service call or an RMS request but has no means 
of reacting to a similar error in the event of an unexpected event such as a 
page fault. 

System routines that access data structures protected by mutexes will 
place a process in the MWAIT state if the requested mutex ownership cannot 
be granted (see Chapter 2). Thus, the mutex wait state indicates a locked 
resource and not necessarily a depleted one. The logical name system serv-
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Table 10-2: Types of MWAIT State 

Reason for Wait 
Mutex Waits 

System Logical Name Table 
Group Logical Name Table 
IIO Database 
Common Event Block List 
Paged Dynamic Memory 
Global Section Descriptor List 
Shared Memory Global Section Descriptor Table 
Shared Memory Mailboxes 
(Not used) 
Known File Entry Table 
Line Printer Unit Control Block (2) 

Resource Waits 

AST Wait (Wait for system or special kernel AST) 
Mailbox Full 
Nonpaged Dynamic Memory 
Page File Full 
Paged Dynamic Memory 
Breakthrough (Wait for broadcast message) 
Image Activation Lock 
Job Pooled Quota (Not currently used) 
Lock Identification Database 
Swap File Space 
Modified Page List Empty 
Modified Page Writer Busy 

Contents of PCB$LEFWM (1) 
Symbolic Numeric (hex) 

LOG$ALMUTEX 
80002754 
IOC$GLMUTEX 
EXE$GLCEBMTX 
EXE$GLPGDYNMTX 
EXE$GLGSDMTX 
EXE$GLSHMGSMTX 
EXE$GLSHMMBMTX 
EXE$GLENQMTX 
EXE$GLKFIMTX 
UCB$LLP _MUTEX 

Symbolic 

RSN$_ASTWAIT 
RSN$_MAILBOX 
RSN$_NPDYNMEM 
RSN$_PGFILE 
RSN$_PGDYNMEM 
RSN$_BRKTHRU 
RSN$_IACLOCK 
RSN$_JQUOTA 
RSN$_LOCKID 
RSN$_SWPFILE 
RSN$_MPLEMPTY 
RSN$_MPWBUSY 

80002750 

800028CO 
800028C4 
800028C8 
800028CC 
800028DO 
800028D4 
800028D8 
800028DC 
(Note 2) 

Numeric (hex) 

00000001 
00000002 
00000003 
00000004 
00000005 
00000006 
00000007 
00000008 
00000009 
OOOOOOOA 
OOOOOOOB 
oooooooc 

(1) The symbolic contents of PCB$L_EFWM will probably remain the same from release to release. The 
numeric contents for mutex waits are almost certain to change with each major release of the operating 
system. 

(2) The mutex associated with each line printer unit does not have a fixed address like the other mutexes. 
Its value depends on where the UCB for that unit is allocated. 
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ices operating on the system and group logical name tables are one example 
of this type of operation. When the owner of the requested mutex releases it, 
the requesting process becomes resident computable (COM), or computable 
outswapped (COMO) if it has been outswapped, and requests ownership of 
the mutex again. AST enqueuing cannot make a mutex-waiting process com­
putable for long because the IPL in the stored PSL is IPL$_ASTDEL (IPL 2), 
blocking the AST delivery interrupt. 

The mutex wait state is distinguished from the resource wait state by stor­
ing the system virtual address of the requested mutex in the PCB$L_EFWM 
field. (When treated as a signed integer, the contents of this field are positive 
and small when the process is waiting for a resource. When the process is 
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waiting for a mutex, the contents are negative, as listed in Table 10-2.) For 
example, if a process wishes to allocate a block of paged dynamic memory, it 
must first acquire the paged pool mutex to allow it to search the linked list of 
available blocks (see Chapter 3). If another process is already looking at paged 
pool, this process is put into a mutex wait state (with 800028C8, the address 
of the paged pool mutex, stored in PCB$L_EFWM). Once the mutex is availa­
ble and then owned by this process, paged pool is searched for a block of the 
requested size. If there is no block large enough to satisfy the allocation re­
quest, the process is placed into a resource wait state (with 00000005, the 
value of RSN$_PGDYNMEM, stored in PCB$L_EFWM). The process re­
mains in this state until a block of paged pool is deallocated. 

10.1.3.3 Common Event Blocks. Processes waiting for one or more common event 
flags are enqueued to wait queues in data structures called common event 
blocks (CEBs). These data structures are allocated from nonpaged dynamic 
memory when processes create common event flag clusters. The contents of 
a CEB include three longwords that exactly correspond to a wait state queue 
header (see Figure 10-4). The entire format of the common event block is 
shown in Chapter 12. 

The number of CEF state queues depends upon the number of common 
event flag clusters that exist on a particular system at any given time. (Addi­
tional processes associating with existing common event flag clusters do not 
create further CEBs or CEF queues.) Outswapped processes waiting for com­
mon event flags are differentiated from similar memory resident processes by 
the PCB$V _IRES bit of the PCB$L_STS field only. In addition to satisfying 
the event flag wait mask, the system can also make a CEF process computa­
ble by AST enqueueing or process deletion. 

10.2 SYSTEM EVENTS 

System events are occurrences of operations that change the states of proc­
esses. A system event may make a process computable, memory resident, or 
outswapped. System events provide the transitions among the process states 
diagrammed in Figure 10-5. 

A process initially enters a wait state from the current state (CUR). That is, 
a process either directly or indirectly executes a request for a system opera­
tion for which it must wait. Direct requests such as $QIOW, $HIBER, 
$SUSPND, and $WAITFR place the process in the voluntary wait states LEF, 
CEF, HIB, and SUSP. Subsequent outswapping (from the process viewpoint an 
unrequested system operation) may move a process to the LEFO, HIBO, or 
SUSPO states. 
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Process State Changes 

Indirect wait requests occur as a result of paging or contention for sys­
temresources.AprocessdoesnotrequestPFW, FPG, COLPG, orMWAITtransi­
tions. Rather, the transitions to these wait states occur because direct service 
requests to the system cannot be completed or satisfied at the moment. 

A process can become computable for a variety of reasons. The availability 
of a requested resource or the satisfaction of a wait condition (such as an 
event flag setting or a $WAKE system service call) will make the process 
computable. In all process states except SUSP and SUSPO, the enqueuing of 
an AST will make a process computable even if the wait condition is not 
satisfied. (Because processes are usually put into the MWAIT state at !PL 2, 
the AST is not able to be delivered until the miscellaneous wait is satisfied. 
Thus, the typical process in an MWAIT state will not become computable for 
long, due to the enqueuing of an AST. In particular, processes waiting for 
resources or mutexes typically cannot be deleted.) Process deletion, imple­
mented with a special kernel mode AST, will make all processes that are 
being deleted computable (including processes in the SUSP or SUSPO states) 
because the target process is resumed before the AST is queued. 

Exchanges of processes between the current executing state (CUR) and the 
computable, memory-resident state (COM) are performed by the scheduler 
routine (see Section 10.3). The movement of a process into and out of the 
balance set is the responsibility of the swapper process (see Chapter 17). 

Wait States and AST Delivery 

One of the responsibilities of the routines that place processes into wait 
states is to insure that these processes will correctly enter their appropriate 
wait states after successful delivery of an AST. There are three different tech­
niques used, depending on the particular wait state being entered. 

10.2.2.1 System Service Wait States. In the case where a process is entering a wait 
state as a result of executing a system service (HIB, LEF, or CEF), the wait 
routine is entered with the PC and PSL of the the system service CHMK 
exception (see Chapter 91 on the top of the stack. The first implication of this 
arrangement is that the process will wait in the access mode in which the 
system service was issued. Because ASTs are enqueued and delivered based 
on access mode, a supervisor mode AST can be delivered to a process waiting 
on an event flag as a result of a $QIOW call issued from user or supervisor 
mode. 
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In addition, the wait code backs up the saved PC by four so that it points to 
the CHMx instruction in the system service vector (see the code examples in 
Section 9.1). If a process receives an AST while in such a wait state, the AST 
is delivered and executes. When the AST delivery routine releases its inter-
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rupt through an REI instruction, the system service executes again, typically 
placing the process right back into the wait state it was in before the AST was 
delivered. 

10.2.2.2 Memory Management Wait States. The page fault handler (see Chapter 15) is 
solely responsible for placing processes into the three wait states associated 
with memory management. This routine places a process into a wait state 
with the PC and PSL associated with the page fault as the saved process 
context. Once again, because the PSL reflects the access mode in which the 
fault occurred, ASTs can be delivered for that and all inner access modes. 
(Note that this routine does not need to change the PC that it finds on the 
stack because page fault exceptions are faults and not traps. Faults, discussed 
in full in Chapter 4, cause the PC of the faulting instruction and not the PC of 
the next instruction to be pushed onto the exception stack.) 

If an AST is delivered to and executes in such a process, the process will 
execute the faulting instruction again. If the reason for the fault has been 
removed (a free page became available or the page read completed) while the 
AST was being delivered or was executing, the process will simply continue 
with its execution. If, on the other hand, the situation that caused the process 
to wait still exists, the process will reincur the page fault and be placed back 
into one of the memory management wait states. (Note that a process that 
was initially in a PFW state would be placed into a COLPG state by such a 
sequence of events.) 

10.2.2.3 Special Cases. The two remaining wait states (SUSP and MWAIT) are handled 
in a special way by the wait routine. A process suspension occurs as a result 
of executing a special kernel AST. ASTs cannot be delivered to suspended 
processes. That is, an AST queued to a suspended process has its AST control 
block inserted into the AST queue in the software PCB. However, the AST 
event is ignored by the scheduler. (In fact, while a process is suspended, the 
saved PC is an address in the special kernel AST that caused the process to 
enter the suspend state. The saved PSL indicates kernel mode and IPL 2.) 

When a process is placed into a wait state waiting for a mutex (see Chapter 
2), its saved PC is either SCH$LOCKR or SCH$LOCKW, depending on 
whether it is attempting to lock the mutex for read access or write access. 
The saved PSL indicates kernel mode and IPL 2, which implies that processes 
in an MWAIT state waiting for a mutex cannot receive ASTs. 

A process can also be placed into an MWAIT state while waiting for an 
arbitrary system resource. In this case, the caller of SCH$RWAIT controls the 
PC and PSL that are saved when the process is placed into the MWAIT state. 
In particular, the current access mode and IPL in the saved PSL determine 
whether any ASTs can be delivered to a process that is waiting for a resource. 
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Event Reporting 

Events are reported to the scheduler from many system routines through the 
RPTEVT macro, which generates the following code: 

JSB 
.BYTE 

SCH$RSE 
EVT$_event-name 

The byte value stored depends upon the event being declared by the system 
routine. The address of the value will be pushed on to the stack by the BSBW 
instruction. Additional parameters (priority increment class and PCB address 
of the affected process) are passed in registers. 

The routine SCH$RSE (in module RSE) performs the following operations: 

1. The event number is loaded into a register and the return PC value (on the 
stack as a result of the BSBW instruction) is adjusted to point to the ad­
dress after the stored byte event value. 

2. The state and the event are checked for a significant transition. Each event 
(or state transition) has a bit mask defining which states this event can 
affect. The state of the process is obtained from the PCB$W _STATE field. 

• For example, a wake event is only significant for processes that are 
hibernating (HIB or HIBO states). 

• An outswap event is only significant for the four states (COM, HIB, LEF, 
and SUSP) where a wait queue change is required. 

• The enqueuing of an AST is significant to some process states. If the 
process is in a SUSP or SUSPO, COM or COMO, or CUR state, the 
enqueuing of an AST is ignored by SCH$RSE. If the event is not signifi­
cant for the current process state, the event is ignored (and SCH$RSE 
simply issues an RSB). 

3. For significant events, one of the following actions is taken: 

• An outswap event producing an LEF to LEPO, HIB to HIBO, or SUSP to 
SUSPO transition simply removes the PCB of the process from the resi­
dent wait queue and inserts it in the corresponding outswapped wait 
queue. The corresponding wait queue header count fields and the proc­
ess state (PCB$W _STATE) are also adjusted. 

• An outswap event producing a COM to COMO transition removes the 
PCB from the COM priority queue corresponding to PCB$B_PRI and 
inserts it into the corresponding COMO priority queue. The value in 
PCB$W _STATE is changed to the value SCH$C_COMO. The 
SCH$GL_COMQS status bit vector is also modified if the COM queue 
is now empty. The appropriate SCH$GL_COMOQS bit is uncondition­
ally set. 

• For transitions from the LEF (implied resident) or CEF resident state to 
the COM state, the saved PC in the hardware PCB stored in the process 
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header is incremented by four to point past the CHMx instruction. Sav­
ing the PC value allows the process to begin execution immediately 
following the system service call rather than going through a Wait for 
Event Flag system service for a flag that is already set. The residence 
check is necessary because the saved PC of nonresident processes is 
usually not available. (The saved PC is stored in the hardware PCB in 
the process header, which may be outswapped if the process is not resi­
dent.) 

• For the remaining transitions (all of which make a process computable), 
the process is removed from the wait queue and the wait queue header 
count is decremented. The PCB is inserted into a COM or COMO state 
queue depending upon whether the process is memory resident or 
outswapped, and the state field in the PCB is altered. The particular 
priority queue of the COM or COMO state is selected for insertion after 
a priority adjustment is attempted (see the following section). The 
SCH$GL_COMQS or SCH$GL_COMOQS summary bit correspond­
ing to the selected priority queue is unconditionally set. 

4. Subsequent scheduling or swapping activity is necessary to execute or 
inswap the now computable process. The swapper is awakened (routine 
SCH$SWPWAKE is called) if the now computable process is presently out­
swapped (see Section 10.1.2.4, item 3). 

The scheduler is requested, through an IPL 3 software interrupt, if the 
now computable process is memory resident and has a priority greater 
than or equal to that of the currently executing process. This priority 
check avoids needless context switches with their associated overhead, 
only to have the previously executing process again execute. 

System Events and Associated Priority Boosts 

System routines that report events to the scheduler not only describe the 
event and the process that is responsible, but also specify one of five classes 
of priority increments or boosts that may be applied to the base priority of the 
process. Table 10-3 lists the events, the priority class, and the potential 
amount of priority increment applied to the process. The table does not show 
AST enqueuing because system routines enqueuing ASTs to a process can 
select any of the priority increment classes to be associated with the enqueu­
ing of an AST. 

The actual software priority of the process is determined by the following 
steps: 

1. The priority increment for the event class (see Table 10-3) is added to the 
base priority of the process (PCB$B_PRIB). 
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Table 10-3: System Events and Associated Priority Boosts 

Priority Priority 
Event Class (1) Boost 

Page Fault Read Complete 0 (PRl$_NULL) 0 
Quantum End 0 0 
Other Events with No Boost 0 0 

Direct I/O Completion 1 (PRI$_IOCOM) 2 
Nonterminal Buffered I/O Completion 1 2 
Update Section Write Completion 1 2 
Set Priority Priority 2 

Resource Available 2 (PRI$_RESAVL) 3 
Wake a Process 2 3 
Resume a Process 2 3 
Delete a Process 2 3 
Timer Request Expiration 2 (PRI$_ TIMER) 3 

Terminal Output Completion 3 (PRI$_ TOCOM) 4 

Terminal Input Completion 4 (PRI$_ TICOM) 6 
Process Creation 4 6 

( 1) Routines that report system events pass an increment class to the sched­
uler. The scheduler uses this class as a byte index into a table of values 
(local label B_PINC in module RSE) to compute the actual boost. 

2. If the process has a current priority higher than the result of step one, the 
current priority will be retained (such as occurs in Figure 10-2, event 13). 

3. If the higher priority of steps one and two is above 15, then the base prior­
ity of the process is used. (Note that this test accomplishes two checks at 
the same time. First, all real-time processes fit this criterion, with the 
result that real-time processes do not have their priorities adjusted in re­
sponse to system events. Second, priority boosts cannot move a normal 
process into the real-time priority range.) 

A side effect of step three is that real-time processes always execute at 
their base priorities. Further, note that normal processes with base priori­
ties from 10 to 15 will not always receive priority increments as events 
occur. As the base priority of a normal process is moved closer to 15, the 
process will spend a greater amount of time at its base priority. Priority 14 
and 15 processes experience no priority boosts. Thus, this strategy benefits 
those processes that most need it, 1/0-bound and interactive processes 
with base priorities of 4 through 9. Processes with elevated base priorities 
do not require this assistance as they are always at these levels. 

10.3 RESCHEDULING INTERRUPT 
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The IPL 3 interrupt service routine, SCHED, schedules processes for execu­
tion. The actual work of the scheduler is performed at IPL$_ SYNCH to block 
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concurrent access and modification of the scheduler's database by other sys­
tem components. The principal purpose of this interrupt service routine is to 
remove the currently executing process by storing the contents of the process 
private processor (hardware) registers and replacing the register contents with 
those of the highest priority computable resident process. This operation, 
known as context switching, is accompanied by modifications to the affected 
processes in terms of process state, current priority, and state queue. 

Hardware Context 

The definition of a process from the viewpoint of the hardware is contained 
in the hardware context. This collection of data is the set of hardware proces­
sor registers whose contents are unique to the process. These include the 
following categories of information: 

• The general purpose registers, RO through Rl 1, the argument pointer (AP), 
the frame pointer (FP), and the program counter (PC). 

• The per-process access mode stack pointers for kernel, executive, supervi­
sor, and user stacks. One of these four registers contains the current stack 
pointer for the process, as indicated by the current mode field in the saved 
PSL. 

• The processor status longword (PSL). 
• The AST level processor register (ASTLVL). 
• The process page table registers for the program and control regions (POBR, 

POLR, PlBR, and PlLR). 

With the exceptions of the ASTLVL register value and the contents of the 
memory management registers for the program and control regions, the cur­
rent values for the various registers forming the hardware context of the cur­
rent process are maintained only in the processor registers. When a process is 
not executing, the complete hardware context is contained in a portion of the 
process header called the hardware process control block. 

The hardware process control block (see Figure 10-6) is a part of the fixed 
portion of the process header for each process. It is resident in memory when­
ever the corresponding process is. in the balance set. Access by the operating 
system occurs normally through offsets from the starting address of the par­
ticular process header. However, during context switching operations, the 
hardware must access this data structure directly without address transla­
tion. This access is accomplished by using the current value in the process 
control block base register (PR$_PCBB). This register contains the physical 
address of the hardware process control block for the currently executing 
process. The VMS operating system stores the physical address of the hard­
ware process control block for each resident process (calculated when the 
process is swapped into memory) in the PCB$L_PHYPCB field of the corre­
sponding software process control block (see Figure 10-1 ). 
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Hardware Process Control Block 

Removal of Current Process from Execution 

The entry point SCH$RESCHED in the module SCHED performs the opera­
tions of rescheduling, preserving the hardware context of the currently exe­
cuting process, and removing it from execution. Rescheduling is accom­
plished by the following steps: 

1. The hardware context of the current process is saved by the SVPCTX in­
struction. The destination of the data is the hardware process control 
block whose physical address is contained in the process control block 
base register, PR$_PCBB. Additional operations of the SVPCTX instruc­
.tion are described in Section 10.3.5.1. 

2. The address of the software process control block for the current process is 
obtained from the pointer SCH$GL_CURPCB in the module SDAT. (A 
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single longword pointer is required for the current state (CUR), rather than 
a quadword listhead, because there is only one current process and not a 
queue of several such processes.) 

3. The current priority of the process is determined from the PCB$B_PRI 
field. The current priority is used to determine which of the resident com­
putable state queues is to include this PCB. The process is inserted at the 
tail of the corresponding priority queue. 

4. The state of the process is changed to computable (COM) by updating the 
PCB$W _STATE field. 

At this point, there is no current process, and the search for the next proc­
ess to execute begins. 

Selection of Next Process for Execution 

The entry point SCH$SCHED begins the portion of code that searches for the 
next process to be scheduled for execution. Under some circumstances (such 
as system initialization, placing the previous process into a wait state, or 
deletion of the previous process) there may not be a current process to be 
saved by SCH$RESCHED. In these cases, system routines transfer control 
directly to SCH$SCHED for process selection. (The difference between the 
two entry points is determined by whether the previous process is still com­
putable. Typically, a process entering a wait state will cause entry at 
SCH$SCHED, while a higher priority process becoming computable will 
cause entry, through a software interrupt, at SCH$RESCHED.) 

The SCH$RESCHED logic flows directly into SCH$SCHED. As with re­
scheduling, the search for and modification of the next process to be executed 
must be performed at IPL$_SYNCH to block other potential system opera­
tions on the scheduler database. 

The following operations are involved in selecting and executing the next 
process: 

1. The first software process control block (PCB) in the highest priority, non­
empty, computable resident (COM) state queue is removed from the 
queue and pointed to by SCH$GL_CURPCB as the current process. Con­
sistency checks are made to insure that the queue really had at least one 
PCB and that the data structure removed was actually a PCB. Failure of 
either of these tests results in a fatal bugcheck (BUG$_QUEUEMPTY). 

2. The state of the process is made current by inserting the appropriate value 
(SCH$C_CUR) into the PCB$W _STATE field. 

3. The current process priority is examined and potentially modified. If the 
process is a real-time process or if it is a normal process already at its base 
priority, then the process is scheduled at its current or base priority (they 
are the same). If the current process is a normal process above its base 
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priority, then a decrease of one software priority level is performed before 
scheduling. Thus, priority "demotions" always occur before execution, 
and a process executes at the priority of the queue to which it will be 
returned (and not the priority of the queue from which it was removed). 
See Figure 10-2, event 2 for an example 

4. The physical address of the hardware process control block for the sched­
uled process is loaded into the PR$_PCBB register from the software proc­
ess control block PCB$L_PHYPCB field, and a load process context, 
LDPCTX, instruction is executed (see Section 10.3.5.2). 

5. Control is passed to the scheduled process by executing an REI instruc­
tion. This transfer of control is possible because the LDPCTX instruction 
left the PC and PSL of the scheduled process on the kernel stack. When 
control is passed to the process through the REI instruction, the following 
operations are performed: 

• The interrupt priority level is dropped from IPL$_SYNCH. 
• The access mode is typically changed from kernel to a less privileged 

one. 
• If ASTs are queued to the process control block, they are likely to be 

delivered at this time, depending on their access mode and the access 
mode at which the process is reentered (see Chapter 7). 

Summary Longword and Computable State Queues 

The search for the highest priority computable resident process and the re­
moval of its PCB from the computable state (COM) queue is achieved in 
three instructions (see Figure 10-7). The efficiency of this operation is due to 
the instruction set and the design of the scheduler database for the computa­
ble (COM) and computable outswapped (COMO) states (see Figure 10-3). 

CD A find first set (FFS) instruction will locate the least significant set bit in 
the longword SCH$GL_COMQS. The located bit position indicates the 
highest priority nonempty computable resident state queue. The 
swapper's search for the first PCB in the highest priority nonempty com­
putable outswapped (COMO) queue uses the same operations (see Chap­
ter 17). 

One reason for storing the software priority in inverted or 31-comple­
ment form is the following. By making bit 0 correspond to software prior­
ity 31, and so on, the highest priority queues will be scanned first. Con­
version in the various user interfaces occurs because systems and users 
generally associate higher priority numbers with higher priority jobs, 
tasks, or processes. 

@ The listhead of the selected computable resident queue is found by using 
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the nonempty queue bit position as an index into the contiguous list­
heads. 

@ The first PCB in the selected queue is removed by indirect reference 
through the forward link of the listhead. 

@) If the removed PCB was the only one in the queue, the corresponding 
SCH$GL_COMQS bit must now be cleared because the queue is now 
empty. 

Hardware Assistance in Context Switching 

The VAX architecture was designed to assist the software in performing criti­
cal, commonly performed operations. One example is the delivery of asyn­
chronous system traps through the REI instruction (see Chapter 7). The 
mechanism of replacing the hardware context of the current process with the 
context of the highest priority resident process is another example of hard­
ware assistance to the operating system. The switching of hardware context 
is performed by two special purpose instructions, SVPCTX and LDPCTX. 

10.3.5.1 SVPCTX Instruction. The save process context instruction, SVPCTX, per­
forms several operations and assumes a special set of initial and final condi­
tions. The following initial conditions are assumed: 

• The current access mode must be kernel. 
• The program counter (PC) and processor status longword (PSL) are on the 

current stack (either kernel or interrupt stack). If the SVPCTX instruction 
that executes is the one in the rescheduling interrupt service routine, both 
the PC and PSL are on the kernel stack as a result of the IPL 3 software 
interrupt. 

• The process control block base register (PR$_PCBB) contains the physical 
address of the hardware PCB for the current process. 

• The current values of ASTLVL, POBR, POLR, PlBR, and PlLR are already 
stored in the hardware PCB. 

When the SVPCTX instruction is executed, the following operations are 
performed by the VAX hardware: 

l. The per-process stack pointers for the four access mode stacks are moved 
to the hardware PCB. 

2. The general purpose registers, RO through Rl 1, the argument pointer (AP), 
and the frame pointer (FP) to the hardware PCB are moved to the hardware 
PCB. 

3. The program counter (PC) and the process status longword (PSL) are 
popped from the current stack and moved to the hardware PCB. 
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.SBTTL SCH$RESCHED RESCHEDULING INTERRUPT HANDLER 
;++ 

SCH$RESCHED - RESCHEDULING INTERRUPT HANDLER 

THIS ROUTINE IS ENTERED VIA THE IPL 3 RESCHEDULING INTERRUPT. 
THE VECTOR FOR THIS INTERRUPT IS CODED TO CAUSE EXECUTION 
ON THE KERNEL STACK. 

ENVIRONMENT: 
IPL=3 MODE=KERNEL IS=D 

INPUT: 
DD(SP)=PC AT RESCHEDULE INTERRUPT 
04(SP)=PSL AT INTERRUPT. 

.ALIGN 
MPH$RESCHED:: 

LONG 

SCH$RESCHED:: 
SETI PL 
SVPCTX 
MOVL 
MOVZBL 
BBSS 

10$: MDVII 

;+ 

MOVAQ 
INSQUE 

#IPLS...SYNCH 

II A SCH$GL-CURPCB' R1 
PCB$B-PRI(R1),R2 
R2' II A SCH$GL-COMQS' 10$ 
#SCH$C-COM,PCB$11...STATE(R1) 
w A SCH$AQ-COMT [R2] 'R3 
(R1),i(R3)+ 

;MULTI-PROCESSING CODE HOOKS IN HERE 
;RESCHEDULE INTERRUPT HANDLER 
;SYNCHRONIZE SCHEDULER WITH EVENT REPORTING 
;SAVE CONTEXT OF PROCESS 
;GET ADDRESS OF CURRENT PCB 
;CURRENT PRIORITY 
;MARK QUEUE NON-EMPTY 
;SET STATE TO RES COMPUTE 
;COMPUTE ADDRESS OF QUEUE 
;INSERT AT TAIL OF QUEUE 

SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION 

; THIS ROUTINE SELECTS THE HIGHEST PRIORITY EXECUTABLE PROCESS 
; AND PLACES IT IN EXECUTION. 

MPH$SCHED:: 
SCH$SCHED:: 

SETIPL #IPL$...SYNCH 

MULTI-PROCESSING CODE HOOKS IN HERE 
SCHEDULE FOR EXECUTION 
SYNCHRONIZE SCHEDULER WITH EVENT REPORTING 



52 ODOD 1 CF 20 DD EA 0023 78 FFS #0, #32, ll ' SCH$GL_COMQS, R2 ;FIND FIRST FULL STATE 
3D 13 002A 79 BEQL SCH$IDLE ;NO EXECUTABLE PROCESS?? 

53 oooo•cF42 7E 002C 80 MOVAQ ll SCH$AQ_cOMH[R2],R3 ;COMPUTE QUEUE HEAD ADDRESS 
54 93 OF 0032 81 REM QUE iil(R3)+,R4 ;GET HEAD OF QUEUE 

3C 1D 0035 82 BVS QEMPTY ;BR IF QUEUE WAS EMPTY (BUG CHECK) 
06 12 0037 83 BNEQ 20$ ;QUEUE NOT EMPTY 

DD 0000 1 CF 52 ES 0039 84 BBCC R2, ll ' SCH$GL_cOMQS, 20$ ; SET QUEUE EMPTY 
003F 85 20$: 

DA A4 DC 91 003F 86 CMPB #DYN$C_FCB,PCB$B_TYPE(R4) ;MUST BE A PROCESS CONTROL BLOCK 
2E 12 0043 87 BNEQ QEMPTY ;OTHERWISE FATAL ERROR 

2C A4 DE BO 0045 81'! MDVII #SCH~C-CUR,PCB$ll-5TATE(R4) ;SET STATE TO CURRENT 
DOD0 1 GF 54 DD 0049 89 MOVL R4, ll SCH$GL_CURPCB ;NOTE CURRENT PCB LOC 

DB A4 2F A4 91 D04E 90 CMPB PCB$B_FRIB(R4),PCB$B_FRI(R4) ;CHECK FOR BASE 
0053 91 ;PRIORITY=CURRENT 

08 13 0053 92 BEQL 30$ ;YES, DONT FLOAT PRIORITY 
03 DB A4 04 E1 0055 93 BBC #4,PCB$B_FRI(R4),30$ ;DONT FLOAT REAL TIME PRIORITY 

DB A4 96 OOSA 94 INCB PCB$B_FRI(R4) ;MOVE TOWARD BASE PRIO 
0000 1 CF DB A4 90 OOSD 95 30$: MOVB PCB$B_FRI ( R4), ll ' SCH$GB_FRI ;SET GLOBAL PRIORITY 

10 M A4 DA 0063 96 MTPR PCB$L_FHYPCB(R4),#PR$_FCBB ;SET PCB BASE PHYS ADDR 
06 0067 97 LDPCTX ;RESTORE CONTEXT 
02 0068 98 REI ;NORMAL RETURN 

0069 99 
0069 100 SCH$IDLE: ;NO ACTIVE, EXECUTABLE PROCESS 
0069 101 SETI PL #IPL$-5CHED ;DROP IPL TO SCHEDULING LEVEL 

ODDD'CF 20 90 006C 102 MOVB #32,ll SCH$GB_FRI ;SET PRIORITY TO -1(32) TO SIGNAL IDLE 
AD 11 0071 103 BRB SCH$SCHED ;AND TRY AGAIN 

0073 104 
0073 105 QEMPTY: BUG_cHECK QUEUEMPTY,FATAL ;SCHEDULING QUEUE EMPTY 
0077 106 
0077 107 .END 

Figure 10-7 
Scheduler Routine That Selects Next Execution Candidate 
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Finally, if the current stack is the kernel stack, the SVPCTX instruction 
saves the current stack pointer (SP) in the kernel stack field of the hardware 
process control block and switches to the interrupt stack (by setting the 
PSL$V _IS bit and copying the PR$_ISP register contents into the SP register). 
Switching to the system-wide interrupt stack is essential because there is no 
current process once the instruction completes. 

The ASTLVL, POBR, POLR, PIBR, and PILR fields of the hardware process 
control block are not changed. It is the responsibility of the various system 
components that alter these fields to always update both the hardware proc­
ess control block fields and the per-process processor registers. ASTL VL is 
unusual in that it can be altered even when the process is not current. In that 
case, only the hardware PCB field is altered. The processor register is not 
altered because the process does not own that register when it is not the 
current process. These fields do not change frequently compared to the fre­
quency of context switching. The overhead of storing these fields in the hard­
ware process control block is incurred only when the field values change. 

The SVPCTX instruction occurs in several locations in the executive: 

• The rescheduling interrupt service routine contains an instance of this 
instruction when the current process remains computable after it is re­
moved from execution. 

• Module SYSWAIT contains another example of the instruction when the 
current process is being placed into a scheduling wait state. 

• The pager (module PAGEFAULT) issues a SVPCTX instruction directly 
when it places a process into one of the memory management wait states 
(PFW, FPG, COLPG). 

• One of the last steps of process deletion involves removing the process 
being deleted from execution with a SVPCTX instruction. 

10.3.5.2 LDPCTX Instruction. The load process context instruction, LDPCTX, per­
forms the operations required in establishing the hardware context of the 
process. As with the SVPCTX instruction, assumptions are made about the 
initial and final conditions of the instruction. The following initial condi­
tions are assumed: 
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• The processor must be in kernel mode, using either the kernel or the inter­
rupt stack. (The processor is always on the interrupt stack for the one 
occurrence of the LDPCTX instruction in the VMS executive.) 

• The process control block base register (PR$_PCBB) must contain the 
physical address of the hardware process control block to be used (from the 
PCB$L_PHYPCB field of the software process control block). 

When the LDPCTX instruction is executed, the following operations are 
performed by the VAX hardware: 
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1. The per-process half of the translation buffer is invalidated. All of the 
previous translation buffer entries belonged to the previous process. They 
are invalidated to prevent mistranslation of virtual addresses and to pro­
tect the data of the previous process. 

2. The per-process access mode stack pointers (KSP, ESP, SSP, and USP) are 
loaded from the hardware process control block. 

3. The general purpose registers, RO through Rl 1, the argument pointer (AP), 
and the frame pointer (FP) are loaded into the corresponding processor 
registers. 

4. The memory management mapping registers (POBR, POLR, PlBR, and 
PlLR) are checked for legal values and loaded from the hardware process 
control block. Note that although the SVPCTX instruction does not save 
these registers, the LDPCTX must load them. Until they are loaded, the 
values in the registers belong to the previous process. 

5. The ASTLVL register is loaded. This register was also not saved by the 
SVPCTX instruction. 

6. If the instruction began execution using the interrupt stack, then the fol­
lowing operations are performed: 

• The contents of the current stack pointer register (SP) are saved in the 
interrupt stack pointer register (ISP). 

• The PSL$V _IS bit is cleared to indicate the switch to the kernel stack. 
• The current stack pointer is updated with the contents of the kernel 

stack pointer register (KSP). 

7. Finally, the saved program counter (PC) and processor status longword 
(PSL) are pushed onto the kernel stack from the hardware process control 
block. These values are not stored into the appropriate registers. This par­
ticular operation occurs because the next instruction (in the scheduler 
routine) is expected to be an REI instruction. The REI pops the two long­
words, verifies the PSL format, and inserts the two longwords into the 
appropriate registers. 

The only occurrence of a LDPCTX instruction in the entire VMS system is 
the one shown in Figure 10-7, the second half of the rescheduling interrupt 
service. routine. 
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11 Timer Support 

Love, all alike, no season knows, nor clime, 
Nor hours, days, months, which are the rags of time. 

-John Donne, The Sun Rising 

Support for time-related activities that require either the time of day and date 
or the measurement of an interval of time is implemented both in the 
VAX-11 hardware and in the VAX/VMS operating system. 

11.1 TIMEKEEPING IN THE VAX/VMS OPERATING SYSTEM 

11.1.1 

Two hardware clocks are updated at regular intervals, the interval clock and 
the time-of-day clock. These clocks are used by the VMS system to manage 
two different times, the system time and the time since the system was last 
bootstrapped. Additionally, the software timer interrupt service routine pro­
vides timer services, such as scheduled wakeups, by maintaining a time-or­
dered queue of requests and delivering them as the expiration times occur. 

Hardware Clocks 

The hardware clocks are a set of processor registers that are used or updated 
regularly by timing circuitry. Initialization, calibration, and interpretation of 
the registers are performed by VMS routines during system initialization and 
normal operations. 

The processor registers that implement the hardware clocks are summa­
rized in Table 11-1, along with the memory locations that implement the 
various software time values. 

11.1.1.1 Interval Clock. The interval clock is implemented as a set of three 32-bit 
processor registers. The clock "ticks" at one microsecond intervals with an 
accuracy of at least 0.01 percent (an error of less than nine seconds per day). 
The frequency at which the interval clock causes an interrupt is determined 
by the value in one of the processor registers, PR$_NICR. 
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The three interval clock registers (see Table 11-1) are used as follows. 

I. The interval clock control/status register (PR$_ICCS) controls the inter­
rupt status of the interval clock. This register is set by the CPU hardware 
and then reset by the hardware clock interrupt service routine (see Section 
11.2) each time the interval clock interrupts. 



Table 11-1: VAX/VMS Hardware Clocks and Software Timers 

Size 
Name Use (bits) Units Frequency Updated by 

PR$_ICR Interval clock 32 1 microsecond 1 microsecond CPU hardware 

PR$_ NI CR Next interval 32 1 microsecond (1) System initialization 

PR$_ICCS Interval clock 32 control/status 10 milliseconds Hardware clock interrupt 
control/status bits service routine 

PR$_TODR Time-of-day 32 10 milliseconds 10 milliseconds CPU hardware, 
clock $SETIME system service 

EXE$GQ_SYSTIME System time 64 100 nanoseconds 10 milliseconds Hardware clock interrupt 
service routine, 
$SETIME system service 

EXE$GLABSTIM System absolute 32 1 second 1 second System initialization, 
time EXE$TIMEOUT repeating 

system subroutine 

EXE$GLTODR Time-of-year 32 10 milliseconds (2) $SETIME system service 
base value 

EXE$GQ_ TODCBASE Time-of-year 64 100 nanoseconds (2) $SETIME system service 
base value 
(in system 
time format) 

(1) PR$_NICR is written only at system initialization time and after powerfail recovery. 
(2) EXE$GL_ TODR and EXE$GQ_ TQDCBASE are modified only when one of the following is true: 

• The time-of-dar. value is changed by a $SETIME system service request (either explicitly or as an integral part of the system 
bootstrap operation). 

• The PR$_ TODR has been lost due to a prolonged power failure. 
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2. The next interval count register (PR$_NICR) defines how often the inter­
val clock will cause a hardware interrupt. During system initialization, 
the routine INIT loads this processor register with a value of -10000. This 
value defines the hardware clock interrupt interval to be 10 milliseconds 
( 10000 microseconds). 

3. The interval count register (PR$_ICR) is incremented every microsecond 
from the PR$_NICR value toward zero. When PR$_ICR becomes zero, 
the register overflows, causing the following actions: 

a. The PR$_NICR value is copied into PR$_ICR to define the next inter­
val. 

b. The PR$_ICCS register is set to indicate the overflow condition. This 
operation causes a hardware interrupt (IPL 24) to occur, serviced by the 
hardware clock interrupt service routine. 

The PR$_ICCS is reset by the hardware clock interrupt service routine 
to indicate servicing of the interrupt and reenabling of the hardware 
clock. 

11.1.1.2 Time-of-Day Clock. The time-of-day clock is a hardware component consist­
ing of one 32-bit processor register and a battery backup supply for at least 
100 hours of operation (the battery backup is not a standard feature on the 
VAX-11/730). The time-of-day clock has an accuracy of at least 0.0025 per­
cent (an error of about 65 seconds per month) and a resolution of 10 millisec­
onds. The base time for the time-of-day clock is 00:00:00.00 hours on Jan­
ary first of the current year. The time-of-day clock overflows after 497 
days. 
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Values in PR$_ TOOR are biased by 10000000 [hex]. Values smaller than 
this indicate loss of power or time-of-day overflow, conditions causing the 
system to prompt the operator to reset the time (through the $SETIME sys­
tem service). 

The validity of the time-of-day clock is determined at system initialization 
time. If the contents of the time-of-day clock are valid, the initialization 
process, SYSINIT, will not prompt the operator for the time. If the contents of 
the time-of-day clock are not valid (the value is less than 10000000 [hex]), the 
value of the SYSBOOT parameter TIMEPROMPTWAIT determines the proc­
essor action on recovery from a power failure (see Section 27.2.2). 

Because the time-of-day clock has a better accuracy than the interval 
clock, the time-of-day clockis used for recalibrating the system time 
(EXE$GQ_SYSTIME) at system initialization and at other times when the 
$SETIME system service is called (see Section 11.1.3). In addition, because 
the time-of-day clock has battery backup (except on the VAX-11/730), it is 
used to reset the system time after a power failure or after the machine has 
been turned off. 



11.1.2 

11.1.3 

11.1 Timekeeping in the VAX/VMS Operating System 

Software Time 

Software time is managed by VMS routines as a result of changes in the 
hardware clocks. The system time is defined by a quadword value measuring 
the number of 100-nanosecond intervals since 00:00 hours, November 17, 
1858 (the time base for the Smithsonian Institution astronomical calendar). 
EXE$GQ_SYSTIME (see Table 11-1) is updated every 10 milliseconds by the 
hardware clock interrupt service routine (see Section 11.2). This quadword is 
the reference for nearly all time-related software activities in the system. For 
example, the $GETTIM system service simply writes this quadword value 
into a user-defined buffer. 

EXE$GL_ABSTIM measures the number of one-second intervals that have 
elapsed since the system was last bootstrapped. This absolute time is used to 
periodically check for 1/0 device and lock request timeouts. The absolute 
time is also the value for "system uptime" interpreted and displayed by the 
DCL command SHOW SYSTEM. 

EXE$GL_ TODR contains the base 32-bit time value. EXE$GQ_ 
TODCBASE contains the base quadword system time value. These base time 
values represent the more recent of the following times: 

• 00:00 hours on January 1 of the current year 
• The last time that the time-of-day was redefined by $SETIME 

PR$_ TODR (and EXE$GL_ TODR) are biased by a factor of 10000000 (hex). 
If a power failure occurs, the value in PR$_ TODR will be zeroed and the 
clock will start to count from there. If the value in PR$_ TODR is less than 
1000000 (hex), it can safely be assumed that a power failure has occurred. 

Both the values in EXE$GQ_ TODCBASE and EXE$GL_ TODR are main­
tained in the system image file as a semipermanent record of the base system 
time on which the contents of the time-of-year clock (PR$_ TODR) are based. 
Both represent the same time (the last time they were adjusted), in different 
forma.ts. EXE$GQ_ TODCBASE represents the time of last adjustment in 
standard 64-bit time; EXE$GL_ TODR represents the time of last adjustment 
in the same 32-bit format as the time-of-year clock (PR$_ TODR). 
PR$_ TODR cannot be set to zero (because of the 10000000 hex bias), rather 
it is initialized to the contents of EXE$GL_ TODR. 

When a new system time is specified, EXE$GQ_ TODCBASE, 
EXE$GL_ TODR, and PR$_ TODR are modified, and the new base values are 
written to the system image file. When the system time (EXE$GQ_ 
SYSTIME) is recalibrated, the values are modified only when more than a 
year has passed since the last recalibration. 

Set Time System Service 

The $SETIME system service allows a system manager or operator to change 
the system time while the operating system is running. This may be neces-
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sary because of a power failure longer than the battery backup time of the 
time-of-day clock or because of changes between standard and daylight sav­
ing time, for example. The new system time (absolute time, not relative 
time) is passed as the optional single argument of the system service. The 
$SETIME system service is also invoked during system initialization to reset 
the system time (and possibly the time-of-day clock). 

If the requesting process does not have the process privileges OPER and 
LOG_IO, the routine returns with an SS$_NOPRIV error status code. If the 
input quadword cannot be read, the routine returns with an SS$_ACCVIO 
error status code. 

11.1.3.1 $SETIME System Time Recalibration Requests. If no argument was passed to 
the system service or the time argument is a zero value, then the request is 
considered a request to recalibrate the system time (EXE$GQ_SYSTIME). 
The following actions take place. 

I. The new system time, EXE$GQ_SYSTIME, is computed by the following 
equation: 

EXE$GQ_SYSTIME = EXE$GQ_ TODCBASE+ 
((PR$_ TODR - EXE$GL_ TODR) x 100000) 

EXE$GQ_SYSTIME and EXE$GQ_ TODCBASE are quadword system 
times in units of 100 nanoseconds. PR$_ TODR and EXE$GL_ TODR are 
longword time-of-day times in units of 10 milliseconds. The multiplier of 
100000 is the number of 100-nanosecond intervals in 10 milliseconds. 

2. The values in PR$_ TODR, EXE$GL_ TODR, and EXE$GQ_ TODCBASE 
are corrected if more than one year has passed since the system time was 
recalibrated (in order to prevent PR$_ TODR from overflowing its 497-day 
limit). 

3. Each element in the tim~r queue (see Section 11.3.2) that specified a delta 
time has its expiration time adjusted by the difference between the previ­
ous system time and the new system time. This modification prevents the 
actual delta time value from being changed by a modification to system 
time. TQEs containing absolute times are not adjusted so that the TQE 
will come due at the time that was specified by the user. 

4. The entire collection of system parameters, including EXE$GQ_ 
TODCBASE and EXE$GL_ TODR, is written back to the system image 
file. 

11.1.3.2 $SETIME Time-of-Day Readjustment Requests. If a nonzero time value is 
supplied as an argument to $SETIME, then the following operations occur. 
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I. The input argument, specified in system time units of 100 nanoseconds, is 
converted into time-of-day units (the number of IO-millisecond intervals 
after 00:00 hours on January 1 of the base year). 



11.2 Hardware Clock Interrupt Service Routine 

2. The converted specified time is written into PR$_ TODR and 
EXE$GL_ TODR. 

3. The unconverted specified time is written into EXE$GQ_ TODCBASE and 
EXE$GQ_SYSTIME. 

4. Finally, the timer queue is updated and the new values for the time-of-day 
clock base are written to the system image file (along with the system 
parameters). (See steps 3 and 4 described above in Section 11.1.3.1). 

11.2 HARDWARE CLOCK INTERRUPT SERVICE ROUTINE 

11.2.1 

11.2.2 

The hardware clock interrupt service routine, EXE$HWCLKINT in module 
TIMESCHDL, services the IPL 24 hardware interrupt signaled when the in­
terval clock, PR$_ICR1 reaches zero. The interval clock is set (through 
PR$_NICR) to interrupt every 10 milliseconds. 

The hardware clock interrupt service routine has two major functions. 

• Updating the system time (and possibly process accounting) 
• Checking the timer queue for timer events that have timed out 

System Time Updating 

The updating of the system time and the potential updating of process ac­
counting fields requires several distinct actions. 

1. The PR$_ICCS register is reset to indicate the servicing of the interrupt 
and the reenabling of the hardware clock. 

2. The system time, EXE$GQ_SYSTIME1 is updated by adding the equiva­
lent of 10 milliseconds to the quadword value. 

3. If the hardware clock interrupts while a process is executing (the former 
current stack was not the interrupt stack), then the accumulated CPU 
utilization and quantum value are incremented in the process header. The 
quantum value is used to determine quantum end (see Section 11.3.l and 
Chapter 10). If the quantum value reaches zero, an IPL 7 software inter­
rupt, serviced by the software timer routine, is requested. The check for 
whether the interrupt occurred while already on the interrupt stack pre­
vents a process from being charged for CPU time that the system was 
using to service interrupts. 

Timer Queue Testing 

The timer queue is discussed with the software timer in the next section. 
The hardware clock interrupt service routine has the responsibility to deter­
mine if the software timer must be requested to service the timer queue. If 
the first timer queue element has an expiration time less than or equal to the 
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newly updated system time, then the timer event is due. The software timer 
routine is requested through the IPL 7 interrupt. 

11.3 SOFTWARE TIMER INTERRUPT SERVICE ROUTINE 

11.3.1 

11.3.2 
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The software timer interrupt service routine, EXE$SWTIMINT in module 
TIMESCHDL, is invoked through the IPL 7 software interrupt. The software 
timer is requested because either the current process has reached quantum 
end or the first timer queue element must be serviced. 

Quantum Expiration 

The expiration of the quantum interval for the current process is determined 
by testing the PHD$W _QUANT field. This field is incremented by the hard­
ware clock service routine. A zero quantum value indicates quantum expira­
tion. The processing of the quantum end event is performed by the scheduler 
in routine SCH$QEND, which is described in Chapter 10. 

Timer Queue and Timer Queue Elements 

If the system time, EXE$GQ_SYSTIME, is greater than or equal to the expi­
ration time of the first element in the timer queue, then the timer event is 
due. The comparison with the system time must be performed at IPL 24 to 
block the hardware clock interrupt. 

If a timer request is due, then the TQE is removed from the timer queue, 
the IPL dropped back to IPL$_ TIMER (IPL 7), and one of three sequences of 
code is performed (depending upon the type of request). 

Timer requests are maintained in a doubly linked list that is ordered by the 
expiration time of the requests. EXE$GL_ TQFL and EXE$GL_ TQBL are a 
pair of longwords (defined in the module SYSCOMMON) that form the list­
head of the timer queue. Elements in the timer queue are data structures that 
are generally allocated from nonpaged dynamic memory and initialized as a 
result of $SETIMR system service calls (see Section 11.4.1). The allocation of 
timer queue elements (TQEs) is governed by the pooled job quota 
JIB$W _ TQCNT. 

The format of the timer queue element is shown in Figure 11-1. The link 
fields (TQE$L_ TQFL and TQE$L_ TQBL), the TQE$W _SIZE field, and the 
TQE$B_ TYPE field are characteristic of system data structures allocated 
from dynamic memory. The TQE$B_RQTYPE field defines the type of timer 
request (process timer request, periodic system routine request, or process 
wake request) and whether the request is a one-time or repeating request (see 
the list of TQE request types in Figure 11-1 ). Bit <6> of TQE$B_RMOD is 
set if an AST is to be delivered when the timer event occurs. This bit is 
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TOFL 

TQBL 

RQTYPEl TYPE 1 SIZE 

PIO/PC 

AST/FR3 

ASTPRM/FR4 

I--- TIME -
t--- DELTA -- -J EFN I RMOD 

RQPID 

RQTYPE Bits: 

7 6 5 3 2 1 0 

~--<~ 

~----{ ~ 

Figure 11-1 
Layout of a Timer Queue Element 

Process timer request 
System subroutine request 
Scheduled wake request 

One-time request 
Repeat request , 
(not allowed for process 
timer requests) 

Relative time request 
Absolute time request 

equivalent to the ACB$V _QUOTA bit of the AST control block described in 
Chapter 7. 

The interpretation of the next three longword fields depends upon whether 
the request is from a system subroutine or a user process. For system subrou­
tine requests, the fields contain the PC, R3, and R4 register values to be 
loaded before passing control to the subroutine. For process timer requests, 
the fields define the process ID of the process to report the event, the address 
of an AST routine to execute (if requested), and an optional AST parameter. 

TQE$Q_ TIME is the quadword absolute system time at which a particular 
timer event is to occur. TQE$Q'_DELTA is the quadword delta time for re-
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11.3.3 

11.3.4 
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peating requests. The access mode of the requesting process is stored in 
TQE$B_RMOD. The event flag to set when the timer event occurs is defined 
by TQE$B_EFN. The TQE$L_RQPID contains the process ID of the process 
that made the initial timer request. (The requesting process is not necessarily 
the same as the target process.) 

If an AST is requested, the timer queue element will be reformatted into an 
AST control block (ACB) when the event occurs. 

Timer Request Servicing 

If the TQE is a process timer request (created by a $SETIMR system service 
call and indicated by a TQE$B_RQTYPE value of zero), then the following 
operations are performed: 

1. The event flag associated with this timer event is set by using the 
TQE$L_PID and TQE$B_EFN fields and invoking the SCH$POSTEF rou­
tine. A software priority increment of three may be applied when the proc­
ess next executes (see Chapter 10). 

2. If the target process is no longer in the system, the TQE is simply deallo­
cated without further action. 

3. Otherwise, the JIB$W _ TQCNT quota is incremented to indicate the de­
livery of the timer event and the impending deallocation of the TQE. 

4. If an AST was requested (indicated by bit <6> of TQE$B_RQTYPE), then 
the TQE$B_RMOD field is moved to TQE$B_RQTYPE to reformat the 
TQE into an AST control block (ACB). The ACB is then queued to the 
target process, in the access mode of the original timer request, by calling 
the, routine SCH$QAST (see Chapter 7). 

When the processing of this timer queue element has been completed, the 
software timer routine checks to see if another TQE element can be removed 
from the queue. 

Note that process timer requests are strictly one-time requests. Any repeti­
tion of timer requests must be implemented within the requesting process. 

Scheduled Wakeup 

The second type of timer queue element is associated with a request for a 
scheduled $WAKE to a hibernating process. This type of request may be ei­
ther one-time or repeating and may be requested by a process other than the 
target process. 

The following operations are performed for scheduled wake TQEs. 

1. The target process (indicated by TQE$L_PID) is awakened by executing 
the routine SCH$WAKE. If the target process is no longer in the system, 
the PCB$W _ASTCNT quota of the requesting process (TQE$L_RQPID) is 
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incremented and the control block is deallocated to nonpaged dynamic 
memory. 

2. If the request is a one-time request (indicated by a cleared TQE$V _ 
REPEAT bit in the TQE$B_RQTYPE field), then the deallocation opera­
tion is the same as that described in item 1. 

3. If the request is a repeating type, then the repeat interval (TQE$Q_ 
DELTA) is added to the request time (TQE$Q_ TIME), and the timer queue 
element is reinserted in the timer queue. 

The software timer routine then checks to see if the next timer request can 
also be performed at this time. 

Periodic System Procedures 

The third type of timer queue element defines a system subroutine request. A 
request of this type is not the result of any process request, but is a system­
requested time-dependent event. The software timer interrupt service rou­
tine handles this type of TQE by the following action: 

• Loading R3 and R4 from the TQE$L_FR3 and TQE$L_FR4 fields (nor­
mally defined as the TQE$L_AST and TQE$L_ASTPRM fields) 

• Executing a JSB instruction using the TQE$L_FPC field (normally defined 
as the TQE$L_PID field) 

On return from the system subroutine, the TQE$V _REPEAT bit is tested. 
If the bit is set, then the TQE is reinserted in the timer queue using the 
TQE$Q_DELTA time field. If the request was a nonrepeating one, then the 
timer routine immediately checks the timer queue for further TQEs to serv­
ice. The TQE is not deallocated because these requests do not use dynamic 
memory. This type of TQE is defined in static nonpaged portions of system 
space, such as the module SYSCOMMON in the case of the EXE$TIMEOUT 
subroutine. 

One example of this type of request, a repeating system subroutine request, 
is the once-per-second execution of the subroutine EXE$TIMEOUT. 

1. The routine SCH$SWPWAKE is called to possibly awaken the swapper 
process (see Chapter 17). 

2. The EXE$TIMEOUT subroutine updates the EXE$GL_ABSTIM field to 
indicate the passing of one second of system uptime. 

3. The routine ERL$WAKE is called to possibly awaken the ERRFMT process 
(see Chapter 8). 

4. This subroutine scans the 1/0 database for devices that have exceeded 
their timeout intervals. Drivers for such devices are called at thC:ir timeout 
entry points at device IPL. A path through this subroutine checks for ter­
minal timed reads that have expired. 
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5. The first entry on the lock manager time out queue is checked to see if it 
has expired. If it has, a deadlock searc;h is initiated. 

6. The PCB pointer list is searched for normal-priority (priority less than 16) 
processes in the COM or COMO state, whose priority is less than that of 
the current process (or the highest priority computable process). The cur­
rent priority of these lower priority processes is boosted so that they be­
come the highest priority COM or CUR process. This feature was imple­
mented to prevent a high-priority, compute-intensive job from causing 
other processes to be unable to release system (or other) resources. The 
number of processes that can receive this boost is determined by the spe­
cial SYSBOOT parameter PIXSCAN. The PCB pointer list is searched in a 
circular fashion, in order that all processes will eventually receive the 
priority boost. 

The TQE for this subroutine is permanently defined in the module SYS­
COMMON, and the timer queue is initialized at bootstrap time with this 
data structure as the first element in the queue. 

The terminal driver also uses a repeating system timer routine to imple­
ment its modem polling. The controller initialization routine in the terminal 
driver loads the expiration time field in a TQE in the terminal driver 
with the current system time, sets the repeat bit, and loads the repeat 
interval with the SYSBOOT parameter TTY _SCANDELTA. When the 
timer routine expires, it polls each modem looking for state changes. 

11.4 TIMER SYSTEM SERVICES 

11.4.1 
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Two system services are used to insert entries in the timer queue, Schedule 
Wakeup request ($SCHDWK) and Set Timer request ($SETIMR). Both of 
these services are contained in the module SYSSCHEVT. Two comple­
mentary services delete entries from the timer queue, $CANWAK and 
$CANTIM. These system service routines are in the module SYSCANEVT. 

$SETIMR Requests 

The $SETIMR system service calls produce timer queue entries of the single 
process request type, TQE$C_ TMSNGL. The following steps are performed: 

1. The event flag specified as an argument to the system service is cleared in 
preparation for subsequent setting at expiration time. 

2. The request is checked to make sure that the following are true: 

• The delta time location is accessible by the requesting process. 
• The PCB$W _ASTCNT of the requesting process is not exceeded (if an 

AST is to be associated with this timer request). 
• The JIB$W _ TQCNT of the requesting job is not exceeded 
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3. A timer queue element is allocated from nonpaged dynamic memory and 
the TQE is initialized from the system service arguments (delta time, re­
quest type, and process ID). 

4. If the expiration time was expressed as an interval (a negative argument), 
then the absolute expiration time of the request is calculated by adding the 
delta time of the request to the current system time, EXE$GQ_SYSTIME. 
The absolute expiration time is stored in the TQE$Q_ TIME field. 

5. The JIB$W _ TQCNT field of the pooled job quotas is decremented to indi­
cate the allocation of the TQE. 

6. The access mode of the system service caller is stored in the 
TQE$B_RMOD field. If an AST routine was specified as an argument to 
the $SETIMR call, then the process PCB$W _ASTCNT is decremented to 
indicate the future AST delivery and bit <6> of TQE$B_RMOD is set to 
indicate the AST accounting. 

7. The AST parameter (request identification) and event flag number argu­
ments are copied to the TQE. 

8. The TQE is then inserted into the timer queue and the routine returns. 

The $CANTIM system service removes one or more timer queue elements 
before expiration. Two arguments, the request identification parameter and 
the access mode, control the actions taken by this routine. 

1. The access mode requested is maximized with that of the caller. (That is, 
no requests can be deleted for access modes more privileged than the 
caller.) 

2. Each TQE in the timer queue that meets all of the following criteria is 
removed and deallocated: 

• The process ID of the $CANTIM system service caller is the same as 
the process ID stored in the TQE. 

• The access mode of the caller is at least as privileged as the access mode 
stored in the TQE. 

• The request identification parameter argument is the same as that 
stored in the TQE. If the argument value is zero, then all TQEs meeting 
the first two criteria are removed. 

Scheduled Wakeup Operations 

The logic for managing scheduled wakeup requests is similar to that for 
$SETIMR requests. Two differences are the ability to specify repeating sched­
uled wakeup requests and the ability to schedule wakeup requests for an­
other process. The following steps create a scheduled wakeup request. 

1. The target process ID is verified from a system service argument. If the 
target process is not in the system, the scheduled wakeup request is ig­
nored. 
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2. If the target process exists, and if the current process is suitably privileged 
(GROUP or WORLD) with respect to it, then the repeat time is tested to 
determine whether the request is a one-time or repeating scheduled 
wakeup, TQE$C_ WKSNGL or TQE$C_ WKREPT of the TQE$B_RQTYPE 
field. 

3. The -requested repeat time is formatted for insertion in the TQE. If the 
repeat time is less than 10 milliseconds, it is increased to that value (the 
resolution of the hardware clock interrupt). 

4. A TQE is allocated from nonpaged dynamic memory. 
5. The repeat time, request type, and target process ID are inserted into the 

TQE. 
6. If the initial scheduled wakeup time is expressed as an interval, then the 

initial absolute expiration time is calculated as in $SETIMR from the ini­
tial delta time and the current system time. 

7. The ASTCNT quota of the requesting process is decremented to account 
for the allocation of the TQE. 

8. The TQE is inserted into the timer queue. 

When the expiration time is reached, a process wakeup is set to the target 
process (see Section 11.3.4). Deallocation of the TQE occurs after delivery of a 
one-time scheduled wakeup request or as a result of a $CANWAK system 
service call. 

The $CANWAK system service cancels all one-time and repeat scheduled 
wakeup requests for a target process. Each canceled TQE is deallocated to 
nonpaged dynamic memory and the PCB$W _ASTCNT of the initial request­
ing process is incremented to indicate the deallocation. 



12 Process Control and 
Communication 

I claim not to have controlled events, but confess plainly that 
events have controlled me. 

-Abraham Lincoln, letter to A.G. Hodges, April 4, 1864 

The VMS operating system provides many services that allow processes to 
communicate with one another and allow one process to control the execu­
tion of another. Event flags are the most primitive control and communica­
tion tool available (in terms of amount of information). Other communica­
tion techniques include logical names, mailboxes, the VAX/VMS lock 
management system services (lock manager), global shared data sections, and 
shared files. (The lock manager is discussed only briefly here; for a full de­
scription, see Chapter 13.) System services allow a process to alter some of its 
parameters (such as name or priority). Other services allow a process to affect 
its own scheduling state or that of another process. A summary of process 
control system services is listed in Table 12-1. 

12.1 EVENT FLAG SERVICES 

12.1.1 

Event flags are used within a single process for synchronization of I/O re­
quests, enqueue lock requests, $GETJPI system service calls, and timer re­
quests. They can also be used either within a single process or among several 
processes in the same group as application-specific synchronization tools. 
System services are provided to read, set, or clear collections of event flags. 
Other services allow a process to wait for one event flag or a collection of 
event flags. 

Local Event Flags 

Each process has available to it 64 local (process-specific) event flags and 64 
shareable event flags (among processes in the same group). The 64 local event 
flags are stored directly in the software PCB, at offsets PCB$L_EFCS and 
PCB$L_EFCU (see Figure 12-1). Local event flags 0 to 31 are located in long­
word PCB$L_EFCS. Local event flags 32 to 63 are located in longword 
PCB$L_EFCU. 
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Table 12-1: Summary of Process Control System Services 

Service Name 

Create Common Event Flag Cluster 

Delete Common Event Flag Cluster 

Wait for Single Event Flag 
Wait for Logical AND of Event Flags 
Wait for Logical OR of Event Flags 

Hibernate 
Wake 

Schedule Wakeup 
Cancel Wakeup 

Suspend 
Resume 

Exit 
Forced Exit 

Create Process 

Delete Process 

Set AST Enable 
Set Power Recovery AST 
Set Priority 

Set Process Name 
Set ResourcP Wait Mode 
Set Swap Mode 
Set System Failure Mode 
Get Job/Process Information 

Affect Other Processes 

Same group only 

Same group only 

No (1) 
YES 

YES 
YES 

YES 
YES 

No 
YES 

YES 

YES 

No 
No 
YES 

No 
No(2) 
No(2) 
No(2) 
YES 

Privilege Checks 

PRMCEB (for permanent 
clusters only) 

PRMCEB 

None 
GROUP or WORLD 

GROUP or WORLD 
GROUP or WORLD 

GROUP or WORLD 
GROUP or WORLD 

None 
GROUP or WORLD 

DETACH for other 
than subprocesses 
GROUP or WORLD 

Access Mode Check 
Access Mode Check 
AL TPRI and GROUP or 
WORLD 
None 
None 
PSWAPM 
Access Mode Check 
GROUP or WORLD 

( l) As part of the Create Process system service, a process can specify that the process being created 
hibernate before a specified image executes. 

(2) These three features can each be specified as a part of the Create Process system service. 

12.1.2 
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Common Event Flags 

Common event flag clusters do not initially exist. They must be created by 
the first process that calls the Associate Event Flag Cluster system service for 
a given cluster. This service allocates a structure called a common event 
block (see Figure 12-2) from nonpaged pool and loads its address into the PCB 
pointer field (either PCB$L_EFC2P or PCB$L_EFC3P). The common event 
block is linked into a system-wide list of common event blocks located by 
global listhead SCH$GQ_CEBHD (see Figure 12-3). 

As additional processes associate with this cluster, the CEB list is searched 
in order to locate the CEB, the event flag cluster pointers in their PCBs are 
updated, and the reference count for that cluster is updated. As processes 
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Figure 12-2 
Layout of Common Event Block 

disassociate from a cluster (with the $DACEFC system service), the reference 
count is decremented. When the reference count for a temporary cluster goes 
to zero, the cluster is automatically deleted and the CEB deallocated. 

Permanent clusters must be explicitly deleted (using the $DLCEFC system 
service) in order to cause the CEB to be deallocated when the reference count 
goes to zero. Alternatively, permanent clusters can continue to exist without 
requiring that they be associated with any processes. In fact, the only opera­
tion performed by the Delete Common Event Flag Cluster system. service is 
to tum off the CEB$V _PERM bit. (If the reference count of the cluster is zero 
when the permanent bit is turned off, the cluster is deleted.) 

227 



Process Control and Communication 

12.1.3 

228 

SCH$GQ_CEBHD:: 

l CEB -, ----., -...--
Wait Queue ~ PCB ~ PCB ~ PCB 

• 
CEB Name 

CEB -- -
Wait Queue 1-4-::: PCB 

CEB 
..... ----, ----, 

Wait Queue i.-= PCB 1. ·1 PCB 

• • 

CEB 

Wait Queue No processes are waiting 
for flags in this 
common event flag cluster. 

Figure 12-3 
Common Event Flag Wait Queues 

Event Flag Wait States 

Processes are placed into event flag wait states implicitly when any of the 
following actions are performed: 

• Executing a $QIOW or $ENQW system service 
• Using the RMS services as synchronous operations (the usual way they are 

called) 
• Executing one of the three event flag wait services ($WAITFR, $WFLOR, 

$WFLAND) 

If the flag or flags in question are already set, the system service immedi­
ately returns successfully to its caller. Otherwise, the process is placed into 
either a local or common event flag wait state. The saved PC in the hardware 
PCB is backed up by 4 (see Chapter 10) to allow ASTs to be delivered to the 
process while it is waiting for the flag(s) to be set. The event flag cluster 
number (0 or 1 for local clusters and 2 or 3 for global clusters), indicating 
which flags are being waited for, is stored in the PCB (at offset 
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PCB$B_ WEFC). The list (mask) of event flags being waited for is stored (in 
one's complement form) in PCB$L_EFWM. 

• If the process is waiting for a single event flag (SYS$WAITFR), the 
PCB$L_EFWM mask contains a 1 in every bit except the bit number corre­
sponding to the specified flag. 

• If the process is waiting for any one of several flags to be set (SYS$WFLOR), 
the PCB$L_EFWM mask contains the one's complement of the mask 
passed to the $WFLOR system service. (The $WAITFR mask is thus a spe­
cial case of a wait for any one of a group of flags to be set.) If any of the flags 
in the requested mask is set when $WFLOR is called, the process is not 
placed into a wait state. Instead, the service immediately returns a success 
code to its caller. 

• If a process calls the $WFLAND system service, indicating a wait for all 
flags in a given mask to be set, the wait mask is modified so that event 
flags that are set when the service is called are not represented in the wait 
mask. In addition, a bit in the process status longword (PCB$V _WALL in 
PCB$L_STS) is set, indicating that all flags represented by the mask must 
be set before the wait is satisfied. 

There exist two local event flag wait states (LEF and LEFO) and two corre­
sponding wait queue listheads (SCH$GQ_LEFWQ and SCH$GQ_LEFOWQ) 
for the entire system. On the other hand, there exists one common event flag 
wait queue listhead for each common event cluster that currently exists. 
Each common event flag wait queue listhead is located in the corresponding 
common event block (see Figure 12-2) and has the same overall structure as 
any other wait queue listhead (see Figure 12-3). 

Setting and Clearing Event Flags 

Event flags can be set directly by a process by calling the Set Event Flag 
system service. A process could use this service at AST level to communicate 
with its mainline code. It can also set common event flags to communicate 
with other processes. Event flags are also set in response to 1/0 completion, 
timer expiration, the granting of a lock request, and delivery of a $GETDVI, 
$GETJPI, or $GETSYI request. 

It should be noted here that when the VAX/VMS operating system uses 
shared event flags to communicate information between processes, a strict 
set of ownership rules is used. When a controlling process is getting ready to 
set an event flag, it owns the flag. When the process has set the flag (thereby 
allowing waiting processes to become computable), it relinquishes its owner­
ship of the flag to the other processes. It is then the responsibility of the other 
processes to clear the flag and notify the controlling process that it has re­
gained ownership of the flag. In this scheme, ownership is maintained by 
convention alone; it is not enforced by the software. DIGITAL recommends 
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that applications that use shared event flags as a communications tool adhere 
to these same conventions. 

Both the system service and the special paths call the same routine 
(SCH$POSTEF) to perform the actual event flag setting and check for possi­
ble scheduling implications. 

The operation of SCH$POSTEF depends on what kind of event flag is being 
set. 

• If the event flag that is being set is local, a check is made to determine 
whether this flag satisfies the process's wait request. In a $WFLOR wait, 
this flag merely has to match one of the flags being waited for. In a 
$WFLAND wait, all of the flags being waited for must be set in order to 
satisfy the process's wait request and report an event to the scheduler. 

• When a common event flag is set, the list of PCBs in the common event 
block wait queue is scanned to determine if any of the processes waiting 
for flags in this cluster satisfy its wait request as a result of setting this flag. 
A system event is reported for each such process. 

All such processes are made computable. If the priority of any one of 
them is greater than the priority of the currently executing process, a re­
scheduling interrupt is requested. As with all other cases in the system 
where several processes become computable as a result of the same sys­
tem-wide event, the process with the highest software priority will be se­
lected for execution. 

• For common event flags located in shared memory, there is one more level 
of complication. The event flag must be set in the master CEB located in 
shared memory, and other processors connected to this shared memory 
unit must be notified that a shared memory common event flag was just 
set. (Shared memory common event flag data structures are discussed at 
the end of this chapter. Other shared memory data structures are described 
in Chapter 14.) 

Any other processor connected to the same global event flag cluster re­
ceives initial notification through an MA780 interrupt. The interrupt serv­
ice routine determines that the interrupt was due to an event flag in shared 
memory being set, copies the entire set of event flags from the master CEB 
to the slave CEB, and checks whether any of the processes waiting for flags 
in this cluster are now computable. 

12.1.4.1 Other Event Flag Services. The Clear Event Flag system service simply clears 
the specified event flag. Note that when clearing a flag in common event flag 
clusters in shared memory, only the event flag in the master CEB is cleared. It 
is not necessary to copy the set of flags from the master CEB to the slave 
CEBs on other processors when an event flag is cleared for the following two 
reasons: 
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• The event flag wait services only use the master CEB when checking 
whether to place a process into a wait state or return immediate success. 

• The event flag posting routine copies the master set of flags to the local 
slave CEB before testing whether any process wait requests are satisfied. 
The master set of flags is copied into all other slave CEBs as a result of 
notifying other processors that a flag has been set. 

The Read Event Flag system service is simply informational. It has no 
effect on the computability of any process on any processor. The event flag 
cluster is read from the same destinations as those affected by the Clear 
Event Flag system service. 

• Local event flag clusters are read from the software PCB. 
• Regular common event flag clusters are read from the CEB. 
• Common event flag clusters located in shared memory are read from the 

master CEB located in shared memory. 

12.2 AFFECTING THE COMPUTABILITY OF ANOTHER PROCESS 

12.2.1 

12.2.2 

In any multiprocessing application, it is necessary for one process to control 
whether and when other processes in the application can execute. The VMS 
operating system contains several services that provide this control. 

Common Event Flags 

Common event flags described in the previous section are one method of 
synchronization control. One process can reach a critical point in its1 execu­
tion and wait on a global event flag. Another process can allow this process to 
continue its execution by setting the flag in question. 

Common event flags are also used as semaphores for more complicated 
forms of interprocess communication that use logical names or global sec­
tions: 

Process Control Services 

Several system services allow one process to directly alter the scheduling 
state of another process. 

12.2.2.1 Privilege Checks. All system services that permit one process to directly af­
fect another allow the process to be specified either by process name or by 
process identification (PID). In either case, the VMS operating system must 
determine whether the specified process exists and whether the caller has the 
proper privilege (GROUP, WORLD) or is part of the same process tree and can 
thus affect the other process. This work is centralized in a routine called 
EXE$NAMPID that is called by all such system services. 
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If the specified process exists, and the caller can affect the specified proc­
ess, EXE$NAMPID returns successfully (at IPL 7) with the PCB address of the 
specified process in R4. Note that this return condition alters the contents of 
R4, which usually contains the caller's PCB address. If the specified process is 
a part of the same process tree as the caller (the JIB address is identical), 
EXE$NAMPID will return successfully. A second important use of 
EXE$NAMPID is in obtaining a PID when the process name is known. If a 
process name is specified and the PID address argument points to a zero long­
word, the PID of the named specified process is returned to the caller at the 
designated location. 

12.2.2.2 Process Creation and Deletion. A first step in a multiprocess application 
requires that a controlling process create other processes for designated work. 
These processes may be deleted when they have completed their work or 
they may exist in some wait state in anticipation of additional work. The 
detailed operation of process creation is described in Chapter 20. Process de­
letion is described in Chapter 22. 

12.2.2.3 Hibernate/Wake. There are two different ways that a process can be tempo­
rarily halted, called hibernation and suspension. The differences between 
these two wait states are described in the VAX/VMS System Services Refer­
ence Manual. 
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A process can only put itself into the hibernate state. (That is, a process 
cannot put another process into the HIB state.) If the wake pending flag is not 
set (this flag check also clears the flag), indicating that an associated wake has 
not preceded the hibernate call, the process is placed into the hibernate wait 
state. As described in Chapter 10, the saved PC is backed up by 4 so that the 
process will be put back into the hibernate state in case it receives ASTs 
while it is hibernating. (Note that the check of the wake pending flag by the 
Hibernate system service includes the case where a process first hibernates 
and then is awakened by a wake call issued from an AST.) 

The $WAKE system service is the complementary service to Hibernate. A 
process may awaken itself (by calling $WAKE from an AST) or it may be 
awakened when another process calls $WAKE with the target process speci­
fied either by name (if the target process is in the same group, and the caller 
has GROUP privilege) or by process ID (if the caller has GROUP or WORLD 
privilege). This service sets the wake pending flag in the software PCB and 
reports the awakening event to the scheduler. The process is removed from 
the HIB or HIBO queue and placed into the COM or COMO state in the 
queue corresponding to its updated priority. (A wake event results in a prior­
ity boost class of PRl$_RESAVL, which is equivalent to a boost of 3.) 

The next time the process executes, the hibernate service executes again 
(because the PC was backed up by 4). Because the wake pending flag is now 
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set, the process returns immediately from the hibernate call (with the wake 
pending flag now clear). Notice that if the process is in any state other than 
HIB or HIBO when it is awakened, the net result is to leave the wake pending 
flag set with no other change in its scheduling state. 

12.2.2.4 Suspend/Resume. Process suspension is slightly more complicated internally 
than hibernation because a process can be placed into the SUSP state by other 
processes. The scheduling philosophy of the VMS operating system, illus­
trated in Figure 10-5, assumes that processes enter various wait states from 
the state of being the current process and in no other way. This assumption 
requires that the process being suspended (the target) become current, replac­
ing the currently executing process, the caller of the Suspend system service. 

The VMS operating system accommodates this scheduling constraint by 
using a special kernel AST, the same tool that it uses when it needs access to 
a portion of process address space. In this case, it is not the process address 
space that is so important. Rather, the process must first be made current 
before it is placed into the SUSP state. 

12.2.2.4.1 Process Suspension. Process suspension occurs in two pieces. The portion of 
the service that executes in the context of the caller sets the suspend pending 
bit in the software PCB of the target process and queues the special kernel 
AST (the routine that performs the actual suspension) to that process. This 
implementation includes the special case where a process suspends itself. 

Through the normal scheduling selection process, the target process even­
tually executes. The special kernel AST that performs the suspension exe­
cutes first unless there are previously queued special kernel ASTs. This AST 
first checks (and clears) the resume pending flag in PCB$L_STS. (This check 
avoids the deadlock that could otherwise occur if the associated call to the 
$RESUME service preceded the call to $SUSPEND.) If the resume pending 
flag is set, the process simply clears the suspend pending bit, returns from the 
AST, and continues with its execution. 

Otherwise, it is placed into the SUSP wait state. The saved PSL contains 
IPL 2, preventing delivery of ASTs while a process is suspended. (In addition, 
the AST system event is ignored for processes in either the SUSP or the 
SUSPO state.) The saved PC is an address within the suspend special kernel 
AST. When the process is resumed (the only way that a suspended process 
can continue with its execution), it reexecutes the check of the resume pend­
ing flag, which is now set, causing the process to return successfully from the 
special AST. 

12.2.2.4.2 Operation of the Resume System Service. The Resume system service is 
very simple. The resume pending flag in PCB$L_STS of the target process is 
set and (if the target process of the resume request is in either the SUSP or 
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SUSPO state) a resume event is reported to the scheduler. As with all other 
system events, this report may result in a rescheduling pass, a request to 
wake the swapper process, or nothing at all. 

12.2.2.5 Exit and Forced Exit. The Exit system service terminates the currently exe­
cuting image. If the process is executing a single image [it is neither an inter­
active nor batch job), image exit usually results in process deletion. A de­
tailed discussion of the Exit system service, including the calling sequence of 
termination handlers, is given in Chapter 21. 

12.2.3 

The Force Exit system service is a tool that allows one process to execute 
the Exit system service on behalf of another process. The service simply sets 
the force exit pending flag in PCB$L_STS and queues a user mode AST to the 
target process. This AST, executing in user mode, calls the Exit system serv­
ice after clearing the AST active flag by executing the following instruction: 

CHMK #ASTEXIT 

(For more information on this instruction, see Chapter 7). The call to Exit is 
executed in the context of the target process. Execution proceeds in exactly 
the same manner as it would if the target process had called Exit itself. 

Miscellaneous Process Attribute Changes 

Finally, there are several system services that allow a process to alter its 
characteristics, such as its response to system service failures, its software 
priority, and its process name. Some of these changes [such as priority eleva­
tion or swap disabling) require privilege. The Set Priority system service is 
the only service described in this section that can be issued for a process 
other than the caller. 

12.2.3.1 Set Priority. The Set Priority system service allows a process to alter its own 
software priority or the priority of other processes that it is allowed (through 
GROUP or WORLD privileges) to affect. If a process has the ALTPRI privi­
lege, it can change priority to any value between 0 and 31. A process without 
this privilege is restricted to the range between 0 and its own base priority. In 
VAX/VMS Version 3.0, the cell PHD$B_AUTHPRI was added to the process 
header. Storing a process's base priority in this cell allows the process to 
lower its priority below its base priority and raise it again up to its base 
priority. 
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For most scheduling states [everything except COM, COMO, and CUR), 
the Set Priority system service simply changes the base software priority in 
the software PCB [at offset PCB$B_PRIB). If a process alters its own priority, 
not only its base but also its current priority [at offset PCB$B_PRI) is 
changed. When the priority of a computable process [either COM or COMO) 
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is altered, the process is removed from the COM or COMO queue corre­
sponding to its current priority and placed into a COM or COMO queue 
corresponding to its new priority (the new base with a boost of 2). In addition, 
a scheduling event is reported. If the new process priority (new base plus a 
boost of 2) is greater than or equal to the current priority of the current proc­
ess, a rescheduling interrupt is requested. 

12.2.3.2 Set Process Name. Both the Set Process Name system service and the DCL 
command SET PROCESS/NAME= allows a process to change its process 
name. The new name cannot contain more than 15 characters. If no other 
process in the same group has the same name, the new name is placed into 
the software PCB (at offset PCB$T _LNAME). (Note that this service allows 
more flexibility in establishing a process name than is available from the 
usual channels, such as the authorization file or a $JOB card, because there 
are no restrictions imposed by the service on characters that can make up the 
process name. Even the DCL command is limited by characters that are un­
acceptable to DCL.) 

12.2.3.3 Process Mode Services. There are several miscellaneous system services 
whose only action is to set or clear a bit in some field in the software PCB. In 
particular, the software PCB contains a status longword (not to be confused 
with the hardware entity, the PSL or processor status longword) that records 
the current software status of the process. Table 12-2 lists each of the flags in 
this longword, and the direct or indirect ways that these flags can be set or 
cleared. 

The Set Resource Wait Mode, Set System Service Failure Exception Mode, 
and Set Swap Mode system services all set (or clear) bits in this status long­
word. The ability to disable swapping is protected by the PSWAPM privilege. 
The other two services require no privilege. Several other system services 
(such as $DELPRC, $FORCEX, $RESUME, or $SUSPND) set or clear bits in 
the status longword as an indication of their primary operation. 

The Set AST system service sets or clears (enables or disables) delivery of 
ASTs for a given access mode. The AST enable flags are stored at offset 
PCB$B_ASTEN within the PCB. These flags are discussed in Chapter 7. 

12.3 INTERPROCESS COMMUNICATION 

In any application involving more than one process, it is necessary for data to 
be shared among the several processes or for information to be sent from one 
process to another. The VMS operating system provides several services that 
accomplish this information exchange. The services vary in the amount of 
information that can be transmitted, the transparency of the transmission, 
and the amount of synchronization provided by the VMS operating system. 
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Table 12-2: Meanings of Flags in PCB Status Longword (PCB$LSTS) 

Symbolic Name Meaning of Flag if Set 

PCB$V_RES Process is resident (in the balance set) 
PCB$V _DELPEN Process deletion is pending 
PCB$V _FORCPEN Forced exit is pending 
PCB$V _INQUAN Process is in its initial quantum 

(following inswap) 
PCB$V _PSWAPM Process swapping is disabled 
PCB$V _RESPEN Resume is pending (skip suspend) 
PCB$V _SSFEXC Enable system service exceptions 

for kernel mode 
PCB$V _SSFEXCE Enable system service exceptions 

for executive mode 
PCB$V _SSFEXCS Enable system service exceptions 

for supervisor mode 
PCB$V _SSFEXCU Enable system service exceptions 

for user mode 

PCB$V _SSRWAIT Disable resource wait mode 
PCB$V _SUSPEN · Suspend is pending 

Flag Set by 

Swapper 
$DELPRC 
$FORCEX 

Swapper 
$SETSWM, $CREPRC 
$RESUME 

$SETSFM 

$SETSFM 

$SETSFM 

$SETSFM, $CREPRC 

$SETRWM, $CREPRC 
$SUSPND 

Flag Cleared by 

Swapper 

Image and process rundown 

Quantum end routine 
$SETS WM 
Suspend special AST 

$SETSFM, process rundown 

$SETSFM, process rundown 

$SETSFM, process rundown 

$SETSFM, image and 
process rundown 
$SETRWM 
Suspend special AST 



Table 12-2: Meanings of Flags in PCB Status Longword (PCB$LSTS) (continued) 

Symbolic Name 

PCB$V _ WAKEPEN 

PCB$V_WALL 
PCB$V _BATCH 
PCB$V _NQACNT 

PCB$V _SWPVBN 

PCB$V _ASTPEN 
PCB$V _PHDRES 
PCB$V_HIBER 
PCB$V _LOGIN 
PCB$V _NETWRK 
PCB$V _PWRAST 

PCB$V _NQDELET 
PCB$V _DISA WS 

Meaning of Flag if Set 

Wake is pending (skip hibernate) 

Wait for all event flags in mask 
Process is a batch job 
Do not write an accounting record 

for this process 
Modified page Write to the swap file 

is in progress 
AST is pending (No longer used) 
Process header is resident 
Hibernate after initial image activation 
Login without reading the authorization file 
Process is a network job 
Process has declared a power recovery AST 

Do not delete this process (not used) 
. Do not perform automatic working 

set adjustment on this process 

Flag Set by 

$WAKE, expiration of 
scheduled wakeup 
$WFLAND 
$CREPRC 

$CREPRC 

Modified page writer 

Swapper 
$CREPRC 
$CREPRC 
$CREPRC 
$SETPRA 

SET WORKING_SET/NOADJUST 
$CREPRC 

Flag Cleared by 

$HIBER 

Next $WFLOR or $WAITFR 

Modified page writer 

Swapper 

Routine that queues 
recovery ASTs, image 
and process rundown 

SET WORKING_SET/ADJUST 



Process Control and Communication 

12.3.1 

12.3.2 

12.3.3 

238 

Event Flags 

Global or common event flags can be treated as a method for several proc­
esses to share single bits of information. In fact, the typical use of common 
event flags is as a synchronization tool for other more complicated communi­
cation techniques. The internal operations of common event flags are de­
scribed in the beginning of this chapter. 

VAX/VMS Lock Management System Services 

The lock management system services allow processes to name a shared re­
source and request locks on that resource. If access to a resource cannot be 
immediately granted to a lock, a queuing mechanism is provided for a process 
to wait until it can be granted access to the resource. The lock manager 
provides a number of lock modes to control how the resource is to be shared 
with other processes. Blocking ASTs and a lock value block are also provided 
to pass information about, or synchronize access to, a resource. The internals 
of the lock manager are described in Chapter 13. 

Mailboxes 

Mailboxes are I/O devices in that they are written to and read from by the 
normal VMS I/O system, either through RMS or with the $QIO interface. 
Although process-specific or system-wide parameters may control the 
amount of data that can be written to a mailbox in one operation, there is no 
limit to the total amount of information that can be passed through a mail­
box with a series of reads and writes. 

There are two forms of synchronization provided for mailbox 1/0. Because 
mailboxes are 1/0 devices, a simple but restrictive technique would have the 
receiving process issue a read from the mailbox and wait until the read com­
pletes. Of course, the read could not complete until the process writing to the 
mailbox completed its transmission of data. The limitation of this technique 
is that the receiving process cannot do anything else while it is waiting for 
data. Even if the process issues asynchronous 1/0 requests, an 1/0 request 
must be outstanding at all times in order to receive notifi~ation when some 
other process writes to the mailbox. In some applications, these limitations 
may be acceptable and so this technique can be used. 

Other applications may have a receiving process that can perform different 
tasks, depending on the information available to it. Putting such a process 
into a wait state for one task prevents it from servicing any of its other tasks. 
For such applications, the VM.S operating system provides a special $QIO 
request called Set Attention AST that allows a process to receive notification 
through an AST when anyone writes into its mailbox. This technique allows 
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12.3 Interprocess Communication 

a process to continue its mainline processing and handle requests from other 
processes only when such work is needed, without having an 1/0 request 
outstanding at all times. 

Logical Names 

Logical names (see Chapter 29) are used extensively by the VMS operating 
system ·to provide total device independence in the 1/0 sys tern. However, 
logical names c;an be used for many other purposes as well. Specifically, one 
process can pass information to another pro".ess by creating a logical name (in 
the group or system table) with information stored in the equivalence string. 
The receiving process simply translates the name to retrieve the data. 

Although some form of synchronization is provided by an error return 
(SS$_NOTRAN) from the Translate Logical Name system service, processes 
using such a technique should use event flags (or an equivalent method) to 
synchronize this communication technique. One use of this technique where 
synchronization is not required occurs when a process creates a subprocess or 
detached process and passes the new process data in the equivalence strings 
for SYS$INPUT, SYS$0UTPUT, or SYS$ERROR. Using this method, there is 
no possibility for the translation to occur before the creation. 

Global Sections 

Global sections provide the fa~test method for one process to pass informa­
tion to another process. Because the two processes have the data area mapped 
into their address space, no movement of data takes place. Instead, the 
method provides for a sharing of the data. The method is not transparent 
because each process must rnap the global section that will be used to share 
data. In addition, the processes must use event flags, the lock management 
.system services, or their own synchronization to prevent the receiver from 
reading data before it has been made available by the sender. 

Interprocessor Communication with the MA780 

VMS support for the MA780 shared memory unit provides a transparent com­
munication path for interprocess communication even when processes are 

·located on different processors connected through a shared memory unit 
(MA780). The three communication paths provided are common event flags, 
mailboxes, and global sections. 

Each of these entities is described by a name. When a process connects to 
one ofthem (with the Associate Common Event Flag Cluster system service, 
the Create Mailbox system service, or the Create and Map Section or Map 
Global Section system services), a logical name translation is performed on 
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the name of the object. If the equivalence name is of the following form, the 
service makes the appropriate connection between the process and the data 
structure describing the object that exists in shared memory. 

shared-memory-name:object-name 

If the shared memory data structure does not exist, it is created (except that 
the Map Global Section system service does not create global sections that do 
not exist). The data structures that the VMS operating system uses to de­
scribe shared memory are pictured in Chapter 14. In addition, memory man­
agement data structures, including those structures that describe shared 
memory global sections, are found in that chapter. 

• For a common event flag cluster in shared memory, the event flag cluster 
in the software PCB (PCB$L_EFC2P or PCB$L_EFC3P) points to the slave 
CEB for the local processor. The slave CEB contains information that de­
scribes the master CEB that is located in the shared memory (see Figure 
12-4). The following procedures are used to identify the slave PCB: 

-If the slave CEB already exists, the system service simply points the 
PCB to the CEB. 

-If the slave CEB does not exist but the master does (there are currently 
no references to this cluster on this CPU), then a slave CEB is created; 
the address of the master is stored in the slave; and the address of the 
slave is stored in the PCB. 

-If the master CEB does not exist either, it is created first in the shared 
memory. Then the slave is created and execution proceeds as described 
in the previous case. 

The way in which common event flags are set and cleared is described in 
the beginning of this chapter. The differences between shared memory 
common event blocks (master and slave) and local memory common event 
blocks are pictured in Figure 12-5. (A local memory common event block 
is pictured in Figure 12-2). 

• For a mailbox in shared memory, there are also three cases. 

-If the mailbox already exists on this port, the Create Mailbox system 
service simply assigns a channel to it. (The UCB pointer in an available 
channel control block is loaded with the address of the UCB describing 
the shared memory mailbox.) 

-If the mailbox is being created on this node for the first time, a UCB is 
allocated and loaded with parameters that describe the mailbox. A bit is 
set in a mailbox-dependent field indicating that this mailbox UCB de­
scribes a mailbox in shared memory. Finally, the address of the shared 
memory mailbox control block is loaded into the UCB. 
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);: 

Status 

Deleter 
Port 

Master CEB 
(resides in shared memory) 

Valid and Interlock Bits 

Unused 

Type l Size 

Unused 

Event Flags 

Unused 

Unused 

Creator Number Inter-

Port of Processes processor 
Lock 

UIC of Creator 

Unused l Protection Mask 

Count 

Cluster Name 
(up to 15 characters) 

VA of Processor O Slave CEB 

VA of Processor N Slave CEB 

Processor 1 l Processor 0 
Reference Count Reference Count 

Processor N l Processor N-1 
Reference Count Reference Count 

l 

~ 

~"'. 

SlaveCEB 
(resides in processor local memory) 

Same as 
Local Memory 

Common Event 
Block 

VA of Shared Memory Control Block 

Index to 
MasterCEB 

VA of Master CEB 

1 

Figure 12-5 
Shared Memory Common Event Flag Data Structures 

-If the shared memory mailbox control block (see Figure 18-2) does not 
exist, it is created before the rest of the operations described in the previ­
ous step are performed. 

Shared memory mailbox data structures are pictured in Figures 18-2 and 
18-3. Mailbox creation is described in more detail in Chapter 18. 

• For a global section in shared memory, a special global section descriptor is 
allocated that describes the global section in shared memory. Unlike glo­
bal sections that exist in local memory, there are no global page table 
entries set up for global sections in shared memory. 

When a process maps to the shared memory global section, its process 
page tables are set up to contain the PFNs of the shared memory pages and 
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marked as valid. Such P.ages are not counted against the process working 
set. That is, pages. in shared memory do not incur page faults. They are 
always valid, and therefore they can be described with a simple descriptor 
that is contained in the global section descriptor, rather than a set of global 
page table entries required for global pages that exist in local memory. 
Memory management data structures are descrlbed in Chapter 14. The 
memory management system services are discussed in Chapter 16. 
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13 VAX/VMS Lock Manager 

'Tis in my memory lock'd, 
And you yourself shall keep the key of it. 

-Hamlet 1,3 

The VAX/VMS lock manager provides semaphores that cooperating processes 
can use to synchronize access to shared resources. The lock manager allows 
callers to specify one of six degrees of shareability (lock modes) ranging from 
no access to exclusive access. Once the lock is granted, the owning process 
can request a lock conversion to change the lock mode. The lock manager 
provides a queuing mechanism by which processes can wait in turn until a 
shared resource becomes available. Two queues are available: a waiting 
queue for new locks and a conversion queue for lock conversions. 

The lock modes are: 

NL Null lock. Owner can neither read nor write; compatible with all 
other locks. 

CR Concurrent read. Read access and sharing with other readers and 
writers. 

CW Concurrent write. Write access and sharing with other readers and 
writers. 

PR Protected read. Read access and sharing with other readers; no writ­
ers allowed. 

PW Protected write. Write access and sharing with CR mode readers; no 
other writers allowed. 

EX Exclusive access. Write access; denies access to any other readers or 
writers. 

This chapter first discusses the data structures used by the lock manager. The 
action of the lock manager when locks are queued and dequeued is then 
described. The last section in this chapter describes deadlock detection. The 
treatment in this chapter assumes that the reader is familiar with the descrip­
tion of the VAX/VMS lock management system services found in the VAX/ 
VMS System Services Reference Manual. 

13.1 LOCK MANAGER DATA STRUCTURES 

Essentially the lock database consists of the following four structures: 

• Lock blocks that describe the locks requested by processes 
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13.1 Lock Manager Data Structures 

• Resource blocks that describe the resource names for which locks have 
been requested 

• The lock ID table that locates the lock blocks 
• The resource hash table that locates the resource blocks 

Lock Blocks 

Figure 13-1 shows the structure of the lock block (LKB). The lock block is 
allocated from nonpaged pool, and is composed of two overlaying structures. 
The first structure in the lock block contains an AST control block (ACB). 
When a lock is granted, the ACB is used to queue a kernel mode AST to 
perform kernel mode operations in the context of the caller; the ACB is also 
used to queue completion ASTs. When a blocking AST is required, the ACB 
is used to queue the blocking AST. 

The second part of the lock block describes the information specific to the 
lock request (for example, a blocking AST address, the event flag number, and 
the address of the lock status block) and the current state of the lock (for 
example, the lock mode and the queue links used to locate the lock). The 

Lock Block 
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Layout of a Lock Block 
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state queue links in the lock block are used to link the LKB into a resource's 
state queue. 

The lock block is created when a process requests a new' lock and is owned 
only by that process. When a process dequeues a lock, the lock block is deal­
located. 

Resource Blocks 

A resource block describes a resource and contains listheads for the granted, 
conversion, and waiting queues for the resource. The state queue links in the 
lock block (LKB$L_SQFL and LKB$L_SQBL) link the lock blocks to these 
queues. Note that the conversion and waiting queues are ordered first-in/ 
first-out; the granted queue has no order. Figure 13-2 shows the structure of 
the resource block. The resource blocks are allocated from nonpaged pool. In 
addition to queue heads, a resource block contains the lock value block for 
the resource, the address of the resource's parent resource block (if any), and 

Resource Block 
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the number of sublocks owned by the resource. Only one resource block will 
exist for each resource being locked. 

Resource blocks are deallocated when there are no locks associated with 
the resource (the state queues in the resource block are empty). 

Accessing the Lock and Resource Blocks 

The VAX/VMS lock manager has two ways in which information in the lock 
management database can be located, the lock ID table and the resource hash 
table. The lock ID table is used to locate lock blocks; the resource hash table 
is used to locate resource blocks. Both of these structures are allocated from 
nonpaged pool. 

Once a resource block has been located through the resource hash table, 
the lock blocks associated with the resource can be found through the state 
queue pointers. Conversely, once a lock block has been located through the 
lock ID table, the name of the resource that is locked can be located by the 
resource block address field in the lock block. (A third way to locate informa­
tion in the lock management database using process control blocks is dis­
cussed in Section 13.1.4.) 

13.1.3.1 The Lock ID Table. The lock ID table is used to locate locks when the lock ID 
is known. When a caller requests a new lock, the $ENQ system service re­
turns a lock ID to the caller. The lock ID is actually an index into the lock ID 
table. The caller can then use the lock ID to identify a specific lock when 
performing conversions or dequeuing locks. The lock ID table is located by 
the global symbol LCK$GL_IDTBL. Figure 13-3 shows the structure of the 
lock ID table. 

When an entry in the lock ID table is in use, it contains the address of the 
lock block that is associated with the lock ID. When an entry in the lock ID 
table is not used, the low-order word contains an index to the next unused 
entry in the lock ID table. When the VAX/VMS operating system is initial­
ized, the module INIT loads each entry in the lock ID table with the index of 
the subsequent entry in the table. The first entry in the table is initialized to 
zero and is not used. A zero entry indicates an unusable lock ID table entry. 

The global symbol LCK$GL...,.NXTID contains a lock ID table index that 
points to the first free lock ID table entry. When a caller requests a new lock, 
LCK$GL_NXTID is used to locate the new lock ID table entry. The low­
order word of LCK$GL_NXTID is returned to the caller as the new lock ID. 
Two actions are then performed on the new lock ID table entry. 

• The contents of the new lock ID table entry (which contains a pointer to 
the next free lock ID table entry) are copied into LCK$GL_NXTID. 

• The address of the new lock block is written into the lock ID table entry. 

Because it is possible that an error in a calling routine could pass an errone-

247 



VAX/VMS Lock Manager 

Lock ID Table 

LKB Type Size 

0 ::LCK$GL_ IDTBL 

~ 

"-
J 
J 

"-
The indexes do not always .... point forward. 

~ 

LKB 

t 

LCK$GL_MAXID:: l 
J 

LCK$GL_NXTID:: 

Figure 13-3 
Structure of the Lock ID Table 

ous value as the lock ID, the lock manager compares the caller's process 
identification and access mode with the process identification and access 
mode stored in the lock block. If the comparison fails, the lock manager exits 
with the return status code SS$_IVLOCKID. 

When a lock block is deallocated, the lock ID table entry is located by its 
lock ID. The contents of LCK$GL_NXTID are written into the lock ID table 
entry (replacing the address of the deallocated lock block) and the lock ID is 
written into LCK$GL_NXTID. 

The global symbol LCK$GL_MAXID contains the index to the last entry 
in the lock ID table. The lock ID table entry at that location always contains 
a zero. The size of the lock ID table is controlled by the SYSBOOT parameter 
LOCKIDTBL. 

13.1.3.2 The Resource Hash Table. The resource hash table is used to locate resource 
blocks. The resource name is hashed and the result of the hash is used as an 
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index into the resource hash table. Note that the entries in the resource hash 
table are longword addresses, not quadword queue heads; the resource hash 
table contains only forward pointers to the lists. The table is located by the 
global symbol LCK$GL_HASHTBL. The size of the hash table is determined 
by the SYSBOOT parameter RESHASHTBL. The hashing algorithm is similar 
to the algorithm used for hashing logical names (see Section 29.1.4). 

Each longword entry in the resource hash table points to the first resource 
block in a resource hash chain. Because the resource blocks are maintained in 
a list that is doubly linked, but not circular (the resource hash table contains 
no backward pointers), the list of resource blocks is termed a chain. The first 
two longwords in each resource block contain the forward and backward 
pointers for the resource hash chain. The last block in the chain has a 
zero. forward pointer. If a longword entry in the resource hash table con­
tains a zero, there are no resource blocks associated with that hash table 
entry. 

Figure 13-4 shows the structure of the resource hash table and its relation­
ships to hash chains. 

Resource Hash Table 
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0 ::LCK$GL_HASHTBL 

0 

O~RSB RSB RSB 

0 

~RSB 

0 

Figure 13-4 
Resource Hash Table and Hash Chains 
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13.1.4 Relationships in the Lock Database 

There are three ways in which the lock manager can access the lock database. 

• Given a resource name, the lock manager can locate the RSB through the 
resource hash table. Using the state queue heads, all locks associated with 
the resource can be located. 

• Given a lock ID, the lock manager can locate the lock block through the 
lock ID table. Using the resource address field in the lock block, the re­
source associated with the lock can be located. 

• Given a process control block, the lock manager can locate the lock queue 
header (at offsets PCB$L_LOCKQFL and PCB$L_LOCKQBL). Using the 
lock queue links, all locks owned by a specific process can be located. 

A lock with a parent lock and resource is termed a sublock. When a sublock 
is requested, the new lock block will contain the address of the parent lock 
block (at offset LKB$L_PARENT); the resource block associated with the 
sublock will point to the parent resource (at offset RSB$L_PARENT). This 
relationship is shown in Figure 13-5. When a sublock is created, the reference 
count fields in the parent lock block and resource block are incremented to 
account for the sublocks. A lock block or resource block cannot be deal­
located unless the reference count equals zero. By the reference count, parent 
locks can tell the number of sublocks they own; they do not have a list of 
their sublocks. 

13.2 QUEUING AND DEQUEUING LOCKS 

13.2.l 

250 

The lock manager becomes active only when calls are made to the $ENQ or 
$DEQ system services. When the $ENQ service is called, the lock manager 
attempts to grant the requested new lock or the lock conversion immedi­
ately. If the new lock or conversion cannot be granted, the lock block is 
placed on the waiting or conversion queue. When the $DEQ service is called, 
the lock manager dequeues the lock from the resource and then searches the 
resource's state queues for locks that are compatible with the currently 
granted locks. Lock compatibility is described fully in the VAX/VMS System 
Services Reference Manual. The following sections describe the action of the 
$ENQ and $DEQ services. 

The $ENQ System Service 

When a process calls the $ENQ system service, the event flag and lock mode 
are validated and the lock status block is checked for read/write access. If 
these checks are successful, the request type is checked (new lock or conver­
sion). Section 13.2.2 discusses in detail the action of the lock manager for 
lock conversions. 
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If a new lock is requested, a lock block and a resource block are allocated. 
The fields of the lock block are initialized, including the fields in the ACB at 
the top of the lock block. A new resource block for the resource is allocated 
and initialized (even if the resource exists already). After hashing the new 
resource name and finding an index into the resource hash table, the lock 
manager searches the hash chain for a resource block with the same resource 
name. For each resource block encountered on the hash chain, the following 
fields are compared with the new resource block: 

• Parent resource block address 
• UIC group number (the UIC group number is zero for system locks) 
• Access mode (user through kernel mode) 
• Name space (system or group wide) 
• Length of the resource name string 
• Resource name string 

If the resource block for the named resource is not found, the new resource 
block is added to the end of the hash chain and the new lock is granted (see 
Section 13.2.1.1). If the flag bit LKB$M_SYNCSTS is set, the success status 
code SS$_SYNCH is returned to the caller. 

If the named resource block is found in the search for the resource name, 
the new resource block is deallocated and the existing one is used. The re­
quested mode in the lock block is tested for compatibility with the currently 
granted locks. If the new lock is compatible, the new lock is granted. Again, if 
the bit LKB$M_SYNCSTS is set, the success status code SS$_SYNCH is 
returned to the caller. 

In order to speed checks for compatibility with the currently granted locks, 
each resource block contains a field indicating the highest granted lock mode 
of all locks in the granted and conversion queue for that resource. This field is 
termed the group grant mode. Note that locks on the conversion queue retain 
their granted mode; it is the granted mode of these locks that is used in 
calculating the group grant mode, not their requested mode. The value of the 
group grant mode is stored in the resource block at offset RSB$B_GGMODE. 
Because this value is calculated only when a new lock is granted and is main­
tained in the resource block, compatibility checking involves only one com­
pare operation; the lock manager does not have to spend time comparing lock 
modes each time it attempts to grant a lock. 

13.2.1.1 Granting a Lock. The action of granting a lock involves five steps: 

1. The compatibility of the locks (group grant mode) is recomputed. 
2. The lock block is placed on the granted queue. 
3. The event flag is set. 
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4. If a completion AST was specified, it is queued. 
5. If a blocking AST was specified and the lock is blocking another lock 

request, the blocking AST is queued. 

To place a lock on tlie granted queue, the listheads for the granted queue are 
located in the resource block at offsets RSB$L_GRQFL and RSB$L_GRQBL. 
The lock block is then linked into the granted queue. The order in which 
locks are placed on the queue is unimportant. The only time that the granted 
queue is traversed is when the group grant mode is computed, and, in that 
case, no particular order is required. 

The event flag number is stored in the lock block at offset LKB$B_EFN. 
The global routine SCH$POSTEF is called to set the event flag. 

13.2.1.2 ASTs and the Lock Manager. Because the lock manager must modify informa­
tion in per-process space, a special kernel mode AST routine is required to 
perform some actions when granting a lock. The following operations are 
performed by the special kernel mode AST routine. 

• The contents of the lock status block (and optionally the contents of the 
lock value block) are copied to the caller's lock status block. 

• If a completion AST has been queued and if a blocking AST is required at 
this time, the blocking AST is queued. 

• If the NODELETE bit is clear in the ACB, the ACB is deallocated. 

If no completion AST or blocking AST routine is specified by the caller, a 
special kernel mode AST is used to perform these actions. However, if an 
AST routine was specified by the caller, the special kernel AST is queued as a 
piggyback special kernel AST in the caller's ACB (see Section 7.2.4). 

Because the ACB can contain the address of only one AST routine, special 
treatment is required when a the lock manager must signal both a comple­
tion AST and a blocking AST. When the lock is granted, the AST routine field 
in the lock block ACB (offset LKB$L-AST) is loaded with the the address of 
the completion AST routine (stored at offset LKB$L_CPLASTADR). When 
the completion AST is delivered, the contents of the ACB are saved on the 
stack and the piggyback special kernel AST is delivered. Because the contents 
of the ACB were saved, it can be modified now to contain the address of the 
blocking AST. The special kernel mode AST routine loads offset LKB$L_AST 
with the address of the blocking AST routine (stored at offset 
LKB$L_BLKASTADR) and requeues the AST. When the special kernel mode 
AST routine exits, the completion AST routine is executed. 

13.2.1.3 Waiting Locks. Before an incompatible lock can be placed on the waiting 
queue, the flag LKB$M_NQQUEUE is checked. If the flag is set, the lock is 
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not queued and the failure return status SS$_NOTQUEUED is returned to 
the caller. If the flag is not set, the lock block is queued to the end of the 
waiting queue for the resource. The queue headers for the waiting queue are 
found at offsets RSB$L_ WTQFL and RSB$L_ WTQBL. 

Lock Conversions 

When a caller requests a lock conversion, the lock manager is passed the lock 
ID of the lock to be converted and the new lock mode for the conversion. The 
new lock mode is compared with the value of the group grant mode. If the 
new lock mode is compatible with the current granted locks, the lock is 
granted (see Section 13.2.1.1 ). 

If the requested mode of the conversion is not compatible with the group 
grant mode, the requested lock mode is compared to the value of the conver­
sion grant mode (stored at offset RSB$B_ CGMODE). If the lock is compatible 
with the conversion grant mode, the lock is granted. If the lock is incompati­
ble, it is placed at the tail of the conversion queue. 

Most of the time the conversion grant mode contains the same value as the 
group grant mode. The only time the conversion grant mode is different from 
the group grant mode is when both of the following are true: 

• The current lock mode of the lock at the head of the conversion queue is 
the most restrictive lock mode for the resource. 

• That lock is the only lock at the current mode. 

If both of these conditions are true, the granted lock mode of the lock on 
the conversion queue is omitted from the calculation of the conversion grant 
mode. The use of the conversion grant mode insures that lock conversions 
between incompatible lock modes will not block themselves. 

Suppose that a resource has one lock in its granted queue at null (NL) 
mode. If a lock request is issued for the resource at protected write (PW) 
mode, the group grant mode is NL mode, so the PW mode lock is granted. 
When the new lock is granted, the group grant and conversion grant modes 
are recalculated; both equal PW mode. 

Now the PW mode lock requests a conversion to exclusive (EX) mode. If 
the group grant mode was used to determine compatibility, the conversion to 
EX mode could not be granted, because the PW mode lock is actually block­
ing its own conversion (remember that group grant mode includes both the 
granted and conversion queues). However, the lock at the head of the conver­
sion queue has the most restrictive lock mode currently granted. In calculat­
ing the conversion grant mode, the lock at the head of the conversion queue 
is omitted. Thus, the conversion grant mode is NL mode, and the conversion 
can be granted. 
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The $DEQ System Service 

When making a call to the $DEQ system service, the caller passes the lock ID 
of the lock to be dequeued to the lock manager. The $DEQ system service 
uses the lock ID to locate the lock block and then verifies that the caller has 
the correct access mode and PID to access the lock. The resource block ad­
dress in the lock block is used to locate the resource block. If the reference 
count in the lock block is zero, the lock block is dequeued from its current 
state queue and is deallocated. The lock manager then checks the state queue 
headers in the resource block to which the lock was queued. If all of the state 
queues in the resource block are empty and the reference count is zero, the 
resource block is removed from the hash chain and is deallocated. 

If the resource block reference count is nonzero, the lock manager attempts 
to grant locks waiting on the conversion or waiting queues. 

• The lock mode of the first lock in the conversion queue is compared with 
the conversion grant mode. 

-If the lock is incompatible, the $DEQ system service exits and returns 
control to the user. 

-If the lock is compatible, it is dequeued from the conversion queue and 
is granted. 

- When the lock is dequeued from the conversion queue, a new lock takes 
its place as the first lock on the conversion queue. 

This step is repeated for the new first entry in the conversion queue until 
either the conversion queue is emptied or an incompatible lock is found 
and the lock manager exits. 

• If the conversion queue is emptied, the lock mode of the first lock in the 
waiting queue is compared against the group grant mode. 

-If the lock is incompatible, the $DEQ system service exits and returns 
control to the user. 

-If the lock is compatible, it is dequeued from the waiting queue and 
granted. 

-When the lock is dequeued from the waiting queue, a new lock takes its 
place as the first lock on the waiting queue. 

This step is repeated on the new first entry in the waiting queue until 
either the waiting queue is emptied, or an incompatible lock is found. 

13.3 HANDLING DEADLOCKS 

A deadlock occurs when several locks are waiting for each other in a circular 
fashion. The VAX/VMS lock manager resolves deadlocks by choosing a par­
ticipant in the deadlock cycle (a lock request that is waiting on the conver-

255 



VAX/VMS Lock Manager 

13.3.1 

13.3.2 

sion or waiting queue) and refusing that participant's lock request. The par­
ticipant that is chosen to break the deadlock is termed the victim. The 
victim's lock or conversion request fails and the error status code 
SS$_DEADLOCK is returned in the victim's lock status block. 

There are three parts to deadlock handling in the VAX/VMS lock manager. 

• The lock manager suspects that a deadlock exists. 
• A deadlock search proves that a deadlock actually exists. 
• The victim is chosen. 

Initiating a Deadlock Search 

Because deadlock detection is a time-consuming task, it is not desirable to 
.search for deadlocks every time a lock or conversion is requested. It is far 
better to search for a deadlock only when the system suspects that a deadlock 
exists. The VAX/VMS lock manager searches for a deadlock only when a 
process has been waiting for a resource for a specified amount of time. The 
SYSBOOT parameter DEADLOCK_ WAIT specifies the amount of time to 
wait before initiating a deadlock search. 

Whenever a lock is placed in the conversion or waiting queue, the lock 
block is also queued to the lock manager timeout queue (located by the global 
symbol LCK$GL_ TIMOUTQ). The AST queue fields in the lock block are 
used to link the lock block into the timeout queue. When a lock must wait 
on the conversion or waiting queue, the value in DEADLOCK_ WAIT is 
added to the current absolute system time (EXE$GL_ABSTIM), and the re­
sult is stored in the lock block at offset LKB$L_DUETIME. 
(LKB$L_DUETIME is actually a double use of the special kernel AST routine 
address field, LKB$L_KAST.) 

Once every second, the VAX/VMS operating system executes the routine 
EXE$TIMEOUT. In addition to checking for device timeouts, this routine 
checks to see if the the first entry in the lock manager timeout queue has 
timed out. The value in LKB$L_DUETIME is compared with the absolute 
system time. If the due time has not been reached, the routine exits. How­
ever, if the due time has passed, a deadlock search is initiated. 

Deadlock Detection 

There are two separate forms of deadlock that can occur in the VAX/VMS 
lock manager. Each requires a different form of detection. One form (a con­
version deadlock) is easily detected, because it is restricted to a single re­
source. Multiple resource deadlocks require a more complex search to locate. 

13.3.2.1 Conversion Deadlocks. Conversion deadlocks occur when there are at least 
two locks in the conversion queue for a resource. When the requested mode 
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of the first lock in the conversion queue is incompatible with the granted 
mode of the second lock in the conversion queue, a deadlock exists. 

For example, assume that there are two protected read (PR) mode locks on a 
resource. One PR mode lock requests a conversion to exclusive (EX) mode. 
Because PR mode is incompatible with EX mode, the conversion request 
must wait. While the first conversion request is waiting, the second PR mode 
lock also requests a conversion to EX mode. Now, the first lock will never get 
granted because its requested mode (EX) is incompatible with the second 
lock's granted mode (PR). The second conversion request will never get 
granted because it is waiting behind the first. 

In detecting a conversion deadlock, the search begins with the lock block 
indicated by the lock manager timeout queue. The state queue backward link 
is used to locate the previous lock in the conversion queue. The granted 
mode of the previous lock is compared with the requested mode of the lock 
that timed out. If the modes are compatible, the previous lock in the conver­
sion queue is located using the state queue backward link. The test is re­
peated until an incompatible lock is found or the beginning of the queue is 
found. 

If an incompatible lock is found, a deadlock exists and a victim is selected 
(see Section 13.3.3). If the beginning of the queue is reached, a conversion 
deadlock does not exist, and a search for a multiple resource deadlock is 
initiated. 

13.3.2.2 Multiple Resource Deadlocks. Multiple resource deadlocks occur when a circ 
cular list of processes are each waiting for one another on two or more re­
sources. 

For example, assume Process A locks Resource 1 and Process B locks Re­
source 2. Process A then requests a lock on Resource 2 that is incompatible 
with B's lock on resource 2, and thus, Process A must wait. Note that at this 
point, a circular list does not exist. When Process B then requests a lock on 
Resource 1 that is incompatible with A's lock on Resource 1, it must wait. A 
multiple resource deadlock now exists. Processes A and B are both waiting 
for each other to release different resources. These steps are shown in Figure 
13-6. In the figure, locks that are blocking a resource (incompatible with 
waiting locks) are shown beneath the resource block; locks that are waiting 
on a resource are shown above the resource block. 

This type of deadlock normally involves two or more resources, unless one 
process locks the same resource twice. (Usually a process will not lock the 
same resource twice; however, if the process is multithreaded, double 
locking may occur. Double locking also represents a multiple resource 
deadlock.) 

To verify that a multiple resource deadlock exists, a recursive algorithm is 
used. The approach'l.s summarized as follows: 
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Resource 2 

Figure 13-6 
Example of a Deadlock Occurring 

• A waiting lock will be waiting for locks owned by other processes. 
• Any of the other processes might themselves have waiting locks. 
• Those waiting locks will be waiting for locks owned by other blocking 

processes. 

In implementation, the lock manager starts with the lock that timed out on 
the lock manager timeout queue. The address of the PCB associated with the 
lock that timed out is saved and the multiple resource deadlock routine 
(SEARCH_RESDLCK) is called. If a lock with the same owner PCB can be 
found blocking a resource, a deadlock exists. 

Each time SEARCH_RESDLCK is called, a stack frame is pushed onto the 
stack. Each stack frame contains information on the current position in the 
search. Figure 13-7 shows the the contents of the stack frame. 

Each call to SEARCH_RESDLCK specifies the address of a waiting lock 
block. The resource associated with the lock block is located and the re­
source state queues are searched for lock blocks whose granted or requested 
lock mode is incompatible with that of the waiting lock block. If an incom­
patible lock block is found, that lock is considered to be blocking the waiting 
lock block. 

When a blocking lock is found, the owner PCB of the blocking lock is 
located. If the owner PCB is the same as the PCB of the lock that initiated the 
deadlock search, the list is proven to be circular and a deadlock exists. A 
victim is chosen (see Section 13.3.3 for details on victim selection), and dead-
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Saved R2 

Saved R3 

Saved R4 (PCB '+ LOCKQFL) 

Saved R5 

Saved RB (Address of LKB) 

Return Address 

Figure 13·7 
Stack Frame Built by the Lock Manager 

lock detection returns control to EXE$TIMEOUT. If the PCB of the blocking 
lock is not the same as the saved PCB, another call is made to 
SEARCH_RESDLCK, specifying the address of the new blocking lock block. 

Each time SEARCH_RESDLCK is called, it searches the state queues asso­
ciated with the specified lock block, to see if the lock block is waiting on a 
resource. 

When all the state queues for a given resource have been searched and no 
blocking lock has been found for that lock block, the routine removes the 
stack frame and returns control to its caller. If the caller itself was 
SEARCH_RESDLCK, the previous search for blocked locks on the resource 
can now be resumed. 

A process bitmap is maintained by the VAX/VMS lock manager in order to 
reduce the number of repeated searches for blocking locks on a particular 
process. Each time a new blocking PCB is located, a bit corresponding to that 
process is set. If the bit for the PCB is set already, the search for locks block­
ing that process is terminated, because its locks have been searched already. 

13.3.2.3 Unsuspected Deadlocks. Note that the use of the process bitmap speeds the 
location of the suspected deadlock, but prevents the accidental detection of 
unsuspected deadlocks. An unsuspected deadlock is one that exists within 
the lock management database, but has not been detected so far, because 
none of its locks have timed out on the lock manager timeout queue. This 
behavior is acceptable in the VAX/VMS lock manager for the following rea­
sons: 

• Deadlocks should be rare. 
• Finding a process a second time in a deadlock search does not necessarily 

indicate that an unsuspected deadlock exists. 
• The occurrence of unsuspected deadlocks should be rarer still. 
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• Any deadlock search that does not find a deadlock is a waste of processor 
time. 

• The unsuspected deadlock will become a suspected deadlock when one of 
its own locks times out on the lock manager timeout queue and a deadlock 
search is initiated on its behalf. 

Figure 13-8 shows two deadlocks. One deadlock is suspected and a search is 
in progress (the path with the heavy arrows); the other is unsuspected. This 
figure is an extension of the deadlock cycle shown in Figure 13-6. In this case, 
the deadlock search was initiated as a search for the locks blocking Process A. 
Because Process C is the first process found granted for Resource 2, it was the 
first lock that is investigated for participation in the deadlock cycle. Process 
C is waiting for Resource 3. The bit corresponding to Process C is set in the 
process bitmap. The context of the search is saved on the stack and 
SEARCH_RESDLCK is called to search for processes blocking Process C's 
lock. 

Process D has a blocking lock on Resource 3. Process Dis also waiting for 
Resource 2. The bit corresponding to Process Dis set in the process bitmap. 
The context of the search is saved on the stack and SEARCH_RESDLCK is 
called to search for processes blocking Process D's lock. Process C has a 
blocking lock on Resource 2. This situation is a deadlock. However, because 
the bit corresponding to Process C was set in the process bitmap, the dead­
lock search for Process C is abandoned. One by one the stack frames are 
removed and the search whose context was saved continues. Eventually the 

Resource 3 

Figure 13-8 
Suspected and Unsuspected Deadlocks 
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deadlock search will continue with locks blocking Resource 2 and the dead­
lock cycle of Processes A and B will be discovered. 

Eventually one of the locks requested by Processes C and D will time out, 
and a deadlock search will be initiated for that deadlock. 

13.3.2.4 Example of a Search for a Multiple Resource Deadlock. Figure 13-9 shows a 
series of locks that result in a deadlock. The heavy arrows in the figure show 
the path of the deadlock cycle. 

Assume that the lock owned by Process A timed out on the resource timer 
queue. Process A is waiting for a lock on Resource 1. The deadlock search 
routine saves Process A's PCB and calls SEARCH_RESDLCK, passing the 
address of Process A's LKB. 

The incompatible lock on Resource 1 is owned by Process C. Process C has 
no other waiting locks, so SEARCH_RESDLCK moves on to the next incom­
patible lock. This lock is owned by Process D. When SEARCH_RESDLCK 
follows the PCB queue for Process D, it finds that this process is waiting for a 
lock on Resource 3. 

SEARCH_RESDLCK calls itself, passing the address of the lock block 
owned by process D. The new invocation of SEARCH_RESDLCK pushes a 
stack frame detailing the position of the search on Resource 1, and 
SEARCH_RESDLCK starts to search for locks on Resource 3 that are incom­
patible with Process D's lock. Resource 3 has two incompatible locks, owned 

Resource 2 

Figure 13-9 
Example of a Multiple Resource Deadlock 
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by Processes E and F. Neither of these processes is waiting for a lock, so the 
search on Resource 3 terminates. The contents of the stack frame are restored 
and SEARCH_RESDLCK returns to its previous invocation. The search for 
processes blocking Process A resumes. 

The next incompatible lock found on Resource 1 is owned by Process G. 
Process G has no waiting locks, so the search continues with Process B. The 
PCB queue for Process B shows that it is waiting for a lock on Resource 2. 

Again, SEARCH_RESDLCK calls itself, passing the address of the lock 
block owned by Process B. The new invocation of SEARCH-RESDLCK 
pushes a new stack frame onto the stack, and SEARCH_RESDLCK finds that 
Process D owns a lock that is incompatible with the lock owned by process B. 
However, because locks owned by Process D have been searched already (the 
bit for Process Dis set in the lock manager process bitmap), the search moves 
on to the next process. 

The next incompatible lock is owned by Process A. Because the PCB ad­
dress of Process A matches the PCB address that was saved initially, the list 
is proven to be circular and a deadlock exists. Now a victim must be chosen. 

Victim Selection 

Because conversion deadlocks involve only two processes, the victim selec­
tion routine simply chooses the process with the lower deadlock priority 
(stored in the PCB at offset PCB$L_DLCKPRI). 

For multiple resource deadlocks, the victim selection routine is only 
slightly more complicated. The frames that were pushed onto the stack in 
each recursion into the deadlock location routine are searched for the lowest 
deadlock priority. Each time a lower deadlock priority value is found, the 
priority and the owner PCB are noted. If a deadlock priority of zero is found, 
that process is immediately chosen as the victim. When all frames have been 
searched, or a deadlock priority of zero is found, the stack pointer is restored 
and the process whose PCB had the lowest deadlock priority is chosen as the 
victim. 

Note that the current implementation of the VAX/VMS operating system 
initializes the deadlock priority of all new processes to zero. Thus, it is not 
possible to assume which process will be chosen as the victim. With the 
current implementation, victim selection depends primarily on timing. How­
ever, other applications or implementations of the VAX/VMS operating sys­
tem may use the deadlock priority to determine victim selection. If other 
applications need to use the deadlock priority scheme, they must write a 
privileged shareable image that accesses the PCB and loads a value into the 
deadlock priority field (PCB$L_DLCKPRI). 

A last note on victim selection may be of interest to users intending to 
implement a binary victim selection. In this search, specific processes are 
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always victims (their deadlock priority is zero); other processes are never 
selected as victims (their deadlock priority is always set to a predetermined 
value). If this victim selection scheme is used, the implementation must 
make sure that at least one process exists in a deadlock cycle that can be 
chosen as the victim to break the deadlock. Otherwise, the victim will be 
chosen at random. 
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14 Memory Management Data 
Structures 

... but there's one great advantage in it, that one's memory 
works both ways. 

-The Queen in Lewis Carroll, Thwugh the Looking Glass 

Virtual memory support in the VAX/VMS operating system is implemented 
by several distinct pieces of the executive. The translation-not-valid fault 
handler (pager) is the exception service routine that responds to page faults 
and brings process virtual pages into memory on behalf of a process. The 
swapper process keeps the highest-priority computable processes in physical 
memory. In order to keep processes in memory, the swapper is responsible for 
shrinking process working set sizes and removing processes that are blocked 
for some reason in order to gain more pages of memory; Several system serv­
ices allow a program to exercise some control over its behavior in memory 
while it is executing. 

The system maintains many tables, some process-specific and others sys­
tem-wide, that must be manipulated by the major components of the mem­
ory management subsystem. Before these components are described in the 
following chapters of this section, this chapter will describe the tables used 
by the components. The following structures are presented and described in 
this chapter: 

• The process-specific data, found mostly .in the process header .. 
• The data that is used to account for physical memory, the so-called PFN 

database. , 
• The special structures that are used for system and ,global page~. 
• The structures that are required to keep track. of processes in memory. 
• The structures that are required to swap processes out of memory. 
• The structures that are required to describe the page and swap files. 
• The structures that support the MA780 shared memory. 

14.1 PROCESS DATA STRUCTURES (PROCESS HEADER) 

The. most important process-specific data structures. used by the memory 
management subsystem are contained i~ the process header (Figure 14-1) . 
. The process header contains all of the process.~specific data that can be re­
moved from memory whe.n ,a process is outswapped. The address of the proc­
ess header is stored in the software PCB .. 
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Contains pointers to variable 
portions of the Process Header. 

Contains valid page table entries 
that can become invalid. 

Describes pages in image file. 

Reserved for expansion of the 
working set list. 

Describes pages in the process 
header itself. 

Describes the virtual address 
space used by the process. 
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Figure 14· 1 shows the portions of the process header that are of special 
interest to memory management. Chapter 26 describes how the sizes of the 
pieces of the process header are related to SYSBOOT parameters. The smaller 
figure to the right of the process header shows the relative sizes of the por­
tions of the process header on a typical system. The following pieces of the 
process header are of interest to this discussion: 

• The PO and Pl page tables are the largest contributors to the size of the 
process header and contain the complete description of the virtual address 
space currently being used by the process. 

• The working set list describes the subset of process page table entries that 
are currently valid but can become invalid in the future. PFN-mapped 
pages and pages in shared memory are valid for the entire time that they 
are mapped and do not appear in the working set list. 

• The process section table contains information used by the pager when a 
page resides in an image file. 
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14.1 Process Data Structures (Process Header) 

• Because the sizes of the different pieces of the process header vary from 
system to system, there must be some method of determining where each 
piece is located. Pointers or indexes in the fixed portion of the process 
header serve this purpose. Process accounting information, some of which 
is used by the pager or the swapper, is also located in this area. 

• There are several arrays that contain information about each process 
header page. This information is used by the swapper when it is necessary 
to outswap the process header. 

Process Page Tables 

The process page tables are the first memory management data structures 
encountered by either hardware or software. The contents of the page table 
entries are used by the hardware to translate a virtual address to its physical 
counterpart. When translation fails to determine the physical location of a 
page, the page table entries are used by the page fault handler to locate the 
invalid page. 

Figure 14-2 shows the portion of the process header devoted to the PO and 
Pl page tables. The figure also shows those fields in the fixed portion that are 
used to locate different pieces of the PO or Pl page table. 

• The PO page table contains page table entries for all pages currently defined 
in PO space. The number of pages in PO space is stored in offset 
PHD$L_POLR (and moved into PR$_POLR by LDPCTX when the process 
is selected for execution). The virtual page number of the first unmapped 
page in PO space (the index of the first nonexistent POPTE) is stored at 
offset PHD$L_FREPOVA. 

• In a similar manner, the Pl page table contains page table entries for the 
pages currently defined in Pl space. Like Pl space itself, the Pl page table 
grows toward smaller addresses. To simplify the address translation logic, 
the Pl base register contains the virtual address of the page table entry that 
would map virtual address 40000000. The Pl length register contains the 
number of Pl page table entries that do not exist. The virtual page number 
of the high address end of the unmapped portion of Pl space (Figure 14-2) is 
stored at offset PHD$L_FREP1 VA. 

• The number of page table entries available for the expansion of either PO 
space orPl space is stored in offset PHD$L_FREPTECNT. The number of 
entries here depends on the SYSBOOT parameter VIRTUALPAGECNT, 
minus the current sizes of the PO and Pl page tables. 

When a process references a virtual address that is not valid, it incurs a page 
fault, an exception that transfers control to the page fault handler. One of the 
exception-specific parameters pushed onto the stack by the page fault handler 
is the invalid virtual address. This address enables the pager to retrieve the 
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page table entry for the invalid page in order to determine where the page is 
located. 

The page table entries for invalid pages are set up in such a way that they 
contain either the location of the page or a pointer to further information 
about the page. Figure 14-3 shows the different forms that an invalid page 
table entry can take. A valid page table entry is included for comparison. 
Notice that bits <31> (valid bit), <30:27> (protection code), and <24:23> 
(owner access mode) have the same meaning in all possible forms of page 
table entry. Table 14-1 lists the symbolic and numeric forms of possible pro­
tection codes. 

The pager uses bits <26> and <22> in the invalid page table entry to 
distinguish the different PTE forms. (Because protection checks are made 
before the valid bit is checked, PTE <30:27> must contain a protection code, 
even when the valid bit is clear.) The various forms are described in the 
following paragraphs, starting with the entry at the bottom of the figure. 
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Different Forms of Page Table Entry 

14.1.1.1 Process Section Table Index. When a page is located in an image file, the page 
table entry contains an index into the process section table. This index lo­
cates a process section table entry, which contains information about where 
the image file is located and which block in the image file contains the fault­
ing page. Control bits in the process section table entry indicate whether the 
section is a global section <0> (process section table entries always have this 
bit clear), whether it is writeable <3>, and whether the section is copy on 
reference <l>. Process section tables are discussed in Section 14.1.3 and 
further in Chapter 15. 

14.1.1.2 Page File Virtual Block Number. When a virtual page resides in a page file, its 
associated page table entry contains the virtual block number within the 
page file where the page is located. The page file that is used by this process is 
indicated by the field PHD$B_PAGFIL in the process header. PHD$L_ 
PAGFIL, a longword field that contains zero in its low-order three bytes and 
overlaps PHD$B_PAGFIL in the high-order byte, is a skeleton for any page 
table entry that acquires a page file backing store address. A virtual block 
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Table 14-1: Memory Access Protection Codes in Page Table Entries 

Protection 

No Access Allowed 
Reserved 
Kernel Write (Kernel Read) 
Kernel Read (No Write) 
User Write (User Read) 
Executive Write (Executive Read) 
Executive Read, Kernel Write 
Executive Read (No Write) 
Supervisor Write (Supervisor Read) 
Supervisor Read, Executive Write 
Supervisor Read, Kernel Write 
Supervisor Read (No Write) 
User Read, Supervisor Write 
User Read, Executive Write 
User Read, Kernel Write 
User Read (No Write) 

SYMBOL = binary value 

PRT$C_NA = 0000 
PRT$C_RESERVED = 0001 
PRT$C_KW = 0010 
PRT$C_KR = 0011 
PRT$C_UW = 0100 
PRT$C_EW = 0101 
PRT$C_ERKW = 0110 
PRT$C_ER = 0111 
PRT$C_sw = 1000 
PRT$C_SREW = 1001 
PRT$C_SRKW = 1010 
PRT$C_SR = 1011 
PRT$C_URSW = 1100 
PRT$C_UREW = 1101 
PRT$C_URKW = 1110 
PRT$C_UR = 1111 

Note that the following rules govern memory access protection: 

Protection Mask 

PTE$C_NA = 00000000 

PTE$C_KW = 10000000 
PTE$C_KR = 18000000 
PTE$C_UW = 20000000 
PTE$C_EW = 28000000 
PTE$C_ERKW = 30000000 
PTE$C_ER = 38000000 
PTE$C_sw = 40000000 
PTE$C_SREW = 48000000 
PTE$C_SRKW = 50000000 
PTE$C_SR = 58000000 
PTE$C_URSW = 60000000 
PTE$C_UREW = 68000000 
PTE$C_URKW = 70000000 
PTE$C_UR = 78000000 

• If a given access mode has write access to a specific page, then that access mode also has read access to that page. 
• If a given access mode can read a specific page, thefl all more privileged access modes can read the same page. 
• If a given access mode can write a specific page, then all more privileged access modes can write the same page. 
Access that is implied (rather than explicitly a part of the symbolic protection name) is included in parentheses. 
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number of zero indicates that a block in the page file will exist for the page, 
but has not yet been reserved. 

14.1.1.3 Global Page Table Index. An invalid process page mapped to a global page 
contains an index into the global page table, where an associated global page 
table entry contains further information used to locate the page. The global 
page table is described in Section 14.3. Page faults involving global pages are 
discussed in Chapter 1 7. 

14.1.1.4 Page in Transition. There are several different situations where a virtual page 
can be associated with a physical page, and yet the page is not valid, not in 
the process working set. For example, when a page is removed from a process 
working set, it is not discarded but put on the free page list or modified page 
list. Such a page is called a transition page. The process page table entry 
contains a PFN, but the valid bit is clear. The two type bits (PTE<26> and 
PTE<22>) are also clear. 

Transition pages are described by the entries for the physical page found in 
the PFN database (see Section 14.2). In particular, the PFN STATE array des­
ignates the particular transition state the physical page is in. 

14.1.1.5 Demand Zero Pages. A special form of the transition page table entry format 
has a zero in the PFN field. This zero indicates a special form of page called a 
demand-allocate zero-fill page or demand zero page for short. When a page 
fault occurs for such a page, the pager allocates a physical page, fills the page 
with zeros, inserts the PFN into the PTE, sets the valid bit, and dismisses the 
exception. (For this reason, and a second reason explained in Section 14.2.5, 
physical page zero cannot be used by memory management.) 

14.1.2 Working Set List 

The working set list contains the subset of a process's page table entries that 
are currently valid. The working set list is used by the pager and swapper to 
determine which virtual page to discard (to mark invalid) when it is neces­
sary to take a physical page away from the process. The swapper also uses the 
working set list to determine which virtual pages need to be written to the 
swap file when the process is outswapped. 

Figure 14-4 shows the working set list in the process header and the various 
fields in the fixed portion that locate different pieces of the list. Each of these 
fields, including the quota fields, contains a longword index (multiply con­
tents by four or use context index addressing) to the working set list entry in 
question. 

14.1.2.1 Division of the Working Set List. The working set list consists of three pieces: 
the permanently locked portion of the working set list, the pages that are 
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locked by user request, and the dynamic portion of the working set. The 
quota fields in the fixed portion of the process header determine how large 
the working set list may grow in response to different working set size adjust­
ments. The contents of the three pieces are as follows: 

• The permanently locked portion of the working set list (from WSLIST to 
WSLOCK) contains the pages that are forever a part of the process working 
set. These include the following structures: 

- The kernel stack. 
- The Pl pointer page. 
-The Pl page t~ble page that maps the kernel stack and the Pl pointer 

page. 
- The Pl page table page that maps the Pl window to the process header. 
- The process header pages that are not page table pages. These include 
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the fixed portion, the working set list, the process section table, and the 
process header page arrays. 

• The portion of the working set list between WSLOCK and WSDYN con­
tains all pages that are locked by user request, specifically with the Lock 
Pages in Working Set or Lock Pages in Memory system services. 

• The dynamic portion of the working set list is the portion that is used for 
page replacement. It is delimited by WSDYN and WSEXTENT. The entry 
that was just put into the table is pointed to by WSNEXT. The replacement 
algorithm, explained in detail in Chapter 15, is a modified first-in/first-out 
scheme. 

The current size of the working set list is WSSIZE. The actual number of 
pages that a process is currently occupying is the sum of the process private 
page count (PCB$W _PPGCNT) and the global page count (PCB$W _ 
GPGCNT). 

Normally, the maximum size to which the working set can grow is 
WSQUOTA. However, if there are more than BORROWLIM pages on the free 
page list, the working set list can be extended up to WSEXTENT (at quantum 
end). If there are more than GROWLIM pages on the free page list, pages can 
be added to a process's working set above WSQUOTA (on resolution of a page 
fault). WSQUOTA can be altered in interactive and batch jobs by the SET 
WORKING_SET/QUOTA command. Part of the image reset logic, invoked 
at image exit, resets the end of the working set list to DFWSCNT. The mean­
ings of the various working set list quotas and limits are summarized in 
Table 16-1. 

The format of a working set list entry (WSLE) is shown in Figure 14-5. 
Notice that the virtual page number is contained in the upper 23 bits, in the 
same location that virtual page numbers are found in virtual addresses. The 
placement of the virtual page number allows the WSLE to be passed to sev­
eral utility routines as a virtual address, where the byte offset bits (WSLE 
control bits) are not looked at. The meanings of the various control bits are as 
follows: 

<0> 

<1:3> 

<4> 

When the WSL Entry Valid bit is clear, the working set list 
entry can be used without removing a page from the work­
ing set. 

The Page Type field (a duplicate of the contents of the PFN 
TYPE array) distinguishes pages that require different action 
when removed from a process working set. 

The Page Locked in Memory bit indicates that this page is 
locked into physical memory with the Lock Pages in Mem­
ory system service. Such pages are also locked into the proc­
ess working set. (The working set lock bit is not set but the 
WSLEs are moved into the portion of the working set list 
that contains pages locked by user request.) 
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Figure 14-5 
Format of Working Set List Entry 

<5> The Page Locked in Working Set bit indicates those pages 
that are permanently or dynamically locked into the process 
working set. The only pages that can be dynamically locked 
are page table pages that map currently valid pages. (Pages 
that are permanently locked or locked into the working set 
by user request also have this bit set in their working set list 
entries.) 

<8> The Saved Modify bit in the WSLE is used when the process 
is outswapped to record the logical OR of the modify bit in 
the page table entry and the saved modify bit in the PFN 
STATE array. 

Process Section Table 

The process section table contains process section table entries (PSTEs). 
PSTEs are data structures used to locate image sections within image files. 
The location of the process section table within the process header is pic­
tured in Figure 14-6. Offset PHD$L_PSTBASOFF contains the byte offset to 
the bottom of the process section table. All process section table entries 
within the table are then located through negative longword indexes from the 
bottom of the PST. 

The PSTEs are maintained in two doubly linked lists. One list of PSTEs 
contains those that are in use. The negative index PHD$W _PSTLAST points 
to the most recent addition to the in-use list. Figure 14-6 shows a hypotheti­
cal list of free and allocated PSTEs; the allocated PSTEs are shaded. When a 
section is deallocated, the PSTE that mapped the section is placed on a free 
list so that it can be reused. The negative index PHD$W _PSTFREE points to 
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the most recent addition to the free list. The first longword in the PSTEs on 
the free list contains a negative index that can be used to find the previous 
element on the free list. When sections are created, the allocation routine for 
PSTEs first checks the free list. If there are no free PSTEs, a new PSTE is 
created from the expansion region between the working set list and the PST. 

When it is necessary to expand the working set list into the area already 
occupied by the process section table, space is allocated from the empty page 
area (if it exists). Then the entire PST is moved into the allocated space and a 
new value of PSTBASOFF is inserted into the fixed portion of the process 
header. All other references to individual process section table entries are 
unaffected by this change. For more information on expansion of the working 
set list see Chapter 15. 

The format of a process section table entry is pictured in Figure 14-7. The 
following steps are used to locate a block in an image file: 
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14.2 PFN Database 

1. The WCB address points to the window control block for the image file. 
The WCB contains the mapping information that relates virtual block 
numbers in a file to logical block numbers on a volume. 

2. The starting virtual page number for the section, when subtracted from 
the virtual page number of the faulting page, gives the page offset into the 
section. 

3. The starting virtual block number of the section is added to the difference 
computed in step 2 to give the virtual block number of the faulting page 
within the image file. 

Process Header Page Arrays 

When a process header is outswapped, some information about each process 
header page must be stored in the outswapped process header. The process 
header page array portion of the process header provides an area where this 
information can be stored (Figure 14-8). Two of the arrays, the BAK array and 
the WSLX array, save information from the PFN database about each process 
header page in the working set. The other two arrays (locked WSLE count and 
valid WSLE count) keep statistics about each page table page. These four 
arrays are described in greater detail in Chapter 17. 

14.2 PFN DATABASE 

14.2.1 

The memory management data structures include information about the 
available pages of physical memory. The fact that this information must be 
available while the page is being used prevents this information from being 
stored in the page itself. In addition, the caching strategy of the free page list 
and modified page list requires physical page information to be available even 
when pages are not currently active and valid. A portion of the nonpaged 
executive is set aside for this accounting data, called the PFN database. 

The PFN database, unlike many of the other executive data structures, is 
not a table-oriented structure. Rather, the same item of information about all 
physical pages is stored in successive elements of an array (see Figure 14-9). 
The page frame number is then used as an index into each array. Table 14-2 
lists each item of information in the PFN database, including the global name 
of the pointer to the beginning of each array. 

PTE Array 

When a physical page is assigned to another use, the pager must be able to 
find the PTE that maps the page. The PFN PTE longword array contains the 
system virtual address of the page table entry that maps each physical page. 
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PFN PTE array elements for global pages point to the global page table 
entries. 

BAK Array 

The PFN BAK longword array stores the original contents of the PTEs. When 
a physical page is assigned to another use, all links with the PTE that cur­
rently maps the page must be broken. The PTE is set to indicate where the 
contents of the page can be obtained the next time that they are needed. The 
BAK array element contains the information that goes back into the PTE. 
The PFN PTE array element is used to locate the PTE that must be altered. 
Figure 14-10 shows the possible contents of a PFN BAK array element. In 
terms of page table entry contents (see Figure 14-3), the only forms of PTE 
that can go into the BAK array are a process section table index or a page file 
virtual block number. 
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Table 14-2: PFN Database Arrays 

Global Address of 
Pointer to Size of Array 

Array Element Contents Start of Array Element Comment 

System Virtual Address PFN$ALPTE Longword Array 
of Page Table Entry 

Backing Store Address PFN$ALBAK Longword Array (Figure 14-10) 

Physical Page State PFN$AB_STATE Byte Array (Figure 14-11) 

Page Type PFN$AB_ TYPE Byte Array (Figure 14-12) 

Forward Link PFN$A W _FLINK Word Array (Figure 14-13) 
Overlays the 
SHRCNT array 

Backward Link PFN$A W _BLINK Word Array (Figure 14-13) 
Overlays the 
WSLXArray 

Reference Count PFN$A W _REFCNT Word Array 

Global Share Count PFN$AW_SHRCNT Word Array Overlays the 
FLINK Array 

Working Set List Index PFN$A W _ WSLX Word Array Overlays the 
BLINK Array 

Swap File Virtual Block Number PFN$A W _SWPVBN Word Array 

14.2.3 STATE Array 

The PFN STATE array (see Figure 14-11) indicates the physical state of each 
physical page. The low three bits contain the page location code. The upper 
bit in a STATE array element is extremely important. It is the setting of this 
bit that determines whether a physical page is put on the free page list or the 
modified page list when the page is released. 
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There are a number of paths that can cause the modify bit in the ST ATE 
array to be set. 

31 24 23 22 21 0 

Page File Index o o Page File Virtual Block Number 

31 24 23 22 21 0 

O IO I 1 I Process PTE <21:0> 

Figure 14·10 
Possible Contents of PFN BAK Array Element 
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Figure 14-11 
Contents of PFN ST ATE Array Element 

• When a page is removed from a process working set, the modify bit in the 
page table entry is logically ORed into the saved modify bit in the STATE 
array. 

• When pages are to be used as read buffers in direct 1/0, the executive rou­
tine that locks down pages (IOLOCK) sets the modify bit in the PTE. When 
the page is removed from the process's working set, the OR operation will 
cause the bit to be set in the PFN STATE array. 

• When copy-on-reference pages are faulted into a process's working set, the 
modify bit in the ST ATE array is set. The set bit forces a write to the page 
file when the page is removed from the process working set. 

The delete bit in the PFN ST A TE array element affects physical page con­
tents. When the reference count of a physical page goes to zero, all ties with a 
virtual page (PFN PTE array contents) are destroyed. The physical page is 
then put at the front of the free page list where it will be reused as quickly as 
possible. 

TYPE Array 

The PFN TYPE array (see Figure 14-12) distinguishes the different types of 
valid pages. The reason for this distinction is that either the pager or swapper 
must take different action depending on what type of page is being acted on. 
The collided page bit in the TYPE array element is set when a page fault 
occurs while the page is already being read in from its backing store address. 
Collided pages are described briefly in Chapter 17. 
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Contents of PFN TYPE Array Element 

Forward and Backward Links 

The three page lists (free page list, modified page list, and bad page list) must 
all be doubly linked lists because an arbitrary page is often removed from the 
middle of the list. However, the links cannot exist in the pages themselves 
because the original contents of each page must be preserved. Two word ar· 
rays, the FLINK array and the BLINK array, contain elements that are inter· 
preted as the physical page numbers of the successor and predecessor to a 
given physical page. 

A zero in one of the link fields indicates the end of the list (and is not a 
pointer to physical page zero). For this reason, physical page zero cannot be 
used in any dynamic function by the VMS operating system but may be 
mapped by some system virtual page that is always resident. The usual con­
tents of physical page zero are the restart parameter block (see Chapter 24). 

Figure 14-13 shows an example of pages on the free list, along with the 
correspon_ding FLINK and BLINK array elements. The ST A TE array elements 
for all of these pages contain zero, indicating that the physical pages are on 
the free page list. 

REFCNT Array 

The PFN REFCNT array counts the number of reasons why a page should not 
be put on the free or modified page list. One reason for incrementing the 
reference count is that a page is in a process working set. Pages are locked 
down for direct 1/0 by incrementing the reference count. 
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Example of Free Page List Showing Linkage Method 

I/O completion and working set replacement use the same routine to dec­
rement the reference count. If the reference count goes to zero, the physical 
page is released to the free or modified page list as indicated by the saved 
modify bit in the PFN ST ATE array. Manipulations of the reference count are 
illustrated in the discussion of paging dynamics in Chapter 17. 

SHRCNT Array 

A second form of reference count is kept for global pages. The PFN SHRCNT 
array counts the number of process page table entries that are mapped to a 
particular global page. When the SHRCNT for a particular page goes from 
zero to one, the reference count is incremented. Further additions to the 
share count do not affect the reference count. 

As the global page is removed from the working set of each process mapped 
to the page, the share count is decremented. When the share count firially 
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reaches zero, the reference count for the page is also decremented. 
When a physical page has a nonzero share count, it cannot be on one of the 

page lists. The forward and backward link words are not needed. The global 
share count array overlays the forward link array. (PFN$AX_FLINK and 
PFN$AX_SHRCNT are the same global location in system space.) The global 
share count is only used for global pages. 

The SHRCNT array is used for a second purpose when the physical page in 
question is a process page table page or a global page table page. In either of 
these cases, the array element counts the number of active page table entries 
in the process or global page table page. When this value passes from zero to 
nonzero, process page table pages are dynamically locked into the process 
working set and global page table pages are locked into the system working 
set. 

WSLXArray 

The working set list index array contains an index into a process or system 
working set list for valid pages. The content of an array element is a longword 
index from the beginning of the process (or system) header to the working set 
list element in question. 

Because a physical page that is in some working set is not on one of the 
page lists, the link words are available for other uses. The working set list 
index array overlays the backward link array. (PFN$AX_BLINK and 
PFN$AX_ WSLX are the same global location in system space.) The WSLX 
array is not used for global pages. 

SWPVBN Array 

The swap virtual block number array is used to support the outswap of a 
process with 1/0 in progress. When such an outswap occurs, the virtual block 
number in the swap file where the locked-down page would go is recorded in 
the SWPVBN array. The modified page writer checks this array for nonzero 
contents and, if they are nonzero, diverts the page from its normal backing 
store address to the designated block in the swap file. 

14.3 DATA STRUCTURES FOR GLOBAL PAGES 

14.3.1 
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The treatment of global pages is not much different from that of process 
private pages. However, the system is required to keep some system-wide 
database of the various global pages in the system. 

Global Section Descriptor 

When a global section is created, a structure called a global section descriptor 
(GSD) is allocated from paged dynamic memory and loaded with information 
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that describes the section (see Figure 14-14). The information about the sec­
tion stored in the GSD is only used when the sectionis created or deleted, or 
when some process attempts to map to the section. The pager does not use 
this data structure. 

The GSD is linked into one of two GSD lists maintained by the system. All 
system global sections are put into one list; group global sections (independ­
ent of group number) are put into the other list. The global section table 
index field of the GSD contains an index that allows a second structure 
(called a global section table entry) to be located. 

The System Header and Global Section Table Entries 

The system maintains two data structures for itself that parallel structures 
maintained for each process in the system. The system PCB and system 
header are used by the pager to allow page faults of system pages to be treated 
almost identically to page faults for process pages. 

The system header (see Figure 14-15) contains the working set list that 
governs page replacement for system pages. The section table area in the 
system header contains section table entries for the image files that contain 
pageable system pages. These include the executive image (SYS.EXE), the 
record management services image (RMS.EXE), and the system message file 
(SYSMSG.EXE). 
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The System Header Containing the System Working Set 
List and the Global Section Table 

The section table area in the system header serves a second purpose. When 
a global section is created, a section table entry that describes the global 
image file is created. The new section table entry is placed into an area of the 
system header called the global section table. The format of a global section 
table entry (see Figure 14-16) is nearly identical to the format of a process 
section table entry. The only difference is that the first longword points to 
the global section descriptor (instead of the channel control block). 

Global section table entries are accessed in exactly the same way as process 
section table entries, with a negative longword index from the bottom of the 
global section table. The global section table index in the global section de· 
scriptor is such an index, associating a GSTE with a GSD. 

Global Page Table Entries 

A third set of data is also created for each global section. Each page in the 
global section is described by a global page table entry in the global page table 
(see Figure 14-17). The pager uses global page table entries just like process 
page table entries to locate global pages. 

Global page table entries are restricted to a subset of the forms illustrated 
in Figure 14-3. 
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• The global page table entry can be valid, indicating that the global page is 
in at least one process working set. 

• The global page table entry can indicate a demand zero page. Global de­
mand zero pages are used to initialize global page file sections. 

• The global page table entry can indicate some transition state. The 
PFN ST A TE array indicates which transition state is involved in the usual 
way. 

• The global page can be in a global image file, in which case the global page 
table entry contains a global section table index. 

Global Page Table and System Page Table 

Global page table entries are located in exactly the same manner as process or 
system page table entries. Location MMG$GL_GPTBASE contains the ad­
dress of the base of the global page table. All references to global page table 
entries use what can be thought of as a virtual page number as an index into 
the global page table. 

The interesting thing to note about this approach is that the base of the 
global page table' coincides with the base of the system page table. Further, 
the virtual page numbers that are used as indexes into the global page table 
are system virtual page numbers. In fact, when looking at system virtual 
address space, the global page table simply appears as an extension to the 
system page table. The global page table index associated with the first global 

289 



Memory Management Data Structures 

290 

MMG$GL_SYSPHD -1 
1 

MMG$GL_SPTBASE -

:r 
MMG$GL_GPTE -

Global Page Table Entries are 
located with a virtual page 
number from the beginning 
of the System Page Table. 

Figure 14·17 

1-: 
~ 

System 
Header 

System 
Page 
Table 

Global 
Page 
Table 

Global Page Table Entry 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

1 

I". 
;,. 

I". 

,,. 

J 

Global Page Table Entries may 
indicate pages that are: 

1. Valid 

2. In Transition 

3. 1n a Global Image File 
(In this case, the 
Global Page Table Entry 
contains an index into 
the Global Section Table 
In the System Header.) 

Location of Global Page Table at Virtual End of System 
Page Table 

page is one greater than the largest system virtual page number for a given 
configuration. 

This logical extension of the system page table exists only when looking at 
system virtual address space. The global page table does not exist in physical 
pages adjacent to the system page table. The system length register only rec· 
ords the number of real system page table entries, not the logical extensions. 
In other words, global pages are not mapped into system virtual address space 
and are not accessible through system virtual addresses. This pseudoexten· 
sion to the system page table is only available to the software routines in the 
memory management subsystem. 

Figure 14-18 shows how the global page table relates to the system page 
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Figure 14-18 
Relationships among Global Section Data Structures 

table. It also shows the relationship among the global section descriptor, the 
global section table entry, and the global page table entries for a given sec­
tion. There are several relationships among these three structures. 

• The central structure is the global section table entry (see Figure 14-16 
The first longword in the GSTE points to the global section descriptor. 

• The virtual page number field (labeled (B) in Figure 14-18) contains the 
pseudo system virtual page number that serves as a longword index to the 
first global page table entry that maps this section. 

• The global section descriptor contains a global section table index (labeled 
(A) in the figure) that allows the GSTE to be located from the GSD. 

• The original form of each global page table entry is a section table index 
(identical to the GSTX found in the global section descriptor), effectively 
pointing to the GSTE. When any given GPTE is either valid or in transi­
tion, the GSTX is stored in the PFN BAK array.Note that GPTEs for global 
page file sections contain t.he page file backing store address. 
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Figure 14·19 
Relationship between Process PTEs and Global PTEs 

Process PTEs for Global Pages 

When a process maps a portion of its virtual address space to a global section, 
its process page table entries that map the section are in the form used for 
global page table indexes. The process PTE that maps the first global section 
page contains the GPTX of the first page in the global section. Each succes­
sive process page table entry contains the next pseudo system virtual page 
number (GPTX), so that each PTE effectively points to the GPTE that maps 
that particular page in the global section. This concept is shown in Figure 
14-19. Assume that the section shown in the figure contains Z number of 
pages. 

Figure 14-3 shows the possible forms for process page table entries. 
All of the data structures associated with global sections will be described 

in detail in Chapter 1 7 where page faults for global pages are discussed. The 
initial allocation of these structures is briefly described along with the Create 
and Map Section and Map Global Section system services in Section 16.3.1. 

14.4 SWAPPING DATA STRUCTURES 

14.4.1 
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There are three data structures that are used primarily by the swapper but 
indirectly by the pager. The SYSBOOT parameter BALSETCNT determines 
the maximum number of concurrently resident processes. In particular, it 
determines the amount of system address space set aside for process headers. 

Balance Slots 

When the system is initialized, an amount of virtual address space equal to 
the size of a process header times BALSETCNT is allocated exclusively for 
process headers (see Figure 14-20). Each of these process header areas is called 



14.4.2 

14.4 Swapping Data Structures 

LFN$ALPTE SWP$GLBALBASE 

I--; SVAPTE ._ 

:: ~ 

PTE Longword 
Array in PFN 
Database 

~ 

Process Header (PHO) 

PHVINDEX ] 

Working Set List 

Process Section Table 

Process Header 

Page Arrays 

PO Page Table 

I PFN 

I 
I 
I 
I 
I 
I 
\ 
\ 
I 
I 

I 
I 

I 
I 

"" T '1/ 
... __ P_1 _Pa_g_e_Ta_b_le_.Jji 

Figure 14-20 
Balance Slots Contain Process Headers 

Balance 
SlotO 

) 
All balance slots 
a~e exactly the same 

1--------l size. 

Balance 
Slot 1 

The size of a 

Balance ) balance slot in 
Slot M pages is stored in 

1----------< global location 
SWP$GLBSLOTSZ. 

Last 
Balance Slot 

There are 
BALSETCNT slots. 

a balance slot. The location of the first balance slot is stored in global loca­
tion SWP$GL_BALBASE. The size of a process header (in pages) is stored in 
global location SWP$GL_BSLOTSZ. The calculations that are performed by 
SYSBOOT to determine the size of the process header are described in Chap­
ter 26. 

Balance Slot Arrays 

The system maintains two word arrays describing each process with a proc­
ess header stored in a balance slot (see Figure 14-21). Both of the word arrays 
are indexed by the balance slot number occupied by the resident process. The 
balance slot number is stored in the fixed portion of the process header at 
offset PHD$W _PHVINDEX. Entries in the first array contain the number of 
references to each process header; entries in the second array contain an 
index into a longword array that points to the process control block for each 
process header. 

The entries in the reference count array (based at the global pointer 
PHV$GL_REFCBAS) count the number of reasons why the process header 
cannot be removed from memory. Specifically, this array element counts the 
number of page table pages that contain either valid or transition PTEs. 

The entries in the process index array (based at the global pointer 
PHV$GL_PIXBAS) contain an index into the longword array based at the 
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Process Header Vector Arrays 

global pointer SCH$GL_PCBVEC. The entries in the longword array contain 
pointers to the process control blocks of the processes with a process header 
in a balance slot. Figure 14-21 illustrates how the executive turns the address 
of a process header into the address of the PCB for that process, using the 
entry in the process index array, 

If the process header address is known, the balance slot index can be calcu­
lated (as described in the next section). By using this as a word index into the 
process index array, the longword index into the PCB vector is found. The 
array element in the PCB vector is the address of the PCB (whose PCB$L_PHD 
entry points back to the process header). A more detailed description of the 
PCB vector can be found in Chapter 20, where its use by the Create Process 
system service is discussed. 

Comment on Equal-Size Balance Slots 

The choice of equal-size balance slots, at first sight seemingly inefficient, has 
some subtle benefits to portions of the memory management subsystem. 
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There are several instances, most notably within the modified page writer, 
when it is necessary to obtain a process header address from a physical page's 
page frame number (PFN). With fixed size balance slots, this operation is 
straightforward. 

The contents of the PFN PTE array point to a page table entry somewhere 
in the balance slot area. Subtracting the contents of SWP$GL_BALBASE 
from the PFN PTE array contents and dividing the result by the size of a 
balance slot (the size of a process header) in bytes produces the balance slot 
index. If this index is multiplied by the size of the process header in bytes and 
added to the contents of SWP$GL_BALBASE, the final result is the address of 
the process header that contains the page table entry that maps the physical 
page in question. 

14.5 DATA STRUCTURES THAT DESCRIBE THE PAGE AND 
SWAP FILES 

14.5.1 

Page and swap files are used by the memory management subsystem to save 
physical page contents or process working sets. Page files are used to save the 
contents of modified pages that are not in physical memory. Both the swap 
and page files are used to save the working sets of processes that are not in the 
balance set. 

Structure of Page and Swap Files 

Figure 14-22 illustrates the data structures used to access page and swap files. 
Location MMG$GL_PAGSWPVC contains the address of an array of long­
word pointers, called the page and swap file vector. The number of pointers in 
the array is the maximum number of page and swap files allowed on the 
system (SYSGEN parameters SWPFILCNT and PAGFILCNT) plus one. 

INIT initializes the page and swap file vector and loads the pointers with 
the address of a null page file control block. The first pointer in the array is 
loaded with the address of the page file control block for the shell process. 
When SYSINIT initializes the primary page file control blocks, the pointer 
located by the index SWPFILCNT+ 1 is redirected to the control block for the 
primary page file (SYS$SYSTEM:PAGEFILE.SYS). 

The second pointer in the page and swap file vector is redirected to point to 
the control block for the primary swap file (SYS$SYSTEM:SWAPFILE.SYS). If 
there is no swap file, or if the value of the SYSGEN parameter SWPFILCNT 
equals zero, this pointer is not redirected. In this case all swap operations are 
performed to the primary page file. 

The page file control blocks and pointers for the alternate page and swap 
files are created by SYSGEN. 

Page file control blocks are used to describe both page and swap files. When 
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14.5.3 

14.5 Data Structures that Describe the Page and Swap Files 

the SYSINIT process initializes the page file control blocks for the primary 
page and swap files, the following operations are performed: 

1. The file is opened. 
2. The address of the window control block is stored in the control block. 
3. The page file bitmap is allocated from nonpaged pool and initialized to all 

bits set. 
4. The address of the control block is stored in the appropriate location in the 

page and swap file vector. 

The SYSINIT process is described in more detail in Chapter 25. 
Note that the locations of the window control block field, the virtual block 

number field, and the page fault cluster factor field are in the same relative 
offsets in these structures as they are in a section table entry. Because the 
offsets are the same, 1/0 requests can be processed by common code, inde­
pendent of the data structure that describes the file being read or written. 

When any page or swap file is opened, all mapping information for the file 
is copied into the window control block. These so-called cathedral windows 
insure that the memory management subsystem does not have to take a 
window tum (see Section 19.1.4), which could lead to system deadlock. 

The Shell Process 

The first longword in the page and swap file vector points to the control block 
for the shell process. This control block is initialized by the module INIT (see 
Chapter 25) and contains the starting VBN of the shell process and the sys­
tem window control block. This information is used in process creation to 
read copies of the shell process into the system. When INIT initializes the 
shell control block, it adds one to the value of the SYSGEN parameter 
SWPFILCNT and stores the result in the global location SGN$GW _ 
SWPFILCT. For more information on the shell process, see Chapter 20. 

Structure of Swap Files 

When a process is created, it is assigned a swap space within the swap or page 
file. This swap space contains room for the process header and the process 
body (the PO and Pl pages belonging to the process). The initial size of the 
swap space is equal to the value of the SYSGEN parameter MPW _ 
WRTCLUSTER. If the value of MPW _ WRTCLUSTER is less than the size of 
the shell process, the initial size of the swap space is set to the size of the 
shell (16 pages). This initial swap space size insures that a system being 
bootstrapped can create processes. The structure of swap spaces is illustrated 
by Figure 14-23. 

If a process's working set list grows so that it no longer fits its swap space, 
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14.6 Swapper and Modified Page Writer Page Table Arrays 

the process is reassigned to a new swap space, which is MPW _ WRTCLUSTER 
pages bigger. In this manner, the process's swap space is increased in multi­
ples of MPW _ WRTCLUSTER. A process's swap space can grow up to 
WSQUOT A pages. At image exit, the process's working set is reduced back to 
PHD$W _DFWSCNT, and the process is reassigned to an initial size swap 
space. 

Dynamically allocated swap spaces represent a significant change from 
previous versions of the VAX/VMS operating system. Previously, swap files 
were composed of a number of fixed size areas known as swap slots. These 
swap slots were permanently allocated. The size of the swap slots was tied 
directly to the SYSGEN parameter WSMAX. This rigidity placed some re­
strictions on the system. The fixed size of the swap slots limited the possible 
growth of process working sets; because each swap slot was the maximum 
required size (for WSMAX), this limited the number of processes that could 
be created. VAX/VMS Version 3.0 decoupled the link with WSMAX, in part 
to accommodate the new working set expansion provided with the new sys­
tem. Now the size of the swap spaces is limited only by WSQUOTA. 

Alternate Page and Swap Files 

Alternate page and swap files can be created by the SYSGEN commands 
INSTALL/PAGEFILE and INSTALL/SWAPFILE. A system with alternate 
swap files can support a greater number of processes or processes with larger 
working sets. In a system with alternate page files, newly created processs are 
assigned to the page file that contains the most free pages. The assignment 
lasts for the life of the process. Thus, adding alternate page files enhances 
system performance by reducing paging activity to the existing page files (and 
again, making more space available for swap spaces). 

14.6 SWAPPER AND MODIFIED PAGE WRITER PAGE TABLE 
ARRAYS 

14.6.1 

The VAX/VMS I/O subsystem allows direct 1/0 requests (DMA transfers) to 
virtually contiguous buffers. There is no requirement that pages in the buffer 
be physically contiguous or even have any relationship to each other. 

Direct I/O and Scatter/Gather 

The I/O locking mechanism invoked at the FDT level brings each page into 
the working set of the requesting process, makes it valid, and increments that 
page's reference count (in PFN REFCNT array) to reflect the pending read or 
write. The buffer is generally described in the 1/0 request packet through 
three fields. 
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• IRP$L_SVAPTE contains the system virtual address of the first PTE that 
maps the buffer. 

• IRP$W _BOFF and IRP$W _BCNT together describe the buffer size that is 
used to calculate how many PTEs are required to map the buffer. 

When a driver processes this 1/0 request, it allocates the required number of 
MBA or UBA mapping registers and loads them with the page frame numbers 
found in the page table entries. The adapter hardware handles the mapping 
from its address space to VAX physical addresses. The ability to transfer to 
discontiguous physical pages (the so-called scatter-read/gather-write capabil­
ity) is a beneficial side effect of this mapping. 

Swapperl/O 

The swapper is presented with a more difficult problem. It must write a col­
lection of pages to disk that are not even virtually contiguous. It solves this 
problem elegantly. 

When the system is initialized, an array of WSMAX longwords is allocated 
from nonpaged pool for use as the swapper's 1/0 table. The starting address of 
this array is stored in global pointer SWP$GL_MAP. (The address is also 
stored in the saved PO base register in the swapper's process header so the 
pages mapped by this array are effectively the swapper's PO space. This use is 
discussed in Chapter 20.) 

When the swapper scans the working set list of the process being 
outswapped, the page frame numbers in each valid PTE are moved to succes­
sive entries in the swapper's 1/0 table. The address of the base of the table is 
put into the SV APTE field of the IRP by the swapper before the IRP is passed 
on to the driver. (The swapper can exercise this control because it builds a 
portion of its own IRP, rather than using the entire $QIO mechanism.) The 
1/0 table looks just like any other page table to the mapping register subrou­
tines called by the driver. The PFNs are extracted from this array and loaded 
into adapter mapping registers. 

What the swapper has succeeded in doing is making pages that are not 
virtually contiguous appear to be virtually contiguous to the 1/0 subsystem. 
(A different interpretation is that the pages are virtually contiguous in the PO 
space of the swapper, the process that is actually performing the 1/0.) At the 
same time that each PTE is being processed, any special actions based on the 
type of page are also taken care of. The whole operation of outswap and the 
complementary steps taken when the process is swapped back into memory 
are discussed in Chapter 1 7. 

Modified Page Writer PTE Array 

The modified page writer, in its attempt to write many pages to backing store 
with a single write request (so-called modified page write clustering), is faced 
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with a problem similar to the swapper's problem, with one additional twist. 
When the modified page writer is building an 1/0 request, there are three 
forms of page that it can encounter. Pages that are bound for the swap file 
(SWPVBN nonzero) are written individually. Pages that are bound for an 
image file are not necessarily virtually contiguous, these pages will be writ­
ten as a group only if they are contiguous. Pages on the modified page list that 
are to be written to a page file may be not only discontiguous within a process 
address space but may also belong to several processes. The modified page 
writer builds a table of PTEs in a manner similar to the swapper. 

At initialization time (in module INIT), two arrays are allocated from 
nonpaged pool for the modified page writer (see Figure 14-24). Each array 
contains MPW _ WRTCLUSTER elements. The longword array will be filled 
with page table entries containing PFNs analogous to the swapper map. The 
word array contains an index into the process header vector for each page in 
the map. In this way, each page that is put into the map and written to its 
backing store location is related to the process header containing the PTE 
that maps this page. The operation of the modified page writer, including its 
clustered writes to a page file, is discussed in detail in Chapter 17. 

Nonreentrancy of Swapper and Modified Page Writer 

The use of these arrays to hold page table entries for the 1/0 subsystem 
makes the swapper and the modified page writer not reentrant. That is, the 
swapper process can perform only the following simultaneous operations: 

• An inswap or outswap operation that uses the swapper map. This action is 
recorded by setting the swap in progress flag (SCH$V _SIP) in location 
SCH$GB_SIP. 
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• A modified page write to a page file, an image file, or a swap file VBN. The 
modified page write in progress flag (SCH$V _MPW) in the same global 
location (SCH$GB_SIP) records this action. 

14.7 DATA STRUCTURES USED WITH SHARED MEMORY 

14.7.1 

302 

The MA780 shared memory unit can be used as an interprocessor communi­
cation path with common event flags, mailboxes, or global sections. This 
VMS support requires data structures located in the shared memory that de­
scribe the shared memory itself and the shared memory common event flag 
clusters, mailboxes, or global sections used. In addition, each processor con­
nected to the shared memory requires data structures located in local mem­
ory that describe processor-specific information (such as the starting PFN or 
port number). Information common to both processors (for example, the size 
of the global section descriptor tables) is maintained in the shared memory 
data structures. 

Note that the shared memory described in this section differs significantly 
from the MA780 shared memory used in the VAX-11/782. In the VAX-ll/ 
780, shared memory is used as a common data area or communications path 
between two processors; in the VAX-11/782, the MA780 is used as main 
memory. 

Shared Memory Control Structures 

The shared memory unit consists of a series of pages of physical memory. 
The bootstrap sequence records the presence of the shared memory unit but 
does not configure the physical pages into the system (unless the processor is 
a VAX-111782), allowing the user to include shared memory in a site-specific 
way (for example, whether to reinitialize the MA780 shared memory after 
each reboot or not). In either case, the physical memory pages must be virtu­
ally mapped so that they are accessible to program code (because memory 
management is enabled). 

The virtual mapping used by one processor to access shared memory pages 
may be different from the virtual mapping used by another processor. For this 
reason, some of the data structures that the VMS operating system uses to 
manipulate its data structures located in shared memory are self-relative 
queue elements. (Self-relative queue elements are described in the VAX-11 
Architecture Reference Manual.) 

Note that the VMS operating system cannot use one of its usual synchroni­
zation techniques, elevated IPL, to control access to shared memory data 
structures. Elevated IPL blocks interrupts, but only on one processor. Instead, 

· all accesses to shared memory data that must be synchronized are done with 
one of the interlocked instructions provided for just this purpose in the VAX 
architecture. These instructions are: 



INSQHI 

INSQTI 

REMQHI 

REMQTI 

BBS SI 

BB CCI 

ADA WI 

14. 7 Data Structures Used with Shared Memory 

Insert Entry into Queue at Head, Interlocked 

Insert Entry into Queue at Tail, Interlocked 

Remove Entry from Queue at Head, Interlocked 

Remove Entry from Queue at Tail, Interlocked 

Branch on Bit Set and Set Interlocked 

Branch on Bit Clear and Clear Interlocked 

Add Aligned Word Interlocked 

The four instructions that manipulate self-relative queues actually provide 
two levels of interlocking. Because self-relative queue elements must be 
quadword aligned, the low three address bits (all zero) are available for other 
uses. The low-order bit in the forward link is used as a secondary interlock. 
When this bit is set, interlocked access to the head or tail of the queue is 
denied. This interlock bit is read in a interlocked fashion that is used by the 
other three inteructions in the list (BBSSI, BBCCI, and ADAWI). 

14.7.1.1 Physical Layout of Shared Memory. If the shared memory is to be supported 
by the VMS operating system, it must be configured into the system with the 
SYSGEN utility. This installation step is described in the VAX/VMS System 
Management and Operations Guide. The resulting physical layout of shared 
memory is illustrated in Figure 14-25. The VMS data areas are initialized 
when the first processor (port) connects the shared memory unit. As other 
ports make their connection, their local memory data structures are simply 
initialized to point to the shared structures. 

Balance of Memory 
Available for 

:::: Shared Memory 
Global Section 

Pages 

Global Page Allocation Bitmap 

Pool Space 

Table for Shared Memory CEBs 

Mailbox Table 

Table for Shared Memory GSDs 

Shared Memory Common Data Page 

Figure 14·25 
Physical Layout of Shared Memory 

* 
Lowest Physical 

Address 

Highest Physical 
Address 
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14.7.1.2 Shared Memory Common Data Page. The shared memory page with the high­
est physical address is used by the VMS operating system to contain the 
information that describes this .shared memory unit. This page is called the 
common data page. Because this page may be virtually mapped in different 
ways on each port (and may not even exist at the same physical address), each 
pointer in the common data page is a relative pointer from the base virtual 
address of the common data page. The contents of the common data page are 
listed in Table 14-3. 

14.7.1.3 Processor-Specific Control. As each processor connects itself to the shared 
memory unit, a data structure in processor local memory is initialized that 
allows that processor to locate the common data page. That structure also 
contains physical page information that allows the shared physical memory 
to be virtually mapped on that processor. The layout of the shared memory 
control block is pictured in Figure 14-26. 

14.7.2 Global Sections in Shared Memory 
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The creation and mapping of a global section in shared memory are slightly 
different from the corresponding actions for local memory global sections. 
The global section is recognized as a shared memory global section because 
its name translates to an equivalence name of the form: 

shared-memory-name:section-name 

The Create and Map Section system service then creates the data structures 
necessary to describe this section. 

• The global section descriptor for such a section (see Figure 14-27) is located 
in shared memory and contains information used to map the section. 

• Only the port that creates the global section has a global section table 
entry (in the local memory of the creating processor) describing the sec­
tion. This section table entry is used by the VMS operating system to load 
the physical pages of the section with the contents of the designated file 
when the section is created. The GSTE is also used if the Delete Global 
Section or Update Section system services are called to write the contents 
of a writeable global section located in shared memory back to its original 
file. (Either system service will not have any effect if it is issued from any 
port other than the creator port.) 

• Because the pages of a shared memory global section are always valid, 
there is no need to page those pages; therefore, no global page table entries 
are created for the section. Instead, when a process maps to such a section, 
its process page table entries are loaded with the page frame numbers of 
the shared memory section pages and marked valid. These pages are not 
charged against the process's working set. 
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Table 14-3: Contents of Shared Memory Common Data Page 

Mnemonic Item Size 

SHD$LMBXPTR Relative Pointer to Mailbox Table Longword 
SHD$L_ GSDPTR Relative Pointer to GSD Table Longword 
SHD$LCEFPTR Relative Pointer to CEB Table Longword 
SHD$L GSBITMAP Relative Pointer to Global Page Bitmap Longword 
SHD$LGSP AGCNT Total Count of Pages for Global Sections Longword 
SHD$LGSPFN Relative PFN of First Global Section Page Longword 
SHD$W _GSDMAX Number of entries in GSD Table Word 
SHD$W _MBXMAX Number of entries in MBX Table Word 
SHD$W _CEFMAX Number of entries in CEB Table Word 

(spare word for alignment) Word 
SHD$T_NAME Name of Shared Memory 16 Bytes 

(counted ASCII string) 
SHD$Q_INITTIME Initialization Time Quadword 

This is the end of the constant area of the shared memory common data page. 

SHD$LCRC CRC of Fields in Constant Area Longword 
SHD$W _GSDQUOTA Count of GSDs Created (one word per port) 16 Words 
SHD$W _MBXQUOTA Count of Mailboxes Created (one word per port) 16 Words 
SHD$W _CEFQUOTA Count of CEBs Created (one word per port) 16 Words 
SHD$B_PORTS Number of Ports Byte 
SHD$B_INITLCK Owner of Initialization Lock Byte 
SHD$B_BITMAPLCK Owner of Global Page Bitmap Lock Byte 
SHD$B_FLAGS Flags for Locking Data Structures Byte 
SHD$B_GSDLOCK Owner of GSD Table Lock Byte 
SHD$B_MBXLOCK Owner of MBX Table Lock Byte 
SHD$B_CEFLOCK Owner of CEF Table Lock Byte 

(spare byte for alignment) 
SHD$W _PRQWAIT Ports Waiting for Interprocessor Word 

Request Blocks (one bit per port) 
SHD$W_POLL Ports Actively Using the Memory Word 

(one bit per port) 
SHD$W _RESWAIT Ports Waiting for a Resource 16 Words 

(one bit per port) 
I one word mask per resource) 

SHD$W _RESA VAIL Ports Needing to Report Resource Available 16 Words 
(one bit per port) 
(one word mask per resource) 

SHD$W _RESSUM Ports with Resources to Report Word 
(one bit per port) 
(three spare words for alignment) 3 Words 

SHD$Q_PRQ Free Interprocessor Request Block Listhead Quadword 
SHD$Q_POOL Free Pool Block Listhead Quadword 
SHD$Q_PRQWRK Interprocessor Request Work Queue Listheads 16 Quadwords 

(one listhead per port) 

305 



Memory Management Data Structures 

306 

Shared Memory Control Block 

Link to Next SHB 

VA of Common Data Page 

Flags Type Size 

Reference Count 

Base PFN for Global Section Pages 

Port TR Number 
Number of Memory 

Address Past Last Byte of Shared Memory Pool 

Address of Adapter Control Block 

Figure 14-26 
Contents of Shared Memory Control Block 

Because of the way in which the VMS operating system uses shared memory 
for global sections, putting global sections into shared memory, even when 
the memory unit is not connected to another processor, improves system 
utilization. Each process using the shared sections is getting a free extension 
to its working set. There is no demand placed on the global page table. The 
local physical memory that would otherwise be required to contain such 
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14. 7 Data Structures Used with Shared Memory 

entities as DCL or the Run-Time Library is available for other uses such as an 
expanded physical page cache (free page list). 

Mailboxes in Shared Memory 

When a mailbox is created in shared memory, it is described by a shared 
memory mailbox descriptor block (MBX) located in the shared memory (see 
Figure 18-2). In addition, each port connected to the shared memory mailbox 
has a unit control block (UCB) in its local memory 1/0 database that makes 
the connection between the local 1/0 system and the shared memory mail­
box. The relationships of shared memory mailbox data structures are pic­
tured in Figure 18-3. 

Common Event Flag Clusters in Shared Memory 

As with global sections and mailboxes (and the shared memory itself), there 
are data structures in shared memory and other structures in local memory 
required to fully describe a common event flag cluster located in shared 
memory. The shared memory data structure is called a master CEB (common 
event block) and contains the only valid set of event flags. Each port con­
nected to this common event flag cluster has a slave CEB that locates the 
master. The relationship between the master CEB and the slave CEBs is pic­
tured in Figure 12-4. The layouts of the master and slave common event 
blocks are pictured in Figure 12-5. 
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I consider that a man's brain originally is like a little empty attic, 
and you have to stock it with such furniture as you choose .... 
Now, the skillful workman is very careful indeed as to what he 
takes into his brain-attic. He will have nothing but the tools 
which may help him in doing his work, but of these he has a large 
assortment, and all in the most perfect order. It is a mistake to 
think that the little room has elastic walls and can distend to any 
extent. Depend upon it, there comes a time when for every 
addition of knowledge you forget something that you knew 
before. It is of highest importance, therefore, not to have useless 
facts elbowing out the useful ones. 

-Sir Arthur Conan Doyle, A Study in Scarlet 

In the previous chapter, the various data structures that are maintained by 
memory management were described apart from the context in which they 
are used. This chapter shows how the various structures are manipulated by 
the pager in response to different forms of page faults. 

Although pager action is described here, it is not presented in a flowchart 
or decision fashion. Rather, the actions are described in terms of modifica­
tions to data structures. 

15.1 OVERVIEW OF PAGER OPERATION 

15.1.1 
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Before discussing how the pager reacts to different forms of page faults, this 
chapter will briefly describe the overall operation of the pager. 

Hardware Action 

All program references generated by the CPU are virtual addresses. Each ad­
dress must be translated to a physical address before a reference to memory 
(or an 1/0 space page) can be made. The virtual address (see Figure 15-1) is 
used by the address translation mechanism to find the page table entry that 
will be used to translate the address. 

If the page table entry is valid, its contents are used to translate the virtual 
address to a physical address and execution continues. If the page table entry 
is invalid (PTE<31> = 0), then a translation-not-valid fault is generated. 
Figure 15-2 shows the state of the kernel stack following a page fault. 



15.1.2 

15.1 Overview of Pager Operation 
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Initial Pager Action 

Before the pager does any work, it performs a consistency check by demand­
ing that the IPL be no higher than 2. If the IPL is higher than 2, a fatal bug­
check is generated. This check is made for the following two reasons: 
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• Code that is executing at a higher IPL needs to perform a series of instruc­
tions without being interrupted. If a page fault happens, the faulting proc­
ess might be removed from execution, allowing another process to execute 
the same routine or access the same protected data structure. 

• Page faults are exceptions that happen to a process. When the system is 
executing at IPL higher than 2, it is often on the interrupt stack, acting in 
response to an external trigger. There is not necessarily a process that can 
be charged for the page fault. 

The next step that the pager takes is to retrieve the invalid virtual address 
from the kernel stack. It uses this address to locate the page table entry that 
maps this page by performing the same operations that the address transla­
tion mechanism uses. 

1. The upper two bits of the virtual address (VA <31 :30>) select which page 
table (or which base register) to use. 

2. The virtual address field (VA<29:9>) is used as a longword index into the 
page table. 

Before the page table entry is examined, the pager determines whether the 
system virtual page containing the page table entry is itself valid. (This check 
avoids the necessity of making the pager recursive.) If not, the page table page 
is made valid first. Note that the pager does not perform this check using the 
page table valid bit in the exception parameter; rather, it checks the valid bit 
in the page table entry for the system virtual page. 

Once the page table entry is available, the pager takes different actions 
depending on the nature of the invalid page table entry. (See Figure 14-3 for 
the different forms of invalid page table entry.) The next several sections 
describe some of the major paths through the pager. Extraordinary conditions 
such as read and write errors are only mentioned in passing. 

15.2 PAGE FAULTS FOR PROCESS PRIVATE PAGES 
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The first set of page faults concern process private pages. The different path 
through the pager when sharing is involved is discussed in the next section. 
There are four cases that must be described. 

• Two of the cases involve a page that is originally faulted from an image 
file. The two cases are distinguished by whether or not the section is copy 
on reference. 

• A third private section can consist of a series of demand zero pages. 
• Finally, an intermediate state that can result from both coj:ly-on-reference 

pages and demand zero pages has the faulting page residing in a page file. 



15.2.1 

15.2 Page Faults for Process Private Pages 

Page Located in an Image File 

There are two different types of page that can initially reside in a private 
image file, pages that are copy-on-reference, and those that are not. The page 
table entry for either page contains a process section table index. The only 
initial difference between the two pages is the setting of the copy-on-refer­
ence bit in the page table entry (see Figure 14-3). 

15.2.1.1 Image Page That Is Not Copy on Reference. The first type of page fault in­
volves a page in an image file that is not copy on reference. The various 
transitions that such a page can possibly make are illustrated in Figure 15-3. 
The numbers in circles are keyed to explanations of each transition listed 
below. (For simplicity, clustered reads and writes are ignoredin the discus­
sion that follows. Section 15.5 discusses all aspects of paging I/O.) The page 
table entry is initially set to the form illustrated at the top of Figure 15-3. It 
contains a process section table index (PSTX) with the copy-on-reference bit 
(PTE<l6>) clear. 

CD A page fault occurs. The pager uses the virtual address exception parame­
ter to locate the page table entry. The page table entry contains a process 
section table index. Information contained in the process section table 
entry indicates which virtual block in the image file should be read. The 
pager allocates a physical page from the head of the free page list. The 
page is added to the process working set. This step may require the pager 
to remove another page from the working set in order to make room for 
the page currently being added. 

The PFN arrays are initialized. The STATE array element indicates 
that a read is in progress. The PTE array element points to the process 
page table entry. The working set list index array element locates the 
working list entry just set up. The BAK array element is loaded with the 
initial contents of the page table entry, the process section table index. 
The reference count array element contains a two, one for being in the 
working set and one for the read in progress. 

The pager builds an I/O request packet (see Section 15.5) that describes 
the read that is being done. The process is placed into a page fault wait 
state. 

@ Because most of the work was done in response to the initial fault, there 
is little left to do when the page read completes. The reference count is 
decremented (but stays above zero, so nothing special happens). The state 
of the page is changed to active and valid. Finally, the valid bit is set in 
the process page table entry and the process is removed from the page 
fault wait state. The next time that the process is selected for execution, 
it will execute the same instruction that caused the initial page fault. 
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15.2 Page Faults for Process Private Pages 

@ One transition that a valid page can undergo (and still remain valid) oc­
curs when the page is modified as a result of instruction execution. The 
hardware sets the modify bit in the page table entry. The change is not 
noted at this time in the PFN database. 

@) When the page is removed from the process working set, several things 
happen. 

a. The working set list entry is made available. 
b. The WSLX array element is cleared. 
c. The modify bit in the page table entry is logically ORed into the PFN 

state array element. 
d. The VALID, TYPO, and TYPl bits in the PTE are all cleared. The PFN 

field is left alone. 
e. The REFCNT array element is decremented. If the reference count 

goes to zero, the page is put the free or modified page list, according to 
the setting of the saved modify bit in the PFN STA TE array element. 
The new location of the page is inserted into the STATE array. 

Note that pages are not removed from the working set until room is 
required for other pages, until the virtual pages are deleted, or in response 
to a $PURGWS system service call. 

@ If the reference count does not go to zero, there is outstanding I/O for this 
page. The state is changed to release pending. The ultimate destination 
for the page (free or modified list) is recorded in the saved modify bit in 
the STATE array. 

@ The 1/0 completion routine decrements reference counts for pages that 
are locked down. When this routine detects that the count has gone to 
zero, it places the page on either the free list or the modified list as appro­
priate. The STATE array element is changed. 

If the page is placed on the modified list and if it has a backing store 
address already, the page file index is cleared and the page file dealloca­
tion routine is called to release the page in the page file. Because the page 
has been modifed, it is assumed that the contents at its backing store 
address are now invalid. 

(]) The modified page writer will eventually write this physical page to its 
backing store address, which is located in the PFN BAK array. Writeable 
pages that are not copy on reference are written back to the image file 
from which they originally came. 

The state of the page is set to write in progress. The saved modify bit is 
cleared. The reference count of one reflects this outstanding output oper­
ation. 

It is worth noting at this time that writeable private pages that are not 
copy on reference are not usual products of the linker. Such sections must 
be created with the Create and Map (Private) Section system service. 
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@ When the modified page write completes, the page is placed on the free 
page list. The same routine decrements the reference count, notes that 
the reference count went to zero, and notes that the saved modify bit is 
clear. 

® While the physical page has remained attached to the process, the page 
table entry has always contained a PFN and the PFN PTE array has al­
ways contained the address of the process page table entry. 

When the physical page is reused for another purpose, several steps 
must be taken to break the ties between the process virtual page and the 
physical page that is about to be reused. 

The process PTE must be altered to reflect the backing store address of 
the page. (The PFN PTE array is used to locate the page table entry.) In 
this case, the PTE is reset so that it contains a process section table index 
(PSTX), the same contents that it had before the initial page fault. 
The PFN array elements for this physical page are all cleared before the 
page is passed on to the new owner of the physical page. In particular, the 
PTE array element, the only connection from the PFN database to the 
process page table, is cleared. 

15.2.1.2 Page Faults Out of Transition States. Figure 15-3 also shows the transitions 
that a page makes when a page fault occurs while the physical page is in the 
transition state. While the changes back to the active state are somewhat 
straightforward, there are details about each fault that should be mentioned. 
Note that each of these page faults requires that a new working set list entry 
be acquired, and the acquisition may involve the removal of some other page 
from the process working set. 
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1. A page fault from the free page list is resolved by placing the page back 
into the active and valid state, resetting the PTE, and incrementing the 
reference count. 

2. A page fault from the modified list has exactly the same effect. The fact 
that the page was previously modified but never written to its backing 
store address is shown in the figure by putting the page back into its modi­
fied state. 

In fact, the modify bit in the PTE is not actually turned on by the pager. 
Rather, the saved modify bit in the PFN STATE array records the fact that 
the page has not been backed up. 

3. A page fault from the release pending state has no special effects. Again, 
the state is changed to active, the valid bit in the PTE is turned on, and the 
reference count is incremented. 

Artistic license is taken in the figure to differentiate physical pages that 
were modified from pages that were not. Again, the only difference be­
tween the two pages is the setting of the saved modify bit in the PFN 
STATE array, not the setting of the modify bit in the PTE. 



15.2 Page Faults for Process Private Pages 

4. The transition that deserves special comment is a page fault that occurs 
while the modified page writer is writing the page to· its backing store 
address. The saved modify bit is cleared before the write begins so that the 
page will be placed on the free list when the write completes. Although 
the page has not yet been completely backed up, the assumption is made 
that the write will complete successfully. Page faults can thus put the page 
into the active but unmodified state. The only difficulty occurs in the 
event of a write error. The I/O completion routine detects this state of 
affairs and turns the saved modify bit back on. 

15.2.1.3 Copy-on-Reference Page. A more common type of writeable process private 
page is called copy on reference. Figure 15-4 illustrates the transitions that 
such a page makes from its initial page fault until it is written to some back­
ing store address. 

Many of the transitions that occur here are no different from the case just 
described. This section will note each transition but only elaborate on those 
areas that are different. 

CD The initial setting of the page table entry (STARTl in the figure) is again 
the process section table index, but the copy-on-reference bit (PTE> 16<) 
is now set. When a page fault occurs, the pager again allocates a physical 
page, sets its PFN into the PTE, and initiates the read. Two important 
steps are taken at this time that differ from the previous case. 

First, the saved modify bit in the PFN STATE array is turned on. Set­
ting the bit guarantees that the page will be written to its backing store 
address when removed from the process working set, regardless of what 
instructions or I/O operations the process chooses to execute. 

Second, the BAK array element is set to point to the page file, with an 
indication that no block has yet been allocated. At this time, all ties to 
the original image file are broken. When the modified page writer wants 
to write this page to its backing store address (as it certainly will because 
the saved modify bit was just turned on), it will allocate a block in the 
page file and write the contents of the physical page there. 

@ When the read completes, the page is marked as active and valid (and 
effectively modified). 

@ When the page is removed from the process working set (and the refer­
ence count is zero), the page is unconditionally placed on the modified 
page list. 

@) If the reference count did not go to zero when the page was removed from 
the process working set, the physical page is placed into the release pend­
ing state until the 1/0 completes. 

@ At that time, the page is placed on the modified page list. 

A page fault from either the release pending state or from the modified page 
list puts the page back into the active (but effectively modified) state. That is, 
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15.2 Page Faults for Process Private Pages 

the saved modify bit in the PFN STA TE array remains set, causing the page to 
be put back on the modified page list when it is removed from the working 
set again. 

The transition from the modified page list that is taken when the modified 
page writer writes the page to its backing store address (in the page file) fits 
into the transition diagram for faults from the page file (see Figure 15-5). The 
connection between Figure 15-4 and Figure 15-5 is indicated by path C in the 
two figures. 

Demand Zero Pages 

The initial setting of a page table entry can be set to demand zero as a result 
of a Create Virtual Address Region system service. One of these services can 
be issued explicitly by the process or on its behalf by the system (as part of 
image activation or in the LIB$GET _ VM Run-Time Library procedure). 

When the pager detects a page fault for a demand zero page, it takes the 
following steps. 

1. A physical page is allocated from the beginning of the free page list. 
2. The PFN array elements are initialized. The PTE array element points to 

the process page table entry. 
3. The BAK array element denotes a not-yet-allocated block in the page file. 
4. The page is filled with zeros. This is done with a MOVC5 instruction that 

uses a zero-length source string and a null fill character. 
5. The reference count is incremented; the page is added to the process work­

ing set; and the state is set to active. 
6. Finally, the fault is dismissed and control is passed back to the user proc­

ess without interruption. 

These steps all take place along path 3 in the upper righthand portion of 
Figure 15-4. 

Global Copy-on-Reference and Page-File Pages 

There are two forms of pages that merge into the same set of state transitions 
as private copy-on-reference sections and demand zero pages. These forms are 
global copy-on-reference pages and global page-file backing-store pages. The 
details of global page fault resolution are discussed in Section 15.3. 

Suffice it to say here that that global copy-on-reference pages are initially 
faulted from a global image file but, from that time on, are indistinguishable 
from other global writeable pages. Global page-file backing-store pages are 
initially faulted as global demand zero pages and from then on are indistin­
guishable from private demand zero pages. 
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Page Located in the Page File 

The transitions that a page faulted from the page file goes through (see Figure 
15-5) are no different from the transitions described for pages that are not 
copy on reference (see Figure 15-3). The only difference in the PFN data be­
tween the two figures is that the BAK array element in Figure 15-5 indicates 
that the page belongs in the page file. The BAK array element in Figure 15-3 
contains a process section table index. 

The other difference between the two figures is the entry point into the 
transition diagram. Pages can start out in an image file (PTE contains PSTX) 
but pages can never start out in a page file. The entry into Figure 15-5 is from 
Figure 15-4, from one of three initial states that eventually result in the phys­
ical page contents being written to the page file. 

15.3 PAGE FAULTS FOR GLOBAL PAGES 

15.3.1 

The page fault resolution for global pages can be described in exactly the 
same way as process private pages are described. Following the transition of a 
global page table entry and its associated PFN database entries adds nothing 
to the information already presented in Figure 15-3. 

A more interesting approach is to look at the interaction of the process 
page table entries and the global page table entries that they point to. The 
following discussion uses a specific example rather than a general case, to 
allow specific numbers to be used. 

Page F;mlt for Global Read-Only Page 

Figure 15-6 illustrates the transitions that occur for a global read-only page 
that is mapped by two processes. The mapping is shown separately from the 
operation of section creation to simplify the figure. A second simplification 
in the figure is that the page is assumed to be read only. The implications of 
a read/write global page are described in the next section without the benefit 
of a figure. 

(START) 
When the global section is initially created, the data structures described 
in the previous chapter are all set up. The global page table entry for the 
page we will follow contains a global section table index, which locates 
the global section table entry containing information about the global 
image file. 

CD When Process A maps to the section, the process page table entry con­
tains a global page table index, effectively a pointer to the global page 
table entry. 
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@ When Process B maps to the section, its page table entry contains exactly 
the same global page table index as found in Process A's PTE. 

@ Process B happens to incur a page fault on this global page first. Several 
things happen. 

a. The pager notes that the process PTE contains a global page table index 
(GPTX). This index is used to locate the global page table entry 
(GPTE). 

b. The GPTE contains a global section table index (GSTX), indicating 
that the global page resides on disk somewhere. Exactly the same 
things are done to initiate the read here as in the case of a process 
private page. 

c. A physical page is allocated. 
d. The state of that page is set to read in progress. 
e. The reference count is incremented. 
f. The BAK array element is loaded with the GSTX. 
g. Note that the PFN PTE array element is loaded with the address of the 

GPTE, not the address of the process PTE. Note also that, while the 
read is in progress, the GPTE contains the transition PTE but the proc­
ess PTE still contains the GPTX. 

h. The reference count is two, one for the read in progress and one for 
recording the fact that the page is in some process working set (the 
global share count is nonzero). The global share count array element 
contains a one while the read is in progress. 

@) Several steps are taken when the read completes. 

a. The state of the page is changed to active and valid. 
b. The global page table entry is set to valid, to record the fact that this 

page is in some process working set. 
c. The process page table entry, located through its address stored in the 

1/0 request packet, is set up to contain the low-order 21 bits from the 
global page table entry, with the valid bit set and bits 21 and 26 
cleared. 

d. The reference count and share count are both one at this point. 

® When Process A faults the same global page, the initial pager action is the 
same as it was in Step 3, because the page table entry is again a global 
page table index. Now, however, the pager finds a valid GPTE. Resolution 
of this page fault is simple. 

A working set list is created for Process A. The global page table entry 
is simply copied to Process A's page table. The share count is incre­
mented, and the fault is/dismissed. 

@ When the global page is removed from Process B's working set, the share 
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count is decremented. Because the share count is still positive, nothing 
dramatic happens to the physical page. 

At this time, Process B's page table entry must be restored to its previ­
ous state. (The page table entry does not assume some transition form.) 
The PTE array element contains the address of the global page table entry 
so the global page table index must be recalculated. 

The calculation is straightforward. The contents of MMG$GL_ 
GPTBASE are subtracted from the PTE array element, the result is di­
vided by four (to create a longword index), and the quotient stored in the 
process page table entry in the GPTX field. 

(/) When the global page is removed from Process A's working set, the proc­
ess page table entry is restored as described in Step 6. 

The share count is decremented: Now the share count reaches zero, so 
the reference count is also decremented. If the page is unmodified and 
there is no outstanding 1/0, the physical page is placed on the free page 
list. 

The GPTE contains a transition PTE. The STATE array element indi­
cates the free page list. The other PFN array elements are unchanged. 

@ When the physical page is reused, the ties must be broken between the 
physical page and, in this case, the global page table entry. (None of the 
processes mapped to this page are affected in any way by this step.) 

The contents of the BAK array element (a GSTX) are inserted into the 
GPTE located by the contents of the PFN PTE array element. The PFN 
PTE array element is then cleared, breaking the connection between the 
physical page and the global page table. 

These steps put the process and global page tables back to the state they 
were in following Step 2 (although it is pictured here as a different state to 
make the figure simpler). 

Global Read/Write Pages 

The transitions that occur for global writeable pages are no different from the 
transitions for a process private page that is not copy on reference. The only 
difference between such transitions and the transitions illustrated in Figure 
15-3 is that the global page table entry, not the process page table entry, is 
affected by the transitions of the physical page. 

The process page table .entry for global pages contains a global page table 
index up until the time that the page is made valid. Only then is a PFN 
inserted into the process PTE. As soon as the page is removed from the proc­
ess working set, the GPTX is placed back into the process PTE. All ties to the 
PFN database are made through the global page table entry, which retains the 
PFN while the physical page is in the various transition states. 
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Global Copy-on-Reference Pages 

The global pages previously described are all shared pages. One form of global 
page is shared only in its initial state. As soon as the fault occurs, the page is 
treated exactly like a process private page. 

These pages are global copy-on-reference pages and commonly occur in 
shareable images that contain impure data areas. For example, all of the local 
variables in a FORTRAN shareable image would be in a global copy-on-refer­
ence section. Each process that uses the image would get its own private copy 
of the local variables, but all processes would get the same initial values for 
the variables. 

Figure 15-7 illustrates the transitions that occur for a global copy-on-refer­
ence page. 

CD The initial conditions are identical to those used in Figure 15-6. The sec­
tion is created and the GPTEs contain a GSTX, although here the copy­
on-reference bit is set. 

@ Process A maps the page and has its PTE set to contain a GPTX. 
@ Process B maps the page and gets the same GPTX in its PTE. Up to this 

point nothing is different from Figure 15-6. 
@) Now when Process B incurs a page fault, the pager follows the GPTX to 

the GPTE, noting that the page is located in a global image file and is 
copy on reference. A read is initiated and the following modifications are 
made to the process PTE and the PFN database. 

a. The global page table entry is not touched. It retains its GSTX con-
tents. 

b. The process page table entry is set to a transition PTE. 
c. The state of the physical page· is set to read in progress. 
d. The BAK array element contains a page file index (with no block allo­

cated yet). 
e. The PTE array element contains the address of Process B's PTE. 

Note that all ties between Process B and the global section are broken. 
The page is now treated exactly like a private copy-on-reference page. The 
two boxes outlined for Process Bin Figure 15-7 are the boxes within the 
dashed outline in Figure 15-4. 

® When Process A faults the same page, exactly the same steps are taken, 
this time with a totally different physical page. 

Thus, both Process A and Process B get exactly the same initial copy of 
the global page from the global image file, but, from that point on, each 
process has its own private copy of the page to modify as it wishes. 
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Global page-file backing-store pages provide a means by which processes can 
share global pages without requiring a file for backing store. By their nature 
these pages have no initial contents, and are thus initialized as demand zero 
pages. 

Figure 15-8 illustrates the transitions that occur for a global page-file back­
ing-store page. 

CD The initial conditions are identical to those used in Figure 15-6. The sec­
tion is created and the GPTEs contain a zero in the PFN field. 
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@ Process A maps the page and has its PTE set to contain a GPTX. 
@ Process B maps the page and has its PTE set to contain a GPTX. 
@) When Process B incurs a page fault, the pager follows the GPTX to the 

GPTE and notes that the GPTE is demand zero. The following modifica­
tions are made to the PTEs and to the PFN database. 

a. An entry in the PFN database is allocated. 
b. The PTE array element in the PFN database points to the GPTE. 
c. The BAK array element in the PFN database contains the system page 

file index (with no block allocated). 
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d. The new PFN is stored in the GPTE. 
e. The valid bit is set in the GPTE. 
f. The PFN in inserted into Process B's PTE and the valid bit is set. 

® When Process A incurs a fault on the page, the pager follows the GPTX to 
the GPTE and finds that the GPTE is valid. The valid GPTE is copied to 
Process A's PTE. 

Transitions for a global page-file backing-store page are no different from the 
transitions for a page located in a page file (see Figure 15-5). However, in 
global page-file backing store pages, the GPTE, not the process PTE, is af­
fected by the transitions that the physical page makes. Once the global page 
is removed from the working set, the process PTE reverts to the GPTX form. 

15.4 WORKING SET REPLACEMENT 

15.4.1 

15.4.2 
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The working set list replacement algorithm that the VMS executive uses is a 
modified first-in/first-out scheme. The page that has been in the working set 
list for the longest time is the one first considered for replacement. 

Scan of Working Set List 

When the pager needs an empty working set list entry, it calls routine 
MMG$FREWSLE. This routine manipulates the working set list (see Figure 
14-4) in the following fashion: 

1. If the WSLE indexed by PHD$W _ WSNEXT is already available (contents 
are zero), that entry is used. (For details on checks that are made before a 
page is used, see Section 15.4.3.) 

2. If not, the WSNEXT pointer is incremented. If the WSNEXT pointer ex­
ceeds the end of the list (WSLAST), it is reset to the beginning of the 
dynamic working set list (WSDYN), thus implementing the working set 
list as a circular buffer. 

3. If the newly indexed WSLE is available, then it is simply used. (Again, see 
the checks made before it can be used.) 

4. If the new WSLE is locked into the dynamic portion of the working set list, 
that entry is skipped (which means going back to Step 2.) Only process 
page table pages can be locked into the dynamic portion of the working set 
list. Pages locked by user request result in a shuffling of the working set 
list (see Chapters 14 and Chapter 16). 

Reusing Working Set List Entries 

Dropping through the previous checks indicates that the virtual page indi­
cated by the WSLE must be removed before this WSLE can be reused. If work-
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ing set list skipping (described in Section 15.4.4) is disabled, the working set 
list entry is reused, whatever its state. 

For global pages, the share count is decremented. If the share count goes to 
zero, the reference count is decremented. 

For process private pages, the reference count is decremented. If the page is 
placed into a transition state, the balance slot reference count for this process 
header is incremented to prevent the outswap of the process header. 

Using an Available Entry in the Working Set List 

If an available WSLE is found, checks must be made to see if the page can be 
added to the working set. If there are fewer pages in the working set than are 
indicated by WSQUOTA, a new physical page can always be added to the 
working set. It may also be possible to add physical pages to the working set 
list above WSQUOTA (up to WSEXTENT), depending on the size of the free 
page list. 

The following checks are made before an available working set entry can be 
used: 

1. If the size of the working set (process page count plus global page count) 
equals the size of the working set list (WSSIZE), the next WSLE is reused. 
(In other words, the working set is full.) 

2. If the WSNEXT pointer exceeds the end of the list (WSLAST), WSNEXT is 
reset to the beginning of the dynamic working set list. If an available 
WSLE is found at the end of the list, and if the working set is full, WSLAST 
is reset to point to the last unavailable (nonzero) WSLE in the working set 
list. In other words, the working set list is shrunk if it contains more 
entries than the size of the working set will allow. 

3. If the working set is not full, the size of the working set is compared to 
WSQUOTA. If the size of the working set is less than WSQUOTA, a new 
page is allowed in the working set. 

4. If there are more than WSQUOTA pages in use, the number of pages on 
the free page list is compared to the SYSBOOT parameter GROWLIM. If 
there are more than GROWLIM pages on the free page list, a new page is 
allowed in the working set. 

Note that in order to extend the working set above WSQUOTA, the 
working set list itself must have been extended above WSQUOTA. To 
extend the working set list above WSQUOTA, the free page list must con­
tain more than the SYSBOOT parameter BORROWLIM pages. For more 
information on BORROWLIM and automatic working set adjustment, see 
Section 16.4.1.3. 

5. If there are fewer than GROWLIM pages on the free page list, the next 
WSLE in the working set list is reused. Again, if the WSNEXT pointer 
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exceeds the end of the list, the pointer is reset to the beginning of the list 
and WSLAST is shrunk back over available entries at the end of the list (as 
in Step 2). 

Skipping Working Set List Entries 

The special SYSBOOT parameter TBSKIPWSL (which has a default value of 
eight) is used by the working set removal routine to permit frequently refer­
enced pages to remain in the working set, thereby allowing the operating 
system to modify its strict first-in/first-out page replacement algorithm with 
some frequency of use information. 

The modified algorithm works in the following manner. Before a WSLE can 
be reused, a check is made to see if the virtual address contained in that 
WSLE is still valid in the translation buffer. If the virtual address is valid, the 
search for an available WSLE starts again with the next WSLE. After 
TBSKIPWSL WSLEs have been skipped in this manner, the translation buffer 
checks are abandoned and the next WSLE is simply reused. If the value of 
TBSKIPWSL is set to zero, no entries are checked in the translation buffer and 
the scheme is defeated. 

The following pages in the working set are skipped over in this scan: 

• Pages that are valid in the translation buffer 
• Pages that are locked in the working set 

15.5 INPUT AND OUTPUT THAT SUPPORT PAGING 
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There is very little special-purpose code in the 1/0 subsystem to support 
pager 1/0 and swapper 1/0. The pager and swapper each build their own 1/0 
request packets, but these packets are queued to the device driver in the 
normal fashion. These are the only differences. 

• Module SYSQIOREQ contains special entry points for pager and swapper 
1/0 that insert special 1/0 function codes into the 1/0 request packet. 

• These codes are detected by the 1/0 postprocessing service routine. There 
are special completion paths for page read (the process is removed from 
PFW state and made computable) and for other forms of 1/0 (the address of 
a special kernel mode AST stored in IRP$L_ASTPRM field is used to no­
tify modified page writer or swapper that 1/0 has completed). 

In order to make reading and writing as efficient as possible, the pager 
supports a feature called clustering, where it checks to see whether pages 
adjacent to the virtual page that it is reading are located in the same file in 
adjacent virtual blocks. If so, a multiple block read is issued and several 
pages are brought into the working set at one time. 

The modified page writer and the Update Section system service also 
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cluster their write operations, both to make their writes as efficient as 
possible and to allow subsequent clustered reads for the pages that are 
being written. 

Page Reads and Clustering 

When the pager determines that a read is required to satisfy a page fault, it 
allocates an I/O request packet and fills it with parameters that describe the 
read. Table 15-1 lists those fields that are used for special purposes by the 
pager. 

The pager attempts to create a cluster of pages to read. The manner in 
which this cluster is formed depends on the initial state of the faulting page 
table entry. 

15.5.1.1 Terminating Condition for Clustered Reads. The pager scans PTEs that map 
larger virtual addresses, checking for more virtual pages that are located in 
the same backing-store location, until the desired cluster size is reached or 
until one of the following other terminating conditions is reached: 

• A page table entry different from the original faulting PTE is encountered. 
• The page table page is itself not valid. (Satisfying this fault would offset the 

benefits gained by clustering.) 
• No more working set list entries are available. (Each page in the cluster is 

added to the working set.) 
• No physical page is available. 

If, after scanning the adjacent page table entries toward higher virtual ad­
dresses, no pages have been clustered, the process is repeated toward lower 
virtual addresses with the same terminating conditions. The scan is made 
initially toward higher virtual addresses because programs typically execute 
sequentially toward higher virtual addresses and these pages are likely to be 
needed soon. If the forward attempt fails, the pager attempts to read pages 
adjacent to the faulting page on the assumption that even pages at lower 
virtual addresses but near the faulting page are likely to be needed soon. 

15.5.1.2 Matching Conditions While Scanning Page Table. The ill'atch that is looked 
for when scanning the adjacent page table entries depends on the form of the 
initial page table entry. 

• If the original PTE contains a process section table index, successive PTEs 
must contain exactly the same PSTX. 

• If the original PTE contains a page file virtual block number, successive 
PTEs must contain PTEs with successively increasing (or decreasing) vir­
tual block numbers. 
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Table 15-1 
Description of 1/0 Requests Issued by Memory Management 

Type of !Description of Priority Process ID System Virtual AST Address 
IIO Request Address of PTE 

IRP$B_PRI IRP$L_PID IRP$L_SVAPTE IRP$L_AST 

Process Page Read Priority of PID of 
Faulting Faulting 

1. Page in Image File( 1) Process Process 1. POPT/PlPT 1. 0 
2. Page in Page File 2. POPT/PlPT 2. 0 
3. Page Table Page 3. SPT 3. 0 

System Page Read Priority of PID of 
11System" 11System" 

1. System Page(2) Process Process 1. SPT 1. 0 
16 

2. Global Page 2. GPT 2. Slave PTE 
Address( <0) 

3. Global CRF Page 3. Process Page 3. Master PTE 
Table 

Contents(>O) 
4. Global Page 4. SPT 4. 0 

Table Page 

Modified Page Write MPW_PRIO PID of Points to 0 
Modified Modified 

1. To Page File Page Writer Page Writer's 
2. To Image File(3) (PID of Map 

Swapper) 
3. To Swap File 

(SWPVBN=O) 

Update Section Priorl.ty PID of a. Process Page Table AST Address 
Page Write(4) of Caller Caller b. Global Page Table (if specified) 

Swapper 1/0 SWP_PRIO PID of Points to 0 
Swapper Swapper Map 

( 1) One field in the 1/0 request packet (IRP$LASTPRM) for page reads from a private section is sensitive 
to whether the section is copy on reference. These two cases are distinguished as: 
a. Not Copy on Reference 
b. Copy on Reference 

(2) Pageable executive routines ongmate in one of three image files (SYS.EXE, RMS.EXE, and 
SYSMSG.EXE) described by three system section table entries (SSTE) located in the system header. 

The static executive data is all located in the nonpaged executive. The only pageable writeable data 
is the paged pool area, which starts out as a series of demand zero pages. Paged pool pages are written 
to and subsequently faulted from the page file. 

These two cases are distinguished as: 
a. Pageable executive routines 
b. Paged pool pages 

(3) The modified page writer takes special note of whether pages that are written back to an image file are 
part of a 
a. Private section 
b. Global section 
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Table 15-1 (continued) 
Description of 1/0 Requests Issued by Memory Management 

AST Parameter Address of Window Cluster Priority 
Control Block Factor Boost at 110 

Completion 
IRP$L~ASTPRM IRP$LWIND ' 

la.O 1. From PSTE 1. pfc/PFCDEFAULT(6) Class=O 
lb. PSTX Boost=O 
2.0 2. FromPFL 2. PFCDEFAULT 
3.0 3. From PFL(S) 3. PAGTBLPFC 

Class=O 
Boost=O 

1. 0 la. From SSTE la. SYSPFC 
lb. From PFL lb. PFCDEFAULT 

2.0 2. FromGSTE 2. pfc/PFCDEFAULT(6) 

3. GSTX 3. FromGSTE 3. pfc/PFCDEFAULT(6) 
(PFN$V _GBLBAK 
is set) 

4.0 4. From PFL(S) 4. 1 

Address of None(?) 
MPW's special 

kernel AST 1. From PFL 1. MPW_WRTCLUSTER 
(WRITEDONE) 2a. From PSTE 2. MPW _ WRTCLUSTER 

2b. From GSTE 
3. From SFTE 3. 1 

AST Parameter a. PSTE MpW _ WRTCLUSTER Class=l 
(if specified) b. GSTE Boost=2 

Swapper's KAST SFTE Not Applicable None(?) 
(IODONE) 

(4) In a simila,r manner, the Update Section system service behaves differently depending onwhether the 
pages are part of a 
a. Private section 
b. Global section 

(5) Process page tables and global page tables originate as demand zero pages that are written to and 
faulted from the page file. 

(6) The cluster factor for a private section or a global section can be specified at link time or when the 
section is mapped by explicitly declaring a cluster factor (pfc). In the absence of such a specification, 
the pager uses the default system cluster factor determined by the SYSBOOT parameter 
PFCDEFAULT. 

(7). The swapper (and by implication the modified page writer) is a real-time process and is therefore not 
subject to priority boosts. 
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• If the original page table entry contains a global page table index, succes­
sive PTEs must contain successively increasing (or decreasing) indexes. In 
addition, the global page table entries must all contain exactly the same 
global section table index. 

15.5.1.3 Maximum Cluster Size for Page Read. The maximum number of pages that 
can be in a cluster is determined in several ways, depending on the type of 
page being read. 

• Global page table pages are not clustered. 
• The cluster factor for process page table pages is taken from offset 

PHD$B_PGTBPFC in the fixed portion of the process header. Unless some 
user-written kernel mode routine has modified this field, the value of this 
field is taken from the special SYSBOOT parameter PAGTBLPFC for all 
processes in the system. The default value for this parameter is two. This 
value is chosen to avoid an artificial end to building a cluster when the 
page table page also had to be faulted. Two page table pages are guaranteed 
to span 127 pages, regardless of the initial faulting virtual address. Decreas­
ing this value may defeat clustered reads. Increasing it above two is likely 
to have negligible effect in most systems. 

• The cluster factor for page file pages is taken from the PFL$B_PFC field of 
the page file control block (see Figure 14-22). The usual contents of this 
field are zero. In that case the cluster factor is taken from the 
PHD$B_DFPFC field of the process header. In the absence of user-written 
modification, the value placed into this field is the SYSBOOT parameter 
PFCDEFAULT. 

• The cluster factor for process or global sections is taken from the 
SEC$B_PFC field of the process or global section table entry (see Figures 
14-7 and 14-16). These fields usually contain values of zero, in which case 
the default page fault cluster is used. (Just as for clustered reads from the 
page file, this default is taken from the PHD$B_DFPFC field in the process 
header. The value of this field is usually equal to the PFCDEFAULT SYS­
BOOT parameter.) 

There are two methods available to the user to control the cluster factor 
of process or global sections. By including the following line in the linker 
options file, the page fault cluster factor in the image section descriptor 
can be set to nonzero contents: 

CLUSTER =cluster-name, [base-address], [ pfc], [file-spec, ... ) 

Sections that are mapped by the user (with a Create and Map [Private or 
Global] Section system service) can have their page fault cluster factor 
specified by including the optional PFC argument in the system service 
call. 

15.5.1.4 Page Read Completion. The page read completion is detected by the I/O post­
processing routine (IPL 4 software interrupt service routine) by the special 
code inserted in the IRP before the request was queued. 
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15.5 Input and Output That Support Paging 

Page read completion is not reported to the fauldng process in the normal 
fashion with a special kernel mode AST because none of the postprocessing 
has to be performed in the context of the faulting process. Instead, the work is 
done by this service routine and the process made computable by reporting a 
page read completion event to the scheduler. 

The details that the service routine takes care of when a page read success­
fully completes include the following steps for each page: 

1. The reference count is decremented, indicating that the read in progress 
has completed. 

2. The physical page state is set to active and valid. 
3. The valid bit in the page table entry is set. 
4. If the page is a global page, the valid bit set in Step 3 was in the global page 

table entry. In this case, the process (slave) PTE must be loaded with the 
PFN and made valid. 

After the individual pages have been tended to, the scheduler is notified that 
a page read has completed (by reporting a page fault completion event with a 
null priority increment) so that the process that was put into a page fault wait 
state when the read was initiated can be made computable. (If any of the 
pages just read were collided pages, the collided page wait queue is also emp­
tied. That is, all processes in that state are made computable. Collided pages 
are discussed in Section 15.6.3.) 

Modified Page Writing 

The modified page writer (a subroutine of the SWAPPER process) also at­
tempts to cluster when writing modified pages to their backing store ad­
dresses. There are not so many special cases here as there are in the page read 
situation. The three different cases encountered by the modified page writer 
depend on the three possible backing store locations that pages on the modi­
fied page list can have. 

15.5.2.1 Operation of the Modified Page Writer. The modified page writer proceeds in 
approximately the following fashion: 

1. The first page is removed from the modified page list. Its page table entry 
address is retrieved from the PFN PTE array. 

2. Adjacent page table entries are scanned (first toward lower virtual ad­
dresses and then toward higher virtual addresses) to look for transition 
page table entries that map pages on the modified page list either until the 
desired cluster size is reached or until one of the other terminating condi­
tions is reached. 

This scan begins first toward smaller virtual addresses for the same rea­
son that the read cluster routine begins toward larger addresses. If the 
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program is more likely to reference higher addresses, the modified page 
writer does not want to initiate a write operation, only to have the page 
immediately faulted (and likely modified again). The modified page writer 
chooses to first write those pages with a smaller likelihood of being refer­
enced in the near future. 

3. The write is initiated, the state of all of the pages is changed to write in 
progress, and their reference counts are incremented. 

4. The modifieapage writer returns to the SWAPPER process until notified 
by its special kernel mode AST that the modified page write has com­
pleted. 

15.5.2.2 Modified Page Write Clustering. The terminating conditions for the scan of 
the page table include the following: 

• The page table page is not valid, implying that there are no transition pages 
in this page table page. The special check is made to avoid an unnecessary 
page fault. 

• The page table entry does not indicate a transition format. 
• The page table entry indicates a page in transition, but the physical page is 

not on the modified page list. 
• The physical page number is greater than the contents of global location 

MMG$GL_MAXPFN. This check avoids pages in shared memory, which 
have no PFN data associated with them. 

• The SWPVBN array element must be zero. Pages with nonzero SWPVBN 
contents are treated in a special way by the modified page writer. 

• If the contents of the BAK array indicate that the backing store location for 
the page is a (private or global) image file, the section index must be the 
same for all pages in the cluster. 

• If the BAK array element indicates that the pages are to be written to the 
page file, the contents of the virtual block number field are ignored. How­
ever, all pages must contain the same page file index in their BAK array 
elements. 

15.5.2.3 Backing Store Addresses for Modified Pages. There are three different kinds of 
backing store address that the modified page writer encounters as the modi­
fied page writer removes pages from the modified page list. 
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• If the SWPVBN array element is nonzero, this indicates that the process is 
outswapped and this page remained behind, probably due to an outstand­
ing read request. The modified page writer does not attempt to cluster. 
Instead, a write of a single page to the designated block in the swap file is 
issued. A description of how the SWPVBN array element can be loaded is 
found in Chapter 17, where the entire outswap operation is discussed. 

• If the backing store address is a section, the modified page writer creates a 



15.5 Input and Output That Support Paging 

cluster (up to the value of the SYSBOOT parameter MPW _ WRTCLUSTER). 
Any of the terminating conditions listed in the previous section will limit 
the size of the cluster. 

• If the backing store address is a page file, adjacent pages bound for the same 
page file are also written at the same time. 

The modified page writer attempts to allocate a number of blocks in the 
page file equal to MPW _ WRTCLUSTER. The desired cluster factor is re­
duced to the number of blocks actually allocated. Section 15.5.2.4 de­
scribes allocation of space within the page file. 

The actual cluster created for a write to the page file consists of several 
smaller clusters, each one representing a series of virtually contiguous 
pages (see Figure 15-9). 

- The modified page writer creates a cluster of virtually contiguous pages, 
all bound for the same page file. 

-If the desired cluster size has not yet been reached, the modified page 
list is searched until another physical page bound forthe same page file 
is found. 

-Pages virtually contiguous to this page form the second minicluster that 
is added to the eventual cluster to be written to the page file. 

- This process continues until either the cluster size is reached or no 
more pages on the modified page list have the designated page file as 
their backing store address. The modified page writer is building a large 
cluster that consists of a series of smaller clusters. The large cluster 
terminates only when the desired size is reached or the modified page 
list contains no more pages bound to the page file in question. Each 
smaller cluster can terminate on any of the conditions listed in the pre­
vious section, or on the two terminating conditions for the large cluster. 

15.5.2.4 Page File Space Allocation. Before the modified page writer searches for pages 
to write, it must first determine the size of the write cluster. To do this, it 
must determine the number of contiguous blocks in the page file that can be 
allocated. 

When the modified page writer attempts to allocate blocks in the page file, 
it looks for a cluster of blocks that is the current allocation size in length (the 
current allocation size is stored in the page file control block at the offset 
PFL$L_ALLOCSIZ and is usually equal to MPW _ WRTCLUSTER). If the de­
sired number of blocks is not available, the allocation size is reduced by 16 
blocks and the search for contiguous blocks starts again at the beginning of 
the page file. If the page file deallocation routine determines that it has freed 
a large enough cluster, it increases the allocation size by 8 (up to 
MPW _ WRTCLUSTER). 

When the allocation size for the page file is less than or equal to 16, a 
special-case allocation routine is called. This special-case allocation routine 
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searches for and allocates the first available cluster of blocks that it encoun­
ters. The routine can allocate between 1 and 16 contiguous blocks. If the 
special-case allocation routine determines that more than 65 percent of the 
page file is in use, the following message is issued on the console terminal: 

SYSTEM-W-PAGEFRAG, Page file 65 full, system continuing 

If the allocation routine determines that more than 90 percent of the page file 
is in use, the following message is issued on the console terminal: 

SYSTEM-W-PAGECRIT, Page file 90 full, system trying to continue 

If you see either of these messages on the console terminal, it is a good indica­
tion that the system requires an(other) alternate page file. 

15.5.2.5 Example of Modified Page Write to a Page File. Figure 15-9 illustrates a sample 
cluster for writing to a page file. The modified page list (pictured in the upper 
right-hand corner of the figure) is shown as a sequential array to simplify the 
figure. 

1. The first page on the modified page list is PFN A. By scanning backward, 
first PFN F and then PFN H are located. The PTE preceding the one that 
contains PFN H is also a transition PTE, but the page is on the free page 
list. This page terminates the backward search. 

2. The modified page writer map begins with PFN H, PFN F, and PFN A. The 
search now goes in the forward direction, with each page bound for the 
page file added to the map up to and including PFN E. The next page table 
entry is valid so the first minicluster is terminated. 

3. The next page on the modified page list, PFN B, leads to the addition of a 
second cluster to the map. This cluster begins with PFN G and ends with 
PFN J. The backward search was terminated with a PTE containing a sec­
tion table index. The forward search terminated with a demand zero PTE. 

Note that this second cluster consists of pages belonging to a different 
process from the first cluster. The difference is reflected in the word array 
element for each PTE in the map that contains a process header vector 
index for each page (see Figure 14-24). 

4. The next page on the modified page list is PFN C. This page belongs in a 
global image file and is skipped over during the current write attempt. 

5. PFN D leads to a third cluster that was terminated in the backward direc­
tion with a page table entry that contains a global page table index. The 
search in the forward direction terminated when the desired cluster size 
was reached, even though the next PTE was bound to the same page file. 
This size is either MPW _ WRTCLUSTER or a number of virtually contigu­
ous blocks available in the page file, whichever is smaller. In any case, this 
cluster will be written with a single write request. 

6. Note that reaching the desired size resulted in leaving some pages on the 
modified page list bound for the same page file, such as PFN I in the figure. 
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15.5.2.6 Modified Page Write Completion. The modified page writer is notified that 
the write is complete by a special kernel mode AST (whose address was 
stored in the ASTPRM field of the IRP while the write was in progress). 
Modified page writing is recorded in the IRP as a swap write to allow this 
completion method to be used. For the purposes of the 1/0 postprocessing 
routine, the only form of page write request is the one issued by the Update 
Section system service. 

15.5.3 

This kernel mode AST decrements various reference counts that indicated 
the write in progress. If the reference count is now zero, the pages are placed 
on the free page list. If the number of pages on the modified page list 
(SCH$GL_MFYCNT) is still above the low limit threshold for the modified 
page list (SCH$GL_MFYLOLIM), then the modified page writer removes the 
new first page from the modified page list and starts all over. 

Update Section System Service 

The Update Section system service allows a process to write pages in a sec­
tion to their backing store addresses in a controlled fashion, without waiting 
for the modified page writer to do the backup. This system service is espe­
cially useful for frequently accessed pages that may never be written by the 
modified page writer, because they are always being faulted from the modi­
fied page list back into the working set before they are backed up. 

This system service is a cross between modified page writing and a normal 
write request. Like any Queued 1/0 request, this service can receive comple­
tion notification with an event flag, an AST, or through an 1/0 status block. 
The number of pages written is specified by the address range passed as an 
input parameter to the service. The cluster factor is the minimum of 
MPW _ WRTCLUSTER and the number of pages in the input range. The di­
rection of search for modified pages is determined by the order that the ad­
dress range is specified to the service. 

15.5.3.1 Page Selection. If the section that is being backed up is a process private 
section, only those pages that have the modified bit set in the page table entry 
(or in the PFN state array for transition pages) are written out. 
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If the section is a global section, then information about whether the page 
is modified is found in both the PFN database and the page table entries of all 
processes mapped to this global page. (The modify bit in the global page table 
entry is inaccessible to hardware and contains no useful information.) Be­
cause there are no back pointers for valid global pages, this information is 
unavailable. Therefore, all pages in a global section are written to their back­
ing store location, regardless of whether the pages have been modified. 

If the flags parameter passed to Update Section has its low bit set, the set 
bit indicates that the caller is the only process capable of modifying the sec-
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tion. In that case, the process page table entries (and the PFN database) are 
used to select candidate pages for backing up, and only modified pages are 
written. 

15.5.3.2 Write Completion. The process that issued the Update Section system serv­
ice is first notified about write completion with a special kernel mode AST. 
This AST first checks whether all the pages requested by the original call 
have been written or whether another write is required. If more pages have to 
be written, another cluster is set up and queued. If all requested pages have 
been written, the normal 1/0 completion path involving event flags, 1/0 sta­
tus blocks, and user-requested ASTs is entered, and the process is notified. 

15.6 PAGING AND SCHEDULING 

15.6.1 

15.6.2 

Page fault handling can influence the scheduling state of processes in several 
different ways. If a read is required to satisfy a page fault, the faulting process 
is placed into a page fault wait state. If a resource such as physical memory or 
page file space is not available, the process is placed into an appropriate wait 
state. There are several other wait states that a process may be placed into as 
a result of a page fault. 

Page Fault Wait State 

The most obvious wait state is page fault wait (PFW), which is required if a 
read is required to resolve the fault. The process that requires the read to 
resolve its page fault is placed into a page fm.i.lt wait state. The I/O comple­
tion routine detects that a page read has completed and reports a page fault 
completion event to the scheduler. The scheduler removes the process from 
the page fault wait state and makes it computable. There is no priority incre­
ment due to page fault read completion so the scheduling decision is made 
based on the process's current priority. 

Free Page Wait State 

If there is not enough physical memory available to satisfy the page fault, the 
process is placed into a free page wait state (FPG). The physical page manager 
(module ALLOCPFN) checks for processes in this state whenever pages are 
added to an empty list. If the free page wait state is not empty, all processes in 
the state are made computable. 

The physical page manager makes no scheduling decision about which 
process will get the page. There is no first-in/first-out approach to the free 
page wait state. Rather, all processes waiting for the page are made computa­
ble. The next process to execute will be chosen by the scheduler, using the 
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15.6.3 
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normal algorithm that the highest priority resident computable process exe­
cutes next. 

Collided Page Wait State 

It is possible for a page fault to occur for a page which is already being read 
from disk. Such a page is referred to as a collided page. The collided bit (in the 
PFN TYPE array) is set and the process placed into the collided page ( COLPGI 
wait state. 

One of the details that the page read completion routine checks is the 
collided bit in the TYPE array element for the page. If the collided bit is set, 
the collided page wait state is emptied. There is no check for the page that is 
being waited for by each process as it is made computable. 

This lack of check has two advantages. 

• As was the case for free page availability, there is no special code to deter­
mine which process will get the page first. All processes are made comput­
able, and the normal scheduling algorithm selects the process that exe­
cutes next. 

• The probability of a collided page is small. The probability of two different 
collided pages is even smaller. If a process waiting for another collided page 
is selected for execution, that process will incur a page fault and get put 
right back into the collided wait state. Nothing unusual occurs and the 
operating system avoids a lot of special-case code to handle a situation that 
rarely, if ever, occurs. 



16 Memory Management System 
Services 

Confusion now hath made his masterpiece! 

-Macbeth 2,3 

The previous two chapters discussed the data structures used by the memory 
management subsystem to describe physical and virtual memory and the 
.,_ction of the page fault handler when a page was referenced in which the 
valid bit was not set. This chapter describes the system services available to 
the user (and also used internally by the operating system) to allocate these 
structures and initialize their contents. 

1. Some system services create or delete virtual address space within 
the limitations imposed by process quotas and limits and SYSBOOT 
parameters. 

2. Private and global sections can be created that allow the blocks of a file to 
be mapped as a portion of a process address space. Although the section 
services are also associated with the layout of virtual address space, they 
are treated separately because of their added level of complexity. 

3. System services allow users to lock portions of their working sets into 
memory, avoiding the overhead of page faults or allowing portions of code 
to execute at elevated IPL. A process can also disable swapping, preventing 
itself from being removed from memory. 

4. There are other miscellaneous operations associated with the memory 
management available to a process. For example, a process may force the 
contents of all modified pages to be written to their backing store ad­
dresses (Update Section system service) or purge some or all pages from its 
working set (Purge Working Set system service). 

16.1 DISPATCH METHOD FOR MEMORY MANAGEMENT 
SYSTEM SERVICES 

Almost all of the memory management system services specify a desired 
address range as an input parameter. The page table entries associated with 
these addresses contain an owner field (see Figure 14-3), indicating whether 
the caller of each service can manipulate the pages in the desired fashion. 
Another peculiarity of the memory management system services is that 
many of the services can partially succeed (because they are done on a page-
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by-page basis). This partial success is indicated by returning an error code 
combined with the address range over which the operation was completed (in 
the retadr argument). 

A common dispatch method is used by most of the memory management 
system services to reflect the similarity of the services: 

• Information about the specific service, including the input parameters, is 
placed on the stack for later retrieval. 

• Page ownership is checked to insure that a less privileged access mode is 
not attempting to alter the properties of some pages owned by a more 
privileged access mode. 

• The address of a page-by-page routine to accomplish the desired action of 
the original service is placed into R6. 

• A common routine is called that performs general page processing and 
calls the single page service-specific routine for each page in the desired 
range. 

• The address range actually operated on is returned to the caller (if it is 
requested). 

16.2 VIRTUAL ADDRESS CREATION AND DELETION 

16.2.1 
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The first level of memory management available to a process is the creation 
or deletion of virtual address space. These services are also used by the sys­
tem when an image first begins executing (the image activator calls several 
services to create process address space) and as part of image exit (the image 
reset routine deletes all of PO space and a small part of Pl space). The memory 
management performed by the system as part of image activation or process 
deletion is described in Chapter 21. 

Address Space Creation 

Address space creation is essentially a simple operation. A series of demand 
zero pages is created, either at the end of the designated address space (the 
Expand Region [$EXPREG] system service) or in the specified address range 
(the Create Virtual Address Space [$CRETVA] system service). If any pages 
already exist in the requested range, they must be deleted first. 

These two system services can partially succeed. That is, a number of 
pages smaller than the number originally requested may be created. Once the 
specified address range is determined, the demand zero pages are created one 
at a time. It is possible to run into one of the limits on the number of pages 
that can be created after several pages have already been successfully created. 
For this reason, it is especially important for the caller of either $CRETVA or 
$EXPREG to look at the retadr argument to determine whether the service 
($CRETVA or $EXPREG) was partially successful. 



16.2 Virtual Address Creation and Deletion 

16.2.1.1 Limits on Virtual Address Space Creation. There are three limitations on the 
amount of virtual address space that can be created. 

• The SYSBOOT parameter VIRTUALPAGECNT controls the total number 
of page table entries (POPTEs plus PlPTEs) that any process can have in its 
process header. The division of these pages between PO space and Pl space 
is totally arbitrary and process specific. It is only the sum of PO and Pl 
pages that is limited by the SYSBOOT parameter. 

• The size of a process working set also controls the size of that process's 
address space. When a process page is valid, the page table page for that 
page is not only valid but also dynamically locked into the working set. For 
small address spaces, the set of valid process pages can be represented by a 
small number of page table pages. 

As the address space grows, the probability that a given page table page 
maps more than one valid process page decreases. (The limiting case, one 
that can usually be reached only with very large process address spaces, 
requires two working set list entries for each valid process page.) In any 
case, there is an implicit limit to the process address space imposed by the 
process working set quotas. 

The specific check that is made is whether the size of the dynamic 
working set list can lock down all the page table pages necessary to map 
the process address space and still leave enough fluid working set 
(PHD$W _FLUID), plus the worst case number of page table pages required 
to map PHD$W _FLUID pages, in order to allow the process to perform 
useful work. The number of page table pages that results is the minimum 
of PHD$W _FLUID and the number of page table pages not already locked 
down. If this check fails, the working set list is expanded. If the working 
set is at its limit, the virtual address creation fails with the status of 
SS$_INSFWSL. 

• The third constraint on the total size of the process address space is the 
page file quota. Each demand zero page and each copy-on-reference section 
page is charged against the job's page file quota (JIB$L_PGFLCNT). 

16.2.1.2 Expand Region System Service. The Expand Region system service is a special 
case of the Create Virtual Address Space system service. The requested num­
ber of pages is simply converted into a PO or Pl page range and control is 
passed to a page creation routine that is common between the two services. 

16.2.1.3 Automatic User Stack Expansion. A special form of Pl space expansion oc­
curs when a request for user stack space exceeds the remaining size of the 
user stack. Such a request can be reported by the hardware as an access viola­
tion exception or by software when insufficient user stack space is detected. 
(Software detection is done by the AST delivery routine and the Adjust Stack 
system service if the request is for user mode stack space.) 
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The routine EXE$EXPANDSTK is called directly by the two software rou­
tines and invoked by the access violation exception handler if the access 
violation occurred in user mode. This routine checks that a length violation 
(as opposed to a protection violation) occurred and that the inaccessible ad­
dress is in Pl space. If so, Pl space is expanded from its current low address 
end to the specified inaccessible address. For the usual case, one in which a 
program requires more user stack space than requested at link time, the ex­
pansion typically occurs one page at a time. 

Because this automatic expansion cannot be disabled on a process-specific 
or system-wide basis, a runaway program (one that is using stack space with­
out returning it) will not be aborted until it exceeds the virtual address size 
determined by the SYSBOOT parameter VIRTUALPAGECNT (a quota viola­
tion which is indicated by $CRETVA returning an error status of SS$_ 
VASFULL). In addition, a program that makes a random (and probably incor­
rect) reference to an arbitrary Pl address smaller than the top of the user stack 
will probably continue to execute (after the creation of many demand zero 
pages) rather than exiting with some error status. 

If the stack expansion fails for whatever reason (the Create Virtual Address 
system service can fail for several reasons), the process is notified in a way 
that depends on who originally called EXE$EXPANDSTK. 

• The Adjust Stack system service for user mode can fail with several of the 
error codes returned by $CRETVA. 

• An attempt to deliver an AST to a process with insufficient user stack 
space results in an AST delivery stack fault exception being reported to the 
process. (Enough information is removed from the stack by the error rou­
tine that the exception dispatcher can at least get started in reporting the 
exception.) 

• If the user stack cannot be expanded in response to a Pl space length viola­
tion, then an access violation fault is reported to the process. If there is not 
enough user stack to report the exception, the normal condition handler 
search is bypassed and the exception is reported directly to the last chance 
handler (see Chapter 4). In the default case, this handler causes the cur­
rently executing image to terminate. 

Address Space Deletion 

For a couple of reasons, page deletion is more complicated than page creation. 

• Creation involves taking the process from one known state (address space 
does not yet exist) to another known state (the page table entries contain 
demand zero PTEs). Page deletion must deal with initial conditions that 
include all the possible states that a virtual page can be in. 

• Page creation may first require that the specified pages be deleted in order 
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to put the process page tables into their known state. That is, page deletion 
is often an integral part of page creation. 

16.2.2.1 Delete Virtual Address Space System Service. When a page is deleted, all proc­
ess and system resources associated with the page must be returned. These 
include the following forms: 

• A page frame for valid and transition pages 
• A page file virtual block for pages whose backing store address indicates an 

already allocated block 
• A working set list entry for a page in the process working set list 
• Page file quota for all pages with a page file backing store address, includ-

ing pages that have not yet allocated a block in the page file 

Private section pages that are deleted cause the reference count in the process 
section table entry (see Figure 14-7) to be decremented. If the reference count 
goes to zero, the PSTE itself can be released. 

In addition, valid or modified pages with a section backing store address (as 
opposed to a page file backing store address) must have their latest contents 
written back to the section file. (The contents of pages with a page file back­
ing store address are unimportant after the virtual page is deleted and do not 
have to be saved before the physical page is reused.) 

16.2.2.2 Page Deletion and Scheduling. Pages that have I/O in progress cannot be dele­
ted until the 1/0 completes. Such processes are placed into a page fault wait 
state (requesting that a system event be reported when 1/0 completes) until 
the page read or write completes. Pages in the write-in-progress transition 
state will cause the same effect. Pages in the read-in-progress transition state 
are faulted, with the immediate result that the process is placed into the 
collided page wait state. Special action must be taken for global pages with 
I/O in progress because there is no way to determine if the process deleting 
the page is also responsible for the I/O. In such cases, the process is placed 
into a miscellaneous wait state (MWAIT) until its direct I/O completes. (If 
the process has no direct I/O in progress, the problem does not arise in the 
first place, and the deletion is allowed to proceed.) 

Once all reasons for keeping the page around have been taken care of, the 
page is deleted. Deletion of a physical page means that the contents of the 
PFN PTE array are cleared, destroying all ties between the physical page and 
any process virtual address. In addition, the page is placed at the head of the 
free page list, causing it to be used before other pages whose contents are still 
useful. 

16.2.2.3 Contract Region System Service. The Contract Region system service is a 
special case of the Delete Virtual Address Space system service. The re-

345 



Memory Management System Services 

16.2.3 

quested number of pages is simply converted into a PO or Pl page range and 
control is passed to a page deletion routine that is common between the two 
services. 

Controlled Allocation of Virtual Memory 

There is a second level of memory management available to a process. The 
Run-Time Library procedures LIB$GET _ VM and LIB$FREE_ VM provide a 
mechanism for allocating small blocks of virtual memory in a controlled 
fashion. Allocation from the free memory pool is performed in much the 
same way as pool space is allocated by the VMS operating system (see Chap­
ter 3). If there is not a block of memory in the pool large enough to satisfy the 
request, PO space is expanded (by calling $EXPREG), and the pool is extended 
to include the newly created virtual address space. 

16.3 PRIVATE AND GLOBAL SECTIONS 

16.3.1 
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A second method of creating address space is available. The Create and Map 
Section system service allows a process to associate a portion of its address 
space with a specified portion of a file. The section may be specific to a 
process (private section) or shared among several processes (global section). 
The Map Global Section system service allows a process to map a portion of 
its virtual address space to an already existing global section. These two ser­
vices are used by the image activator (see Chapter 21) to map portions of 
process address space to either the image file or previously installed global 
sections. 

The Create and Map Section system service also provides two special op­
tions. Rather than mapping a portion of process address space to a file, a 
suitably privileged process (with PFNMAP privilege) can associate (map) vir­
tual addresses to specific physical addresses. Global sections can be created 
and mapped in shared memory as well as in local memory. 

Create and Map Section System Service 

The Create and Map Section system service is the system service that per­
forms all of these operations. (In a sense, the Map Global Section system 
service is a special case of $CRMPSC where the section does not have to be 
created.) The particular path that is taken through the service is determined 
by the contents of the flags argument passed to the service. (The VAX/VMS 
System Services Reference Manual lists those flags that can be used together 
and those that are incompatible.) One way of looking at the action of this 
service is to examine the data structures that are created as a result of exercis­
ing one of the several options available to it. 
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16.3.1.1 Private Section Creation. When a process private section is created, a process 
section table entry (see Figure 14-7) is allocated from the area of the process 
header set aside for PSTEs. The information that associates the virtual ad­
dress range with virtual blocks in the file is loaded into the PSTE. (When the 
private section is being created as a part of image activation as described in 
Chapter 21, the original source for much of the data stored in the PSTE is an 
image section descriptor contained in the image file.) In addition, each proc­
ess page table entry in the designated address range is loaded with identical 
contents, namely a process section table index (see Figure 14-3). 

The memory management subsystem cannot take a window turn on pages 
within a section (see Section 19.1.4). Therefore, it requires that all the map­
ping information for the newly mapped file be available in the window con­
trol block. If the Create and Map Section system service determines that not 
all mapping information is available, its operations are temporarily sus­
pended while a request is made to the ACP for all mapping information for 
the file. Because the window control block occupies nonpaged pool, the ex­
tension of the window control block is charged against the process's BYTLM 
quota. 

Because of the way space is allocated in the process header (see Chapter 26), 
it is possible that the space to hold a section table entry may extend into the 
working set list. When this occurs, the entire process section table can slide 
down into one of the empty pages set aside in the process header for exactly 
this purpose. All references to process section table entries are relative to the 
bottom (high address end) of the table that is located through offset 
PHD$L_PSTBASOFF. That is, the entire structure is position independent. 
Header expansion involves mapping the first empty page, moving the entire 
structure down one page, and changing PHD$L_PSTBASOFF to locate the 
new bottom of the table. 

16.3.1.2 Global Section Creation. The creation of a global section (located in local 
memory) is similar to the creation of a private section except that the data 
structures are located in the system header (see Figures 14-15 and 14-18) in­
stead of the process header: 

1. A global section descriptor (see Figure 14-14) is allocated from paged dy­
namic memory and loaded with information that describes the name and 
protection attributes of the section. This data structure is used by subse­
quent Map Global Section system service calls to determine whether the 
named section exists and to locate the global section table entry in the 
system header that more fully describes the section. 

2. A global section table entry (see Figure 14-16) in the 1;ystem header (see 
Figure 14-15) is the analogous structure to the process section table entry. 

3. A series of global page table entries are created in a virtual extension to the 
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system header (see Figure 14-17). These page table entries contain infor­
mation that describes the current state of each global page in the section. 
They are not available to the memory management hardware but are used 
by the page fault handler when a process incurs a page fault for a global 
page. 

4. A global section can be created and mapped by a single system service call. 
Alternatively, the section can be created in one step and mapped later on 
by either the creating process or by any other process allowed to map the 
section. In any case, mapping to a global section results in no changes to 
the global database. Rather, the process page table has a series of page table 
entries that contain a global page table index (see Figure 14-19) added to 
describe the designated address range. The process page table entries for 
global pages can be in one of two states, either valid or containing the 
appropriate global page table index. 

16.3.1.3 Global Sections in Shared Memory. Global sections that are located in shared 
memory are treated in a slightly different fashion from local memory global 
sections. The sections are created by the Install Utility (INSTALL) after 
shared memory has been initialized. (See Chapter 14 for a description of the 
data structures that describe global sections in shared memory.) Global sec­
tions in shared memory have the following characteristics: 

1. A special global section descriptor (see Figure 14-27) is created that 
contains, among other things, a list of the physical pages in shared memory 
that will contain the section. The .section is temporarily mapped by 
INST ALL and each page of the section is loaded from the image file. 

2. A global section table entry is created only on the CPU that originally 
creates the section. This GSTE allows the initial read to be performed and 
allows subsequent section updates (with SYS$UPDSEC) for writeable sec­
tions. Pages are also written back to the image file on the creating CPU 
when the section is deleted. 

3. No global page table entries are needed for global sections in shared mem­
ory because the state of each page is known to be valid. The PFN informa­
tion necessary to allow processes to map into this section is contained in 
the shared memory GSD. 

4. When a process maps to the shared memory global section, the process 
page table entries are set to valid with the appropriate page frame numbers 
loaded into the PTEs. These pages are not counted against the process 
working set. 

16.3.1.4 Map by PFN. The Create and Map Section system service allows a privileged 
process (one with PFNMAP privilege) to map a portion of its virtual address 
space to specific physical addresses. Although the primary intention of this 
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service is to allow process address space to be mapped to I/O addresses, it can 
also be used to map specific physical memory pages. 

When a private PFN-mapped section is created, the only effect is to add a 
series of valid PTEs to the process page table. The PFN fields in these PTEs 
contain the requested physical page numbers. The PTE$V _WINDOW bit in 
the PTE (see Figure 14-3) is set in each PTE to indicate that each of these 
virtual pages is PFN mapped. These pages are not counted against the process 
working set. In addition, no record is maintained in the PFN database that 
such pages are PFN mapped. 

When a global PFN mapped section is created, the only data structure cre­
ated to describe such a mapping request is a special form of global section 
descriptor (see Figure 14-14). There are no global page table entries nor is 
there a global section table entry. When a process maps to such a section, its 
process page table entries are set to valid, mapped by PFN (PFN$V _ 
WINDOW is set), and the PFN fields are filled in according to the contents 
of the extended GSD (see Figure 14-14). 

Map Global Section System Service 

The Map Global Section system service can be considered a special case of 
the Create and Map (Global) Section system service, where the global section 
already exists. This service usually has no effect on the global database (other 
than to include the latest mapping in various reference counts). Rather, this 
service allows a range of process addresses to become mapped to the named 
global section. 

The actual effect of this service is to load each of the designated process 
PTEs with a global page table index (see Figures 14-3 and 14-19). These global 
page table indexes are effectively pointers to global page table entries in the 
system header, where the current state of each global page is actually re­
corded. 

When a process maps to a global section in shared memory or to a section 
that is PFN-mapped, there are no global page table entries to be pointed to. 
Instead, each process page table entry is set to valid with the PFN field con­
taining a physical page number either in shared memory (for shared memory 
global sections) or anywhere in physical address space (as indicated by the 
extended GSD for PFN-mapped global sections). 

Delete Global Section System Service 

Like the Delete Virtual Address Space system service, the Delete Global Sec­
tion system service is more complicated than global section creation because 
the section must be reduced from one of many states to nothing. In addition, 
global writeable pages must be written to their backing store addresses before 
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a global section can be fully deleted. For these reasons, the global section 
deletion is often separated in time from the system service call. 

When the Delete Global Section system service is called, the named sec­
tion is marked for deletion, which means that the GSD is moved from the 
normal doubly linked GSD list to the delete pending list. The delete pending 
bit in the GSD is set. In addition, the permanent indicator in the GSD is 
turned off. However, the actual section deletion cannot occur until the refer­
ence in the global section table entry, the count of process page table entries 
mapped to the section, goes to zero. Although it is possible for the reference 
count to be zero when the section is marked for deletion, the more typical 
global section deletion occurs as a side effect of virtual address deletion 
(which itself might occur as a result of image exit or process deletion). 

A reference count of zero indicates that no more process page table entries 
are mapped to the section. At that time, the following data structures that 
describe the system can be deallocated: 

• The global page table entries in the system header are freed for further use. 
If an entire page of global page table entries is freed, that page can be un­
locked from the system working set. 

• The global section table entry in the system header is removed from the 
active list and placed on the free list of system section table entries for 
possible later use. 

• The global section descriptor is placed on the free list of GSDs. When a 
global section is later created, this list is checked for a GSD before a new 
structure is allocated from paged dynamic memory. 

Global sections in shared memory and PFN-mapped global sections exercise 
some of the same logic when the sections are deleted, but the effects are 
different because not all of the global data structures exist for these special 
global sections. A PFN-mapped section is described entirely by an extended 
global section descriptor (see Figure 14-14). In addition, no reference counts 
are kept for such sections, so the GSD can be placed on the free list of GSDs 
immediately. 

When a shared memory global section is deleted, there are no global page 
table entries to delete. In addition, a global section table entry only exists on 
the port from which the section was created (to allow the section to be loaded 
when it was initially created and to allow the Update Section system service 
or Delete Global Section system service to preserve its contents). 

Update Section System Service 

The Update Section system service requests that a specified range of process 
private or global pages be written to their backing store addresses. When a 
private section is being updated, only those pages that have been modified (as 
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indicated either by the PTE$V _MODIFY bit in the PTE or by the 
PFN$V _MODIFY bit in the PFN STATE array) are written. With global 
pages, the modify state of a physical page is the logical OR of the PFN STATE 
array modify bit and the modify bits in all of the process page table entries 
mapped to the section. Because there are no back pointers to all of these 
PTEs, this information is not available. Instead, when a global section is up­
dated, all pages in the designated address range are written back to the global 
image file. (When the "exclusive writer" flag is passed to the Update Section 
system service, only those pages modified by the caller are written.) The 
interaction between the Update Section system service and the I/O subsys­
tem is described in Chapter 1 7. 

16.4 RELATED SYSTEM SERVICES 

16.4.1 

Other memory management system services allow a process to control its 
working set, alter page protection, and lock pages into the working set or into 
physical memory. 

Working Set Size Adjustment 

It is possible to make the process working set either larger or smaller, either 
manually with the Adjust Working Set Limit system service or automatically 
as a part of the quantum end routine. When the working set is expanded, new 
pages can be added to the working set without removing already valid entries. 
Adding pages to a process's working set decreases the probability that the 
process will incur a page fault. 

It is unlikely that a program will voluntarily reduce its working set limit, 
unless it has a good understanding of its paging behavior. The system reduces 
a process working set as a part of the automatic working set adjustment. The 
swapper process can shrink a process's working set in an attempt to gain 
more pages, before resorting to swapping a process out of the working set. In 
addition, a process working set limit is reset to its default value as a part of 
the image rundown procedure (see Chapter 21) that is invoked when an 
image exits. Table 16-1 lists the process-specific and system-wide working 
set list parameters. 

16.4.1.1 Adjust Working Set Size System Service. The effective result of altering the 
process working set size is to change the value of the WSSIZE working set list 
counter (see Figure 14-4). 

In the case of working set list expansion, the working set size is limited by 
the maximum working set size (PHD$W _ WSEXTENT). If the expanded 
working set extends into the process section table (see Figure 14-1), the proc­
ess section table is moved down in exactly the same manner as is done to 
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Table 16-1: Working Set Lists: Limits and Quotas 

Description 

Beginning of Working Set List 

Size of the entire working set 

Beginning of list of 
permanently locked entries 

Beginning of dynamic portion 
of working set list 

Index of most recently inserted 
working set list entry 

End of current working set list 

Default working set size 

Normal limit to working set size 

Maximum limit to working set size 

Upper limit to working set quota 

Upper limit to working set extent 

Lower limit to size of dynamic 
working set size 

Location or Name 

PHD$W _ WSLIST 

PHD$W _ WSSIZE 

PHD$W _ WSLOCK 

PHD$W _ WSDYN 

PHD$W _ WSNEXT 

PHD$W _ WSLAST 

PHD$W _DFWSCNT 

PHD$W _ WSQUOTA 

PHD$W _ WSEXTENT 

PHD$W _ WSAUTH 

PHD$W _ WSAUTHEXT 

PHD$W _ WSFLUID 

Comments 

Always has the value 60 (hex) 
(This is PHD$K_LENGTH I 4) 

Set by LOGINOUT, altered by 
call to SYS$ADJWSL or by 
automatic working set 
adjustment 

The same for all processes 
in a given system 

Identical to WSLOCK unless this 
process has called SYS$LKWSET 
or SYS$LCKPAG 

Updated each time an entry 
is added to the working set 

Updated by calling SYS$ADJWSL, 
by image exit, by pager, or 
by automatic working set 
adjustment 

Set by LOGINOUT, altered 
by SET WORKING_SET/LIMIT command 

Set by LOGINOUT, altered 
by SET WORKING_SET/QUOTA command 

Set by LOGINOUT, altered 
by SET WORKING_SET/EXTENT command 

Set by LOGINOUT, cannot be altered 

Set by LOGINOUT, cannot be altered 

Set up by SHELL, equal to the value 
of MINWSCNT SYSBOOT parameter 



Table 16-1: Working Set Lists: Limits and Quotas (continued) 

Description 

Size of dynamic working set after 
allowing room for PHD$W _ WSFLUID 
process page entries and a 
reasonable number of page table pages 

Number of pages in use by process 

Authorized default working set size 

Authorized default working set limit 

Authorized default working set maximum 

System-wide minimum working set size 

System-wide maximum working set size 

Working set size for system paging 

Default value for working set size 
default (used by SYS$CREPRC) 

Minimum value for working set size 
default (used by SYS$CREPRC) 

Default value for working set quota 
(used by SYS$CREPRC) 

Minimum value for working set quota 
SYSBOOT parameter 

(used by SYS$CREPRC) 

Location or Name 

PHD$W _EXTDYNWS 

PCB$W _PPGCNT 
+ PCB$W _GPGCNT 

UAF$W _DFWSCNT 

UAF$W _ WSQUOTA 

UAF$W _ WSEXTENT 

MINWSCNT 

WSMAX 

SYSMWCNT 

PQLDWSDEFAULT 

PQLMWSDEFAULT 

PQLDWSQUOTA 

PQLMWSQUOTA 

Comments 

Updated each time size of dynamic 
working set is changed 

Updated each time a page is 
added to or removed from 
the working set 

Loaded into PHD$W _DFWSCNT 

Loaded into both PHD$W _ WSQUOTA 
and PHD$W _ WSAUTH 

Loaded into both PHD$W _ WSEXTENT 
and PHD$W _ WSAUTHEXT 

SYSBOOT parameter 

SYSBOOT parameter 

SYSBOOT parameter 

SYSBOOT parameter 

SYSBOOT parameter 

SYSBOOT parameter 
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accommodate process section table expansion. However, there is not always 
enough room in the process header to accommodate the expanded work­
ing set list. The process header size is determined by WSMAX (and 
PROCSECTCNT) and the working set parameters (PHD$W _ WSEXTENT 
and PHD$W _ WSAUTHEXT) are minimized with WSMAX. (The calculation 
of the size of each piece of the process header is described in Chapter 26.) 
Note that there is no check to determine how many process section table 
entries in the process header are allocated; thus, the process section table can 
grow so large that there is not enough working set list area available. 

In the case of working set list contraction, the working set cannot be con­
tracted below MINWSCNT. In addition, the extra dynamic working set size 
(PHD$W _EXTDYNWS) cannot be reduced below zero. If the 
PHD$W _ WSNEXT pointer locates an entry beyond the new end of the list, it 
is reset to point to the new end. The contracted list can have holes in it; the 
PHD$W _ WSLAST pointer is only moved back as a side effect of freeing ex­
cess working set list entries (above the new limit). 

16.4.1.2 SET WORKING_SET Command. The SET WORKING_SET command al­
lows the default working set size (PHD$W _OFWSCNT) or the working set 
maximum (PHD$W _ WSEXTENT) to be altered at the command level. Nei­
ther the default size nor the maximum can be set to a value larger than the 
authorized upper limit (PHD$W _ WSAUTHEXT). 

If the working set maximum is altered, it changes the upper limit for future 
calls to the Adjust Working Set Limit system service. If the limit (default 
size) is altered, it affects the working set list reset operation performed by the 
routine MMG$IMGRESET invoked as a result of image exit. If the limit is set 
to a value larger than the current quota, both the quota and the limit are 
altered to the new value. (Note that automatic working set adjustment is 
disabled for any process that has its quota and default (limit) set to the same 
value.) 

16.4.1.3 Automatic Working Set Size Adjustment. In addition to working set adjust­
ment as a result of explicit calls to SYS$ADJWSL or as a side effect of image 
exit, the operating system also provides automatic working set adjustment to 
keep a process's page fault rate within limits set by one of several SYSBOOT 
parameters (see Table 16-2). All of the SYSBOOT parameters listed in this 
table are dynamic and can be altered without rebooting the system. 
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The automatic working set adjustment takes place as part of the quantum 
end routine (see Chapter 10), because a process that cannot execute for even a 
single quantum will not benefit from an increased working set size. (Note 
that no adjustment takes place for real-time processes.) The adjustment takes 
place in several steps: 
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Table 16-2: Automatic Working Set Size Adjustments: Process and System Parameters 

Description Location or Name 

Total amount of CPU time charged PHD$L_CPUTIM 
to this process 

Amount of CPU time when last PHD$L_ TIMREF 
adjustment took place 

Total number of page faults 
for this process 

Number of page faults when last 
adjustment took place 

PHD$LPAGEFLTS 

PHD$LPFLREF 

Comments 

Updated by hardware clock 
service routine 

Updated by quantum end routine 
when adjustment check is made 

Updated each time this 
process incurs a page fault 

Updated by quantum end routine 
when adjustment check is made 

Most recent page fault rate PHD$L_PFLTRATE Recorded but not used each time 
for this process 

Amount of CPU time that process 
must accumulate before a page 
fault rate check is made 

Lower limit page fault rate 

Amount by which to decrease 
working set list size 

Lower bound for decreasing 
working set list size 

Upper limit page fault rate 

Amount by which to increase 
working set list size 

Free page list size to allow 
growth of working set 

Free page list size to allow 
extension of working set list 

AWSTIME IS) 

PFRATL IS) 

WSDEC IS) 

AWSMINIS) 

PFRATH(S) 

WSINC (S) 

GROWLIM(S) 

BORROWLIM IS) 

IS) These values are SYSBOOT parameters. 

an adjustment check is made 

Do not adjust if PCB$W _PPGCNT is 
less than or equal to this value 

Disables automatic adjustment for 
entire system if zero 

Do not adjust working set size if 
@SCH$GLFREECNT is less 
than or equal to this value 

Do not adjust working set list size 
if @SCH$GLFREECNT is less 
than or equal to this value 

1. If the WSINC parameter is set to zero, the adjustment is disabled on a 
system-wide basis, so nothing is done. If automatic working set adjust­
ment has been turned off by the DCL command SET WORKING_SET/ 
NOADJUST, the adjustment is disabled for the process, and, again, noth­
ing is done. 

2. If the process default working set size (PHD$W _DFWSCNT) is equal to its 
quota (PHD$W _ WSQUOTA), then adjustment is disabled for this process, 
so, again, nothing is done. 

3. If the process has not been executing long enough since the last adjust­
ment (the difference between accumulated CPU time, PHD$L_CPUTIM, 
and the time of the last adjustment attempt, PHD$L_ TIMREF, is less than 
the SYSBOOT parameter AWSTIME), no adjustment is done at this time. 
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If the process has accumulated enough CPU time, the reference time is 
updated (PHD$L_CPUTIM is loaded into PHD$L_ TIMREF), and the rate 
checks are made. 

4. The current page fault rate is calculated. The philosophy for automatic 
working set adjustment consists of two premises. If the page fault rate is 
too low, the system can benefit from a smaller working set size (because 
more physical pages become available) without harming the process (by 
causing it to incur many page faults). If the page fault rate is too high, the 
process can benefit from a larger working set size (by incurring fewer 
faults), without degrading the system. 

• If the current page fault rate is too high (greater than or equal to 
PFRATH), a determination is made to see if the working set list can be 
extended. If the size of the working set list is below WSQUOTA, the 
working set list is extended by WSINC. If the size of the working set list 
is greater than or equal to WSQUOTA, the number of pages on the free 
page list is compared to the SYSBOOT parameter BORROWLIM. If 
there are more than BORROWLIM pages on the free page list, the work­
ing set list is increased by WSINC. However, if there are fewer than 
BORROWLIM pages on the free page list, the working set list is not 
extended. The working set list can only be extended up to WSEXTENT. 

Note the adjustment taking place here affects only the working set 
list, not the working set itself. Once the working set list has been ex­
tended, newly faulted pages can be added to the working set. The page 
fault exception handler will add pages to the working set above 
WSQUOTA only when there are more than the SYSBOOT parameter 
GROWLIM pages on the free page list (see Section 15.4.3). 

• If the current page fault rate is too low (strictly, less than PFRATL), the 
working set is decreased (by WSDEC). However, if the contents of 
PCB$W _PPGCNT are less than or equal to AWSMIN, no adjustment 
takes place. This decision is based on the assumption that many of the 
pages in the working set are global pages and that therefore the system 
will not benefit (and the process may suffer) if the working set is de­
creased. Note that in the update for VAX/VMS Version 3.1, PFRATL 
was set to zero, effectively turning off this method of working set reduc­
tion in favor of swapper working set trimming. The rationale for this 
change is explained at the end of this list. 

5. The actual working set adjustment is accomplished by a regular kernel 
mode AST that executes an Adjust Working Set system service. The AST 
parameter passed to this AST is the amount of previously determined in­
crease or decrease. This step is required because the system service must 
be called from process context (at IPL 0) and the quantum end routine is 
executing in response to the IPL 7 software timer interrupt. 
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Two other pieces of the executive control the size of a process's working set: 
the page fault routines and the swapper. As described in the previous list, the 
page fault handler can add a page to a process's working set if the size of the 
free page list is greater than GROWLIM. In an effort to gain pages, the swap­
per will reduce the working sets of processes in the balance set before actu­
ally removing processes from the balance set. This working set reduction is 
known as swapper trimming or working set shrinking. Process selection is 
performed by a table-driven, prioritized scheme (see Section 17.2.2). 

Two problems are inherent in using the quantum end scheme of automatic 
working set adjustment: processes that are compute-intensive will reach 
quantum end many times and images that have been written to be efficient 
with respect to page faults (a low page fault rate) will qualify for working set 
reduction, because their page fault rate is lower than PFRATL. In both of 
these cases, working set reduction is not desirable. By contrast, swapper trim­
ming selects its processes starting with those that are least likely to need 
large working sets. 

In what can be seen as an evolutionary change to the operating system, 
working set reduction at quantum end was turned off in the VAX/VMS Ver­
sion 3.1 update. The default value of PFRATL has been set to zero. In this 
manner, swapper trimming and the image exit reset are the only methods 
used to reduce working set size. 

16.4.1.4 Purge Working Set System Service. The Purge Working Set system service 
requests that all virtual pages in the specified address range that happen to be 
in the working set be removed from the working set. A program could use 
this service if it recognized that a certain set of routines or data was no longer 
required. By voluntarily removing entries from the working set, a process can 
exercise a little control over the working set list replacement algorithm, in­
creasing the chances for frequently used pages to remain in the working set. 
The VMS executive uses this service as part of the image startup sequence 
(see Chapter 21) to insure that a program starts its execution without unnec­
essary pages (such as CLI command processing routines in its working set). 

16.4.2 Locking and Unlocking Pages 

For time-critical applications and other situations where a program wishes to 
access code or data without incurring a page fault, system services are pro­
vided to lock pages into the process working set or into memory. 

16.4.2.1 Locking Pages in the Working Set. A set of virtual pages can be locked into the 
process working set to prevent page faults from occurring on references to 
these pages. Locking pages in the working set guarantees that when this proc­
ess is executing (is the current process), the locked pages are always in the 
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process working set. In addition to the obvious benefit of this service, it can 
also be used by routines that execute at elevated IPL (above IPL 2), because 
the operating system does not allow page faults to occur above IPL 2. There is 
no implication that these pages remain resident when the process is not cur­
rent because the entire working set can be outswapped. (Residency is guaran­
teed by either a combination of this system service and the Set Swap Mode 
system service or by using the Lock Pages in Memory system service.) 

All pages in the specified range are faulted into the working set if they are 
not already valid. The working set list (see Figure 14-4) must be reorganized 
so that the locked pages appear in the list following the WSLOCK pointer. 
This reorganization is accomplished by exchanging the locked WSLE with 
the entry pointed to by WSDYN, and then incrementing WSDYN to point to 
the next element in the list. The WSLX PFN array elements for the two valid 
pages must also be exchanged. In addition, the WSL$V _ WSLOCK bit is set in 
the working set list entry. 

A check is made to insure that the process will be left with enough dy­
namic working set after the specified number of pages are locked. Enough 
dynamic working set means that the extra dynamic working set size, the size 
of the dynamic working set after space has been allocated for page table pages 
and a minimum working set size, is greater than zero. (Like most of the 
memory management system services, this service can partially succeed. In 
this case, the address range that is actually locked is returned to the caller by 
means of the retadr argument.) 

When a process is being outswapped, global read/write pages are dropped 
from the process working set (see Chapter 17) to avoid cumbersome account­
ing problems about whether the outswapped page contains the most up-to­
date information. For this reason, global read/write pages cannot be locked 
into the process working set. (Such pages can be locked into memory because 
the Lock Pages in Memory system service prevents outswap of either the 
process header or the locked pages, avoiding the swapping situation alto­
gether.) The swapper also performs an optimization with global read-only 
pages by dropping them from the working set on outswap if the global share 
count is larger than one. If such pages are locked into the working set, they 
are not dropped from the working set, regardless of the contents of the PFN 
SHRCNT array. 

16.4.2.2 Locking Pages in Memory. The Lock Page in Memory system service is simi­
lar to the Lock Page in the Working Set service except that the 
WSL$V _PFNLOCK bit in the WSLE is set and the process header is locked 
into memory. This service performs an implicit working set lock in addition 
to guaranteeing permanent residency to the specified virtual address range. 
Because this operation is permanently allocating a system resource, physical 
memory, it requires a privilege (PSWAPM). 
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16.4.2.3 Unlocking Pages. The converse of either of the two locking services unlocks 
pages from either the working set or physical memory. In addition, the work­
ing set list entries may have to be exchanged with other locked entries to 
place the unlocked entries back into the dYl'J.amic portion of the list. As with 
the exchange associated with locking pages, the WSLX PFN array elements 
must also be exchanged. Finally, the appropriate bit in the WSLE 
(WSL$V _ WSLOCK or WSL$V _PFNLOCK) is cleared. 

16.4.3 Process Swap Mode 

A process with PSWAPM privilege can prevent itself from being removed 
from memory. The set process swap mode ($SETSWM) system service simply 
sets the PCB$V _PSWAPM bit in the status longword (PCB$L_STS) in the 
software PCB. When the swapper is searching for suitable outswap candi­
dates, processes with this bit set are passed over. 

16.4.4 Altering Page Protection 

It is possible for a process to alter the page protection of a set of pages in its 
address range with the Set Protection on Pages system service ($SETPRT). In 
general, the operation of this service is straightforward. However, there is one 
interesting side effect. If a section page for a read-only section has its protec­
tion set to writeable, the copy-on-reference bit is set. This set bit will force 
the page to have its backing store address changed to the page file. when the 
page is faulted, preventing a later attempt to write the modified section pages 
back to a file to which the process may be denied write access. 

The symbolic debugger uses this service to implement its watchpoint facil­
ity. The page containing the data element in question is set to no write access 
for user mode. When the program attempts to access the page, an access 
violation occurs, which is fielded by the debugger's condition handler. This 
handler performs the following actions: 

1. Checks whether the inaccessible address is the one being watched and 
reports the modification if it is 

2. Sets the page protection to PRT$C_UW to allow the modification 
3. Sets the TBIT in the PSL to give the debugger control after the instruction 

completes 
4. Dismisses the exception 

When the instruction completes, the debugger's TBIT handler gains control, 
sets the page protection back to no write access for user mode, and allows the 

·program to continue its execution. 
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A time to cast away stones and a time to gather stones 
together. .. 

-Ecclesiastes 3:5 

The VAX/VMS operating system does not allow the amount of physical 
memory to limit totally the number of processes allowed in the system. 
Physical memory is effectively extended by keeping only a subset of the total 
number of active processes resident at a given time. This number is kept at a 
maximum by controling the number of pages that any one process has in 
memory at any given time. The remaining processes work with reduced 
working sets or reside in backing store locations. The reduction in size of low 
priority working sets, movement of low priority processes to backing store, 
and the subsequent filling sf memory with high priority computable proc­
esses is the responsibility of the swapper. In fact, the swapper process can be 
viewed as the system-wide memory manager. 

In VAX/VMS Version 3.0 the responsiblities of the swapper changed con­
siderably. Previous to Version 3.0, the swapper was solely responsible for 
moving processes in and out of physical memory. The swapper in Version 3.0 
attempts not to swap processes out of physical memory. Rather it will shrink 
process working sets in order to gain free pages. 

17.1 SWAPPING OVERVIEW 

17.1.1 
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Before discussing the details of swapper operation (moving a process into or 
out of memory), some basic swapper concepts will be reviewed. The specific 
uses of each of the memory management data structures manipulated by the 
swapper will be pointed out. 

Swapper Responsibilities 

The swapper has two main responsibilities: 

• The subset of processes that are currently resident should represent the 
highest priority executable processes in the system. When nonresident 
processes become computable, the swapper must bring them back into 
memory. 

• The swapper is also responsible for keeping the number of pages on the free 
page list above the low limit threshold established by the SYSBOOT pa­
rameters FREELIM and FREEGOAL. Requests for physical pages come 



17.1.2 

17.1 Swapping Overview 

from several sources. One request comes from the pager in resolving a page 
fault for a page that is not currently in memory. Another originates with 
an attempt by the swapper to acquire enough physical pages to inswap a 
computable but outswapped process. There are four operations that the 
swapper performs to keep pages on the free page list. 

1. Process headers of previously outswapped process bodies may be eligi­
ble for outswap. If so, they will be outswapped. (Process headers for 
already deleted processes are simply deleted.) 

2. The swapper will write modified pages until the number of pages on the 
modified list falls below the low limit threshold stored in global loca­
tion SCH$GL_MFYLOLIM. However, the swapper will not write modi­
fied pages if there are fewer than the SYSBOOT parameter MPW _ 
THRESH pages on the modified list. The value of SCH$GL_MFYLOLIM 
ensures that a certain number of pages will be available on the modified 
list for page faults; MPW _THRESH simply sets a lower bound to be 
met before the swapper can write the modified page list to gain pages. 

3. In an attempt not to outswap processes, the swapper will shrink work­
ing set sizes. The table used to determine outswap selection is also used 
to determine the order by which working sets will be reduced. See Sec­
tion 17.2.2 for more information on outswap selection. 

4. As a last resort to maintaining the size of the free page list, the swapper 
will select an eligible process for outswap and remove that process from 
memory. The table used to determine outswap selection is also used in 
reducing working set sizes. 

Swapper Implementation 

The swapper is a separate process in the operating system. As such, it can be 
selected for execution just like any other process in the system. It also has its 
own resources and quotas that are charged when the swapper does I/O. 

By making the swapper a separate process, the pieces of the system that 
detect a need for one of the swapper's duties simply have to wake the swapper 
up (by issuing a JSB to routine SCH$SWPWAKE). As already noted in Chapter 
10, this routine does not simply wake the swapper. Instead, it performs a 
series of checks to determine whether there is a need for swapper activity. If 
so, the swapper process is awakened. If not, the routine simply returns. By 
performing these checks in this routine rather than in the swapper process 
itself, the overhead of two needless context switches is avoided. 

When the swapper is the current process, it executes entirely in kernel 
mode. All of the swapper code resides in system space. (The swapper makes 
use of its PO space when it creates a new proces by using the module SHELL 
in the executive image. This operation is described in Chapter 20.) 
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17.1.3 Comparison of Paging and Swapping 

The VMS operating system uses two different techniques to make efficient 
use of available physical memory. The ability to support programs with vir­
tual address spaces larger than physical memory is the responsibility of the 
pager. The swapper allows a running system to support more active processes 
than can fit into physical memory at one time. The swapper's responsibilities 
are more global or system wide than the pager's. Table 17-1 compares and 
contrasts the pager and swapper in several details. 

17.2 SWAP SCHEDULING 

17.2.1 
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The swapper is a part of the system that performs both memory management 
and scheduling functions. The scheduling aspects of the swapper are here 
discussed from two points of view. First, the actions that the swapper takes 
to determine whether to inswap, outswap, or shrink a particular process are 
discussed. Then, those system events that trigger swapper activity are briefly 
described. 

Selection of Inswap Candidate 

The scheduler maintains 32 quadword listheads for outswapped computable 
(COMO) processes, one for each software priority (see Figure 10-3). These 
queues are identical to the 32 queues maintained for the computable resident 
(COM) processes. The steps that the swapper takes to locate an inswap candi­
date (once it has decided that an inswap can be performed) exactly parallel the 
steps that the rescheduling interrupt service routine takes (see Chapter 10) to 
select the next candidate for execution. 

1. A FFS instruction on the COMO queue summary longword (SCH$GL_ 
COMOQS) locates the highest priority nonempty COMO queue. 

2. The first process in this queue is removed and prepared for being swapped 
into memory. 

Figure 17-1 shows the parallel between the inswap candidate selection and 
the operation of the rescheduling interrupt service routine. The key instruc­
tions in the two routines are identical. The only differences are in the global 
data items referenced by the instructions. 

After a process has been chosen for inswap, the swapper checks if there are 
enough pages on the free page list to hold the inswap candidate and leave at 
least FREELIM pages remaining on the list. If so, the inswap proceeds. If not, 
the swapper attempts to make more pages available by shrinking working 
sets, outswapping one or more processes, writing modified pages, or deleting 
process headers of already deleted process bodies. 
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Table 17-1: Comparison of Paging and Swapping 

Difterences 
Paging 

The pager is a process-wide 
component of the executive that 
moves pages into and out of 
process working sets. 

The page fault handler is an 
exception service routine that 
executes in the context of the 
process that incurred the page 
fault. 

The unit of paging is the 
page, although the pager 
attempts to read more than one 
page with a single disk read. 

Page read requests for process 
pages are queued to the driver 
according to the base priority 
of the process incurring the 
page fault. Modified page 
write requests are queued 
according to the SYSBOOT 
parameter MPW _PRlO. 

Paging supports programs with 
very large address spaces. 

Similarities 

Swapping 

The swapper is a system-wide 
component of the executive 
that moves entire processes 
into and out of physical 
memory. 

The swapper is a separate 
process that is awakened from 
its hibernating state by 
components that detect a need 
for swapper activity. 

The unit of swapping is the 
process (or more accurately, 
the process working set). 

Swapper 1/0 requests are 
queued according to the value 
of the SYSBOOT parameter 
SWP_PRlO. 

Swapping supports a large 
number of concurrently active 
processes. 

1. The pager and swapper work from a common database. The most impor­
tant structures that are used for both paging and swapping are the proc­
ess page tables, the working set list, and the PFN database. 

2. The pager and swapper do conventional 1/0. There are only slight differ­
ences in detail between pager 1/0 and swapper 1/0 on the one hand and 
normal Queued 1/0 requests on the other. 

3. Both components attempt to maximize the number of blocks read or 
written with a given 1/0 request. The pager accomplishes this with read 
and write clustering. The swapper attempts to inswap or outswap the 
entire working set in one (or a small number of) 1/0 request(s). 
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The routine SCH$SCHED, that selects the next execution candidate has an exact parallel in the swapper. The first half of the parallel shows the 
swapper's selection of the next inswap candidate and the nearly identical instructions in the scheduler. 

Swapper's Selection of Inswap Candidate 

QEMPTY: BUG_CHECK QUEUEMPTY, FATAL 

SWAPSCHED: 
DSBINT #IPL$_SYNCH 
BBSS s'#SCH$v_srP, w'sCH$GB_SIP, 5$ 
FFS #0, #32, w'scH$GL_COMOQS, R2 

BNEQ 10$ 
BBCC s'#SCH$v_srp, w'scH$GB_SIP, 5 $ 

5$: ENBINT 
RSB 

10$: PUS HR #'M(R6, R7, Rtl, R"l, R10, R11, AP, FP) 
MOVAQ w'sCH$AQ_CQMOH[R2], R3 

MOVL (R3),Rt; 
CMPB #DYN$C_PCB,PCB$B_TYPE(Rt;) 
BNEQ QEMPTY 

Notes 

( 1) 

(2) 

(3) 
(4) 

Scheduler's Selection of Execution Candidate 

SCH$IDLE: 
SETI PL 
MOVB 
BRB 

SCH$SCHED: : 
SETI PL 

FFS 
BEQL 

MOVAQ 
REM QUE 

#IPL$_SCHED 
#32, w'sCH$GB_PRI 
SCH$SCHED 

#IPL$_SYNCH 

#0, #3 2, w'sCH$GL_CQMQS, R2 
SCH$IDLE 

WSCH$AQ_COMOH[R2], R3 
@(R3)+,Rt; 

At this point, the swapper has found an inswap candidate. It then takes the steps necessary to bring this process into memory. The scheduler, on 
the other hand, continues executiqn. The REM QUE instruction shown above for the scheduler is duplicated below to emphasize that, while a 
long time elapses between inswap candidate selection and completion of the inswap, there is no time lapse for execution selection. 

Some time later, the inswap operation,completes. The swapper rebuilds the working set list and the process page tables. The parallel resumes when 
the swapper calls the scheduler to make the newly inswapped process computable. 

(1) IPL is raised to synchronize access to the scheduler's database. 
(2) The highest priority (COMO/COM) queue is selected. 

(3) The address of its forward pointer is loaded into R3. 
(4) The address of the selected PCB is loaded into R4. 



State Change from COMO to COM 

SCH$SCHEP: 
REM QUE (Rt;) ,R1 

BNEQ 1D$ 
MOVZWL PCB$W_STATE(RL;),R1 
BBC R1,EXESTATE,1D$ 
MOVZBL PCB$B_PRI(RL;),R1 
BLBC PCB$W_STATE(RL;),5$ 
ADDL #32,Rl 

5$: BBCC R1' w'scli$GL_COMQS '1D$ 
1D$: MOVB RD, PCB$B_PRI (Rt;) 

MOVL #SCH$C_CQM, R1 

3D$: MOVW R1,PCB$W_STATE(RL;) 
MOVAQ L 'SCH$AQ_CQMT[RD], R1 
BBSS RD' w'scHGLCOMQS' L; D $ 

L;D$: INSQUE (Rt;) ,i(R1)+ 
RSB 

Notes 

(5) 

(6) 
(7) 

(8) 

(9) 

2D$: 

State Change from Computable to Current 

REM QUE 
BVS 
BNEQ 

BBCC 

i(R3)+,RL; 
QEMPTY 
2D$ 

R2, W'SCH$G1-COMQS, 2D$ 

CMPB #DYN$C_PCB,PCB$B_TYPE(RL;) 
BNEQ QEMPTY 
MOVW #SCH$C_CUR,PCB$W_STATE(RL;) 

MOVL RL; 'w'sCH$GL_CURPCB 

At this point, the parallel ends. If the process just made computable is of higher priority than the swapper, that process will be scheduled as soon 
as the IPL is lowered below 3 and the rescheduling interrupt occurs. In other cases, the process will not execute until it becomes the highest 
priority computable process. The scheduler's service routine continues its operation, placing the selected process into execution. 

(5) Remove the selected PCB from former state (COMO/COM). 
(6) Bias Rl so that it points to SCH$GL_COMOQS, the summary 

longword for the COMO state. (This is noted so the BBCC instruc­
tion makes sense.) 

(7) If the removal of the PCB emptied the queue, clear the associated 
priority bit in the summary longword. 

Figure 17·1 

(8) Load the STATE field in the PCB with the new state (COM/CUR) of 
the process. 

(9) Finally, place the PCB into its new scheduling queue. 

ParaHels between Inswap Candidate Selection by the Swapper and Execution Candidate Selection by the Scheduler 
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17.2.2 
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There is one optimization that the swapper performs that may prevent an 
eventual outswap. The swapper only inswaps compute-bound low priority 
processes at a rate determined by the special SYSBOOT parameter SWPRA TE. 
(The definition of such a process is one whose current priority is equal to its 
base priority, which priority is less than or equal to the SYSBOOT parameter 
DEFPRI.) The inswap is abandoned if all of the following are true: 

• The swapper is attempting to inswap such a process. 
• The process will not fit. 
• The SWPRA TE interval has not yet expired. 

Each time that the swapper successfully inswaps one of these so-called 
cruncher processes, it resets its inswap clock to contain the current time plus 
SWPRATE. 

Selection of Shrink or Outswap Candidates 

When the swapper must resort to shrinking or swapping resident processes to 
make room for a computable (but outswapped) process, it must determine 
which process to select first. The examination order for potential outswap 
candidates attempts to modify last those processes that would suffer the 
most from a working set reduction or an outswap. Note that this algorithm is 
not altogether straightforward; some processes benefit from being swapped, 
rather than having their working sets reduced. 

Any time that free pages are gained by action of the swapper, a check is 
made to see if there are enough pages on the free and modified page lists to 
satisfy the deficit. If enough pages are available, the swapper completes its 
actions and hibernates. 

The swapper maintains a table (in module OSWPSCHED) that determines 
the order and conditions for which the various resident scheduling states are 
examined. When the swapper searches for candidates, it starts at the first 
section in its table and evaluates all the processes indicated by that section. 
For each section in the table, the swapper makes three passes looking for 
candidates. On each pass, the criteria for a process to remain inswapped in­
crease in severity. When all three passes have been completed for all the 
processes represented by the section, the swapper evaluates the next section 
in the table. 

The selection table is shown in Table 17-2. Note that the table may have 
more than one scheduling state in each section of the table. These states are 
viewed by the determination algorithm as being more or less equivalent in 
their requirements. Processes cannot be outswapped if they have locked 
themselves into the balance set. 

In addition to the process's scheduling state, the following characteristics 
can be used to select processes: 
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Table 17-2: Selection of Shrink and Outswa,p Candidates 

Selection dependent on: FLAGS 
Process Direct Initial 
State IIO! Priority! Quantum! LONGWAIT SWAP ASAP SWPOGOAL 

SUSP No No No 0 0 0 
LEF No No No 0 
HIB No No No 1 0 
CEF No No No 0 0 1 

LEF No No No 0 0 1 

HlB No No No 0 0 1 

FPG No Yes No 0 0 

CO LPG No Yes No 0 0 
MWAIT No No No 0 0 
CEF Yes Yes Yes 0 0 0 
LEF Yes Yes Yes 0 0 0 
PFW No Yes Yes 0 0 
COM No Yes Yes 0 0 

• In some entries, processes that have not completed their initial quantum 
(those that have the initial quantum flag PCB$V _INQUAN set in 
PCB$L_STS) are not considered as candidates for outswap. There are two 
circumstances under which the swapper does not make the initial quan­
tum check: a real-time process (a process whose priority is greater than or 
equal to 16) must be swapped in, or the swapper has failed to swap out a 
process on the SYSBOOT parameter SWPF AIL number of tries. 

The swapper maintains a failure counter that records the number of 
times that it attempted to locate an outswap candidate and failed. When 
this count reaches a value equal to SWPF AIL, the swapper ignores the 
setting of the initial quantum flag. The counter is reset each time that an 
outswap candidate is successfully located. 

• In some entries, processes can be considered for swapper action if their 
priority is less than or equal to that of the potential inswap process (stored 
in global location SWP$GB_ISWPRI). 

• Processes that are performing direct I/O are selected later than those that 
are not. If a process is doing direct I/O and is waiting on an event flag, the 
swapper assumes that the event flag wait is associated with the direct I/O. 
The motivation behind delaying direct I/O process selection is the desire 
to avoid the overhead of swapping the process, only to have the process's 
state change to COM, even before the outswap completes. 

• The following three flags are used in the selection of processes. The flags 
are maintained for table entries and direct the swapper to include specific 
processes in the table entry or to take specific action on one of the passes 
through the table entry. 
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LONGWAIT 

SWAP ASAP 

SWPOGOAL 

When this flag is set, processes can be included in the 
table entry if they have been waiting in a scheduling state 
for longer than the SYSBOOT parameter LONGWAIT. 
This flag is only applicable to processes in the LEF or HIB 
scheduling states. 

The effect of the LONGWAIT flag is to subdivide the 
processes in LEF and HIB scheduling states into processes 
that have been waiting a long time to become computable 
and those that have been waiting a short time. The philos­
ophy here is that processes that have been waiting a long 
time will probably wait longer still, whereas those that 
have only been waiting a short time could become com­
putable rather quickly. 

This flag indicates that the swapper must swap out proc­
esses indicated by this state, after reducing their working 
set to WSQUOTA. The processes indicated by a table 
entry with SWAP ASAP set are computable or are likely to 
become computable very soon. If the system needs mem­
ory badly enough, one of these processes will be swapped 
out at its current size. When the outswapped process be­
comes computable again, it will not have to waste com­
pute time rebuilding its working set. 

This flag indicates that the swapper must shrink the 
working set size of processes indicated by the table entry 
to SWPOUTPGCNT. 

The three passes made on each table section are as follows: 

1. The first pass reduces extended working sets to WSQUOT A. If the 
SW AP ASAP flag is set for the table section, processes are shrunk and then 
outswapped as they are processed. 

2. If the current section of the selection table is affected by the SWPOGOAL 
flag, the second pass reduces the working set size of processes indicated by 
this section. Working sets are reduced to the SYSBOOT parameter 
SWPOUTPGCNT. 

3. In the third pass, processes selected by this section are swapped out of 
physical memory. 

When the swapper scans a series of processes queued to a particular priority 
within a scheduling state, the scan begins with the most recently queued 
entry (at the tail of the queue). This starting point insures that the longer a 
process has been waiting in a queue, the less chance it has of being shrunk or 
swapped. 



17.2 Swap Scheduling 

Table 17-3: Events That Cause the Swapper or Modified Page Writer to Be Awakened 

Event 

Process that is outswapped 
becomes computable 

Quantum End 

CPU Time Expiration 

Process Enters Wait State 

Modified Page List Exceeds 
Upper Limit Threshold 

Free Page List Drops Below 
Low Limit Threshold 

Free Page Limit Exceeds 
Upper Limit Threshold 

Balance Slot of Deleted 
Process Becomes Available 

Process Header Reference 
Count Goes to Zero 

System Timer Subroutine 
Executes 

Module 

RSE 

RSE 

RSE 

SYSWAIT 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

SYSDELPRC 

PAGEFAULT 

TIMESCHDL 

Additional Comments 

The swapper will attempt to make 
this process resident. 

An outswap previously blocked by 
initial quantum flag setting may 
now be possible. 

The process may be deleted, allowing a 
previously blocked inswap to occur. 

The process that entered a wait state 
may be a suitable outswap candidate. 
(For example, priority may not be 
important for this wait state.) 

Modified page writing is performed 
by swapper. 

The swapper must balance free page 
count by: 
1. Writing modified pages 
2. Swapping headers of previously 

outswapped process bodies 
3. Swapping more processes 

A process that could not be inswapped 
due to lack of physical pages 
may now fit. 

A previously blocked inswap may now 
be possible. 

A process header can now be outswapped 
to join a previously outswapped 
process body. 

The swapper is awakened every second 
to check if there is any work 
to be done. 

17.2.3 System Events that Trigger Swapper Activity 

The swapper spends its idle time in a hibernating state. Those components 
that detect a need for swapper activity wake the swapper (by calling routine 
SCH$SWPWAKE). Table 17-3 lists the system events that trigger a need for 
swapper activity, the module that contains the routine that detects each 
need, and the reason why the swapper needs to be informed about these sys­
tem events. 

The swapper does not worry about why it was awakened. Every time that it 
is awakened, it tends to all of its responsibilities. The main loop of the swap­
per performs the following steps: 
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1. If the free page count is too low, the list is replenished, which might result 
in an outswap of a process if modified page writing (Step 2) will not free 
enough physical pages. 

2. Modified pages are written. Every time the swapper is awakened, the mod­
ified page writer is called. If the size of the modified page list exceeds its 
upper limit threshold (SCH$GL_MFYLIM), modified pages will be written 
until the size of the list falls below the low limit threshold (SCH$GL_ 
MFYLOLIM). 

There are times when the swapper wants to flush the entire modified 
page list. The logic of the modified page writer requires that both of these 
threshold parameters be zeroed for the list to be flushed. The last step that 
the modified page writer takes before exiting is to restore the two modified 
page list thresholds to the values described by the SYSBOOT parameters 
MPW _HILIMIT and MPW _LOLIMIT. 

3. The swapper attempts to inswap a process in the COMO state (if one 
exists). This attempt can fail if there are not enough physical pages to 
accommodate the outswapped process and none of the resident processes 
are suitable outswap candidates. 

4. The fact that the swapper is a separate process that executes fairly fre­
quently (at least once a second) makes it a convenient vehicle for testing 
whether a powerfail recovery has occurred and, if so, notifying all proc­
esses that have requested power recovery AST notification (with the Set 
Powerfail Recovery AST system service). The details of this delivery 
mechanism are described in Chapter 27. 

5. Finally, the swapper puts itself into the hibernate state, after checking its 
wake pending flag. If anyone (including the swapper itself in one of its 
three main subroutines) has requested swapper activity since the swapper 
began execution, the hibernate is skipped and the swapper goes back to 
Step 1. 

17.3 SWAPPER'S USE OF MEMORY MANAGEMENT DATA 
STRUCTURES 

17.3.1 
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In Chapter 16, the memory management data structures that are used by 
both the pager and the swapper were described. The discussion here will 
review those structures and add descriptions of those structures that are used 
exclusively by the swapper. 

Process Header 

The bulk of information that the swapper uses in managing the details of 
either inswapping or outswapping is contained in the process header. The 
process page tables contain a complete description of the address space for a 
given process. 



17.3 Swapper's Use of Memory Management Data Structures 

The working set list describes those PTEs that are valid. This list is crucial 
for the swapper because it is only the process working set that will be written 
to backing store when the process is outswapped. In a similar fashion, when 
it is time for a process to be inswapped, the working set list in the process 
header in an outswapped process describes what the rest of the process looks 
like in the swap file. 

17.3.1.1 Working Set List. The working set list describes the portion of a process vir­
tual address space that must be written to the swap file when the process is 
outswapped. A page in the process working set can be in one of the following 
three states: 

1. The page is valid. 
2. The page is currently being read into memory. The swapper treats page 

reads like any other 1/0 in progress when swapping a process. This treat­
ment is described in Section 17.4. 

3. The process page table contains a global page table index and the indexed 
global page table entry indicates a transition state. The swapper handles 
global pages in a special manner when outswapping a process. This treat­
ment is also described in Section 17.4. 

The operation of the swapper's scan of the process working set list at outswap 
is discussed in Section 17.4. 

17.3.1.2 Process Page Tables .. The working set list does not supply the swapper with 
all the information necessary to outswap a process. Other information is con­
tained in either the valid (or transition) PTE or in one of the PFN array ele­
ments associated with the physical page. Each working set list entry effec­
tively points to a different process (or system) page table entry that contains a 
page frame number. The PTE is copied to the swapper's 1/0 map and then the 
contents of the BAKarray element for this physical page are put back into the 
process PTE. These actions eliminate any ties between an outswapped 
process's page tables and physical memory. 

17.3.1.3 . Process Header Page Arrays. The breaking of ties between process PTEs and 
physical memory is straightforward for process pages. The contents of the 
BAK array element are simply merged into the PTE. However, process header 
pages are also a part of the process working set. These pages reside in system 
space and are mapped by system page table entries that map the balance slot 
in which the process header resides. 

The relinquishing of the balance slot implies that these SPTEs must also be 
surrendered. There is no analogous way to store the BAK array contents for 
process header pages. For this reason, the process header page arrays (see Fig­
ure 14-8) exist in the process header. There exists an array element for each 
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page in the process header. When a process is outswapped, those process 
header pages currently in the working set have their BAK addresses put into 
the corresponding array elements in the process header page BAK array. 
When the process is swapped back into memory, the process header pages can 
be scanned and the BAK contents copied from the array back into the PFN 
BAK array elements for the physical pages that contain the process header. 

In a similar manner, it is necessary to remember where each process header 
page fits into the working set. This record keeping is done by storing the 
WSLX PFN array element into the corresponding process header page WSLX 
array element. The use of this array while the process header is being rebuilt 
following inswap prevents a prohibitively long search of the working set list 
for each process header page. 

Swapper 1/0 Data Structures 

Like the pager, the swapper uses the conventional VMS I/O subsystem. It 
allocates its own I/O request packet and fills in some of the fields that will be 
interpreted in a special manner by the I/O postprocessing routine. After these 
fields have been filled in, it jumps to one of the swapper I/O entry points in 
module SYSQIOREQ (EXE$BLDPKTSWPR or EXE$BLDPKTSWPW) that fills 
in an appropriate function code and queues the packet to the appropriate disk 
driver. Table 15-1 shows how the I/O request packet is used by the swapper 
for its I/O activities. 

Two other structures are used by the swapper. The system maintains a 
page file control block for each page and swap file in the system. The swapper 
uses a special I/O array that allows it to read or write a process working set, a 
collection of virtually discontiguous pages, in one or a small number of I/O 
requests. 

17.3.2.1 Page File Control Blocks Used by the Swapper. Figure 14-23 shows the layout 
of a page file control block, the structure that allows a page or swap file to be 
located on disk. Notice that the window control block pointer and virtual 
block number field are located at the same offsets in page file control blocks 
and in process or global section table entries, which allow these data struc­
tures to be used by common routines that need not distinguish the type of 
structure being used to describe a memory management I/O request. 

17.3.2.2 Swap File Initialization. When the system is initialized, the SYSINIT process 
initializes the swap file SYS$SYSTEM:SWAPFILE.SYS. If alternate swap files 
are installed (with the SYSGEN command INSTALL), the page file control 
block for the new swap file is initialized by SYSGEN. 

17.3.2.3 Allocation of Swap Space. For each process, the indication of which page file 
control block to use is contained in the software PCB in field PCB$L_ 
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WSSWP. The page file control block then indicates the file in which swap­
ping space is assigned to the process. The upper byte is a longword index into 
the array of pointers to page file control blocks (see 'Figure 14-22). 

When a process is first created, its initial swap space is allocated for the 
process in a call to the Create Process ($CREPRC) system service. The initial 
size of the swap space is the SYSBOOT parameter MPW _ WRTCLUSTER 
(minimized by the size of the SHELL process). The page file index and the 
virtual block number of the beginning of the space are recorded in the process 
control block as negative values. A negative value indicates to the swapper 
that this PCB requires an inswap from the SHELL. After the SHELL has been 
swapped in, the values are restored to their positive form. 

If a process control block contains a zero at location PCB$L_ WSSWP, the 
swapping and paging systems assume that the process is permanently mem­
ory resident. Only the processes that are created before the page and swap 
files are located (NULL process, SWAPPER process, and SYSINIT process) are 
permanently memory resident. 

When a process's working set list is extended, a check is made to see if the 
new working set will fit in the currently allocated swap space. If the new 
sized working set list will not fit in the current swap space, a new swap space 
(that is MPW _ WRTCLUSTER pages larger) is allocated. The old swap space 
is deallocated. 

17.3.2.4 Swapper PTE Array. The need for the swapper PTE array that allows it to 
write pages that are virtually discontiguous in the context of the process 
being swapped was described in Chapter 16. This array contains WSMAX 
longwords and is used for both outswap and inswap operations. 

At outswap, the PFN of each page that will be written to the swap file is 
loaded into the array. This array is then passed on to the I/O system to per­
form the write. At inswap, the swapper allocates a number of PFNs to hold 
the process and reads the swap image into these pages. Each PFN is then 
placed into the appropriate page table as the working set list and process page 
tables are rebuilt. 

17.4 OUTSWAP OPERATION 

Outswap is described before inswap because it is easier to explain inswap in 
terms of what the swapper put into the swap file. The swapper does not 
remove processes from the balance set indiscriminately. In fact, the swapper 
tries hard not to swap. Processes are only removed if there is a need for physi­
cal pages .that cannot be satisfied by shrinking working sets and flushing the 
modified page list. 
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Selection of Outswap Candidate 

As is mentioned in Section 17.2, the outswap selection is driven by tables 
that contain a weight for each resident scheduling state. The swapper selects 
the process that it judges will benefit the least from remaining in memory. 
Once a candidate is selected, the swapper prepares the working set of that 
process for outswap. 

Outswap of the Process Body 

The swapper outswaps the process body (PO and Pl pages) separately from the 
process header. There are two reasons for doing this: 

• Fields in the process header (most notably working set list entries and 
process page table entries) are modified as the working set list is processed. 

• The process header may not be swappable at this time due to outstanding 
I/O, pages on the modified page list, or some other reason. 

17.4.2.1 Scanning the Working Set List. The process body is prepared for outswap by 
scanning the working set list. Each page in the working set list must be 
looked at to determine if any special action is required. The swapper looks at 
a combination of the page type (found in the working set list entry as well as 
the PFN TYPE array) and the valid bit. Table 17-4 lists all combinations of 
page type and valid bit setting that the swapper encounters and the action 
that it takes for each. Several cases are discussed further here. 
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The basic step that the swapper must take as it scans the working set list is 
to move each swappable page into the swapper's I/O map. This causes the 
virtually discontiguous pages in the process's working set to appear virtually 
contiguous to the I/O system (see Figures 17-3 and 17-6). For each page, the 
swapper performs the following steps: 

1. Locates the page table entry from the virtual page number field in the 
working set list entry. 

2. Determines any special action based on page validity and page type. 
3. Moves the PFN from the page table entry to the swapper map. 
4. Records the modify bit (logical OR or PTE modify bit and PFN ST A TE 

array saved modify bit) in the working set list entry. 
5. Sets the Delete Contents bit in the PFN STATE array element. This set bit 

will cause the page to be placed at the head of the free page list when its 
reference count goes to zero (which in normal circumstances will be when 
the swap write completes). 

Note that the swapper does not have to explicitly put the contents of the PFN 
BAK array into each PTE. The contents are replaced when the page is released 
(after the swap write completes and all other references to the page have been 
eliminated). 



17.4 Outswap Operation 

Table 17-4: Scan of Working Set List ofOutswap 

The scan of the working set list on outswap is determined by a combination of the physical 
page type (WSL<3:1>) and the valid bit (PTE<31>). 

Type of Page 

1. Process Page 

2. Process Page 

3. System Page 

4. Global Read Only 

5. Global Read Only 

6. Global Read/Write 

7. Page Table Page 

Valid Bit 

Transition 

Valid 

Transition 

Valid 

Action of Swapper for This Page 

a. (STATE= Read fo Progress) 
Treat as page with 1/0 in progress. 
Special action may be taken at inswap 
or by modified page writer. 

b. (STATE= Active) 
Outswap. The page will be put back into 
active transition state at inswap time. 

c. (STATE= Read Error) 
Drop from working set. 

d. No other transition states are possible 
for a page in the working set. 
Outswap page. 
If there is outstanding I/O and 
the page is modified, load SWPVBN array 
element with block in swap file where 
the updated page contents should be 
written when the 1/0 completes. 
It is impossible for a system page to be in 
process working set. The swapper generates 
an error. 

a. If the process page table entry 
still contains a PFN, this page is in 
active transition page. Outswap the page. 

b. If the process page table entry contains 
a global page table index, then the 
global page table must contain a 
transition PTE. The page is dropped 
from the process working set. 

a. If SHRCNT = 1, then outswap. 
b. If SHRCNT > 1, drop from working set. 

It is highly likely that a process can fault 
a page later without I/O. This check avoids 
multiple copies of same page in swap file. 
Drop from working set. It is extremely 
difficult to determine whether the page .in 
memory was modified after this copy was 
written to the swap file. 
Not part of the process body. However, while 
the swapper is scanning the process body, the 
VPN field in the WSL is modified to reflect 
the offset from the beginning of the process 
header because page table pages will 
probably be located at different virtual 
addresses following inswap. 
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17.4.2.2 Pages with Direct 1/0 in Progress. If a (modified) page has outstanding 1/0 
while the process is being outswapped, the swapper takes note of this by 
loading the SWPVBN PFN array element with the virtual block number in 
the swap file where the page is being written to. The page is nevertheless 
swapped at this time to reserve a place for it in the swap file. 

If the 1/0 operation is a read (or it is a write and some other action has 
caused the page to be modified), the physical page will be placed on the modi­
fied page list when the 1/0 completes. MMG$RELPFN, the routine that re­
leases the page, puts pages on the modified page list either if the modify bit 
in the PFN ST A TE array is set or if the PFN SWPVBN array has nonzero 
contents. 

The modified page writer takes special action for modified pages with non­
zero contents in the SWPVBN array. That is, it writes each page to the desig­
nated block in the swap file rather than to its normal backing store address. 

If the 1/0 operation is a write (from memory to mass storage) and the page 
was not otherwise modified, the contents that are currently being written to 
the swap file are good. The page will be placed on the free list when the write 
completes. 

17.4.2.3 Global Pages. Global pages are also given special treatment at outswap. If the 
global page is writeable, it is dropped from the process working set before the 
process is swapped to disk. The task of recording whether the contents that 
are swapped are up to date when the process is brought back into memory is 
more complicated than simply refaulting the page (often without 1/0') when 
the process is swapped back into memory. 

Global read-only pages are only swapped if the global share count (PFN 
SHRCNT array) is one. In all other cases, the page is dropped from the work­
ing set and must be refaulted (most likely without 1/0) when the process is 
inswapped. (Global pages that are explicitly or implicitly locked into the 
process working set are not dropped from the working set.) Global transition 
pages are also dropped from the process working set. 

17.4.2.4 Example of Process Body Outswap. Figures 17-2 through 17-4 show some of 
the special cases encountered by the swapper while it is scanning the process 
working set list. As mentioned in connection with Table 17-4, the key infor­
mation about each page is a combination of the PTE valid bit and the physical 
page type. The order of the scan is determined by the order defined by the 
working set list. Figure 17-2 shows the process working set, the process page 
tables, and the associated PFN database entries before the swapper begins its 
working set scan. Figure 17-3 shows the modified working set and the 
swapper map after the working set list scan but before the 1/0 request is 
initiated. Figure 17-4 shows the state of the page table entries after the swap 
write has completed and the physical pages have been released. 
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17.4 Outswap Operation 

BAK STATE TYPE other 

gstx B IGROl I SHRCNT=1 I 

gstx B IGRWI I SHRCNT=4 I 

pgflx BI PPG 11 REFCNT=2 I 

pstx BIPPGI 

PFN Database Arrays 

SWP$GL_MAP::-

1
-
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---.
1 

Swapper's 
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1. The first working set list entry is a global read-only page. The VPN field of 
the working set list entry locates the page table entry. The PFN field of the 
PTE locates the PFN data associated with this physical page. In particular, 
the global share count for this page is one. (This process is the only process 
that currently has this page in its working set.) The swapper will write this 
page out as part of the swap image for this process. Thus, PFN A is the first 
page in the swapper's PTE array (see Figure 17-3). 

When the swapper's write operation completes, the page will be deleted. 
That is, the PTE array element will be cleared and the page will be placed 
at the head of the free page list (see Figure 17-4). 

2. The second working set list entry is a process page that also has 1/0 in 
progress (REFCNT = 2). This page will be swapped. This fact is illustrated 
by the inclusion of PFN C in the swapper map. 

If the page was previously modified (either the PTE modify bit or saved 
modify bit in the PFN STATE array was set), the virtual block number in 

377 



Swapping 

378 

vpnW 

vpn X 

vpn Y 

vpn Z 

Process Header for 
Swapped Process 

Fixed Portion 
Working Set List 

vpn y GRO 

vpn z PPG 

=-2h ,' ::cc 

vpn x PPG 

Process Section 
Table, etc. 

PO Page Table 

0 gptx(R) 

1 pin D 

1 pin A 

1 pin C 

P1 Page Table 

Figure 17·3 

WSLX PTE 

AD gpteQ 

wsle 1 sCJ gpte R 

wsle2 cB pte Z 

wsle3 
DB pie X 

wsle4 

pteW 

pte X Global Page Table 

gpte Q valid, pin A 

pteY 

gpte R valid, pin B 

pteZ 

Example Working Set List after Outswap Scan 

BAK STATE TYPE other 

gstx B IGRol I SHRCNT=1 I 

gstx G IGRWI 1~~~-$1 
pgllx BI PPGI I REFCNT=2 I 

pstx GIPPGI 

FN Database Arrays 

SWP$GL_MAP:: 

Swapper's 
1/0 Map 

the swap file will be loaded into the SWPVBN array. Loading the SWPVBN 
array will force the page to the modified page list when it is released. If the 
process is still outswapped by the time that the modified page writer gets 
around to writing this page, the page will be written to the block reserved 
for it when the process is first outswapped. 

The page is marked for deletion. That is, when the reference count for 
the page reaches zero (due to completion of both the outstanding I/O and 
the swapper's write), the page is placed at the head of the free page list and 
its PTE array element cleared. 

3. The third working set list entry is a global read/write page. The page is 
dropped from the process working set (see Figure 17-3), meaning that the 
process page table entry is replaced with a global page table index (that 
locates global page table entry R) and the share count for PFN B is decre­
mented. Notice that PFN Bis not a part of the swapper map, which con­
tains a list of the physical pages that will be written to the swap file. 
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17.4 Outswap Operation 
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4. The last working set list entry in this example is a prpcess page with 
nothing special about it. This page is added to the swapper map (PFN D) 
and its contents marked for deletion. The deletion will actually occur 
when the swapper's write operation completes. 

Outswap of Process Header 

The process header is not outswapped until after the process body has been 
successfully written to the swap file. The reason for this illustrates two other 
cases that can keep the process header in memory. Before the process header 
can be outswapped, all ties to physical memory that exist in the process page 
tables must be severed, including not only those pages that were in the proc­
ess working set and written to the swap file but also those pages that are in 
some transition state, most notably pages on the free and modified page lists. 
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17.4.3.1 Partial Outswap. After the process body has been outswapped, the process 
header becomes eligible for outswap. In fact, the header of an outswapped 
process is the first thing that the swapper looks for in an attempt to balance 
the free page list. 

The indication that the process header cannot be outswapped yet is found 
in the process header vector reference count array (see Figure 14-21). This 
array counts the number of reasons (transition pages, active page table pages, 
and so on) that prevent the process header from being outswapped. 

Because the outswap of the header does not have to immediately follow the 
body outswap, it is possible (even probable) that a process header will not be 
swapped in the time between when a process body is outswapped and when 
that process is brought back into memory. Such a situation is referred to as a 
partial outswap. It has an obvious counterpart, a partial inswap, where the 
swapper does not have to allocate a balance slot and bring the process header 
into memory because the header is already resident. 

An important system management point is illustrated here. Process bodies, 
which consume physical memory, are relatively easy to remove from mem­
ory. Process headers consume a smaller amount of physical memory but they 
also occupy a balance slot. The balance slot is not freed for other use until the 
entire header is outswapped. If the SYSBOOT parameter BALSETCNT is set 
to too small a value, the system can reach the unfortunate state where there 
is more than enough physical memory, but computable processes cannot be 
brought into memory because the balance slots are still tied to already 
outswapped processes. This situation can be avoided by setting BALSETCNT 
to an adequate value. See the VAX/VMS System Management and Oper­
ations Guide for details on determining the correct value for SYSBOOT 
parameters. 

17.4.3.2 Scanning the Free Page List. When the swapper locates a process header that 
can be removed from its balance slot, it takes whatever actions are required 
to remove the ties that bind the process header to physical memory. The first 
such step is to eliminate any transition PTEs where the physical page is on 
the free page list. 

Transition PTEs are located by scanning the entire free page list and look­
ing for pages whose PTE array contents lie within the PO or Pl page tables of 
the process header being examined. Whenever such a page is found, the proc­
ess PTE is reset to the contents of the BAK array; the reference count and PTE 
array elements are cleared, and the page is moved from its current location to 
the head of the free page list. 

17.4.3.3 Flushing the Modified Page List. Because the free page list is only one of 
several transition states, the scan of the free page list may not free the process 
header for removal. Pages may be in some other transition state. Transition 
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states that represent some form of 1/0 in progress (release pending, read in 
progress, write in progress) are left alone because there is nothing that the 
swapper can do until the 1/0 completes. 

However, the modified page list can be manipulated. The desired effect is 
removal of all pages from the modified page list, which is triggered by setting 
to zero both the lower and upper limit thresholds for the modified page list. 
Clearing the upper limit guarantees that a nonempty list has exceeded its 
threshold, initiating a request for modified page writing. Clearing the lower 
limit causes modified page writing to continue until the list is empty (below 
the low limit threshold). 

17.4.3.4 Outswap of the Process Header. Once the reference count for the process 
header reaches zero, the header can be outswapped and the balance slot freed. 
The outswap of the process header is entirely analogous to the outswap of a 
process body. That is, the header pages that are not page table pages and the 
active page table pages are scanned and put into the swapper's PTE array to 
form a virtually contiguous block for the 1/0 subsystem. 

There are several differences between the outswap of a process header and a 
process body. When a process body is outswapped, the header that maps that 
body is still resident. When the swapper's write completes and each physical 
page is deleted, the contents of the BAK array element for each page are put 
back into the process PTE. 

Process header pages are mapped by system page table entries for that bal­
ance slot. The SPTEs are not available to hold the BAK array contents be­
cause they will be used by the next occupant of this balance slot. One of the 
process header page arrays (see Chapter 14) is set aside for exactly this pur­
pose. As the process header is processed for outswap, the contents of the BAK 
array for each active header page are stored in the corresponding process 
header page array element. 

At the same time, the location of each header page within the working set 
list is stored in the WSLX array. This array prevents a prohibitively long 
search to rebuild the process header when the process is swapped back into 
memory. 

Once the header is successfully outswapped, the header resident bit 
(PCB$V _PHDRES) in the PCB is cleared and the balance slot is available for 
further use. 

17.5 INSWAPOPERATION 

The inswap is exactly the opposite of the outswap operation. The swapper 
brings the process header, including active page tables, and the process body 
back into physical memory. It then uses the contents of the working set list 
to rebuild the process page tables, an operation that primarily involves updat-
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17.5.1 

17.5.2 

ing each valid PTE to reflect the new PFN used by that PTE. At the same time 
that each page is being processed, the swapper can resolve any special cases 
that existed when the process was outswapped. 

Selection of an Inswap Candidate 

As mentioned earlier in the chapter, the swapper selects a process for inswap 
exactly as the scheduler selects a candidate for execution. The following 
processes may be potential candidates for inswap: 

• Newly created processes 
• Processes in some outswapped wait state that were just made computable 
• Processes that were outswapped while in the computable state 

The highest priority process in this collection is the one selected for inswap. 

Inswap of the Process Header 

If the process header was outswapped when the body was outswapped, it 
must be brought back into memory before the process body can be recon­
structed. Unlike the special operations that took place when the process was 
outswapped, an outswapped process header merely adds two details to the 
inswap operation. 

1. If the header is resident, the number of header pages is subtracted from the 
size of the outswap image in the swap file. That is, whether the header is 
resident or not determines the total number of blocks that must be read 
from the swap file and the virtual block number where the read should 
begin. 

2. If the header was swapped, those process parameters that are tied to a 
specific balance slot (that is, specific system virtual or physical addresses) 
must be adjusted to reflect the new locations in virtual or physical address 
space. These include the following: 

• Each SPTE must be loaded with the PFN that contains the contents of 
each process header page. 

• The virtual addresses of the PO and Pl page tables must be calculated 
and loaded into their locations in the hardware PCB. 

• The physical address of the hardware PCB must be calculated and 
loaded into the software PCB (in field PCB$L_PHYPCB). 

• Finally, the Pl pages that double map the process header pages that are 
not page table pages must be loaded with the new page frame numbers 
that contain these pages. 

17.5.2.1 Rebuilding the Process Header. When a process header is read from the swap 
image into a new balance slot, the SPTEs that map each balance slot page 
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must be loaded with the PFNs from the swapper map that contain each 
header page. In addition, the PFN database must be set up for each of these 
physical pages. The swapper does all this work in a very simple loop that it 
executes for each header page. 

The simplicity (and speed) of the loop results from the use of the two proc­
ess header page arrays that exist in the process header. These arrays allow the 
PFN BAK and WSLX arrays to be loaded with their previous contents (be­
cause the two header arrays were loaded when the process was outswapped). 

17.5.2.2 Pl Window to the Process Header. All of the process header pages except 
process page tables are double mapped with a range of Pl addresses. This 
double mapping is done for the following reason. When a process header is 
outswapped and subsequently inswapped, it probably resides in a different 
balance slot. Any routine that stores that process header address in a register 
and then references header locations with a displacement from this register 
might be referencing the header of another process if some scheduling and 
swapping occurred between obtaining the header base address and later refer­
ences using it. 

17.5.3 

To avoid this problem, a range of Pl space is set up by the swapper to map 
these same header pages. The Pl pages are mapped in such a way that, even if 
an outswap and later inswap occur between two instructions, the Pl. virtual 
addresses of the process header pages do not change. The conventions that 
the operating system observes about header references are these: 

• Any reference to the process header should use the Pl address (CTL$GL_ 
PHD contents point to the Pl map of the process header). 

• Any reference to the system space header must execute at IPL 7 (IPL$_ 
SYNCH) to prevent a swap. 

• Any reference to process page tables must execute at IPL 7 because the 
page table pages are not double mapped. 

There are two implications for the operating system here. 

• These physical pages are not kept track of in any way through reference 
counts or any other technique. However, all of these header pages are a 
permanent part of the process working set. 

• The Pl page table page that maps these pages must also be a permanent 
member of the process working set. 

Rebuilding the Process Body 

The process header must be put into a known state before the process body 
can be put back into the approximate shape it was in before the process was 
outswapped. If the header was never outswapped, there is very little that has 
to be done. If the header was outswapped, the steps just described are taken to 
put the process header back together again. 
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17.5.3.1 Rebuilding the Working Set List and Process Page Tables. The rebuilding of 
the process body involves a simple scan of both the swapper map and the 
process working set list. Recall that at outswap, the key to each special case 
was the combination of physical page type and the setting of the valid bit in 
the page table entry. On inswap, the key to each special case is the contents 
of the page table entry located by the virtual page number field in the work­
ing set list entry. An approximation of swapper activity for each page is as 
follows: 

1. The page table entry is located from the VPN field of the WSLE. 
2. In the usual case, the original contents of the PTE are put into the PFN 

BAK array and the PFN from the swapper map is loaded into the now valid 
PTE. 

3. If for some reason a copy of the page already exists in memory, then that 
page is put into the process working set, and the duplicate page from the 
swapper map is released to the front of the free page list. 

Table 17-5 contains a detailed list of the different cases that the swapper can 
encounter when rebuilding the process page tables. Three of the cases deserve 
special comment. 

17.5.3.2 Pages with 1/0 in Progress When Outswap Occurred. Pages that had I/O in 
progress when the process was outswapped were written to the swap file 
anyway to reserve space. If the page was previously unmodified, then it 
would be put onto the free page list when both the swap write and the out­
standing write operation completed. If the page was previously modified, 
then it would be put onto the modified page list when both the swap write 
and the outstanding write operation completed (because the contents of the 
SWPVBN array were nonzero). 

In either case, it is possible for the process to be swapped back in before one 
of these physical pages was reused. The swapper uses the physical page that is 
already contained in the process PTE (as a transition page) and releases the 
duplicate physical page from the swapper map to the front of the free page 
list. 

In the case of a page on the free page list, this decision is simply one of 
convenience. In the case of a page on the modified page list, the contents of 
the page in the swap image are out of date and the swapper has no choice but 
to use the physical page that is already in memory. 

17.5.3.3 Resolution of Global Read-Only Pages. The only possible global page that 
could be in the swap file is a global read-only page that had a share count of 
one when the process was outswapped (or a page that was explicitly locked). 
All other global pages were dropped from the process working set before the 
process was outswapped. 
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Table 17-5: Rebuilding the Working Set List and the Process Page Tables at lnswap 

At inswap time, the swapper uses the contents of the page table entry to determine what 
action to take for each particular page. 

Type of Page Table Entry 

1. PTE is valid. 

2. PTE indicates a trans1t10n page 
(probably due to outstanding 1/0 
when process was outswapped). 

3. PTE contains a global page table 
index (GPTX). 

(Page must be global read-only 
because global read/write pages 
were dropped from the working 
set at outswap time.) 

4. PTE contains a page file index or a 
process section table index. 

Action of Swapper for This Page 

Page is locked into memory and was never 
outswapped. 

Fault transition page into process working 
set. Release duplicate page that was just 
swapped in. 

Swapper action is based on the contents of 
the global page table entry (GPTE) 

a. If the global page table entry is valid, add 
the PFN and the GPTE to the process 
working set and release the duplicate 
page. 

b. If the global page table entry indicates a 
transition page, make the global page 
table entry valid, add that physical page 
to the process working set, and release 
the duplicate page. 

c. If the global page table entry indicates a 
global section table index, then keep the 
page just swapped in, and make that the 
master page in the global page table 
entry as well as the slave page in the 
process page table entry. 

These are the usual contents for pages that 
did not have outstanding 1/0 or other page 
references when the process was outswapped. 

The PFN in the swapper map is inserted 
into the process page table. The PFN arrays 
are initialized for that page. 

There are two different cases that the swapper will find when rebuilding 
the process page tables. In either case, the process page table entry contains a 
global page table index so the determining factor is the contents of the global 
page table entry. 

1. The global page table entry contains a global section table index. In this 
case, the physical page from the swapper map is added to the global page 
table entry as well as the process page table entry. 

2. It is possible that the global page was referenced by some other process 
while this process was outswapped. In that case, the global page table 
entry might contain a transition or valid PTE. In either case, the PFN that 
is already in the global page table entry is kept. (If the GPTE is in transi-
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tion, it is made valid.) The duplicate PFN from the swapper map is re­
leased to the front of the free page list. 

17.5.3.4 Example of an Inswap Operation. To illustrate at least some of the special 
cases that the swapper encounters when a process body is swapped back into 
memory, Figures 17-5 through 17-7 contain an example of an inswap opera­
tion. Note that this example is not related to the outswap example used 
before (see Figures 17-2 to 17-4). This example is tailored to illustrate the 
interesting cases the swapper can encounter during an inswap operation. 

386 

Figure 17-5 shows the state of the process header after the process has been 
selected as an inswap candidate. Figure 17-6 shows that four physical pages 
have been allocated to contain the four working pages that the example is 
describing. Figure 17-7 shows the rebuilt process page tables and the PFN 
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Figure 17-5 
Working Set List and Swapper Map before Physical Page 
Allocation 
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Figure 17-6 
Working Set List and Swapper Map after Physical Page 
Allocation 

SWP$GL_MAP::~ 

Swapper's 
1/0 Map 

database changes that result from rebuilding the working set and process 
page tables. 

1. The first working set list entry locates virtual page number X. This PTE 
contains a global page table index. The referenced global page table entry 
(GPTE T) contains a global section table index, indicating that the global 
page table entry is not valid. 

The page frame number (PFN D) is put into the process page table. It is 
also added to the global page database by making the GPTE valid (see 
Figure 17-7), putting PFN D into the GPTE, and updating the PFN data for 
physical page D to reflect its new state. 

2. The next working set list entry is a process page mapped by PTE W (see 
Figure 17-6). This PTE contains a process section table index. The PTE is 
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Working Set List and Rebuilt Page Tables 
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updated to contain PFN C and the PSTX is stored in the BAK array ele­
ment for that page (see Figure 17 · 7). Other PFN-arrays are updated accord· 
ingly. 

3. The next working set list entry (that locates PTE Y) is exactly like the 
first, as far as the process data is concerned. However, the global page table 
entry (GPTE S) is valid, indicating that another copy of this page already 
exists. (This second copy could only have happened if another process 
faulted the page while this process was outswapped.) 

The duplicate page (PFN E) is released to the front of the free page list. 
The process page table entry is updated to contain the physical page that 
already exists (PFN B) and the share count for that page is incremented 
(from three to four). 

4. The fourth working set list entry looks just like the second. However, the 
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process page table entry indicates a transition page. (This implies that the 
header in this example was never outswapped.) 

The action taken here is similar to step 3, where a duplicate global page 
was discovered. The page just read (PFN F) is released to the head of the 
free list. The transition page (PFN A) is faulted back into the process work­
ing set by removing the page from the free list, setting its state to active, 
and turning the valid bit in the PTE back on. 

17.5.3.5 Final Processing of the Inswap Operation. After the working set list has been 
scanned and the process page tables rebuilt, the process is ready to have its 
state changed from computable but outswapped to computable and resident. 
Several other scheduling details must be taken care of before the scheduler is 
notified. 

1. A new value of ASTLVL is calculated and loaded into the hardware PCB in 
the process header. ASTs may have been enqueued to the process while it 
was outswapped. The hardware PCB, which contains a copy of the 
ASTL VL register, was not available while the header was not resident. 

2. The resident bit and the initial quantum bit in the status longword in the 
software PCB are set. 

3. A new quantum interval is loaded into the process header. 
4. Finally, the scheduler is called to make the process computable. 
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18 1/0 System Services 

Delay not, Caesar. Read it instantly. 

-fulius Caesar 3, l 

Here is a letter, read it at your leisure. 

-Merchant of Venice 5,1 

All I/O operations performed on a device are requested using the I/O system 
services. Sometimes, in addition to being called directly by the user, the I/O 
system services are called on behalf of a user by system components, such as 
RMS. 

This chapter describes the following topics: 

• What must be done before an I/O request can be made (channel assignment 
and device allocation) 

• How an I/O request is sent to a device driver 
• How a user is notified of the completion of an I/O request 
• How a user can obtain information about a particular device or I/O request 

18.1 ASSIGNING AND DEASSIGNING CHANNELS 

18.1.1 

In order to request an 1/0 operation on a device, a process needs to identify 
the device to the system. The software mechanism used to link a process to a 
device is called a channel. Once a user establishes a channel to a device (using 
the $ASSIGN system service), the user may issue 1/0 requests (with the 
$QIO system service) for that device by specifying the channel number as­
signed to the device. If the user no longer wants to use the device, the 
$DASSGN system service can be used to deallocate the channel assigned to 
the device. 

Channel Assignment 

A channel is described by a channel control block (CCB) table, located in a 
dedicated portion of Pl space (see Figure 1-7 and Table 26-4). When a channel 
is assigned to certain nonshareable devices, the user may also associate a 
mailbox with that device to receive status information such as the arrival of 
unsolicited input from a terminal. It is up to the device driver for each device 
to either use or ignore this associated mailbox. The VAX/VMS Guide to Writ­
ing a Device Driver contains a complete description of the CCB. 

The $ASSIGN system service calls on the system routines IOC$FFCHAN 
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and IOC$SEARCHDEV (in IOSUBPAGD) to find a free 1/0 'channel (CCB), 
and to find the unit control block (UCB) for the device that is being assigned. 
After that, one of the paths described in the following sections is taken, de­
pending on whether the device is one of the following: 

• A local device (not located on another node) 
• A spooled device 
• The network device NET 
• A re~ote process or task (located on another node) 

18.1.1.1 Local Device Assignment. This is the normal path through the Assign Chan­
nel system service. 
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1. A check is made to see if the device is allocated to another process that is 
not a parent process of the process assigning the channel. 

2. The DEV$V _SHR bit in UCB$L_DEVCHAR is checked to see if the de­
vice is a shareable device. If the device is nonshareable and the volume 
protection and owner UIC allow it, the device is implicitly allocated to the 
process (by placing the process ID, from PCB$L_PID, into UCB$L_PID). 

The UCB address is stored in CCB$L_UCB. Whenever the user issues an 
1/0 request, this pointer is used to locate the device. 

3. If an associated mailbox was requested, it is identified by placing the UCB 
address (of the mailbox) in the UCB$L_AMB field of the UCB for the de­
vice to which the channel is being assigned. The UCB$W _REFC field of 
the associated mailbox is incremented, and the CCB$V _AMB flag is set in 
CCB$B_STS to indicate that an associated mailbox is present. Note that 
no association is made if one of the following is true: 

-The device is a file-oriented device (identified by the DEV$V _FOD bit 
in UCB$L_DEVCHAR). 

-The device is shareable (DEV$V _SHR in UCB$L_DEVCHAR). 
- The device already has an associated mailbox (the UCB$L_AMB field is 

nonzero). 

4. The device reference count (UCB$W _REFC) is incremented. 
5. The access mode (plus one) at which the channel is being assigned is 

stored in CCB$B_AMOD. IOC$FFCHAN identifies an unused CCB by 
looking in the CCB$B_AMOD field. If the value stored there is a zero, the 
CCB is not being used. 

6. Any flags associated with the channel (such as'CCB$V _AMB indicating 
that an associated mailbox is present) are stored in CCB$B_STS. 

7. The channel number (really an index into the CCB table in process Pl 
space, provided by IOC$FFCHAN) is returned to the user at the address 
specified in the CHAN argument to $ASSIGN. 

8. The normal successful completion code (SS$_NORMAL) is returned to 
the user. 



18.1 Assigning and Deassigning Channels 

18.1.1.2 Special Action When Assigning A Spooled Device. If the DEV$V _SPL bit in 
UCB$L_DEVCHAR is set, then the device being assigned is a spooled device. 
The only difference in channel assignment for spooled devices is that the 
status field in the channel control block (CCB$B_STS) is cleared. The device 
associated with the spooled device had its UCB address stored in the 
UCB$L_AMB field when the device was set to spooled. When an 1/0 request 
is passed to a spooled device, the $QIO system service recognizes that the 
device is spooled and actually performs the 1/0 request to the associated 
device. 

18.1.1.3 Assigning a Channel to the Network Device. If the device being assigned is a 
network device (that is, the user is assigning a channel to the NET device, 
probably to perform task-to-task communication), the following steps are 
taken: 

18.1.2 

1. A check is made to see that the calling process has NETMBX privilege. 
2. A network UCB is created by IOC$CREATE_UCB (in IOSUBPAGD). 
3. The UCB is made to look like a mailbox UCB that is marked for deletion 

(the UCB$V _DELMBX bit in UCB$W _DEVSTS is set). When the user 
deassigns the channel, the UCB will be deleted. 

4. The user's byte count quota and limit are reduced by the size of the UCB. 
5. The NETDRIVER unit initialization routine is called. 
6. Further processing proceeds as in the case of a local, nonshareable device. 

Channel Deassignment 

The $DASSGN system service deassigns a previously assigned 1/0 channel 
and clears the linkage and control information in the corresponding CCB. 
These tasks are accomplished with the following steps: 

1. Any outstanding 1/0 is canceled. 
2. If a file is open on the channel (indicated by CCB$L_ WIND being non­

zero), then that file is closed (by issuing a $QIOW with the 
IO$_DEACCESS function code, and specifying event flag number 30). 
This method is also used to dissolve logical links. 

3. If any 1/0 is still outstanding (indicated by CCB$W _IOC being nonzero), 
the process is placed into an RSN$_ASTWAIT wait state (waiting for the 
1/0 completion AST(s) to be delivered). Chapter 10 discusses wait states in 
detail. 

4. The channel is actually deassigned by clearing the CCB$B_AMOD field. 
5. If this was the last channel assigned to the device (UCB$W _REFC con­

tains a 0), the device is implicitly deallocated (by clearing UCB$LPID). 
6. If the device is marked for dismount (the DEV$V _DMT bit in 

UCB$L_DEVCHAR is set) and it was not mounted with a VMS ACP (the 
foreign bit DEV$V _FOR is set), the dismount (DEV$V _DMT), mounted 
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(DEV$V _MNT), read check (DEV$V _RCK), write check (DEV$V _ WCK), 
and software write locked (DEV$V _SWL) bits in UCB$L_DEVCHAR are 
cleared. The UCB$L_ VCB field is cleared, and if that field was not zero, 
the volume control block pointed to by that field is deallocated. Also, the 
volume protection mask (UCB$W _PROT) and the software volume valid 
bit (UCB$V _VALID in UCB$W _STS) are cleared. 

7. If UCB$W _REFC equals zero, or if the calling process has allocated the 
device, the associated device driver's cancel 1/0 routine is called to per­
form any device-dependent operations (see the VAX/VMS Guide to Writ­
ing a Device Driver). The reason code CAN$C_DASSGN is passed to the 
cancel 1/0 routine. 

8. If a mailbox was associated with the device when the channel was as­
signed (indicated by CCB$V _AMB in CCB$B_STS), then the linkage with 
the mailbox is cleared by taking these steps: 

a. Clearing UCB$L_AMB 
b. Decrementing UCB$W _REFC for the mailbox UCB 
c. Calling IOC$DELMBX (in IOSUBNPAG) to see if the mailbox UCB 

should be deleted (in case this was the last process referencing a tempo­
rary mailbox) 

9. If the device to which the channel was assigned was a mailbox (indicated 
by the DEV$V _MBX bit in UCB$L_DEVCHAR), IOC$DELMBX is called 
to see if that mailbox should be deleted. 

18.2 DEVICE ALLOCATION AND DEALLOCATION 

A process allocates a device (using the $ALLOC system service) to reserve 
that device for exclusive use. A process deallocates a device (using the 
$DALLOC system service) to relinquish exclusive ownership. The code 
for the $ALLOC and $DALLOC is found in module SYSDEVALC. 

18.2.1 Device Allocation 
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The following steps are taken by EXE$ALLOC to allocate a device: 

1. The generic allocation routine IOC$SEARCHGEN is called to perform 
logical name translation and select a device, if generic allocation was re­
quested. 

2. The process ID (PCB$L_PID) is stored in the device owner field 
(UCB$L_PID). 

3. The device allocated bit (DEV$V_ALL in UCB$L_DEVCHAR) is set. 
4. The device reference count (UCB$W _REFC) is increm:ented. 
5. The access mode at which the device· is allocated is placed in 

UCB$B_AMOD. 



18.2.2 

18.2 Device Allocation and Deallocation 

Any of the following conditions will prevent device allocation: 

• The device is already allocated by another process (UCB$L_PID is non-
zero). 

• The device reference count (UCB$W _REFC) is nonzero. 
• The mounted bit (UCB$V _MNT in UCB$L_DEVCHAR) is set. 
• The spooled bit (UCB$V _SPL in UCB$L_DEVCHAR) is set, and the proc­

ess does not have ALLSPOOL privilege. 
• The device is nonshareable, and the requesting process does not have ac­

cess rights (located through PCB$L_ARB) allowing it to allocate the de­
vice, as determined by the device's owner UIC and volume protection 
(UCB$L_OWNUIC and UCB$W _ VPROT). 

Device Deallocation 

A process may choose to deallocate a single device or all devices allocated to 
it. For each device that is to be deallocated, EXE$DALLOC finds its UCB 
address either directly, from the DEVNAM argument in the $DALLOC call, 
or by examining each UCB in the system. The routine IOC$SEARCHDEV is 
used to relate device names to UCB addresses and to perform logical name 
translations. 

Each UCB in the system can be found by following a linked list of device 
data blocks (DDBs), that name each device controller in the system (the first 
DDB is pointed to by global symbol IOC$GL_DEVLIST). Each DDB contains 
a pointer to the first device UCB on the controller, and all of the UCBs for the 
devices on a given controller are linked together. 

A device is deallocated when the following are true: 

• The UCB$L_PID field matches the PCB$L_PID field of the process issu­
ing the $DALLOC. 

• The access mode at which the deallocate request is being made is at least 
as privileged as the access mode at which the device was allocated. 

• The allocated bit (DEV$V _ALL in UCB$L_DEVCHAR) is set. 
• The device mounted bit (DEV$V _MNT in UCB$L....:DEVCHAR) is clear. 
• The. reference count (UCB$W _REFC) equals 1, indicating that no more 

channels are assigned to the device. 

The device is deallocated by taking these steps: 

1. Clearing the device allocated bit (DEV$V _ALL in UCB$L_DEVCHAR) 
2. Clearing the device owner process id field (UCB$L_PID) 
3. Decrementing the device reference count (UCB$W _REFC) 
4. Calling the device driver's cancel 1/0 routine with the reason code 

CAN$C_CANCEL 
5. Returning the normal successful completion code to the user in RO 

(SS$_NORMAL) 
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18.3 $QIO SYSTEM SERVICE 
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The $QIO system service (in module SYSQIOREQ) allows a user to initiate 
an 1/0 operation by queuing a request to the device's associated driver. Once 
the 1/0 operation has been initiated, control will be returned to the user, who 
can synchronize 1/0 completion in one of three ways: 

• The process can enter an event flag wait state until the 1/0 request com­
pletes, waiting for the specified event flag to be set. 

• The address of an AST routine that will be executed when the 1/0 com­
pletes can be passed to $QIO. In this case, the process can continue execut­
ing or wait, depending on the particular method of synchronization. 

• The 1/0 status block can be polled for a completion status. The status field 
in the IOSB is cleared by $QIO and set by the special kernel mode AST that 
completes an 1/0 request in process context. This last method is not rec­
ommended. 

As an alternative to $QIO, the $QIOW system service may be used, which is 
equivalent to the $QIO system service followed by a $WAITFR system serv­
ice. Using the $QIOW system service guarantees that the 1/0 operation will 
complete before control is transferred back to the user. 

Device-Independent Preprocessing 

EXE$QIO begins preprocessing an 1/0 request with the following steps: 

1. Clearing the specified event flag (or event flag number 0 if np event flag 
was specified) 

2. Validating the device-independent $QIO parameters (event flag number, 
channel number, 1/0 function code, and 1/0 status block) 

3. Verifying that the device is online (UCB$V _ONLINE in UCB$W _STS 
must be set) 

4. Clearing the 1/0 status block (if one was specified) 

An 1/0 request packet (IRP) is allocated from nonpaged pool. If possible, this 
allocation is done from a queue of preallocated IRPs (pointed to by 
IOC$GL_IRPFL). Otherwise, routine EXE$ALLOCIRP in MEMORYALC is 
called to allocate an IRP from the general nonpaged pool area. Obtaining an 
IRP from the preallocated queue takes less time than calling the allocation 
routine. 

The device-independent section of the IRP is initialized, including the fol­
lowing fields: 

• The device-independent $QIO parameters 
• The process base priority (from PCB$B_PRIB) 
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• The process ID 
• The device UCB address 
• The IRP$V _BUFIO flag in IRP$W _STS (which is set for a buffered I/O 

operation, and cleared for a direct I/O operation) 

The process's privileges are checked to guarantee that it may perform the 
requested I/O function. In the course of checking process privileges, 
EXE$QIO converts a read or write virtual 1/0 request function code into the 
corresponding read or write logical function code (unless the virtual request 
is for a file-oriented device, DEV$V _FOD in UCB$L_DEVCHAR is set). 

If an AST was requested, the AST quota (PCB$W _ASTCNT) is decre­
mented, and the AST quota update flag (ACB$V _QUOTA) is set in 
IRP$B_RMOD. 

Control is then transferred to a function decision table (FDT) routine (by a 
JSB) in the selected device driver. This routine is responsible for interpreting 
the device-dependent $QIO parameters (Pl to P6). If the FDT routine returns 
control.to EXE$QIO (by issuing an RSB), EXE$QIO calls another FDT routine 
in the driver. Successive FDT routines are called until an FDT routine exits 
turning control over to a subroutine other than EXE$QIO (for example, 
EXE$QIODRVPKT, EXE$QIOACPPKT, or the user's routine). 

FDT Routines 

Function decision table (FDT) routines are device-specific extensions to 
$QIO. Their primary purpose is to validate the device-dependent $QIO pa­
rameters (Pl to P6). A device driver can include customized FDT routines or 
use some of the general purpose routines that are a part of the system image. 
Although some FDT routines are included in a driver image, they are logi­
cally device-dependent extensions of the $QIO system service. 

FDT routines execute in the context of the process that issued the $QIO 
request. Therefore, they have access to data in the user's PO and Pl address 
space. FDT routines communicate information about the 1/0 request to the 
driver by passing information in the device-dependent section of the IRP. 
FDT routines for direct 1/0 (1/0 done directly to a user buffer) ensure that 
each buffer page is valid and locked into memory. (Buffer pages are locked 
into memory by incrementing the reference count in the PFN database for 
each physical page involved in the transfer.) FDT routines for buffered 1/0 
operations must allocate a buffer from nonpaged pool that will be used by the 
driver for the actual transfer. If the operation is a buffered write, the data that 
is being written is copied into this buffer. System space buffers are required 
because the driver processes the 1/0 request in system context and only has 
access to system virtual address space. FDT routines are described in detail in 
the VAX/VMS Guide to Writing a Device Driver. 
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18.3.3 1/0 Postprocessing 

After a device driver completes an 1/0 operation, it invokes the REQCOM 
macro. This macro jumps to the routine IOC$REQCOM, which places the 
IRP on the 1/0 postprocessing queue and requests a software interrupt at 
IPL$_IOPOST (IPL 4). The 1/0 postprocessing routine (IOC$IOPOST, in 
IOCIOPOST) runs as a response to the software interrupt. It implements the 
device-independent facets of 1/0 completion, and handles paging 1/0 comple­
tion as well (see Chapter 15). 

Some of the 1/0 postprocessing operations (for example, unlocking buffer 
pages, and deallocating buffers) are performed in the I/O postprocessing inter­
rupt service routine (IOC$IOPOST), while other operations (such as writing 
the I/O status block and setting event flags) are performed by a special kernel 
mode AST routine (which executes in process context, and therefore has ac­
cess to process address space). 

When an IRP is removed from the I/O postprocessing queue (with list head 
IOC$GL_PSFL), IOC$IOPOST first determines if the I/O operation was a 
buffered or direct request. 

18.3.3.1 Direct 1/0 Completion. Portions of a direct I/O request can be completed in 
the IPL 4 1/0 postprocessing interrupt service routine without the benefit of 
process context. The following steps are performed in the interrupt service 
routine: 
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1. The process direct I/O count in the software PCB (at offset 
PCB$W _DIOCNT) is incremented, indicating one less outstanding direct 
I/O request. 

2. The buffer pointed to by IRP$L_SVAPTE is unlocked, using the 
IRP$L_BCNT and IRP$W _BOFF fields to determine the size of the locked 
buffer. Buffer pages are unlocked by decrementing their associated refer­
ence counts in the PFN database. This step may result in their being 
placed on the free or modified page list. 

3. The IRP$V _EXTEND bit in IRP$W _STS is checked. If that bit is set, 
it indicates an IRP extension (IRPE) is pointed to by IRP$L_EXTEND. 
The IRPE may contain up to two locked buffers (pointed to by 
IRPE$L_SVAPTE1 and IRPE$L_SVAPTE2, with sizes determined by 
IRPE$W _BOFF1 and IRPE$L_BCNT1, and IRPE$W _BOFF2 and 
IRPE$L_BCNT2, respectively). These buffers, if present, are unlocked, 
and a check is made to see if the IRPE$V _EXTEND bit in IRPE$W _STS is 
set. If so, the same procedure is repeated, until the last IRPE in the linked 
list is found, and its buffers unlocked. 

4. The direct I/O special kernel mode AST (DIRPOST in IOCIOPOST) is 
queued to the process (using the IRP$L_PID field to identify the process to 
which the AST should be queued). The IRP is used as the AST control 
block for routine SCH$QAST (as described in 7). 
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The remainder of I/O completion for a direct I/O request takes place in proc­
ess context in the special kernel AST called DIRPOST, as follows: 

1. The accumulated direct I/O count (stored in PHD$L_DIOCNT) is incre­
mented. This count is an accounting statistic that is reported to the ac­
counting manager (the job controller) when the process is deleted. 

2. The 1/0 in progress counter in the channel control block (CCB$W _IOC) is 
decremented. 

3. If this was the last 1/0 for the channel, and there is a deaccess request for 
the channel pending (CCB$L_DIRP does not equal zero), that deaccess 
request is queued to the ACP (so that a file can be properly closed or some 
similar operation performed), by calling routine IOC$WAKACP. 

4. If an I/O status block was requested by the user, it is written using the 
quadword starting at IRP$L_IOST1 (same offset as IRP$L_MEDIA). 

5. If any IRP extensions (IRPEs) were used, they are deallocated. 
6. The event flag specified in the $QIO call is set (by calling routine 

SCH$POSTEF, whose operation is discussed in Chapter 12). 
7. If the user requested an AST for the $QIO call, the IRP is again used as an 

AST control block, and is queued to the user (the IRP will be deallocated 
by the normal AST processing scheme, as discussed in Chapter 7). 

8. If the user did not request an AST to be delivered upon the completion of 
the $QIO call, the IRP is deallocated. 

18.3.3.2 Buffered 1/0 Completion. The portions of buffered I/O completion that take 
place in the IPL 4 interrupt service routine differ from the direct I/O case 
because of the differences in the way the two kinds of requests are processed. 
The following steps are accomplished by the IPL 4 interrupt service routine: 

1. The process buffered 1/0 count (PCB$W _BIOCNT), the count of outstand­
ing buffered I/O operations, is incremented. 

2. The byte count quota that was allocated for the system buffer is given 
back by adding IRP$W _BOFF to JIB$L_BYTCNT. 

3. If the 1/0 function was a read (bit IRP$V _FUNC in IRP$W _STS is set), the 
BUFPOST routine (in module IOCIOPOST) is used as the special kernel 
mode AST routine address. 

4. Otherwise, DIRPOST is used as the special kernel mode AST routine ad­
dress, and the buffer used to hold the data written to the device, if any, is 
deallocated (the buffer's address is found in IRP$L_SVAPTE). 

The special kernel mode AST called BUFPOST is used for the case of a buf­
fered read operation, because the data must be copied from the system buffer 
to the buffer specified in the original $QIO request. BUFPOST performs the 
following steps: 

1. After the data is copied, the system buffer is no longer needed so it is 
deallocated to nonpaged pool. 
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2. The accumulated buffered I/O count accounting statistic (stored in 
PHD$L_BIOCNT) is incremented. 

The remaining steps that this routine must perform are identical to the oper­
ations performed by DIRPOST. BUFPOST continues at step 2 in that routine. 

18.4 1/0 CANCELLATION 

The $CANCEL system service cancels all I/O issued to a device from a speci­
fied channel by scanning all of the IRPs queued to the device UCB (starting at 
UCB$L_IOQFL). Several conditions must hold for an I/O request to be can­
celed. 

• The request cannot be a virtual request (indicated by the setting of the 
IRP$V _VIRTUAL bit in IRP$W _STS). In general, I/O cannot be canceled 
on disk or tape devices. Drivers for these devices ensure that the 
IRP$V _VIRTUAL bit is set on all requests that cannot be canceled. 

• The requesting process ID (PCB$L_PID) matches the stored process ID in 
IRP$L_PID. 

• The requested channel number in the CHAN argument to $CANCEL 
matches the stored channel number in IRP$W _CHAN. 

The I/O is canceled by taking the following steps: 

1. Clearing the buffered read bit (IRP$V _FUNC in IRP$W _STS) for buffered 
I/O functions (identified by IRP$V _BUFIO in IRP$W _STS) 

2. Placing the SS$_CANCEL function code in the low order word of and 
clearing the high-order word of IRP$L_IOST1 

3. Placing the IRP in the I/O postprocessing queue, and requesting an I/O 
postprocessing software interrupt 

The driver cancel I/O routine is called to allow the driver to perform any 
desired cleanup operations, and to cancel the I/O request currently in prog­
ress. 

If there is a file open on the channel, EXE$CANCEL allocates and initial­
izes an IRP on behalf of the user (and charges the user's buffered I/O quota, 
PCB$W _BIOCNT, for an I/O request). The IRP is queued to the ACP for 
further processing (using routine EXE$QIOACPPKT in SYSQIOREQ). The 
IRP specifies a function code of I0$_ACPCONTROL and uses event flag 
number 31 to indicate I/O completion. 

18.5 MAILBOX CREATION AND DELETION 
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Mailboxes are virtual devices used for interprocess communication. They are 
created by the $CREMBX system service. There are two kinds of mailboxes, 
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temporary and permanent. Temporary mailboxes are deleted automatically 
when no more processes have channels assigned to them, while permanent 
mailboxes must be explicitly marked for deletion using the $DELMBX sys­
tem service. (After being marked for deletion, permanent mailboxes are dele­
ted when no more processes have channels assigned to them). 

Mailbox Creation 

The $CREMBX system service (located in module SYSMAILBX) creates a 
virtual mailbox device named MBn: and assigns an I/O channel to it. 

The routine EXE$CREMBX begins by translating the logical name speci­
fied by the user in the LOGNAM parameter (if any), and finding a free chan­
nel (CCB) to assign to the mailbox (using IOC$FFCHAN). It also verifies that 
the user has the appropriate privilege(s) for the type of mailbox being created: 

• PRMMBX for a permanent mailbox 
• TMPMBX for a temporary mailbox 
• SHMEM for a mailbox in shared memory 

If a logical name has been specified, EXE$CREMBX searches all existing 
mailbox UCBs to see if a mailbox with that name already exists. If a match is 
found and the caller has privilege to access the mailbox (or owns the mail­
box), the reference count for that mailbox (UCB$W _REFC) is incremented, 
and a channel is assigned by taking the following steps: 

1. Placing the mailbox UCB address in CCB$L_ UCB 
2. Placing the access mode at which the channel was assigned (plus one) in 

CCB$B_AMOD 
3. Returning the channel number to the user in the CHAN parameter 
4. Returning with an SS$_NORMAL completion status code 

If the mailbox being created did not previously exist and is a temporary mail­
box, the process buffered I/O byte count quota (JIB$L_BYTCNT) is checked 
to determine if the process has enough quota do the following: 

• Support the creation of a mailbox UCB 
• Buffer messages (according to the value specified in the BUFQUO parame-

ter to $CREMBX) 
• Allow for overhead (256 bytes) in case of process deletion 

If the BUFQUO parameter is not specified, the SYSBOOT parameter 
DEFMBXBUFQUO (stored at IOC$GW _MBXBFQUO) is used for the amount 
of space reserved to buffer messages. 

A logical name block is allocated, if required, which will contain the logi­
cal name specified for the mailbox by the user in the $CREMBX call. Routine 
IOC$CREATE_ UCB (in IOSUBPAGD) is called to actually create the mail-
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box UCB. The routine allocates space for the UCB from nonpaged pool and 
initializes fields in the UCB (using a template UCB found through MB$UCBO 
in DEVICEDAT). IOC$CREATE_UCB performs the following actions: 

1. The mailbox is marked online (the UCB$V _ONLINE bit in set in 
UCB$W _STS). 

2. The reference count (UCB$W _REFC) is set to 1. 
3. The UIC of the creating process (PCB$L_UIC) is established as the owner 

of the mailbox (by loading UCB$L_OWNUIC). 
4. The UCB is identified as being a shareable mailbox (the DEV$V _SHR and 

DEV$V _MBX bits are set in UCB$L_DEVCHAR). 
5. The UCB is linked into the mailbox controller's device list (with 

UCB$L_LINK). 
6. A unit number is assigned to the UCB (in UCB$W _UNIT). The number is 

in the range of 1 to 65535; when all unit numbers in the range have been 
used, the unit numbers start again at 1. Unit numbers that are still in use 
are skipped. 

7. The mailbox controller's device count (CRB$W _REFC) is incremented. 

After IOC$CREATE_UCB returns control, EXE$CREMBX performs the fol­
lowing steps: 

1. It places the buffer quota calculated earlier in UCB$W _BUFQUO. 
2. It places the protection mask specified by the user in the PROMSK param­

eter in UCB$W _ VPROT. 
3. It clears the device owner process ID field (UCB$L_PID). 
4. The quota charge for the mailbox (UCB$W _CHARGE) is computed by the 

sum of UCB$W _BUFQUO and UCB$W _SIZE. 
5. It places the buffer quota plus UCB size in UCB$W _CHARGE. 
6. It places the maximum message size specified by the user in the 

MAXMSG parameter in UCB$W _DEVBUFSIZ. (If MAXMSG was not 
specified, the SYSBOOT parameter DEFMBXMXMSG, stored at 
IOC$GW _MBXMXMSG, is used). 

If the mailbox being created is a permanent mailbox, the UCB$V _PRMMBX 
bit in UCB$W _DEVSTS is set. Three other steps are taken if the mailbox is 
a temporary mailbox: 

• The UCB$V _DELMBX bit in UCB$W _DEVSTS is set to mark the mail­
box for deletion. It will be deleted when the last channel assigned to it is 
deassigned. 
The process byte count limit (JIB$L_BYTLM) is reduced by 
UCB$W _CHARGE. 

• The process byte count quota (JIB$L_BYTCNT) is reduced by 
UCB$W _CHARGE. 



18.5.2 

18.5 Mailbox Creation and Deletion 

Per-Process P1 
Space 

Process Z 

CCBfor 

CCBfor 
Process A 

Process A 

Figure 18-1 

System Virtual Address 
Space 

Static Executive Data 

Mailbox 
Unit Control 

Block O 

Template for 
Other Units 

System Virtual 
Address Space 

Mailbox 
Message Queue 

Mailbox 
Unit Control 

Block n 

Paged Pool 

(Optional) 
Logical Name 

Block 

_MBn: 

First 
Message 

Second 
Message 

Data Structures Associated with Mailbox Creation 

If a logical name was specified for the mailbox, a logical name is created using 
the logical name block allocated earlier. The association with the logical 
name is made through UCB$L_LOGADR. If no logical name was specified, 
UCB$L_LOGADR is cleared. Finally, a channel is assigned to the mailbox in 
the same way as if the mailbox had already existed. The relationships among 
the data structures associated with mailbox creation are pictured in Figure 
18-1. 

Mailbox Creation in Shared Memory 

Note that although the format of a shared memory mailbox UCB is some­
what different from a local memory UCB, the general steps involved in the 
creation of the mailbox are the same. All of the logic is contained within the 
same module (SYSMAILBX). 

One extra level of data structure is required to describe a shared memory 
mailbox. This structure, called a shared memory mailbox control block (Fig­
ure 18-2), is located in the shared memory. The UCBs on each port associated 
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Figure 18-2 
Contents of a Shared Memory Mailbox Control Block 

with the shared memory mailbox contain the (processor-specific) virtual ad­
dress of the mailbox. There are three cases that the Create Mailbox system 
service can encounter when creating a mailbox in shared memory. 

• If the shared memory mailbox control block (Figure 18-2) does not exist (if 
the mailbox does not already exist on this processor or another), it is cre­
ated first. Then, the unit control block in local memory is created. A logi­
cal name block is allocated because shared memory structures always have 
a name associated with them. Finally, a channel is assigned for the creat­
ing process. 

• If the mailbox is being created on this processor for the first time (but 
already exists on another), a UCB is allocated and loaded with parameters 
that describe the mailbox. A bit is set in a mailbox-dependent field indicat­
ing that this mailbox UCB describes a mailbox in shared memory. Finally, 
the address of the shared memory mailbox control block is loaded into the 
UCB. 
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• If the mailbox already exists on this processor, the Create Mailbox system 
service simply assigns a channel to it. 

The data structures required to describe a shared memory mailbox are pic­
tured in Figure 18-3. 

Mailbox Deletion 

The $DELMBX system service (located in module SYSMAILBX) is used to 
mark a permanent mailbox for deletion. The mailbox is actually deleted by 
IOC$DELMBX (in IOSUBNPAG) when its reference count (UCB$W _REFC) 
goes to zero (after the last channel assigned to it has been deassigned, as 
described .in Section 18.1.2). 

The mailbox to be marked for delete is identified by the CHAN argument 
in the $DELMBX call. The channel number is used to locate the CCB, from 
which the mailbox UCB address can be found (in CCB$L_UCB). 
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Figure 18-3 
Shared Memory Mailbox Creation 
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The routine EXE$DELMBX verifies the following: 

1. The UCB is for a mailbox (that the DEV$V _MBX bit is set in 
UCB$L_DEVCHAR). 

2. The mailbox is a permanent mailbox (that the UCB$V _PRMMBX bit is 
set in UCB$W _DEVSTS). 

3. The process has PRMMBX privilege. 

If the above conditions are met, the mailbox is marked for deletion by setting 
the UCB$V _DELMBX bit in UCB$W _DEVSTS. 

The routine IOC$DELMBX actually deletes a mailbox, whether it was 
temporary or originally permanent by taking the following steps: 

1. Verifying that the device to be deleted is a mailbox (DEV$V _MBX is set in 
UCB$L_DEVCHAR), that the reference count (UCB$W _REFC) is zero, 
and that the mailbox has been marked for deletion (UCB$V _OELMBX is 
set in UCB$W _DEVSTS) 

2. Unlinking this UCB from the other mailbox UCBs (using the 
UCB$L_LINK field) for this mailbox controller (because the UCBs for a 
controller are linked together) 

3. Decrementing the controller's device reference count (CRB$W _REFC) 
4. Removing the logical name for the mailbox (if any specified, using a non-

zero value in UCB$L_LOGADR) from the logical name table 
5. Deallocating the logical name block used for the mailbox 

If the mailbox was a temporary mailbox (UCB$V _PRMMBX clear in 
UCB$W _DEVSTS), the byte count limit (JIB$L_BYTLM) and the byte count 
quota (JIB$L_BYTCNT) are updated (because the creation of a temporary 
mailbox required those resources). Any unprocessed messages that were 
queued to the mailbox (and are still stored in nonpaged pool) are deallocated 
(by calling EXE$DEANONPAGED in MEMORYALC). The UCB for the mail­
box is deallocated (by calling EXE$DEANONPAGED). 

18.6 BROADCAST SYSTEM SERVICE 
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The $BRDCST system service (EXE$BRDCST in SYSBRDCST) allows mes­
sages to be sent to one or more terminals (even if an I/O operation is currently 
in progress on the terminal). 

After checking the buffer quota (to make sure enough quota is available to 
buffer the message), a broadcast descriptor block (BRO) is allocated from 
nonpaged pool and initialized. (See Figure 18-4 for the format of a BRD.) 
If the message is to be sent to a single terminal, then EXE$BRDCST performs 
the following actions: 

1. Locates the UCB address for the terminal (specified by the DEVNAM pa­
rameter) by calling IOC$SEARCHDEV 
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2. Verifies that the process (or any parents of the process) either owns the 
terminal (UCB$L_PID equals PCB$L_PID) or has OPER privilege 

3. Verifies that the UCB is for a terminal (DEV$V _ TRM set in UCB$L_ 
DEVCHAR), and that the terminal is online (UCB$V _ONLINE in 
UCB$W_STS) 

4. Places the BRD in a queue of BRDs to be broadcast 
5. Starts a broadcast 

If the message is to be sent to all terminals, EXE$BRDCST first checks for 
OPER privilege and then performs steps 3 to 5 above for each terminal UCB. 
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Before the BRD is placed i:nthe queue of BRDs (step 5) and if the terminal is 
up.owned (UCB$W _REFCNT is zero), EXE$BRDCST verifies that the termi­
nal is not set to AUTOBAUD (TT2$V _AUTOBAUD clear in 
UCB$L_ TT _DEVDP2). The rational behind this step is to make sure that 
broadcast messages are not sent to terminals having an unknown baud rate 
(resulting in garbage on the screen). 

Starting a broadcast involves several steps: 

l. Mailbox-specific information is loaded into the mailbox portion of the 
BRD (BRD$W _ TRMUNIT and BRD$T _ TRMNAME). 

2. If the specified terminal has enabled broadcast to mailbox (bit 
TT2$V _BRDCSTMBX set in UCB$L_ TT _DEVDPI), the broadcast mes­
sage is written to the mailbox associated with the terminal (by calling 
routine EXE$WRTMAILBOX in module MBDRIVER). 

3. A write buffer packet that points to the BRD (see Figure 18-5) is allocated 
from nonpaged pool and initialized. 

4. The write buffer packet is passed to the terminal driver's alternate start 
1/0 entry point (by calling routine EXE$ALTQUEPKT in SYSQIOREQ). 
This routine activates the driver regardless of whether or not an 1/0 re­
quest is in progress for the device. 

5. The terminal driver then accepts the broadcast message, or indicates that 
the message cannot be broadcast (because, for example, the user issued a 
SET TERMINAL/NOBROADCAST or /PASSALL command). 

6. If the message is not accepted by the driver, the write buffer packet is 
deallocated. 

ITY$L_WB_FLINK: Forward Link 

ITY$L_WB_BLINK: Backward Link 

ITY$W_WB_SIZE: 
ITY$B_WB_ TYPE: 
ITY$B_WB_FIPL: 

FIPL l Type I Size of Block 

ITY$L_WB_NEXT: Address of Start of Data 

ITY$L_WB_END: Address of End of Data 

Trv$L_WB_IRP: 0 

ITY$L_WB_RETADDR: Address of Return Fork Routine 

Figure 18·5 
Layout of a Write Buffer Packet 
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7. If the message is accepted by the driver, the broadcast reference count is 
incremented (BRD$W _REFC). 

While the driver is writing the message to the specified terminal(s), the proc­
ess issuing the $BRDCST call is placed in an RSN$_BRKTHRU wait state. 
As soon as BRD$W _REFC goes to zero, indicating all of the broadcast mes­
sages have been sent to the specified terminal(s), .the process is removed from 
the wait state; the BRO is deallocated, and the system service completes. 
The write buffer packet is deallocated after the message is output to the 
terminals. 

18.7 INFORMATIONAL SERVICES 

18.7.1 

Application programs frequently require information about particular de­
vices on the system. The VMS operating system allows a user to obtain spe­
cific information about a particular device using one of several system ser­
vices ($QIO, $GETDVI, $GETDEV, and $GETCHN). The information 
obtained may be either common to all the devices on the system (device 
independent), or specific to a particular device type (device dependent). 

Device-Independent Information 

Device-independent information refers to information that is present for each 
device on the system (such as the device unit number, device characteristics, 
and the device type). It is obtained by reading fields in the UCB that have the 
same interpretation for all devices on the system. 

18.7.1.1 Get Device/Volume Information. The Get Device/Volume Information 
($GETDVI) system service (located in SYSGETDEV) is provided to obtain 
device-independent information about a device (see the VAX/VMS System 
Services Reference Manual for a listing of the fields that can be returned). 
Support still exists for the older services $GETCHN and $GETDEV for up­
ward compatibility. In the development of VAX/VMS Version 3.0, it was de­
termined that the functions of $GETCHN and $GETDEV could not be ex­
tended without affecting users. $GETDVI was written to replace $GETCHN 
and $GETDEV, using the item list argument mechanism implemented in 
$GETJPI. In this way $GETDVI can be extended as much as necessary in the 
future. 

Two sets of information, called the primary device characteristics and the 
secondary device characteristics, can be requested. These two sets of charac­
teristics are identical unless one of the following conditions holds: 

• The device has an associated mailbox (nonzero entry in UCB$L_AMB), in 
which case the primary characteristics are those of the device, and the 
secondary characteristics are those of the associated mailbox. 
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• The device is spooled (DEV$V _SPL is set in UCB$L_DEVCHAR), in 
which case the primary characteristics are those of the intermediate de­
vice, and the secondary characteristics are those of the spooled device. 

• If the device represents a logical link in a network, the secondary charac­
teristics contain information about the link. 

Before it can locate the desired device's UCB address, $GETDVI must first 
determine whether it was passed a channel number or a device name. Once 
the source is determined, $GETDVI locates the UCB address in the same way 
that the UCB is located by $GETCHN and $GETDEV. The item list of re­
quested information is then processed serially. The item codes are used to 
index a table that determines the location of the desired information within 
the UCB. If the low bit in the word containing the item code is clear, the 
primary UCB is used; if the bit is set, the secondary UCB is used. When an 
item is successfully located, it is copied into the user's buffer for that item. 

The routines EXE$GETCHN and EXE$GETDEV differ only in how they 
initially find the desired device's UCB address. In the $GETCHN case, the 
CCB$L_ UCB field for the CCB identified by the CHAN argument is used. In 
the $GETDEV case, routine IOC$SEARCHDEV is called to find the UCB 
address from the DEVNAM argument. Once the UCB address is found, the 
device-independent information is copied from the primary UCB to the user 
buffer (if a primary buffer was specified). After that, the device-dependent 
information is copied from the secondary UCB (located by UCB$L_AMB in 
the primary UCB, or, if that value is 0, the primary UCB is again used) into 
the user buffer (if a secondary buffer was specified). 

Device-Dependent Infonnation 

Device-dependent information refers to information that is present for a par­
ticular device type on the system, but not for every device on the system. (For 
example, a unit control block for a card reader indicates whether that card 
reader is translating cards according to the 026 keypunch code or the 029 
keypunch code.) 

Device-dependent information can be made available to a user process by 
placing that information into the high-order longword of the 1/0 status block 
for a $QIO request. The information is placed there by the driver (by placing 
that information in Rl before issuing the REQCOM macro to complete the 
I/O request), and can be anything the driver writer feels is appropriate for a 
particular $QIO function code. That is, the information placed there can take 
on different meanings for different function codes. 

Often, device drivers support special function codes that only return de­
vice-dependent information in the high-order longword of the I/O status 
block and that do not initiate any device activity. The function codes most 
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frequently used in this way are IO$_SENSEMODE and 10$_SENSECHAR. 
For example, the magtape driver responds to the 10$_SENSEMODE $QIO by 
returning the tape characteristics in the 1/0 status block. Corresponding 
10$_SETMODE and 10$_SETCHAR function codes are also usually pro­
vided so that the user can change the device mode or characteristics if the 
current ones are not acceptable. 

In addition, the $GETDVI system service can return two longwords of 
device-dependent information (UCB$L_DEVDEPEND and UCB$L_ 
DEVDEPND2), which can be used for different purposes by different devices. 
The VAX/VMS I/O User's Guide contains complete descriptions of how the 
information in that field should be interpreted for every supported device 
type. That manual also contains a detailed explanation of what information 
is returned by the 10$_SENSEMODE and 10$_SENSECHAR $QIOs for each 
device that supports those function codes. 
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"Open the pod-bay doors, HAL. 11 

-Arthur C. Clarke, 2001: A Space Odyssey 

A VAX/VMS device driver is a collection of tables and routines used to con­
trol I/O operations on a peripheral device. The VAX/VMS Guide to Writing a 
Device Driver describes the general structure of a driver and introduces the 
system routines commonly called by device drivers. This chapter highlights 
various techniques used by selected system drivers and documents some of 
the device-specific processing performed by them. The intent is to present 
those techniques that are helpful in understanding the VAX/VMS 1/0 subsys­
tem but are not described in the VAX/VMS Guide to Writing a Device Driver. 
No attempt is made to discuss each VAX/VMS device driver, nor is every 
feature of a particular driver described. For detailed descriptions of the fea­
tures and capabilities provided by each supported device driver, see the VAX/ 
VMS IIO User's Guide. 

19.1 DISK DRIVERS 

19.1.1 
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Disks are random access mass storage devices placed either on the MASS­
BUS, UNIBUS, UNIBUS through the UDASO, IDC (VAX-11/730 only), or CI 
through the HSCSO. The drivers written for these devices are designed to do 
the following: 

• Take advantage of the hardware error recovery and correction capabilities 
such as data checking, offset recovery, and error code correction (ECC) 

• Optimize controller operations by overlapping seek and data transfer oper-
ations (although this is not true for all drivers) 

• Perform dynamic bad block handling (in conjuction with the ACP) 
• Support online diagnostics and error logging 
• Support I/O requests at the logical and physical levels (non-DSA disks 

only), and cooperate with an ancillary control processor (ACP) to support 
virtual I/O requests 

The VAX/VMS I/O User's Guide contains a general discussion of some of the 
disk driver characteristics listed above. The following sections supplement 
the information presented there. 

ECC Error Recovery 

ECC (error correcting code) errors occur only on read operations (read data, 
read header and data, write check data, and write check header and data). 
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They are corrected by applying a hardware-specified correction mask to the 
appropriate memory data. The transfer is then continued as if an error never 
occurred. Note that all RA-type disks have a different ECC scheme, which is 
implemented within their controllers (the UDA or the HSC). 

The actual error correction code consists of the following: 

• An 11-bit mask that must be XORed with the appropriate memory data 
• A bit number within the sector that specifies the start of the error burst 

Disk drivers call routine IOC$APPLYECC (in module IOSUBRAMS) to actu­
ally apply the ECC correction. IOC$APPLYECC requires the use of a system 
page table entry (SPTE). Device drivers that support ECC recovery specify the 
DPT$V _SVP flag in the flags argument to the DPTAB macro. When this flag 
is set, the SYSGEN command CONNECT allocates one SPTE for each unit 
and stores the system virtual page number in field UCB$L_SVPN in the unit 
control block. The system page table entry is used to double map a byte to be 
corrected. The driver must also specify the number of bytes that were trans­
ferred into memory (up to, but not including, the block to be corrected). This 
number can be calculated by adding the remaining byte count (loaded by the 
driver from a MASSBUS adapter control register, MBA$L_BCR, into the unit 
control block, in field UCB$W _BCR) to the transfer byte count 
(UCB$W _BCNT). The following steps are performed to apply the correction: 

1. The transferred byte count is decremented and then ANDed with lFF 
(hex) to calculate the byte offset from the start of the buffer to the block 
that contains the data to be corrected. 

2. The starting bit number of the error burst (a number in the range from 1 to 
4096, hex) is decremented to convert it to a relative bit number, and the 
result is separated into a byte offset within the block and a mask shift 
count. 

3. The byte offset within the block is added to the byte offset from the buffer 
calculated in step 1. The result is the byte offset within the buffer to the 
start of the error burst. 

4. The exclusive OR pattern mask is shifted left by the mask shift count 
calculated in step 2. 

At this point, the longword exclusive OR pattern and the byte offset 
within the buffer to the first byte to be corrected have been calculated. All 
that remains is to double map the data block to be corrected and XOR the 
pattern mask with memory. However, the following considerations must 
be accounted for. 

a. The transfer may have been satisfied part way through the last block, and 
the error correction is outside the data of interest. For example, suppose 
the byte count terminated after 20 bytes into the sector, and the correcta­
ble data starts at byte 35. 

b. The transfer may have been satisfied part way through the last block, and 
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and the error correction is partly inside and partly outside the data of 
interest. For example, the byte count terminated after 20 bytes into the 
sector, and the correctable data started at byte 19. 

Thus, the correction must be applied one byte at a time. Steps 5 through 7 
are repeated four times, if necessary. 

5. The offset to the next byte to be corrected is compared with the transfer 
byte count. If the offset byte count is greater than or equal to the transfer 
byte count, remaining corrections are outside the area of interest. Step 8 is 
executed next. 

6. The byte to be corrected is double mapped using the system virtual page 
number stored in UCB$L_SVPN, and the translation buffer is invalidated 
for that page. 

7. The next byte (lowest) of the longword pattern mask is XORed with the 
memory data, the offset in the buffer is incremented, and the pattern mask 
is right shifted 8 bits. If all four correction bytes have not been applied, 
steps 5, 6, and 7 are repeated. 

8. The transfer is continued by reexecuting the appropriate function after 
updating the current transfer parameters (byte count, disk address, and 
system virtual address of the next page table entry that maps the transfer). 

Offset Recovery 

Offset recovery is a technique whereby the drive read heads are moved in 
small increments (usually 200 to 400 microinches) from the track centerline 
in an attempt to pick up a stronger reading signal. The technique is per­
formed only for read operations such as read header and data, write check 
data, and write check header and data. This technique is not implemented for 
RA-type disks, it is performed by the controllers (the UDA and the HSC). 

Upon encountering an error that may be correctable using offset recovery, 
the following steps are taken by a disk driver: 

1. The read heads are returned to the centerline. 
2. Up to 16 attempts are made to read the data at the centerline. 
3. The heads are offset an increment, and 2 retries are performed at that 

offset. This procedure is repeated up to 6 times. 
4. If after 28 attempts (16 at the centerline, and 2 at each of 6 offset positions) 

the data still cannot be retrieved, a failure is returned. 

Dynamic Bad Block Handling 

Dynamic bad block handling is implemented as a cooperative effort between 
driver FDT routines, 1/0 postprocessing routines, and ACPs. FDT routines 
for 10$_READVBLK and 10$_ WRITEVBLK construct an 1/0 packet (IRP), 
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and set the virtual bit in the IRP status word (IRP$V _VIRTUAL in 
IRP$W _STS). The I/O postprocessing routines (in module IOCIOPOST) dis­
cover transfer errors on virtual I/O functions and route the IRP to the appro­
priate ACP. 

The ACP, using information in the IRP, calculates the bad block address 
and stores that information in [O,O]BADLOG.SYS. In addition, a bit is set in 
the file control block (FCB) and in the file's header. When the file is deleted, 
the ACP creates a process running the image BAD BLOCK.EXE, which diag-. 
noses the file. If the bad block is found, the image uses privileged ACP func­
tions to mark the block as bad in the bad block file ([O,O]BADBLK.SYS;l). 

Note that a bad block is not discovered until it is already part of a file and is 
not recorded in the bad block file until that file is deleted. When a bad block 
is discovered while writing a file, the bad block information is recorded; a bit 
is set in the FCB for the file, and an error indication is returned to the request­
ing process. 

Bad block support is restricted to virtual I/O functions (that is, file I/O). 
Processes performing logical or physical I/O functions must provide their 
own bad block handling. 

Multiple-Block Noncontiguous Virtual 1/0 

When a read or write virtual I/O function is processed by the $QIO system 
service (by routine EXE$QIO in module SYSQIOREQ), an attempt is made to 
perform the transfer without the intervention of an ACP. Conversion of vir­
tual block numbers to logical block numbers is accomplished using mapping 
information contained in a data structure called a window control block 
(WCB) that was previously created by an ACP when the corresponding file 
was first accessed. If the WCB contains enough mapping information to con­
vert the entire virtual range of the transfer into corresponding logical block 
numbers on the volume, then the virtual 1/0 transfer will be handled directly 
by the driver and I/O completion routines, even if the transfer consists of 
several noncontiguous pieces. If the WCB does not contain enough informa­
tion to entirely map the virtual range of the transfer, the intervention of an 
ACP will be required at some time in order to complete the transfer. This 
intervention is known as a window turn. The number of window turns per 
unit of time can be displayed by the Monitor Utility with the DCL command 
MONITOR FCP. 

Because a deadlock situation could occur when a page mapped by the mem­
ory management subsystem required a window turn, the memory manage­
ment subsystem must avoid window turns. In order to do this, all files 
mapped by the memory management subsystem must have all their mapping 
information in the window control block. These large window control blocks 
are called cathedral windows. 
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19.1.4.1 Mapping Information. The WCB is pointed to by the channel control block 
(CCB), which is established by the $ASSIGN system service (as described in 
Chapter 18). The WCB contains a base virtual block number and a variable 
number of map entries (controlled by the /WINDOWS=n qualifier to the 
DCL command INITIALIZE, by the SYSBOOT parameter ACP _WINDOW 
for disks mounted with the /SYSTEM qualifier, and by the FAB field RTV at 
file open time). The map entries form a subset of the file retrieval informa­
tion for the file. Each map entry consists of an extent size and a starting 
logical block number. The map entries represent a virtually contiguous set of 
blocks that are not necessarily physically contiguous on the disk. 

When a virtual read or write request is specified, FDT routines initialize 
two fields in the IRP that will be used by the I/O postprocessing routines. The 
total byte count in the original request is stored in the original byte count 
field (IRP$L_OBCNT). The accumulated byte count field (IRP$L_ABCNT), a 
count of bytes actually transferred, is set to zero. 

Routine IOC$MAPVBLK is then called to convert the virtual range speci­
fied in the transfer to a logical block range, using information in the WCB. 
There are three possible cases that can occur here: 

• The virtual range is logically contiguous and mapping information is con­
tained in the window control block. 

• The window control block contains mapping information for the begin­
ning of the virtual range, but the virtual range is not virtually contiguous. 

• The mapping information that maps the first virtual block in the range to 
its logical counterpart is not in the WCB. 

19.1.4.2 No ACP Intervention. In either of the first two cases, IOC$MAPVBLK returns 
a nonzero number of bytes mapped and a starting logical block number. 
These are loaded into the IRP (at fields IRP$L_BCNT and IRP$L_MEDIA 
respectively), and the 1/0 request packet is queued to the driver. Further proc­
essing of this request takes place in the 1/0 postprocessing routines. These 
routines (found in module IOCIOPOST) provide the additional processing 
necessary to effect the total transfer. They are responsible for accumulating 
the total number of bytes transferred and for propagating further processing 
of the request, if necessary. 
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Whenever the I/O postprocessing code encounters an I/O request packet 
(IRP) with the virtual bit set (IRP$V _VIRTUAL in IRP$W _STS), it updates 
the accumulated byte count (stored in IRP$L_ABCNT) by adding the number 
of bytes just transferred (IRP$L_BCNT). This updated accumulated byte 
count is then compared with the original byte count (stored in 
IRP$L_QBCNT). If the two numbers agree, the request is completed exactly 
like other direct I/O requests (as described in Chapter 18). 

In the second case, the remaining byte count is placed into IRP$L_BCNT, 
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and the segment starting virtual block number (IRP$L_SEGVBN) is re­
trieved. Routine IOC$MAPVBLK is again called to map the remaining virtual 
range. If the mapping is successful (a nonzero count of the number of bytes 
mapped is returned), the IRP$L_BCNT and IRP$L_MEDIA fields are up­
dated, and the IRP is again queued to the driver. In this way, the virtual 
request continues until it completes or until a virtual range that cannot be 
mapped by information in the WCB is encountered. 

19.1.4.3 ACP Intervention. If routine IOC$MAPVBLK cannot convert a virtual range 
to its logical counterpart, the files ACP associated with the volume involved 
in the transfer must be called upon to obtain the required mapping informa­
tion. Note that this failure can be detected by FDT routines at the beginning 
of the transfer or by the I/O postprocessing routines after the request has been 
partially satisfied. In either case, the IRP is placed into a work queue and the 
associated ACP is awakened. 

When the ACP processes this IRP, it reads the file header to obtain the 
mapping information necessary for the transfer in question. This information 
is stored in the WCB, perhaps replacing other mapping information already 
contained there. The ACP then updates the BCNT and MEDIA fields in the 
IRP in order to transfer the first piece of the remaining virtual range and 
queues the IRP to the driver to continue the transfer. When the 1/0 
postprocessing routine receives this packet, it will usually find that the re­
maining virtual range can be mapped, allowing the request to complete with­
out further ACP intervention (even though several discrete transfers may still 
be required). The only time that more than one window tum occurs is when a 
file is so badly fragmented that it cannot be mapped by the number of re­
trieval pointers established for this volume. 

19.2 MAGNETIC TAPE DRIVERS 

Magnetic tapes are sequential access mass storage devices placed either on 
the MASSBUS or the UNIBUS. In order to perform data transfer operations, 
the MASSBUS magnetic tape driver (in TMDRIVER or TFDRIVER) has to 
obtain ownership of both the TM03 or TM78 controller (primary channel) 
and the MASSBUS Adapter (secondary channel) by issuing the REQPCHAN 
and REQSCHAN macros, respectively. At times, the secondary channel may 
be released (using the RELSCHAN macro) so that other disks may use the 
MASSBUS. The VAX/VMS Guide to Writing a Device Driver contains infor­
mation on how drivers are written for devices on the MASSBUS. 

The VAX/VMS 110 User's Guide describes the features and capabilities 
provided by the magnetic tape drivers, and discusses the general error recov­
ery and data check logic employed by them. The specific algorithm used to 
correct NRZI (non-return-to-zero-inverted) read errors is the following: 
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1. If the error occurred while reading in the forward direction, the tape is 
backspaced, and the record is read again. 

2. If an error occurs while reading in the reverse direction (as the result of a 
read physical block reverse function), the following steps are taken: 

a. The record is read in the forward direction to set up the error correction 
in the hardware. 

b. The tape is backspaced over the record just read. 
c. The record is reread in the forward direction to apply the error correc­

tion. 
d. The tape is backspaced over the record to position the tape properly 

(because the initial request was for a read in the reverse direction). 

A magnetic tape ACP is called from various driver FDT routines to perform 
functions like writing tape labels. 

19.3 CLASS AND PORT DRIVERS 

19.3.1 
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VAX/VMS Version 3.0 introduced a layered approach to device drivers and 
1/0. A number of drivers have been written (or rewritten) in two pieces: a 
class driver and a port driver. The reason for dividing the device drivers is to 
separate their functions into operations that depend on the protocol and hard­
ware used to communicate with a device (the communications layer) and 
those operations that depend on the actual device (the function layer). The 
class and port strategy has been adopted by the terminal driver (see Section 
19.4) and by the SCA-type drivers. SCA-type drivers are class and port drivers 
written for devices that communicate using a DIGITAL standard architecture 
known as systems communication architecture (SCA). 

Implementation of SCA on the VAX/VMS Operating System 

SCA defines a communications layer and the external interface to that layer. 
Systems communication services (SCS) are a VMS-specific implementation 
of SCA. SCA port drivers implement SCS on specific port devices. In VAX/ 
VMS Version 3.0, SCA port drivers are provided for the CI (PADRIVER) and 
the UDASO (PUDRIVER). SCA class drivers use SCS as a communications 
medium for some higher-level functions or protocols. The class drivers im­
plement a function layer of the layered strategy and perform operations on a 
user-visible device without regard for the SCA communications medium 
used. 

Currently there are two protocols in the function layer that call SCS to 
communicate information: DECnet-VAX and mass storage control protocol 
(MSCP). DECnet-VAX uses SCS for communication over the CI; the 
CNDRIVER is the DECnet class driver. MSCP is a general mass storage pro-
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Table 19-1: Names of SCA Class and Port Drivers 

Type Name Application/Device 

Class CNDRIVER DECnet on the CI 
Drivers DUD RIVER MSCP Disks 

Port PAD RIVER CI port device 
Drivers PUDRIVER UDASO port device 

tocol intended to be sufficient to describe all types of disk operation. MSCP is 
implemented by controllers for RA-type disks. The DUDRIVER is the MSCP 
class driver. 

The class and port drivers supported in VAX/VMS Version 3.0 are shown in 
Table 19-1. Figure 19-1 shows a conceptual diagram of SCA. 

The MSCP disk class driver (DUDRIVER) can use either the CI port driver 
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(PADRIVER) or the UDASO port driver (PUDRIVER). The DECnet class 
driver (CNDRIVER) uses the CI port driver (PADRIVER) exclusively. 

1/0 Processing 

When a user application performs 1/0 through a class and port driver, a chan­
nel must be assigned to the class driver; $QIOs are issued to that channel. 

The following sequence illustrates how class and port drivers are used to 
communicate information from a process on a host system to a remote de­
vice. The MSCP class driver is used as an example. 

1. The process on the host system issues a $QIO to a class driver. The $QIO 
initializes an IRP and passes it to the class driver. 

2. The class driver translates portions of the IRP to an MSCP request. The 
driver then builds an appropriate class driver request packet (CDRP). The 
CDRP contains information necessary for SCS to perform its operations 
(see Figure 19-2). As a convenience to the $QIO/class driver interface, 
CDRPs have been designed to be an extension of an IRP. 

3. The class driver then calls SCS to transmit the MSCP request to the MSCP 
server (UDASO or HSCSO). 

4. The SCS operations are interpreted by the port driver, which then commu­
nicates the 1/0 request to a remote port driver through the communica­
tions mechanism. 

5. The remote port driver communicates the request to the MSCP server 
using SCS operations. 

6. The server acts on the MSCP request and passes the 1/0 request to the 
remote application or device. 

19.4 TERMINAL DRIVER 
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The terminal 1/0 subsystem is a collection of routines (in separate modules) 
that provide a flexible approach to terminal input and output (as described in 
the VAX/VMS 110 User's Guide). The terminal driver was rewritten in VAX/ 
VMS Version 3.0 using the class and port driver strategy. Note that the termi­
nal class and port drivers do not communicate using the SCS protocol, nor do 
the terminal port devices conform to the SCA standards. The terminal class 
driver (TTDRIVER.EXE) contains FDT routines and device-independent rou­
tines. The port drivers (DZDRIVER.EXE, YCDRIVER.EXE, and the routine 
CONINTDSP in SYS.EXE) contain interrupt service routines and controller­
specific control subroutines for DZ-11, DZ-32, DMF-32, and the console ter­
minal interface. 

The logical components of the terminal I/O subsystem are illustrated in 
Figure 19-3. (The console interface is discussed in Section 19.6.) 
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Portions of a Class Driver Request Packet 

The class and port driver images are separate, loadable images. Therefore, 
changes can be made to the driver modules, and those modules can then be 
assembled and linked independently of the executive. The following steps are 
taken in assembling and linking the terminal driver. 

• First the library for the terminal driver is created: 

$ LIBRARY/CREATE/MACRO SYS$SYSTEM:TTYLIB SYS$SYSTEM:TTYUCBDEF.MAR 

• Next, the modules in the terminal driver are assembled: 

$ MACRO/LIST=SYS$SYSTEM: 1module 1/0BJECT=SYS$SYSTEM:'module'+­
SYS$SYSTEM:1module1+-
SYS$LIBRARY:LIB/LIBRARY 

• This is done for each of the following modules: 
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$ ! TTY CHARI 
$ ! TTY CHARO 
$ ! TTYDRVDAT 
$ ! TTYFDT 
$ ! TTYSTRSTP 
$ ! TTY SUB 
$ ! DZDRIVER 
$ ! YCDRIVER 

• Finally, the object modules are linked into the terminal class driver 
(TTDRIVER) and the terminal port drivers (DZDRIVER and YCDRIVER). 

$ ! In the link phase the file OPTIONS. OPT contains the single 
line: 
$ ! line: 
$ ! BASE= 0 
$ ! 
$ ! Link the terminal class driver (TTDRIVER). 
$ LINK/SHARE=SYS$SYSTEM:TTDRIVER/CONTIGUOUS­

/MAP=SYS$SYSTEM:TTDRIVER/FULL/CROSS -
SYS$SYSTEM:TTYDRVDAT,-

$ ! 

TTYFDT,-
TTYSTRSTP,--
TTYCHARI,-
TTYCHARO,-
TTYSUB,­
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH,­
SYS$SYSTEM:OPTIONS/OPTIONS 

$!Link port drivers. Done for DZDRIVER and YCDRIVER. 
$ ! 
$ LINK/SHARE=SYS$SYSTEM: 'driver'/CONTIGUOUS­

/MAP=SYS$SYSTEM: 1driver 1/FULL/CROSS­
SYS$SYSTEM: 1driver1,­
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH,­
SYS$SYSTEM:OPTIONS/OPTIONS 

When the system is bootstrapped, the module SYSBOOT reads the terminal 
class driver (TTDRIVER.EXE) image into nonpaged pool. INIT later creates 
the necessary linkages between the class and port drivers by first linking the 
console port driver with the terminal class driver. The device-specific exten­
sion of a terminal UCB contains cells intended to contain pointers to the 
class and port vector dispatch tables. INIT locates the address of the dispatch 
tables foi--the terminal class driver and console port driver and loads these 
addresses into the console UCB. Later in system initialization, the SYSGEN 
command AUTOCONFIGURE determines the terminal controllers used by 
the system and loads the appropriate driver (DZDRIVER for DZ-11 and 
DZ-32 controllers, YCDRIVER for DMF-32 asynchronous lines). The control­
ler and unit initialization routines of these port drivers initialize the UCB 
extensions. 

The relationships among the terminal class driver, console port driver, and 
the console UCB are shown in Figure 19-4. 
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Terminal I/O System 

The fact that the terminal driver class driver is loaded by SYSBOOT has 
implications for anyone who writes a new terminal class driver. It is a good 
idea to maintain a good copy of TTDRIVER in SYS$SYSTEM with a different 
name. In the event that the modified terminal driver contains errors that 
prevent the system from completing its initialization sequence, the SYS­
BOOT parameter TTY _CLASSNAME can be set during a conversational 
bootstrap to contain the name of the good TTDRIVER. 

Normally, the only module that will need to be altered (or replaced) is the 
terminal port driver, in order to provide the device-dependent processing for a 
specific device (such as a DLl 1 ). 

To test a new terminal class driver on a system that has already autocon­
figured the terminal devices, the system must be rebooted. A reboot is also 
necessary to use a new terminal port driver (for example, on autoconfigured 
DZl ls), because the SYSGEN command RELOAD will not reload terminal 
class or port drivers. 
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Terminal Driver Initialization 

Full Duplex Operation 

The terminal driver implements full duplex operation (unless specifically 
asked to operate in half duplex mode for a particular terminal) by utilizing an 
alternate start 1/0 entry point (specified as the ALTSTART parameter to the 
DDTAB macro). Whenever a write request is issued to a full duplex terminal, 
the write FDT routine (TTY$FDTWRITE in TTYFDT) allocates and initial­
izes a write buffer packet to describe the write request, and calls routine 
EXE$ALTQUEPKT (in SYSQIOREQ) to enter the alternate start 1/0 routine 
of the driver. In the half duplex case, routine EXE$QIODRVPKT, also in 
SYSQIOREQ, is called. 

Normally, FDT routines call on EXE$QIODRVPKT to invoke the start 1/0 
routine of the driver, if the unit is not busy, or to queue the IRP to the UCB if 
the unit is busy. EXE$ALTQUEPKT differs from EXE$QIODRVPKT in the 
following respects: 

1. No check is made to see if the UCB is busy (UCB$V _BSY set in 
UCB$W _STS). Therefore, EXE$ALTQUEPKT never queues the request to 
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the UCB. It is desirable not to check the UCB busy bit because a read 
request may be in progress; if the IRP waited on the UCB queue until the 
read request finished (and the busy bit was cleared), full duplex operation 
would not be possible. 

2. The cancel and timeout bits in the UCB (UCB$V _CANCEL and 
UCB$V _ TIMOUT in UCB$W _STS) are unaffected (not cleared) because 
they may be in use by the current IRP, if the UCB is busy. 

3. The SVAPTE, BCNT, and BOFF fields are not copied from the IRP to the 
UCB because this would affect the current I/O operation if the UCB is 
busy. 

4. The alternate start I/O routine in the driver is entered (rather than the 
regular start I/O routine). 

TTY$WRTSTARTIO (in TTYSTRSTP) is the alternate start I/O routine entry 
point. This entry point is also used by the broadcast system service, as de­
scribed in Chapter 18. This routine raises IPL to device IPL to block device 
interrupts from the current I/O operation, in case the device is busy, and 
processes the packet as follows: 

1. If a write is currently in progress, the write buffer packet is queued. 
2. If a read is occurring, but the buffer header specifies write breakthrough, 

the write is started. 
3. If a read is occurring, but no read data has echoed yet, the write is started. 
4. Otherwise, the write buffer is queued. 

In order to complete write I/O requests for full duplex operation, the driver 
exits by calling routine COM$POST (in COMDRVSUB) rather than issuing 
the REQCOM macro. COM$POST places the I/O request packet in the 
postprocessing queue, requests an IPL$_IOPOST software interrupt (see 
Chapter 6), and returns. Routine IOC$REQCOM is avoided so that the next 
IRP queued to the UCB (which must be a read request) is not initiated (be­
cause the current read request, if any, has not yet terminated). Also, the sta­
tus of the UCB busy bit is unaltered by COM$POST. However, all read re­
quests (and half duplex writes) are terminated by invoking the REQCOM 
macro, so that the next request of this type may be processed in the normal 
fashion. 

In full duplex operation, the device can be expecting more than one inter­
rupt at a time (one for a read request, and one for a write request). Therefore, 
two fork PCs must be stored. (Usually drivers only expect one interrupt at a 
time, and store the fork PC in UCB$L_FPC.) The terminal driver stores more 
than one fork PC by altering the value of RS (which normally points to the 
UCB), to point to the write buffer packet or the IRP before forking (by invok­
ing the FORK macro). A fork block is therefore formed in the write buffer 
packet or in the IRP (containing R3, R4, and the fork PC). The fork block in 
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the UCB is not used for read or write requests, although it is used at other 
times, such as when allocating a type-ahead buffer or when handling unsolic­
ited data. 

The technique of altering RS before forking can easily be extended by any 
driver to allow more than one outstanding interrupt for a particular device, 
provided the driver can distinguish which interrupt is associated with which 
fork block. Therefore, any number of outstanding I/O requests may be han­
dled by a driver entered at the alternate start I/O entry point. Of course, the 
driver must maintain queues for outstanding 1/0 requests and synchronize 
1/0 operations. The driver should operate almost exclusively at device IPL (as 
the terminal port drivers do), to block out device interrupts in order to 
achieve synchronization with multiple I/O request processing. 

Channels and Terminal Controllers 

VMS terminal controllers have no controller channel concept. Therefore, the 
terminal driver never requests or releases a controller channel (with the 
REQCHAN and RELCHAN macros). The locations normally used in the 
CRB as list heads for the controller channel wait queue (CRB$L_ WQFL and 
CRB$L_ WQBL) are instead used to contain modem control status informa­
tion. 

Type-Ahead Buffer 

A type-ahead buffer is allocated from nonpaged pool for each terminal. The 
size of the type-ahead buffer is determined by the SYSBOOT parameter 
TTY_ TYPAHDSZ. Every character typed is placed into the buffer, even if a 
read request is active. If the buffer is within 8 characters (or the value of the 
SYSBOOT parameter TTY _ALTALARM) of being full and the terminal is in 
host-sync mode, the driver sends an XOFF character to the terminal to tell it 
to stop sending data. An XON character is not sent to the terminal to tell it 
to start sending data until the buffer is emptied. Using this technique pre­
vents characters from being lost in block 1/0 transmissions from high-speed 
terminals. 

19.5 PSEUDO DEVICE DRIVERS 
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The VMS operating system supports drivers for virtual devices (pseudo de­
vices), including the null device (NL:), the network device (NET:), remote 
terminal devices (RT:), and mailboxes (MB:). Users can assign channels to 
these devices and issue I/O requests, just as though they were real devices. 
The following sections highlight some of the features of these pseudo device 
drivers. 
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Null Device Driver 

The null device driver (in NLDRIVER) is assembled and linked with the sys­
tem image (SYS.EXE). It is a very simple driver, consisting of two FDT rou­
tines (one to complete read requests, and one to complete write requests). 
The FDT routines in the null driver respond to read requests by returning an 
SS$_ENDOFFILE status code to the user, and they respond to write requests 
by returning an SS$_NORMAL status code. No data is transferred, nor are 
any privilege or quota checks made. 

Network Device Driver 

The network device (NET:) is best viewed as a mechanism for DECnet-VAX 
users to access network functions. When a process assigns a channel to NET, 
a network UCB is created and given a unique number, such as NETlOO. The 
channel number returned to the user points to the newly created UCB. This 
channel can then be used to perform access, control, and 1/0 operations on 
the network. When the user deassigns the last channel to the network UCB, 
the UCB is deleted. 

The network device driver and the communication drivers support two 1/0 
request interfaces: $QIOs and "internal" IRPs. 

• When a user issues a $QIO, the executive and the driver's FDT routines 
cooperate to build an IRP. The driver then processes the IRP (normally by 
passing it to its own STARTIO routine). 

• So-called internal IRPs are built by kernel mode modules (device drivers) 
and passed to another driver's alternate start 1/0 interface. 

The remote terminal driver (RTTDRIVER) uses NETDRIVER's internal 
IRP interface in communication across the network. 

NETDRIVER uses the internal IRP interface to pass 1/0 requests to com­
munication device drivers. 

There are actually two images that are used for network communication: 
the network device driver (NETDRIVER) and the network ACP (NETACP). 
NETDRIVER creates links to other CPUs, performs routing and switching 
functions, breaks user messages into manageable pieces on transmission, and 
reassembles the messages on reception. The actual 1/0 in network communi­
cation is performed by the communication device drivet (for example, 
XMDRIVER performs network communication through DMC-1 ls). 

NETACP performs the following tasks: 

• Creates processes to accept inbound. connects 
• Parses network control blocks and supplies defaults when a user issues an 

10$_ACCESS function code to create a logical link 
• Transmits and receives routing messages to maintain a picture of the net­

work 
• Maintains the volatile network database 
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Figure 19=5 illustrates some network 1/0 functions. For more information on 
DECnet, see the DECnet· VAX Usu's Guide and the DECnet= VAX System 
Manager's Guide. 

Remote Terminals 
DECnet-VAX allows users to log in on a remote VAX/VMS processor and 
perform operations on that remote processor, just as they would at the local 
processor. The communication from the remote process to the controlling 
terminal is performed through a pseudo device on the remote processor called 
a remote terminal. The driver for remote terminals is R TTDRIVER.EXE. 
(Note that while DECnet-VAX can communicate with other DIGITAL oper­
ating systems running DECnet, the focus of this discussion is on DECnet 
communication between two VAX-11 processors running the VAX/VMS op­
erating system. 

In addition to DECnet, three images are required to support remote termi­
nals: the local processor uses the image RTPAD.EXE; the remote processor 
uses the images REMACP.EXE and RTTDRIVER.EXE. 

When a user on a local system issues the DCL command SET HOST, 
RTPAD uses DECnet-VAX to request a connection to a network object on the 
specified node. On remote processors running the VAX/VMS operating sys­
tem, the object is REMACP. The image REMACP creates a UCB for the re­
mote terminal and links the UCB into the driver tables by calling 
RTTDRIVER at its unsolicited input entry point. REMACP then returns in­
formation about the remote processor to RTPAD. RTPAD has routines for 
communicating with a number of different DIGITAL operating system (in­
cluding RSTS, RSX-llM, TOPS-20, and VAX/VMS). The information re­
turned from REMACP is used to determine which operating system is com­
municating with the local processor. In the VAX/VMS operating system, 
RTPAD sends unsolicited data to RTTDRIVER; sending this data to 
RTTDRIVER is equivalent to pressing the RETURN key on a terminal that is 
not logged in. RTTDRIVER creates a detached process running LOGINOUT. 
The user is now logged in to the remote system. 

In communicating information across the network, RTTDRIVER receives 
$QIOs from the remote process, packs the information into a block, and uses 
the "internal" IRP interface to pass the request to NETDRIVER. RTPAD 
unpacks the information and reissues the $QIO for the local terminal. If the 
$QIO is a read, RTPAD packs the input information into a block and passes 
the packet(s) of information back to RTTDRIVER. 

When the user logs off from the remote system, REMACP deletes the re­
mote terminal UCB. 

Mailbox Driver 

Mailboxes are software-implemented devices that can be read and written to. 
Normally, mailboxes are used for communication between processes. Al-
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though mailboxes transfer information in much the same way that other I/O 
devices do, they are not actual devices. The following sections describe how 
the mailbox driver (in MBDRIVER, a module in the system image) buffers 
messages written to mailboxes and serializes mailbox read requests. Note 
that mailboxes in shared memory are supported by a separate, loadable 
driver, MBXDRIVER. 

19.5.4.1 Processing Set Mode Requests. A process may request notification of a mail­
box read or write request by issuing a $QIO request with an IO$_SETMODE 
function code (and an IO$_READATTN or IO$_WRTATTN function code 
modifier). See the VAX/VMS IIO User's Guide for details. The mailbox driv­
er's FDT routines respond to these requests by taking the following steps: 

1. Verifying that the process may access the mailbox. 
2. Queuing the request to the appropriate list head (UCB$L_MB_ W _AST for 

write requests, or UCB$L_MB_R_AST for read requests) by calling on 
routine COM$SETATTNAST in COMDRVSUB (which allocates, initial­
izes, and queues an AST control block to the specified list head, as de­
scribed in Chapter 7). 

3. Raising IPL to IPL$ _MAILBOX (IPL 11) and checking to see if the notifica­
tion condition requested is present (current read or write request outstand­
ing). If so, routine COM$DELATTNAST in COMDRVSUB is called to 
queue the attention AST to the requesting process (see Chapter 7). Other­
wise, the attention AST request remains queued to the mailbox UCB, but 
the 1/0 request is completed by calling EXE$FINISHIOC. The attention 
AST will be queued to the process when a read or write request, as appro­
priate, is issued for the mailbox. 

Note that mailboxes use fork IPL$_MAILBOX (IPL 11, the highest fork 
IPL), to avoid possible synchronization problems with other drivers that 
reference mailboxes while at their respective fork IPLs (for example, to 
send a "device is off line" message to the operator's mailbox). 

19.5.4.2 Processing a Mailbox Read Request. When a user issues a read mailbox $QIO, 
the mailbox driver FDT routines perform the following general functions: 
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I. The user request is validated to make sure the requesting process's UIC is 
given access to the mailbox, that the message size requested is allowed for 
the mailbox, and that the user has write access to the buffer specified (into 
which the mailbox message will be placed). 

2. The address of the.specified buffer, into which the mailbox message will 
be written, is saved in IRP$L_MEDIA. 

3. The IRP$V _MBXIO bit in IRP$W _STS is set so that the I/O postprocess­
ing routines will recognize a mailbox I/O request completion and an­
nounce the availability of the RSN$_MAILBOX resource. 
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4. If the IO$M_NOW function code modifier was not specified in the $QIO 
call, the request is queued to the driver's start I/O routine. 

5. If the IO$M_NOW modifier was specified, IPL is raised to IPL$_ 
MAILBOX (IPL 11 ), and, if any messages are available (UCB$W _MSGCNT 
is nonzero), the request is queued to the driver's start I/O routine. Other­
wise, the SS$_ENDOFFILE message is returned to the user, and the I/O 
operation is completed. 

The mailbox driver's start 1/0 routine performs the following steps: 

1. It first tries to dequeue a message written to the mailbox (messages are 
queued to the UCB, with listhead at UCB$L_MB_MSGQ). 

2. If no message is found, any pending read attention ASTs are queued to 
their process( es) (by passing the listhead address, UCB$L_MB_R_AST, to 
COM$DELATTNAST, as described in Chapter 7). 

3. The mailbox UCB remains "busy" (the UCB$V _BSY bit is set in 
UCB$W _STS), although no further processing occurs until a write request 
is issued. Subsequent read requests will wait to enter the start 1/0 routine 
(although they will be preprocessed by FDT routines), because the busy bit 
is set. As soon as this read request terminates, the next read request will 
be processed by the start 1/0 routine. 

4. If a message was found (or a write request occurs and a read request is 
outstanding, as discussed in step 3), then special action is taken. 

a. The address of the message block built by the write FDT routine (see 
Figure 19-6) is placed in IRP$L_SVAPTE in the read request's IRP so 
that the 1/0 postprocessing routines can locate the message and copy it 
into the user's buffer. 

b. The first two longwords in the message block are initialized to contain 
values expected by the 1/0 postprocessing routines. (The first longword 
points to the message data, stored in the message block, and the second 
longword points to the user buffer, where the data will be copied by the 
1/0 completion special kernel mode AST.) The address of the user's 
buffer is retrieved from the IRP$L_MEDIA field in the read request's 
IRP. 

c. The outstanding message count (UCB$W _MSGCNT) for the mailbox 
is decremented. 

d. The process ID of the read request is placed in IRP$L_MEDIA+4 (so 
that it will become the high-order longword of the IOSB for the write 
request $QIO), and the SS$_NORMAL success code is placed in the 
low-order word of the IOSB (IRP$L_MEDIA). 

e. Routine COM$POST (in COMDRVSUB) is called to insert the write 
request's IRP on the 1/0 postprocessing queue. The driver calls this 
routine, rather than issuing the REQCOM macro, so that another IRP is 

433 



VAX/VMS Device Drivers 

Pointer to Start of Data 

Pointer to User Buffer 

Mailbox l Block Size of Block 
IPL Type 

Saved Packet Address Size of Message 
(Low Word) in Bytes 

Process ID of Sender Saved Packet Address 
(Low Word) (High Word) 

Mailbox 
Message 

Data 

Figure 19-6 
Layout of Mailbox Message Block 

not dequeued (because only read request IRPs are queued to the UCB 
waiting to enter the start I/O routine). Also, the busy &tatus of the unit 
is not changed (UCB$V _BSY in UCB$W _STS). 

f. When COM$POST returns control, the process ID of the write request's 
IRP is placed in Rl (and will eventually become the high-order longword 
of the read request's IOSB), and the REQCOM macro is called to com­
plete the read request. The next read request (if any) will automatically 
be dequeued and the start I/O sequence repeated. If no read request is 
outstanding, the busy bit will be cleared. 

19.5.4.3 Processing a Mailbox Write Request. When a user issues a write mailbox 
$QIO, the mailbox driver FDT routines perform the following general func­
tions. 
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1. The same validation checks that were made in steps 1 and 2 of the read 
$QIO FDT routines are performed here, except that the buffer containing 
the data to be written is checked for read access instead of write access. 

2. A message block is allocated from nonpaged pool (by routine 
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EXE$ALONONPAGED), and initialized (as shown in Figure 19-6). The 
data to be written to the mailbox is copied into the message block. There 
are 22 bytes of overhead (not message data) in the message block. 

3. IPL is raised to IPL$_MAILBOX, and the mailbox is examined to see if 
there is enough room for the message. If not, IPL is restored, the message 
block is deallocated, and the request is placed in a resource wait state 
(waiting for the RSN$_MAILBOX resource). 

4. The message block is inserted at the tail of the queue of messages with list 
head UCB$L_MB_MSGQ (unless there is a read request outstanding, in 
which case control is transferred to step 4 in the start I/O routine, dis­
cussed in the previous section). 

5. Any queued write attention ASTs are delivered (by passing the list head 
address, UCB$L_MB_ W _AST, to COM$DELATTNAST, as described in 
Chapter 7). 

6. IPL is lowered to what it was before step 3 was executed, and a check is 
made to see if the IO$M_NOW function code modifier was specified in 
the $QIO call. 

7. If the IO$M_NOW function code modifier was specified, the write I/O 
request is completed (by calling EXE$FINISHIOC). Otherwise, the proc­
essing of the write I/O request is suspended (until a read request is issued), 
and control is passed to EXE$QIORETURN, so some other process in the 
system may resume execution. 

19.6 CONSOLE INTERFACE 

19.6.1 

The console interface is the portion of the processor that initiates a bootstrap 
operation and permits microdiagnostics to execute. The console interface is 
not specified by the VAX architecture but is CPU specific. The VAX Hard­
ware Handbook contains more details about the console interface for each 
CPU. 

VAX-11/730 Console Interface 

The console interface on the VAX-11/730 consists of a terminal, two TU58 
cartridge devices, an optional remote diagnosis port, and a console micro­
processor. The console program executes on the console microprocessor; 
when the console program has control (when the three-angle-bracket prompt 
appears on the console terminal), the VAX-11/730 cannot execute VAX-11 
instructions. 

There are eight processor internal registers on the VAX-11/730 for commu­
nicating with the three console devices. In addition, the VAX architecture 
specifies that the PR$_ TXDB register is to be used for communication from 
code executing VAX-11 instructions to the console subsystem. The special 
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uses of this register (some of which are not used by the VAX-111730 and 
VAX-111750) are listed in Table 19-2. 

VAX-11/750 Console Interface 

The console interface on the VAX-111750 consists of a terminal, a TU58 car­
tridge device, an optional remote diagnosis port, and some microcode in the 
VAX-11/750 processor. when the console program has control (when the 
three-angle-bracket prompt appears on the console terminal), the VAX-111 
750 processor is not executing user or system instructions but rather the 
console microcode. 

There are eight processor internal registers on the VAX-111750 for commu­
nicating with the the two console devices. As with the VAX-111730, the 
PR$_ TXDB register is also used for communication to the console program 
(see Table 19-2). 

VAX-11/780 Console Interface 

The VAX-111780 console interface consists of an LSI-11 microcomputer, a 
floppy disk, the console terminal, and an optional remote diagnosis port (as 
described in the VAX Hardware Handbook). The console program executes 
on the LSI-11 (using the PDP-11 instruction set). Because the console pro­
gram is executing on a separate processor, it is possible for the console sub­
system to perform a limited set of functions without halting the VAX-11/780 
CPU. 

Table 19-2: Special Uses of the Console PR$¢TXDB Register 

Register 
Contents 

FOl 

F02 

F03 

F04 

Meaning 

Software Done 

Reboot the CPU 

Clear Warm-Start Flag 

Clear Cold-Start Flag 

Comments 

This flag is used by the 
the V AX-111780 Memory ROM program 
to notify console program that 
it has located 64K bytes of 
good memory. 
This flag is used by the 
bugcheck routine to reboot the 
system after a fatal bugcheck. 

This flag is maintained by the 
VAX-11/780 console program. 

This flag is maintained by the 
console program on either 
processor to prevent nested 
bootstrap attempts. 
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19.6 Console Interface 

The VAX-11/780 uses four processor internal registers to communicate to 
the two console devices. That is, unlike the VAX-11/730 and VAX-11/750, 
the same registers are used to communicate to two devices. The device ID is 
encoded into the control bits to allow the processor to distinguish between 
the two devices. All console data transfer operations are performed between 
the VAX-11/780 CPU and the LSI-11 CPU using these four internal processor 
registers. That is, no direct transfers are made between the VAX-11/780 CPU 
and the console terminal or floppy disk. As with the VAX-11/730 and VAX-
11/750, the PR$_ TXDB register is also used for communication to the con­
sole program (see Table 19-2). 

Data Transfer between the VAX-11 CPU and Console Devices 

The internal processor registers, PR$_ TXCS and PR$_RXCS (and 
PR$_CSRS and PR$_CSTS on the VAX-11/730 and VAX-11/750), are used for 
control and status information (to enable interrupts and to indicate that a 
device is ready). The other two internal registers, PR$_RXDB and 
PR$_ TXDB (and PR$_CSRD and PR$_CSTD on the VAX-11/730 and VAX-
11/750), are used to transfer data. The TXxx (and CSTx) registers are used for 
transmit operations (with respect to the VAX-11 CPU), while the RXxx (and 
CSRx) registers are used for receive operations. 

Most drivers treat device registers as if they were memory locations, using 
MOVB or MOVW instructions to read or write data in those registers. In the 
case of the console, the MTPR and MFPR instructions are used to transmit 
and receive data, respectively. For example, the following instructions on the 
VAX-11/780 transmit and receive data: 

MTPR data, #PR$_TXDB ; Transmit data 
MFPR #PR$_RXDB,data ; Receive data 

The data is sent or received as a longword, with bits <7:0> containing the 
ASCII character, and bits <11:8> identifying which console device (terminal 
or floppy disk) is sending or receiving the data. On the VAX-11/730 and VAX-
11/750, the distinction between devices is made by choice of register instead 
of by including a device code in a data buffer register. Note that all data is 
passed a character at a time, even to the floppy disk. Therefore, it is recom­
mended that a separate files ACP be requested to service the console block 
storage device. 

Console Interrupt Dispatching 

As the previous discussion of processor registers indicates, the two console 
devices (terminal and block storage device) are treated slightly differently on 
the VAX-11/730 and VAX-11/750 and on the VAX-11/780. On the VAX-11/ 
730 and VAX-11/750, the block storage device (a TU58 cartridge) has its own 
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control registers and its own interrupt vectors. On the VAX=l 1/7801 the two 
devices are handled more u a single entity, with common routines dbtin· 
guishing terminal operations from floppy disk operations. This difference is 
also reflected in the different forms of interrupt dispatching on the two proc· 
essors. 

19.6.5.1 Console Terminal Interrupts. When the system is bootstrapped, the system 
control block (SCB) is initialized (from the SCB template in SCBVECTOR) so 
that the two vectors at offsets F8 and FC (hex) point to console interrupt 
service routines (CON$INTDISI for console input and CON$INTDISO for 
console output). Both routines respond to an interrupt by saving registers RO 
through RS, and transferring control to routines in CONINTDSP 
(CON$INTINP for console input, CON$INTOUT for console output). 

CON$INTINP reads the data and console device identification from the 
PR$_RXDB register and determines whether the interrupt was from the con­
sole terminal or block storage device. If the interrupt was from the console 
terminal, then the character read operation is handled by the terminal driv­
er's character buffering routine whose address is stored in the console termi­
nal UCB. The character is also echoed back to the console terminal by being 
placed in the PR$_ TXDB register. 

Routine CON$INTOUT transmits data to the console terminal through 
the PR$_ TX'.DB register and determines whether the resulting interrupt is 
from the terminal or the console block storage device. If the interrupt was 
caused by the terminal, then the terminal output routine (whose address is 
stored in the console terminal UCB) is called to get the next character for 
output. 

Note that the handling of console terminal 1/0 is done by the normal ter­
minal driver routines. Only the initial fielding of interrupts and the device 
registers that are read or written distinguish console terminal 1/0 from opera­
tions through the regular terminal interface. Note also that the console ter­
minal always interrupts at IPL 20 (the lowest device IPL used by drivers) on 
all three VAX processors. 

19.6.5.2 Console Block Storage Device 1/0. The device driver and associated database 
for the console block storage device are not loaded until an explicit 
CONNECT CONSOLE command is issued to SYSGEN. At that time, the 
device driver and data structures appropriate to the specific processor are 
loaded into memory and initialized. 
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A CONNECT CONSOLE command that is issued to SYSGEN on a VAX-
11/730 or VAX-11/750 causes the TU58 driver (called DDDRIVER) to be 
loaded and data structures for a device called CSAl to be built (on the VAX-
11/730 a second set of structures for CSA2 is also created). In addition, two 
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dedicated vectors in the SCB (at offsets FO and F4 hex) are loaded to point to 
interrupt dispatch code contained in the CRB for CSAl. 

The DDDRIVER thus responds to console TU58 interrupts in exactly the 
same way that it responds to interrupts generated by a TU58 on the UNIBUS. 
The only difference between the two interrupts is that console TU58 inter­
rupts occur at IPL 23 while UNIBUS TU58 interrupts occur at IPL 20. 

A CONNECT CONSOLE command that is issued to SYSGEN on a VAX-
11/780 causes the cpnsole floppy disk driver (called DXDRIVER) to be loaded 
and data structures for a device called CSAl to be built. Because the console 
floppy interrupts through the same vectors used by the console terminal, no 
further SCB modification is required at this time. 

When a console device interrupt occurs, the interrupt service routine deter­
mines whether the interrupt was from the console terminal or from the block 
storage device. If the interrupt was from the block storage device, if the con­
sole has been connected (a UCB exists for device CSAl ), and if the interrupt 
was expected (the UCB$V _INT bit is set in the status word in the UCB), then 
the driver context is restored from the UCB and the driver process is resumed 
at the saved PC (UCB$L_FPC). Otherwise, the interrupt is considered spuri­
ous and simply dismissed. 

19.6.5.3 Double Mapping of Buffer Pages. One interesting feature of the TU58 driver 
and the floppy disk driver, drivers that transfer data one character at a 
time, is that they use the routines IOC$FILSPT, IOC$MOVFRUSER, and 
IOC$MOVTOUSER (in BUFFERCTL) to double map a page in the user's data 
buffer into system address space (so that data can be transferred directly to 
and from the user's buffer). User buffer pages are not normally accessible 
because device drivers execute in system context and do not have process 
address space available to them. By double mapping a buffer page into a sys­
tem address range, the entire user buffer can be accessed by the device driver 
one page at a time. The system page table entry used to map the page is 
reserved in the driver by setting the DPT$V _SVP bit in the FLAGS argument 
to the DPTAB macro. 

By making the user buffer accessible through system virtual addresses, 
these two drivers can use VMS direct I/O even though they are not DMA 
devices. This direct I/O allows them to issue virtual I/O requests, call exist­
ing ACP FDT routines, and use the virtual I/O completion routines in the I/O 
postprocessing code. 
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20 Process Creation 

All things in the world come from being. And being comes from 
nonbeing. 

-The Way of Lao Tzu 

The creation of a new process requires the cooperation of several pieces of the 
executive: 

• Creation begins in the context of an existing process that executes a Create 
Process system service call. The Create Process system service performs 
the following steps: 

a. It makes privilege and quota checks. 
b. It loads the PCB, possibly the JIB if creating a detached process, and the 

process quota block with explicit SYS$CREPRC arguments and im­
plicit parameters taken from the context of the creator. 

c. It places the new process into the scheduler's data base. 

• The initial scheduling state of the new process is COMO (computable but 
outswapped). Thus, execution of the shell process is suppressed until the 
swapper process moves the new process into the balance set. The follow­
ing steps are performed in the context of the swapper process: 

a. The swapper inswaps the template process context from SHELL, a por­
tion of the executive image SYS.EXE. 

b. The process header is built according to the values of SYSBOOT param­
eters for this configuration. 

• The final steps of process initialization take place in the context of the 
new process in a routine called PROCSTRT. PROCSTRT performs the 
following steps: 

a. The arguments from the PQB are moved to their proper places in the 
process header and Pl space. 

b. The image activator is called to activate the image. 
c. The image is called at its entry point. 

20.1 CREATE PROCESS SYSTEM SERVICE 

The Create Process system service establishes the parameters of the new 
process. Some of these parameters are passed to the service by the caller. 
Others are taken from the context of the caller: the caller's process control 
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block (PCB), process header (PHD), job information block (JIB), and control 
region are all used (see Figure 20-1 ). The parameters that belong in the PCB or 
the JIB of the new process can be placed there by the Create Process system 
service. The parameters that belong in either the process header or the con­
trol region of the new process must be stored in a temporary structure until 
the new process comes into existence and has a virtual address space and 
process header that can be accessed. The process quota block (PQB) serves the 
purpose of this temporary data structure. Its contents are listed in Table 20-1. 

Control Flow of Create Process 

The Create Process system service allocates a PCB, a JIB (in creation of a 
detached process only), and a PQB. The service fills these three structures 
with the implicit and explicit parameters passed to it. The following list 
details the operation of the Create Process system service: 

1. If the caller specified the UIC argument, the new process will be a de­
tached process. The creating process must have DETACH privilege in 

Creator 

PCB 

$CREPRC 
Arguments 

Control 
Region 

Process 
Header 

Figure 20-1 

(Sample parameters 
that are stored 

in JIB, PCB, and PQB) 

(New JIB allocated 
only if creating 

detach/ 

JIB 

(Pooled 
Quotas) 

Pooled Quotas '-------' 

New Process 

Process 
Quota 
Block 

(PQB) 

Sample Movement of Parameters in Process Creation 
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Table 20-1: Contents of the Process Quota Block 

Item 

Privilege Mask 
Size of PQB 
Type Code 
Status Flags 
Image Name 
Equivalence Name for SYS$ERROR 
Equivalence Name for SYS$INPUT 
Equivalence Name for SYS$0UTPUT 
Equivalence Name for SYS$DISK 
AST Limit 
Buffered 1/0 Limit 
Buffered 1/0 Byte Limit (Not Used [l]) 
CPU Time Limit 
Direct 1/0 Limit 
Open File Limit (Not Used [l]) 
Paging File Quota (Not Used [l]) 
Subprocess Limit (Not Used [l)) 
Timer Queue Entry Limit (Not Used [l)) 
Working Set Quota 
Working Set Default 
Process Lock Limit 
Working Set Extent 
Swap Space Allocation 
User Name for Subprocess 
Account Name for Subprocess 
Default Directory String 
Default File Protection 
Default Message Flags 

Size (Bytes) 

8 
2 
1 
1 
64 
64 
64 
64 
64 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
12 
8 
84 
2 
1 

[l] The quotas and limits marked "Not Used" are now 
pooled in the JIB; hence, the PQB is no longer used to 
transfer these values. 

order for the service to succeed. The DETACH privilege is also required 
when creating processes with the BATCH or NETWRK flags. 

2. The PCB and PQB for the new process are allocated from nonpaged pool. 
3. If a detached process is being created, a JIB must be allocated from 

nonpaged pool. The JIB pointer (PCB$L_JIB) in the new PCB points to the 
newly allocated JIB. The information fields (all but the 12 bytes of header) 
are cleared. 

If a subprocess is being created, PCB$L_JIB points to the JIB of the 
creator (which is actually the JIB of the master process of the job). The 
relationship between the JIB and the PCBs of several processes in the 
same job is shown in Figure 20-2. The process count field in the JIB 
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NAME w 

PIO 10035 

PR CC NT 2 

OWNER 0 

JIB -t--

JIB for 
All Processes 

in This Job 

NAME x NAME y 1-----------1 
MPl0=10035 

PIO 10033 PIO 10031 t------------1 
Pooled 

PRCCNT 0 PRCCNT 1 Quotas 

OWNER 10035 OWNER 10035 PRCCNT3 

JIB JIB • 

1. Process W created NAME z 
both X and Y. 

PIO 1002E 

PRCCNT 0 

2. Process Y created OWNER 10031 
Process Z. 

JIB 

Figure 20·2 
Relationship between the JIB and PCBs of Several 
Processes in the Same Job 

!JIB$W _PRCCNT) is incremented and a check is made to insure that the 
count is still less than or equal to JIB$W _PRCLIM. 

Note that the PRCCNT fields within each PCB (PCB$W _PRCCNT) 
count the number of subprocesses created by that process. JIB$W _ 
PRCCNT counts the total number of subprocesses in the job. 

4. Several fields in the PCB are initialized to nonzero values. 

a. The AST queue is set up as empty. 
b. ASTs are enabled for all access modes. 
c. The lock queue header is set up as empty. 
d. The pointer to the access rights block (ARB) is initialized to point to 

the PCB$Q_PRIV field of the PCB. 
The access rights block (ARB) is currently located within the PCB 

(see Figure B-24). However, routines such as ACPs and device drivers 
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that wish to check a process's access rights use the ARB pointer to 
locate the privilege mask and UIC. If, in the future, the ARB becomes 
an independent structure, the programs that use the ARB pointer will 
continue to work without modification. 

e. The unit number of a termination mailbox is filled in. A unit number 
of zero will indicate to the process deletion routine that no termina­
tion message is to be sent back to the creator. 

f. The process page count is initialized to the count of pages in the 
SHELL process. 

5. The process name is loaded into the PCB. 
6. The process privileges of the new process are determined and loaded into 

the PQB. If no privilege argument is present, the current privileges of the 
creator are used. (Table 21-1 summarizes the various privilege masks as­
sociated with a process.) 

If a privilege argument is present and the creator has SETPRV privilege, 
then the privilege argument is used with no modification. 

If a privilege argument is present and the creator does not have 
SETPRV privilege, then the privileges passed to the new process are the 
logical AND of the privileges of the creator and the privileges specified in 
the argument to Create Process. In short, a created process cannot receive 
privileges that its creator does not have. · 

7. The software priority of the new process is determined and loaded into 
the PCB in the base priority field, the initial priority field, and the current 
priority field. (Because this argument is passed by value, it is always pres­
ent, with a default value determined by the treatment of missing argu­
ments by the language processor.) If the creator has ALTPRI privilege, the 
priority specified in the argument list is used. 

If the creator does not have ALTPRI privilege, the smaller of his base 
priority and the priority in the argument list will be used. 

8. The UIC of the new process is determined and loaded into the PCB. If a 
UIC argument is present, the new process is a detached process, and the 
argument is the UIC for that detached process. 

If a UIC argument is not present, then the new process is a subprocess. 
The UIC of the creator is used. In addition, the PID of the creator is put 
into the PCB$L_OWNER field of the PCB of the new process. The ab­
sence of the UIC argument will indicate to the process deletion routine 
that this is a subprocess for which special action must be taken. 

9. A check is made to insure that the process name is unique within the 
group. This check is made by examining the process name fields of all 
PCBs in the system with the same group number. When calling the proc­
ess control system services, a process can only refer to another process by 
name if the target process is in the same group (see the VAX/VMS System 
Services Reference Manual). 
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Table 20-2: Flags in the Status Longword in the PCB (PCB$1-STS) That Can Be Set at 
Process Creation 

Flag in Bit Privilege 
PCB$LSTS Number Meaning (If Set) Required 

PCB$V _SSRW AIT 0 Disable System Service None 
Resource Wait Mode 

PCB$V _SSFEXCU Enable System Service Exceptions None 
for User Access Mode 

PCB$V _PSWAPM 2 Inhibit Process Swapping PSWAPM 
PCB$V _NOACNT 3 Suppress Accounting NOACNT 
PCB$V _BATCH 4 Batch (Noninteractive) Process DETACH 
PCB$V _HIBER 5 Hibernate Process before None 

Calling Image 
PCB$V _LOGIN 6 Log In without Reading DETACH 

the Authorization File 
PCB$V _NETWRK 7 Process Is a Network DETACH 

Connect Object 
PCB$V _DISA WS 8 Disable System Initiated None 
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Working Set Adjustment 

10. Several text strings are loaded into the PQB. The image name and the 
equivalence names for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR 
are taken from the argument list to Create Process. The equivalence 
name for SYS$DISK is obtained from the Translate Logical Name system 
service. The user name, account name, and default directory string are 
obtained from the control region of the creator. 

11. The default file protection and message flags are loaded into the PQB 
from the control region of the creator. 

12. The status flags for the new process are extracted from the Create Process 
argument list and set in the PCB$L_STS field in the new PCB. Some of 
these flags require privileges (see Table 20-2). The privilege mask that is 
checked is that of the new process. 

13. The quotas are determined for the new process and loaded into the PQB. 
Section 20.1.2 describes the several steps taken to determine the quota 
list for the new process. 

14. The address of the PQB is stored in the PCB in the PCB$L_PQB field (see 
Figure 20-1 ). PCB$L_PQB uses the same longword as the event flag wait 
mask field, PCB$L_EFWM. This field is available because the process 
cannot yet be waiting for any event flags. 

15. IPL is raised to IPL$_ SYNCH (IPL 7) to prevent multiple accesses to the 
scheduler's database. Swap space is allocated for the process. Its address 
is stored in the PCB; the size of the swap space is stored in the PQB. The 
PCB vector (pictured in Figure 20-3 and described in Section 20.1.3) is 
searched for an empty slot. 
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PCB Vector 
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Figure 20-3 
Sample PCB Vector 

16. If the maximum process count has been exceeded (contents of 
SCH$GW _PROCCNT are larger than SCH$GW _PROCLIM), or if no 
swap space can be allocated, the process creation is aborted. Otherwise, a 
process ID is fabricated (see Section 20.1.4) and put into the PCB of the 
new process. 

17. If a detached process is being created, its PID is loaded into the master 
PID field of the JIB (JIB$L_MPID). 

18. The scheduler is called to make this process executable (and 
outswapped). A boost of 6 will be given to the base priority. It is this 
boosted priority that will determine when the new process is swapped in 
from SHELL. 

19. If a subprocess is being created, the count of subprocesses owned by the 
creator (stored in field PCB$W _PRCCNT) is incremented. In addition, if 
the creator has a nonzero CPU time limit (there is a CPU time limit in 
effect), the amount of CPU time passed to the new process is deducted 
from the creator. 
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20. Finally, the PID of the new process is returned to the creator (if re­
quested), IPL is restored to allow system event reporting, and control is 
passed back to the caller. 

Establishing Quotas for the New Process 
Two tables in the executive are used by the Create Process system service 
when quotas are set up for the new process: a minimum quota table and a 
default quota table. Each quota or limit in the system has an entry in both 
tables. The contents of the minimum table are determined by the SYSBOOT 
parameters whose names are of the form PQL_Mquota-name; the contents of 
the default table are of the form PQL_Dquota-name. The following list de­
scribes the steps that are taken in order to determine the value for each quota 
or limit that is passed to the new process. 

1. The default values for each quota are put into the PQB as initial values. 
2. Each quota that is included in the argument list to Create Process replaces 

the default value in the list. 
3. Each quota is forced to at least its minimum value. 
4. A check is made to insure that the creator possesses sufficient quota to 

cover the quotas that it is giving to the new process. This check is per­
formed in the following way: 

a. If a detached process is being created, then no check is performed. 
Pooled quotas are placed directly into the newly allocated JIB. 

b. If a subprocess is being created and the quota is neither pooled nor 
deductible (the only deductible quota that is currently implemented is 
the CPU time quota), then the subprocess quota must be smaller than 
or equal to the creator's quota. 

c. Pooled quotas require no special action when a subprocess is being cre­
ated because they already reside in the JIB, a structure that is shared by 
all processes in the job (see Figure 20-2). 

d. If a subprocess is being created and the quota in question is the CPU 
time limit quota, what happens depends on how much quota the crea­
tor process possesses. If the creator has infinite CPU time limit, then no 
check is performed. If the creator has a finite CPU time limit and speci­
fies an infinite CPU time limit for the subprocess, half of the creator's 
CPU time limit is passed to the subprocess. If the creator has a finite 
CPU time limit and specifies a finite CPU time limit for the 
subprocess, the amount passed to the subprocess must be less than the 
creator's original quota, or the creation is aborted. 

Table 20·3 lists the quotas that are passed to a new process when it is 
created, whether each quota is deductible or pooled, and where the limit is 



Table 20-3: Storage Areas for Process Quotas 

Location of Location of C.mmttilimft 
Quota/Limit Name Active Count Process Limit SWlll!d lbj! fllj 

AST Limit PCB$W _ASTCNT PHD$W _ASTLM CIP 
Buffered I/O Limit PCB$W _BJQCNT PCB$W _BIOLM CIC 

Nondeductible Direct I/O Limit PCB$W _DIOCNT PCB$W _DIOLM CIC 
Quotas 

Working Set Quota (2) PHD$W _ WSQUOTA IP 
Working Set Default (2) PHD$W _DFWSCNT IP 
Working Set Extent (2) PHD$W _ WSEXTENT IP 

Deductible Quotas CPU Time Limit PHD$1-CPUTIM PHD$1-CPULIM [3ifP 
Buffered I/O Byte Limit JIB$1-BYTCNT JIB$1-BYTLM l4J 

Pooled Quotas Open File Limit JIB$W _FILCNT JIB$W _FILLM (4) 
(Shared by all 
processes in the Page File Page Limit JIB$1-PGFLCNT JIB$1-PGFLQUOTA (4) 
same job) 

Subprocess Limit JIB$W _PRCCNT JIB$W _PR CLIM i4J 
Timer Queue Entry Limit JIB$W _ TQCNT JIB$W_TQLM (4J 
Enqueue Limit JIB$W _ENQCNT JIB$W _ENQLM (4J 

With the exception of CPU time limit and subprocess count, all active counts start at their process limit values and decrement to zero.. Anxtitre 
count of zero indicates no quota remaining. An active count equal to the corresponding process limit indicates no outstanding~ 

( 1) The slash {/) separates the count from the limit. 
Cl indicates that the count value is stored by the Create Process system service. 
IC indicates that the limit value is stored by the Create Process system service. 
IP indicates that the limit value is stored by PROCSTRT. 

(2) Working Set List quotas are handled differently from other quotas (see Chapter 15). 
(3) CPU Time starts at zero and increments for each clock tick that the process is current. If limit checking is in effect (CPUUMnoau:ro», then 

CPUTIM may not exceed CPULIM. 
(4) The contents of the JIB are loaded by Create Process when a detached process is created. Subprocess creation uses an existing JIB.. 
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stored in the context of the new process. Further discussion of quotas can 
be found in the VAX/VMS System Management and Operations Guide 
and in the VAX/VMS System Services Reference Manual. 

5. The quotas and working values that belong in the PCB are moved to the 
PCB (see Table 20-3). 

The PCB Vector 

When the system is initialized, an array of MAXPROCESSCNT longwords is 
allocated from nonpaged dynamic memory. This array will be used to locate 
the PCB of each process in the system at any given time. The first two entries 
in the table point to the PCBs of the null process and the swapper process. All 
other entries in the table initially point to the PCB of the null process. An 
entry that points to the PCB of the null process but has nonzero index is 
considered an empty slot. (The entry that locates the PCB of the null process 
that has an index of zero is the "real" pointer.) The scan for an empty slot 
begins at the bottom of the table so that those system processes that are 
created as a part of system initialization will have their PCB pointers located 
near the bottom of the table. An example of the contents of this table is 
shown in Figure 20-3. 

Fabrication of Process IDs 

The low-order word of the process ID contains the index into the PCB vector 
that locates the PCB of the identified process. The high-order word is taken 
from an array of words that is allocated from nonpaged pool at system initial­
ization time. This array of words (termed sequence numbers) is initially set 
to zero and is used as a consistency check to determine that a number alleged 
to be a process ID corresponds to a real process in the system. 

When an empty slot in the PCB vector is located, the corresponding entry 
in the sequence vector (see Figure 20-4) is incremented and used as the high­
order 16 bits of the process ID. Sequence numbers cycle to 0 after reaching 
32767; thus, process IDs, when they are interpreted as signed integers, are 
always positive. 

Negative process IDs are used in a special form of 1/0 completion. The 1/0 
postprocessing interrupt service routine interprets a negative PID in the 
IRP$L_PID field of an 1/0 request packet as the (system virtual) address of an 
internal I/O completion routine. 

When a process is referenced by its process ID, the validity of the PID can 
be checked by using the low 16 bits as an index into the sequence vector and 
comparing the value found there with the high-order 16 bits of the PID. With 
this scheme, a second check must also be made. The entry in the PCB vector 
must be compared to the address of the null process. If the addresses are 
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equal, the process has been deleted but no new process has been assigned to 
the empty slot. 

The two checks described in the previous paragraph are actually performed 
in one step (in routine EXE$NAMPIO) by using the low-order word of the PIO 
as an index into the PCB vector. The PCB indexed by the PIO contains its PIO 
at offset PCB$L_PIO. The PIO in the PCB is compared to the PID that is 
being checked. If the process specified has been deleted (the PCB vector now 
points to the PCB of the null process) but the slot has not yet been reused (the 
sequence number is not yet incremented), the sequence number array ele­
ment will match the high-order word in the process ID, but the full 32-bit 
PIDs will not match. 

For example, suppose a process has been deleted, but its PCB vector slot 
has not yet been reused. Then the contents of the sequence array element 
match the high-order word of the process ID. But the indexed PCB pointer 
locates the PCB of the null process, which has a process ID of 00010000 and 
does not match the value of the PID in question. If, on the other hand, the 
slot has been reused, then the low-order word of the process ID indexes a 
process, but the high-order word in the PCB (or the contents of the sequence 
array element) is one larger than the sequence number field in the original 
process ID. Again, no match occurs. 
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A process comes into existence in the scheduling state COMO, computable 
but outswapped. However, the swap image of a newly created process does 
not reside in the swap file. Instead, a special swap image exists in the paged 
portion of the executive image file SYS$SYSTEM:SYS.EXE (see Figures 20-5 
and 14-22). Table 26-2 shows the relative location of SHELL within the paged 
executive. This image contains a minimal process header and Pl space. The 
actual contents of the swap image found in SHELL are listed in Table 20-4. 

Moving SHELL Into Process Context 

The selection of a newly created process for inswap and the actual inswap 
operation are performed by the swapper. As a performance enhancement, the 
inswap from SHELL is not performed by a call to the I/O system (as the pages 
of normal processes are inswapped); rather, SHELL is moved into physical 
memory (and into the new process's Pl space) by a MOVC instruction. Be­
cause the SHELL resides in the paged portion of the executive, this optimiza­
tion is especially effective in systems on which many processes are con­
stantly being created. 

Process B 
is being 
created. 

Process X 
already 
exists 
and is 
currently 
outswapped. 

Figure 20-5 
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Table 20-4: Contents of the Initial Swap Image in the Shell Process 

Item Size Permanently Page Number Is Page Read from 
Locked in in SHELL SHELL by 
Working Set! SWAPPER Process! 

Process Header Note l Yes Yes, l Page only 
(Fixed + WSL + PST) 

Pl Page Table Pages 2 Yes 2,3 Yes, 2 Pages, 

Pl Pointer Page Yes 4 Yes, 1 Page 

Process I/O Segment 1 No 5 Yes, l Page 

Process Allocation Region l No 6 Yes, l Page 

Kernel Stack 3 Yes 7,8 Yes, First 2 Pages 

Rest of Process Header Note l Yes No 

Page Table Page Arrays Note2 Yes No 
TOTALS Note3 Note4 8 

(1) The size of the top of the process header depends on the values of several SYSBOOT 
parameters. See Chapter 26 for details on how the size of the process header is calculated 
by SYSBOOT. 

(2) There are eight bytes per process header page in these arrays. See Chapter 26 for details. 
(3) There are six Pl pages, two Pl page table pages, and a variable number of process header 

pages (notes 1 and 2) that contribute to SHELL. 
(4) The number of permanently locked pages is the result in Note 3 minus the two nonpcr­

manent pages. 

Configuration of the Process Header 

When the executive image SYS.EXE was linked, the shell process was con­
structed to look exactly like an outswapped process. However, a process 
header cannot be entirely configured without taking into account several 
SYSBOOT parameters. 

To accomplish the final configuration of the process header, the swapper 
makes one check (after the process has been read in, but before the working 
set is rebuilt) to determine whether this is a new process created from 
SHELL. If it is, a special subroutine is called to configure the process header 
before the final operations of inswap are completed. 

This routine (SWP$SHELINIT), a subroutine of the swapper, does not exe­
cute very often, only as part of the creation of a new process. To avoid using 
up space in the resident executive, the routine is put into some of the pages 
that are read in from SHELL. Recall from Chapter 17 that the swapper's 
pseudo page table (as far as the 1/0 system is concerned) is also its PO page 
table (as far as address translation routines are concerned). This special sub­
routine executes in PO addresses in the context of the swapper process. When 
the new process page tables are set up, the physical pages that contain this 
code will become the kernel stack. 
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The routine SWP$SHELINIT performs the following actions: 

1. Pages that are a part of SHELL (and also permanently locked into the 
working set), but are not read in from the copy of SHELL in the executive 
image, are filled with zeros. These pages are all but the first page of the 
beginning of the process header, one page of the kernel stack, and the 
page table page arrays (see Table 20-5). None of the information that will 
be put into these pages was assembled into the executive image. Their 
contents are determined dynamically and are loaded by PROCSTRT. 

2. The system page table entries that map the fixed portion of the process 
header, the working set list, and the process section table are temporarily 
mapped so that this routine may access them. The initial contents of 
each SPTE are simply the contents of the swapper's 1/0 page table (Figure 
14-24). 

3. The system page table entries that map the empty pages of the process 
header (used for working set list expansion, see Chapter 14) are left as no 
access pages. The system page table entries that map the page table page 
arrays in the process header (see Chapters 14 and 17) are also temporarily 
mapped so that this routine may access them. 

4. The translation buffer is invalidated. 
5. The balance slot index is stored in the process header. This number is 

supplied to SHELL by the swapper, which records the number of the slot 
that has just been filled. 

6. The SYSBOOT parameters that determine the default page fault cluster 
size and the default page table page fault cluster size are stored in the 
process header. 

7. The page file with the most free space is selected as the page file for the 
new process. The page file number is recorded in the PHD at offset 
PHD$B_PAGFIL. 

8. The index to the beginning of the working set list (PHD$W _ WSLIST) and 
the pointer to the end of the process section table (PHD$L_PSTBASOFF) 
are calculated and stored. 

9. The pointers to the four arrays in the page table page array portion of the 
process header (see Figure 14-8) are calculated and stored. The page table 
page arrays (that count valid and locked pages in each page of page table 
entries) are initialized to -1, indicating no valid or locked pages. The 
next to last page table page in Pl space has its entries corrected to reflect 
four locked pages and six valid pages. The four locked pages are the Pl 
pointer page and three pages of kernel stack. The two pages that are valid 
but not locked are one page of process allocation region and one page of 
process 1/0 segment. 

10. The four counters in the fixed portion of the header that count page table 
pages with locked pages, valid pages, active page table pages, and those 
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PTEs with nonzero entries (see Figure 14-8) are initialized to the number 
of active Pl page table pages. There are two such pages for Version 3.0 of 
the VAX/VMS operating system. 

11. Three working set list pointers (WSLOCK, WSDYN, WSNEXT) are ad­
justed from their initial values assembled into SHELL to reflect the addi­
tional pages from the top of the process header that are a permanent part 
of the working set. The working set list entries for the two pages that are 
valid but not locked (step 8) are slid down to make room for the WSLEs 
for the process header pages. 

12. The pages that comprise the top of the process header (fixed portion, 
working set list, process section table, and page table page arrays) are 
added to the process working set list. In addition, the PFN arrays for the 
physical pages that are mapped are updated to indicate that these pages 
are page table pages (TYPE array), active (STATE array), and in the proc­
ess working set (WSLX array). 

13. The system page table entries that map the process page table entries are 
initialized to demand zero pages. The two Pl page table pages that are a 
permanent part of the working set are added to the working set list. The 
PFN arrays for the physical pages to which the Pl page table pages are 
mapped are updated as in step 11. Finally, the system page table entries 
that map these Pl page table pages are set up so that these pages are 
accessible. 

14. The offsets from the beginning of the process header to the beginning of 
the PO page table and the end of the Pl page table are calculated, reflect­
ing the size of the beginning of the process header (see Chapters 14 and 
26). The address of the first free virtual address in Pl space (stored in the 
process header at offset PHD$L_FREP1VA) and the contents of the copy 
of the Pl length register (stored in the hardware PCB in the process 
header) are also adjusted to reflect the size of the process header, which is 
mapped into Pl space. 

15. The swapper I/O page table (see Figure 14-24) is adjusted to reflect the 
current state of the working set list. The address of the Pl window to the 
top of the process header is calculated and stored in location 
CTL$GL_PHD. (Although the swapper is the current process, it is able to 
access the Pl address of the newly created process because its pages are 
mapped as swapper PO addresses in the swapper I/O page table.) When 
control is passed back to the swapper, the completion of the inswap oper­
ation will 'reflect the correct state of the working set list and the location 
of the Pl window to the proce:ss header. 

16. The process header is marked resident (in field PCB$V _PHDRES in 
PCB$L_STS). 

17. The WSQUOTA, WSAUTH, WSEXTENT, and WSAUTHEXTENT point­
ers are initialized to the value of the SYSBOOT parameter WSMAX. The 
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WSFLUID counter is initialized to the value of the SYSBOOT parameter 
MINWSCNT. The end of the working set list (WSLAST) and the default 
count (DFWSCNT) initially reflect the value of the SYSBOOT parameter 
PQL_DWSDEFAULT. 

18. The PO and Pl base registers are adjusted to reflect the virtual address of 
the process header. The calculations in step 14 adjusted the values of 
these two registers relative to the beginning of the process header. After 
this current step, the copies of these two registers contain the virtual 
addresses of the the beginning of the PO and Pl page tables, exactly what 
is required for address translation. 

19. The Pl PTEs that map the system ~rvice vectors are remapped with the 
SPTEs that map the system service vectors in system space. By doing 
this, system service vectors can be modified on a per-process basis, sim­
ply by modifying the process PTEs that map the system service vectors 
for the process. 

20. Finally, the size of the initial swap space allocation is copied from the 
process quota block (at offset PQB$L_SWAPSIZE) to the process header 
(at offset PHD$L_SWAPSIZE). 

SWP$SHELINIT returns control to the swapper's main inswap routine 
where the final steps of the inswap operation are completed. The opera· 
tion of the swapper process is described in Chapter 17. 

20.3 PROCESS CREATION IN THE CONTEXT 
OF THE NEW PROCESS 

20.3.1 

458 

The final steps of process creation take place in the context of the newly 
created process. SHELL contains an initial hardware context for the process. 
In particular, the saved PC in the hardware PCB is the address of a routine 
called EXE$PROCSTRT. The saved PSL indicates kernel mode at IPL 2. Thus, 
the first code that executes in the context of a newly created process is the 
same for every process in the system. 

Operation of PROCSTRT 

By the time that PROCSTRT executes, the PCB and the process header have 
been properly configured. In addition, all information passed from the creator 
to the PCB has already been put there. PROCSTRT must take the informa­
tion that is temporarily located in the process quota block and put it into its 
proper place in the process header and in Pl space (see Figure 20-6). 
PROCSTRT then prepares for ,execution the image whose name was passed 
by the creator and calls that image. 

The steps that are performed by PROCSTRT are listed here. PROCSTRT 
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begins execution in kernel mode at IPL 2 to prevent process deletion until the 
PQB has been deallocated. 

1. The address of the RMS dispatcher, and the address of the base of the 
control region (the address of the Pl map to the process header, which is 
the part of Pl space that is at the lowest virtual address) are put into the 
Pl pointer page. 

2. The Pl space vectors for user-written system services and per-process or 
image-specific messages are initialized to point to RSB instructions. (The 
use of these vectors in dispatching to user-written system services is 
discussed in Chapter 9.) 

3. The address of the process's PCB is stored in CTL$GL_PCB. The account 
name, user name, and default directory string are taken from the PQB and 
put into their proper places in Pl space. 

4. Those quotas that are stored in the process header (currently only CPU 
time limit and AST limit) are moved from the PQB to their proper places 
in the process header (see Table 20-4). 

5. The working set list pointers are initialized to reflect the quotas passed 
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from the creator (after minimization with the system-wide working set 
maximum). 

6. The process's base priority is saved in the process header at offset 
PHD$B_AUTHPRI. Saving the base priority allows processes without 
ALPTRI privilege to lower their base priority and later raise it as high as 
their original base priority. 

7. The process privilege mask is loaded into the first quadword of the proc­
ess header (the working privilege mask), the permanent privilege mask 
(at location CTL$GQ_PROCPRIV in the Pl pointer page), and the au­
thorized privilege mask (in field PHD$Q_AUTHPRIV). The use of each 
of these privilege masks is described in Chapter 21. 

8. The default file protection and message flags are copied into Pl space. 
9. At this point, the entire PQB is copied to the stack and the PQB deal­

located to nonpaged pool. This step is taken to give back dynamic mem­
ory as quickly as possible, particularly before the time-consuming proc­
ess of logical name creation. 

10. The login time is saved. 
11. The process logical name hash table is allocated from the process alloca­

tion region and is initialized. 
Once the PQB has been deallocated and the logical name hash table has 

been allocated, IPL can be lowered to zero, allowing the process to be 
deleted. By keeping IPL at 2 until the PQB has been given up, the need for 
special case code in Delete Process is avoided. There is no need to check 
in Delete Process whether the process being deleted is only partially cre­
ated and still owns a process quota block from nonpaged pool. 

Another more philosophical interpretation is that at this point in the 
creation of a process, there exists something that is capable of being dele­
ted, a full-fledged process. 

12. Logical names are created for SYS$INPUT, SYS$0UTPUT, SYS$ERROR, 
TT, and SYS$DISK. The image name is moved to the image header buffer 
for subsequent use by the image activator. 

13. The 1/0 channel table is created in Pl space (see Figure 1-7). The number 
of channels is determined by the special SYSBOOT parameter CHAN­
NELCNT. 

14. Access mode is changed to executive by fabricating a PSL on the stack 
and executing an REI instruction. The execution of an REI instruction is 
the only way to get to an outer (less privileged) access mode. 

15. The shareable image list for the Address Relocation Fixup system service 
is initialized to point to a dummy element. (The Address Relocation 
Fixup system service is described in Chapter 21.) The PQB copy is re­
moved from the stack. 

At this point, PROCSTRT has moved all the information from the 
creator to the context of the new process, and is now ready to activate the 
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image that will execute in the context of the new process. The following 
steps accomplish the image activation. 

16. The image activator is called to set up the page tables and perform the 
other steps necessary to activate the image. Image activation is described 
in Chapter 21. 

17. An executive mode termination handler is declared that will call 
RMS$RUNDWN for each open file. This handler will be invoked when 
SYS$EXIT is called from executive access mode, which will usually hap­
pen when the process is deleted. 

18. Access mode is changed to user by fabricating a PSL on the stack and 
executing an REI instruction. 

19. The frame pointer (FP) is cleared, guaranteeing that the search of the 
stack for a condition handler by the exception dispatcher will terminate 
(see Chapter 4). 

20. An initial call frame is set up on the stack by executing a CALLG instruc­
tion that refers to the next line of code. 

CALLG (AP), B'15$ 

15$: • WORD D ;Entry Mask 
next instruction 

The address of a catch-all condition handler is established in this frame 
and also in the last chance exception vector for user mode. The purpose 
and action of this handler are discussed in the next section. The Address 
Relocation Fixup system service ($IMGFIX) is called to perform fixups on 
the image. 

21. An argument list that is nearly identical to the one used by one of the 
command language interpreters (see Chapter 23) is built on the stack. 
This argument list allows an image to execute with no concern over 
whether it was activated from PROCSTRT or from a CLI. The address of 
a dummy CLI call back routine is put into this argument list and also in 
location CTL$AL_CLICALBK. If an image that was activated from 
PROCSTRT attempts to communicate with a CLI (which does not exist), 
an error of CLI$_INVREQTYP will be returned. 

22. Finally, the image is called at its initial transfer address. If the image 
terminates with a RET instruction (instead of calling the Exit system 
service, $EXIT, directly), PROCSTRT calls $EXIT itself. In general, there 
is no difference between an image terminating with a RET instruction or 
with a call to $EXIT. 

If the process was initially created with the hibernate flag, it is placed 
into hibernation before the image is called. When control is passed back 
to PROCSTR T following image termination, the hibernate flag is again 
checked. If no error occurred and the hibernate flag is set, the process is 
put back into the hibernate state. 
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In this instance, there is a difference between RET and SYS$EXIT. If a 
process is to be put into hibernation for future awakenings, it must use 
the RET instruction to return back to PROCSTRT rather than terminate 
with a call to SYS$EXIT. 

Catch-All Condition Handler 

This condition handler is established in the outermost call frame by 
PROCSTRT and by the command language interpreters before an image is 
called. Any condition that is resignaled (not properly handled) by other hand­
lers (or unfielded because no other handlers have been established) will even­
tually be passed to this handler. The handler will issue a message using the 
SYS$PUTMSG service and, depending on the severity level of the condition, 
force image exit. 

The catch-all condition handler performs the following actions: 

1. If the condition is SS$_SSFAIL, then system service failure exception 
mode is disabled to avoid an infinite looping situation. 

2. If the exception was generated by a call to LIB$SIGNAL (that is, the excep­
tion did not pass through the module EXCEPTION in the executive), then 
the argument list is adjusted to contain only those arguments passed to 
LIB$SIGNAL and not the PC and PSL fabricated into the signal array by 
that procedure (see Chapter 4). 

3. Unless system services are inhibited for this process, SYS$PUTMSG is 
called to write an error message to SYS$0UTPUT (and to SYS$ERROR if 
different from SYS$0UTPUT). The service SYS$PUTMSG is described in 
the VAX/VMS System Services Reference Manual and in the VAX-11 
Run-Time Library Reference Manual. The internal operation of the Put 
Message system service is discussed in Chapter 30 of this book. 

4. If this handler was called through the last chance vector (indicated by a 
depth of -3), or if the error level is severe or greater (and if system services 
are not inhibited for this process), an exception summary is written to 
SYS$0UTPUT by the routine EXE$EXCMSG. This routine is described in 
Chapter 30. 

In all other cases, the image is allowed to continue (by returning a status 
of SS$_CONTINUE to the exception dispatcher). 



21 Image Activation and 
Termination 

I would have you imagine, then, that there exists in the mind of 
man a block of wax ... and that we remember and know what is 
imprinted as long as the image lasts; but when the image is 
effaced, or cannot be taken, then we forget or do not know. 

-Plato, Dialogs, Theaetetus 191. 

Before an image can execute, the VMS operating system must take several 
steps to prepare the image for execution. Process page tables and other data 
structures must be set up to locate the correct image file on disk. Address 
references between shareable images must be resolved. In addition, if the 
debugger or traceback handler is expected to run when the image executes, 
the correct hooks must be present to allow either or both of these images to 
be invoked. 

At image exit, termination handlers declared by the user or by the VMS 
operating system must be called. If the image is executing in a batch or inter­
active environment, all traces of the image must be eliminated so that the 
next image can begin execution with no side effects from the execution of the 
previous image. 

21.1 IMAGE INITIATION 

The VMS operating system contains no special code to read images into 
memory for initial execution. Instead, the paging mechanism that brings in 
pages from an image file on demand is used when an image initially executes 
as well as later on. In order for this scheme to work, the process page tables 
must be properly setup to reflect the state of all the pages in the image file. 
This setup is performed by the image activator. 

Before control can be transferred to the image, .ADDRESS and GA refer­
ences that point to locations within shareable images must be resolved. 
These address relocation fixups are delayed to activation time rather than 
done at link time so that the size of the shareable images can change without 
having to be relinked. However, because these fixups modify pointers within 
the images themselves, they must be performed in the access mode from 
which the main image will run. In this chapter, the term main image refers to 
a main, controlling image that has been invoked by a user; although the 
debugger or traceback handler could be viewed as a controlling image, this 
discussion will name those images specifically when dealing with them. 
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The actual transfer of control to the image also takes place through the 
VMS operating system so that hooks can be inserted to allow later inclusion 
of either a debugger or the traceback facility. This path through the VMS 
operating system, called the debug bootstrap, always executes unless explic­
itly excluded at link time with a /NOTRACEBACK qualifier to the LINK 
command. 

Image Activation 

The module that contains the image activator (SYSIMGACT) is one of the 
largest modules in the executive. Although the concept of image activation is 
very simple, there are several alternate paths through the image activator 
that take into account the many special cases of image activation. Some of 
these cases will be discussed explicitly. Others will only be mentioned in 
passing. 

The following types of image activation will be discussed explicitly: 

• Activation of a "simple" image, one that contains no global sections. 
This is an artificial separation from the next case, simply to illustrate 

the difference in calls to the image activator. 
• Activation of an image that contains global sections. 

Because almost every high-level language processor includes library rou­
tines, this case includes every image except those written entirely in 
VAX-11 MACRO with no explicit sharing of global sections . 

. • Initial activation of known images. 
When the Install Utility makes privileged or shareable images known to 

the system, the image activator is called with a noactivate option, to pre­
pare the image for later activation. 

• Later activation of known images. 
The activation of images that have been installed is streamlined by the 

data structures that were created when the image was initially installed. 
• Activation of compatibility mode images. 

When the image activator is asked to activate a compatibility mode 
image, it actually activates the RSX-I IM AME and passes the compatibil­
ity mode image name to the AME for further processing. 

There are several other options that the image activator must check for. 
These will only be mentioned in the specific parts 'of image activation where 
they cause special action to be taken. Some specific parts that will be dis­
cussed are the following: 

• Image activation at system initialization time. 
During initialization of the system, two image files must be opened 

without the support of either RMS or the disk ACP. These images are 
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SYSINIT and the system disk ACP itself. The image activator calls the 
special code in the executive that performs the simpler ACP operations 
without actually using the ACP. These routines are briefly described along 
with the rest of system initialization in Chapters 24 and 25. 

• Merged image activation. 
Merged image activation is the technique that the executive uses for 

mapping a debugger, the traceback handler, a message file, or a command 
language interpreter into an unused area of PO or Pl space. Rather than 
using the virtual address descriptors found in the image header of the 
merged image, the image activator simply uses the next available portion 
of PO or Pl space. The user stack and image I/O segment are not mapped 
for a merged image. The RMS initialization routines are not called either 
because an image is already executing and has RMS context that cannot be 
destroyed. 

• PO-only images. 
The linker can produce images that map all temporary structures includ­

ing the user stack and the I/O segment in PO space. The image activator 
must recognize this type of an image so that the two structures usually 
located in the lowest address portion of Pl space are correctly mapped. 

PO-only images are used whenever it is necessary to extend the perma­
nent part of the low address end of Pl space. For example, the SET MES­
SAGE command causes a PO-only image called SETPO.EXE to execute. 
This image maps the indicated message section into the low address end of 
Pl space and alters location CTL$GL_CTLBASVA to reflect the new 
boundary between the temporary and permanent parts of Pl space. This 
last step is critical if the message section is to remain mapped when later 
images terminate. 

• Privileged shareable images. 
Privileged shareable sections are used to implement user-written system 

services, as well as system service procedures that are not part of the sys­
tem image (for example, $MOUNT and $DISMOU). 

• Message sections. 
Message sections are used to add per-process or image-specific entries to 

the message facility. 
• Images that do not reside on a random access mass storage device. 

The image activator can activate images from sequential devices (mag­
netic tape) and images that are located on another node of a network. An 
address space large enough to contain the entire image is first created. The 
image is then copied into this address space, thus causing all image pages, 
including read-only pages, to be set up as writeable. 

21.1.1.1 Implementation of the Image Activator. The image activator is implemented 
as a system service, although it is not meant to be called directly by users. 
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The reason for this form of implementation is that the image activator will 
be indirectly called by users, both through a CLI, when running an image 
with some command, and through the Install Utility, when the system man­
ager or some other privileged user is installing privileged or shareable images. 

Thus, the image activator has its own slot in the system service vector area 
and is implemented as a procedure. The following eight arguments can be 
passed to the image activator: 

name 

dflnam 

hdrbuf 

imgctl 

String descriptor of image that is being activated. 

String descriptor for default file name. 

Address of 512-byte buffer in which the image header and image 
file descriptor are returned. The first two longwords in the buffer 
are the addresses (within the buffer) of the image header and the 
image file descriptor respectively. 

Image activation control flags. These flags control the form that 
the activation will take. The options are the following: 

Flag 
IAC$V _NOACT 

IAC$V _WRITABLE 

IAC$V _SHAREABLE 

IAC$V _PRIVILEGE 

IAC$V _MERGE 

Meaning 

If set, the image activator is not to 
activate the image. This flag is used 
by the Install Utility to complete the 
installation of known file entries. 

If set, the image is writeable. 

If set, the specified image is a share­
able image that is being activated as 
a piece of an executable image. This 
flag can only be used in a recursive 
call to the image activator. 

If set, the executable image has am­
plified privileges. If this flag is set, 
the shareable image being activated 
must be installed as a known file. 
The flag IAC$V _SHAREABLE must 
also be set. 

If set, the image activator is directed 
to merge one executable image into 
the address space of another. When 
this flag is set, the user stack, the 
image I/O segment, and the privilege 
amplification flag are to be ignored. 
This flag must be set if the image 
activator is called from user mode. 



inadr 

retadr 

ident 

IAC$V _EXPRG 
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If set, the inadr argument does not 
give an actual address range, but 
merely indicates the address space 
(PO space or Pl space) into which the 
image is to be mapped. This flag is 
only used during a merged image ac­
tivation. 

Address of a two-longword array containing the virtual address 
range into which the image is to be mapped. This argument is 
usually omitted, in which case the address ranges designated by 
the image section descriptors in the image header are used. 

Address of a two-longword array to receive the starting and end­
ing addresses into which the image was actually mapped. 

Address of a quadword containing the version number and 
matching criteria for a shareable image. 

The last three arguments are similar to the input arguments for various other 
memory management system services that are described in Chapter 16. 

21.1.1.2 Overview of Image Activation. There are essentially two steps that the image 
activator performs each time that it activates an image. First, it opens the 
image file, which allows the system to perform all of its file protection 
checks. Then the image header is read and the image that is described there is 
mapped into the user's virtual address space. The most important contents of 
the image header are a series of image section descriptors, one for each sec­
tion in the image. Each of these structures describes a portion of the image's 
virtual address space, and their contents will be used by the image activator 
as input parameters to other memory management system services. The 
overall structure of an image header is pictured in Figure 21-1. The general 
form of an image section descriptor is pictured in Figure 21-2. 

21.1.1.3 Activation of an Image with No Global Sections. Most of the common opera­
tions that are performed by the image activator will be described in the acti­
vation of an image that does not contain any global sections. This section can 
be interpreted as the general flow through the image activator. Other forms of 
activation are explicitly described in later sections but are also mentioned in 
this section when appropriate. 

1. The image activator scratch area in Pl space is initialized. 
2. The image file is opened as a process-permanent file. 
3. If the image is being activated from a sequential device (magnetic tape or 

across a network), then the address range is created and the entire image 
read from the sequential file into virtual address space. All future page 
faults will be resolved from the page file. 
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4. The first block of the image header is read into memory. At this point, 
the check for a compatibility mode image is made. The contents of the 
last word of the first block of the image header indicate either an image 
produced by the V AX-11 Linker ( - 1) or an image produced by some other 
linker (O or positive contents). 

At present, only one type of compatibility mode image is supported. 
An image produced by the RSX-llM task builder has a zero in the code 
word and will cause the activation of SYS$SYSTEM:RSX.EXE. Further 
details about the activation of a compatibility mode image are found in 
Section 21.1.1.4. 

5. At this point, the image activator begins its most important work, the 
setting up of the process page tables to reflect the address space produced 
by the linker. It performs this work by reading each image section de­
scriptor contained in the image header (see Figure 21-2), determining the 
type of section that is being described, and calling the appropriate mem­
ory management system service to perform the actual mapping. 

a. The most common form of image section descriptor that occurs in a 
11simple11 image describes a private section. This type of section may 
be either read only or read/write, depending on the attributes of the 
program sections that made up each such image section. Initial page 
faults for each page in this type of section will be satisfied from the 
appropriate blocks in the image file. 
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0 Global 
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When the image activator encounters an image section descriptor 
that describes a private section, it uses the contents of the image 
section descriptor as input arguments to the Create and Map (Private) 
Section system service (see Figure 21-3), resulting in a series of page 
table entries that are process section table indexes. If the image has 
been installed as a shareable image by the Install Utility, the Map 
Global Section system service is called, rather than Create and Map 
Section. The number of PTEs is equal to the page count contained in 
the ISD. Notice that all of the PTEs index the same process section. 

b. Another form of image section descriptor that may be found in an 
image is a demand zero section. The linker produces such a section 
whenever there are five-or some user-specified default number of­
consecutive pages in the image file that contain all zeroes. The image 
file does not contain those pages, but merely an indication (in the ISD) 
that a certain range of virtual address space contains all zeroes. 

When the image activator encounters such an image section descrip­
tor, it uses the contents of the ISD as input arguments to the Create 
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Virtual Address Space system service (see Figure 21-4), resulting in a 
series of page table entries that indicate demand zero pages. The 
number of PTEs is equal to the page count contained in the ISO. Note 
that one such section is the area in Pl space that contains the user 
stack. The linker differentiates this special demand zero section from 
others by a special code byte in the type designator in the ISO. The 
image activator puts off the mapping of the user stack until later in 
the activation. 

c. The third form of image section descriptor that the image activator 
may find indicates that a range of virtual address space is to be mapped 
to an existing shareable image. When the image activator encounters 
such an image section descriptor, it calls itself recursively, requesting 
that the global image file containing the requested shareable image be 
activated as a part of the activation of a normal executable image. The 
details of this activation are described in the next section. 

6. After the image activator has processed all the image section descriptors, 
it calls the Create Virtual Address Space system service to create the 
image I/O segment. The size of this area is determined by the special 
SYSBOOT parameter IMGIOCNT (default value of 32) but may be over­
ridden with the following entry in the linker options file: 

IOSEGMENT = n[, [NO]PDBUFS] 

Image Section Descriptor for 
Demand Zero Section 
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If a PO-only image is being activated, this area is located at the high 
address end of PO space with the Expand Region system service. 

7. Finally, the address space that is to contain the user stack is created (with 
an Expand Region system service). The usual location of the user stack is 
at the low address end of Pl space, where the automatic stack expansion 
facility of the exception dispatcher can add user stack space as needed. 
The location of the user stack in PO-only images is at the high address 
end of the PO image. 

The default size of the user stack is 20 pages. This value can be overrid­
den with the following line in the linker options file: 

STACK= n 

8. The initial value of the user stack pointer is stored in the Pl pointer page 
and loaded into the processor register PR$_USP. This value will be 
loaded into general register 14 (SP) when an REI instruction returns the 
process to user mode, which usually occurs following the return from the 
image activator. 

9. The privileges that will be in effect while this image is executing are 
calculated. The logical AND of the privilege mask found in the image 
header (currently enabling all privileges and so effectively unused) with 
the process-permanent privilege mask (found at global location CTL$GQ_ 
PROCPRIV in the Pl pointer page) is then ORed with the privilege en­
hancements for a privileged known image. 

The result is loaded into the process privilege mask in the PCB 
(PCB$Q_PRIV) and into two privilege masks in the process header, at 
offset PHD$Q_PRIVMSK (the mask that is actually checked by other 
routines in the system) and at offset PHD$Q_IMAGPRIV. The use of 
the various privilege masks by the system is described in Section 21.4. 

10. A check is made to determine whether the image was linked with the 
system symbol table SYS$SYSTEM:SYS.STB. If so, a check is made to 
determine that the version of the symbol table agrees with the currently 
running system version. If the version numbers disagree, CMKRNL and 
CMEXEC privileges are turned off in the current privilege mask. Remov­
ing these privileges prevents many different spurious errors that can 
occur if the outdated, privileged image were to execute. 

11. At this point, the image activator has finished its work. It loads a final 
status into RO and returns to its caller (either PROCSTRT or a CLI) to 
allow the image itself to be called. 

21.1.1.4 Activation of Shareable Images. As mentioned in the previous section, when 
the image activator encounters an image section descriptor that describes a 
shareable image, it calls itself recursively, although a different image file is 
indicated on the recursive call and different flags are set. 

Because the recursive call causes RMS to open the shareable image with 
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the name stored in the image section descriptor, it is possible to use a logical 
name to cause a different image to be opened. In addition, the recursive call 
can prevent a nonprivileged user who has linked his image to a privileged 
shareable image from acquiring unauthorized privilege. Put simply, the VMS 
operating system does not trust the image section descriptors that it finds in 
the user's image file because the user can put almost anything he pleases 
there. 

The image activator would like to read the original image section descrip­
tor that is found in the shareable image file, presumably protected from write 
access by nonprivileged users. The simplest way to accomplish this is to have 
the image activator call itself, which will result in the shareable image file 
being opened, but with an implicit protection check being performed for the 
current user. 

When the image activator processes the image section descriptors for each 
section in the shareable image, it maps each section into the user's address 
space with a Map Global Section system service (Figure 21-5) if the image has 
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been installed as a shareable image (using the Install Utility). If the image has 
not been installed as a shareable image, the image activator will create a 
process private section with the Create and Map Section system service. Any 
version checking (to insure that the installed shareable image is compatible 
with the shareable image that was linked into the user's executable image) is 
performed by the Map Global Section system service and not directly by the 
image activator. If the Create and Map Section system service is called, ver­
sion checking is not performed. 

Note that any executable image that is installed shared is not really shared 
unless all users have read access to the image. If a user without read access 
attempts to activate the image, the image is activated and is usable; however, 
a process private section is mapped, rather than a global section. This is due 
to the restriction that only users who can read a file are allowed· to map a 
global section to the file. Activation succeeds and the process private sec­
tions are mapped because the file is installed as a known file, and hence, file 
protection checks are bypassed by the image activator. However, the global 
section mapping checks are still in place. 

One beneficial side effect of the recursive call to the image activator for 
shareable images is that they do not have to be installed. (In fact, read-only 
shareable images can be activated without their having been installed; write­
able shareable images must be installed with the qualifiers /WRITE and 
/SHARE.) When the requested global section does not exist, the image activa­
tor performs a Create and Map (Private) Section system service. In the case of 
an installed shareable image, a Create Global Section system service (which 
does not map the section) was previously executed by the image activator as 
a part of the initial installation of a known shareable image. 

21.1.1.5 Initial Activation of a Known Image. Known images exist for two main pur­
poses in the VAX/VMS operating system: 
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• Images that require enhanced privileges but must execute in nonprivileged 
process context (such as MOUNT, SET, and SHOW) must have some 
method for acquiring their elevated privileges before the image executes 
and restoring process privileges when the image terminates. 

• Shareable images (especially those that include privileged sections and 
those that exist in shared memory) must also be made known to the sys­
tem. 

The Install Utility is used to request the initial activation of known images. 
It calls the image activator with the NOACTIV A TE flag set, telling the image 
activator to go through the motions of image activation but not to actually 
alter the address space of the process in which INST ALL is executing. 

The crucial step that the image activator performs when it first activates a 
known image is the creation of a paged pool data structure called a known file 
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entry in the known file entry list (see Figure 21-6). When this file is opened in 
the future, RMS will return the address of this structure to the image activa­
tor, indicating that a known image is being activated. 

There is a third benefit to maki;o,g images known to the system. Their 
activation may be facilitated by one of several options given when .the image 
is installed: 

• At the very least, the image activator saves the file ID and sequence num­
ber when it originally activates the image so that future open operations 
may be by file ID rather than by file name. 

• The image file can be installed using the /OPEN qualifier, which will leave 
the file opened. In this case, the actual $OPEN call to RMS is essentially a 
null operation. 

Known Fiie Entry (KFI) 

Known File Queue Forward Link 11 Known File Queue Backward Link 

Control 
Bits 

Type Size of KFI 

File File Directory Device 
~ 

Type Name Name Name 

KFI 
Sequence 

KFI 
Reference Count 

Number 
0-Number 

~ 
Global Section Count Known Image Flags 

Usage Counter 

Pointer to WCB if File is Opened 
File ID/Sequence Number if Not 

Image Header Address 
if Header is Resident ~ 

Privileged Image 
I- -

* 

Privilege Mask 

AME Code 
Number from Spare 
Image Header 

·Global Section Identification 

Counted Strings for 
Device Name, Directory, 
File Name, File Type 

One of these for each 
installed image 

Figure 21-6 
Format of a Known File Entry 

Match 
Control 

* 

Known Fiie Header (KFH) 

Address of End of KFH ~ 

Address of Associated KFI 

Spare I Type I Size of KFH 

Image Header of Knowh 
File .That was Installed 
/HEAOER_RESIDENT 

~ 

.One of these in paged 
pool for each known .file 

installed 
/HEADER_RESIDENT 

475 



Image Activation and Termination 

• The image file can be installed using the /HEADER_ RESIDENT qualifier, 
which directs the image activator to keep the entire image header resident 
in paged dynamic memory. Installing the image with the the header resi­
dent saves the additional read operations that are required to bring the 
header into memory each time that the image is activated. 

21.1.1.6 Later Activation of a Known Image. When a known image is activated, the 
image activator is informed by RMS, which places the address of the known 
file entry in the CTX field of the FAB. Of course, the open operation may 
have been eased by one of the options mentioned in the previous section. 

The activation of a known image proceeds in much the same way as a 
regular image, although some of the work that the image activator must per­
form in the regular case can be avoided here. In particular, a known image 
that has its header resident can be activated more quickly because the 1/0 
overhead can be avoided. 

In any case, the image section descriptors must still be processed and the 
page table entries set up so that the image can execute. In addition, the image 
activator must update the usage statistics for this known image (see Figure 
21-6). 

21.1.1.7 Activation of Compatibility Mode Images. When the image activator deter­
mines that it is attempting to activate a compatibility mode image, it does a 
change of course and activates an AME that is designated by the code word in 
the last word of the first block of the image header. At the present time, there 
is only one form of compatibility mode image and one AME supported. The 
RSX-llM AME (SYS$SYSTEM:RSX.EXE) will be activated whenever an 
image header contains a zero in the code word. 

21.1.2 
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An AME is itself a native mode image that is responsible for mapping the 
compatibility mode image into the address range between 0 and 10000 (hex) 
(see Figure 1-8), passing control to that image while turning on the compati­
bility mode bit (with an REI instruction), and fielding all compatibility mode 
and other exceptions generated by the compatibility mode image. 

From the point of view of image activation, once the image activator deter­
mines that it is activating a compatibility mode image, it continues with 
activation, but activation of the AME and not the compatibility mode image. 
The name of the compatibility mode image is stored in the compatibility 
mode page (at global location CTL$AG_CMEDATA) in Pl space where it is 
retrieved by the AME. 

The Address Relocation Fixup System Service 

The Address Relocation Fixup (EXE$IMGFIX) system service was imple­
mented to postpone address assignment until image activation. By delaying 
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address assignment, position independence can be maintained in images that 
are linked with shareable images, and within shareable images themselves. 

There are two forms of addressing that are modified by EXE$IMGFIX: c" 
references to addresses outside the main image, and .ADDRESS references to 
locations within nonbased images. Resolution of c" references is deferred in 
order that the relative address will not be affected by a change in size of any of 
the intervening shareable images. The .ADDRESS directive references fixed 
addresses in virtual memory. Resolution of .ADDRESS locations in shareable 
images is deferred in order that the fixed address can be determined at run 
time, not link time. However, if the link options file specified a base address 
for an image, .ADDRESS references do not need to be deferred. 

The VAX-11 Linker Reference Manual explains in more detail the motiva­
tion for the Address Relocation Fixup system service and the linker's action 
in preparing for image fixups. 

When the Version 3.0 linker produces an image file, the last portion of the 
image contains a section called the fixup vector tables. These tables contain 
data that describe .ADDRESS references, data that describe G" references, 
and a list of the shareable images referenced by the image. Figure 21-7 shows 
the layout of an image and its fixup vector tables. 
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21.1.2.1 Shareable Image List. There is one shareable image list element for each 
shareable image referenced by the image, plus one shareable image list ele­
ment for the image itself. Each element in the shareable image list contains 
the base virtual address of tpe shareable image and the image name. The first 
shareable image list element (index O) contains information used to resolve 
.ADDRESS locations. 

21.1.2.2 Resolution of GA Locations. When the image is linked, all GA references are 
changed to @AL references (Longword Relative Deferred). The @AL address 
points to a location in the fixup vector tables reserved for GA vectors. The GA 
vector table contains a series of tables: one table for each shareable image 
linked with the main image. All references to a specific global label (within a 
specific shareable image) use the same GA vector table entry. The linker loads 
the entries in the GA vector tables with the location of the label, expressed as 
an offset from the base of its shareable image. 

When resolving GA references, each shareable image entry in the GA vector 
table is located and the following action is performed: 

• The index into the shareable image list is used to locate the appropriate 
shareable image list entry. 

• Using this entry, the base virtual address of the shareable image is located. 
• The base address is added to each offset contained in the G" vector table 

and the resulting value is stored in the G" vector table. 

When the image is actually executed, the longword relative deferred address 
points to the cell within the GA vector table. The cell in the G" vector table 
will contain the correct virtual address of the reference. 

21.1.2.3 Resolution of .ADDRESS Locations. When an image is linked, the following 
action takes place for each .ADDRESS directive: 
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• The offset of the specified location from the base of its image is deter­
mined. This offset is stored in the longword reserved by the .ADDRESS 
directive. 

• The offset of the .ADDRESS directive from the base of its image is deter­
mined. This offset is stored in the .ADDRESS vector table portion of the 
fixup vector table. 

Like G" vector table entries, .ADDRESS vector table entries are separated 
into tables for each specific image. The .ADDRESS vector table also contains 
a table for entries in the image (if it is not a based image). 

Figure 21-8 illustrates the resolution of .ADDRESS direCtives by the linker. 
The address of MTH$SQRT is within the shareable library VMSRTL. The 
.ADDRESS directive within MAIN.EXE contains the offset of the label 
MTH$SQRT from the base of VMSRTL.EXE. The entry in the .ADDRESS 
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vector table contains the offset of the .ADDRESS directive from the base of 
MAIN. 

When EXE$IMGFIX resolves the .ADDRESS directives, it performs the fol­
lowing steps to obtain the actual address of the location: 

• The offset to the .ADDRESS cell is added to the base address of the main 
image (using the previous example, the image MAIN). Separating the offset 
and base address in this fashion allows the main image to be a position­
independent shareable image. 
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21.1.3 

• The contents of the .ADDRESS cell (the offset to the label MTH$SQRT) 
are added to the base address of the shareable image (VMSRTL.EXE). 

• The resulting address is loaded into the .ADDRESS cell. 

This action is repeated for all .ADDRESS directives in all images in the image 
file, except in images that have a specified starting base address. 

Image Startup 

After the page tables have been set up by the image activator, the image is 
called at its transfer address. Depending on how the image was linked, the 
initial transfer of control may be to a debugger, to a user-supplied initializa­
tion procedure, or to the user image itself. 

21.1.3.1 Transfer Vector Array. In addition to the image section descriptors discussed 
in the previous section, the linker also includes a data structure called a 
transfer vector array in the image header. This array contains the user-sup­
plied transfer address and also the means for including a debugger or a 
traceback handler in the user image. 
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The format of the transfer vector array is pictured in Figure 21-9. If a debug 
transfer address is specified or implied, it appears first in the list. An image­
specific initialization procedure, if specified, occurs next. The last entry in 

MAIN.EXE 

{ r-· 
.ADDRESS 
MTH$SQRT 

"7\ 

Figure 21-9 
Transfer Vector Array 
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the list is the transfer address of the user image, either the argument of a 
.END directive for a VAX- I I MACRO program or the first statement of the 
main program written in a high-level language. A fourth slot containing a 
zero is the end of list indication, no matter what options were passed to the 
linker. 

The initialization transfer address is described in the V AX-11 Run-Time 
Library Reference Manual and will not be discussed here. 

If the DCL command LINK/DEBUG=file-spec was used to link the file 
(note the explicitly specified output file specification), the linker places the 
transfer address found in the specified output file into the first element in the 
transfer vector array. If the /NOTRACEBACK option is included (and not 
overridden implicitly by including an explicit /DEBUG option), then there is 
no debug transfer address. In all other cases (including the DCL command 
LINK/DEBUG, which does not specify an output file), the linker places the 
address of SYS$IMGSTA (found in the system service vector area) in the first 
element of the transfer vector array. 

21.1.3.2 Image Startup System Service. Unless explicitly suppressed (with the 
/NOTRACEBACK qualifier), all images execute the Image Startup system 
service, sometimes called the debugger bootstrap. This procedure examines 
the various link and CLI flags and determines whether to start the user image 
directly or map the debugger (specified by translating the logical name 
LIB$DEBUG) into the user;s PO space and transfer control to it. 

In any case, a condition handler is established in the current call frame that 
will eventually gain control on signals that the user does not handle directly. 
One option that this handler can exercise is to map the traceback facility that 
will print a symbolic dump of the exception. The following steps are per­
formed by the Image Startup system service: 

I. The first step that Image Startup performs is a potential map of a debugger 
into PO space. The mapping will be done under either one of two different 
conditions. 

• If the program was linked with the DCL command LINK/DEBUG and 
simply run (that is, not run with a RUN/NODEBUG command) 

• If the program was run with the DCL command RUN/DEBUG, inde­
pendent of whether the debugger was requested at link time 

The qebugger will not be mapped if the image is run with a RUN/ 
NODEBUG command or if the /DEBUG option was omitted from both 
the LINK command and the RUN command. 

2. Finally, a condition handler is established in the current call frame, the 
argument list is altered to point to the next address in the transfer vector 
array, and control is passed to the next transfer address. This will be either 
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the Run-Time Library procedure LIB$INITIALIZE or the transfer address 
of the user image. 

21.1.3.3 Exception Handler for Traceback. The condition handler that was established 
before the image was called has two purposes: 

• It invokes a debugger if a DEBUG command is typed· after an image is 
interrupted with a CTRL/Y. 

• It invokes the traceback handler to produce a symbolic stack dump if an 
unfielded condition occurs. 

If a nonprivileged image is interrupted by typing CTRL/Y, and a DEBUG 
command is executed, the DCL (or MCR) command interpreter generates a 
signal of the form SS$_DEBUG. (Privileged images are simply run down in 
response to a CTRL/Y followed by the DCL command DEBUG.) Assuming 
that any handlers established by the image resignal the SS$_DEBUG excep­
tion, this handler will eventually gain control. Its response to a SS$_DEBUG 
signal 1s to map the debugger specified by the logical name LIB$DEBUG (if it 
is not already mapped) and transfer control to it. Notice that an image that 
was neither linked nor run with the debugger can still be debugged (albeit, 
without a debug symbol table) if the program reaches some undesirable state, 
such as an infinite loop. 

The second purpose of the exception handler is to fidd any error conditions 
(where the severity level is WARNING, ERROR, or SEVERE) and pass them 
on to the traceback facility. In order to field the errors, the facility (denoted 
by the logical name LIB$TRACE) must be mapped into the user PO space. 
Any conditions that have a severity level of either NORMAL or INFO are 
resignaled, which implies that they will be handled by the catch-all condition 
handler established by either PROCSTRT or the CLI that called the image. 

21.2 IMAGE EXIT 
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When an image passes control back to the VMS operating system after it has 
completed its work, it calls SYS$EXIT either directly or by returning to its 
caller (either PROCSTRT or some command language interpreter), which 
executes the call to SYS$EXIT. The procedure SYS$EXIT simply calls what­
ever termination handlers have been declared by the process and then in­
vokes $DELPRC. Usually, however, a CLI termination handler receives con­
trol and never returns to SYS$EXIT. 

Termination handlers allow an image to perform image-specific cleanup 
operations before the image goes away. They also allow images to exert some 
control over whether and when they will terminate. The use of a supervisor 
mode termination handler by the VMS command language interpreters to 
prevent process deletion following image exit is discussed in Chapter 23. 



21.2.1 

21.2 Image Exit 

Control Flow of the Exit System Service 

The steps listed below show how the Exit system service, a procedure that 
executes in kernel mode, calls a succession of termination handlers for a 
given access mode and illustrates how termination handlers can be used to 
prevent image exit. The VAX/VMS System Services Reference Manual de­
scribes how termination handlers are declared and how the argument list will 
be passed to the handlers when they are called by the Exit system service. 

1. The final status of the image (the single argument to the Exit system serv­
ice) is stored in the Pl pointer page for possible insertion by the Delete 
Process system service into a termination mailbox. The force exit pending 
flag in the status longword (PCB$L_STS) in the PCB is cleared. 

2. If SYS$EXIT was called from kernel mode, then the.process is simply de­
leted. If SYS$EXIT was called from any other access mode, then the termi­
nation handler list (see Figure 21-10) is searched for handlers that have 
been declared, beginning with the access mode of the caller and proceeding 
toward inner (more privileged) access modes. 

3. Once a nonzero list pointer is found, access mode is raised (privilege low­
ered) with an REI and the last termination handler that was declared is 
called. When (if) that handler returns to SYS$EXIT, the next handler in the 
list is called. This action continues until the list is exhausted. 

SYS$EXIT avoids an infinite loop by storing the list pointer in a register 
and clearing the list pointer itself. When this list pointer is next examined 
(step 4), the list will be empty. 

0 ~ 

(Exec) (Exec) 
E F 

(Declared (Declared 
First) Second) 

0 

(Super) 
D 

0 

(User) (User) 
A 

(User) c 
(Declered 

B 
(Declared 

(Declared 
First, 

Second) 
Third, 

Called Last) Called First) 

Figure 21-10 
Sample Termination Handler Lists 

1....--.i 

,,,-'" 
/ 

/ 
_,/' 

/ 

I 
---------

... 
~ 

::CTL$GL_THEXEC 

::CTL$GL_THSUPR 

Forward Lin k 

Exit Handler Ad dress 

0 N 

Address in Which to Store 
Reason for Exit 

Additional Argu men ts 
(If Any) 

483 



Image Activation and Termination 

21.2.2 

484 

4. Once all the termination handlers for a given access mode have been proc­
essed, SYS$EXIT must get back to a more privileged access mode. It ac­
complishes the access mode change by calling itself. If none of the exit 
handlers in the list just processed has done anything extraordinary (such as 
declaring another termination handler), then the logic described in step 3 
will find the list empty and proceed to the next inner access mode in its 
search for more termination handlers. 

Example of Termination Handler List Processing 

To illustrate the processing of termination handlers, suppose that a process 
has its termination handler lists set up as shown in Figure 21-10. When the 
image calls SYS$EXIT from user mode, the following steps are taken: 

1. The termination handler list is searched beginning with user mode. A 
nonzero listhead is found, pointing to the termination handler control 
block for procedure C, the last termination handler declared for user mode. 

2. This address is stored in RO and the listhead for user mode is cleared. 
Access mode is raised to user and procedure C is called. When C returns, 
procedure B and finally procedure A are called. When A returns, SYS$EXIT 
determines that the list for user mode is exhausted (because the forward 
pointer in the last termination handler contains a zero). SYS$EXIT is 
called again from user mode. 

3. As in step 1, the search for termination handlers begins with user mode 
but this list is now empty. The search continues to supervisor mode where 
the single termination handler D has been declared. The supervisor list­
head is cleared, access mode is raised to supervisor, and procedure D is 
called. When D returns, SYS$EXIT is again called, this time from supervi­
sor mode. 

4. Now the search for termination handlers begins with supervisor mode, 
whose list is empty. The list for executive mode contains two termination 
handlers, F and E, which will be called in tum from executive access 
mode. When they return, SYS$EXIT will again be called, this time from 
executive access mode. The search that now begins with the executive 
mode listhead will fail and the process will be deleted. 

The logic illustrated here shows how a process can prevent image termina­
tion through the use of termination handlers. For example, if any of the hand­
lers called in supervisor mode were to declare a termination handler (for su­
pervisor mode), the search that is begun after SYS$EXIT is called from 
supervisor mode will locate the handler just declared, which when called, 
will declare another handler, and so on indefinitely. In fact, this use of termi­
nation handlers is just the mechanism used by DCL and MCR to allow multi­
ple images to execute, one after another, in the same process. This mecha­
nism is discussed in more detail in Chapter 23. 
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Note that a termination handler that is declared later (which implies that 
it, will be called earlier! can prevent previously declared handlers for the 
same access mode from even being called by simply issuing a call to 
SYS$EXIT. In the example described above, procedure C could prevent 
termination handlers B and A from being called by calling SYS$EXIT 
itself. 

21.3 IMAGE AND PROCESS RUNDOWN 

21.3.1 

In an interactive or batch environment that allows multiple images to exe­
cute one after another, several steps must be taken to prevent a later image 
from inheriting either enhancements (such as elevated privileges) or degrada­
tions (such as a reduced working set) from a previous image. In addition, 
when a process is deleted, all traces of it must be eliminated from the system 
tables and all reusable resources returned tb the system. 

The Rundown internal system service (SYS$RUNDWN) accomplishes 
much of the work for both of these purposes. It distinguishes between 
image rundown and process rundown by its single input parameter, access 
mode. (This flexibility requires that SYS$RUNDWN execute in kernel 
mode.) SYS$RUNDWN is called with an argument of user mode by both 
DCL and MCR (see Chapter 23) to clean up after an image that has just 
terminated and before the next image is activated. SYS$RUNDWN is 
also called from the Delete Process system service (see Chapter 22) with 
an argument of kernel mode to clean up after a process that is being 
deleted. 

Much of the activity performed by Rundown is accomplished with system 
services. Rundown simply passes its input argument to these services to 
allow them to determine how much work to do. For example, the Delete 
Logical Name system service (see Chapter 29) can be called with an access 
mode argument and the implicit instruction to delete all logical names for 
this and outer access modes. If Rundown is called from user mode, the call to 
Delete Logical Name will only delete user mode (image-specific) logical 
names. If Rundown is called from kernel mode, then all process logical 
names will be deleted. 

Control Flow of Rundown 

The following steps detail the work performed by SYS$RUNDWN. The ac­
cess mode argument is maximized with the access mode of the caller (by 
routine EXE$MAXACMODE). That is, the less privileged access mode is 
used. When used in the following list, the phrase "based on access mode" 
means "perform this operation for this access mode and all outer (less privi­
leged) access modes." Those operations that are performed by system services 
have the name of the service included. 
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1. If a powerfail AST had been previously declared, it is eliminated. 
2. Resource wait mode is enabled to make sure that the image rundown 

completes successfully. 
3. The per-process and system wide user-written rundown routines are 

called. 
4. If image accounting is enabled, an image deletion message is written to 

the accounting log file. The image count in the process header is incre­
mented. 

5. The four Pl space vectors for user-written system services and image-spe­
cific message sections (see Figure 9-5) are reset to contain RSB instruc­
tions. 

6. All channels without open files are deassigned (SYS$DASSGN), based on 
access mode. The access mode check that is performed at the beginning 
of image rundown prevents process permanent files from being closed 
when an image is being run down (input argument is user mode). Other 
channels that will not be deassigned at this stage of image rundown in­
clude the image file and any other file that is mapped to a range of virtual 
addresses. 

7. The image pages are reset (by calling MMG$IMGRESET). This routine 
performs all the image cleanup that is associated with memory manage­
ment. The steps performed by this routine are listed here. 

a. All of PO space is deleted. This will free the image file and any other 
file that is mapped. Physical pages will be released and blocks in the 
page file will be deallocated. 

b. The nonpermanent part of Pl space is deleted. The two parts of Pl 
space that are deleted by this operation are the user stack and the 
image 1/0 segment (see Figure 21-11 ). In addition, any expansions to 

Figure 21-11 
Low Address End of Pl Space 
That Is Deleted at Image Exit 
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Pl space (at smaller virtual addresses than the user stack) that were 
performed by the user are also deleted. 

c. The working set is reset to its default value, undoing any expansion or 
contraction of the working set as a result of a call to SYS$ADJWSL 
(either explicitly or as a result of the automatic working set size adjust­
ment). Working set size changes are described in Chapter 16. 

d. The process privilege masks in the first quadword of the process 
header and in the PCB are reset to their permanent value, found at 
location CTL$GQ_PROCPRIV. This step eliminates any privilege 
enhancements to the process due to the execution of an image that 
was installed with privilege. 

e. If any global sections were released as a result of releasing the process 
address space, the global sections are deleted. 

f. The pointer to the end of the active working set list 
(PHD$W _ WSLAST) is reduced to point to the minimum size of the 
working set list. 

g. The process is allocated to a new, smaller swap space. 

8. The same channel deassignment loop performed in step 6 is executed. 
However, because the image file and other mapped files have now been 
disassociated from virtual address space, the channels associated with 
those files will also be deassigned. As in step 6, this deassignment is 
based on access mode, implying that process-permanent files are unaf­
fected by image rundown. 

9. All devices are deallocated (SYS$DALLOC) for this and outer access 
modes. 

10. All timer and wakeup requests are canceled (SYS$CANTIM and 
SYS$CANW AK) for this and outer access modes. 

11. All remaining locks are dequeued (SYS$DEQ) for this and outer access 
modes. 

12. Common event flag clusters 2 and 3 are disassociated, independent of 
access mode. 

13. The next several steps must execute at IPL$_SYNCH (IPL 7) because 
system-wide data structures are being manipulated. 

14. If this process has declared an error log mailbox, it is eliminated. 
The method for declaring an error log mailbox is described in Chap­
ter 8. 

15. All pending AST control blocks are removed from the list in the PCB, . 
based on access mode. The blocks are then deallocated to nonpaged pool. 
This operation starts at the tail of the list and proceeds toward the head 
of the list until an AST control block is found with a more privileged 
(smaller) access mode than the Rundown argument, or until the AST 
pending queue is empty. (Recall from Chapter 7 that ASTs are enqueued 
in order of increasing access mode.) 
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16. Any change mode handlers for this and outer access modes are elimi­
nated. Because change mode handlers only exist for user and supervisor 
modes, this step results in elimination of a change mode to user handler 
every time an image exits and the elimination of a change mode to super­
visor handler when the process is deleted. 

17. Any termination handlers for this and outer access modes are canceled. 
Termination handlers can exist for executive, supervisor, and user 
modes. 

18. Exception handlers found in the primary, secondary, and last chance vec­
tors are eliminated for this and outer access modes. 

19. The AST active bits for this and outer access modeS'are cleared. The AST 
enable bits for this and outer access modes are set. 

20. System service failure exceptions are disabled for this and outer access 
modes. 

21. Any compatibility mode handler that has been declared is eliminated, 
regardless of the access mode argument to Rundown. 

22. A new value of ASTLVL is calculated (by routine SCH$NEWLVL) to re­
flect the change in the AST queue resulting from step 15. 

23. The force exit pending and wake pending flags in the PCB are cleared. 
Clearing these flags is the last step that must be performed at 
IPL$_SYNCH, so IPL is lowered to 0. 

24. Rundown deletes all process logical names based on access mode. At 
image exit, all logical names created from within the image (with a call 
to SYS$CRELOG) and all logical names created with the ASSIGN/USER 
command will be eliminated. At process deletion, all process logical 
names will be deleted. 

25. Resource wait mode is returned to its previous state, normal completion 
status is set, and control is returned to the caller. 

21.4 PROCESS PRIVILEGES 

21.4.1 
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One of the controls exercised by the VMS operating system to prevent unau­
thorized use of the system is the set of process privileges. One or more of 
these privileges is required to perform many of the system services, execute 
certain commands, or use privileged utilities. 

Process Privilege Masks 

The VMS operating system maintains several privilege masks for each proc­
ess (see Table 21-1). 

1. The first quadword of the process header (PHD$Q_PRIVMSK) contains 
the working privilege mask, the one checked by all VMS services that 



Table 21-1: Process Privilege Masks 

Symbolic Name Location Use of This Mask Modified by Referenced by 

PHD$Q_PRIVMSK Process Header This is the working privilege mask PROCSTRT All system services 
that is tested by all system LOGIN OUT that require privilege 
services that require privilege. Image Activator 

$SETPRV 
PCB$Q_PRIV Software PCB This mask is an exact duplicate of Same as for Device drivers 

(Access Rights the process header mask. PHD$Q_PRIVMSK andACPs 
Block) 

CTL$GQ_PROCPRIV Pl Pointer Page This mask records the permanently PROCSTRT Image Activator 
enabled privileges for the process. LOGIN OUT MMG$IMGRESET 
The working privilege mask is reset $SETPRV SET UIC command 
to this value every time an image 
exits. 

PHD$Q_AUTHPRIV Process Header This mask records the privileges PROCSTRT $SETPRV 
that this process is ;illowed to use LOGINOUT 
according to its authorization 
record. 

PHD$Q_IMAGPRIV Process Header This mask records the privilege Image Activator $SETPRV 
mask for an image that is installed 
with enhanced privileges. f\) 

N 

UAF$Q_PRIV Authorization This mask records the privileges AUTHORIZE LOGIN OUT +:::. 

Record that this user is alloweu to use. 
~ KFI$Q_PROCPRIV Known File Entry This mask records the additional INSTALL Image Activator 0 

for Privileged privileges required by an image ~ 
(';) 

Installed Image that is installed with privilege. 
VJ 
VJ 

IHD$Q_PRIVREQS Image Header of This mask is currently unused. It Linker Image Activator ~ ...... 
Any Image contains all ones, enabling all ;S .....:. 

.j::>. privileges. ~ 00 
\0 (';) 

V:i 



Image Activation and Termination 

21.4.2 

490 

require privilege. This mask may be altered each time an image executes, 
can be altered by the Set Privilege system service, and is reset to the proc­
ess-permanent privilege mask (CTL$GQ_PROCPRIV) as a part of image 
rundown. 

2. The process privilege mask in the access rights block (ARB) 
(PCB$Q_PRIV) is always an exact duplicate of the privilege mask in the 
process header. The access rights block is currently a part of the software 
PCB. 

3. The process-permanent privilege mask is located in the Pl pointer page at 
global location CTL$GQ_PROCPRIV. The contents of this location are 
written to the PHD privilege mask (and also to either the ARB or the PCB 
privilege mask) as a part of image exit by the image reset routine 
(MMG$IMGRESET). This field is initialized when the process is created. 

4. The authorized privilege mask in the process header (PHD$Q_ 
AUTHPRIV) is used by the Set Privilege system service to allow a 
nonprivileged process (a process without SETPRV privilege) to remove one 
of its permanent privileges and later regain that privilege. This field is also 
initialized when the process is created. 

5. The image privilege mask in the process header (PHD$Q_IMAGPRIV) 
contains the privilege mask for a privileged known image while that image 
is executing. This mask is a convenient tool used by the Set Privilege 
system service that allows images installed with privilege to issue the Set 
Privilege system service without losing privileges. 

Set Privilege System Service 

The Set Privilege system service allows a process to alter its image-specific 
(PHD$Q_PRIVMSK and PCB$Q_PRIV) privilege masks or its process-perma­
nent (CTL$GQ_PROCPRIV) privilege mask, gaining or losing privileges as a 
result. In addition, the service can return the previous settings of either the 
image-specific or process-permanent privileges, if requested. 

The path through the code used to disable privileges requires no special 
privilege and clears the requested privilege bits in the image-specific (and 
optionally the process-permanent) privilege masks. 

The path through the code used to enable privileges requires no privilege if 
the requested privilege is included in the list of privileges authorized for this 
process (PHD$Q_AUTHPRIV). If a process wishes a privilege that is not in 
its authorized list, one of two conditions must hold or the requested privilege 
is not granted. 

• The process must have SETPRV privilege. A process with this privilege 
can acquire any other privilege with either the Set Privilege system service 
or the DCL command SET PROCESS/PRIVILEGES. 



21.4 Process Privileges 

• The system service was called from executive or kernel mode. This mech­
anism is an escape that allows either VMS or user-written system services 
to acquire whatever privileges they need without regard for whether the 
calling process has SETPRV privilege. Such procedures must disable privi­
leges granted in this fashion as part of their return path. 

Note that the implementation of the Set Privilege system service does not 
return an error if a nonprivileged process attempts to add unauthorized privi­
leges. In such a case, the service clears all unauthorized bits in the requested 
privilege mask, loads the modified privilege mask, and returns the alternate 
success status SS$_ NOT ALLPRIV. 
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. . . for dust you are and to dust you shall return. 

-Genesis 3:19 

The Delete Process system service allows a process to delete itself or any 
other process in the system (provided that the process has GROUP or 
WORLD privilege). Process deletion is accomplished in two steps. The proc­
ess is marked for deletion in the context of the process issuing the Delete 
Process system service and a special kernel mode AST is queued to the target 
process. 

This AST executes in the context of the process being deleted and performs 
the actual deletion operation. Process deletion requires the following opera­
tions: 

• All traces of the process must be removed from the system. 
• All system resources must be returned. 
• Accounting information must be passed to the accounting manager (the 

job controller). 
• If the process being deleted is a subprocess, all quotas and limits taken 

from the creator when the process was created must be returned. 
• Finally, if the creator requested notification of deletion through a termina­

tion mailbox, the deletion message must be sent. 

22.1 PROCESS DELETION IN CONTEXT OF CALLER 

22.1.1 
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The initial operation of the Delete Process system service takes place in the 
context of the process issuing the system service call. This part of the opera­
tion performs a simple set of privilege checks and then queues a special ker­
nel mode AST that will cause the deletion to continue in the context of the 
process actually being deleted. 

Delete Process System Service 

The Delete Process system service ($DELPRC) initially calls the subroutine 
EXE$NAMPID to convert either a process name or a PID to the address of the 
PCB of the process being deleted. The subroutine checks that the name or 
PID corresponds to an actual process and verifies that the process calling the 
Delete Process system service has the privilege to delete the specified proc­
ess. The Delete Process system service checks that the target process is nei-



22.2 Process Deletion in Context of Process Being Deleted 

ther the swapper nor the null process; neither of these may be deleted. 
The Delete Process system service then performs the following steps: 

l. The target process is marked for deletion. If it was already marked for 
deletion, the system service simply returns successfully to the caller. 

2. If the target process is suspended (scheduling states SUSP or SUSPO), the 
process is resumed. If the process were to remain suspended, no AST (in­
cluding the delete process special kernel mode AST) could be delivered to 
it. 

3. An AST control block is allocated and initialized with the PID of the tar­
get process and the address of the special kernel AST (DELETE) that will 
perform the actual process deletion. 

4. The AST is queued to the target process, with a potential boost of 3 to its 
software priority. 

In other words, very little action, except the queuing of an AST to the target 
process, is performed in the context of the process that called $DELPRC. 

22.2 PROCESS DELETION IN CONTEXT OF PROCESS BEING 
DELETED 

22.2.1 

Almost the entire operation of process deletion takes place in the context of 
the process being deleted. The queuing of the delete process special kernel 
mode AST to this process makes it computable; eventually the scheduler 
will select the process for exection. Assuming that the process has no other 
pending special kernel mode ASTs, the delete process special kernel mode 
AST will be the first code to execute in the context of the process being 
deleted. 

By performing process deletion in process context, the target process's ad­
dress space and process header are readily accessible. System services such as 
$DEL TV A and $DELLOG and RMS calls such as SYS$RMSRUNDWN can 
also be used. Special cases, such as the deletion of a process that is 
outswapped, simply do not exist. 

Special Kernel Mode AST for Process Deletion 

The following steps are performed by the delete process special kernel mode 
AST: 

l. Resource wait mode is enabled. 
2. Any user-specified rundown routines are invoked to do image-specific 

cleanup. 
3. RMS$RUNDWN is called for each open file. This procedure insures that 
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all RMS 1/0 activity is complete, closes all files, and resets the internal 
FAB and RAB tables. 

4. If the process owns any subprocesses, these subprocesses must be deleted 
before deletion of the owner can continue. An example of process dele­
tion when subprocesses are involved is found in the next section. The 
following steps are performed to delete the subprocesses: 

a. The PCB vector is scanned for all J?CBs whose owner field specifies the 
PIO of the process being deleted. Each of these subprocesses is marked 
for deletion. That is, a Delete Process system service call is made for 
each of these processes, resulting in the queuing of the delete process 
special kernel mode AST to each of them. 

b. The count of subprocesses owned by the process currently being dele­
ted (in field PCB$W _PRCCNT) is checked to see if it has reached zero. 
If the count is greater than zero, the process is placed into the resource 
wait state (MWAIT). The process will become computable again when 
a special kernel mode AST is used to return quotas from one of the 
subprocesses. 

c. When the special kernel mode AST used to return quotas is delivered, 
the subprocess count is checked. If the count is still nonzero, the proc­
ess is put back in the MWAIT state until another AST is delivered. 

5. The process is run down from kernel mode. The procedure followed by 
SYS$RUNDWN is described in Chapter 21. 

6. The virtual pages associated with any sections are deleted. 
7. All process private volumes are dismounted. 
8. All allocated devices are deallocated. 
9. The process name string in the PCB is cleared by zeroing the count byte. 

10. If the process is actually a subprocess (the PCB$L_OWNER field is non­
zero), all remaining quotas must be returned to the owner process. The 
following steps are taken to return quotas to the subprocess's owner 
process: 

a. An 1/0 request packet is allocated for use as an AST control block. The 
extra space at the bottom of the IRP will be used to hold the quotas 
being returned to the owner. 

b. The address of the return quota special AST (RETQUOTA) and the 
PIO of the owner are put into the AST control block. 

c. The unused quotas are put into the bottom of the IRP. The only quota 
that must be returned to the creator is unused CPU time. All other 
quotas are either pooled or nondeductible (see Chapter 20). 

d. Finally, the special AST is queued to the creator, giving it a priority 
boost of 3. 

11. If the creator of this process requested a termination mailbox message, a 
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termination message is constructed on the stack. The contents of the 
message are listed in Table 22-1. 

12. Routine EXE$PRCDELMSG (in module ACCOUNT) is invoked to send 
an accounting message to the job controller. This message will be sent to 
the job controller, unless it was explicitly prevented by the NOACNT 
flag at process creation time, or unless process termination accounting 
has been disabled for the entire system. The contents of this message are 
used to fill in all relevant fields of the accounting identification and re­
source packets. (The data structures used by the Accounting Utility are 
described in the VAX-11 Utilities Reference Manual.) 

13. The remainder of Pl space is deleted. (The actual parameters passed to 
$DELTVA are 40000000 to 7FFFFFFF.) Some of Pl space including the 
user stack might have already been deleted as a result of a previous image 
reset call. 

14. At this point, the process must be removed from the scheduler's 
database. To synchronize access to this data, the rest of the code in the 
delete process special kernel mode AST executes at IPL$_SYNCH. 

The process is removed from execution (with a SVPCTX instruction). 
15. The address of the PCB of the null process is put into global location 

Table 22-1: Contents of the Termination Mailbox Message Sent to the Process Creator 

Field in Message Block 

Message Type 
Final Exit Status 
Process ID 
Job ID 
Logout Time 
Account Name 
User Name 
CPU Time 
Number of Page Faults 
Peak Paging File Usage 
Peak Working Set Size 
Buffered 1/0 Count 
Direct 1/0 Count 
Count of Mounted Volumes 
Login Time 
PID of Owner 

Source of Information 

MSG$_DELPROC ( 1) 
CTL$G1-FINALSTS 
PCB$1-PID (2) 
Not currently used 
EXE$GQ_SYSTIME 
CTL$GT _ACCOUNT 
CTL$GT _USERNAME 
PHD$1-CPUTIM (3) 
PHD$1-PAGEFLTS (3) 
Not currently used 
CTL$G1-WSPEAK 
PHD$1-BIOCNT (3) 
PHD$1-DIOCNT (3) 
CTL$GL_ VOLUMES 
CTL$GQ_LOGIN 
PCB$1-0WNER (2) 

Most of the information about the deleted process is found in the Pl pointer page at the 
global locations indicated in the second column. The exceptions are as follows: 
(1) MSG$_DELPROC is a constant indicating that this is a process termination message. 
(2) PCB$1-PID and PCB$1-0WNER are offsets into the PCB of the process being deleted. 
(3) Names of the form PHD$L_name are offsets into the process header of the process being 

deleted. 
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SCH$GL_CURPCB (making the null process the current process) and 
also into the slot in the PCB vector formerly occupied by the process 
being deleted, thus freeing this slot for future use. 

16. The pages in process space that were permanently locked into the work­
ing set (for example, the kernel stack and the Pl pointer page) are deleted 
and placed at the beginning of the free page list. The process header pages 
that are a permanent part of the working set will be deleted by the swap­
per when the process header is deleted. 

17. Any remaining AST control blocks are removed from the PCB queue and 
deallocated to nonpaged pool. 

18. The process swap space is deallocated. 
19. The process count field in the job information block is decremented. If 

the process being deleted is a detached process (the PID of the process 
being deleted is equal to the master PID field in the JIB), the JIB is deal­
located. 

20. The owner process's subprocess count (PCB$W _PRCCNT) is decre­
mented. If the owner process is also being deleted, the owner is currently 
in a wait state, waiting for the contents of this field to become zero. A 
resource available message is sent to the parent, causing it to check the 
value of PCB$W _PRCCNT. If the value is now zero, the parent can con­
tinue with its own deletion. 

21. The PCB is deallocated to nonpaged pool. 
22. The number of processes in the system and the number of processes in 

the balance set are decremented. 
23. The swapper is awakened and informed that there is a process header to 

be removed from the balance slot area (see Chapter 17). 
24. Finally, the delete process special kernel mode AST exits by jumping to 

the scheduler (at entry SCH$SCHED) to select the next process for exe­
cution (see Chapter 10). 

Deletion of a Process That Owns Subprocesses 

When a process owns subprocesses, the deletion of the owner process must 
be delayed until all the subprocesses that it owns are deleted. The prior dele­
tion of subprocesses insures that all· quotas taken from the creator are re­
turned. 

During the execution of the delete process special kernel mode AST, a 
check is made to see if the process being deleted owns any subprocesses. If it 
does, these processes must be located and marked for deletion. Marking a 
subprocess for deletion simply means issuing a Delete Process system service 
for the subprocess. 

As Figure 22-1 shows, there are no forward pointers in the PCB of an owner 
process to indicate which subprocesses it has created. The only indication 
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Name OTG 

PIO 10035 

Name BERT 

PIO 10033 

Figure 22·1 
Sample Job to Illustrate Process Deletion 
with Subprocesses 

Name ERNIE 

PIO 10031 

that a process has created subprocesses is a nonzero entry in the 
PCB$W _PRCCNT field. These process~s can only be located by scanning all 
the PCBs in the system until all PCBs are located that contain the PID of the 
creator in their owner field. 

Example of Process Deletion with Subprocesses 

The details of this situation can be best illustrated with an example. Figure 
22-1 shows a process whose process ID equals 10035 and whose name is 
OTG. The process OTG owns two subprocesses: the first has a process ID of 
10033 and the name BERT; the second has a process ID of 1003 and the name 
ERNIE. 

Neither of these subprocesses owns any further subprocesses. The follow­
ing steps occur as a result of the process OTG being deleted. Assume that the 
priorities are such that the processes execute in the order OTG, BERT, and 
finally ERNIE. 

1. The deletion of process OTG proceeds normally until it is determined that 
this process has created two subprocesses. The PCB vector is scanned until 
the two PCBs with 10035 in the owner field are located. These two proc­
esses are marked for deletion. This means that the delete process special 
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kernel mode AST is queued to the two subprocesses and they are made 
computable. Process OTG is placed into a wait state because the count of 
owned subprocesses is nonzero (actually 2 at this point). 

2. The previous assumption about priorities implies that process BERT will 
execute next. Its deletion proceeds past the point where process OTG 
stopped because it owns no subprocesses. However, the next step in the 
delete process special kernel mode AST determines that process BERT is a 
subprocess and must return quotas to its owner. As listed above, the re­
turn of quotas is accomplished with the queuing of a special kernel mode 
AST (RETQUOTA) to process OTG, changing its state back to computa­
ble. When BERT has finished with all actions that require the presence of 
the JIB, it decrements the process count in OTG's PCB$W _PRCCNT. 
However, the count of owned subprocesses is still not zero (down to 1 
now) so process OTG is put right back into the resource wait state. 

3. The assumption about priorities indicates that process BERT will con­
tinue to execute until it disappears entirely from the system. Process 
ERNIE now begins execution of the delete process special kernel mode 
AST. Again, the check for owned subprocesses indicates none but the 
check that this is a subprocess indicates that it is. The RETQUOT A AST 
is again queued to process OTG and the count of owned subprocesses 
decremented (finally to zero). 

4. Now process OTG will resume execution as a result of the delivery of the 
RETQUOT A AST and subsequently find that the count of owned subproc­
esses has gone to zero. In fact, process OTG will continue to be deleted at 
this point, even though process ERNIE has not been entirely deleted. This 
overlapping is simply a result of the timing in this example. The process 
ERNIE is well on the way to being deleted, and is no longer of any concern 
to process OTG. The important point is that the quotas given to process 
ERNIE have been returned to OTG. Once OTG's PCB$W _PRCCNT is 
equal to zero, it is irrelevant which process executes next; because ERNIE 
(and BERT) have finished work that depended on the presence of the JIB, 
OTG and the JIB can be deleted totally. 

In the general case of a series of subprocesses arranged in a tree structure, if 
some arbitrary process is deleted, all subprocesses further down in the tree 
will be deleted first. 



23 Interactive and Batch Jobs 

In my end is my beginning. 

-Motto of Mary Queen of Scots 

The previous three chapters in this part describe the creation and deletion of 
a process that executes a single . image. This chapter describes the special 
actions that must be taken to allow several images to execute consecutively 
in the context of the same process. Because this mode of operation occurs in 
all interactive and batch jobs, it merits special discussion. However, the total 
operation of a VAX/VMS command language interpreter will not be dis­
cussed. 

23.1 THE JOB CONTROLLER AND UNSOLICITED INPUT 

23.1.1 

The job controller is the process that controls the creation of nearly all inter­
active and batch jobs. Interactive jobs are usually initiated by unsolicited 
terminal input. Batch jobs are usually initiated through the SUBMIT com­
mand, although unsolicited card reader input will also result in the creation 
of a batch job. 

The crucial step that is performed by the job controller is the creation of a 
process that executes the image LOGINOUT. This image is activated and 
called exactly like any other image as described in Chapters 20 and 21. The 
actions that LOGINOUT takes, especially mapping a command language in­
terpreter into Pl space, are what differentiate interactive and batch jobs from 
the single image process .described in the previous three chapters. The crea­
tion of an interactive job is pictured schematically in Figure 23-1. The crea­
tion of a batch job is pictured in Figure 23-2. 

Unsolicited Terminal Input 

The terminal interrupt service routine performs special action when an unex­
pected interrupt occurs. A check is made to determine whether the device is 
owned. If the owner process has requested notification of unsolicited inter­
rupts, it will be notified. Otherwise, the characters will be placed into a type­
ahead buffer. 

If the device is unowned, the job controller is notified through its mailbox 
that an unowned terminal has received an unexpected interrupt. In a sense, 
the job controller is the default owner of all otherwise unclaimed terminals. 
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Terminal 
RETURN entered .A1 / Driver 
at user's terminal - !)-" 

Job Controller's 
Mailbox 

SYS$1NPUT 
SYS$0UTPUT 
SYS$ERROR 
SYS$COMMAND 

Job 
Controller 

Creates 
Process 

LOGINOUT.EXE 

1) Verify Username/Password 
against record in the 
authorization file. 

Context of Job 
Controller Process 

Context of Newly 
Created Process 

TTcu: 

LOGIN.COM 
(or equivalent) 

2) Alter process characteristics 
according to authorization record. 
Set up process-permanent files 

for SYS$1NPUT, SYS$0UTPUT, @ 
l---s_v_s_$_ER_R_o_R_._a_nd_s_v_s_$_c_o_M_M_AN_o_.-!/ DCL.EXE 

3) Map requested CLI into P1 space, 
stack login command file, and 
pass control to CLI In supervisor \ or 

(if it exists) 

mode (Figure23-4). ~ 

6 
Figure 23·1 
Steps Involved in Initiating an Interactive Job 

The job controller routine that responds to unsolicited terminal input sim­
ply creates a process with the following parameters: 

Process Name 
UIC 
Image Name 
SYS$INPUT 
SYS$0UTPUT 
SYS$ERROR 
Base Priority 
Privilege Mask 

_TTcu: 
[1,4] 
SYS$SYSTEM:LOGINOUT.EXE 
__ TTcu: 
__ TTcu: 
__ TTcu: 
DEFPRI (SYSBOOT Parameter) 
All Privileges 

The string TTcu: indicates the controller/unit of the terminal where the un· 
solicited input was typed. Note that all interactive jobs begin with a name 
indicating their input/output device and the image LOGINOUT as the image 
that will be executed (see Figure 23-1). 
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Job Controller's Job 
Mailbox Controller 

Creates 
Input 
Symbiont 
Process 

INPSMB.EXE 
Verifies Username and 
Password and copies 
rest of input stream into 
INPBATCH.COM or 

Context of Job 
Controller Process 

Context of Input 
Symbiont Process 

Context of 
Requesting Process 

The job controller makes an entry in 
response to $SNDSMB from either 
input symbiont or SUBMIT command. 

$ SUBMIT X.COM SUBMIT command notifies 
job controller of Job 

Controller CLI activates 
SUBMIT utility 

requested batch 
job ($SNDSMB) 

SYS$1NPUT 
SYS$COMMAND 

SYS$0UTPUT 
SYS$ERROR 

Figure23·2 

Creates 
Process 

LOGINOUT.EXE 

Sometime later, the job controller 
removes queue entry and creates 
requested process with specified 
characteristics. 

The two chief differences between batch 
and interaclive jobs are: 
1) No Username/Password verification has 

to occur 
2) SYS$1NPUT and SYS$0UTPUT are different 

The difference between batch jobs initiated 
with a SUBMIT command and batch jobs read 
from the card reader lies In the method of 
creating the batch command file. 

The remaining operations performed by 
LOGINOUT for batch jobs are the same as 
those performed by interactive jobs: 
1) Process characteristics altered according to 

authorization record 
2) Map c·LI and pass control to it 

Steps Involved in Initiating a Batch Job 
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The SUBMIT Command 

When the SUBMIT command is executed, a message is sent to the symbiont 
manager (the job controller), which places the requested job in one of its job 
queues. When the number of active jobs in one of the batch queues drops 
below its maximum value, the job controller selects the highest priority 
pending job from one of its queues and creates a process with the specified 
batch stream as SYS$INPUT and a log file in an appropriate directory as 
SYS$0UTPUT (see Figure 23-2). The image that will execute is LOGINOUT, 
which allows the language of the input stream to be a command language 
because LOGINOUT will map the appropriate CLI into the process Pl space. 

Unsolicited Card Reader Input 

An alternative method for starting batch jobs utilizes the so-called hot card 
reader feature that is a part of the card reader driver interrupt service routine. 
Like the terminal driver's interrupt service routine, the card reader driver 
informs the job controller that an unexpected interrupt has occurred on an 
unowned device. The job controller creates a process similar to the process 
created in response to unsolicited terminal input except that the image 
INPSMB.EXE, the input symbiont, executes in place of LOGINOUT. The 
following process parameters are passed by the job controller to the Create 
Process system service: 

Process Name 
UIC 
Image Name 
SYS$INPUT 
SYS$0UTPUT 
SYS$ERROR 
Base Priority 
Privilege Mask 

_CRcO: 
[1,4] 
SYS$SYSTEM:INPSMB.EXE 
_CRcO: 
_CRcO: 
_CRcO: 
DEFPRI (SYSBOOT Parameter) 
All Privileges 

The letter c represents the controller number. The fact that this process has a 
card reader for its output device is irrelevant because it does no writing to 
either SYS$0UTPUT or SYS$ERROR. 

The input symbiont reads the $JOB and $PASSWORD cards and performs a 
validation similar to the one performed by LOGINOUT. After determining 
the user's default directory from the authorization record, the input symbiont 
opens a file in that directory and reads the rest of the job cards into that file. 
Terminating conditions of this read are an end of file, an $EOJ card, or an­
other $JOB card. 

Once the input stream has been read into the user's directory, the input 
symbiont sends a message to the job controller, and the operation proceeds 
from this point in exactly the same manner as for the SUBMIT command. 
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That is, the job controller will eventually create a process with the card file as 
SYS$INPUT, some log file as SYS$0UTPUT, and LOGINOUT (which will 
map a CLI) as the image that will execute (see Figure 23-2). 

23.2 THE LOGINOUT IMAGE 

23.2.1 

The LOGINOUT image is responsible for verifying that the user is author­
ized to use the system, reading his record in the authorization file, and alter­
ing the process characteristics to reflect what is found there. The most im­
portant step that this image performs in altering the process is to map a 
command language interpreter into its reserved place in Pl space (pictured in 
Figure 1-7 and listed in Table 26-4). 

Interactive Jobs 

When LOGINOUT executes in response to unsolicited terminal input, it 
must verify that the user has access to the system before it proceeds with the 
operations in interactive jobsrest of its operations. It does this by performing 
the following steps: 

1. A user mode error handler is established to service any errors that occur 
while LOGINOUT is executing. When this handler is invoked, it checks 
the exit status code; if the code is valid, it is stored in Pl space in prepara­
tion for writing the code to the termination mailbox. The error handler 
then calls SYS$EXIT, which results in the eventual deletion of the proc­
ess. When LOGINOUT executes executive mode code, the same error 
handler is declared in executive mode. 

2. The logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR are 
translated and the resultant strings are saved for later use. 

3. The process 1/0 segment in Pl space is initialized. SYS$INPUT is 
opened. Because an interactive job is being created, SYS$0UTPUT and 
SYS$ERROR are already opened. RABs are connected to the F AB so that 
RMS operations may proceed. 

4. The user name and password are prompted for and read from the request­
ing terminal. The record associated with this user is read from the au­
thorization file and the password is verified. 

5. If the password is correct, a number of other fields in the authorization 
file are checked; these fields include: the user or account job limit, the 
hourly restrictions, and the terminal types (dial-up or remote terminals). 

6. If these checks are successful, and the interactive job count has not been 
exceeded, the login operation was a success. This success is indicated by 
the following announcement message: 

Welcome to VAX/VMS Version V3. 3 
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7. Process-permanent files are created for the input and output devices by 
calls to RMS (if the input and output devices are the same, only one file is 
created). The logical names SYS$INPUT and SYS$COMMAND are as­
signed to the input device; the logical names SYS$0UTPUT and 
SYS$ERROR are assigned to the output device. The equivalence names 
for these logical names are prefixed by four bytes consisting of: an escape 
(lB hex), a null character (00 hex), and a two-byte internal file identifier 
(IFI). When RMS receives such a string as a result of logical name transla­
tion, it uses the IFI as an index into one of its internal tables. Using the 
IFI allows extremely fast access to these commonly used files. 

The logical names SYS$LOGIN and SYS$SCRATCH are also created. 
The equivalence name for both of these logical names is the default disk 
and directory specified by the user's UAF record. The username qualifier 
/DISK=ddcu: (used with the username portion of the login sequence) can 
be used to override the default disk. 

8. The command language interpreter is mapped into the low address end of 
Pl space (see Figure 1-7). This mapping is accomplished by a merged 
image activation of the selected CLI. (The procedure LIB$PLMERGE 
first merges the CLI into PO space to determine its size, deletes the PO 
space, and maps the correct amount of Pl space. Global location 
CTL$GL_CTLBASVA is altered to reflect the new low address end of Pl 
space.) 

The default CLI is specified by the authorization file; however, it can 
be overridden with the username qualifier /CLI=cli at log in time (pro­
vided that the user is authorized to override the CLI). 

9. The command-language-independent data area, including the symbol 
tables, is initialized. Pl space is expanded by a number of pages equal to 
the SYSBOOT parameter CLISYMTBL to accommodate the CLI symbol 
table. 

10. Many of the process attributes extracted from the authorization file are 
put into their proper places, overwriting the attributes placed there when 
the process was created: 

• Default Disk and Directory String 
• User Name 
• Account Name 
• Default Privilege Mask 
• Process Quotas and Limits 
• Information about Primary and Secondary Day Restrictions (because 

this is a detached process) 
• Base Software Priority 
• UIC 

LOGINOUT attempts to change the process name from _ TTcu: to the 
username. This attempt will fail if another process in the same group 
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already has the same name. (The most common occurrence of usemame 
duplication is when the same user is logged in at more than one termi­
nal.) In the case of failure, the process will retain its name (_ TTcu:), 
guaranteed to be unique for a given system. 

11. LOGINOUT creates logical names PROCO through PROC9, each 
equated to the file specification of a command procedure (or indirect 
command file) to be executed before the CLI enters its input loop. Cur­
rently, only PROCO and PROCl are used. PROCO is equated to the trans­
lation of the logical name SYS$SYLOGIN; PROCl is equated to the file 
specified by the LGICMD field of the user's UAF record or the file speci­
fied by the username qualifier /COMMAND at log in time (by an author­
ized user). If the contents of the LGICMD field are null, PROCl is 
equated to the string LOGIN. The LGICMD field should indicate the null 
device (using the string NL:), if no login command file is to be executed. 

When the CLI is initialized, these logical names are translated and the 
command procedures (or indirect command files) are executed. 

12. At this point, LOGINOUT has finished its work and must pass control to 
the CLI. In order to pass control to the CLI, LOGINOUT calls an execu­
tive mode routine, which performs the following: 

• The protection on pages containing the CLI data is changed so that the 
pages can only be accessed from supervisor and inner access modes. 

• The PSL in the call frame is modified so that the current and previous 
mode fields contain supervisor mode. 

• The transfer address of the CLI is written into the PC saved in the call 
frame. 

• The routine exits, and in order to return from executive mode, an REI 
is executed. The REI returns the process to supervisor mode with the 
PC pointing to the first instruction in the CLI. 

LOGINOUT Operation for Batch Jobs 

Many of the operations performed by LOGINOUT for interactive jobs must 
also occur when a batch job is being created. For example, it is still necessary 
to open the input and output streams and map the CLI. However, password 
verification is not necessary, either because the input symbiont already did it 
or because it is not necessary in the case of a SUBMIT command. 

Rather than describing the steps performed by LOGINOUT again, the fol­
lowing list simply specified those differences for batch jobs: 

1. The first indication that LOGINOUT has that it is creating a batch job is 
that the resultant strings for SYS$INPUT and SYS$0UTPUT are different. 
This means that it must open two files as process-permanent files rather 
than one and preserve two IFis for later use. 

505 



Interactive and Batch [obs 

23.2.3 

506 

2. The prompted read for user name and password and the announcement of 
the system are skipped because this step is unnecessary. 

3. New logical names are again created for SYS$INPUT, SYS$0UTPUT, 
SYS$ERROR, and SYS$COMMAND. Because two files are involved, dif­
ferent IFis will be added to the beginning of the resultant strings before 
Create Logical Name is called. One IFI is used for SYS$INPUT and SYS­
$COMMAND. The other IFI is used for SYS$0UTPUT and SYS$ERROR. 

4. The process attributes are obtained from the authorization file, in order to 
supplement information not specified at batch queue creation or at job 
submission. These values are minimized by values supplied by the job 
controller. 

5. The job parameters, Pl through P8, if present, are defined as user mode 
logical names in order that they can be passed to the CLI. 

Mapping the CLI and transfering control to it happen in exactly the same way 
as they do for an interactive job. In both cases, if SYS$SYLOGIN is defined as 
a system logical name, the first commands that execute are the commands in 
the site-specific login command file. If the user authorization file does not 
specify a user login command file, the command file SYS$LOGIN:LOGIN­
.COM is executed (if the CLI is DCL). Note that an authorized user can spec­
ify a different login command file, or none at all, by using the login command 
qualifier /COMMAND. 

SPAWN and ATTACH 

The DCL command SPAWN is used to create interactive subprocesses; the 
ATTACH command is used to transfer terminal control from one process to 
another within the same job. The real work involved in spawning a new 
subprocess is in copying process context information from the creating proc­
ess to the subprocess. This information includes the process symbol table, 
process logical name tables, current privileges, out-of-band.AST settings, ver­
ify flag settings, and the command line that was passed to SP AWN (if one 
exists). 

When the DCL command SP AWN is issued, the following operations are 
performed: 

• SP AWN disables the current process's out-of-band AS Ts and saves the cur­
rent event flags. 

• A resource mailbox is created by the creating process. This mailbox will be 
used to pass process context information to the subprocess. 

• The Create Process system service is called to create a subprocess. The 
image name argument specifies the image LOGINOUT. The error 

argument specifies the name of the newly created resource mailbox. If the 
creating process does not specify input and output files to the SP AWN 
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command, then the creating process's SYS$INPUT and SYS$0UTPUT file 
specifications are used. The call to Create Process also declares a termina­
tion mailbox for the subprocess. 

• When LOGIN OUT passes control to DCL in the context of the subprocess, 
DCL first translates the logical name SYS$ERROR. If the equivalence 
string contains the name of a mailbox, DCL recognizes that a SPAWN 
operation is in progress and that it must read the creating process's context 
information. The context information is passed in the following manner: 

- DCL issues read requests to the resource mailbox. 
-The creating process writes context information to the resource mail-

box one record at a time. When the subprocess receives the information, 
it adds the information to its context. 

- The first records passed are the process header records, which contain 
the current privilege mask, out-of-band AST flag settings, and the verify 
flag setting. 

-Next, the SPAWN command string is passed (if one was specified). 
- The creating process then parses its process logical name table and 

passes user and supervisor mode logical name strings, their equivalence 
name strings, and their access mode to the subprocess. DCL receives the 
strings and fills in its own process logical name table. 

-Finally, the contents of the symbol table are then passed, one symbol at 
a time. Note that the DCL command tables are not passed to the 
subproce~s. 

• SP AWN creates a mailbox from the calling process and declares a write­
attention AST for the mailbox. The DCL command ATTACH will use the 
mailbox to signal an attach request and communicate attach information. 

• Once it has passed all information to the subprocess, SPAWN causes the 
calling process to hibernate. 

• DCL, acting in the context of the new subprocess, deletes the resource 
mailbox, deassigns the logical name SYS$ERROR, and continues normal 
processing. 

The DCL command ATTACH is used to transfers terminal control to a 
specified process (called the target process in this discussion). The operation 
of the DCL command ATTACH is a little simpler than SPAWN: 

• ATTACH first checks that it is being executed from an interactive process, 
and then it checks that the target process is not itself. 

• ATTACH creates an attach mailbox for the calling process. This attach 
mailbox will be used if a later ATTACH request names this process as its 
target. If an attach mailbox already exists, the write-attention AST is sim­
ply declared for the mailbox. The mailbox is created before the actual at­
tach request is performed so that the ATTACH does not receive an affirm-
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ative message from the target process only to find that it does not have the 
resources to create its own attach mailbox. At this point in time, AT­
TACH also saves the event flags and disables out-of-band ASTs for the 
calling process. 

• ATTACH locates the target process's attach mailbox and writes the name 
of its output stream (usually the equivalence name of SYS$INPUT) to the 
mailbox, thus triggering the write-attention AST that was declared when 
the target process spawned a subprocess. ATTACH then issues a read re­
quest on the target process's attach mailbox. 

• The target process wakes to answer the write-attention AST. The AST 
routine compares the name of its output stream to the name in the mail­
box. If the strings are the same, the target process writes an affirmative 
response to the attach mailbox. 

• Once it receives the affirmation, ATTACH deassigns its channel to the 
target process's attach mailbox and causes the calling process to hibernate. 

• The AST routine in the target process issues a wake request for the proc­
ess, declares another write attention AST for its attach mailbox, and re­
turns control to the target process. 

When one of the subprocesses created by the SPAWN command is deleted, 
the termination AST is delivered. The termination AST simply performs 
cleanup work before the subprocess is deleted. The channels to the attach 
and termination mailboxes are deassigned, and the mailboxes are deleted. If 
the subprocess was created by a call to LIB$SPA WN and if an event flag or 
AST routine was specified in the call, then the event flag is set or the AST is 
delivered. · 

23.3 COMMAND LANGUAGE INTERPRETERS AND IMAGE 
EXECUTION 
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Once the command language interpreter gains control, it performs some ini­
tialization and then reads and processes successive records from SYS$IN­
PUT. Several of these operations involve command language features. This 
discussion is concerned only with those commands that result in image exe­
cution, in order to contrast interactive and batch jobs with the simple proc­
esses described in previous chapters. 

The VAX/VMS operating system supports two command language inter­
preters, DCL and MCR. The chief difference between these command lan­
guages lies in their treatment of indirect files, a topic that does not affect 
image execution. In fact, the steps taken by either CLI in activating an image 
are nearly identical. The operation of DCL will be described in detail; MCR 
will be mentioned only where it differs from DCL. 



23.3.1 

23.3.2 

23.3 Command Language Interpreters and Image Execution 

The most important step that the CLI performs is concerned is the declara­
tion of a supervisor mode termination handler. It is this handler that will 
prevent process deletion following image exit and allow the successive exe­
cution of multiple images within the same process. A simplified flow of con­
trol through the CLI is pictured in Figure 23-3. 

CLI Initialization 

The first code that executes in DCL performs the following initialization 
steps before it enters the main command processing loop: 

1. After translating the user mode logical names defined by LOGINOUT, 
DCL calls SYS$RUNDWN with an argument of user mode to run down 
the LOGINOUT image. Equivalence names for the parameters PO through 
PB are used to create symbols; equivalence names for PROCO through 
PROC9 are used to specify the names of command procedures to be exe­
cuted by DCL. 

2. A change-mode-to-supervisor handler is established (by using the 
$DCLCMH system service). This handler allows DCL to get back to su­
pervisor mode from user mode when it needs to write protected data struc­
tures. One instance where this is required is in symbol definition, because 
DCL's symbol tables are protected from write access by user mode. 

3. A CTRL/Y AST is declared so that DCL always receives control when 
CTRL/Y is typed. 

4. Finally, control is passed to the first instruction of the main command 
processing loop (at global label DCL$RESTART or MCR$RESTART). 

Command Processing Loop 

The main command processing loop reads a record from SYS$INPUT and 
takes whatever action is dictated by the command. Some actions can be per­
formed directly by DCL (or MCR). Others require the execution of a separate 
image. Table 23-1 lists the general operations performed by DCL (or MCR) 
and indicates those actions that require an external image. 

If the record that is read from the input stream is a recognized command, 
DCL (or MCR) must also determine whether it can perform the requested 
action itself or activate an external image. Table 23-2 lists the commands 
that can be executed by DCL or MCR without destroying a currently execut­
ing image. (Special commands used by the MCR indirect command file proc­
essor are not included in the table.) Any other command either requires an 
image in order to execute (such as COPY or LINK) or directly affects the 
currently executing image (such as STOP). 
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23.3 Command L'anguage Interpreters and Image Execution 

Table 23-1: General Actions Performed by a Command Language Interpreter 

General CLI Operations 

Commands That Require 
External Images 

Commands That Require 
Internal Processing and 
an External Image 

Foreign Commands 
Other Operations That 

Destroy an Image 

Commands That CLI 
Can Execute Internally 

Other Internal Operations 

Image Initiation by DCL 

Sample Commands 

COPY 
LINK 
Some SET Commands 
Some SHOW Commands 

LOGOUT 
MCR 
RUN 
string:== "$image-file-spec" 

STOP 
EXIT 
Invoking a Command Procedure 

EXAMINE, 
SET DEFAULT 
(See Table 23-2) 

Symbol Definition 

When an external image is required, DCL first performs some command-spe­
cific steps. It then enters a common routine to formally activate and call the 
image. The steps that it takes are nearly identical to the steps performed by 
PROCSTRT, described in Chapter 20. 

1. The previous image (if any) is run down by calling SYS$RUNDWN. This 
call removes any traces of a previously executing image before another 
image is activated. In the case where the previous image terminated nor­
mally, this call is unnecessary. However, a CTRL/Y followed by an exter­
nal command bypasses the normal image termination path, requiring 
this extra step to insure that a previous image is eliminated before an­
other is activated. 

2. The supervisor mode termination handler that will allow DCL to regain 
control at image exit is declared. Recall from Chapter 21 that an exit 
handler must be redeclared after each use. 

3. The image is activated by calling SYS$IMGACT (see Chapter 21). 
4. Access mode is raised to user. 
5. The call frame chain is terminated by clearing FP. 
6. An initial call frame is created on the user stack. The address of the 

catch-all condition handler is placed into this frame and also into the last 
chance exception vector. 

7. Image addresses are relocated by calling the Address Relocation Fixup 
system service (SYS$IMGFIX). 
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Table 23-2: Command Handled by CLI Internal Procedures by PROCSTRT or a CLI 
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Command 

ALLOCATE 

ASSIGN 

ATTACH(D) 

CLOSE (D) 

CONTINUE 

DEALLOCATE 
DEASSIGN (D) 

DEBUG 

$DECK(D) 
DEFINE (D) 

DELETE/SYMBOL (D) 

DEPOSIT 

$EOD (D) 
EXAMINE 

EXIT 

GOTO 
IF (D) 

INQUIRE (D) 

ON 

OPEN(D) 
READ(D) 

SET CONTROL 

SET DEFAULT 

SET[NO]ON 
SET PROTECTION 

SETUIC 

SET [NO]VERIFY 

SHOW DEFAULT 
SHOW PROTECTION 

SHOW QUOTA 

SHOW STATUS 

SHOW SYMBOL 
SHOW TIME 

SHOW TRANSLATION 
SPAWN(D) 

Description 

Create/Modify a symbol 

Allocate a device 
Create a logical name 

Transfer control to another process in job 

Close a process-permanent file 

Resume interrupted image 
Deallocate a device 
Delete a logical name 

Invoke the symbolic debugger 

Delimit the beginning of an input stream 
Create a logical name 

Delete a symbol definition 

Modify a memory location 

Delimit the end of an input stream 

Examine a memory location 

Exit a command procedure 
Run down an image after invoking termination 
handlers 
Transfer control within a command procedure 

Conditional command execution 

Interactively assign a value to a symbol 

Define conditional action 

Open a process-permanent file 
Read a record into a symbol 

Determine CTRL actions 

Define default directory string 

Determine error processing 

Define default file protection 
Change process UIC and default directory string 

Determine echoing of command procedure 
commands 

Display default directory string 

Display default file protection 

Display current disk file usage 

Display status of currently executing image 

Display value of symbol(s) 

Display current time 
Show translation of single logical name 

Create a subprocess and transfer control 
to it 
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23.3 Command Language Interpreters and Image Execution 

Table 23-2: Command Handled by CLI Internal Procedures (continued) 

Command 

STOP 

WAIT(D) 

WRITE (D) 

Description 

Run down an image bypassing termination 
handlers 

Wait for specified interval to elapse 

Write the value of a symbol to a file 

(D) These commands are available in the DCL command interpreter but not in the MCR 
command interpreter. 

8. The argument list (see Figure 23-4) that will be passed to the image (and 
to any intervening procedures such as SYS$IMGST A) is built on the user 
stack. 

9. The image is called at the first address in the transfer address array (de­
scribed in Chapter 21). As mentioned in the discussion of image startup, 
the first transfer address will usually be the address of the debug boot­
strap that will establish the traceback exception handler and map the 
debugger if requested. 

10. The instruction following the call to the image results in a call to 
SYS$EXIT. Unlike the check made in PROCSTRT, the code path through 
DCL makes it irrelevant whether an image terminates with a RET or a 
call to SYS$EXIT. Other reasons, described in the VAX-11 Run-Time Li­
brary Reference Manual, still make the RET instruction the preferred 
method of image termination. 

Image Termination 

When an image in an interactive or batch job terminates, the Exit system 
service will eventually call the supervisor mode termination handler estab-

] 6 

Address of Transfer Address Array 

Address of CLI Utility Dispatcher 

Address of Image Header 

Address of Image File Descriptor 

Link Flags from Image Header 

CLI Flags 
(0 from PROCSTRT) 

Figure 23·4 
Argument List Passed to an Image by PROCSTRT or a CLI 
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lished by DCL before the image was called. This termination handler per­
forms several cleanup steps before passing control to the beginning of the 
main command loop to allow DCL to process the next command. 

1. Any files left open by the image are closed by calling SYS$RMSRUNDWN 
for each open file. 

2. Any data records in the input stream (records that do not begin with a 
dollar sign for DCL or a right angle bracket for MCR) are discarded and a 
warning message issued. 

3. The image that just terminated is run down by calling SYS$RUNDWN 
with an argument of user mode. 

4. Finally, control is passed to the beginning of the main command loop so 
that DCL can read and process the next command. Control is passed by 
restoring the supervisor stack pointer to a known state (with the address of 
DCL$RESTART on the top of the stack) and issuing an RSB. 

Abnormal Image Termination 

When an image terminates normally, it is run down as a part of DCL's termi· 
nation handler, and control is passed to DCL at the start of its command loop. 
An image can also be interrupted by typing CTRL/Y or by using the COBOL 
or FORTRAN pause capability. Further execution of the image depends on 
the sequence of commands that ex.ecute while the image is interrupted. 

23.3.5.1 CTRL/Y Processing. When CTRL/Y (or possibly CTRL/C) is typed at the ter­
minal, the terminal driver passes control to the AST that was established by 
DCL as a part of its initialization. The first step performed by this AST is to 
redeclare itself. Redeclaring the AST causes future CTRL/Ys to be passed to 
the same AST. The previous mode of the PSL is then checked. If the previous 
mode was supervisor, DCL checks whether a SET NOCONTROL_ Y com­
mand has been executed. If so, the interrupt is simply dismissed. If not, DCL 
is restored to its initial state (with no nesting of indirect levels) and control is 
passed to the beginning of the main command loop. 

If the previous mode was user, then an image was interrupted. If the image 
was installed with enhanced privileges, the current privileges are saved and 
the process privileges are reset to those before the image was activated. A flag 
is set and DCL returns to DCL$RESTART. If, at this point, the user enters 
the DCL commands ATTACH, CONTINUE, or SPAWN, the appropriate 
action is taken and the image is not run down. Any other command will 
cause the privileged image to be run down before the next command is exe­
cuted. 

23.3.5.2 The Pause Capability. The VAX-11 COBOL and VAX-11 FORTRAN lan­
guages provide the capability to interrupt an image under program control. 
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Either of the Run-Time Library procedures that implement this feature could 
also be called from any other language. 

• The following COBOL statement generates a call to the Run-Time Library 
procedure COB$PAUSE, which sends the message "literal" to SYS$0UT­
PUT and passes control to the CLI at the beginning of its main command 
loop: 

STOP literal 

• The following FORTRAN statement generates a call to the Run-Time Li­
brary procedure FOR$PAUSE, which sends the message "literal" to 
SYS$0UTPUT and passes control to the CLI at the beginning of its main 
command loop: 

PAUSE literal 

If the "literal" argument is omitted, FOR$PAUSE sends the following 
message to SYS$0UTPUT. 

FORTRAN PAUSE 

23.3.5.3 The State of Interrupted Images. If a nonprivileged image was interrupted, the 
image context is saved and control is passed to the beginning of the main 
command loop to allow the user to execute commands. If DCL can perform 
the requested action internally (see Table 23-2), then the image can potenti­
ally be continued. 

However, any command that requires an external image will destroy the 
context of the interrupted image. In addition, if the user executes an indirect 
command file while an image is interrupted, that image is destroyed, even 
though the commands in the indirect command file can be performed inter­
nally by DCL. 

Six commands that the user can execute have special importance if an 
image has been interrupted by CTRL/Y. These commands are ATTACH, 
CONTINUE, DEBUG, EXIT, SPAWN, and STOP. 

23.3.5.4 CONTINUE Command. If CONTINUE is entered while at CTRL/Y AST 
level and the previous mode was user, the AST is dismissed and control is 
passed back to the image at the point where it was interrupted. 

23.3.5.5 DEBUG Command. As described in Chapter 21, a DEBUG command causes 
DCL to generate a SS$_DEBUG signal that will eventually be fielded by the 
condition handler established in image startup. This handler will respond to 
the SS$_DEBUG signal by mapping the debugger (if it is not already mapped) 
and transferring control to it. This technique allows the debugger to be used, 
even when the image was not linked with the /DEBUG qualifier. (In order for 
this capability to work, the image cannot be linked with the /NOTRACE-
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BACK qualifier. That qualifier prevents image startup from executing, so 
that the handler that dynamically maps the debugger never is established.) 

23.3.5.6 The EXIT Command. The EXIT command causes an Exit system service to 
be issued from user mode. Termination handlers are called and the image is 
run down. 

23.3.5.7 The STOP Command. The STOP command performs essentially the same 
cleanup operations that occur for a normally terminating image. However, 
STOP does its own work and does not call SYS$EXIT. Thus, user mode termi­
nation handlers are not called when an image terminates with a CTRL/Y 
STOP sequence. 

The STOP command processor first determines whether an image or a 
process is being stopped. (The various possible STOP commands are de­
scribed in the VAX/VMS Command Language User's Guide.) If an image is 
being stopped, all open files are closed by calling SYS$RMSRUNDWN. The 
image itself is then run down (by calling SYS$RUNDWN). Finally, control is 
passed to the beginning of the main command loop. 

Note that STOP performs nearly identical operations to the DCL termina­
tion handler invoked as a result of a call to SYS$EXIT or an EXIT command. 
The only difference between either EXIT sequence and the STOP command 
is that user mode termination handlers are not called first. Thus in most 
cases, the STOP and EXIT commands are interchangeable. One useful aspect 
of the STOP command is that it can be used to eliminate an image that 
contains a user mode termination handler that is preventing that image from 
completely going away, either intentionally or as a result of an error. 

23.4 THE LOGOUT OPERATION 
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The same image that performs the initialization of an interactive or batch job 
is used to cause the eventual deletion of such a process. The indication that a 
logout is required is the existence of the process-permanent data region, used 
to communicate between LOGINOUT and the CLI. LOGINOUT takes what­
ever special action is required before calling the Delete Process system serv­
ice, which will continue with those parts of process deletion that are inde­
pendent of the kind of process that is being deleted. 

1. The logout message is sent to SYS$0UTPUT, either the user's terminal 
for an interactive job or the batch log for a batch job. 

2. SYS$0UTPUT is closed. If this is a batch job, then SYS$INPUT is differ­
ent and must also be closed. 

3. Finally, SYS$EXIT is called from executive mode. As was discussed in 
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Chapter 21, the search for termination handlers will only look at the exec­
utive mode list, bypassing the supervisor mode termination handler estab­
lished by the CLI to prevent process deletion following image exit. 

4. After the executive mode termination handler has performed its work, the 
Exit system service will call Delete Process, which will cause the logged­
out process to disappear from the system. 
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24 Bootstrap Procedures 

ante mare et terras et quod tegit omnia caelum unus erat toto 
naturae vultus in orbe, quern dixere Chaos 

-Ovid, Metamorphoses 

Before a VAX/VMS system can operate, some initialization programs (or 
bootstrap programs) must execute to configure the system and read the exec­
utive into memory. Parts of the bootstrap operation are specific to the type of 
VAX-11 processor. Others are common across all VAX family members. Fig­
ure 24-1 summarizes the steps that are taken to initialize a VAX/VMS sys­
tem. Tables 24-2 through 24-5 summarize the programs that execute and the 
files that are referenced while initializing the system. This chapter describes 
all phases of the bootstrap operation that occur before code contained in the 
executive image (SYS.EXE) executes. Chapter 25 describes the initialization 
of the executive image. 

24.1 PROCESSOR-SPECIFIC INITIALIZATION 

24.1.1 

The initial steps that occur in the initialization of a VAX/VMS system de­
pend on the particular VAX processor that is being used. The next sections 
briefly describe the processor-specific steps that occur before the primary 
bootstrap program (VMB) gains control and begins execution. In all proces­
sors, the following steps occur: 

• 64K bytes of error-free, page-aligned, contiguous memory are located. 
• VMB is loaded into the 64K bytes of memory. 
• The bootstrap ·device code and other boos trap flags are passed to VMB 

using registers RO through RS. 
• VMB is executed. 

The way in which good memory is located and registers are loaded is CPU­
dependent. The most obvious processor-specific item that affects the boot­
strap operation is the console configuration. An overview of the console sub­
system for a specific VAX-11 family member can be found in the VAX Hard­
ware Handbook. 

VAX·ll/730 Initial Bootstrap Operation 

The console subsystem on the VAX-11/730 consists of a separate microproc­
essor, two mass storage devices (TU58 cartridge tape drives), read-only mem-
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ory, and a terminal. When the CPU is in console mode, only the console 
program can execute; the CPU cannot execute any user code or even the VMS 
operating system itself. 

There are five ways in which a bootstrap sequence may be initiated. 

1. A power-on occurs (the boot switch is pressed, or the processor is turned 
on). 

2. The console command B is typed while the processor is in console mode. 
3. A HALT instruction is executed in kernel mode, and the Auto Restart 

switch is in the ON position. ' 
4. The following instruction is executed, which invokes a bootstrap opera­

tion: 

MTPR #'XF02,#PR$_TXDB 

5. An attempted restart fails and the Auto Restart switch is in the ON posi­
tion. 



24.1 Processor-Specific Initialization 

Table 24-1: V AX-11/730 Bootstrap Command Files 

Command File 

CODEOO.CMD 
CODEOl.CMD 
CODE02.CMD 
CODE03.CMD 

Hardware Configuration 

No FPA, no IDC 
No FPA, with IDC 
With FPA, no IDC 
With FPA, with IDC 

In the bootstrap sequence, the console subsystem must execute a series of 
programs in order to load and execute the primary bootstrap program (VMB). 
The initial bootstrap programs (listed in Table 24-2) are console microproces­
sor programs. The steps of initial bootstrap are as follows: 

1. After performing a self test, the microprocessor locates the TU58 that 
contains the boot block, and loads blocks 0 through 5 from the tape into 
into microprocessor memory. The code in the boot block locates the main 
console microcode program CONSOL.EXE on the console TU58. 

2. CONSOL.EXE then executes two indirect command files, POWER.CMD 
and CODEOn.CMD. POWER.CMD executes the routine POWER.CPU, 
which initializes the machine, searches for a page-aligned 64K byte block 
of good memory, and checks the configuration of the machine. When 
POWER.CPU exits, it returns an address 200 (hex) bytes beyond the begin­
ning of the first good page. This address is loaded into SP. (In a typical 
system, one with no errors in the first 64K bytes, the contents of SP are 
200.) 

Each possible configuration of the VAX-11/730 is assigned a value. The 
value returned from POWER.CPU is then substituted into the file name 
CODEOn.CMD. The CODEOn.CMD routines load the normal run-time 
microcode for the appropriate processor configuration. Table 24-1 lists the 
command files used with specific processor configurations. 

3. The HALT/RESTART switch is checked. If it is set to HALT, the processor 
enters console mode and prints the console command prompt: 

>>> 

If the HALT/RESTART switch is set to RESTART, processing continues 
using the default bootstrap command file (DEFBOO.CMD). 

4. There are many commands that the console command language under­
stands. All three commands that cause a VMS system to be bootstrapped 
execute command files located on the console TU58. 

The commands and their associated command files are: 

Command 

B 

B dev 

@file-spec 

Command File 

DEFBOO.CMD 

devBOO.CMD 

file-spec 

523 



Bootstrap Procedures 

24.1.2 

These command files identify the system disk and other characteristics 
of the bootstrap operation by loading general registers RO through RS with 
parameters that will be interpreted by the primary bootstrap program, 
VMB. 

5. The following three commands in the bootstrap command files display the 
contents of SP (to identify the staring address in physical memory) and 
then load the primary bootstrap program, VMB, from the TU58 into the 
good 64K byte block of VAX memory, leaving the first page free: 

ESP 
LPS:@ VMB.EXE 
S@ 

The free page will contain a data structure called a restart parameter 
block (RPB). The RPB is used by VMB and by the restart routines, in the 
event of a powerfail or other system failure. The third command, the 
START command, transfers control to the first byte of VMB. 

VMB.EXE is described in greater detail in section 24.2. 

VAX-11/750 Initial Bootstrap Operation 

The console program on the VAX-11/750 resides in read-only memory within 
the CPU. When the CPU is in console mode, this program (and nothing else, 
such as a user program or the VMS operating system itself) is executing. 
When a VAX-111750 system is initialized, the console program is the first in 
a series of programs that execute before the primary bootstrap program (VMB) 
executes. These programs include the following: 

• The console subsystem, which initializes the CPU, locates a page-aligned 
64K byte block of good memory, and passes control to a device-specific 
ROM program. 

• A boot-device ROM, which reads logical block number 0 (LBN 0, the so­
called boot block) from the bootstrap device into the first page of the good 
memory block. 

• The boot block program, which reads a file from the bootstrap device into 
memory. When a VMS system is being bootstrapped, this file will always 
be VMB, the primary bootstrap program. 

A list of the programs that execute during the initial CPU-dependent phase of 
initialization is contained in Table 24-3. 

24.1.2.1 VAX-11/750 Console Program. In the VAX-11/730 and VAX-111780 the con­
sole program can execute indirect command files. Rather than using com­
mand files to pass information to VMB1 the console program on the VAX-11/ 
750 constructs the information from the device selected by the BOOT 
DEVICE switch and the bootstrap command itself. The console program on a 
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Table 24-2: Processor-Dependent Files Used to Bootstrap the VAX-11/730 

Program Executing 

Console Microprocessor 
ROM Bootstrap 

TU58 Boot Block Program 

CONSOL.EXE 

POWER.CMD 

CODEOn.CMD 

Bootstrap Indirect 
Command File (Usually 
DEFBOO.CMD) 

VMB.EXE 

Where Program Is Located 

ROM in Console Subsystem 

Logical Block 0 on 
Console TU58 
Somewhere on Console TU58, 

An RT-11 Directory­
Structured Device 

Console TU58 

Console TU58 

Console TU58 

Console TU58 

CPU Used by Program 

Console 
Microprocessor 

Console 
Microprocessor 

Console 
Microprocessor 

Console 
Microprocessor 

Console 
Microprocessor microcode ( l) 

Console 
Microprocessor 

VAX-11/730 

Purpose of This Program 

Read TU58 boot block into 
memory and execute code 
contained there 

Locate CONSOL.EXE, read it into 
memory, and pass control to it 

Put VAX-11/730 into known state, 
load general registers, and 
execute the next two indirect 
command files 

Locate 64K byte block of good 
memory, check configuration 
of the machine ( l) 

Configuration-dependent 

Load VMB into VAX memory and 
transfer control to it 

(See Table 24-5) 

(1) When POWER.CMD determines the configuration of the machine, it returns a value to CONSOL.EXE. This value is then used as n to determine 
which CODEOn.CMD to execute. 

All programs execute in the VAX-11/750 CPU. There is no front-end processor performing any of the bootstrap operations. 
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Table 24-3: Processor-Dependent Files Used to Bootstrap the VAX-11/750 

Program Executing 

Console Program 
(Executes Microcode) 

Where Program Is Located 

ROM in VAX-11/750 CPU 

Purpose of This Program 

Locate block of good memory, 
determine action to be taken, 
and pass control to device­
specific program 

Device-Specific 
Program in ROM 

ROM in I/O address space 
ofVAX-11/750 CPU 

Load boot block (LBN 0) of 
designated device into 
memory and pass control to it 

Boot Block Program Logical Block Number of 
System Device 

Locate primary bootstrap program 
on system device (or console 
storage device) by logical block 
number and pass control to it 

VMB.EXE (See Table 24-5) 

BOOT58 
(Not Used During 
Bootstrap from 
System Disk) 

Specific Logical Block 
Number on Boot Device 

System Disk or TU58) 

Specific Logical Block 
Number on Console Block 
Storage Device 

Use indirect command files or 
enhanced console commands 

526 

VAX-11/750 is stored in read-only memory within the CPU, allowing boot­
strap operations on the VAX-111750 to execute more quickly, at the price of 
some flexibility. The console program can initiate a bootstrap sequence for 
five different reasons: 

• The system is powered on and the power-on selector switch is in the boot­
strap position. 

• The B (Boot) command is typed while the system is in console mode. 
• A HALT instruction is executed and the power-on selector switch is in the 

bootstrap position. 
• The following instruction is executed: 

MTPR #'XF02,#PR$_TXDB 

The VMS bugcheck routine uses this mechanism on all CPUs to automati­
cally reboot the system after a fatal software crash. (This automatic reboot 
capability can be inhibited by clearing the SYSBOOT flag BUGREBOOT.) 

• An attempt to restart the system after a power failure recovery does not 
succeed, and the power-on selector switch is in the restart/bootstrap posi­
tion. 

Note that the implementation of the VAX-11/750 prevents unattended re­
starts (the last three reasons shown in the list above) unless the system de­
vice is unit 0 on the first controller of a given type such as the first MASSBUS 
adapter. 
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The important steps that are performed by the console program include the 
following: 

• Locating 64K bytes of contiguous, error-free, page-aligned memory to be 
used by later stages of the bootstrap. 

• Loading the first 128 map registers in the UNIBUS adapter to address this 
block of memory (a step not taken when using the console block storage 
device as a bootstrap device). 

• Loading the general registers with parameters to be used by later stages of 
the bootstrap. 

• Passing control to the device ROM selected by the bootstrap device selec­
tor switch. 

24.1.2.2 Device-Specific ROM Program. The device ROM program consists of two 
main pieces, a control routine and a device-specific subroutine. This program 
simply reads the boot block (LBN 0) of the selected device into the first page 
of the good memory block and passes control to it (at an address 12 bytes past 
the beginning of the program). 

24.1.2.3 Bootblock Program. This bootblock program has a single purpose, which de­
pends on the type of bootstrap device specified to the console program. When 
a system bootstrap device is specified, the bootblock program loads the pri­
mary bootstrap program (VMB) into memory and passes control to it. When 
the console block storage device is selected, the bootblock program can pass 
control to an enhanced command processor called BOOT58. The bootblock 
program does not contain any 1/0 support. It uses the driver subroutine con­
tained in the device ROM program. 

There are three longwords of header information before the body of the 
bootblock program. These longwords contain the following: 

1. The size of the primary bootstrap program 
2. The starting logical block number of the primary bootstrap program 
3, A relative offset into the block of good memory where this program is to 

be loaded 

These longwords are loaded by the program WRITEBOOT when the boot 
block is written. Notice that the boot block has the LBN of the primary 
bootstrap program hard-coded into the block. If the position of the primary 
bootstrap program on the volume changes, WRITEBOOT must be executed 
to rewrite the boot block with new information. 

Note that the location of VMB by the VAX-11/750 boot block program is 
the only situation in all of the VAX/VMS operating system where a file is 
located by a logical block number coded into another program. Thus, VMB on 
a VAX-11/750 system disk is the only file that is not free to move without 
external intervention (running WRITEBOOT) to preserve system integrity. 
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24.1.2.4 BOOT58. The console block storage device on the VAX-11/750 (TU58 car­
tridge) is not used during a normal bootstrap operation, in contrast to the 
VAX-11/730 bootstrap and VAX-11/780 bootstrap, which always read VMB 
and a command file from the console block storage device. However, the 
VAX-11/750 has an alternate bootstrap path that uses the TU58, which pro­
vides the following: 

24.1.3 
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• Indirect command file capability 
• An enhanced console command language 
• The ability to bootstrap a system in the event that a boot block becomes 

corrupted 

A stand-alone program called BOOT58 is an enhanced console command 
processor loaded from the TU58 that provides these features. BOOT58 is 
loaded by selecting the console block storage device (DDAO:) as the bootstrap 
device, either by the device selector switch or with the command: 

>>>B DDAD: 

Note that the drive DDAO: must contain the TU58 tape cartridge. 
The boot block on the TU58 contains a program just like the boot block 

program on a system device. This program contains the LBN of BOOT58 
(because it was put there by WRITEBOOT). Once BOOT58 prints its prompt, 
commands or indirect command file specifications can be entered. 

VAX-11/780 Initial Bootstrap Operation 

The console subsystem on the VAX-11/780 consists of a separate processor, 
an LSI-11 with its own mass storage device (RXOl floppy disk) and terminal. 
The fact that the console subsystem on a VAX-111780 includes its own proc­
essor implies that the console system can perform certain (but not all) opera­
tions while the VAX-11/780 CPU is performing its own operations. Note that 
this is only true for the VAX-11/780. 

The initial bootstrap programs that execute in order to initialize a VAX/ 
VMS system on a VAX-11/780 are PDP-11 programs executing in the LSI-11. 
These programs (CONSOL.SYS and the boot block program) execute PDP-11 
instructions as opposed to VAX-11 instructions (which are executed by the 
rest of the VMS operating system and also by the VAX-11/750 bootstrap pro­
grams). 

1. The first program that executes in the LSI-11 is a bootstrap program lo­
cated in read-only memory (ROM) that causes a program located on logical 
block number zero of the console floppy (sectors 1, 3, 5, and 7) to be loaded 
into LSI memory. 

2. The program located at logical block number zero is a copy of the boot­
strap program used by the RT-11 operating system. The RT-11 bootstrap, 
which understands the RT-11 file system, looks for a specific file (the 
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monitor), loads it into memory, and transfers control to it. (The RT-11 
directory structure and bootstrap program are described in the RT-11 Soft­
ware Support Manual.) 

The bootstrap program that is found on the VAX-11/780 console floppy 
diskette looks for a program called CONSOL.SYS. 

3. The console program loads the file WCSxxx.PAT from the floppy diskette 
into the VAX-11/780 diagnostic control store and then prints its prompt 
( > > >) on the console terminal. If there is a version mismatch between the 
WCS and either the PCS or the FPLA, an error message is displayed on the 
console terminal. 

4. There are many commands that the console command language under­
stands. The three commands that cause a VMS system to be bootstrapped 
execute command files located on the console floppy. 

The commands and their associated command files are the following: 

Command 

BOOT 

BOOTdev 

@file-spec 

Command File 

DEFBOO.CMD 

devBOO.CMD 

files pee 

These command files identify the system disk and other characteristics 
of the bootstrap operation by loading general registers RO through RS with 
parameters that will be interpreted by the primary bootstrap program 
(VMB). 

The DEFBOO.CMD command file is also used to bootstrap the VAX-
11/780 if any of the following conditions occur: 

• A HALT instruction is executed and the AUTO RESTART switch is in 
the ON position. 

• The following instruction is executed: 

MTPR #@XFD2,#PR$_TXDB 

This instruction tells the console subsystem to reboot the VMS operat­
ing system. The VMS bugcheck routine uses this mechanism on all 
CPUs to automatically reboot the system after a fatal software crash. 
(This automatic reboot capability can be inhibited by clearing the SYS­
BOOT parameter BUGREBOOT.) 

• An attempt to restart the system after a power failure recovery does not 
succeed, and the AUTO RESTART switch is in the ON position. 

Note that the DEFBOO.CMD command file used to bootstrap either 
processor on a V AX-11 /782 multiprocessing system are not the same as 
the command files described here. The contents and operation of DEF­
BOO.CMD on a VAX-111782 are described in Chapter 28. 
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5. The command files also contain the following commands: 

START 20003000 
WAIT 

These two commands cause a program located in read-only memory in the 
first memory controller on the SBI to execute. The command file waits 
until the memory ROM program completes before executing its next com­
mand. (The memory ROM program signals the console program that it is 
done by writing the "software done" signal into one of the console regis­
ters with the instruction: 

MTPR #'XF01,#PR$_TXDB 

The program in the memory controller ROM performs a primitive mem­
ory sizing operation in an effort to locate 64K bytes of error-free, page­
aligned, contiguous physical memory that can be used by the remaining 
bootstrap programs. 

The output of this program is an address 200 (hex) bytes beyond the 
beginning of the first good page. This address is loaded into SP. (In a typical 
system, one with no errors in the first 64K bytes, the contents of SP are 
200.) 

6. The following three commands cause the primary bootstrap program VMB 
to be loaded from the floppy disk into the good 64K byte block of VAX 
memory, leaving the first page free. This page will contain a data structure 
called a restart parameter block (RPB) that is used by both VMB and by the 
restart routines in the event of a powerfail or other system failure. The 
START command transfers control to VMB at its first location. 

EXAMINE SP 
LOAD VMB.EXESTART:@ 
START@ 

The initial bootstrap programs are listed in Table 24-4. 

24.2 PRIMARY BOOTSTRAP PROGRAM 
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The first program that is common to all VMS systems, independent of CPU 
type, is the primary bootstrap program (VMB). The processor-independent 
files and programs used in bootstrap operations are listed in Table 24-5. The 
only differences between the initiation of VMB on a VAX-111750 system and 
on VAX-11/730 and VAX-11/780 systems is the source of the program (the 
system disk on a 750 system versus the console block storage device on 730 
and 780 systems), the method used to load RO through RS, and the location of 
the program that passes control to VMB (the boot block VAX-11 program on a 
750 versus the console microprocessor programs on the 730 and 780). VMB 
performs two major steps. 

• It locates and determines the size of physical memory on the system. 
• It locates the secondary bootstrap program, loads it into memory, and 

transfers control to it. 



Table 24-4: Processor-Dependent Files Used to Bootstrap the VAX-11/780 

Program Executing 

LSI-11 ROM Bootstrap 

Floppy Boot Block Program 

CONSOL.SYS 

Good Memory Locater 

CONSOL.SYS 
(After Waiting for 
Memory ROM Program 
to Complete) 

VMB.EXE 

Where Program Is Located 

ROM in LSI-111/0 Space 

Logical Block 0 on 
Console Floppy 

Somewhere on Console Floppy, 
an RT-11 directory­
structured device 

ROM in First Memory 
Controller on SBI 

Console Floppy 

CPU Used by Program 

LSI-11 

LSI-11 

LSI-11 

VAX-11/780 

LSI-11 

VAX-11/780 

Purpose of This Program 

Read floppy boot block into 
memory and execute code 
contained there 

Locate CONSOL.SYS, read it into 
memory, and pass control to it 

Put VAX-11/780 into known state, 
load general registers, and 
invoke memory sizing program 

Locate 64K byte block of 
error-free memory 

Load VMB into VAX memory and 
transfer control to it 

(See Table 24-5) 



Table 24-5: Processor-Independent Bootstrap Files 

Program Executing 
(process context) 

VMB.EXE (1) 
(Stand-Alone program) 

SYSBOOT.EXE (C) 
(Stand-Alone Program) 

SYS.EXE (Module INIT) 
(No Process Yet) 

SYS.EXE (Module SWAPPER) 
(SWAPPER Process) 

SYSINIT.EXE 
(SYSINIT Process) 

Purpose of This Program 

Primary Bootstrap Program 

Secondary Bootstrap Program 
(Configures System 
and Reads Executive 
into Memory) 

Executive Initialization 

First Process 
Selected for Execution 

Continue Initialization 
in Process Context 

Files Used by This Program 

SYSBOOT.EXE (C) 

Parameter Files 
Created by SYSGEN (C) 

SYS.EXE 
TTDRIVER.EXE 
PAGEFILE.SYS 
SYSLOAxxx.EXE 
yyDRIVER.EXE 
INILOA.EXE 
SCSLOA.EXE 

SCSLOA 

SYSINIT.EXE 

RMS.EXE 
SYS$MESSAGE:SYSMSG.EXE 
SWAPFILE.SYS 
DUMPFILE.SYS 
Fl lzACP.EXE 

Process 
STARTUP.COM 
LOGIN OUT.EXE 

Process 

Use of This File 

Opened and Read into Memory 

Used to Configure System 

Opened and Read into Memory 
Opened and Read into Memory 
Opened and Read into Memory 
Opened and Read into Memory 
Opened and Read into Memory 
Opened and Read into Memory 
Opened and Read into Memory 

Image Specified to Create Process 

Mapped as Pageable System Section 
Mapped as Pageable System Section 
Opened and Initialized 
Opened and Initialized 
Image That Executes in DxcuACP 

SYS$INPUT for STARTUP Process 
Image Specified to Create STARTUP 



Table 24-5: Processor-Independent Bootstrap Files (continued) 

Program Executing 
(process context) 

LOGIN OUT.EXE 
(STARTUP Process) 

INSTALL.EXE 
(STARTUP Process) 

SYSGEN.EXE 
(STARTUP Process) 

RMS SHARE.EXE 
(STARTUP Process) 

Purpose of This Program 

Initial Image that Executes 
in Interactive Job 

Install Privileged and 
Shareable Images 

Autoconfigure I/O Devices, 
Load Drivers, and Create 
I/O Data Base 

Allocate Block of Paged 
Pool for File Sharing 

Files Used by This Program 

DCL.EXE (2) 
SYS$SHARE:DCLTABLES.EXE 

Activation 

All Privileged, Shareable, 
and Installed Images 

All Device Drivers Loaded 
as a Result of 
AUTOCONFIGURE ALL 

None 

Use of This File 

Mapped into Pl Space of STARTUP 
Process with Merged Image 

All Installed Images Are Set up 
as Known Images 

Drivers for All Configured Devices 
Are Loaded into Nonpaged Pool 

(C) These files must be contiguous because they are loaded by the primitive ACP routines that are a part of the executive image. 
(1) VMB must be contiguous because it is loaded by either the boot block program on the VAX-11/750 or the console program CONSOL.SYS on the 

VAX-11/730 and VAX-11/780. 
(2) The authorization file is not used by LOGINOUT here because the STARTUP process is created with a flag that dictates that authorization 

should be skipped to allow totally automatic initialization and to eliminate the need for an initialization account in the authorization file. 
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Motivation for Two Bootstrap Programs 

VMB and the secondary bootstrap program, SYSBOOT, are conceptually one 
program. The VAX-11/780 initialization (initially implemented for VAX/ 
VMS Version 1.0) required that the initial bootstrap program reside on the 
console floppy. Rather than impose artificial restrictions on the size of the 
bootstrap program, it was divided into two pieces: 

• A primary piece that resides on the floppy disk and whose only real pur­
pose is to locate the secondary piece 

• A secondary piece that resides on the system disk (with no real limits on 
its size) that performs the bulk of the bootstrap operation 

Once this division was achieved, VMB became a more flexible tool that could 
be used to load programs other than the secondary bootstrap program 
SYSBOOT. In order to preserve this flexibility and maintain as much CPU 
independence as possible in the later stages of the bootstrap, the division of 
the bootstrap into primary and secondary pieces was preserved and enhanced 
in VAX/VMS Version 2.0. 

In VAX/VMS Version 3.0 a number of enhancements were made to VMB. 
These enhancements included support for machines with more than eight 
megabytes of memory, support for new devices, and changes to the argument 
list passed to SYSBOOT. Because a user might attempt to bootstrap a Version 
3.0 system using an earlier version of VMB, it is desirable to maintain back­
ward compatibility between versions of VMB and SYSBOOT. Portions of 
SYSBOOT check the version of VMB being used and take appropriate action, 
depending on the relative versions. Backward compatibility is maintained by 
not removing functionality from VMB that is required by older versions of 
SYSBOOT. 

VMB thus has become a general purpose bootstrap program that can be 
used for several options other than initializing a VMS system. There are three 
options currently available in addition to initializing a VAX/VMS system by 
loading SYSBOOT: 

• The diagnostic supervisor [SYSMAINT]DIAGBOOT.EXE can be loaded in 
place of SYSBOOT. 

• VMB can be directed to solicit for the name of any stand-alone program to 
be loaded into VAX memory. This program might be a stand-alone diag­
nostic program, an alternate secondary bootstrap, or even another operat­
ing system. The file system routines and control transfer mechanism used 
by VMB place some restrictions on this file. 

-The volume (the system disk) containing the file that VMB will load 
must be a Files-11 volume (Structure Level 1 or 2). 

-The file containing this program must be contiguous. 
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-Its transfer address must be the first byte in the first block of the pro­
gram. (If the file is linked as a system image with a base address bf zero, 
its transfer address must be at location zero.) 

- The code in the program must be position independent. 

• VMB can load the contents of a bootstrap block from the system disk and 
execute the program that it finds there. In general, this boot block is logical 
block number zero on the volume. The VAX-11/780 bootstrap sequences 
allow an alternate boot block number to be passed to VMB in R4. 

Passing control to a boot block program is the feature that makes VMB 
an extremely flexible tool. One possible use for a bootstrap program is 
support for a file system other than Files-11. 

The boot block option is only useful on a VAX-11/780. The VAX-11/730 
and VAX-111750 bootstrap sequence allows control to be passed directly 
from the console program to a boot block program without using VMB at 
all. That is, if a special bootstrap through a boot block program was re­
quired, the normal VAX-11/730 or VAX-11/750 sequence could be used 
but the special VAX-11/780 option would be required. 

If none of these options is selected by setting the corresponding flags in RS, 
VMB enters its default path, which loads the VMS secondary bootstrap pro­
gram SYSBOOT into memory and transfers control to it. 

Operation of VMB 

VMB determines the type of bootstrap that is being performed and the iden­
tity of the system disk, by the contents of registers RO through RS. Tables 
24-6 and 24-7 summarize the input parameters that are passed to VMB. These 
parameters are saved by VMB in a data structure called a restart parameter 
block (RPB) (see Table 24-8) and are used by later programs in the bootstrap 
sequence. 

The steps that VMB takes to load SYSBOOT into memory are as follows: 

1. VMB sets up a system control block with all interrupt and exception 
vectors (except TBIT and BPT exceptions) pointing to a single service 
routine. The vectors for TBIT and BPT exceptions are loaded with the 
addresses of exception service routines in XDELTA, linked as a part of 
the VMB image. 

Figure 24-2 illustrates the layout of physical memory once VMB has set 
up its SCB. 

2. VMB then reads the processor ID register (PR$_SID) to determine the 
CPU type. VMB uses the CPU type as the basis of decisions about which 
piece of CPU-dependent code to execute. A similar step is performed 
later by SYSBOOT for the use of both SYSBOOT and the executive. 
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Table 24-6: Register Input to VMB (Primary Bootstrap Program) 

Register 

RO 
Contents 

Bootstrap Device Type Code 
<31: 16> Type-Specific Information 

MASSBUS: MBZ 
UNIBUS: Optional Vector Address 

0 =>Use Default Vector 
<15:8> MBZ 
<7:0> Bootstrap Device Type Code 

0 MASSBUS device (RM03/5,RP04/5/6,RM80) 
1 RK06/7 
2 RLOl/2 
3 IDC on VAX-11/730 

4-16 Reserved for UNIBUS devices 
17 UDA-50 

18-31 Reserved 
32 HSC on CI 

33-63 Reserved for UNIBUS devices 
64 Console block storage device 

Rl Bootstrap Device's Bus Address 
11/730 and <31:4> MBZ 
11/780 <3:0> TR number of adapter 
11/750 <31:24> MBZ 

<23:0> Address of the 1/0 page for the 
boot device's UNIBUS 

R2 Bootstrap Device Controller Information 
UNIBUS: <31:18> MBZ 

MAS SB US: 

CI: 

<17:0> 
<31:4> 
<3:0> 
<31:8> 
<7:0> 

R3 Boot Device Unit Number 

UNIBUS address of the device's CSR 
MBZ 
Adapter's controller/formatter number 
MBZ 
HSC port number 

R4 Logical Block Number of Boot Block (VAX-11/780 Only) 
RS Software Boot Control Flags 
NOTE: The hardware or the CONSOLE program sets up the next three 

registers after a system crash or power failure. The halt code contained 
in AP is used by VMS on halt/restart to determine whether the 
powerfail recovery logic is to bugcheck or recover. These registers are 
not used by VMB. 

RIO Halt PC 
Rll Halt PSL 
AP Halt code 
NOTE: The memory ROM program returns information about a block of good 

memory in SP. 
SP <base-address + "X200> of 64Kb of good memory 
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Table 24-7: Bootstrap Control Flags to VMB (Contents of RS) 

Bit Position 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

<31:28> 

Symbolic Name 

RPB$V_CONV 

RPB$V _DEBUG 

RPB$V _INIBPT 

RPB$V _BBLOCK 

RPB$V_DIAG 

RPB$V _BOOBPT 

RPB$V _HEADER 

RPB$V _NOTEST 

RPB$V _SOLICT 

RPB$V_HALT 

RPB$V _NOPFND 

RPB$V_MPM 

RPB$V _ USEMPM 

RPB$V _MEMTEST 

RPB$V _FINDMEM 

RPB$V _ TOPSYS 

Meaning 

Conversational boot. At various points in the system 
boot procedure, the bootstrap code solicits parameters 
and other input from the console terminal. 

Debug. If this flag is set, VMS maps the code for the 
XDELTA debugger into the system page tables of the run­
ning system. 

Initial breakpoint. If RPB$V _DEBUG is set, VMS exe­
cutes a BPT instruction in module INIT immediately 
after enabling mapping. 

Secondary boot from boot block. Secondary bootstrap is a 
single 512-byte block, whose LBN is specified in R4. 

Diagnostic boot. Secondary bootstrap is image called 
[ SYSMAINT]DIAGBOOT.EXE. 

Bootstrap breakpoint. Stops the primary and secondary 
bootstraps with breakpoint instructions before testing 
memory. 

Image header. Takes the transfer address of the secondary 
bootstrap image from that file's image header. If 
RPB$V _HEADER is not set, transfers control to the first 
byte of the secondary boot file. 

Memory test inhibit. Sets a bit in the PFN bitmap for 
each page of memory present. Does not test the memory. 

File name. VMB prompts for the name of a secondary 
bootstrap file. 

Halt before transfer. Executes a HALT instruction before 
transferring control to the secondary bootstrap. 

No PFN deletion (not currently used). Intended to tell 
VMB not to reada file from the boot device that identifies 
bad or reserved memory pages, so that VMB does not 
mark these pages as valid in the PFN bitmap. 

Specifies that multiport memory is to be used for the 
total executive memory requirement; no local memory 
is to be used. This bit applies to the VAX-11/782 only. If 
the bit RPB$V _DIAG is set, the diagnostic supervisor 
enters AUTOTEST mode. 

Specifies that multiport memory can be used in addition 
to local memory (as though both were one single pool of 
pages). 

Specifies that a more extensive algorithm is to be used 
when testing main memory for hardware uncorrectable 
(RDS) errors. 

Requests use of MA780 memory if MS780 memory is 
insufficient for bootstrap. This flag is used when per­
forming software installations on a V AX-11/782. 

Specifies the top-level directory number for system disks 
with multiple systems. 
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Table 24-8: Contents of the Restart Parameter Block q-
.§ 

Mnemonic Item Size in Bytes Loaded by Special Uses 
~ 

RPB$1-BASE Physical Base Address of 64K Block 4 VMB Used to Locate RPB 0 
~ 

(Contents= Address) ('<:> 

~ 
RPB$L_RESTART Physical Address of RESTART Routine 4 INIT Used to Locate i::::: ,., 

RESTART Routine ('<:> 
C<l 

RPB$1-CHKSUM Checksum of First 31 Longwords of RESTART Routine 4 INIT Consistency Check 
on RPB and 
RESTART Routine 

RPB$1-RSTSTFLG Restart in Progress Flag 4 Set by Hardware Prevent Nested Restarts 
Cleared by INIT 
Cleared by 

RESTART 
RPB$1-HALTPC PC at HALT/Restart 4 VMB 
RPB$1-HALTPSL PSL at HALT/Restart 4 VMB 
RPB$1-HALTCODE Code Describing Reason for Restart 4 VMB 
RPB$1-B00TRx Saved Bootstrap Parameters (RO through RS) 24 VMB 
RPB$1-IOVEC Address of $QIO Vector in Bootstrap Driver 4 VMB,INIT Used by BUGCHECK to 

dump physical memory 

RPB$1-IOVECSZ Size (in bytes) of Bootstrap $QIO Routine 4 VMB 
RPB$L_FILLBN Logical Block Number of Secondary Bootstrap File 4 VMB 
RPB$1-FILSIZ Size (in blocks) of Secondary Bootstrap File 4 VMB 
RPB$Q_PFNMAP Descriptor of PFN Bitmap 8 VMB 

Size (in bytes) of PFN Bitmap 4 VMB 
Physical Address of Start of PFN Bitmap 4 VMB 

RPB$1-PFNCNT Count of Physical Pages 4 VMB 
RPB$1-SVASPT System Virtual Address of System Page Table 4 INIT Used by RESTART 
RPB$1-CSRPHY Physical Address of UBA Device CSR 4 VMB 
RPB$1-CSRVIR Virtual Address of UBA Device CSR 4 INILOA 



Table 24-8: Contents of the Restart Parameter Block (continued) 

Mnemonic Item . Size iri Bytes Loaded by Special Use$ 

RPB$1-ADPPHY Physical Address of Adapter Configuration Register 4 VMB 
RPB$1-ADPVIR Virtual Address of Adapter Configuration Register 4 INILOA 

Descriptor of Bootstrap Device 4 VMB 
RPB$W_UNIT Unit Number 2 VMB 
RPB$B_DEVTYP Device Type Code 1 VMB 
RPB$B_SLAVE Slave Unit Number VMB 
RPB$T_FILE Secondary Bootstrap File Name !Counted ASCII String) 40 VMB 
RPB$B_CONFREG Byte Array of Adapter Types 16 VMB 
PB$B_HDRPGCNT Count of Header Pages in Secondary Bootstrap Image 1 VMB 
RPB$B_BOOTNDT Nexus Device Type of Boot Adapter 

Spare Ito Preserve ~atural Alignment) 2 
RPB$1-ISP Powerfail Interrupt Stack Pointer 4 Power Fail Restored by 

Routine RESTART Routine 
RPB$L_PCBB Saved Process Control Block Base Register 4 Power Fail Restored by 

Routine RESTART Routine 

RPB$1-SBR Saved System Base Register 4 INIT, Power Restored by l\J 
Fail Routine RESTART Routine .i::... 

i\J 
RPB$L_SCBB Saved System Control Block Base Register 4 INIT, Power Restored by 

Fail Routine RESTART Routine '"tl 
RPB$L_SISR Saved Software Interrupt Summary Register 4 Power Fail Restored by 

,:::i 
~:f 

Routine RESTART Routine !:) 

RPB$1-SLR Saved System Length Register 4 INIT, Power Restored by ~ 
Fail Routine RESTART Routine t:x:i 

0 
RPB$L__MEMDSC Longword Array of Memory Descriptors 64 VMB Used by BUGCHECK to 0 ...... 

dump physical memory ti) ...... 
RPB$L_BUGCHK Address of bugcheck loop for VAX-11/782 

·'"i 
4 VMB .§ 

attached processor 
4' RPB$B_WAIT Bugcheck loop code for VAX-11/782 4 VMB,MP.EXE Before MP.EXE is run, 0 

CJ1 attached processor contains a jump to self ~ 
VJ !:) 

\0 s 
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3. If the bootstrap breakpoint flag (RPB$V _BOOBPT, RS<S>) is set, VMB 
executes a BPT instruction, which transfers control to XDELTA, linked 
as a part of the VMB image. This breakpoint is useful in localizing hard­
ware problems that are preventing a system from being started. 

4. The input parameters to VMB are loaded into the restart parameter block 
(see Table 24-8). 

S. A bitmap is set up to describe all physical memory that is to be used as 
main memory. This map includes a bit that is set for every physical 
memory page in the system that is free from errors. The routine that tests 
for memory errors is CPU specific. 

If the processor is the primary processor of a VAX-11/782, the flag 
RPB$V _MPM is used to indicate that only multiport memory should be 
used as main memory; local memory is to be ignored. If this flag is clear, 
multiport memory is ignored, and only local memory is used as main 
memory. 

6. If the processor is a VAX-11/780, VMB looks for a CI780 port. If one is 
found, the CI microcode is located (file CI780.BIN on the console floppy) 
and loaded into memory and the flag VMB$V _LOAD_SCS in 
VMB_FLAGS is set, to indicate to SYSBOOT that the loadable SCS code 
is to be loaded. 

7. The bus adapter for the bootstrap device is initialized (in a CPU-specific 
fashion). The bootstrap driver is initialized, if needed. 

8. The secondary bootstrap image is identified (by flags and values in RS 
and, optionally, information solicited from the console terminal). The 
order of precedence in choosing a secondary bootstrap image is the fol­
lowing: 

a. If the RS flag called RPB$V _BBLOCK is set, a boot block program is 
read from the system disk. R4 contains the logical number of the disk 
block that contains the secondary bootstrap image. (This function is 
used only on the VAX-11/780 processor.) 

b. If the RS flag called RPB$V _SOLICT is set, the name of the secondary 
bootstrap image is explicitly requested from the console terminal. 

c. If the RS flag called RPB$V _DIAG is set, the diagnostic supervisor is 
loaded. This option causes a file called DIAGBOOT.EXE to be used as 
the secondary bootstrap image. 

d. The absence of any of the three options (a, b, or c) causes 
SYSBOOT.EXE to be used as the secondary bootstrap program. Before 
SYSBOOT.EXE can be located, the value in RS at PRB$V _ TOPSYS 
must be evaluated to determine which of the 16 systems on a multi­
ple-system disk is being bootstrapped. By default, the high four bits of 
RS are zero, and so, [SYSO.SYSEXE] is searched for SYSBOOT. For 
backward compatibility, if SYSBOOT is not found in [SYSO.SYSEXE], 
VMB looks in [SYSEXE]. 
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9. If the system is not being booted with XDELTA, XDELTA is disabled. 
10. The image is read into memory (see Figure 24-2) and control is passed to 

it at its transfer address. This address is normally the first byte in the 
image. However, setting the flag RPB$V _HEADER in RS directs VMB to 
use the transfer address stored in the image header of the secondary boot­
strap program, provided that the secondary bootstrap image was pro­
duced by the VAX-11 Linker. 

Bootstrap Driver and 1/0 Subroutines 

VMB contains a skeleton Queue 1/0 Request routine and device driver to 
perform its 1/0. This driver and routine are loaded into nonpaged pool by 
INIT for possible later use by the bugcheck code (see Chapter 8). 

The VMB image actually contains simple drivers for all possible system 
devices. Once it has determined the name of the bootstrap device (from regis­
ter contents), VMB moves the driver code for the selected device so that it is 
adjacent to the $QIO routine, thus allowing the entire bootstrap 1/0 system 
to be moved with a single MOVC3 instruction. The location and the size of 
the $QIO routine plus the selected driver are loaded into the restart parame­
ter block for later use by SYSBOOT and INIT. 

This simple operation by VMB prevents nonpaged pool from being loaded 
with a set of bootstrap device drivers that are never used. That is, the only 
bootstrap driver that is preserved for the life of a VMS system is the bootstrap 
device driver for the system device, which is selected through input to VMB. 
All other bootstrap drivers are linked into the VMB image but disappear along 
with the rest of VMB when the VMS operating system is finally initialized. 

File Operations 

One of the problems that must be solved in any bootstrap operation involves 
location of files before the file system itself is in full operation. In a VMS 
system, the problem is faced with every file operation that must be per­
formed before the system disk ACP (ancillary control process) is created. 

The VMS operating system solves this problem by including two special 
object modules (FILEREAD and FILERWIO) in the executive image. The 
modules consist of a series of subroutines that can perform some primitive 
file operations on a Files-11 volume. The volumes can be either Structure 
Level 1 or 2. One of these modules (FILEREAD) is also linked into both the 
VMB and SYSBOOT images. 

24.3 SECONDARY BOOTSTRAP PROGRAM (SYSBOOT) 
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The secondary bootstrap program, SYSBOOT, executes when VMB is directed 
to load a VMS system. Most of the operations that are performed by 
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code that executes before the VMS operating system exists are performed by 
SYSBOOT. VMB has already tested main memory, read SYSBOOT into mem­
ory, and transferred control to it. SYSBOOT performs three major functions. 

• The system is configured, which means that a set of adjustable SYSBOOT 
parameters (either the ones from the last system, which are contained in 
SYS.EXE, or a set of parameter explicitly selected through a conversational 
bootstrap) is loaded. Other system parameters whose values depend on the 
values of the adjustable parameters are calculated. 

• A portion of system configuration that deserves separate mention involves 
the mapping of system virtual address space. The sizes of many of the 
pieces of system address space depend on the values of one or more 
SYSBOOT parameters. The calculations that SYSBOOT performs and the 
results of these calculations are detailed in Chapter 26. 

In addition to sizing the pieces of system space, SYSBOOT also sets up 
the system page table to map many of the pieces of the nonpaged and paged 
executive. In a related step, SYSBOOT prepares a PO page table that allows 
memory management to be turned on. (This last step is described in Chap­
ter 25.) 

• The last major step that SYSBOOT performs is to read the various portions 
of the executive image (SYS.EXE) into the (physical) pages set aside when 
the system page table was set up. Other files (see Table 24-5) are also lo­
cated and read into space allocated in nonpaged pool; their locations in 
pool are passed on to INIT in a bootstrap parameter block, defined by mod­
ule BOOPARAM (see Table 24-9). 

There is little CPU-dependent code in SYSBOOT. Most of the CPU depend­
encies have already been taken care of by VMB. However, SYSBOOT does 
load the CPU-dependent code used during normal VMS system execution. 

Detailed Operation of SYSBOOT 

SYSBOOT begins operation with the physical memory layout pictured in 
Figure 24-2. Rll points to the beginning of the restart parameter block. The 
following steps describe the operation of SYSBOOT 

1. SYSBOOT rewrites the system control block built by VMB with all vec­
tors containing the address of a service routine in SYSBOOT. The vectors 
for TBIT and BPT are redirected to exception service routines in 
XDELTA, linked as a part of the SYSBOOT image. The machine check 
vector is modified to point to a customized exception service routine. 

2. If the bootstrap breakpoint flag (RPB$V _BOOBPT, R5<5>) is set, 
SYSBOOT executes a BPT instruction, which transfers control to 
XDELTA, linked as a part of the SYSBOOT image. 

Note that the same flag controls breakpoint execution in both VMB 
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Table 24-9: Information passed from SYSBOOT to INIT 

Global 
Location Size Description 

BOO$GLDSKDRV Longword Address of bootstrap device driver 
in nonpaged pool 

B00$GLSYSLOA Longword Address of CPU-dependent image in 
nonpaged pool 

BOO$GL TRMDRV Longword Address of TTDRIVER.EXE in 
nonpaged pool 

BOO$GQ_INILOA Quadword Pool descriptor for loadable 
initialization code 

BOO$GLNPAGEDYN Longword Size of nonpaged pool remaining 
(in bytes) 

BOO$GLSPLITADR Longword Address of bottom of IRP lookaside 
list 

BOO$GLLRPSIZE Longword Size of large request packets (in 
bytes) 

BOO$GLLRPMIN Longword Minimum size of request that can 
be allocated an LRP 

BOO$GLLRPSPLIT Longword Base address of LRP lookaside list 

BOO$GL SRPSPLIT Longword Base address of SRP lookaside list 

BOO$GQ_FILCACHE Quadword Pool descriptor for FIL$0PENFILE 
cache 

BOO$GLBOOTCB Longword Address of boot control block in 
pool 

BOO$GT _ TOPSYS 10 Bytes Top-level system directory (ASCIC 
string) 

B00$GB_SYSTEMID 6 Bytes 48-bit SCS system ID of remote 
port 

B00$GLPRTDRV Longword Address of a port driver in pool 

BOO$GLUCODE Longword Address of port microcode in pool 

BOO$GL SCSLOA Longword Address of SCS loadable code in 
pool 

and SYSBOOT. This flag can be used in locating a hardware problem or 
other problem that is preventing system initialization. 

3. The version of VMB used to load SYSBOOT is checked. If an older ver­
sion of VMB was used, SYSBOOT performs operations not performed by 
VMB. This step allows backward compatibility for versions of VMB. The 
following items are checked: 

• Support for more than 8M bytes of memory 
• Bootstrap nexus device type 
• Contents of the SYSBOOT argument list 
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• Presence of the FIL$0PENFILE cache 
• Memory descriptors in the RPB. 

4. The PRLSID register is read to determine the CPU type. This type is 
stored for later use by code whose execution depends on the specific CPU 
type. This value, stored in global location EXE$GB_CPUTYPE, is used in 
several ways: 

• It will determine which pieces of CPU-dependent code within SYS­
BOOT execute. For example, there is a check whether the hardware 
ECO status is at the level required to support a VAX/VMS system. On 
a VAX-11/730 and VAX-11/750, the hardware ECO level and 
microcode revision level are the values that are checked. On a VAX-
11/780, this test requires communication with the console program to 
obtain the version numbers of the PCS, WCS, and FPLA. 

• The CPU type will determine the name of the separate image file (SYS­
LOA730.EXE, SYSLOA750.EXE, or SYSLOA780.EXE) that contains 
CPU-dependent routines. This image is opened (located) and read into 
nonpaged pool by SYSBOOT. 

• Those portions of CPU-specific code that are selected at execution 
time (with suitable test and branch instructions) will use the CPU 
type as the object of the tests. 

• The size of the system control block, a part of the overall sizing effort 
of system address space described in step 9 and Chapter 26, depends on 
the CPU type. 

The different strategies that are used to handle CPU dependencies are 
described in the next chapter. 

5. The executive image is opened and the portion containing system param­
eters is read into the SYSBOOT working table. Section 25.3 describes in 
more detail the movement of parameter information during the initiali­
zation sequence. The location of the executive image on the system disk 
(logical block number) is stored for later use. 

6. The file SYSDUMP.DMP is opened. If the dump file is not found, the 
page file (PAGEFILE.SYS) is opened; the first blocks of the page file will 
be used as the dump file when the system bugchecks. 

7. Several other files are opened and read into nonpaged pool; their loca­
tions in nonpaged pool are stored. These files include: 

• The· system disk driver 
• The terminal driver 
• The image containing CPU-dependent initialization code 
• The image containing the CPU-dependent modules 
• The image containing the SCS-dependent modules (if required) by 

module SCSLOA 
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The addresses of these files are passed to INIT so that they can be stored 
in appropriate places in system address space after memory management 
is turned on. 

8. At this point, SYSBOOT determines if the operator requested a conversa­
tional bootstrap by setting the RPB$V _CONV flag, RS<O>, as input to 
VMB. If so, SYSBOOT will prompt to allow interactive alteration of the 
parameter values. In any case, SYSBOOT enters the next phase with 
some set of adjustable parameters. 

9. The size of the process header and the sizes of pieces of system address 
space, including the system control block, are calculated. In particular, 
the size of the system page table is calculated. The details of these calcu­
lations are described in Chapter 26. Pages of physical memory are allo­
cated at the highest portion of physical memory for the system control 
block, the system page table, and the system header. The pages are filled 
with zeros and the SPTEs used to map the pages are filled in. 

10. The first page of the system control block, is loaded with the contents of 
module SCBVECTOR, which contains the entry points for the interrupt 
and exception service routines located in SYS.EXE. The second and third 
pages of the SCB, if present, are loaded with the address of ERL$UNEXP, 
an unexpected interrupt handler. 

11. The system header is configured. All entries in the system header whose 
contents depend on configuration parameters are filled in at this time. 
This step is analogous to the process header configuration that is per­
formed by code in SHELL as a part of process creation (see Chapter 20). 

12. Space for the interrupt stack is allocated and mapped. The SPTEs for the 
global page tables area filled in to indicate that they are demand zero 
pages. Physical memory is allocated for the initial sizes of the three 
lookaside lists, and the corresponding SPTEs are filled in. The size and 
address of each list is recorded. 

13. The top of nonpaged pool is preallocated for the FIL$0PENFILE cache 
and a number of other loadable routines. The piece of pool used for 
FIL$0PENFILE cache will be deallocated later in the bootstrap~eration. 
Allocating space here eliminates the problem of pool fragmentation 
when that piece is deallocated. 

14. Pieces of the executive that are never paged (see Table 26-3) are mapped 
into the highest portion of physical memory. These include device driv­
ers (for the null device and mailbox), the interrupt stack, the lookaside 
lists, and the boot driver. The physical pages to which the nonpaged por­
tions of the executive are mapped will not be accounted for in the PFN 
database because their state will never change. 

15. The pageable portions of SYS.EXE (the pageable executive routines) are 
also mapped to allow the executive to be read into memory. 

16. The executive image is read into memory. Because memory management 
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has not yet been enabled, th~ complications of scattered reads into mem­
ory are not applicable here. 

17. The contents of SYSBOOT's internal parameter table are copied to the 
portion of the memory image of the executive that contains all the ad· 
justable parameters. This step preserves the current parameter settings 
(because SYSBOOT is going away) until they can be written back to the 
disk image of the executive by SYSINIT (see Chapter 25). 

The contents of the bootstrap parameter table are saved in the boot· 
strap parameter block (see Table 24-9). 

18. SYSBOOT loads the base and length registers for the PO and system page 
tables so that INIT can tum memory management on. Enabling memory 
management is .described in more detail in Section 25.l.l.. .. . 

19. Finally, SYSBOOT transfers control to module INIT in the executive. 
This transfer must be done to a physical location because memory man­
agement has not been enabled yet. The file descriptors and other infor­
mation that SYSBOOT passes to INIT are stored in the bootstrap parame­
ter block (see Table 24-9). The state of physical memory is pictured in 
Figure 24-3. 
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25 Operating System 
Initialization 

Had I been present at the creation, I would have given some 
useful hints for the better ordering of the universe. 

-Alfonso the Wise 

The second major phase of system initialization is performed in two phases: 

• By code that is a part of the executive (module INIT) 
• By a special process (SYSINIT) that is created to complete those pieces of 

initialization that require process context in order to execute 

INIT turns on memory management and sets up those data structures whose 
size or contents depend on SYSBOOT parameters. SYSINIT opens system 
files, creates system processes, maps RMS and the message file, and creates 
the process that invokes the startup command file. 

25.1 INITIAL EXECUTION OF THE EXECUTIVE (INIT) 

25.1.1 

548 

The final instruction in SYSBOOT transfers control to (physical) address 
EXE$INIT, an address in module INIT. INIT turns on memory management, 
configures the 1/0 adapters, initializes several scheduling and memory man­
agement data structures, and finally releases the pages that it occupies so that 
code that executes only once during the life of the system does not consume 
system resources. 

Turning On Memory Management 

The first (and perhaps most important) step that INIT takes turns on memory 
management. Before SYSBOOT transfers control to INIT, it sets up the sys­
tem page table to map the executive and dynamic data structures. In addi­
tion, a PO page table is constructed so that the physical page containing 
EXE$INIT is mapped as a PO virtual page where the virtual page number is 
identical to the physical page number. EXE$INIT can then be referenced as a 
PO virtual address that is identically equal to the physical address of 
EXE$INIT. The reason that PO space is used for this double mapping is that 
the PO space address range from 0 to 40000000 is the same as the maximum 
physical address range permitted by the VAX architecture. That is, no matter 
how much physical memory is put on a VAX processor, there will always be 
a PO address range with identical addresses. 
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25.1.1.1 Double Mapping of INIT by SYSBOOT. This PO page table is constructed by 
loading the PO base and length registers with values that access a portion of 
the system page table (see Figure 25-1 ). If we assume that EXE$INIT is lo­
cated in PFN n, then POLR is loaded with n+2 and POBR is loaded with a 
system virtual address that is n longwords smaller than the system virtual 
address of the system page table entry that maps EXE$1NIT. 

The net result of all this mapping is that the physical page containing 
EXE$INIT can (and will) be accessed in three different ways (see Figure 25-2). 
These different mappings are listed here in order of mapping complication, 
and not in the order in which they are used. EXE$INIT can be accessed in the 
following ways: 

PR$_SBR contains 
physical address of 
thisSPTE. 
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EXE$1NIT Is contained 
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V; and in physical 
page P;. 
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Figure 25-1 
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PR$_POBR contains the virtual 
address of this longword. 

This longword becomes the PO 
PTE for the zeroth POVP. 

The relative sizes of P; and v1 deter­
mine whether the longword pointed 
to by POBR lies within the system 
page table. 

P;sV;=>within system page table 
Pi> V;=>outside the system page 
table 

Whether this longword lies within the 
system page table is of no concern 
to address translation. 

POPTE for PO virtual page that 
contains EXE$1NIT. 

( This Is the PJ'h PO ) 
page table entry. 

PR$_POLR Is loaded with Pi+ 2. 

There are P; + 1 longwords inclusive 
from the longword located by POBR 
to the SPTE that maps INIT. By put­
ting P;+2 into POLA, EXE$1NIT can 
exten(l into a second page. 
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• As a physical address 
• As a system virtual address (8001B06C in Version 3.0) that is mapped by 

the system page table 
• As a PO virtual address that is located by the subset of the system page 

table that is also used as a PO page table 

25.1.1.2 Instructions that Turn On Memory Management. When INIT begins execu­
tion, memory management is disabled. The PC contains the physical address 
of EXE$INIT. 

25.1.2 
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CD The first instruction executes in physical space: 

MOVL RPB$L_BOOTRS(R11),FP 

Its effect is not related to turning memory management on. 
@ The second instruction actually turns memory management on: 

MTPR #1, s' #PR$_MAPEN 

That is, all address references from that point on must be translated. 
Note that the instruction does not cause a transfer of control. The PC is 
simply incremented by three, the number of bytes in the instruction. 
However, the next PC reference will be translated because memory man­
agement has been enabled. 

Because of the mapping set up by SYSBOOT, the incremented (physi­
cal) PC (the address of the JMP instruction), when translated using the PO 
page table, yields the physical address of the JMP instruction. 

@ The third instruction is the only instruction that executes with a PO pro­
gram counter: 

JMP @#10$ 

This instruction immediately transfers control to a system virtual ad­
dress that was calculated when the executive was linked. When this sys­
tem virtual address is translated, it results in the physical address of the 
next instruction in the physical page containing EXE$INIT. 

The three instructions shown in Figure 25-2 execute in three different map­
ping contexts. The mapping that was set up by SYSBOOT results in a selec­
tion of successive instructions from the same physical page. 

Initialization of the Executive 

Once INIT has succeeded in turning on memory management, it is free to 
make references to system addresses. In particular, it is now possible to ini­
tialize dynamic data structures that have their listheads stored in static glo­
bal locations in system space. Some of these steps involve allocation from 
nonpaged dynamic memory. (The nonpaged pool space allocated by INIT and 
the SYSBOOT parameters that control the amount of allocated space are 
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listed in Table 25-1.) The detailed steps that INIT takes once memory man­
agement has been turned on are listed here. 

1. The address of the interrupt stack is moved to the stack pointer. 
2. If the SYSBOOT parameter SSINHIBIT is set, the CHMK and CHME 

vectors are redirected in order to enable system service filtering. System 
service filtering is described in the VAX/VMS System Services Reference 
Manual. 

3. The system control block base register is loaded with the physical ad­
dress of the SCB that contains the addresses of exception and interrupt 
service routines in the executive. This block was allocated and initialized 
by SYSBOOT. 

4. Executive debugger support is either initialized or eliminated, according 
to the setting of the debug flag (RPB$V _DEBUG, RS<l>) on input to 
VMB. 

a. If debug support is selected, the BPT and TBIT exception vectors are 
loaded with the addresses of exception service routines within 
XDELTA. 
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Table 25-1: Use of Nonpaged Pool by Module INIT 

Item 

Real-Time Bitmap 

Adapter Control Blocks 
for 1/0 Adapters 

PCB Vector and Sequence Vector 

Process Header Vectors 

Page File Control Block Vector 

Swapper Map 

Modified Page Writer Arrays 

Bootstrap 1/0 Routines (NH) 

CPU-Dependent Code (NH) 

Logical Name Blocks for 
SYS$DISK and SYS$SYSDEVICE 

Global Address of Pointer 

EXE$GLRTBITMAP 

IOC$GLADPLIST 

SCH$GLPCBVEC 
SCH$GL_SEQVEC( 1) 

PHV$GLPIXBAS 
PHV$GLREFCBAS 

MMG$GLPAGSWPVC 

SWP$GLMAP 

MPW$AL_PTE 
MPW$AW _PHVINDEX 

RPB$LIOVEC (4) 

EXE$ALLOAVEC (5) 

LOG$GLSLTFL (6) 

Factors That Affect Size 

RBM$K_LENGTH + 4*REALTIME_SPTS 
(only present when 
REAL TIME_SPTS nonzero) 

Number and Type of External Adapters 
(See Table 25-2) 

12 + (6*(MAXPROCESSCNT + 1)) 

12 + (4*(BALSETCNT + 11) 
(2) 

4*(SWPFILCT + PAGFILCT) + 16 

4*WSMAX + 4 + 12 
(3) 

12 + (6*MPW _ WRTCLUSTER) 

Size of Driver Itself 

Size of Image SYSLOAxxx.EXE 

constant (6) 
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Table 25-1: Use of Non paged Pool by Module INIT (continued) 

Item 

Terminal Driver and Its 
Associated Data Structures 

System Disk Driver and Its 
Associated Data Structures 

Lock ID Table 

Resource Hash Table 

Deadlock Detection 
Process Bitmap 

Global Address of Pointer 

TTY$GLDPT 

(7) 

LCK$GLIDTBL 

LCK$GLHASHTBL 

LCK$GLPRCMAP 

Factors That Affect Size 

Size of Image TTDRIVER.EXE 

Size of disk driver image 

12 + (4*LOCKIDTBL) 

12 + ( 4 * RESHASHTBL) 

13 + (MAXPROCESSCNT/8) 

(NH) These structures are allocated without a 12-byte header that contains a size and type field. The lack of a header is not 
a problem because these structures are never deallocated. However, an interesting side effect of this absence of a header 
is that SDA interprets data as structure size and incorrectly dumps the beginning of nonpaged pool. 

( 1) There is one extra slot in each array for system PCB. The system process has a process index of MAXPROCESSCNT. 
(2) There is one extra slot in each array for the system header. The system header has a balance slot index of BALSETCNT. 
(3) The extra longword contains a zero, an end of list indicator. 
(4) The bootstrap I/O routines are located through an offset in the restart parameter block. 
(5) Loadable routines are connected to the executive through arguments to JMP instructions in module SYSLOAVEC (see 

Figure 25-3). 
(6) The logical name blocks are constant because the sizes of both the logical name strings (SYS$DISK and SYS$SYSDEVICE) 

and the equivalence name strings ( __ DDcu:) are constant. The logical name blocks are linked into the system logical 
name table in the usual manner. 

(7) Device drivers and their associated data structures are linked into the I/O database in several ways. See the VAX/VMS 
Guide to Writing a Device Driver for details. 
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b. If debug support is not selected, the BPT instruction in INIT (at ad­
dress INI$BRK) is converted to a NOP. In addition, the pages contain­
ing XDELTA (see Chapter 26) are included in the list of pages that 
INIT will release to the free page list as part of its exit routine. 

5. The announcement message is printed on the console terminal. Note 
that this important milestone, while not very far into INIT, indicates 
that the executive has been read into memory and memory management 
turned on, both significant steps in initializing the executive. 

6. The virtual page number of the boundary between the paged and 
nonpaged executive is loaded into the paged code arrays. 

7. Nonpaged pool is initialized (see Chapter 3). 
8. If the initial breakpoint flag (RPB$V _INIBPT, R5<2>) was set on input 

to VMB, then INIT executes a JSB to INI$BRK. If debug support has been 
selected, the instruction at INI$BRK contains a a BPT instruction, which 
will dispatch to XDELTA. 

9. A tentative value for the maximum number of processes is established. 
10. The values for the high and low thresholds of the modified page list are 

set. 
11. If the system has more than 32M bytes of memory, PFN references in the 

nonpaged system image are modified to use longword context opcodes. 
12. If the SYSPAGING system parameter flag is set, indicating that the page­

able executive routines are going to page, then the SPTEs for these pages 
are set up to contain system section table indexes. In addition, the first 
section table entry in the system section table is initialized to point to 
the executive image SYS.EXE (Section 14.3.2 describes the system sec­
tion table). 

13. The fields in the restart parameter block used by the restart routine (see 
Section 27.2.2) are initialized. 

14. The physical pages represented by the PFN bitmap set up by VMB are 
placed on the free page list. (Note that the pages that contain the PFN 
bitmap must be virtually mapped before they can be accessed.) 

15. The system page table entries for paged dynamic memory are set up. If 
paged pool is going to page (the POOLPAGING system parameter flag is 
set), the SPTEs are set up to contain demand zero format PTEs. If pool 
paging is turned off, physical pages are allocated; their PFNs are loaded 
into the SPTEs; the protection codes (URKW) are loaded, and the valid 
bits are turned on. 

16. The lookaside list packets are formatted and linked together. (The 
lookaside lists are described in Chapter 3.) 

17. The minimum size of an IRP is calculated and loaded into 
IOC$GL_IRPMIN. 

18. Preparations are made to connect configuration-dependent code. IPL is 
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set to 31 in order to allocate pool. The FIL$0PENFILE cache pointers and 
the top-level system directory name string are set up for FILEREAD. 
These global parameters were initialized by SYSBOOT. 

19. Configuration-dependent routines are located in nonpaged pool and vec­
tors are connected to these routines. The routines are the following: 

• SYSLOAxxx, the CPU-dependent loadable image 
• SCSLOA, Systems Communication Services loadable image 
• INILOA, loadable initialization code 

lf the processor has a UDASO or CI780, SCSLOA is called to initialize 
SCS data structures. 

INIT calls INILOA to locate, map, and initialize the external I/O adapt­
ers on the system. Once INILOA has executed, the nonpaged pool that it 
occupies is deallocated. 

Adapter initialization is discussed further in the next section. 
20. If the SYSBOOT parameter REALTIME_SPTS is set to nonzero, that 

number of SPTEs is taken from the list of available SPTEs (see Chapter 
26) and described in a real-time bitmap control block, allocated from 
nonpaged pool. 

21. Lock manager data structures, including the lock ID table and the re­
source hash table, are initialized. If deadlock detection is enabled, a proc­
ess bitmap is set up; the map has one bit for each possible process. 

22. The PCB vector and sequence number vector (see Chapter 20) are allo­
cated from nonpaged pool and initialized. All sequence numbers are ini­
tialized to zero. All PCB vector slots are set up to point to the PCB of the 
null process. Note that one extra entry is allocated at the end of each 
array. The extra entry in the PCB vector points to the system PCB. The 
system PCB is defined in module PDAT, and its dynamic contents are 
loaded by INIT. The system PCB is necessary for the pager to access its 
process address space and perform 1/0. 

23. The scheduler is called to make computable the two processes that are 
assembled as a part of the executive image, the swapper and the null 
process. 

24. The process header vectors (see Chapter 14) are initialized for each bal­
ance slot. The reference count array is initialized to contain a negative 
one in each array element. The process index array is initialized to con­
tain zeros, indicating free balance slots. (The null process is the process 
with a process index of zero. Because the null process does not swap, it 
does not require a balance slot. An index of zero can thus be used for 
another purpose, namely to indicate free balance slots.) 

As Chapter 26 illustrates, the system header and system page table 
immediately follow the balance slot area in system address space. In fact, 
portions of the memory management subsystem treat the system header 
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as the occupant of an additional balance slot, one with a slot number 
equal to the SYSBOOT parameter BALSETCNT. The two process header 
vector arrays have one extra entry at the end to reflect this feature. 

25. The swapper map is allocated from nonpaged pool (see Chapters 14 and 
17). Its address is stored in global location SWP$GL_MAP and also in the 
swapper's PO base register. Pages that appear in the swapper map are 
accessible as PO virtual pages when the swapper is the current process. 

26. The modified page writer arrays (Chapters 14 and 15) are allocated from 
nonpaged pool. 

27. The page file control block vectors are initialized. Each vector contains a 
longword pointer to a data structure (called a page file block) for each 
page or swap file recognized by the system. 

28. A number of miscellaneous initialization operations are performed here. 
The maximum depth of the lock manager resource name tree is calcu­
lated. The size of the tree is associated with the size of the interrupt 
stack. Space is reserved in the system working set for the shell. The ad­
dress of the system header is moved into the appropriate cell in the sys­
tem PCB and the process index for the system process is determined. The 
map of the file SYS.EXE, contained in the boot control block, is placed in 
a window control block. 

29. The driver prolog tables (DPT) for the three devices (mailbox, null device, 
and console terminal) that are linked with SYS.EXE, and also the DPTs 
for the terminal driver and the system disk driver, are linked into the 
driver data base (located through listhead IOC$GL_DPTLIST). 

30. Logical name blocks for SYS$DISK and SYS$SYSDEVICE are allocated 
from nonpaged pool, even though all other logical name blocks for sys­
tem or group logical names are allocated from paged pool. Nonpaged pool 
is used because paged pool allocation is not possible above IPL 2. The two 
logical name blocks are linked into the system logical name table. 

31. The terminal driver (SYS$SYSTEM:TTDRIVER.EXE) is located in 
nonpaged pool. The entry points of the driver are loaded into the device 
data block (DDB) for the console terminal (OPAO). The data structures 
for additional terminals will be established as a result of the 
AUTOCONFIGURE ALL command that is passed to SYSGEN as part 
of the command file STARTUP.COM. 

32. The driver for the system device (and its port driver, if any) is located in 
nonpaged pool. Fields in its associated data structures (DDB, UCB, CRB, 
IDB, ADP) are loaded with information that depends on which specific 
unit and controller locate the system disk. All loaded drivers are then 
called at their controller and unit initialization points. 

33. Once the system device controller and unit designators are determined, 
the equivalence names for SYS$DISK and SYS$SYSDEVICE are stored in 
their respective logical name blocks. 
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34. A page of physical memory (the so-called black hole page or rabbit hole 
page) is reserved for mount verification, MASSBUS adapter power fail, 
and UNIBUS adapter powerfail on the VAX-11/780. The cell 
EXE$GL_BLACK_HOLE contains the PFN of the black hole page. When 
power failure occurs on a UNIBUS, all virtual pages mapped to UBA reg­
isters or UNIBUS 1/0 space (24 pages in all) are remapped to this·physical 
page. This remapping prevents drivers for UNIBUS devices from generat­
ing multiple machine checks while the power is off for the UBA. This 
same mechanism is used during MASSBUS Adapter powerfail. Powerfail 
operations are discussed in more detail in Chapter 27. Machine check 
operation is briefly discussed in Chapter 8. 

35. The maximum allowable working set is readjusted (if necessary) to re­
flect the amount of available physical memory. 

Specifically, the number of physical pages used by the executive (see 
Chapter 26) is subtracted from available physical memory. System usage 
includes not only nonpaged code and data but also the system working 
set, MPW _LOLIM pages on the modified page list, and FREELIM pages 
on the free page list (but not the pages used by INIT). The value of 
WSMAX is then minimized with this difference. 

36. Two flags used by the restart code (See Chapter 27) are cleared. 
37. Finally, INIT frees up the pages that it occupied and jumps to the sched­

uler. The protection fields for these system virtual pages are set to No 
Access in the system page table and the physical pages are placed on the 
free page list. INIT accomplishes these steps by copying a small routine 
into nonpaged pool and transferring control to that routine. The routine 
itself vanishes as a result of the first allocation from pool, because the use 
of this block of pool was not recorded anywhere. 

1/0 Adapter Initialization 

As shown in the description of INIT, the routine INILOA is used to deter­
mine the location of external adapters and initialize the adapters for later use 
by the SYSGEN configuration operations. (INILOA and the other routines 
called by INIT are found in source module INITADP, a logical extension of 
the code contained in module INIT.) Although some of the initialization that 
INILOA performs depends on the nature of the external 1/0 adapter, there are 
two general steps that are taken for each adapter, once it is located: 

• An adapter control block that identifies the adapter and contains informa­
tion about how the adapter's internal registers are mapped is allocated 
from nonpaged pool and loaded. 

• System virtual space is set up to map to the 1/0 space addresses for internal 
adapter registers and other 1/0 space assignments. 
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Table 25-2 lists the differences in ADP size and mapping requirements for 
each of the possible external adapters. 

INILOA also checks for the presence of UNIBUS memory. If UNIBUS 
memory is found, the UBA map registers are disabled. 

25.1.4 CPU-Dependent Routines 

There are two different types of CPU-dependent code that appear in the 
VAX/VMS operating system and two corresponding methods that the VMS 
operating system uses for incorporating the code. 

• When there are one or two instructions or data references that depend on 
the specific type of CPU that is being used, the system usually includes the 
code or data sequence for all CPUs in line and uses the contents of location 

Table 25-2: External Adapter Initialization 

Adapter Type 

Local Memory 

MA780 Shared Memory 
IVAX-11/780 only) 

UNIBUS Adapter 
IVAX-11/730) 
IVAX-11/750) 
IVAX-11/780) 

MASSBUS Adapter 
IVAX-11/750) 
IVAX-11/780) 

DR32 Interface 
IV AX-11/750) 
IVAX-11/780) 

CI Interface 

Unoccupied Nexus Slot 

Size of Adapter 
Control Block (bytes) 

None exists 

112 + 4*16 = 176 
(1) 

580 
580 
580 + 148 + 4*128 = 1240 
(2) 
28 

28 

28 

None Exists 

Number of System Virtual 
Pages Mapped for Adapter 

1 Page 

1 Page 

8 + 16 = 24 
(3) 

8 Pages 

4 Pages 

8 Pages 

1 Page to Allow Access 

(1) There are 112 bytes in the body of the ADP plus space for 16 longword vectors. 
(2) The VAX-11/730 ADP contains 580 bytes of data. UNIBUS vectors are contained in the 

second page of the system control block. 
The VAX-11/750 ADP contains 580 bytes of data. The UNIBUS vectors are contained in 

the second page of the system control block; the vectors for a second UNIBUS (if one exists) 
are contained in the third page of the system control block. 

The VAX-11/780 ADP contains 580 bytes of data, the interrupt service routine for the 
UBA, which is 148 bytes long jin Version 3.0), and 128 longword vectors, corresponding to 
UNIBUS vectors from 0 to 77 4 (octal). 

(3) Eight pages map the UBA internal registers such as mapping registers, datapath registers, and 
the like. There are 16 pages that map the UNIBUS 1/0 page to allow virtual access to device 
CSRs, data registers, and so on. 
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EXE$GB_CPUTYPE to determine which piece of the code or data to use. 
(This location was previously loaded by SYSBOOT from the contents of 
the PR$_SID register.) 

• In the case of CPU-dependent routines (such as the purge datapath routine, 
IOC$PURGDATAP) or CPU-dependent modules (such as the machine 
check handler), a vectored entry point technique is used. 

The vectored entry point method works in the following way. Each refer­
ence within the executive image to a CPU-dependent routine is dispatched to 
a JMP instruction in module SYSLOAVEC, which is linked with the execu­
tive image SYS.EXE. The CPU-dependent routines (one routine for each CPU) 
are linked together into a series of CPU-dependent images with names of the 
form SYSLOAxxx.EXE (currently SYSLOA730.EXE, SYSLOA750.EXE, or 
SYSLOA780.EXE). INIT uses the CPU type to load the correct CPU-depend­
ent image SYSLOAxxx.EXE into nonpaged pool as a part of system initializa­
tion. 

Another vector module called LOAVEC (actually the same module as 
SYSLOAVEC with a different setting of a conditional assembly flag), linked 
into each CPU-dependent image SYSLOAxxx.EXE, contains an offset into the 
loadable image for each of the CPU-dependent subroutines. INIT uses the 
information in this table to adjust the arguments of the JMP instructions (in 
module SYSLOAVEC) so that they point to the correct routines in the copy of 
SYSLOAxxx.EXE in nonpaged pool. The initial destination of all the JMP 
instructions is EXE$LOAD_ERROR, a global address of a HALT instruction 
within module SYSLOAVEC in SYS.EXE. If any of these CPU-dependent rou­
tines is referenced before INIT has completed its initialization, the system 
will halt. 

The cost of separating out CPU-dependent routines from the system image, 
one extra level of indirection, is far outweighed by the benefits, which in­
clude fewer execution time decisions and no need for separate executive im­
ages for each CPU. The linkage that is established by INIT for CPU-depend­
ent routines is illustrated in Figure 25-3. 

25.2 INITIALIZATION IN PROCESS CONTEXT 

Further steps in system initialization must be performed by a process. Sys­
tem services can only be called while executing in process context because 
the quota and privilege checks are made against process data structures. A 
command language interpreter can easily be mapped into Pl space, a per­
process portion of virtual address space that is only available when executing 
in process context. The process phase of system initialization is divided into 
two parts, that performed by a special process called SYSINIT and the steps 
performed by the command file STARTUP.COM. 
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halt. 
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tions of the JMP instructions 
after it loads 
SYSLOAxxx.EXE. 

Figure 25-3 
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ment (offset) to the routine in 
question. 



25.2.1 

25.2 Initialization in Process Context 

SYSINIT Process 

When the scheduler executes, it selects the highest priority computable proc­
ess for execution. Because there are only two processes in existence at this 
time, the swapper process is always selected (because it has an external prior­
ity of 16 and the null process has an external priority of O). The swapper 
immediately creates another process, called SYSINIT, that performs those 
aspects of system initialization that require process context. The swapper 
initializes the paged pool listhead, which must be done from process context 
in order to handle page faults. The swapper then initializes the group and 
system logical name hash tables, which are allocated from paged pool. 

In one sense, SYSINIT is an extension of the swapper process. However, 
the initialization code is isolated to prevent encumbering the swapper with 
code that only executes once during the life of a system. (This isolation is one 
of several techniques used during system initialization and process creation 
to cause seldom-used code to disappear after it is used. A list of such tech­
niques appears in Chapter 31.) 

The major functions that SYSINIT performs can be grouped into the fol­
lowing three categories: 

• The swap file and page file are opened and their locations on disk stored in 
respective data structures. 

• RMS.EXE and the system message file are mapped as system sections. 
• The STARTUP process is created. 

25.2.1.1 Pool Usage by SYSINIT. SYSINIT, like INIT, consumes large amounts of 
nonpaged pool and some paged pool. However, the sizes of various blocks are 
not directly related to SYSBOOT parameters. In addition, with one exception, 
all blocks allocated directly or indirectly by SYSINIT include a 12-byte 
header that contains a size field and unique identifier for each structure. 
Structures that are allocated from nonpaged pool as a result of the execution 
of SYSINIT include the following: 

• Software PCBs and JIBs for system processes 
• File control blocks and window control blocks for all opened files 
• A volume control block for the system disk 

25.2.1.2 Detailed Operation of SYSINIT. The detailed steps that SYSINIT takes are 
listed here. 

l. System logical names are created for SYS$SYSTEM, SYS$SHARE, and 
SYS$MESSAGE. The creation of these names cannot be delayed until the 
creation of the STARTUP process because these names are needed as a 
part of the creation of that process. 

The name of the image that is passed to the STARTUP process is 
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SYS$SYSTEM:LOGINOUT. The LOGINOUT image performs a merged 
image activation (see Chapter 21) to map the DCL command language 
interpreter into Pl space. The image activator uses logical name SYS­
$SHARE to locate the shareable image DCLTABLES.EXE that contains 
the command database for the DCL command language interpreter. The 
logical name SYS$MESSAGE is required for RMS to open the system 
message file. 

2. The system time is calculated and stored. 
If the SETTIME flag was passed to SYSBOOT, or if the contents of the 

time of day register (TOOR) indicate that it contains a meaningless num­
ber (see Chapter 11), a new system time value must be determined. The 
value of the SYSBOOT parameter TIMEPROMPTWAIT determines the 
algorithm SYSINIT will use to find the new system time. If the value of 
TIMEPROMPTWAIT is 0, the system is booted with the last time value 
that was recorded in the system image (no operator is present). 

If the value of TIMEPROMPTWAIT is greater than 0, SYSINIT 
prompts the operator for a new system time value. Then if 
TIMEPROMPTWAIT seconds pass and no response is given, SYSINIT 
assumes that no operator is present and boots the system using the last 
time value recorded in the system image. 

If the value of TIMEPROMPTWAIT is less than 0, SYSINIT will 
prompt the operator for a time value and will wait indefinitely, until the 
operator responds. 

In any case, the Set Time system service is called to calculate a new 
system time. In addition, that service copies the current parameter set­
tings from their locations in memory to the disk image of the executive 
(SYS.EXE). 

3. If the SYSBOOT parameter UAFALTERNATE is set, the logical name 
SYSUAF then translates to the equivalence name SYS$SYSTEM: 
SYSUAFALT.DAT. This feature allows an alternate authorization file to 
be used. If the alternate authorization file docs not exist, all users are 
denied access to the system. 

4. The following files are opened by the file I/O routines located in the 
executive: 

SYS$SYSTEM:PAGEFILE.SYS 
SYS$SYSTEM:SWAPFILE.SYS 
SYS$SYSTEM:RMS.EXE 

If the first part of the page file is being used as the dump file, SYSBOOT 
has already opened PAGEFILE.SYS; it does not need to be opened here. 

5. The page file is initialized. This requires that the information obtained in 
SYSBOOT or in the previous step be loaded into a window control block 
that describes the page file. The address of that WCB is stored in the page 
file control block (see Figure 14·22) for the initial page file. 
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In addition, a bitmap that describes the availability of each block in the 
page file is allocated from nonpaged pool and initialized to all ones to 
indicate that all blocks are available. If the page file contains a valid 
dump, and the SYSBOOT paramter SAVEDUMP is set to 1, the blocks in 
the page file containing the dump are marked unavailable. When the 
dump is successfully copied to another file using the SDA command 
COPY, the blocks are marked available. If page file contains a valid 
dump, the second and third blocks of the dump file (error log buffers) are 
preserved before the page file is initialized. 

6. If pre~ent, the swap file is initialized. As was done for the page file, 
a window control block is allocated from nonpaged pool. Its address 
is stored in the swap file table entry (see Chapter 14) for the first swap 
file. 

The swap file is divided into swap spaces, each space is a multiple of 
the SYSBOOT parameter MPW _ WRTCLUSTER. The swap spaces are 
dynamically assigned. The number of spaces in the file (minimized with 
128, the maximum number of spaces in a single swap file) is recorded in 
the SFTE. In addition, the maximum number of processes that the sys­
tem can support (stored in global location SCH$GW _PROCLIM) is taken 
as the minimum of swap file space count and the initial 
MAXPROCESSCNT SYSBOOT parameter. (The contents of 
SCH$GW _PROCLIM can be increased later by installing additional 
swap files.) 

7. RMS is set up as a pageable system section. The section table entries that 
describe this section are initialized, starting with the second section 
table entry in the system header. (The first system section table entry, 
the one that describes the executive image itself, was set up by INIT.) 

8. The second and third blocks of the dump file contain the contents of the 
error log buffers if the system just crashed. T.hese buffers were written to 
the dump file by the bugcheck code (see Chapter 8) so their contents 
would not be lost. If the system is rebooting after a crash, SYSINIT copies 
the second and third blocks of the dump file back to the error log buffers 
so their contents will eventually be written to SYS$ERRORLOG: 
ERRLOG.SYS. 

The bugcheck routine included the error log entry that describes the 
reason for the crash in the first block of the dump file as part of the dump 
file header block to avoid the loss of this data in the event that the two 
error log buffers were full at the time of the crash. If this was the case 
when the system crashed, SYSINIT will be unable to copy this error log 
entry to one of the error log buffers. In that case, the error log entry that 
actually describes the crash will never appear in an error log report. How­
ever, in all cases including this rare occurrence of two full error log buff­
ers, the reason for the system crash is contained in the dump file. 
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9. A cold start is logged in the error log. 
10. The system disk is mounted. A direct result of this step is the creation of 

the disk ACP for the system disk. 
From this point on, the ACP is available for file operations. The primi­

tive ACP routines that are a part of SYS.EXE are no longer required and 
will disappear in time due to system working set replacement. The 
FIL$0PENFILE cache can now be deallocated from nonpaged pool. 

11. The logical name SYS$TOPSYS is created. 
12. The system message file (SYS$MESSAGE:SYSMSG.EXE) is opened and 

mapped. The section table entries that describe the messages section are 
initialized following the section table entries for RMS in the system 
header. 

13. Finally, a process called STARTUP is created. The important point about 
this process is that it executes the image LOGINOUT, which maps a 
command language interpreter (see Chapter 23). 

The STARTUP Process 

The STARTUP process created by SYSINIT completes system initialization. 
This process is the first process in the system that includes a command lan­
guage interpreter. The inclusion of DCL allows the operation of this process 
to be directed by a DCL command procedure. 

25.2.2.1 STARTUP.COM. The steps performed by commands in this file can be di­
vided into six major groups: 
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1. Several system logical names are created. These include: 

• VMS-specific names 

SYS$SYSROOT 
SYS$SYSDISK 
SYS$LIBRARY 
SYS$HELP 

• Other VMS-specific names that are reassigned to use SYS$SYSROOT in 
their equivalence names 

SYS$SYSTEM 
SYS$MESSAGE 
SYS$SHARE 

• Logical names for system management, installation, and testing 
• Logical names used by the symbolic debugger 
• Names required by language run-time systems for VAX-11 COBOL-74 

and VAX-11 PASCAL 
• Logical names required by compatibility mode utilities 



25.3 The System Generation Utility {SYSGEN) 

2. Three detached system processes are started. 

Error Log Format {ERRFMT) 
The Job Controller { JOB_CONTROL) 
The Operator Communication Process {OPCOM) 

3. The Install Utility is invoked to make privileged and shareable images 
known to the system. 

4. The System Generation Utility (SYSGEN) is invoked to automatically 
configure external I/O devices. If a user-written driver must be loaded be­
fore normal VMS drivers, the driver should be written so that the SYSGEN 
command AUTOCONFIGURE will load and connect the driver (see the 
VAX/VMS Guide to Writing a Device Driver). Note that users must not 
modify the STARTUP.COM file, because doing so may. cause 
SYS$UPDATE:VMSINSTAL.COM to produce inconsistent results. 

5. The RMS Share Utility executes and allocates a block of paged pool (with a 
default of 20 pages) to contain the data structures for shared files. 

6. If a secondary swap file is to be used, it is installed. 
7. Finally, a site-specific command file called SYS$MANAGER: 

SYSTARTUP.COM is invoked. 

25.2.2.2 Site-Specific STARTUP Command File. The site-specific com.mand file, 
SYS$MANAGER:SYSTARTUP.COM, that is distributed with the VMS oper­
ating system is empty. This file can be used to do the following: 

• Start batch and print queues 
• Set terminal speeds and other device characteristics 
• Create site-specific system logical names 
• Install more privileged and shareable images 
• Load user-written device drivers 
• Mount volumes other than the system disk 
• Load the console block storage driver (if desired) with a CONNECT 

CONSOLE command to SYSGEN and mount the console medium 
• Issue the DCL command START/CPU to initialize the attached processor 

on a VAX-11/782. 
• Start DECnet (if present on the system) 
• Run SDA to preserve the previous dump file in case the system crashed 
• Produce an error log report 
• Announce system availability 

25.3 THE SYSTEM GENERATION UTILITY (SYSGEN) 

· The System Generation Utility fits into the initialization sequence in two 
unrelated ways: 

• It is invoked directly by S.TARTUP.COM to autoconfigure the external I/O 
devices. 

565 



Operating System Initialization 

25.3.1 

25.3.2 

566 

• It interacts indirectly with system initialization by producing parameter 
files that may be used by SYSBOOT for future bootstrap. operations. 

The role of SYSGEN. in autoconfiguring the 1/0 system is described in the 
VAX/VMS Guide to Writing a Device Driver. This section briefly compares 
and contrasts the operations that SYSBOOT and SYSGEN perform on param­
eter files. Table 25-3 summarizes this comparison. 

Contents of Parameter Block 

A common module called PARAMETER is linked into both the SYSBOOT 
and SYSGEN images. This module contains information about each adjusta­
ble parameter (see Table 25-4). This data never changes. In addition, each 
parameter occupies a cell in a table of working values. This table is manipu­
lated with the following SYSBOOT and SYSGEN commands: 

• Displayed by SHOW parameter-name commands 
• Altered by SET parameter-name value commands 
• Overwritten by a USE command 

There is also a copy of the working table linked into the executive image, 
SYS.EXE. (This table is produced from the same source module as 
PARAMETER with a different setting of a conditional assembly parameter. 
The resultant module is called SYSPARAM.) 

Use of Parameter Files by SYSBOOT 

Figure 25-4 shows the flow of parameter value data during a bootstrap opera­
tion. The numbers in the figure describe the significant steps in setting val­
ues or moving data. 

CD The first step that SYSBOOT performs is to locate the executive image 
and read the parameter settings from the executive image into its work­
ing table. In the language of SYSBOOT and SYSGEN commands, this step 
is an implied command: 

USE CURRENT 

This operation causes the system to be initialized with the paraineter 
settings used during the previous configuration of the system (due to 
step 5). 

@ If a conversational bootstrap was selected (R5<0> was set as input to 
VMB), then SYSBOOT will prompt for commands to alter current param­
eter settings. A USE command to SYSBOOT's prompt results in the 
working table being overivritten with an entire set of parameter values. 
There are three possible sources of these values. 



25.3 The System Generation Utility (SYSGEN) 

Table 25-3: Comparison of SYSBOOT and SYSGEN 

SYSBOOT 

SYSBOOT configures the system using 
parameters from the executive image or 
from a parameter file. 

Purpose 

SYS GEN 

SYSGEN has four unrelated purposes: 
• It creates parameter files for use 

in future bootstrap operations. 

• It modifies dynamic parameters in 
the running system with the WRITE 
ACTIVE command. 

• It loads device drivers and their 
associated data structures. 

• It creates and installs additional 
page and swap files. 

Use in System Initialization 

SYSBOOT is the secondary bootstrap The only place that SYSGEN occupies in 
program that executes after VMB but the initialization sequence is related 
before control is passed to the to its driver function. It is invoked 
executive. to autoconfigure all 1/0 devices. 

Environment 

SYSBOOT runs in a stand-alone environment 
with no file system, memory management, 
process context, or any other 

SYSGEN executes in the normal 
environment of a utility program. The 
driver and swap/page functions require 

environment provided by VMS. 

USE 
USE file-spec 
USE CURRENT 
USE DEFAULT 
No Equivalent Command 

SET 
SHOW 
CONTINUE (EXIT) 
No Equivalent Command 

No Equivalent Commands 

No Equivalent Commands 

Implied 
USE CURRENT 

privilege (CMKRNL). A WRITE ACTIVE 
command also requires CMKRNL privilege. 
The parameter file operations are 
protected through the file system. 

Valid Commands 

USE 
USE file-spec 
USE CURRENT 
USE DEFAULT 
USE ACTIVE 

SET 
SHOW 
EXIT (CONTINUE) 
WRITE 
Commands Associated with Device Drivers 
Commands Associated with Additional Page 
and Swap Files 

Initial Conditions 

Implied 
USE ACTIVE 
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Table 25-4: Information Stored for Each Adjustable Parameter by SYSBOOT and 
SYSGEN 

(This structure is defined in both SYSBOOT and SYSGEN by invoking the $PRMDEF 
macro.) 

Item 

Address of Parameter (in SYS.EXE) 

Default Value of Parameter 

Minimum Value That Parameter Can Assume 

Maximum Value That Parameter Can Assume 

Parameter Flags 
DYNAMIC Parameter SHOW /DYN 
STATIC Parameter 
SYSGEN Parameter 
ACP Parameter 
JBC Parameter 
RMS Parameter 
SCS Parameter 
SYS Parameter 
TTY Parameter 
SPECIAL Parameter 
DISPLAY Parameter 
CONTROL Parameter . 
MAJOR Parameter 
PQL Parameter 
NEG Parameter 

Size of This Parameter 

SHOW /GEN 
SHOW /ACP 
SHOW /JOB 
SHOW /RMS 
SHOW /SCS 
SHOW /SYS 
SHOW /TTY 
SHOW /SPECIAL 

SHOW /MAJOR 
SHOW /PQL 

Bit Position if Parameter Is Flag 

Name String for Parameter 

Name String for Units 

Working Value of Parameter 

Size of Item 

Longword 

Longword 

Longword 

Longword 

Word 

Byte 
Byte 

16 Bytes 

12 Bytes 

Longword 

NOTE. The working value of each parameter is found not only in internal tables in SYSBOOT 
and SYSGEN but also in the executive itself. In fact, the parameter address (first item) stored 
for each parameter locates the working value of each parameter in the memory image of the 
executive. 

• USE file-spec directs SYSBOOT to the indicated parameter file for a 
new set of values. 

• USE DEFAULT causes the working table in SYSBOOT to be filled with 
the default values for each parameter. 

• USE CURRENT causes the parameter values in the executive image to 
be loaded into SYSBOOT's working table. (A USE CURRENT com­
mand is redundant if it is the first command passed to SYSBOOT.) 

@ Once the initial conditions have been established, individual parameters 
can be altered with SET commands. The conversational phase of 
SYSBOOT is terminated with a CONTINUE (or EXIT) command. 



~ 
Implied 

USE 
CURRENT 

Default 

USEI CURRENT 

SYSBOOT Parameter 
Parameter 

Table Settings 
Settings USE 

of 
SYS BOOT in Memory SYS I NIT 

Internal DEFAULT 
Working 

Action Image of Action 
to 

Values Executive 
SYSBOOT 

0 
USE filespec USE 

SET 
CONTINUE (EXIT) 

User-created Parameter Files 

Figure 25-4 
Movement of Parameter Data by SYSBOOT and SYSINIT 



Operating System Initialization 

25.3.3 

570 

@) After SYSBOOT has calculated the sizes of the various pieces of system 
space, but before it transfers control to INIT, it copies the contents of its 
working table to the corresponding table in the memory image of the 
executive. 

@ One of the first steps performed by the SYSINIT process copies the pa­
rameter table from the memory image of the executive to its disk image. 
Because SYSBOOT always does an implied USE CURRENT as its first 
step, this implied command guarantees that all subsequent bootstraps 
will use the latest parameter settings, even if no conversational bootstrap 
is selected. 

Use of Parameter Files by SYSGEN 

SYSGEN's interaction with parameter files is not an integral part of the boot­
strap operation. However, its action, pictured in Figure 25-5, closely parallels 
that of SYSBOOT. 

CD The initial contents of SYSGEN's working table are the values taken 
from the memory image of the executive. The data movement pictured in 
Figure 25-5 is a movement from one memory area to another rather than 
the result of an I/O operation. 

In any event, SYSGEN begins its execution with an implied command: 

USE ACTIVE 

This set of initial conditions would differ from SYSBOOT's initial state 
only if someone had already run SYSGEN and written parameters to ei­
ther CURRENT (the disk image of the executive) or ACTIVE (the mem­
ory image of the executive). 

@ SYSGEN can choose initial settings for its working table in exactly the 
same fashion as SYSBOOT. 

There is an additional reserved file specification available to SYSGEN. 
A USE ACTIVE command causes the parameter table from the memory 
image of the executive to be copied into SYSGEN's working table. 

@ SET commands can be used to alter individual parameter values. Typi­
cally, an EXIT (or CONTINUE) command would not be used until the 
final settings were preserved with a WRITE command. 

@) This step preserves the contents of SYSGEN's working table in the fol­
lowing way: 

• WRITE filespec creates a new parameter file that contains the contents 
of SYSGEN's working table. 

• WRITE CURRENT alters the copy of the parameter table in the disk 
image of the executive. The next bootstrap operation will use these 
values automatically (even without a conversational bootstrap option). 
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Parameter Implied 
Settings USE ACTIVE 

in Memory 
Image of 
Executive 

User-defined 
Parameter Files 

Movement of Parameter Data by SYSGEN 

• Several parameters determine the size of portions of system address 
space. Other parameters determine the size of blocks of pool space 
allocated by INIT. These parameters cannot be changed in a running 
system. However, many parameters are not used in configuring the 
system. These parameters are designated as DYNAMIC (see Table 
25-4). 

A WRITE ACTIVE command to SYSGEN alters the settings of dy­
namic parameters only in the memory image of the executive. 

A word of caution is in order here. Before one experiments with a new 
configuration, the parameters from a working system should be saved in a 
parameter file. If the new configuration creates a system that is unusable, the 
system can be restored to its previous state by directing SYSBOOT to use the 
saved parameters. 
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26 Size of System Virtual 
Address Space 

A little inaccuracy sometimes saves tons of explanation. 

-Saki, The Comments of Maung Ka 

The executive image SYS$SYSTEM:SYS.EXE contains the operating system 
code for the VMS system but very little of the data. Many of the data struc­
tures that VMS uses are not created until the system is bootstrapped, so that 
the structure sizes can be determined from the appropriate SYSBOOT param­
eters. This chapter describes the relationships between these SYSBOOT pa­
rameters and the portions of system address space whose sizes they deter­
mine. 

In the equations that appear in this chapter, two common features domi­
nate. One feature is division by 512, the number of bytes in a page. This 
division is done whenever the input parameter is a number of bytes, such as 
the NPAGEDYN SYSBOOT parameter or an expression for the number of 
bytes in a process header. If 511 is added to an expression for a number of 
bytes before the integer division takes place, this represents a rounding up to 
the next highest page boundary. 

The second feature is the number 128 that appears in expressions that 
count the number of pages for which system page table entries are needed. 
The significance of the number 128 is that a page table entry is four bytes 
long so that a page of page table entries maps 128 pages. In this case, the 
rounding factor that is added is 127. 

26.1 SIZE OF PROCESS HEADER 
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Before the various portions of system address space are calculated, the size of 
the process header will be related to the SYSBOOT parameters that affect its 
size. Table 26-1 lists each portion of the process header, the SYSBOOT pa­
rameters that affect its size, and the global location where the size of that 
portion is stored. The table also introduces the notation used in the first set 
of equations to describe each piece of the process header. Figure 26-1 shows 
the actual layout of the process header and the relationship of the parts de­
scribed in Table 26-1. 



26.1 Size of Process Header 

Table 26-1: Discrete Portions of the Process Header 

Items Stored in Factors Affecting Global Location 
Symbolic Name This Part of the Size of This Part Where Size of This 
for Equations Process Header of Process Header Part Is Stored 

PHD(wsLpst) Fixed Portion PHD$K_LENGTH SWP$GW _ WSLPTE 
Working Set List PROCSECTCNT 
Process Section WSMAX 

Table PQLDWSDEFAULT 

PHD(empty) No Access Pages for WSMAX SWP$GW _EMPTPTE 
Working Set List PQLDWSDEFAULT 
Expansion 

PHD(bak) Process Header Size of the SWP$GW _BAKPTE 
Page Arrays and Process Header 
Page Table Page 
Arrays 

PHD(pte) PO and Pl Page Tables VIRTUALPAGECNT SGN$GLPTPAGCNT 

The following global locations contain sums of the sizes of several of the pieces listed above: 

a. @SGN$GLPHDAPCNT = PHD(wsLpst) + PHD(bak) 
b. @SGN$GLPHDPAGCT = PHD(wsLpst) + PHD(empty) + PHD(bak) 
c. @SWP$GLBSLOTSZ = PHD(wsLpst) + PHD(empty) + PHD(bak) + PHD(page_tables) 

26.1.1 

26.1.2 

Process Page Tables 

Most of the process header is taken up by the PO and Pl page tables. The total 
number of pages allocated for the process page tables depends on the parame­
ter VIRTUALPAGECNT. 

PHD( bl ) _ VIRTUALPAGECNT + 127 page_ta es - 128 (26.1) 

Working Set List and Process Section Table 

The working set list and process section table are located at the low address 
end of the process header immediately after the fixed size area and grow 
toward each other. The size of the process section table depends on the pa­
rameter PROCSECTCNT. On first approach, one would assume that the 
working set list size depends on the parameter WSMAX. However, because 
the process header pages that are not page table pages are locked into the 
process working set, they always require physical pages. In most systems, 
many processes will have working sets that are much smaller than the al­
lowed maximum. The initial working set list size is calculated to take this 
into account. The assumption is made that most processes will have working 
sets that are approximately equal to the parameter PQL_DWSDEFAULT. 
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SYSBOOT Parameters Affecting 
Size of This Portion 

PHD$K_LENGTH 
(Not a SYSBOOT parameter) 

PQL_DWSDEFAUL T 

PROCSECTCNT 

WSMAX,PQL_DWSDEFAUL T 

Size in bytes of 
entire process header 

VIRTUALPAGECNT 

Figure 26·1 

* 

Process Header (PHO) 

Fixed Portion of Process Header 

Working Set List 

~ 
0 

Process Section Table 

Empty Pages 

Arrays for Process Header Pages 

PO Page Table 

z:>-
0 
P1 Page Table 

Process Header and SYSBOOT Parameters 

~ 

Where Size of This 
Portion Is Stored 

SWP$GW_WSLPTE 
pages 

SWP$GW_EMPTPTE 
pages 

SWP$GW_BAKPTE 
pages 

SGN$GL_PTPAGCNT 
pages 

Equation 26.2 calculates the maximum number of pages required for the 
fixed portion of the process header, the working set list, and the process sec­
tion table. The extra space reserved for working set list expansion is calcu­
lated in Equation 26.3. The difference between these two numbers (Equation 
26.4) is the number of pages initially available for the fixed portion, the work­
ing set list, and the process section table. The significance of the numbers 4 
and 32 in Equation 26.2 is that a working set list element is a longword (or 
four bytes, WSL$C_LENGTH) and a process section table entry is 32 bytes 
long (SEC$K_LENGTH). 

{ PHD$K_LENGTH + 4 x WSMAX} 

PHD( ) = + 32 x PROCSECTCNT + 511 
temp . 512 (26.2) 

PHD( ) _ WSMAX - PQL_DWSDEFAULT 
empty - 128 (26.3) 

PHD(wsLpst) = PHD(temp) - PHD(empty) (26.4) 



26.1.3 

26.1 Size of Process Header 

Process Header Page Arrays 

The process header page arrays include two arrays that contain array ele­
ments for each page in the process header. (These two arrays are used by the 
swapper to store information about process header pages while the header is 
outswapped.) There are also two arrays of bytes in this portion of the process 
header that contain an array element for each page table page. To simplify the 
calculation of the size of this portion of the process header, space is allocated 
as if the last two arrays contained an element for each process header page. 
Because the page tables constitute approximately 90 percent of the process 
header in a typical system, this algorithm results in a very good approxima­
tion. Because the result is rounded up to the next page boundary, there is 
absolutely no difference in size for almost all combinations of SYSBOOT 
parameters. 

Because the process header page arrays are located in the process header, 
the space allocated for this area depends on its own size. The calculation of 
this portion of the process header proceeds iteratively. An approximate size 
of the area is determined, based on the sizes of the other three areas. Then the 
estimates are refined until two successive calculations reach the same result. 

Define the following: 

PHD(the_rest) = PHD(wsLpst) 
+ PHD(empty) 
+ PHD(page_tables) 

PHD(bak,O) = 0 (26.5) 

Perform the calculation shown in Equation 26. 7 until the following equality 
exists: 

PHD(bak,N) = PHD(bak,N - 1) (26.6) 

PHD(bak,N) = 8 x [PHD(the_rest) +5~~D(bak,N - l)] + 511 (26 .?) 

Call the result of this calculation PHD(bak). 

PHD(bak) = PHD(bak,N) (26.8) 

The sum of the four pieces of the process header yields its size in pages. The 
result of this calculation is stored in global location SWP$GL_BSLOTSZ. 

PHD(total) = PHD(wsLpst) 
+ PHD(empty) 
+ PHD(bak) 
+ PHD(page_tables) (26.9) 
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Once the size of the process header has been calculated, the sizes of the 
dynamic pieces of system address space can be computed. Figure 26-2 pic­
tures system address space and the nomenclature used to designate each 
piece. Table 26-2a-c lists each piece, the global location of the pointer to each 
piece, and the SYSBOOT parameters that determine its size. 

System Virtual Address Space and SYSBOOT Parameters 

The sizes of most of the pieces of system address space listed in Table 26-2 
are either constant or simply related to one or two SYSBOOT parameters. 
Their sizes are computed in a straightforward manner by SYSBOOT. The 
sizes of the system page table and the PFN database are a little more compli­
cated and a discussion of their sizes is postponed until the next section. 

When SYSBOOT calculates the size of the system page table, it forms a 
sum of the sizes of the pieces of system virtual address space, and allocates an 
SPTE for each page. The calculation that is presented here considers each 
piece of system space in order of increasing virtual address, rather than in the 
order that SYSBOOT performs the calculation. 

1. The first pages of system address space, containing the system service 
vectors and the FCP statistics blocks, have their size accounted for in the 
assembly-time parameter MMG$C_SPTSKEL defined in module 
SPTSKEL. 

SVAS(sptskel) = 6 (26.10) 

The FCP data area is less than two pages long. However, access protec­
tion is on a per-page basis. Part of the first page of the linked driver data 
structure area falls into the remaining part of the FCP data area and thus 
has a protection of UREW (the protection applied to the FCP data area); 
the remainder of the linked driver data structure area is URKW. 

2. The area that will contain the linked executive, the RMS image, and the 
system message file has its size determined by the SYSBOOT parameter 
SPTREQ. In addition, there must be enough extra pages in this area to 
map the I/O adapters and to reserve a system virtual page for each device 
unit whose driver requests one. 

If there are any system page table entries required for mapping by PFN 
for real-time devices, the requested number (SYSBOOT parameter 
REALTIME_SPTS) is added to system virtual address requirements at 
this time. 

SVAS(sptreq) = SPTREQ + REALTIME_SPTS (26.11) 
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After the size of the system page table is calculated and rounded up to 
the next page boundary, any extra pages acquired are added to the pool of 
available system page table entries. 

3. The restart parameter block is always one page long. In the notation of 
Figure 26-2, this is expressed by the following equation: 

SVAS(rpb) = 1 (26.12) 

The single page required for the restart parameter block is not counted 
when determining the initial size of the system page table. It is assumed 
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that page rounding or one of the approximations will add the single SPTE 
required to map the RPB. 

4. The number of pages in the PFN database is discussed in Section 26.2.2. 
5. The space reserved for the paged dynamic memory area depends on the 

SYSBOOT parameter PAGEDYN. The parameter expresses the pool size 
in bytes and is truncated to the next smallest page boundary to give the 
pool size in pages. SYSBOOT modifies the parameter so that the next 
bootstrap operation will reflect the truncated pool size. 

PAGEDYN 
SVAS(paged_pool) = 512 (26.13) 

The pages in the middle of paged dynamic memory that have protec­
tion of EW are allocated by the utility program RMSSHARE to accommo­
date the data structures that RMS requires for shared files. 

6. The space reserved for nonpaged pool is the sum of the size of nonpaged 
dynamic memory and the size of the the lookaside lists. The SYSBOOT 
parameter NPAGEDYN determines the size of nonpaged dynamic mem­
ory. The size of each portion of the lookaside list is determined by the 
size of the request packets and the number of packets in each list. 

NPAGEVIR 
SVAS(nonpaged_pool) = 512 

+ SRPSIZE x SRPCOUNTV + 511 
512 

+ IRP$C_LENGTH x IRPCOUNTV + 511 
512 

(LRPSIZE+64) x LRPCOUNTV + 511 
+ 512 (26.14) 

Note that the size of nonpaged dynamic memory is truncated to the 
next smallest page boundary; the sizes of the lookaside lists are rounded 
up to the next page boundary. 

7. The SYSBOOT parameter INTSTKPAGES gives the value of the inter­
rupt stack in pages. 

SVAS(inLstack) = INTSTKPAGES (26.15) 

In calculating the total size of the system page table, the guard pages 
(protection set to no access) at either end of the interrupt stack are not 
counted. These pages cause access violation exceptions (actually an in­
terrupt stack not valid HALT) on both stack overflow and stack under­
flow. 

8. The size of the system control block is CPU dependent. The VAX-11/730, 
the VAX-11/750, and the VAX-11/780 all contain the architectural sys­
tem control block (see Figures 4-1and5-3). In addition the system control 



Table 26-2a: Detailed Layout of System Virtual Address Space 

The following pieces of the executive originate in the executive image file SYS$SYSTEM:SYS.EXE. The system addresses of each of these 
pieces remain unchanged until a new major release of the operating system. 

Item Global Address = Address ( 1) Size Protection Owner Pageable Mapped by 

System Service Vectors VA$M_SYSTEM = 80000000 4 Pages URKW K No SYSBOOT 

Nonpaged Executive Data MMG$A_ENDVEC = 80000800 5 Pages K No SYSBOOT 
+ 288 Bytes 

FCP Data Area PMS$GLFCP = 80000800 (1108 Bytes) UREW(2) 
Linked Driver Data EXE$GLBUGCHECK = 80000C54 (1740 Bytes) URKW(2) 
Structures 

Linked Driver Code MMG$ALBEGDR1VE = 80001320 5 Pages URKW K No SYSBOOT 
DR$NT = 80001320 + 84Bytes 

Nonpaged Executive Data MMG$AL_ENDDR1VE = 80001DD8 12 Pages URKW K No SYSBOOT 
+ 24 Bytes 

Nonpaged Executive Routines MMG$FRSTRONLY = 80003600 73 Pages (4) UR K No SYSBOOT 
EXE$RESTART = 80003600 

Pageable Executive Routines @MMG$GLPGDCOD = 8000C800 (4) 97 Pages UR K Yes SYSBOOT 

Shell Process SWP$GLSHELLBAS = 80017AOO (8 Pages) UR 

Usually Unmapped Pages MMG$ALPGDCODEN = 80018AOO 48 Pages NA K SYSBOOT 
XDELTA (80018AOO) (18 Pages) URKW(3) No(3) 
INIT (8001AEOO) (10 Pages) 
BUGCHECK (8001C200) (20 Pages) 

End of Fixed Sized Portion of MMG$A_SYS_END = 8001EAOO 
System Virtual Address Space 

( 1) Some global addresses listed here are only coincidentally at the beginning of the named region. Others, those whose names begin with MMG$, 
are defined in module MDAT solely as symbolic labels to delimit the portions of the linked executive. 

(2) Although only 1108 bytes are used for file system statistics, the protection granularity defined by the VAX architecture is a page (512 bytes). For 
this reason, two entire pages (1024 bytes) are set to UREW protection. The remaining three pages in this area are set to URKW. 

(3) The pages containing XDELTA only remain mapped if the RS flag requesting the executive debugger is set when the system is initialized. 
(4) The cell MMG$GL_PGDCOD points to the second page of the patch area that lies between the paged and nonpaged executiv.e. Previous to 

Version 3.0, the end of the executive was established when the executive image was linked. This value is now determined when the module is 
assembled. If another patch page is required, the symbol will be changed to point to the next page. 
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Table 26-2b: Variable Size Portion-Mapped toward Increasing Virtual Addresses 

The following pieces of the system are not a part of the executive image SYS.EXE. Their sizes are not fixed but rather depend on the values 
of specific SYSBOOT parameters or on the particular device and memory configuration. These pieces are located by storing their starting 
addresses in pointer fields, whose addresses are listed here. 

The first items listed are mapped by INIT and SYSINIT. Items are mapped toward larger system virtual addresses. That is, the connect­
to-interrupt pages are set aside first, 1/0 adapters are mapped next, and so on. 

Factors That 
Item Global Address of Pointer Affect Size Protection Owner Pageable Mapped by 

Beginning of Variable 
Sized Portion of MMG$A_SY8-END = 8001EAOO 
System Virtual 
Address Space 

System Virtual Pages for RBM$LSPTFREL in REALTIME_SPTS NA(l) K No INIT 
Connect-to-Interrupt Real-Time SPT Bitmap 

Mapping for I/O Addresses MMG$GLSBICONF (3) Physical KW K No(2) INIT 
Configuration 

(Types of External 
Adapters) 

System Virtual Page UCB$LSVPN in Constant ( 1 Page) KW K No INIT 
for System Disk Driver Unit Control Block 

for System Disk 

RMS Image MMG$GLRMSBASE Size of RMS UR K Yes SYSINIT 
Image ( 168 Pages) 

Null Page Constant (1 Page) NA K 



Table 26-2b: Variable Size Portion-Mapped toward Increasing Virtual Addresses (continued) 

Global Address Factors That 
Item of Pointer Affect Size Protection Owner Pageable Mapped by 

System Message File EXE$GLSYSMSG Size of System UR K Yes SYSINIT 
Message File 
(257 Pages) 

Null Page NA K 

System Virtual Pages UCB$LSVPN in Number of KW K No(2) SYSGEN in 
for Other Disk Drivers Unit Control Block Disk Units STARTUP.COM 

for Each Unit or When 
Driver Is 
Loaded 

Pool of Available System BOO$GLSPTFREL (4) SPTREQ NA K 
Pages BOO$GLSPTFREH (4) (Several Other 

Details) 

( l J The pages set aside for connect-to-interrupt are only mapped No Access as part of initialization. These SPTEs are allocated in response to 
specific requests. 

(2) It is meaningless to ask whether system virtual pages that are mapped to 1/0 addresses are pageable. 
(3) MMG$GL_SBICONF is the address of a 16-longword array. Each longword array element contains the system virtual address of the first page 

that maps 1/0 addresses for that adapter. 
(4) Locations BOO$GL_SPTFREL and BOO$GL_SPTFREH do not contain system virtual addresses. Rather, they contain the system virtual page 

numbers of the first and last pages in the pool of available SPTEs. 
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Table 26-2c: Variable Size Portion-Mapped toward Smaller Virtual Addresses s 
These pieces are also part of the dynamically configured portion of system virtual address space. Their sizes are determined by SYSBOOT s 

'"-! 
parameters. These pieces are located by storing their starting addresses in pointer fields, whose addresses are listed here. ..... 

i:::: 
s:::. 

Factors That 
........ 
:i:,.. 

Item Global Address of Pointer Affect Size Protection Owner Pageable Mapped by l:l.. 

Restart Parameter Block EXE$GLRPB Constant (1 Page) URKW K No(l) SYSBOOT ~ 
Cl;) 

PFN Database PFN$A_BASE Everything 
c,, 

URKW K No SYS BOOT c,, 

PFN$ALPTE ~ 
Paged Dynamic Memory MMG$GLPAGEDYN PAGEDYN K Yes INIT 

s:::. 
(") 

URKW 
Cl;) 

EW 
URKW 

Nonpaged Dynamic Memory MMG$GLNPAGEDYN NPAGEVIR ERKW K No SYSBOOT 
Beginning of LRP list IOC$GLLRPSPLIT LRPCOUNTV,LRPSIZE 
Beginning of IRP list EXE$GLSPLITADR IRPCOUNTV 
Beginning of SRP list IOC$GLSRPSPLIT SRPCOUNTV,SRPSIZE 

No Access Guard Page Constant (1 Page) NA K 

Interrupt Stack INTSTKPAGES ERKW K No SYSBOOT 

No Access Guard Page EXE$GLINTSTK (S) Constant ( 1 Page) NA K 

System Control Block EXE$GLSCB Constant (2) ERKW K No SYSBOOT 
PR$_SCBB (P) (1, 2, or 3 Pages) 

Balance Slot Area SWP$GLBALBASE BALSETCNT ERKW K Yes(3) SWAPPER 
Size of Process 

Header 

System Header MMG$GLSYSPHD SYSMWCNT ERKW K No SYS BOOT 
GBLSECTIONS 
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Table 26-2c: Variable Size Portion-Mapped toward Smaller Virtual Addresses (continued) 

Item 

System Page Table 

Global Page Table 

End of System Virtual 
Address Space 

Global Address of Pointer 

MMG$GLSPTBASE 
MMG$GLGPTBASE 
MMG$GL_SBR (P) 
PR$_SBR (P) 

MMG$GLGPTE 

MMG$GLMAXSYSVA 
MMG$GLFRESVA 
MMG$GL_MAXGPTE 

Factors That 
Affect Size 

Everything 

GBLPAGES 

Protection 

ERKW 

URKW 

Owner 

K 

K 

Pageable 

No 

Yes (4) 

Mapped by 

SYSBOOT 

SYSBOOT 

(P) Global addresses or processor registers (PR$_name) whose names are followed by IP) contain physical addresses rather than system virtual 
addresses. The two physical addresses relevant to this table are the base of the system page table (in PR$_SBR) and the base of the system control 
block (in PR$_SCBB). 

IS) The interrupt stack grows toward smaller virtual addresses. Thus, the contents of location EXE$GL_INTSTK point to the guard page that 
follows the interrupt stack. 

I l) The restart parameter block does not page. However, it is not located in high physical memory as the rest of the nonpaged executive is. The 
restart parameter block is located in the first page of the the good 64K byte segment located by the memory bootstrap ROM. The page is not 
placed into the system working set so there is no way memory management can make the page invalid. 

(2) The system control block on the VAX-11/730 and VAX-ll/750 is two pages long. The system control block on a VAX-11/750 with a second 
UNIBUS is three pages long. The system control block on the VAX-11/780 is one page long. 

[3) The process headers that reside in the balance slot area are a part of the process working set to which they are associated. Although portions of 
the process header do not page, the physical pages locked down in this manner are accounted for in process working sets and do not count toward 
the executive's use of memory. 

(4) Global page tables are pageable. However, if a global page table page contains at least one valid global page table entry, then that page is locked 
into the system working set. 
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block in VAX-11/730 and VAX-11/750 processors has a second page de­
voted to UNIBUS interrupt dispatching (see Figure 5-3 ). If a VAX-11/750 
has a second UNIBUS, it will have a third page in the system control 
block devoted to interrupt dispatching on that UNIBUS. 

[ 
2 (for the VAX-11/730) 

SVAS(scb) = 2 or 3 (for the VAX-11/750) 
1 (for the VAX-11/780) 

(26.16) 

9. The area devoted to balance slots constitutes more than half of system 
virtual address space in typical configurations. Its size depends on the 
SYSBOOT parameter BALSETCNT and the size of a process header in 
pages, calculated in Section 26.1. The constant size of balance slots 
makes this a trivial calculation. 

SVAS(balance_slots) = BALSETCNT x PHD(pages) (26.17) 

The motivation behind constant size balance slots is explained in 
Chapter 14. 

Because of the multiplicative nature of this relationship, it is necessary 
to reduce the BALSETCNT parameter in systems that must support a 
large process virtual address space. In a similar fashion, configurations 
that require a large number of concurrently resident processes should use 
a smaller value of VIRTUALPAGECNT. 

10. The system header involves a calculation similar to the size of the proc­
ess header, described in the last section. However, there is no optimiza­
tion technique for empty pages because there is no large variation in 
working set sizes. There is also no need for the analog to process header 
page arrays because the system header does not describe an object that 
swaps. The size of the system page table, the system analog to process 
page tables, is calculated separately from the rest of the system header, 
which has a simple dependence on two SYSBOOT parameters. 

The only system header components are the system equivalent to the 
working set list and the process section table in the process header. The 
system equivalents are the system working set list and the global sec­
tion table. The SYSBOOT parameters that control their sizes are 
SYSMWCNT and GBLSECTIONS. 

{ PHD$K_LENGTH + 4 x SYSMWCNT} 

SVAS(sysphd) = + 32 x GBLS~~TIONS + 511 (26 .18) 

The system section table contains section table entries not only for all 
global sections but also for three system sections: the executive 
image itself, the RMS image, and the system message file. 



26.2.2 

26.2 System Virtual Address Space 

11. The size of the system page table depends on the sizes of the other pieces 
of system address space. The calculation of its size is discussed in Section 
26.2.2. 

12. The last simple calculation of a portion of system virtual address space 
involves the size of the global page table, governed by the SYSBOOT 
parameter GBLPAGES. 

SVAS( ) = GBLPAGES + 127 
gpt 128 (26.19) 

System Page Table and the PFN Database 

The PFN database contains a description of each page of physical memory. 
However, it does not contain information about the nonpaged executive. Be­
cause the PFN database is part of the nonpaged executive, its size depends on 
itself. However, the situation is more complicated. The system page table, 
also nonpaged, maps the PFN database. Thus the size of the PFN database 
depends on its own size in two different ways. 

The significance of the number 18 in the following equation is that there 
are 18 bytes of information stored for each page of physical memory. As ex­
plained in Chapter 14, each physical page is described by two byte arrays, six 
word arrays, and two longword arrays. Because the two link arrays overlap 
two other arrays, this amounts to a total of 18 bytes of information for each 
physical page. This value is represented by the global constant 
PFN$C_ WORD_LEN defined by module SYSPARAM (or PARAMETER). 

SVAS( f ) = 18 x (PHYSICAL - NO_PFN_DATA) + 511 
p n 512 

The value PHYSICAL represents the size 0£ physical memory: 

PHYSICAL = minimum (size of physical memory, 
PHYSICALPAGES) 

(26.20) 

(26.21) 

NO_PFN_DATA represents the nonpaged portions of system space that are 
not accounted for in the PFN database. 

NO_PFN_DATA = SVAS(nonpaged_exec) 
+ SVAS(pfn) 
+ SVAS(nonpaged_pool) 
+ SVAS(inLstack) 
+ SVAS(scb) 
+ SVAS(sysphd) 
+ SVAS(spt) (26.22) 
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The nonpaged portion of the executive image, SVAS(nonpaged_exec), is a 
subset of SVAS(sptreq) when computing the size of the system page table. Its 
size is variable, depending on the size of the paged portion of the executive. 

SVAS(nonpaged_exec) = MMG$GL_PGDCOD 
- MMG$A_ENDVEC (26.23) 

Notice that the PFN database depends on its own size explicitly (through the 
NO_PFN_DATA term) and also implicitly through the size of the system 
page table (Equation 26.24). 

In a similar fashion, the size of the system page table depends on its own 
size explicitly and implicitly through the size of the PFN database. 

SAVS(spt) = THE_REST + SVASisf;) + SVAS(pfn) + 127 (26.24) 

THE_REST represents all contributions to system address space except for 
the system page table and the PFN database. 

THE_REST = SVAS(sptskel) 
+SVAS(sptreq) + SVAS(rpb) 
+ SVAS(paged_ pool) 
+ SVAS(nonpaged_pool) 
+ SVAS(inLstack) 
+ SVAS(scb) 
+ SVAS(balance_slots) 
+ SVAS(sysphd) 
+ SVAS(gpt) 

Approximation Used by SYSBOOT 

For some large values of either VIRTUALPAGECNT or physical memory 
size, an iterative calculation for the sizes of these two quantities does not 
converge but rather oscillates about a stable solution. 

To avoid this problem, a simplification in the calculation is made. The 
number of system page table entries set aside for the PFN database does not 
take into account the fact that the pages occupied by the nonpaged executive 
are not accounted for in the PFN database. 

SVAS( f ) = 18 x PHYSICAL+ 511 
p n 512 (26.25) 

This relation replaces Equation 26.20 in the calculation of the size of the 
system page table. It also greatly simplifies Equation 26.24 because the 
SVAS(pfn) term no longer depends on SVAS(spt). Instead, SVAS(pfn) is a con­
stant. 



26.2.4 

26.3 Physical Memory Requirements of the Executive 

Because Equation 26.25 errs on the high side in allocating SPTEs for the 
PFN database, the number of SPTEs set aside for the system page table does 
not use Equation 26.24 iteratively. Instead, there is a single pass on calculat­
ing the size of the system page table. 

SYAS( O) = THE_REST + SYAS(pfn) 
· spt, 128 (26.26) 

SYAS( ) = THE_REST + SYAS(pfn) + SYAS(spt,O) + 127 
spt 128 .. · (26.27) 

Because physical pages are not allocated for the PFN database until the sys­
tem page table size has been calculated, there is no large waste of physical 
memory. The only effect of these two approximations might be one more 
physical page allocated for the system page table than is absolutely necessary. 
The allocation of an extra page would only occur on systems with very large 
amounts of memory in the first place, so the loss is practically unnoticed. 

Renormalization of SPTREQ 

The rounding of the size of the system page table to the next highest page 
boundary can add extra system page table entries to those required to map the 
entire system~ After SYSBOOT has calculated the result of Equation 26.27, it 
maps the linked executive beginning at the low address end of system address 
space (80000000) and maps the dynamic portion of system space beginning at 
the high address end. 

Any pages left over after this mapping are put into the pool of system page 
table entries located by BOO$GL_SPTFREL and BOO$GL_SPTFREH. As 
SPTEs are needed for further mapping (for example by SYSINIT to map RMS 
and the system message file or by SYSGEN when loading drivers that require 
a system virtual page number), these pages are taken from the pool.Once the 
entire system is mapped, any extra pages (due to rounding as well as an over­
estimate of the SPTREQ parameter) remain in the pool of system page table 
entries. 

26.3 PHYSICAL MEMORY REQUIREMENTS OF THE EXECUTIVE 

26.3.1 

Once the sizes of the various pieces of system address space have been calcu­
lated, it is possible to list the total. physical' memory requirements of the 
executive, the number of pages that are not available for user processes. 

Physical Memory Used by the Executive 

Table 26-3 lists each piece of the nonpaged executive and either its size in 
pages or an equation number in Section 26.2 that describes how its size is 
computed. 
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Table 26-3: Division of System Virtual Address Space into Nonpaged and Paged Pieces 

The following portions of system address space are permanently mapped by SYS­
BOOT. The physical pages that they occupy are not accounted for in the PFN database. 

Item 

N onpaged Portion of 
Executive Image 

PFN Database 
Nonpaged Dynamic Memory 
Interrupt Stack 
System Control Block 
System Header 
System Page Table 

Size 

MMG$GLPGDCOD through 
MMG$A_ENDVEC 

Equation 26.25 
Equation 26.14 
Equation 26.15 
Equation 26.16 
Equation 26.18 
Equation 26.27 

The following are the pageable portions of the executive. Their total memory cost can 
never exceed SYSMWCNT. 

Item 

Paged Executive Routines 

RMS Image 

System Message File 

Paged Dynamic Memory 
Global Page Table Pages 

Size 

MMG$ALPGDCODEN through 
MMG$GLPGDCOD 

Size of RMS Image 
(168 Pages) 
Size of System Message File 
(257 Pages) 
Equation 26.13 
Equation 26.19 

The following portions of system address do not require physical memory accounted 
for in Equation 26.27. 

Item Reason 

XDELTA, INIT, and BUGCHECK 
1/0 Space Mapping 

Usually Not Mapped 
I/O Addresses 

SVPNs for Disk Drivers 

Balance Slot Area 

I/O Addresses or 
Double Mapping 

Process Header Pages and 
Page Table Pages are 
Charged to Process 
Working Sets 

NONPAGED = SVAS(nonpaged_exec) 
+ SVAS(rpb) 
+ SVAS(pfn) 
+ SVAS(nonpaged_pool) 
+ SVAS(inLstack) 
+ SVAS(scb) 
+ SVAS(sysphd) 
+ SVAS(spt) (26.28) 



26.3.2 

26.3 Physical Memory Requirements of the Executive 

This initial sum is the total memory requirement of the nonpaged executive 
code and data tables. The paged executive (see Table 26-3) also requires physi­
cal memory. However, it is reasonable to assume that the system working set 
is full at all times so that the physical memory requirements of the paged 
executive are simply SYSMWCNT pages. 

Two final items must be taken into account when calculating the number 
of physical pages used by the executive. The SYSBOOT parameters FREELIM 
and MPW _LOLIM set low-limit thresholds on the number of pages on the 
free and modified page lists. These parameters should be included when cal­
culating the number of available physical pages. 

MEMORY = NONPAGED 
+ SYSMWCNT 
+ FREELIM 
+ MPW_LOLIM 

AVAILABLE= PHYSICAL - MEMORY 

(26.29) 

(26.30) 

By working back from Equation 26.30, it is possible to obtain the number of 
available physical pages in terms of the contents of a SYSGEN parameter file 
and one more input parameter, the size of physical memory. 

System Processes 

When attempting to assess the total memory required by the system, one 
more factor must be taken into account. All memory-resident system proc­
esses require a number of pages equal to their respective working set sizes. 
The following processes are considered to be system processes: 

• Job Controller 
• Print Symbiont(s) (if any) 
• Error Logger Format Process (ERRFMT) 
• Operator Communication Process (OPCOM) 
• Disk ACP(s) (at least one) 
• Magtape ACP(s) (if any) 
• Network ACP (NETACP) (if any) 
• Remote Terminal ACP (REMACP) (if any) 

The amount of memory required by these processes cannot be calculated in 
closed form as the executive's memory requirements are calculated, for sev­
eral reasons: 

• The memory consumed by a process is its working set size. Automatic 
working set size adjustment causes this process attribute to vary over time 
(assuming, of course, that the process in question reaches its working set 
limit, a reasonable assumption for system processes). The working set of 
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any process in the system is readily available from the Monitor Utility 
(MONITOR). 

• Sharing confuses the issue. However, the DCL command SHOW SYSTEM 
lists the physical memory used by each process in the system. 

• System processes can be outswapped, temporarily reducing the physical 
memory requirements of those processes to zero. 

Because physical memory requirements of system processes vary over time 
and can be easily obtained from a utility such as MONITOR or with the 
SHOW SYSTEM command, they are not included in any equations in this 
chapter. However, their requirements should be taken into account when any 
type of configuration calculation is made. This chapter has provided a tool for 
calculating the memory requirements of the executive, a number that is not 
so readily available. 

26.4 SIZES OF PIECES OF Pl SPACE 
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Most of the pieces of Pl space have predetermined sizes, based on the con­
tents of module SHELL in the executive. This module includes a skeleton Pl 
page table that is used, to set up an initial Pl page table when a process is 
created. 

Some pieces of Pl space are dynamically configured, with sizes that are 
determined by a variety of techniques. Table 26-4 lists the pieces of Pl space 
and how the size of each is determined. The following list includes details 
about each dynamic portion of Pl space. Like Pl space itself, the list moves 
toward lower virtual addresses. 

1. All of the pieces of Pl space from the debugger symbol table to the process 
1/0 segment have their sizes determined by assembly-time parameters in 
module SHELL. 

2. The Pl window to the process header includes all of the process header 
except for page table pages (see Table 26-1). The empty pages are included 
in the Pl window. Section 26.l relates the size of the process header to the 
relevant SYSBOOT parameters. 

3. The LOGINOUT image maps the selected command language interpreter 
into Pl space for interactive and batch jobs. (A merged image activation 
accomplishes this mapping.) The size of the CLI image determines how 
much space is taken up by the CLI. 

4. The SYSBOOT parameter CLISYMTBL determines the number of demand 
zero pages that are created by LOGINOUT for the CLI symbol table. 

5. The special SYSBOOT parameter IMGIOCNT determines the default 
number of pages that are created by the image activator for the image I/O 
segment, the RMS impure area for files opened during the execution of a 
specific image. 



26.4 Sizes of Pieces of Pl Space 

The default number of image I/O segment pages can be overridden for a 
specific image by including the following line as a part of the link time 
option file: 

IOSEGMENT = n,[[NO]POBUFS] (26.31) 

6. The special SYSBOOT parameter EXUSRSTK determines the number of 
extra pages that are allocated for the user stack by the image activator. 
These pages are not used for the user stack. Instead, they are at a higher 
virtual address than the initial value of the user stack pointer. 

These pages allow the operating system to recover if the user stack is 
corrupted. 

7. The size of the user stack is determined by the following option in an 
options file at link time. 

STACK= n (26.32) 

The default user stack size is 20 pages. 
Because the stack is automatically expanded by the system's access vio­

lation handler when the user stack overflows, there is little need for using 
this option. One possible use might be for an image that requires a large 
amount of stack space but cannot afford the overhead required for auto­
matic stack expansion at run time. 
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Table 26-4a: Detailed Layout of Pl Space (Variable Size Portion) 

The size of the first portion of Pl space, from the user stack to the Pl window to the process header, is mainly dependent on SYSBOOT 
parameters. The sizes of each of these pieces may vary for different systems, different processes in the same system, or even different 
images in the same process. 

Item 

Low Address End of 
Pl Space 

User Stack 

Extra User Stack Pages 

Image I/O Segment 

Boundary between 
Process-Permanent and 
Image-Specific Pieces 
of Pl Space 

Per-Process Message Section 

CLI Symbol Table 

CLI Image 

Global Address of Pointer 

@PHD$LFREP1VA 
(Offset into the 
Process Header) 

@PIO$GW _IIOIMPA + 4 
@CTL$ALSTACK + (3*4) (SJ 

@CTL$GLCTLBASVA ( l) 

@CTL$GLPPMSG 

@CTL$AG_CLIMAGE 

Factors That 
Affect Size 

STACK= 
(Link Time Option) 

EXUSRSTK 

IOSEGMENTS = 
(Link Time Option) 

Size of Message 
Section 

CLISYMTBL 

CLI Image Size 

Protection Owner Pageable Mapped by 

uw 

uw 

UREW 

UR 

SW 

UR 

u 

u 

E 

E 

s 
s 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Image 
Activator 

Image 
Activator 

Image 
Activator 

SET MESSAGE 
Command 

LOGIN OUT 

LOGIN OUT 



Table 26-4a: Detailed Layout of Pl Space (Variable Size Portion) (continued) 

Item Global Address of Pointer 
Factors That 
Affect Size Protection Owner Pageable Mapped by 

Initial End of Pl Space for @MMG$GL_CTLBASVA (2) 
Every Process in This System 

Pl Window to Process Header @CTL$GL_PHD 

Channel Control Block Table @CTL$GLCCBASE 

Size of the 
Process Header 

CHANNELCNT 

SRKW 

UREW 

K No 

K Yes 

Code in SHELL 

Code in 
EXE$PROCSTRT 

@ In the global address column, symbol names preceded by the symbol@ are the addresses of pointers to the specific portions of Pl space. Symbol 
names with no preceding @ sign are the actual addresses of the areas in question. 

(S) Stacks grow toward smaller virtual addresses. This is the reason for the seeming anomaly in the addresses and pointers that delimit the four 
per-process stacks. The channel control block table also grows toward smaller virtual addresses. 

a. Global location CTL$AL_STACK is the address of a four longword array whose elements contain the initial values of the four per-process 
stack pointers. An array element can be indexed with the access mode as an argument. A fifth longword, preceding the array and accessed 
with an index of -1, locates the low address end of the kernel stack. 

In the table, the explicit multiplications reflect the multiplication by four that is implied by indexed addressing in longword context. 
That is, CTL$AL_STACK + 3*4 locates the beginning of the user stack. CTL$AL_STACK + 2*4 locates the beginning of the supervisor 
stack. CTL$AL_STACK + 1 *4 locates the beginning of the executive stack. CTL$AL_STACK + 0*4 locates the beginning of the kernel 
stack. CTL$AL_STACK + (-1*4) locates the end of the kernel stack. 

b. The channel number returned to the caller of the Assign Channel system service (or some other system service or RMS call) is a negative 
byte index from the contents of CTL$GL_CCBBASE to the beginning of the channel control block for the selected channel. 

(1) The contents of location CTL$GL_CTLBASVA locate the boundary between the image-specific portion of Pl space (deleted at image exit by 
routine MMG$IMGRESET) and the process-permanent portion of Pl space. 

(2) The contents of global location MMG$GL_CTLBASVA locate the initial size of Pl space, including the linked executive and the Pl window to 
the process header. All processes have this as their initial size of Pl space. As command language interpreters and other dynamic portions of 
Pl space such as process-permanent message sections are added, location CTL$GL_CTLBASVA is updated to reflect the change. 
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Table 26-4b: Detailed Layout of Pl Space (Fixed Size Portion) 0 -V:l 
The rest of Pl space is fixed in size and locations for all possible systems. The sizes of each of these pieces are determined by assembly time "<: 

Vi 

parameters in module SHELL These pieces are implicitly mapped by the Swapper when the skeleton Pl page tables are swapped in from N 
Cl:> 

the shell process at the time that the process is created. s 
Global Address = Address 

;::;:; 
.... 
N 

or I:! 
Item Global Address of Pointer Size in Pages Protection Owner Pageable >:l ........ 

Process I/O Segment PIO$GLFMLH = 7FFD8EOO 60 pages UREW E Yes ::i:,. 
~ 

@CTL$GLRMSPP E} 
Per-Process Common for Users 7FFE0600 4 pages uw K Yes 

Cl:> 
Vi 
Vi 

Per-Process Common for DIGITAL CTL$A_COMMON = 7FFEOEOO 4 pages uw K Yes ~ 
Compatibility Mode Data Page CTL$AG_CMEDATA = 7FFE1600 1 page uw K Yes >:l 

CJ 
CTL$ALCMCNTX = 7FFE1600 Cl:> 

VMS User-Mode Data Page UWVECPAG = 7FFE1800 1 page uw K Yes 

Not Currently Used 7FFE1AOO 2 pages NA K Yes 

Image Activator Context Page IMGACTCTX = 7FFE1EOO 1 page UREW E Yes 

Process Allocation Region CTL$A_PRCALLREG = 7FFE2000 46 pages UREW K Yes 

Generic CLI Data Pages CTL$AL_ CLICALBK = 7FFE7COO 6 pages URSW s Yes 

Image Activator Scratch Pages MMG$IMGACTBUF = 7FFE8800 8 pages UREW u Yes 
CLIDATAEND 

Debugger Context Pages 7FFE9800 4 pages uw u Yes 

Vectors for User-Written CTL$A_DISPVEC = 7FFEAOOO 2 pages UREW K Yes 
System Services and 
Per-Image or Per-Process 
Messages 

Image Header Buffer MMG$IMGHDRBUF = 7FFEA400 1 page uw E Yes 
@CTL$GLIMGHDRBF 

No Access Guard Page 7FFEA600 1 page NA K 
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Table 26-4b: Detailed Layout of Pl Space (Fixed Size Portion) (continued) 

Global Address = Address 
or 

Item Global Address of Pointer Size in Pages Protection Owner Pageable 

Kernel Stack CTL$GLKSTKBAS = 7FFEA800 IS) 3 pages SRKW K No 
@CTL$ALSTACK + 1-1 *4) IS) 

Executive Stack CTL$GLKSPINI = 7FFEAEOO IS) 8 pages SREW E Yes 
@CTL$ALSTACK + 10*4) IS) 

Supervisor Stack 7FFEBEOO 16 pages URSW s Yes 
@CTL$ALSTACK + 11 *4) IS) 

System Service Vectors PlSYSVECTORS = 7FFEDEOO 16 pages URKW K Yes 
SYS$QIO 

Pl Pointer Page CTL$GL VECTORS = 7FFEFEOO 1 page URKW K No 
@CTL$ALSTACK + 12*4) IS) 

Debugger Symbol Table 128 pages 

@ In the global address column, symbol names preceded by the symbol@ are the addresses of pointers to the specific portions of Pl space. Symbol 
names with no preceding @ sign are the actual addresses of the areas in question. 

(S) Stacks grow toward smaller virtual addresses. This is the reason for the seeming anomaly in the addresses and pointers that delimit the four 
per-process stacks. The channel control block table. also grows toward smaller virtual addresses. 
a. Global location CTL$AL_STACK is the address of a four longword array whose elements contain the initial values of the four per-process 

stack pointers. An array element can be indexed with the access mode as an argument. A fifth longword, preceding the array and accessed 
with an index of -1, locates the low address end of the kernel stack. 

In the table, the explicit multiplications reflect the multiplication by four that is implied by indexed addressing in longword context. 
That is, CTL$AL_STACK + 3*4 locates the beginning of the user stack. CTL$AL_STACK + 2*4 locates the beginning of the supervisor 
stack. CTL$AL_STACK + 1 *4 locates the beginning of the executive stack. CTL$AL_STACK + 0*4 locates the beginning of the kernel 
stack. CTL$AL_STACK + (-1*4) locates the end of the kernel stack. 

b. The channel number returned to the caller of the Assign Channel system service (or some other system service or RMS call) is a negative 
byte index from the contents of CTL$GL_CCBBASE to the beginning of the channel control block for the selected channel. 



27 Powerfail Recovery 

For there are moments when one can 
neither think nor feel. And if one can 
neither think nor feel, she thought, 
where is one? 

-Virginia Woolf, To the Lighthouse 

Powerfail recovery support allows suitably equipped VAX/VMS systems to 
survive power fluctuations and power outages of short duration with no loss 
of operation. The support is provided by hardware features (battery backup) 
and VMS software routines. 

VMS software support includes a power failure service routine that saves 
the volatile state of the machine before the power fails, a power recovery 
routine that restores that state, and device-specific code within many VAX/ 
VMS device drivers. Some drivers are able to resume I/O operations that were 
in progress when the power failed. Others simply abort the request that was 
in progress. The VMS operating system also provides process notification by 
means of power recovery ASTs. The powerfail routine starts at EXE$POWER­
FAIL in module POWERFAIL. 

27.1 POWERFAIL SEQUENCE 
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When a fluctuation or drop in operating voltage occurs, the CPU generates a 
powerfail interrupt. This interrupt causes control to be passed to the routine 
whose address is stored in offset 12 in the system control block, at the same 
time raising IPL to 30. The fact that powerfail is an interrupt with a finite IPL 
associated with it allows powerfail interrupts to be blocked for a short se­
quence of instructions, avoiding many potential synchronization problems. 

The VMS powerfail interrupt service routine saves the volatile machine 
state (those registers whose contents are not preserved by some sort of bat­
tery backup) in main memory (which is preserved by battery backup), either 
on the interrupt stack or in the restart parameter block. The interrupt stack 
pointer (ISP) is the last value saved. By checking the value of the saved ISP, 
the powerfail recovery routine can insure that the interrupt service routine 
preserved all the required registers. Lists of the registers preserved by the 
powerfail service routine and restored by the restart routine are found in 
Tables 27-1and27-2. Once the registers have been saved, the powerfail serv­
ice routine waits in the following tight loop until the hardware generates a 
HALT operation: 
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Table 2 7-1: Data Saved by Powerfail Routine and Restored During Power Recovery 

The elements in Group A are restored before memory management is reenabled. The 
restart parameter block is accessed through its physical address. 

Element 

System Base Register 
System Length Register 

Group A 

Software Interrupt Summary Register 
System Control Block Base Register 
Process Control Block Base Register 
Interrupt Stack Pointer 

Where Stored 

Restart Parameter Block 
Restart Parameter Block 
Restart Parameter Block 
Restart Parameter Block 
Restart Parameter Block 
Restart Parameter Block 

The elements in Group B are all restored after memory management has been 
reenabled, which allows the interrupt stack to be accessed through its normal system 
virtual address. 

Group B 

Element 

CPU-Specific Processor Registers 
(See Table 27-2) 

Process-Specific Processor Registers 
Pl Length Register 
Pl Base Register 
PO Length Register 
PO Base Register 
Performance Monitor Enable 
AST Level Register 

Four Per-Process Stack Pointers 

Where Stored 

Interrupt Stack 

Interrupt Stack 

Interrupt Stack 

The elements in Group C are not restored until the other power recovery steps de­
scribed in the text are performed and the powerfail interrupt dismissed. The PC/PSL 
pair are restored by the REI instruction that dismisses the interrupt. 

Group C 

Element 

General Registers (RO through FP) 

Interrupt PC and PSL 

10$: BRB 10$ 

Where Stored 

Interrupt Stack 

Interrupt Stack 

The BRB instruction was chosen over an explicit HALT in the software serv­
ice routine to avoid confusing the restart logic by triggering a restart too soon. 

27.2 POWER RECOVERY 

The power recovery sequence performs various validity checks in a CPU-de­
pendent fashion and then passes control to the VMS restart routine. This 
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Table 27-2: CPU-Specific Registers Saved by Powerfail Routine 

The following CPU-specific processor registers are saved on and restored from the 
interrupt stack. Note that there are no CPU-specific processor registers for the VAX.-
11/730. 

Element 

Translation Buffer Disable Register 
Memory Cache Disable Register 
SBI Maintenance Register 

CPU 

VAX-11/750 
VAX-11/750 
VAX-11/780 

routine restores the saved state of the machine and then notifies each device 
driver in the system that power has failed so that the drivers can take device­
specific action to restore interrupted 1/0 requests. 

Initial Step in Power Recovery 

The initial step in recovery from a power failure is performed by either hard­
ware or microcode and is CPU-dependent. The general purpose of any of 
these routines is to perform the following: 

• Verify that the contents of memory survived the power outage 
• Locate the power recovery routine through the restart parameter block 

(RPB) 
• Pass control to that routine 

A restart parameter block (RPB) is a page-aligned block of physical memory 
whose first four longwords contain the following: 

1. The physical address of the RPB (contents of location equals address of 
location) 

2. The physical address of the restart routine, EXE$RESTART in module 
POWERFAIL. 

3. A checksum of the first 31 longwords in the restart routine 
4. A warm restart flag 

The restart parameter block is usually stored starting at address 0 (provided 
that the memory at that location is good). The RPB in the VAX-11/782 must 
be stored at address 0. 

When searching for a restart parameter block, the console subsystem 
searches for a longword that contains its own address. The contents of the 
second longword (the restart routine address, EXE$RESTART) are examined 
to determine that they hold a valid physical address (and not zero, in case a 
page of zeros passes the first test). If the address is acceptable, the checksum 
of the first 31 words of the restart routine is calculated. The checksum is then 
compared to the checksum in the RPB. If the two checksums are equal, the 
page contains an RPB and the restart routine is intact. 



27.2 Power Recovery 

27.2.1.1 Power Recovery on the VAX-11/730. When power is restored on a VAX-11/ 
730, the console subsystem gains control and proceeds with its normal power 
on actions. If the AUTO RESTART/BOOT switch on the front of the proces­
sor cabinet is in the OFF position, the console program simply prints its 
prompt on the console terminal and waits for input. (Note that the AUTO 
RESTART/BOOT switch on the front panel should be switched off when first 
turning on a VAX-11/730 system to avoid an unnecessary restart attempt.) 

If the AUTO RESTART/BOOT switch is in the ON position the console 
subsystem searches through physical memory for a valid restart parameter 
block. In searching for the restart parameter block, the contents of memory 
are tested to determine whether memory successfully survived the power 
outage. 

If an RPB is not located, the restart fails and the console subsystem at­
tempts to bootstrap the system. If the RPB is located, the warm restart inhibit 
flag (bit<l> in the fourth longword of the RPB) is checked. A bit set indicates 
that a warm restart has already been attempted and failed. DEFBOO.CMD is 
then executed in order to bootstrap the system. 

If the warm restart inhibit flag is clear, the console subsystem performs the 
following steps: 

• The warm restart inhibit flag is set, to prevent a second restart attempt. 
• The address of the RPB + 200 (hex) is loaded into SP. 
• A value indicating the cause of the restart is loaded into AP. 
• Control is transferred to the restart routine. The address of the restart 

routine is located in the second longword of the RPB. 

27.2.1.2 Power Recovery on the VAX-11/750. The console program (see Chapter 24) is 
the first program that executes in response to a power recovery on the VAX-
11/750. This program first checks the setting of the power-on action switch. 
If the switch is in either the HALT or BOOT position, the console program 
performs the designated action. If the switch is in either the RESTART/ 
BOOT or RESTART/HALT position, the console program attempts a restart. 
Only if the restart fails is the second option (BOOT or HALT) used. 

The console program then attempts to locate the restart parameter block. 
In searching for the restart parameter block, the contents of memory are 
tested to determine whether memory successfully survived the power out­
age. This test can identify two different conditions, either of which prevents 
successful recovery: 

• A system that does not have battery backup, in which case, the contents of 
memory were lost when the power failed. 

• A situation where the power was off for longer than ten minutes, the 
amount of time that battery backup is capable of preserving the contents of 
memory. (This time depends on the amount of memory present but is not 
shorter than ten minutes.) 
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If a valid RPB cannot be located, or if the restart flag is set, the restart attempt 
has failed and the console program takes its alternative option. If a valid RPB 
is located, the console program transfers control to the restart routine whose 
address was stored in the restart parameter block. 

27.2.1.3 Power Recovery on the VAX-11/780. When power is restored on the VAX-11/ 
780, the console subsystem (LSI-11) goes through the same sequence that it 
does when a system is being initialized (see Chapter 24). If power is also being 
restored on the LSI-11, CONSOL.SYS is loaded from the console floppy. No 
state for the LSI-11 is preserved across a power failure. 
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The console program then proceeds with its normal power-on actions. If 
the autorestart switch on the front of the processor cabinet is in the OFF 
position, or if the warm start inhibit flag maintained by the console program 
is set, the console program simply prints its prompt on the console terminal 
and waits for input. (Note that the autorestart switch on the front panel 
should be switched off when first turning on a VAX-11/780 system to avoid 
an unnecessary restart attempt.) 

If the autorestart switch is in the ON position and the warm start inhibit 
flag is clear, the console program uses the contents of the command file 
RESTAR.CMD to direct further action. Before RESTAR.CMD executes, the 
writeable control store contents are reloaded from the console floppy (from 
file WCSxxx.PAT). The contents of WCS were not preserved by the battery 
backup that preserved the contents of main memory. Note that reloading 
WCS makes power recovery on the VAX-11/780 somewhat slower than in the 
VAX-11/750, where 1/0 is not an integral part of power recovery. 

The file RESTAR.CMD can contain any valid console commands. The 
RESTAR.CMD that is distributed with the VMS operating system contains 
commands designed to restart a running VMS system. (On systems with 
more than two memory controllers, the UNIBUS adapter is not located at TR 
3. On such systems, RESTAR.CMD must be altered so that Rl is loaded with 
the TR number of the UNIBUS adapter. This step is necessary because the 
UNIBUS mapping registers are used by ROM restart code as temporary stor­
age.) RESTAR.CMD contains the following lines: 

HALT 
!NIT 
DEPOSIT/I ll 20003BOO 
DEPOSIT RD 0 
DEPOSIT Rl n 
DEPOSIT R2 0 
DEPOSIT R3 0 
DEPOSIT Rt; 0 
DEPOSIT RS 0 
DEPOSIT FP 0 
START 2000300£; 

Halt processor 
Initialize processor 
Set address of SCB base 
Clear unused register 
TR number for UNIBUS adapter 
Clear unused register 
Clear unused register 
Clear unused register 
Clear unused register 
No machine check expected 
Start restart referee 
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27.2 Power Recovery 

Note that RESTAR.CMD is different on the VAX-11/782 multiprocessing 
system; RESTAR.CMD for the VAX-11/782 is described in Chapter 28. 

The START command passes control to the same ROM program that is 
used during system initialization, except that the program is entered at its 
restart entry. point. 

The memory ROM program determines if the contents of main memory 
are valid. If they are, the ROM program attempts to locate the restart parame­
ter block. 

If a valid RPB cannot be found, or if the warm restart flag in the RPB is 
clear, the ROM program returns control to the console program, which at­
tempts a cold start (bootstrap). This indication is actually made by the mem­
ory ROM program writing a "reboot" signal into one of the console registers 
with the following instruction: 

MTPR #'XF02,#PR$_TXDB 

Otherwise, the hlemory ROM program passes control to the restart routine 
(whose address is stored in the RPB). The special uses of the PR$_ TXDB 
register for communication from the VAX-11 CPU to the console program are 
described in Chapter 19. 

Operation of the Restart Routine 

The VMS restart routine, EXE$RESTART, receives control with the follow­
ing conditions: 

• In kernel mode 
• On the interrupt stack (SP = RPB base + 200 hex) 
• With memory management disabled 
• At IPL 31 

These initial conditions are similar to the entry to VMB, except that the RPB 
has already been loaded. One more similarity between the entry to the restart 
routine and VMB is that SP points 200 (hex) bytes past the RPB. This pointer 
serves two purposes. The contents of SP are used to locate the RPB. The last 
several longwords in the page that contains the RPB will be used as stack 
space by the restart routine until the saved interrupt stack pointer is restored. 

The restart routine first clears two warm start inhibit flags. One of these 
flags is CPU-dependent and is cleared by writing a special code into the con­
sole transmit data buffer register. 

MTPR #~F03,#PR$_TXDB 

The other flag is located in the restart parameter block and is cleared with a 
BICL instruction. The use of these so-called loopbreaker flags is discussed 
further in Section 27.3.2. 

All information stored in the RPB by the powerfail service routine is re-
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stored next (see Table 27-1). Most of this information is necessary to turn 
memory management back on. A dummy PO page table is set up (just like the 
one set up by SYSBOOT) so that the page containing the restart routine is 
mapped as a PO virtual address that, when translated, yields the identical 
physical address. Chapter 25 shows how the contents of POBR are determined 
to produce this identity mapping. 

After the PO page table is set up, memory management is enabled using the 
same two instructions used by INIT: 

MTPR #1,#PR$_MAPEN 
JMP @#10$ 

10$: 

(Details of this technique can be found in the beginning of Chapter 25.) 
Once memory management has been enabled, the restart routine is able to 

restore the data that was saved on the interrupt stack. Before the data can be 
restored, a check is made to determine whether the restart was initiated as a 
part of powerfail recovery or in response to some other restart condition de­
tected by the console logic. All other reasons for restart are errors. The VMS 
restart routine simply issues a reason-specific bugcheck (which will result in 
a cold start, a bootstrap, if the SYSBOOT flag BUGREBOOT is set). By caus­
ing a bugcheck, the VMS operating system makes information available 
about the error condition through a crash dump. 

Before moving the saved value of th.e interrupt stack pointer to the SP, the 
saved value is checked. If the value is 0, the ISP was not saved in the power­
fail interrupt service routine. If this is the case, the bugcheck message, 
STATENTSVD, software state not saved during powerfail, is issued and a 
cold restart is attempted. 

Table 27-1 indicates the information that is restored from the interrupt 
stack. The restart routine does not use SP to restore this data. Rather, it uses 
a scratch register (R6) to traverse the stack to prevent the data on the stack 
from being overwritten in case another power failure occurs while the data is 
being restored. This use of a scratch register allows the restart routine to be 
repeated as many times as necessary without taking any special action. 

After everything except the general registers has been restored, the restart 
routine takes the following steps: 

1. A new system time is calculated. (The time-of-year clock kept running 
while the power was off. Its contents are used to recalibrate 
EXE$GQ_SYSTIME.) 

2. The restart time plus three minutes is computed and stored at the global 
location EXE$GL_PWRDONE. This value represents the time it may take 
all hardware components to become fully operational again. Device driv­
ers can use the routine EXE$PWRTIMCHK to make sure that these three 
minutes have passed before executing restarted $QIOs. The reason the 
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time is as long as three minutes is that it takes that long for mechanical 
devices (such as disks) to become operational. 

3. The timer queue is scanned. All timer queue elements that have expired 
have the recalibrated time substituted for their absolute due time. This 
substitution is done to allow periodic timer requests to reestablish inter­
nal synchronization. 

To illustrate the purpose of this step, suppose that a periodic timer re­
quest was declared with a period of one minute and the power was off for 
three minutes. With no adjustment of the absolute due time, three re­
quests would expire immediately following power recovery. The readjust­
ment causes one request to come due immediately, with the next request 
not occurring until one minute later. 

Note that relative synchronization between several requests may be lost 
as a result of a power failure. For example, if one request is due to expire in 
two minutes, a second is due to expire in five minutes (or three minutes 
after the first), and the power is off for more than five minutes, then both 
requests will be delivered at the same time. A power recovery AST might 
be used to allow multiple requests to reestablish their relative synchroni­
zation. 

4. A power recovery entry is made in the error log. 
5. External adapters are initialized. 
6. All external devices are notified that a power failure and recovery se­

quence have occurred. This step is detailed in Section 27.2.3. 
7. In the final step the following operations are performed: 

• The SP is set up to point to the saved general registers on the interrupt 
stack. 

• The general registers are restored. 
• The last sanity check flag, EXE$GL_PFAILTIM, is cleared (see Section 

27.3.1). 
• RPB$L_ISP is cleared (so that the powerfail recovery routine will find a 

0 if the state is incompletely saved in the next power failure). 
• The powerfail interrupt is dismissed with an REI instruction. 

Device Notification 

External devices are notified that a power failure has occurred in two stages. 
While the power recovery routine is executing (at IPL 31 so that another 

powerfail interrupt cannot occur), each driver is called at its controller ini­
tialization routine for each controller and at its unit initialization routine for 
each unit. The powerfail bit UCB$V _POWER in the UCB status word 
UCB$W _STS is set to allow each driver routine to differentiate between 
power recovery and ordinary initialization. 
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In addition, the entire I/O database is scanned, looking for units that are 
expecting interrupts or have timed I/O outstanding. The power recovery rou­
tine clears their interrupt-expected bits, sets their timeout-expected bits, and 
sets their due times to zero. These actions cause each device to appear to 
have timed out. The check for device timeout occurs as a result of the system 
subroutine that executes once a second. That routine will not execute until 
both of the following occur: 

1. The hardware clock interrupts (IPL has dropped below 24). 
2. The software timer executes as part of the system subroutine that has 

probably expired while the power was down. (This will not happen until 
the IPL is lowered below 7.) 

Thus, each device that was expecting an interrupt will appear to have timed 
out. A driver's timeout routine can differentiate between genuine timeout 
and power failure by checking the UCB$V _POWER bit. 

In a VMS system, most of the work done to recover from a power failure 
occurs in drivers. VMS disk drivers and magnetic tape drivers are capable of 
restarting whatever request they were processing when the power failed in 
such a way that the power failure is totally transparent to them. (If a mag­
netic tape unit lost vacuum, operator intervention is required to reestablish 
the vacuum and rewind the tape. Once that is done, the driver automatically 
restarts the I/O request that was in progress when the power failed.) 

Process Notification 

The VMS operating system also allows processes to be notified, by receiving 
an AST, that a power failure and subsequent recovery happened. A process 
requests this notification by using the Set Power Recovery AST system serv­
ice. 

27.2.4.1 $SETPRA System Service. The Set Power Recovery AST system service is an 
extremely simple service that performs two steps: 

• The address of the AST is stored in global location CTL$GL_POWERAST 
in the Pl pointer page. The access mode in which the AST will be deliv­
ered is stored in location CTL$GB_PWRMODE. 

• The power AST flag (PCB$V _PWRAST) in the status longword in the PCB 
is set. This flag will be used by the swapper in scanning the PCB vector 
following power recovery. 

The effect of this system service is disabled as a result of image rundown (see 
Chapter 21). 

27.2.4.2 Delivery of Power Recovery ASTs. The delivery of these ASTs occurs in sev­
eral distinct steps. 
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1. The power recovery routine stores the duration of the power failure in 
location EXE$GL_PFATIM. (This value is simply the current contents of 
PR$_ TOOR minus EXE$GL_PFAILTIM, the time at which the power 
failed.) Nonzero contents in this location act as a trigger to the swapper 
the next time that it runs. 

Note that no special action is taken at this point to wake up the swap­
per. In fact, because this routine is running at IPL 31, the swapper could 
not have its scheduling state changed without potential synchronization 
problems. 

2. A part of the swapper's main loop of execution (see Chapter 17) calls rou­
tine EXE$POWERAST if location EXE$GL_PFATIM contains a nonzero 
value. This subroutine scans the PCB vector and delivers a special kernel 
mode AST to each process that has the PCB$V _PWRAST flag set. That 
flag is cleared to prevent multiple ASTs if multiple power failures occur 
before the process executes. 

3. The special kernel mode AST is required because the address (and access 
mode) of the recovery AST are stored in the Pl space of the requesting 
process. The special kernel mode AST simply loads the address and access 
mode from their Pl space locations into the AST control block and queues 
the recovery AST to the requesting process. 

4. Finally, the recovery AST itself is delivered to the requesting process. The 
AST parameter is the duration of the power failure, in 10 millisecond 
units. 

27.3 MULTIPLE POWER FAILURES 

27.3.1 

Hardware and software flags exist in combination to prevent infinite looping 
or related problems in response to a power failure that occurs while either the 
powerfail service routine is executing or while the restart routine is execut­
ing. 

Nested Powerfail Interrupts 

One of the first steps taken by the powerfail service routine saves the con­
tents of the PR$_ TOOR register in location EXE$GL_PFAILTIM. This loca­
tion retains nonzero contents until just before the restart routine issues its 
REI instruction, dismissing the powerfail interrupt. 

If a powerfail interrupt occurs while this location contains a nonzero value 
(indicating that another failure/recovery is already in progress), this later in­
terrupt is ignored. Some machine state was saved as a result of the first 
powerfail interrupt. That state will be the one restored eventually by the 
restart routine. 

The previous step is an example of extreme caution that is necessary where 
power failure is concerned. A naive understanding of the way interrupts are 
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defined in the VAX architecture would expect that a second powerfail inter­
rupt cannot occur while IPL is at or above 30. Because IPL is not lowered 
until the powerfail interrupt is dismissed, IPL seems to cover this situation. 
However, if IPL is used to block the powerfail interrupt for a long time, there 
will be insufficient time to save the volatile machine state when the inter­
rupt is finally granted. The EXE$GL_PFAILTIM check, an extra sanity check 
that is totally under the control of the software, prevents nested powerfail 
interrupts on a system that is experiencing some obscure behavior that 
would otherwise be extremely difficult to diagnose. 

Prevention of Nested Restarts 

The previous check takes a long time to execute and is designed to prevent a 
second powerfail interrupt while a first is being serviced. A flag exists to 
prevent nested restart attempts. 

This flag, located in the restart parameter block, is cleared by INIT and by 
the restart routine, and set by the CPU-specific ROM routine that looks for a 
valid RPB. If the RPB search routine locates an otherwise valid RPB with the 
RPB$L_RSTRTFLG set, it assumes that the restart parameter block is in 
error and aborts the restart attempt. On the VAX-11/750, further action is 
controlled by the setting of the power on action switch on the front panel. On 
the VAX-11/780, the console program aborts the restart attempt and prints its 
prompt on the console terminal. 

A second flag, located within the console logic on the VAX-111780, func­
tions in a similar manner. It is set by hardware at the beginning of the restart 
and cleared by the restart routine by executing the following instruction: 

MTPR #'XF03 I #PR$_TXDB 

If the restart routine detects that this flag is set while attempting a restart, it 
aborts the restart and takes the same processor-specific action as it would if 
the restart parameter block flag were set. (There is no analog to this flag on 
the VAX-111750. The CPU microcode turns this particular MTPR instruction 
into a null operation.) 

One more bit of caution is evident in the manner in which the recovery 
routine restores data from the interrupt stack. A scratch register (R6) is used 
to traverse the stack. If another powerfail interrupt were to occur while data 
was being restored, no data would be lost due to the push of the PC and PSL 
onto the interrupt stack because the SP points to the end of the page contain­
ing the RPB and not into the middle of the data being restored. 

Device Driver Action 

Drivers do not have to concern themselves directly with the multiple restart 
problem. Even though the bulk of driver recovery is done in response to an 
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IPL 7 software interrupt when a second power failure is possible, drivers are 
protected by one of the following situations: 

• The driver controller and unit initialization routines are called at IPL 31 
before EXE$GL~PFAILTIM is cleared. Drivers are protected here by the 
same sanity checks that VMS uses for itself. 

• If the driver does not get called at its timeout entry point before the power 
fails again, the preserved driver state indicates a unit that has already 
timed out. When power is finally restored permanently, the driver will be 
called at its timeout entry point. 

• If the driver is in the middle of its timeout routine, it still appears to the 
system as a unit that has timed out. It will be called at its timeout entry 
point again when the machine finally stabilizes. 

• The driver may succeed in returning control to the operating system with, 
for example, one of the following calls: 

WFixxCH 
IOFORK 
REQCOM 

If the operating system has received control, the request has either been 
completed or the driver is back into a state (such as expecting an interrupt) 
where the power recovery logic will cause the driver to be called at its 
timeout entry point when the power is finally restored. 

27.4 POWER FAILURE ON THE UNIBUS 

27.4.1 

27.4.2 

UNIBUS power failure is handled differently on the VAX-11/780 and on the 
other VAX processors. The UNIBUS is an integral part of the VAX-11/730 and 
VAX-11/750 processors, whereas the UNIBUS on a VAX-11/780 is connected 
to the SBI through a UNIBUS adapter (DW780). 

UNIBUS Power Failure on the VAX-11/730 and VAX-11/750 

The UNIBUS on the VAX-11/730 and the VAX-11/750 cannot experience in­
dependent power failure. If power fails on the UNIBUS, it has also failed on 
the processor. As a result, a powerfail interrupt is generated. 

UNIBUS Power Failure on the VAX-11/780 

Because a UNIBUS failure on the VAX-11/780 does not necessarily indicate 
that the entire system is in error, VMS allows UNIBUS errors, including 
UNIBUS power failure caused by turning off the power to the UBA or the 
BA-llK, to occur without crashing the entire system. 

When such an error occurs, the UBA interrupts on behalf of itself (bit<31> 
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of the appropriate BRRVR is set). The interrupt service routine for the af­
fected UBA detects that a UBA interrupt (as opposed to a UNIBUS device 
interrupt) has occurred and transfers control to an error routine that does the 
following: 

• Checks that the interrupt is due to the power failure of the UBA or UNI­
BUS. 

• Writes an error log entry. 
• Remaps the system virtual addresses that previously mapped the UBA it­

self and the UNIBUS I/O page (24 pages in all) so that these pages now 
point to the so-called black hole page reserved at initialization time. 

This mapping technique prevents subsequent machine checks or related 
errors from device drivers that reference the UBA or device registers while 
the UBA or UNIBUS power is off. 

If the UNIBUS has gone away either because the power was turned off or for 
some other reason, devices that were waiting for I/O completion will time 
out. The program that issued the initial I/O request will receive an appropri­
ate error notification, assuming that no driver is sitting in a tight loop at 
device IPL waiting for a status bit to change state. 

When the power is restored, the system virtual pages are remapped to point 
to the UBA registers and the UNIBUS I/O page. If any devices were removed 
while the power was turned off, they will be marked offline as part of the 
power recovery operation. 

This feature has implications for people attempting to debug device driv­
ers. In VAX/VMS Version 1.0, a reference to a nonexistent CSR or other such 
error caused the system to bugcheck, a drastic but immediate notification 
that an error had occurred. 

The recommended method for debugging UNIBUS device drivers on VAX/ 
VMS Version 2.0 or more recent VMS system is to place an XDELTA break­
point at global location EXE$DW780_INT (at location 80002EEE in Version 
3.0). This technique also allows immediate error notification without taking 
the system down and without the wait for the system to reboot itself. Of 
course, the error log can also be examined to obtain information about the 
error. 



28 The VAX-11/782 
Multiprocessing System 

The one is independent, and its essential nature is to be for itself; 
the other is dependent, and its essence is life or existence for 
another. The former is the Master, or Lord, the latter the 
Bondsman. 

-Hegel, Phenomenology of Mind 

When VAX/VMS Version 3.0 was in the design stages, a large demand was 
seen for a more powerful VAX processor. In order to satisfy that demand, a 
plan was developed to join two VAX-11/780 processors as a tightly coupled, 
asymmetric multiprocessing system. Loosely coupled multiprocessing was 
already available through the MA780 shared memory; however, being loosely 
coupled, such systems lacked any dynamic load leveling capability. Because 
the multiprocessing system was targeted for users with multistreamed, com­
pute-intensive jobs, dynamic load leveling was a necessity. 

There were several requirements for the multiprocessing system: 

• It must use existing DIGITAL hardware. 
• The same version of the VAX/VMS operating system must be able to run 

on the new processor and on any other VAX processor. In addition, applica­
tions must be able to run on all processors. 

• There were to be no complex changes to existing kernel mode routines. 
• Users that did not have the new processor were not to be penalized by the 

increased size of the VAX/VMS operating system. 

The VAX-11/782 multiprocessing system consists of two VAX-11/780 proc­
essors that use from two to four MA780 shared memory units as common 
memory. Both processors are capable of executing instruction streams inde­
pendently of each other. Both processors address a common pool of memory 
in the MA780 shared memory; the local memory on either processor is not 
used. 

Figure 28-1 depicts the hardware configuration of a V AX-11/782 multiproc­
essing system (from now on called simply the VAX-11/782). The configura­
tion shown in the figure uses two MA780 shared memory units; note that the 
UNIBUS and MASSBUS adapters are attached only to the SBI of the primary 
processor. Although I/O devices can be connected to the attached processor, 
they will not be recognized by the system. 

The primary processor in the V AX-11/782 does computational work, per-
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forms memory management and 1/0 for the system, and schedules work for 
itself and the attached processor. The attached processor does computational 
work but cannot execute kernel mode code on behalf of user processes (sys­
tem services and exception service routines). An exception or interrupt that 
causes a change to kernel mode on the attached processor results in an inter­
rupt to the primary processor. The primary processor schedules another job 
to execute on the attached processor and schedules the kernel mode code to 
execute on itself. 

This chapter describes the internals of multiprocessing on the VAX-11/ 
782. It is assumed that readers are familiar with the concepts of multiprocess­
ing and multiprocessing configurations described in the VAX-111782 User's 
Guide. Readers interested in hardware-related topics should see the VAX 
Hardware Handbook. 

28.1 HOW THE VMS SYSTEM SUPPORTS MULTIPROCESSING 
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As originally conceived, the copy of the VMS operating system that was run 
on the VAX-111782 had to run equally well on the other three VAX proces­
sors. The additional software required for the V AX-111782 could not affect 
the amount of physical memory required by the VMS operating system run­
ning on other VAX processors. To meet this goal, the pieces of multiprocess­
ing code used by the VAX-111782 are maintained in a separate module and 
are loaded into nonpaged pool only when multiprocessing is turned on. 
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In order for these pieces to be included as part of the VMS executive, a 
number of symbols were added to the executive to indicate the location of 
branches to the new multiprocessing code. These symbols are termed multi­
processing "hooks." The system control block of the primary processor also 
contains multiprocessing hooks so that multiprocessing interrupts are routed 
to the new multiprocessing interrupt service routines. The symbols used as 
multiprocessing hooks are contained in every copy of the VAX/VMS operat­
ing system; however, they are used only by the VAX-11/782 code. 

Hooks in the Executive 

When multiprocessing is turned on by the DCL command START/CPU, the 
multiprocessing code is loaded into the system. The instructions at the loca­
tions indicated by the hooks are changed to jumps to the multiprocessing 
code. Three types of hooks are used to link the multiprocessing code into the 
VMS executive. The hooks and the changes they perform are these: 

Symbol Format 

MPH$name 

MPH$nameHK 

MPH$nameCONT 

Change to Code 
The instruction indicated by the hook will be re­
placed by a jump to multiprocessing code. This 
hook is used when the multiprocessing routine 
MPS$name will perform the entire set of actions 
normally performed by the routine xxx$name. 

The instruction indicated by the hook will be re­
placed by a jump to multiprocessing code. This 
hook is used when only a few lines need to be 
changed by multiprocessing, or when supplemental 
action is necessary. 

Multiprocessing code will return to the normal flow 
of code at this point. No change is made to the in­
struction indicated by this hook. 

All entry points in the loaded multiprocessing code have the form 
MPS$name. 

When multiprocessing is turned on, the contents of location 
MPH$nameHK or MPH$name are saved in a storage area in nonpaged pool 
and the following instruction is inserted in its place: 

JMP @#MPS$name 

(Note that the macros used to insert hooks can also create a JSB 
@#MPS$name instruction; for simplicity, the JMP form is shown in this and 
the following examples.) 

The multiprocessing routines will exit either by returning control to the 
modified routine's caller (with an RSB or RET instruction, or with an REI 
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instruction, if the routine is an entire new interrupt routine) or by jumping to 
the MPH$nameCONT location as illustrated by the following code frag­
ment: 

JMP@#MPH$ASTDELCONT 

The following code fragment illustrates the use of the MPH$name hook in 
the queue AST routine in module ASTDEL. Because queuing ASTs is signifi­
cantly different on the VAX-11/782, the entire routine is replaced. 

BRB QEXIT 
MPH$QAST:: 
SCH$QAST:: 

MOVZWL ACB$L_PID (RS), RO 

The following code fragment illustrates the use of the MPH$nameHK and 
MPH$nameCONT in the routine SCH$ASTDEL: 

SETIPL #IPL$_SYNCH 
MPH$ASTDELHK:: 

REMQUE @PCB$L_ASTQFL(R~),RS 

BVS QEMPTY 
MPH$ASTDELCONT:: 

This hook is used to insert multiprocessing code into the routine, rather than 
to replace code. 

Another form of hook is used to modify the SCB. In this case, specific 
vectors in the SCB are replaced by vectors to multiprocessing interrupt serv­
ice routines. These routines are invoked by interrupts, and return via the 
normal REI mechanism. 

Hardware Support for Multiprocessing 

In terms of hardware, the MA780 shared memory was designed with the idea 
of multiprocessing in mind. It provides interprocessor interrupts and a multi­
processor selective cache invalidate option. 

The MA780 selective cache invalidate option is required in MA780s used 
in a V AX-11/782 system. This option associates longwords in shared memory 
with the processor (or processors) using those locations. When one processor 
performs a write to a longword of shared memory, the MA780 sends a mes­
sage to the second processor to invalidate the contents of its local cache (but 
only if the second processor is using the same location). Without this option, 
every write to shared memory would send cache invalidation messages to 
both processors, thus increasing overall traffic on both SBis. 

When multiprocessing code is loaded, the software interrupt vectors in the 
SCB must be modified. The software interrupt level 5 vector is used for the 
multiprocessing rescheduling routine on the primary processor. (Because this 
vector is used by XDEL TA on single processor systems, XDEL TA was moved 
to the software level 15 interrupt on the VAX-11/782.) 
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When multiprocessing is turned on, the first MA780's interprocessor inter­
rupt vectors for both processors are modified to point to multiprocessing rou­
tines; the MA780 error interrupt vectors remain unchanged. The interproces­
sor interrupt vectors for any additional MA780s point to unexpected 
interrupt error handlers. The vectors at IPLs 20 and 21, and IPLs 22 and 23 are 
loaded redundantly, because the IPL levels interrupted by the MA780 are 
jumper-selectable. The even-numbered IPLs are the interprocessor interrupts 
and the odd-numbered IPLs are the error interrupts. 

The interrupt service routine MPS$PINTSR is the primary processor's in­
terrupt handler; MPS$SINTSR is the attached processor's interrupt handler. 
EXE$INT58 handles MA780 error interrupts. 

28.2 SYSTEM INITIALIZATION ON THE VAX-11/782 

28.2.1 

28.2.2 

As part of the installation procedures used to install the VAX/VMS operating 
system on the VAX-11/782, two special console floppy diskettes are created: 
one for the primary processor, and one for the attached processor. These 
floppy diskettes contain special command files used to bootstrap the proces­
sors of the multiprocessing system. 

The primary processor does most of the work of system initialization. It 
loads the executive into MA780 shared memory and performs all the tasks 
that are involved in bootstrapping a single processor VAX-11/780 system. 

System Initialization on the Primary Processor 

The command files on the console floppy for the primary processor set the 
flag RPB$V _MPM in RS, indicating that VMB is to ignore local memory and 
to use only the shared memory as main memory. Because there is no boot­
strap ROM in the MA780, it is assumed that the first 64K bytes in the MA780 
are good. The command file clears error bits in the MA780 registers and de­
fines the starting address for each MA780 memory. 

The primary bootstrap routine, VMB, is loaded into the first 64K bytes of 
memory, starting at physical address 200 (hex) and builds the restart parame­
ter block (RPB) at physical address 0. From this point on, initialization con­
tinues as it would on a single processor VAX-111780 system (see Chapter 24). 
When the initialization is complete on the primary processor, the VMS oper­
ating system will run normally on the primary processor without multiproc­
essing (using MA780 memory rather than local memory). 

System Initialization on the Attached Processor 

The attached processor's bootstrap command file clears error bits in the 
MA780 registers and defines the starting address for each MA780 memory. 
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These addresses must be identical to those established by the primary proces­
sor; hence the need for the new VAX-11/7S2-specific console floppies. Both 
processors share the same restart parameter block (RPB). When multiprocess­
ing is turned off, the location RPB$B_ WAIT is loaded with a jump-to-self 
instruction, similar to the following example: 

DESTINATION: 
. ADDRESS -

10$ 
10$: JMP @DESTINATION 

If the attached processor is rebooted before multiprocessing is turned on 
again, the attached processor will simply wait in this loop until the DCL 
command START/CPU is reissued. 

Note that it is possible to bootstrap the secondary processor before multi­
processing is turned on only after multiprocessing has been turned on and 
turned off again. If the VAX-11/7S2 is being cold started and the attached 
processor is bootstrapped before multiprocessing is turned on, the bootstrap 
operation on the attached processor will fail (due to the lack of appropriate 
data in the RPB$B_ WAIT cells in the RPB). 

Turning Multiprocessing On 

Multiprocessing is turned on by the DCL command START/CPU, which 
executes the image MP.EXE. MP.EXE performs the following actions: 

1. It loads a portion of itself into SK bytes of nonpaged pool. These SK bytes 
contain the following: 

• Data areas used for communication between the two processors 
• Replacement code for several VMS kernel mode routines 
• All special code executed by the attached processor 
• Space for the interrupt stack, system control block, and error log buffers 

for the attached processor 

The loaded code is a dynamic nonpaged pool data structure that has a 
standard header. The first two longwords, which usually contain the 
FLINK and BLINK fields, contain information necessary for deallocating 
the loadable code from pool. The third longword contains the size and type 
fields. The symbolic offsets within the multiprocessing code are defined in 
SYS$SYSTEM:MP.STB. 

2. The communication data areas are initialized, and the attached proces­
sor's execution state is set to INIT. 

3. IPL is raised to 31, to block any system events, and the pages containing 
the VMS executive are made writeable. 

4. Locations within the executive that are identified by multiprocessing 
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hooks are modified so that control will be transferred to multiprocessing 
code. 

5. The primary processor's SCB is modified to handle multiprocessor sched­
uling and MA780 interprocessor interrupts. 

6. The secondary processor's SCB is initialized. 
7. The RPB is modified so that location RPB$B_ WAIT contains a jump to the 

attached processor's initialization and restart routine (which was just 
loaded as part of the multiprocessing code). 

8. The pages containing the VMS executive are marked read only and IPL is 
lowered to 0. 

Once RPB$B_ WAIT has been modified, the attached processor can be 
bootstrapped (if it has not been bootstrapped already). The last console com­
mand in the bootstrap command file for the attached processor causes the 
instruction stored at RPB$B_ WAIT to be executed. Before the DCL com­
mand START/CPU is issued, this location contains a jump to self; after 
START/CPU has been issued, this instruction contains the attached proces­
sor's initialization routine. 

The attached processor's initialization routine then performs the follow­
ing ~ctions: 

• Memory management is turned on, using information in the RPB. 
• The interval timer is turned on. The attached processor uses its own inter­

val timer to do CPU-time accounting and quantum-end detection for its 
processes. 

• Any errors are cleared and interrupts are enabled on the MA780 port adapt­
er(s). 

• The attached processor's execution state is set to IDLE. 
• Finally, the primary processor is interrupted with a rescheduling request. 

Turning Multiprocessing Off 

The DCL command STOP/CPU is used to turn off multiprocessing on the 
V AX-111782. This command invokes the routine MPS$UNLOAD in module 
MPLOAD. MPS$UNLOAD performs the following functions: 

• The primary processor interrupts the attached processor with a stop re­
quest. If the attached processor is running a process, it saves the context of 
the current process and the primary processor adds the process to its sched­
uling queues. 

• The processor state of the attached processor is set to STOP and a jump to 
self instruction is loaded into the RPB. 

• A HALT instruction is issued on the attached processor. 
• The pages that contain the VMS executive are made writeable and IPL is 

raised to 31 to inhibit all system events. 
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• Each location identified by multiprocessing hooks is replaced with its orig­
inal contents. 

• The primary processor's SCB is restored to its original condition (a single 
processor SCB). 

• IPL is lowered to 7 and the pages containing the multiprocessing code are 
returned to nonpaged pool. 

• The executive is made read only and IPL is restored to 0. 

When MPS$UNLOAD completes, the primary processor runs as a single 
CPU VAX-11/780 and the attached processor either halts or executes the 
console command file RESTAR.CMD, depending on the position of the 
RESTART switch on the front panel of the processor cabinet. If the attached 
processor is bootstrapped by hand, the processor will execute the console 
command file DEFBOO.CMD and jump to the location RPB$B_ WAIT in the 
restart parameter block. The attached processor will execute the jump to self 
instruction at RPB$B_WAIT until the DCL command START/CPU is is­
sued. 

If, for some reason, the attached processor does not respond to an interrupt 
after a reasonable amount of time, the primary will assume that the attached 
processor has failed. In this case, all the steps in turning multiprocessing off 
are executed, with the exception of deallocating the pages in nonpaged pool. 
The multiprocessing data is not deleted because it is assumed that an at­
tempt will be made to restart the attached processor. (Note that this action 
was added in VAX/VMS Version 3.2.) 

28.3 SCHEDULING AND INTERRUPTS ON THE VAX-11/782 
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To simplify synchronization of the scheduler database, the primary processor 
schedules processes for execution on itself and on the attached processor. 
Either the attached processor will interrupt the primary for a rescheduling 
event, or the primary, before scheduling itself, will check the state of the 
attached processor, to see if it is IDLE. Within the loaded multiprocessing 
code, the location MPS$GL_STATE contains the execution state of the at­
tached processor. There are six possible execution states: INITIALIZE, IDLE, 
BUSY, EXECUTE, DROP, and STOP. 

Figure 28-2 shows the possible execution states for the attached processor 
and the possible transitions between the states. As is shown in the figure, 
certain transitions can be caused only by the primary processor, others can be 
caused only by the attached processor. 

When the multiprocessing code is loaded by the DCL command START/ 
CPU, the attached processor is set to the INITIALIZE state. Once the at­
tached processor has executed its initialization code, it changes its execution 
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state to IDLE. The primary processor will schedule work for the attached 
processor only when the attached processor is in the IDLE state. 

Scheduling Processes on the V AX-11/782 

When the attached processor needs to be rescheduled, it interrupts the pri­
mary processor, using the MA780 interprocessor interrupt capability by issu­
ing the MA780 interprocessor hardware interrupt. The primary processor's 
interrupt service routine (MPS$PINTSR) requests a rescheduling software 
level 5 interrupt. 

The primary processor's rescheduling routine (MPS$RESCHED) selects a 
suitable process to run on the attached processor, using the scheduling algo­
rithm that is always used by the VMS operating system (round robin within 
priority level, highest priority processes scheduled first). If no suitable com­
putable process exists, the execution state of the attached processor is set to 
IDLE and the processor loops, waiting for the processor execution state to be 
set to BUSY (by the primary). While waiting, the attached processor also in­
validates the contents of the system translation buffer (when indicated by the 
MA780). To avoid schedule thrashing, the scheduling interrupt routine first 
insures that the selected process will not be placed back into execution in 
kernel mode, either directly (by examining the PSL mode bits) or indirectly 
(by checking for pending AST delivery). When a job is scheduled on the at­
tached processor, the execution state is set to BUSY. 

Scheduling for the primary processor is done at IPL 3 (the normal schedul­
ing IPL), with a slightly modified rescheduling interrupt service routine. Be­
cause scheduling requests for the attached processor interrupt at IPL 5, sched­
uling on the attached processor has precedence over scheduling on the 
primary processor. Before scheduling a process to run on the primary, the 
slightly modified IPL 3 routine checks the processor state of the attached 
processor. If the execution state of the attached processor is IDLE, the pri-
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mary schedules a process to run on the attached processor and sets the execu­
tion state to BUSY. A process scheduled to run on the attached processor will 
run until either it runs out of quantum or it incurs an exception or interrupt. 
The process will not be taken out of execution if a higher priority process 
becomes available. However, the process running on the primary processor 
can be preempted. 

Preventing Scheduling on the Attached Processor 

Currently the only reason for preventing processes from executing on the 
attached processor is processes that have created and mapped global sections 
to specific physical pages [using the PFNMAP option with the $CRMPSC 
system service). When a process performs an action that disallows it from 
executing on the attached processor, a location in the process header 
[PHD$L_MPINHIBIT) is incremented. 

A common use of PFN mapping is to access the UNIBUS I/O space. The 
process's PO page table is loaded with PFNs that correspond to particular 
locations in I/O address space. If such a process were to execute on the at­
tached processor, its translated references to the PFN-mapped section would 
access the attached processor's I/O address space [instead of the primary's I/O 
address space, where the devices are). 

Figure 28-3 shows the relative layout of physical address space in the 
VAX-11/782. Note that while the processors share common addresses in the 
MA780 shared memory, each processor has its own I/O address space. Be­
cause the I/O address space is different on each processor, processes with 
PFN-mapped pages are not allowed to run on the attached processor. 

Executing Jobs on the Attached Processor 

When the attached processor is in the IDLE state, it continuously checks 
MPS$GL_STATE. When a job is scheduled on the attached processor, the 
state is set to BUSY. The attached processor detects the change to BUSY, sets 
the execution state to EXECUTE, and begins to execute the job. 

The BUSY and EXECUTE states must be unique so that special conditions, 
such as powerfail recovery, can be handled correctly. If a powerfail occurs on 
the attached processor when the execution state is BUSY, the processor sim­
ply halts. However, if the execution state is EXECUTE, the attached proces­
sor must save the context of its current process and then halt. 

A process will be executed on the attached processor until one of the fol­
lowing conditions arises: 

• Quantum expiration occurs for the process. 
• The process incurs an exception or interrupt that requires a transition to 

kernel mode. 
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If either of these conditions occurs, the attached processor stops executing 
the process and takes the following actions: 

• The attached processor saves the context of the process. 
• The execution state is set to DROP. 
• The attached processor interrupts the primary processor to request a re-

scheduling event. 

When the primary processor receives the rescheduling interrupt, it performs 
the following actions: 

• It places its current process into the appropriate scheduling queue. 
• It locates the process that was executing on the attached processor and 

places the process into the appropriate scheduling queue. 
• It sets the attached processor's state to IDLE. 
• It locates a process that is suitable for execution on the attached processor. 

The following criteria are used for selecting a process: 

- The process must not be executing in kernel mode. 
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- The current access mode must be less than the value saved in 
PR$_ASTLVL. 

- The value at offset PHD$L_INBIBIT must equal zero. 

If no suitable process is available, the attached processor loops until its 
scheduling state is set to BUSY. 

• If a suitable process is found, the process is scheduled on the attached 
processor, and the execution state is set to BUSY. 

• It selects a process to execute on itself. 

Detecting Access Mode Transitions 

Because process-context kernel mode code can be executed only on the pri­
mary processor, it is critical for the attached processor to be able to detect 
when its current process changes access mode to kernel. For performance 
reasons, it is desirable to detect when a process running on the primary proc­
essor leaves kernel mode and becomes eligible to run on the attached proces­
sor (when the attached processor is IDLE). Transitions to kernel mode are 
detected by exceptions or interrupts; transitions from kernel mode are de­
tected by the AST delivery mechanism built into the REI instruction. 

28.3.4.1 Transitions to Kernel Mode. Almost all exceptions and interrupts cause a 
transition to kernel mode. The vectors in the attached processor's system 
control block (SCB) are set up so that only the CHME, CHMS, and CHMU 
exceptions are vectored to the normal VMS logic. Most other exceptions and 
interrupts cause an access mode change to kernel and, thus, cause the at­
tached processor to save the current process's context and interrupt the pri­
mary processor for a rescheduling event. 

28.3.4.2 Transitions from Kernel Mode. One of the functions of the REI instruction is 
to request a software level 2 (AST delivery) interrupt whenever an AST is 
pending for an access mode more privileged than or equal to the access mode 
to which it is returning. The REI microcode compares the access mode being 
restored to the access mode in the process register PR$_ASTLVL, the access 
mode of the AST at the head of the AST queue (see Section 7.1). Because the 
REI instruction is the only way to return to one of the outer access modes 
from kernel mode, the AST mechanism can be used as a method of notifica­
tion that a process is leaving kernel mode. 
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The IPL 3 scheduling routine will simulate a pending executive mode AST 
for that process when the following are true: 

• There is no process available to execute on the attached processor. 
• There are at least two computable processes in the scheduling queues 

other than the null process. 



28.3.5 

28.3 Scheduling and Interrupts on the VAX-111782 

The process is then scheduled for execution on the primary processor. Even­
tually, when the process issues the REI instruction to leave kernel mode, an 
AST delivery interrupt is triggered. The AST delivery interrupt service rou­
tine determines that this is a simulated AST and that the attached processor 
is IDLE. The routine then requests an IPL 3 rescheduling interrupt and dis­
misses the AST delivery interrupt. 

The IPL 3 rescheduling interrupt service routine saves the context of the 
current process and places it on the appropriate compute queue. Then the 
interrupt service routine looks for a suitable process to schedule on the at­
tached processor. If the process whose context was just saved is the most 
suitable process, it is scheduled to run on the attached processor. Note that 
this simulated AST is scheduled only when the attached processor is IDLE 
and other computable processes are waiting for execution. 

Interrupt Communication 

The primary processor will interrupt the attached processor for one of the 
following reasons: 

• When an AST is queued to the process running on the attached processor, 
the primary processor interrupts the attached processor. Because 
PR$_ASTLVL is a processor register, it exists on both processors. The 
value in PR$_ASTL VL on the attached processor can be altered only by 
code executing on the attached processor. 

• When the primary processor detects a fatal bugcheck, it interrupts the at­
tached processor, causes it to save the context of the current process, and 
sets the execution state to STOP. 

• When the DCL command STOP/CPU is issued, the primary processor 
causes an interprocessor interrupt. The attached processor then saves the 
context of the current process and sets the execution state to STOP. 

• When a system space address becomes invalid, the primary processor 
causes an interprocessor interrupt to request the attached processor to also 
make that address invalid. The primary processor waits until it receives an 
acknowledgment from the attached processor that the address has been 
made invalid. 

The attached processor will interrupt the primary processor for the following 
reasons: 

• When the attached processor signals a rescheduling request. A reschedul­
ing request can occur when the attached processor is first initialized, or 
when the current process on the attached processor makes a transition to 
kernel mode. In either case, the attached processor interrupts the primary 
processor and requests a new process to be scheduled for it. 
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• When the attached processor has an error log message, it interrupts the 
primary processor to copy the error log message to the system error log 
block buffers. 

• When a fatal bugcheck occurs on the attached processor, it interrupts the 
primary processor and requests the primary processor to crash the system. 
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29 Logical Names 

Call things by their right names ... Glass of brandy and water! 
That is the current but not the appropriate name: ask for a glass 
of fire and distilled damnation. 

-Robert Hall, in Olinthus Gregory, Brief Memoir of the Life of Hall 

Logical names provide a powerful tool for a single process or several processes 
to use as a communication tool. Logical names also allow the system and 
application programs to implement a transparent form of device indepen­
dence and I/O redirection. This chapter describes the internal implementa­
tion of logical names. 

29.1 LOGICAL NAME TABLES 

29.1.1 

When a logical name is created, the logical name string and its equivalence 
name string are put into a data structure called a logical name block. This 
structure is then inserted into one of three groups of doubly linked lists, 
depending on whether the logical name is being inserted into the process, 
group, or system logical name table. 

The process logical name table is located in the process allocation region in 
Pl space. The group and system logical name tables are both allocated from 
paged dynamic memory. 

Logical Name Data Structures 

The listheads for the three tables are located through the longword array at 
global location LOG$AL_LOGTBL. Each of the longwords in this array 
points to a name table pointer, which, in turn, contains the address of the 
hash table for the appropriate name table. The name table pointers for the 
system and group logical name hash tables are stored in longwords at 
LOG$AL_LOGTBL+8 and LOG$AL_LOGTBL+ 12 (decimal); the name 
table pointer for the process logical name hash table is contained in global 
location CTL$GL_LOGTBL. The hash of the logical name being searched is 
used as an index into the hash table. Entries in the hash tables point to dou­
bly linked lists of logical name blocks. 

The logical name blocks are inserted in the doubly linked lists in increas­
ing lengths of logical name strings. Name blocks with logical name strings of 
the same length are ordered alphabetically. 

The three logical name tables, their hash tables, and their listheads are 
pictured in Figure 29-1. 
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Logical Name Block 

The contents of a logical name block are pictured in Figure 29-2. Both the 
logical name and the equivalence name may be up to 63 characters in length. 
Before the memory block is allocated, the size required for the sum of the two 
strings plus the fixed size is rounded up to the next quadword so that, al­
though logical name blocks are of variable length, they are always an integral 
number of quadwords in length. 

The access mode field is only used when a logical name block appears in 
the process logical name table. When a process logical name is created, its 
logical name block is inserted into the process logical name table in order of 
decreasing access mode. In other words, a user mode logical name XYZ ap­
pears in the list before a supervisor mode logical name XYZ. When logical 
name XYZ is translated, the user mode equivalence name rather than the 
supervisor mode equivalence name is returned. 

The group field is only relevant when the logical name block appears in the 
group logical name table. There is only one group logical name table for the 
entire system and all group logical name blocks are placed into this list. An 
operation that searches the group logical name table looks for a match be­
tween the group code in the logical name block and the group number of the 
caller of the system service. 

The associated mailbox field is used when the logical name is created as a 
part of mailbox creation. In addition, the Mount Utility uses this field when 
it creates a logical name in connection with mounting a volume. 

Logical Name Table Forward Link 

Logical Name Table Backward Link 

Table Type Size 

~ Access Creator's Group 
Mode 

Mailbox UCB Address 

Logical Name String 1 Count 

1:: (Up to 63 characters) J::. 
Equivalence Name String 1 Count 

y v z (Up to 63 characters) 1 

Table Number 

0 
1 
2 

Figure 29·2 
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Searching for a Logical Name 

In order to search for a logical name, the logical name services use the routine 
LOG$SEARCHLOG in module LOGNAMSUB. Figure 29-1 shows the struc­
tures used in the search for a logical name. 

The search begins by locating the table of logical name pointers at global 
address LOG$GL_LOGNAM. The logical name table number (indicating 
system, group, or process logical name table) is used as an index into the table 
of pointers. When the pointer is located, it is used to point to the name table 
pointer, which, in turn, points to the appropriate hash table. The logical 
name is hashed and the resulting value is used as an index into the hash table. 
The hash table entry located by the index contains the longword listhead for 
a list of logical name blocks. 

As each logical name block is processed, the length of the logical name in 
the logical name block is compared with the length of the logical name being 
searched for. If the length of the logical name in the logical name block is less 
than the length of the logical name being searched for, the block is passed 
over and the search continues without the costly overhead of a CMPC in­
struction that is bound to fail. 

If the length of the logical name in the logical name block is greater than 
the length of the logical name being searched for, the search has passed the 
possible logical name blocks, so the search fails. 

If a string is found with the same length, the strings are compared. If the 
string comparison fails, and the logical name in the logical name block oc­
curs alphabetically before the logical name being searched for, the search has 
passed the possible logical name blocks, so the search fails. 

The failure to locate a logical name indicates the last possible location 
where the logical name should have been placed. This information is used 
when inserting a logical name block in the table. 

Hashing the Logical Names 

The algorithm used to hash the logical names was chosen because it is fast 
and provides a good distribution within the hash table. 

The hashing algorithm is as follows: 

1. The size of the logical name string is moved to a longword; this is the base 
hash value. 

2. Four bytes of the string are XORed into the hash longword. The hash is 
then rotated by nine bits to the left. 

3. Step 2 is repeated until there are less than four bytes remaining in the 
string. 

4. The remaining bytes are XORed into the hash longword one byte at a 
time. After each XOR the hash is rotated by 13 bits. 
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5. The hash longword is then multiplied by an eight-digit hexadecimal num­
ber (71279461 hex). 

6. The next longword above the hash longword is cleared, resulting in a 
quadword whose low-order longword contains the hash and whose high­
order longword is zero. 

7. The quadword is then rotated by an arithmetic shift to the left. The num­
ber of bits to shift is determined by the number of entries in the hash table 
expressed as a power of two. This value is located through the byte array at 
global location LOG$AB_HTBLCNT. 

8. The value shifted into the high-order longword of the quadword is the 
index into the hash table. 

The process hash table is located in the process allocation region in Pl space 
when the process is created; the group and system hash tables are both allo­
cated from paged dynamic memory when the system is initialized. The sizes 
for the system, group, and process hash tables are determined by the SYS­
BOOT parameters LOGSHASHTBL, LOGGHASHTBL, and LOGPHASHTBL, 
respectively. 

Changes to Speed Logical Name Translation 

In VAX/VMS Version 3.0 the logical name translation scheme was modified 
to reduce the time it took to find (or note the absence of) a logical name. 
Previous to Version 3.0, the search that took the most time was the search for 
a nonexistent logical name. Hashing the logical names reduced this time 
significantly by reducing the average length of the lists of logical name 
blocks. 

In addition, an improvement in efficiency was made by ordering the lists. 
Previously, the list of logical names was searched until either a match or the 
end of the list was found. By ordering the lists of logical name blocks, the 
search does not need to go to the end of a list to determine that a search for a 
logical name has failed. Failure is indicated as soon as either of the following 
is true: 

• The length of the string in the block is less than the length of the string 
being searched for. 

• The string in the block occurs alphabetically before the string being 
searched for. 

29.2 LOGICAL NAME SYSTEM SERVICES 

There are three system services available for logical name manipulation. Log­
ical names can be created, translated, or deleted. Privileges are required to 
modify the group and system logical name tables. Before discussing the indi-
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vidual services, some checks that are common to more than one of the ser­
vices are described. 

Privilege and Protection Checks 

Like any other system services that use access mode as an argument, the 
logical name system services call the routine EXE$MAXACMODE to maxi­
mize the mode passed as an argument with the access mode of the caller 
(found in the previous mode field of the PSL). A process that wishes to create 
or delete a group or system logical name must have the appropriate privilege 
(GRPNAM or SYSNAM respectively). 

Several access checks must be made by these services. Because all three 
services pass at least one string descriptor as an argument (Create Logical 
Name has two), the read accessibility of both the string descriptor and the 
string must be checked. Translate Logical Name must check write accessibil­
ity of the arguments that are used to pass information back to the caller. 

Logical Name Table Mutexes 

Both the group and system logical name tables are protected from simultane­
ous access by mutexes (see Chapter 2). The Translate Logical Name system 
service locks the table that is currently being searched for read access. This 
lock does not prevent other processes from reading (translating) logical names 
in the same logical name table. Logical name creation and deletion both re­
quire that the table being modified be locked for write access. This lock pre­
vents other processes from even reading the locked table while the table is 
being modified. 

Logical Name Creation 

After the preliminary checks have been made, the Create Logical Name 
($CRELOG) system service allocates a block of memory for the logical name 
block. The block is allocated from the process allocation region for process 
logical names and from paged dynamic memory for group and system logical 
names. The size of the block is the sum of the lengths of the logical and 
equivalence strings plus the size of the constant part of a logical name block. 
Before the allocation routine is called, the size is rounded to an integral num­
ber of quadwords. 

After all the parameters have been placed into the allocated block, a search 
is made for the logical name string in the appropriate logical name table. If 
the search fails, the logical name block is inserted into the list at the location 
where the search failed. If an identical logical name already exists, the old 
name is first deleted and an alternate success status, SS$_SUPERSEDE, is 
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returned to the caller. If the logical name is being put into the process logical 
name table and an identical name is found with a different access mode, the 
logical name block is inserted into the table in such a way as to place the 
highest (least privileged) access mode closest to the beginning of the table. 

Logical Name Deletion 

After the usual privilege and protection checks are performed, the Delete 
Logical Name ($DELLOG) system service checks whether this operation is 
deleting a single logical name or a group of names. If all system names are to 
be deleted, they are. If all group names are to be deleted, those logical names 
that have the same group code as the caller are deleted. If all process names 
are to be deleted, all logical names for the specified access mode and all less 
privileged access modes are deleted. 

The deletion of a single logical name requires that the appropriate table be 
searched. If the logical name is in the process table, an access mode check is 
performed. The actual deletion operation first removes the logical name 
block from the list, clears the UCB$L_LOGADR field in an associated UCB if 
the LOG$L_MBXUCB in the logical field is nonzero, and finally deallocates 
the block to the appropriate memory pool. 

Logical Name Translation 

Logical name translation has several special options that it must check for in 
addition to the usual privilege and protection checks. If the logical name 
begins with the underscore character(_), then the equivalence string that is 
returned is simply the logical name string with the underscore removed. In 
addition, the caller can specify that the search only occur in some of the 
tables. 

Assuming that none of the tables has been eliminated, the service searches 
for a match in first the process table, then the group table, and finally the 
system table. There is no access mode check made for the process table. If a 
process has the same logical name with more than one access mode, the 
name associated with the least privileged (largest) access mode is returned. 
The search of the group table does require that the group numbers match. 
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Of shoes-and ships-and sealing wax­
Of cabbages-and kings-

And why the sea is boiling hot-
And whether pigs have wings. 

-Lewis Carroll, Through the Looking Glass 

This chapter includes brief discussions of the system services not mentioned 
in the previous chapters. Although these services do not generally make in­
tensive use of the internal structures and mechanisms of the VMS executive, 
these descriptions are provided as an informational aid to users of the ser­
vices and for completeness. Detailed discussions of the arguments, return 
status codes, required process privileges, and system service options can be 
found in the VAX/VMS System Services Reference Manual. 

30.1 COMMUNICATION WITH SYSTEM PROCESSES 

30.1.1 

632 

Some of the operations often associated with an operating system are per­
formed in the VAX/VMS system by independent normal processes, rather 
than by code in the linked system image. Examples of this type of system 
activity include the following: 

• Gathering of accounting information about utilization of the system re-
sources 

• Managing print and batch jobs and queues 
• Communicating with one or more system operators 
• Reporting device errors 

Four system services are defined in the module SYSSNDMSG to provide 
communications with the appropriate system processes. 

Accounting Manager (Job Controller) 

The accounting manager is a part of the job controller (process JOB­
_CONTROL running image JOBCTL.EXE). It is responsible for recording the 
utilization of system resources in the accounting file. 

Requests to the accounting manager are sent through the job controller's 
mailbox by the $SNDACC system service. Explicit $SNDACC requests can 
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be issued by users to request actions normally available through the SET 
ACCOUNTING command. 

The $SNDACC system service routine performs the following operations: 

1. The message type is defined as MSG$_SNDACC and the target mailbox is 
defined as the job controller's mailbox (MBAl: ), which is defined in mod­
ule DEVI CED AT. 

2. The request is checked for possible errors such as too large a message, 
insufficient privilege, or inaccessible data references. (The privilege 
OPER is required to create a new log file or to enable or disable account­
ing.) 

3. The message buffer is allocated on the current stack (the executive mode 
stack), and the following information is placed in the buffer: 

• The message type 
• The reply mailbox channel (if specified as an optional argument) 
• The privilege mask, UIC, user name, and account name 
• The process base priority (see Chapter 10) 
• The user-defined message text (a required argument) 

4. The message is written to the mailbox after changing to kernel mode. 

Symbiont Manager (Job Controller) 

The symbiont manager is also part of the job controller process. It is responsi­
ble for transactions to and from the queue file, including the creation and 
dispatching of batch and print queues and jobs. 

Requests to the symbiont manager are sent to the job controller's mailbox 
by the $SNDSMB system service. Explicit $SNDSMB requests can be issued 
by users to request actions normally available through the following DCL 
commands: 

ASSIGN/MERGE 
ASSIGN/QUEUE 
DEASSIGN/QUEUE 
DELETE/ENTRY 
DELETE/QUEUE 
INITIALIZE/QUEUE 
PRINT 

SET DEVICE/SPOOLED 
SET QUEUE 
START/QUEUE 
STOP/ABORT 
STOP/QUEUE 
STOP/REQUEUE 
SUBMIT 

The $SNDSMB system service performs exactly the same operations (using 
common code) as the $SNDACC system service (as described in the previous 
section), except that the message type is defined to be MSG$_SNDSMB. 

The user privilege OPER is required to use any function of $SNDSMB that 
affects a queue itself (for example, initializing or <deleting a queue). 
$SNDSMB requires GROUP privilege to affect queue entries owned by proc­
esses in the caller's group; WORLD privilege is required to affect entries from 
outside the group. 
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Operator Communications 

Operator communications are handled by a system process (process OPCOM 
running image OPCOM.EXE). OPCOM has the following responsibilities: 

• Defining which terminals are operator terminals and for what class of ac­
tivity (such as disk or tape operations) these terminals will receive mes­
sages 

• Replying to or canceling a user request to an operator 
• Managing the operator log file 

Requests to OPCOM are sent through OPCOM's mailbox by the $SNDOPR 
system service. Explicit $SNDOPR requests can be issued by users to request 
actions normally available through the DCL user command REQUEST and 
the operator command REPLY. 

The user privilege OPER is required to call $SNDOPR to enable a terminal 
as an operator's terminal, to reply to or cancel a user's request, or to initialize 
the operator communication log file. 

With exceptions of a different mailbox (MBA2: ), and a different message 
type (MSG$_0PRQST), $SNDOPR shares common code with $SNDACC 
and $SNDSMB (described in Section 30.1.1). 

Error Logger 

As described in Chapter 8, the error logging subsystem consists of three 
pieces. 

• The subsystem itself contains routines that maintain a set of error mes­
sage buffers. These routines are called by the error logger and device driv­
ers in order that error messages can be written to some available space in 
one of these buffers. 

• The error formatting process (process ERRFMT running image ER­
RFMT.EXE) is awakened when it is necessary to copy the formatted con­
tents of these error message buffers to the error log file for subsequent 
analysis. 

• The SYE Utility reads the error messages in the error log file and produces 
an error log report, based on the contents of the error log file and the op­
tions selected when SYE was run. 

Normal interactions with the error logging routines in the kernel occur in 
device drivers by issuing device error or device timeout requests. Users can 
also send messages to the error logger (put messages into one of the error 
message buffers for later transmission to the error log file) by issuing the 
$SNDERR system service (this requires the BUGCHK privilege). Unlike the 
$SNDACC, $SNDSMB, and $SNDOPR system services, the $SNDERR sys­
tem service has the following characteristics: 
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• It executes in kernel mode (rather than executive mode). 
• It allocates an error message buffer (rather than sending a mailbox mes-

sage). 

The $SNDERR system service routine performs the following actions: 

1. The request is checked for access and privilege violations. 
2. A buffer is allocated from the error logger's message pool. 
3. The message buffer is filled with the message type (EMB$C_SS), the mes­

sage size, and the message text. An error log sequence number and the 
current time are also a part of every error message. 

4. The buffer is released to the error logging routines for subsequent output 
to the error log file. 

Chapter 8 contains a discussion of the error log routines and a brief descrip­
tion of the ERRFMT process. 

30.2 SYSTEM MESSAGE FILE SERVICES 

30.2.1 

VAX/VMS Version 3.0 provides three levels of message file capability. The 
creation and declaration of image-specific and process-permanent message 
files are discussed in the description of the Message Utility in the VAX-11 
Utilities Reference Manual and the VAX/VMS Command Language User's 
Guide. The system message file (SYSMSG.EXE) is mapped into system ad­
dress space as a pageable section. This initialization is performed by SYSINIT 
during system initialization (see Chapter 25). 

Two system services provide the capablility for a user to do the following: 

• Search for a message text corresponding to a given status code ($GETMSG) 
• Write one or more message texts to SYS$0UTPUT ($PUTMSG) 

A third procedure (EXE$EXCMSG) does not use the various message files but 
is also one of the message output procedures that can be invoked as part of 
condition handling. EXE$EXCMSG is called by EXCEPTION to write the 
contents of the general registers to SYS$0UTPUT if a condition is not han­
dled in any other way. 

Get Message System Service 

The Get Message system service ($GETMSG) executes in the mode of the 
caller. It searches each of the three levels of message files for a match to the 
status code provided as an argument. 

30.2.1.1 Finding the Message Files. The first step of the retrieval of a message involves 
determining which types of message files have been defined. 
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1. If an image message section has been defined, then it has been incorpo­
rated as a program region image section. The control region location 
CTL$GL_GETMSG points to the per-image message section vector in the 
control region (see Chapter 26). The vector is initialized with a value cor­
responding to an RSB instruction. If an image has defined any message 
sections, then this vector is changed by the image activator to the follow­
ing code sequence: 

JSB @#<PD-location_1> 
JSB @#<PD-location_2> 

JSB @#<PD-location_n> 
RSB 

These instructions are not executed; rather, the address serves as a 
pointer to the message sections. Each PO location is in a different message 
section (up to a maximum of 41 distinct message sections in a given 
image). The message section search routine searches one message section 
at a time. 

2. If no match is found in the current section, the message dispatcher 
searches the next message section given in the Pl space vector, and so on. 

3. If no image message section has been defined or the input status value 
could not be found in any image message section, then a test is made for a 
process-permanent message section (established by the SET MESSAGE 
command). The absence of a process-permanent message section is indi­
cated by a zero in the control region location, CTL$GL_PPMSG. If a proc­
ess-permanent message section has been defined, CTL$GL_PPMSG 
points to a control region address in a process-permanent section vector 
(see Chapter 26). The process-permanent message section is searched in a 
fashion similar to that used for the image section case above. 

4. If a process-permanent message section has not been defined or the input 
status value could not be found in the process-permanent message section, 
then the system message file is searched. The location EXE$GL_SYSMSG 
points to a system location in a system section vector. The message sec­
tion search routine is called to search for the system message file. 

If no message file is found or none of the defined message files contains the 
specified status code, then the status code is inserted into a message indicat­
ing that the message is not in the message file, and the service returns with 
the status code SS$_MSGNOTFND. 

30.2.1.2 Searching a Located Message Section. When a message section is located, the 
starting address and length of the message section index are calculated. A 
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binary search of the message section index is then performed to determine if 
the specified status code is included. 

If no message is defined within the section for the specified status code, a 
check is made in other message sections of the same type. If no further mes­
sage sections of the same type exist, the search routine returns to the 
$GETMSG main search procedure. $GETMSG then checks the next type of 
message section until the system message file has been searched. 

If a message corresponding to the specified status code is located within a 
message section, then the information selected by the $GETMSG FLAGS 
argument is copied into the user-defined buffer. The search routine returns 
control to the caller of the $GETMSG system service. 

30.2.1.3 Indirect Message Sections. Indirect message sections allow users to create 
more than one message file associated with an executable image. Message 
files can then be changed without recompiling and relinking the image. 
Briefly, the executable image contains pointers to a message file, rather than 
the messages themselves .. The DCL commands used to create indirect mes­
sage sections are described in the VAX-11 Utilities Reference Manual. 

As a result of creating an indirect message section, two image files are 
created: one is an executable image, in which the actual message text areas 
contain the file specification of the second image, a nonexecutable image, 
which contains the message data. 

When the $GETMSG system service searches for a message code and finds 
a file specification (rather than message text) related to the code, it maps the 
nonexecutable image specified by the file specification to the end of the cur­
rent message section (if it has not been mapped already). The newly mapped 
section contains the actual message text. The search for the message code 
continues. When the message is found, the information specified by the 
$GETMSG FLAGS argument is copied into the user-defined buffer. 

If the nonexecutable image has already been mapped, the text for the code 
is in the newly mapped section. $GETMSG then searches for the second 
occurrence of the message code and processes the code as usual. 

30.2.2 Put Message System Service 

The $PUTMSG system service provides the ability to write one or more error 
messages to SYS$ERROR (and SYS$0UTPUT if it is different from SYS$ER­
ROR). It executes in the access mode of its caller, and uses $GETMSG to 
retrieve the associated text for a particular status code. 

The following four arguments are passed to $PUTMSG: 

1. A message argument vector describing the messages in terms of status 
codes, message field selection flag bits, and $FAO arguments (see Section 
30.5.2). 
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2. An optional action routine to be called before writing the message texts. 
3. An optional facility name to be associated with the first message written. 

If not specified, the default facility name associated with the message is 
used. 

4. An optional parameter to be passed to the caller's action routine. If not 
specified, it defaults to zero. 

The construction of the message argument vector is discussed in the VAX/ 
VMS System Services Reference Manual. Other uses of the $PUTMSG sys­
tem service are described in the VAX-11 Run-Time Library Reference 
Manual. 

Each argument of the message argument vector is processed as follows: 

1. The facility code of the request is determined to be a system, RMS, or 
standard facility code. Standard facility codes can require $FAO argu­
ments. System messages (facility code 0) and RMS messages (facility code 
1) do not use associated $FAO arguments in the message argument vector. 
System exception messages require $FAO arguments to follow immedi­
ately after the message identification in the message vector. 

2. $GETMSG is called with the status code and field selections (based upon 
the selection bits and $FAO arguments). 

3. If there are $FAO arguments present and the message is flagged as having 
at least one $FAO argument, $FAOL is called to assemble all the portions 
of the message to be written (supplied facility code, optionally specified 
delimiters, output from $GETMSG). 

4. The user's action routine is called, if one was specified. 
5. If the action routine returns an error status, the message is not written. 

Otherwise, the formatted message is written to SYS$ERROR by an RMS 
$PUT request. If SYS$0UTPUT is different from SYS$ERROR, then the 
formatted message is also written to SYS$0UTPUT. 

When all of the arguments in the message argument vector have been proc­
essed, the $PUTMSG system service returns to its caller. 

Procedure EXE$EXCMSG 

This procedure is used internally by the catch-all condition handler (see 
Chapter 4) to report a condition that has not been properly handled by any 
condition handlers further up the call stack. The two input arguments to this 
procedure are the address of an ASCIZ string and the address of the argument 
list passed to the condition handlers (see Chapter 4). 

The procedure writes a formatted dump of the general registers, the signal 
array, and the stack, as well as the caller's message text to SYS$0UTPUT 
(and to SYS$ERROR if different from SYS$0UTPUT). This message appears 
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for all fatal errors that occur in images that were linked without the 
traceback handler. (Note that most images shipped with the VAX/VMS oper­
ating system are linked without the traceback handler.) 

Although this procedure has an associated entry point in the system serv­
ice vector area, it cannot be conveniently called from any languages except 
VAX-11 MACRO and VAX-11 BLISS-32. This restriction is imposed by the 
specification of the second argument, which requires access to the general 
register AP, a capability denied to most high-level languages. 

30.3 GET JOB/PROCESS INFORMATION ($GETJPI) 

30.3.1 

The $GETJPI system service provides selected information about a specified 
process (which may not necessarily be the process requesting the $GETJPI 
service). The arguments to $GETJPI include the following: 

• The event flag number to set when the service has completed 
• The process ID of the process from which information is to be collected 
• The process name of the target process 
• The address of an item list that includes (for each requested item) which 

item of information is to be returned, the size and address of the buffer to 
hold the information, and a location to insert the size of the returned infor­
mation 

• An 1/0 status block (IOSB) to receive final status information 
• The entry point and parameter for an AST routine to be invoked when the 

system service has completed 

A detailed discussion of the format and specification of the item list is de­
scribed in the VAX/VMS System Services Reference Manual. 

Operation of the $GETJPI System Service 

The $GETJPI system service, executing in kernel mode, performs as follows: 

1. The privileges of the current process are checked with regard to the UIC of 
the target process. 

2. The IOSB, if specified, and the event flag are cleared. 
3. Each item in the list is checked for the following conditions: 

• The buffer descriptor must be readable and the buffer writable. 
• The requested item must be a recognized one. 

4. If these conditions are met, then the requested item can be retrieved. All 
data about the current process and PCB and JIB data about another process 
can be obtained without entering the context of the target process. All 
such information is moved to the user-defined buffers for each correspond­
ing item. 
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5. If no information remains to be gathered, then the system service returns 
to the caller after the following action is performed: 

• The specified event flag is set. 
• If an AST was requested, it is queued. 
• If an IOSB was supplied, its values are written. 

6. If there is remaining information that could not be retrieved by step 3 
above, the information concerns a process other than the caller and is 
stored either in the target process's control region or process header. 

This information must be retrieved by executing in the context of the 
target process. In order to execute in the context of the target process, a 
special kernel mode AST (see Chapter 7) is queued to the target process. 
Nonpaged dynamic memory is allocated to contain an extended AST con­
trol block and an information buffer. (The pool is charged to the 
JIB$L_BYTCNT quota.) Before the special kernel mode AST is queued, the 
extended AST control block must be built to contain the normal fields 
plus descriptors of all of the unsatisfied requests that must be retrieved by 
executing in the context of the other process. Also, the buffer must be 
created to receive the retrieved information for transmission to the re­
questing process. 

The ACB is then queued to the target process with a priority boost of 
PRI$_ TICOM (6); however, if the target process is computable (COM) or 
computable outswapped (COMO), the target process's priority is boosted 
only enough to make it equal to the priority of the current process (unless 
the current process is a real-time process, or the priority is lower than that 
of the target process). 

If the target process no longer exists, if it is in the suspended (SUSP), 
suspended outswapped (SUSPO), or the miscellaneous wait (MWAIT) state 
(see Chapter 10), the block of nonpaged pool is deallocated and an error 
return is passed back to the caller. The status of SS$_SUSPENDED is 
returned for the three long wait states of SUSP, SUSPO, and MWAIT. If 
the process has been deleted or is in the process of being deleted (has the 
delete pending bit set in the PCB status longword), a status of 
SS$_NONEXPR is passed back to the caller. Note that the completion 
mechanisms are all triggered if one of these errors occurs. That is, the 
event flag is set, a user-requested AST is queued, and an IOSB is written 
with the failure status. 

The process header contains an image counter at offset 
PHD$L_IMGCNT. The counter is incremented each time that an image 
is run down (see Chapter 21). This counter is stored in the extended AST 
control block in order to prevent the image from requesting information 
about another process and then exiting, only to have an AST delivered or 
an IOSB written later on to the requested PO addresses in another image. 
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30.3.3 

30.3 Get [ob/Process Information ($GET[PI) 

7. Finally, the system service returns to the caller. The caller can either wait 
for the information to be returned or continue processing. 

$GETJPI Special Kernel Mode ASTs 

When the target process is not the caller and the information needed resides 
in the process header or Pl space of the target process, the special kernel 
mode AST code must execute in the context of the target process (in order to 
access the information). Once the AST has obtained the information, it must 
be passed back to the caller's context, in order that it can be written to the 
caller's address space. The VMS system uses special kernel mode ASTs for 
both pieces of this operation. 

A summary of the operations performed by these special kernel mode ASTs 
is as follows: 

1. When the target process is made executable to execute the special kernel 
mode AST, the requested information is determined from the extended 
ACB and stored in the associated system buffer. The completion of the 
special kernel mode AST routine occurs after the extended ACB is refor­
matted to deliver a second special kernel mode AST, this time to the re­
questing process. 

2. The second kernel mode AST routine executes in the context of the re­
questing process. If the image counters do not agree, then the requesting 
image has gone away. In this case, the block of nonpaged pool is deal­
located, the process BYTCNT quota is restored, and the special kernel 
mode AST simply returns. 

If the image counter in the process header agrees with the image counter 
in the extended AST control block, the retrieved data is moved from the 
system buffer into the user-defined buffers. Note that the asynchronous 
nature of this aspect of the system service requires that the IOSB be probed 
again for write accessibility. This check insures that the original caller of 
$GETJPI has not altered the protection of the IOSB in the interval between 
the call to $GETJPI and the delivery of the return special kernel AST. 

3. The event flag is set and the IOSB is written if it was specified (after check­
ing that the buffers are still accessible). 

4. If an AST was requested, the AST control block is used for the third time 
to queue an AST to the requesting process in the access mode of the caller. 
Otherwise, the ACB is deallocated to nonpaged memory. 

Wildcard Support in $GETJPI 

The $GETJPI system service also provides the ability to obtain information 
about all processes in the system (in other words, a wildcard search). A 
wildcard request is indicated by passing a negative process ID to the $GETJPI 
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system service. The internal routine in $GETJPI that determines the identity 
of the target process recognizes a wildcard request and passes information 
back to the caller about the first process in the PCB vector after the swapper 
and the null process (see Chapter 20). 

In addition, the process index field of the caller's PIO argument is altered to 
contain the process index of the target process. When the caller of $GETJPI 
issues a second call, the negative sequence number (in the high-order word of 
the process ID) indicates that a wildcard operation is in progress but a posi­
tive process index indicates where in the PCB vector the search should con­
tinue. Note that the user program will not work correctly if the caller alters 
the value of the process ID argument between calls to $GETJPI. 

The user continues to issue calls to $GETJPI until a status code of 
SS$_NOMOREPROC is returned, indicating that the PCB vector search rou­
tine has reached the end of the PCB vector. An example of the wildcard use of 
the $GETJPI system service is contained in the VAX/VMS System Services 
Reference Manual. 

30.4 GET SYSTEM INFORMATION ($GETSYI) 

The Get System Information ($GETSYI) system service provides status and 
identification information about the system. In VAX/VMS Version 3.0, three 
pieces of information can be obtained by $GETSYI: the contents of the sys­
tem ID register, the system version, or the processor type. 

To obtain the string containing the system version, $GETSYI (in module 
SYSGETSYI) performs the following operations: 

• $GETSYI copies the quadword value found at global location 
SYS$GQ_ VERSION into the user's buffer. 

• The contents of the system ID register are obtained by executing a MFPR 
(move from processor register) instruction, specifying the system ID regis­
ter by the symbol PR$_SID. 

• The processor type is simply extracted from the contents of the system ID 
register. 

Note that because the information located by $GETSYI is static and immedi­
ately obtainable, the $GETSYI system service does not require the AST syn­
chronization mechanisms required by other informational services (for exam­
ple, $GETJPI and $GETDVI). 

30.5 FORMATTING SUPPORT 
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The final group of system services provides conversion support for time-re­
lated requests and for formatted I/O of ASCII character strings. 



30.5.1 

30.5.2 

30.5 Formatting Support 

Time Conversion Services 

The time conversion system services are defined in the module SYSCVRTIM. 
the $NUMTIM system service executes in executive mode and converts a 
binary quadword time value in system time format (described in Chapter 11) 
into the following seven numerical word length fields: 

• Year (AD) 
• Month of year 
• Day of month 
• Hour of day 
• Minute of hour 
• Second of minute 
• Hundredths of second 

A positive time argument is converted into the corresponding absolute sys­
tem time. A zero-valued time argument requests the conversion of the cur­
rent system time. A negative time argument is interpreted as a time interval 
from the current system time. 

The $ASCTIM system service executes in the access mode of the caller and 
converts a system time format quadword into an ASCII character string. The 
input binary time argument is passed to $NUMTIM. The seven fields re­
turned from $NUMTIM are then converted into ASCII character fields with 
the selection determined by whether the input time was an absolute or delta 
time and whether the conversion flag was set, indicating conversion of day 
and time or only the time portion. The $FAO system service (described in 
Section 30.5.2) is used to concatenate and format the string components be­
fore returning the string to the caller. 

The $BINTIM system service executes in the access mode of the caller and 
converts an ASCII time string into a quadword absolute or delta time. If the 
input string expresses an absolute time, then the current system time is con­
verted by $NUMTIM to supply any fields omitted in the ASCII string. Each 
ASCII field is then converted to numerical values and stored in the seven 
word fields used by $NUMTIM. The seven word fields are then combined 
into a binary quadword value. The resulting value is negated if a delta time 
was specified in the ASCII string. 

Formatted ASCII Output 

The $FAO and $FAOL system services provide formatting and conversion 
facilities from binary and ASCII input parameters to a single ASCII output 
string. The two system services execute in the access mode of the caller and 
use common code. The only difference between them is whether the parame­
ters are passed as a list of arguments ($FAO) or as the address of the first 
parameter ($FAOL). The control string is parsed character by character. Infor-
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mation that is not preceded by the control character (!) is copied into the 
output string without further action. When a control character and operation 
code are encountered in the control string, the appropriate conversion routine 
is executed to process zero, one, or two of the input parameters to the system 
service. When the control string has been completely parsed, the service re­
turns to the caller with a normal status code. If the output string length is 
exceeded, a buffer overflow error status is returned. The description of the 
$FAO system service in the VAX/FMS System Services Reference Manual 
contains details about how to specify $F AO requests. 



31 Use of Listing and Map Files 

On the table in the light of a big lamp with a red shade he spread 
a piece of parchment rather like a map .... "There is one point 
that you haven't noticed," said the wizard, "and that is the secret 
entrance. You see that rune on the West side, and the hand 
pointing to it from the other runes?" 

- Tolkien, The Hobbit 

This book has presented a detailed overview of the VAX/VMS executive. 
However, the ultimate authority on how the executive or any other compo­
nent of the system works is the source code for that component. This chapter 
shows how the listing and map files produced by the language processors and 
the V AX-11 Linker can be used with other tools to understand how a given 
component works, or why the system is malfunctioning. 

31.1 HINTS IN READING THE EXECUTIVE LISTINGS 

31.1.1 

The sources for the VAX/VMS operating system are available in two forms. 
The source listing kit includes microfiche listings for all bundled compo­
nents except certain compatibility mode utilities. This kit is included with 
each VAX/VMS system. Source files and command procedures are also dis­
tributed on magnetic tape for customers who purchase a source license. 

The suggestions made in this chapter emphasize reading the modules that 
make up the executive and the initialization routines, all of which are writ­
ten in VAX-11 MACRO. 

Structure of a MACRO Listing File 

The modules that make up the executive are all written from a common 
template that includes a module header describing each routine in the mod­
ule. The general format of a V AX-11 MACRO listing file is described in the 
VAX-11 MACRO Language Reference Manual. Features that are peculiar to 
listings included in the source listing kit are described here. 

31.1.1.1 $xyzDEF MACROs. One of the first parts of each module that requires expla­
nation is the invocation of a series of macros that define symbolic offsets into 
data structures referenced in the modnle. The general form of these macros is 
shown in the following example, where xyz represents the data structure 
whose offsets are required: 

$xyzDEF 
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For example, a module that deals with the 1/0 subsystem will probably in­
voke the $IRPDEF and $UCBDEF macros to define offsets into 1/0 request 
packets and unit control blocks. Some of the $xyzDEF macros such as 
$SSDEF, $IODEF, and $PRDEF define constants (system service status re­
turns, 1/0 function codes and modifiers, and processor register definitions) 
rather than offsets into data structures. 

Structures and constants that are used in system services have their $xyz­
DEF macros defined in STARLET.MLB, the default macro library that is au­
tomatically searched by the assembler. Most of the data structures used by 
the executive have their macro definitions contained in a special macro li­
brary called LIB.MLB. The distinction between these two macro libraries is 
discussed in Appendix B, where many of the data structures described in this 
manual are listed. 

One way to obtain the symbol definitions resulting from these macros is to 
look at the symbol table that appears at the end of the assembly listing. 
However, the information presented there is often incomplete or not in a 
suitable form. An alternate representation of the data can be obtained from 
the following sequence of DCL commands: 

$ CREATE xyzDEF. MAR 
• TITLE xyzDEF 
$xyzDEF GLOBAL 
.END 
'z 

$ MACRO xyzDEF+SYS$LIBRARY: LIB. MtBLIBRARY 
$ LINK/NOEXE/MAP/FULL xyzDEF 
$ PRINT xyzDEF. MAP 

This command s(!quence produces a single object module that contains all 
the symbols produced by the $xyzDEF macro. The argument GLOBAL makes 
all the symbols produced by the macro global. (This argument must appear in 
upper case to be properly interpreted by the assembler's macro processor.) 
That is, the symbol names and values are passed from the assembler to the 
linker so that they appear on whatever map the linker produces. The full map 
contains two lists of symbol definitions, one in alphabetical order and one in 
numeric order. 

31.1.1.2 The Routine Body. In general, the routines that make up the executive were 
coded according to strict standards that result in code that is easily main­
tained. One side effect of these standards is that the code is easy to read for 
someone attempting to learn how the VMS operating system works. 
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Several items about the instructions that appear in the module body are 
worth describing. 

• Data structure references are usually made using displacement mode ad­
dressing. For example, the following instruction loads the contents of R3 
(presumably the address of an 1/0 request packet) into the IRP pointer field 
(a longword) in a unit control block pointed to by RS: 



31.1 Hints in Reading the Executive Listings 

MOVL R3,UCB$L_IRP(R5) 

Such instructions are practically self-documenting. The overall arrange­
ment of data in a particular structure does not need to be known in order to 
understand such instruction references. 

• Whenever a sequence of instructions makes an assumption about the rela­
tive locations of fields within a data structure, there is a possibility of 
failure if the structure should change. In the following two instances such 
assumptions might be used: 

- Two adjacent longword fields could be loaded with a single MOVQ in­
struction. 

-A structure could be traversed using autoincrement or autodecrement 
addressing. 

The ASSUME macro (defined in SYS$LIBRARY:STARLET.MLB) is often 
used to immediately detect these failures by issuing an assembly-time 
error. For example, if a device driver wanted to clear adjacent fields in a 
unit control block, the following instruction and macro sequence se­
quence would prevent future subtle errors if the layout of the unit control 
block changed: 

CLRQ 

ASSUME 

ASSUME 

UCB$L_SVAPTE(R5) 

UCB$L_BOFF EQ<UCB$L_SVAPTE + £;> 

UCB$L_BCNT EQ<UCB$L_SVAPTE + 6> 

The options available with this macro can be determined by examining its 
definition in the microfiche listing in the SYS component. 

• There are some commonly used instruction sequences that occur so fre­
quently that the author of a module used an assembly-time macro to repre­
sent the instruction sequence. Other instruction sequences, particularly 
those that read or write the internal processor registers, are more readable 
if hidden in a macro definition. However, because macros are rarely ex­
panded as a part of the assembler listing, the reader of listing files must be 
able to locate the macro definitions. 

There are three levels at which macros are defined in the VAX/VMS 
operating system: 

-A macro may be local to a module. In this case, the macro definition 
appears as part of the module header. Such macros are often used to 
generate data tables used by a single module. 

-A macro may be a part of a specific facility, such as DCL or the RSX-
1 lM AME. The macros that are a part of a specific facility are included 
as part of the microfiche listing for that facility. For example, the DCL 
microfiche includes not only all modules that make up the DCL images 
but also the macros that are used to assemble those modules. 

-A macro may be used by many components of the operating system. In 
this case, the macro definition is found on either the SYS microfiche (for 
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example, in SYSDEFxx.MDL or SYSMAR.MAR) or the VMSLIB micro­
fiche (for example, in STARDEFxx.MDL or SSMSG.MDL). Most of the 
macro definitions in this category are data structure definitions, but 
there are many common instruction sequences appearing in several 
components that are defined in the file called SYSMAR.MAR. Note that 
SYSDEF and ST ARDEF were divided into four submodules each. The 
strings AE, FL, MP, or QZ are used to identify the first letters of the 
structures defined in each module. These strings should be substituted 
for the string xx. 

The definitions of all system macros that are used in building the operat­
ing system are included in the macro library SYS$LIBRARY:LIB.MLB that 
is supplied as a part of the VAX/VMS binary distribution kit. Applications 
such as user-written device drivers or user-written system services can 
also use this macro library. Such applications must be reassembled or 
recompiled with each new release of LIB.MLB, which usually occurs with 
each major release of the VAX/VMS operating system. 

The definitions of all macros that are intended for use in nonprivileged 
applications such as system service calls can be found in the macro library 
SYS$LIBRARY:STARLET.MLB that is also supplied as a part of the VAX/ 
VMS binary distribution kit. This macro library is automatically searched 
by the assembler to resolve undefined macros. Appendix B contains a 
description of the data structures defined in STARDEF.MDL and 
SYSDEF.MDL. 

• Another search that the reader of listings has to embark on involves look­
ing for destinations of instructions that transfer control or reference static 
data locations. If the destination or data label is outside the module cur­
rently being looked at, the symbol appears in the symbol table at the end of 
the assembler listing as an undefined global. The module that defines that 
symbol can be determined with the map file for that component (see Sec­
tion 31.2). 

Symbols that are local to a module are usually easy to find because most 
of the modules that make up the executive or any other component are not 
very large. However, the listing files for some modules are longer than 
50 pages. There are a couple of steps that can be taken before the reader 
scans every page of the listing, looking for the place where the symbol is 
defined. 

-The symbol in question or some textual reference to it may appear in 
the table of contents for this module. 

- The value of the symbol appears in the symbol table. Because the assem­
bler includes the value of the current location counter in every line of 
the listing, the reader can determine approximately where in the listing 
the symbol is defined. 
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(This technique is not foolproof. The value of the symbol that appears in 
the symbol table is relative to the beginning of the PSECT in which the 
symbol is defined. Modules with more than one relocatable PSECT may 
have to be searched more carefully.) 

The VAX-11 Instruction Set and Addressing Modes 

One of the design goals of the V AX-11 instruction set was that it contain 
useful instructions with a natural number of operands. Thus, there are two­
and three-operand forms of the arithmetic instructions ADD, SUB, MUL, and 
DIV. There are also bit manipulation instructions, a calling standard, charac­
ter string instructions, and so on. All of these allow the assembly language 
programmer to produce code that is both efficient and highly readable. 

However, there are certain places in the executive where the most obvious 
choice of instruction or addressing mode was not used, because a shorter or 
faster alternative was available. Interrupt service routines, routines that exe­
cute at elevated IPL, and commonly executed code paths such as the system 
service dispatcher and the main paths in the pager are all examples where 
clarity of the source code was sacrificed for execution speed. 

One question that must be answered at this point is why there is a concern 
over instruction length on a machine with practically unlimited virtual ad­
dress space. There are at least two answers to that question. 

Most of the areas where instruction size is an issue are within the perma­
nently resident executive. This portion of the system consumes a fixed per­
centage of the physical memory that is present in the configuration. Keeping 
instruction size small is one good way to keep this real memory cost to a 
minimum. 

A second answer is that all three VAX-11 processors make use of an in­
struction lookahead buffer that contains the next eight bytes in the instruc­
tion stream. If the buffer empties, the next instruction or operand cannot be 
evaluated until the buffer is replenished. By keeping instructions small in 
key areas, this wait can be avoided and the instruction buffer can be filled in 
parallel with other CPU operations. 

31.1.2.1 Techniques for Increasing Instruction Speed. This section lists some of the 
techniques employed to reduce instruction size or increase execution speed. 
The list is hardly exhaustive but a pattern emerges here that can be applied to 
other modules in the executive that are not explicitly mentioned here. Each 
list element consists of a general technique and rnay also contain a specific 
example, including the name of the module where this technique is em­
ployed. 

The MOVAx and PUSHAx instructions combined with displacement 
mode addressing are equivalent to an ADDLx instruction with the addi-
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tion being performed in order to calculate the effective address of the oper­
and. For example, the following two instructions are equivalent: 

PUSHAB 12(R3) 

ADDL3 #12,R3,-(SP) 

However, the PUSHAB instruction is one byte shorter than the ADDL3 
instruction and also faster. 

• The use of MOV Ax and PUSHAx described in the previous item can be 
combined with indexed mode addressing to accomplish a multiply by 2, 4, 
or 8. For example, the following instruction multiplies the contents of Rl 
by 4, adds 4 to the product, and places the result back into Rl: 

MO VAL @#£;R1,R1 

This instruction is used by the change mode dispatchers (in module 
CMODSSDSP) to calculate the length ot an argument list from the num­
ber of arguments. 

• The following instruction, found in routine EXE$ALLOCA TE in module 
MEMORYALC, performs two steps at once: 

MOVAB (RD)+,R2 

Its ostensible purpose is to place the address of the allocated block of 
memory into R2 where it will be picked up by the caller. However, be­
cause the allocated block is always at least quadword aligned, the byte 
context of the instruction forces an increment of RO by one, setting the 
low bit of RO. This set bit will be interpreted as a success indicator by the 
caller. 

• When two successive writes to memory occur, the second write must wait 
for the first to complete. If successive write operations can be overlapped 
with register-to-register operations, instruction stream references, or other 
operations that do not generate writes to memory, then some other in­
struction can begin execution while the memory write is completing. 

There are three places in the executive where this technique is used. 
They are among the most commonly .executed code paths in the entire 
system. 

-The page fault handler saves registers RO through RS with three separate 
MOVQ instructions interspersed among instructions that do not write 
to memory. 

- The interrupt service routine for the V AX-111780 UNIBUS adapter also 
saves RO through RS with three MOVQ instructions. Here, the writes to 
memory are overlapped with references to I/O space addresses, specifi­
cally UBA internal registers, as well as register manipulations. 

-The changermode dispatchers for executive and kernel modes build cus­
tomized call frames on their stacks. As the code examples in Section 
9.3.l illustrate, the writes to memory (the stack operations) are overlap­
ped with register and instruction stream references. 
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• There are three ways to push registers onto the stack: with a PUSHR mask 
instruction, with a series of MOVQ instructions to -(SP), or with a series 
of MOVL instructions to -(SP). Tests on instruction speed show that in 
general two MOVL instructions are faster than one MOVQ. Thus, in some 
places in the executive, values are pushed onto the stack with a series of 
MOVL. instructions (for example, EXE$FORKDSPTH in module 
FORKCNTRL). In other places, values are moved onto the stack in cou­
ples, with a series of MOVQ instructions (for example, IOC$IOPOST in 
module IOCIOPOST). Many MOVQ instructions have not been changed 
to MOVL instructions simply because no optimizing pass was made on the 
code. 

The PUSHR instruction is seldom used because it is much slower than 
either MOVQ or MOVL. PUSHR must interpret its bit mask operand, and 
then push the registers accordingly. 

• When it is necessary to include a test and branch operation, a decision as to 
which sense of the test to branch on and which sense to allow to continue 
in line is required. One basis for this decision is to allow the common 
(usually error-free) case to continue in line, only requiring the (slower) 
branch operation in unusual cases. 

31.1.2.2 Unusual Instruction and Addressing Mode Usage. There are several instances 
in the executive where the purpose of an instruction is not at all obvious. 
This list includes the most common occurrences of unusual use of the in­
struction set and addressing modes. 

• There are many instances of the following instruction sequence where the 
initial setting of the bit has no effect on the flow of control: 

BBSS bit arguments , 10$ 
10$: 

This sequence is used whenever the bit to be set (or cleared with an equiv­
alent sequence using BBCC) is identified by bit number or bit position. 

In order to set (or clear) the bit with a BISx (or BICx) instruction, a mask 
must first be created with a 1 in the designated position, requiring either 
two instructions or an immediate mask that might occupy a longword. 
(The only exception to this involves a bit in the first six positions, where 
the mask can be contained in a short literal constant.) 

Note that a BBCS instruction is equivalent to a BBSS instruction when 
the. branch destination is the next instruction. There are some occurrences 
of BBCS where a BBSS seems to accomplish the same purpose. Probably 
the choice was made by looking at the usual sense of the bit in question 
before the instruction and choosing the instruction to avoid the branch in 
the usual case. 

• There· are several instances of autoincrem~nt deferred addressing where 
the need for the increment of the register is not apparent. For example, 
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both of the following instructions occur in the rescheduling interrupt serv­
ice routine in module SCHED: 

INSQUE (R1),@(R3)+ 

REM QUE @(R3 )+, RL; 

In both cases, R3 contains the address of the listhead of some doubly 
linked list before instruction execution. Its contents after the instruction 
is executed are irrelevant. 

In fact, the increment is totally unnecessary. All that is needed is double 
deferral from a register. In other words, the addressing mode @O(R3) would 
be equally appropriate if the contents of R3 are not important. However, 
deferred byte displacement addressing costs an extra byte to hold the dis­
placement. In this commonly executed code path, the savings of a byte 
was extremely important. 

It is worth noting that there is no similar problem when a single level of 
deferral from a register is required. The assembler is smart enough to gen­
erate simple register deferred mode (code 6) when it encounters byte dis­
placement mode with a displacement of zero ( O[reg] ) in the source code. 

• The permanent symbol table of the V AX-11 MACRO assembler recognizes 
the mnemonic POPL even though there is no POPL instruction in the 
V AX-11 instruction set. The generated code for the following instructions 
are identical: 

POPL dst 

MOVL (SP)+,dst 

That is, the mnemonic generates two bytes (for instruction opcode and 
source operand specifier) plus whatever is required to specify the destina­
tion operand. 

For example, the following pseudo instruction (the first instruction in 
the change-mode-to-kernel dispatcher in module CMODSSDSP) removes 
the change mode code from the stack (so that REI will work correctly) and 
loads it into RO. 

POPL RD 

A combination of the POPL instruction with an unusual addressing mode 
occurs in the exception dispatcher for change-mode-to-supervisor and 
change-mode-to-user exceptions where it is necessary to remove the sec­
ond longword from the stack. The following instruction has the effect of 
removing the next-to-last item from the stack and discarding it, leaving 
the stack in the state pictured in Figure 31-1: 

POPL (SP) 

• The following instruction, followed by some conditional branch instruc-
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POPL dest;;;; MOVL(SP)+. dest 

Before POPL (SP) 

X: 

X+4: 

X+B: c 
X+12: B 

X+16: A 

Figure 31-1 

X: 

X+4: 

--SP X+B: 

X+12: 

X+16: 

Direction of 
Stack Growth 

After POPL (SP) 

C (or indeterminate) 

A 

Stack Modification Due to POPL (SP) Pseudo Instruction 

SP 

tion, performs exactly the same function as a TSTQ instruction, which 
does not exist: 

MOVQ RO,RD 

This curious instruction is found in module SYSSCHEVT, where the Set 
Timer Request and Schedule Wakeup system services are implemented. 

Use of the REI Instruction 

The only permissible means of reaching a less privileged access mode from a 
more privileged mode is through the REI instruction. There are two slightly 
different techniques that accomplish this mode change. 

The most general technique of elevating access mode allows the flow of 
execution to be altered at the same time. This same technique is also used by 
the RSX-1 lM AME to get into compatibility mode. The following instruction 
sequence accomplishes the desired result: 

PUSHL 
PUSHL 
REI 

new-PSL 
new-PC 

Note that the many protection checks built into the REI instruction prevent 
this technique from being used by a nonprivileged user to get into a more 
privileged access mode or to elevate IPL, two operations that would allow 
such a user to damage the system. A second technique can be used when it is 
only necessary to change access mode. No accompanying change in control 
flow is required. The instruction sequence listed here (patterned after code 
contained in module PROCSTRT) shows this second technique. 
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DOREI: 

PUSHL 
BSBB 

PUSHL 
BSBB 

REI 

Register Conventions 

executive-mode-PSL 
DORE I 

;Do processing in 
executive access mode 

user-mode-PSL 
DORE I 

;Do processing in 
; user access mode 
;REI uses pushed PSL and PC 
; that BSBB put on stack 

Each of the major subsystems of the executive uses a set of register conven­
tions in its main routines. That is, the same registers are used to hold the 
same contents from routine to routine. Some of the more common conven­
tions are listed here. 

• R4 usually contains the address of the PCB of the current process. Nearly 
all system services and the scheduler use this convention. In fact, as illus­
trated in the code examples in Section 9.3.1, the change-mode-to-kernel 
system service dispatcher loads the PCB of the caller into R4 before pass­
ing control to the service-specific procedure. When it is necessary to store 
a PHO address, RS is usually chosen. (Except for the swapper and certain 
memory management code that executes at IPL 7, RS contaiJ:is the address 
of the Pl window to the process header.) 

• The memory management subsystem uses R2 to contain an invalid ad­
dress and R3 to contain the system virtual address of the page table entry 
that maps the page. When a physical page is eventually associated with the 
page, the PFN is stored in RO. 

• The I/O subsystem uses two nearly identical conventions, depending on 
whether it is executing in process context (in the $QIO system service or 
in device driver FDT routines) or in response to an interrupt. The most 
common register contents are the current IRP address stored in R3 and the 
UCB address in RS. In process context, R4 contains the address of the PCB 
of the requesting process. Within interrupt service routines, R4 contains 
the virtual address that maps one of the CSRs of the interrupting device. A 
more complete list of register usage by device drivers and the I/O subsys­
tem can be found in the VAX/VMS Guide to Writing a Device Driver. 
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Elimination of Seldom-Used Code 

There are several different techniques that are used to eliminate code and 
data that are not used very often. For example, none of the programs used 
during the initialization of a VMS system remains after its work is accom­
plished. Process creation is an example of a complex system service that does 
not execute often during the lifetime of a typical system. The VMS executive 
uses several techniques that allow these routines to do their work as effi­
ciently as possible and yet eliminate them after they have done their work. 

31.1.5.1 Eliminating the Bootstrap Programs. The following list illustrates some of 
the techniques used to remove the bootstrap programs from the system after 
they have done their work: 

1. Both VMB and SYSBOOT execute in physical pages that are not recorded 
anywhere. When module INIT places all physical pages except those occu­
pied by the permanently resident executive on the free page list, the pages 
used by VMB and SYSBOOT are included. Their contents are overwritten 
the first time that each physical page is used. 

2. The module INIT is a part of the linked executive and cannot be elimi­
nated quite so easily. Chapter 24 describes how INIT puts the physical 
pages that it occupied on the free page list after its work was done. 

The routine that puts the physical pages on the free page list performs a 
straightforward function. However, the unusual part of this step is that 
this routine was first copied to an unused portion of nonpaged pool, but 
the pool space was not formally allocated. When the routine has accom­
plished its work and returned, the code remains until the portion of pool 
that it occupied is used later on, when the last traces of INIT are elimi­
nated from the system. Note that this technique assumes that no pool 
allocation takes place until it is done. The fact that IPL remains at 31 
while INIT executes insures that no such allocation occurs. 

3. The system initialization that takes place in process context can be 
thought of as a part of the swapper process because the swapper creates 
SYSINIT, which in turn creates the STARTUP process. Because both 
SYSINIT and STARTUP are separate processes, however, they disappear 
after they are deleted (when they have completed their work). 

31.1.5.2 Seldom-Used System Routines. The simplest technique used by the system 
to prevent seldom-used code from permanently occupying memory is to put 
it into the paged executive. The normal operation of system working set 
replacement will eventually force those pages that are referenced once and 
never again out of the system working set. 

This technique is used by several system services that are not called very 
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often, such as the Set Time system service, which changes the system time. 
Process creation and deletion are also events that do not occur very often. 
Because process creation is spread throughout the system, the following tech­
niques are employed to eliminate the code from the system after the process 
is created: 

1. The routines in the Create Process system service (and also the Delete 
Process system service and its associated special kernel mode AST) are 
located in the paged executive. 

2. The swapper has a special subroutine that it calls when it inswaps a newly 
created process from SHELL. This subroutine is located in two of the pages 
that the swapper just read into memory. Because of the way that the swap­
per does its I/O, these pages are mapped as PO pages in the swapper's ad­
dress space. These pages become the kernel stack of the new process 
(which cannot execute until the swapper marks the process as COM, after 
it is finished with the special subroutine). The swapper has succeeded in 
executing two pages worth of code (that are only used the first time that a 
process is inswapped) without requiring any physical memory. 

3. The final steps of process creation take place in the context of the new 
process in routine EXE$PROCSTRT, located in the paged executive. 

Dynamically Locking Code or Data into Memory 

The frequency of use is not the only criterion that is used to decide whether 
to put a routine into the paged or nonpaged executive. The page fault handler 
assumes that it will never incur a page fault above IPL 2. (This assumption is 
enforced by issuing a fatal bugcheck if it is violated.) 

Several system services that are not used very often (including Create Proc­
ess and Delete Process) must elevate IPL to 7 to synchronize access to the 
scheduler's database. There are several different techniques used to minimize 
the contribution that these routines make to the nonpaged executive. 

31.1.6.1 Locking Pages in External Images. The simplest technique for locking down 
pages while executing at IPL 7 is used by privileged utilities that use the 
$CMKRNL system service. These programs can use the $LKWSET system 
service to lock down the code and data pages that are referenced while IPL is 
elevated above 2. This technique is not available to executive routines or 
user-written system services. 

31.1.6.2 Placing Code in the Nonpaged Executive. This technique puts the smallest 
possible block of code into the nonpaged executive and places the rest of the 
routine into the paged executive. A control transfer allows the nonpaged code 
to execute. The following variation on a routine within the $GETJPI system 
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service illustrates the technique. The reason that the entire routine cannot 
exist in pageable pages is because routine EXE$NAMPID returns at IPL 7 . 

25$: 

. PSECT YEXEPAGED 
.ENABLE LOCAL_BLOCK 

JSB 25$ 

.SAVE_PSECT 

. PSECT AEXENONPAGED 
JSB EXE$NAMPID 
SETIPL #0 
RSB 

.RESTORE PSECT 

;Processing begins in paged 
; code 

;This is only nonpaged piece 

;Processing continues in paged 
; code 

31.1.6.3 Dynamic Locking of Pages. The preceding piece of code only contributes ten 
bytes to the nonpaged executive. The Create Process and Delete Process sys­
tem services must execute many more instructions at IPL 7. They employ a 
technique that dynamically locks one or two pages into memory. (The sys­
tem cannot use the $LKWSET system service to lock pages into the system 
working set.) This technique is also necessary for user-written system ser­
vices that must execute above IPL 2 because they must also lock pages into 
memory and, in general, cannot use the $LKWSET system service. 

This technique relies on the assumption that once IPL is elevated to 
IPL$_SYNCH, no events related to page faulting occur, particularly remov­
ing a page from the process or system working set. 

BEGIN_LOCK: 
DSBINT LOCK_IPL 

ENBINT 

LOCK_IPL: 
.LONG IPL$_SYNCH 

END_LOCK: 

; Processing begins in paged 
; code 

;No page faults will occur 
; here 

; Page faults can occur 
; again 

ASSUME <END_LOCK-BEGIN_LOCK> LE 512 

The key to this technique is that the DSBINT macro cannot successfully 
complete until both the page containing the instruction and the page con-
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taining the source operand are valid. Once the instruction completes (imply­
ing that both pages are valid), IPL is set at 7, preventing further paging activ­
ity until the IPL is lowered (with the ENBINT macro). The DSBINT macro 
expands to the following instruction: 

MTPR src, #PR$_IPL 

The ASSUME macro is necessary to make sure that the DSBINT macro and 
source operand are not more than one page apart, preventing the possibility of 
an invalid page between the two valid pages, an occurrence that would sub­
vert this technique. Any example of this technique also has some instruction 
that transfers control so that the longword containing IPL$_SYNCH is not 
interpreted as an instruction. 

A natural question at this point is why the first technique, the one used by 
$GETJPI, is necessary at all. It seems that the call site to EXE$NAMPID 
could be locked down using this technique. The answer is that EXE$NAM­
PID cannot be called above IPL 2. It accesses the caller's argument list, a data 
reference that could potentially cause a page fault, and page faults are not 
allowed above IPL 2. 

31.2 USE OF MAP FILES 

31.2.1 
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One indispensable tool for reading the executive listings is the map file SYS­
.MAP found in directory SYS$SYSTEM. This file was produced when the 
executive image was linked and contains the system virtual addresses of all 
global symbols in the executive. More important from the point of view of 
reading the listings, it contains a cross reference listing of modules that de­
fine and reference each global symbol. 

The techniques that are described for using this file are also applicable to 
other map files. Map files for device drivers are necessary when debugging a 
new device driver. The map files for RMS and DCL are also described because 
these images do not execute in the usual sense but rather are mapped into 
system or process virtual address space. 

The Executive Map SYS.MAP 

There are two main uses for the system map file. One of these occurs when 
the system crashes. The addresses that are reported either on the console 
terminal or in the system dump file must be related to actual routines in 
system address space. The portion of the map that lists in ascending order all 
program sections that contribute to the executive is useful here. The address 
in question is compared with each PSECT contribution until the module that 
defines the symbol is found. The base address of this module is subtracted 
from the address that is being examined to produce an offset into the correct 
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module. This offset can be used with the assembler listing to locate the in­
struction or data reference that caused the error. 

Such an error situation could arise as a result of a bug in the operating 
system but more likely is due to some user-written modification to the exec­
utive such as a device driver, a customized system service, or simply a proce­
dure that is called through the Change Mode to Kernel or Change Mode to 
Executive system service. The only limitation to the use of the map in this 
way occurs when a system virtual address is larger than the highest address 
in the executive image. This situation probably indicates that the address is 
found in a routine that is dynamically loaded, such as RMS, a device driver, 
or CPU-dependent routines. Table 26-2 lists the global pointers that locate 
each dynamically mapped portion of system address space. By examining the 
contents of these locations, the component that contains the offending ad­
dress can be determined. 

The second use of SYS.MAP occurs when reading practically any routine in 
the executive. Due to the modular construction of the VMS system, many 
routines that are referenced by the routine that is currently being looked at 
are found in some other module. The simplest way to locate these external 
symbols is to look in the alphabetical cross-reference map for the external 
symbol name. The first item of information is the name of the module that 
defines this symbol. All modules that reference this symbol are listed in suc­
ceeding columns. 

RMS.MAP, DCL.MAP, and MP.MAP 

The same cross-reference capability mentioned for SYS.MAP obviously ap­
plies to any component of the operating system that contains many modules. 
While reading a module in DCL for example, there may be a reference to an 
external subroutine. The module containing that subroutine can be deter­
mined with the cross reference listing in the map file DCL.MAP. 

RMS, the loadable multiprocessing code, and the command language inter­
preters present a second problem to anyone attempting to relate code or data 
in virtual memory to references in an assembler listing or in a map file. Both 
images are mapped into a virtual address range that is not known until the 
mapping occurs. The maps meanwhile contain addresses beginning at 0. 

The technique to relate map addresses to virtual memory locations for 
either of these images is as follows. Despite the fact that RMS and the 
loadable multiprocessing code are mapped into system virtual address space 
and DCL is mapped into Pl space, the technique employed in each case is the 
same. 

When RMS is mapped by SYSINIT, the base address of the RMS image is 
stored in global location MMG$GL_RMSBASE. (The contents of this loca­
tion are copied to location CTL$GL_RMSBASE in the Pl pointer page by 
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PROCSTRT when a process is created.) The base address of any command 
language interpreter is stored in the first longword at global location 
CTL$AG_CLIMAGE. Because both RMS and DCL are linked as system im­
ages with a base address of zero, the contents of these two locations can be 
used as simple offsets to relate an address extracted from the map to a virtual 
address in a running system. 

For example, if an error occurred at location X in system space, and X was 
larger than the contents of MMG$GL_RMSBASE, denoted by Y, then the 
relative offset into the RMS image is simply Y - X. (Obviously, if this differ­
ence is larger than the size of the RMS image, then address Y is not in RMS.) 

To give an example that goes in the other direction (from a relative address 
on an assembler listing to a virtual memory location), suppose that we wish 
to locate a specific instruction in module DCLabcxyz, part of the DCL image. 
The relative offset in the assembly listing is added to the base address of 
module DCLabcxyz (taken from DCL.MAP) to form the offset into the DCL 
image. This sum is added to the contents of global location 
CTL$AG_CLIMAGE to form the Pl virtual address of the instruction. 

The multiprocessing code is described by the map file MP.MAP. When 
multiprocessing on a V AX-11/782 is turned on, the multiprocessing code is 
loaded into locations starting at the address specified in global location 
EXE$GL_MP. Thus, this address can be used as the base address for the mul­
tiprocessing image. Note that part of the multiprocessing code is loadable (up 
to the PSECT named _END, defined in module MPLOAD); the remainder of 
the multiprocessing code is used to interpret the DCL commands START/ 
CPU, STOP/CPU, and SHOW/CPU, and to load the multiprocessing code 
into nonpaged pool. 

Device Driver Map Files 

Device drivers are loaded into nonpaged pool by SYSGEN. The SHOW 
/DEVICE command to this utility displays among other pieces of information 
the address range into which the driver image is loaded. The address of the 
DDT from the driver map (program section $$$1 lS_DRIVER) gives the base 
address that is used to move between addresses on the assembly listing and 
system virtual addresses. Debugging device drivers is discussed in more de­
tail in the VAX/VMS Guide to Writing a Device Driver. 

CPU-Dependent Routines 

The base address of the CPU-dependent code (see Chapter 25) can be found in 
the following way. Location EXE$AL_LOA VEC is the address of the first 
vector that is loaded by INIT, the machine check handler. That vector con­
tains a JMP instruction to the CPU-dependent machine check handler in 
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nonpaged pool. Because absolute addressing is used with the JMP instruction, 
the contents of EXE$AL_LOA VEC + 2 are the system virtual address of 
EXE$MCHK. By subtracting the address of EXE$MCHK obtained from the 
map file (SYSLOA730.MAP, SYSLOA750.MAP, or SYSLOA780.MAP), the 
base address of the CPU-dependent image is determined. Note that when 
reading system dumps with SDA, SDA defines the symbol MCHK to be the 
contents at EXE$AL_LOA VEC + 2. 

Other Map Files 

All other map files can also be used for the cross-reference capabilities al­
ready mentioned. In addition, most other components of the operating sys­
tem execute as regular images, and so no base addresses have to be used to 
locate addresses in virtual address space. The addresses on the map corre­
spond to the virtual addresses that are used when the image executes. The 
only exceptions to this are shareable images. However, the map file from an 
executable image that includes a given shareable image can be used to deter­
mine the base address of a shareable image in a some instances. The map file 
cannot be used to determine the base address of nonbased, PIC shareable 
images; their base addresses are determined at image activation time. 

31.3 THE SYSTEM DUMP ANALYZER(SDA) 

31.3.1 

Because some of the routines and most of the data structures used by the 
VAX/VMS operating system are loaded or constructed dynamically, the map 
file is limited in its ability to relate addresses to data structures or routines. 
In addition, the map file can only supply addresses of static data storage areas 
in the system, and not their contents. The system dump analyzer is a tool 
that overcomes these limitations of the map files. The use of the system 
dump analyzer is described in the VAX/VMS System Dump Analyzer Refer­
ence Manual. This section mentions several of the many SDA commands 
that are especially useful when studying how the operating system works. 

Global Locations 

Many of the dynamic data structures, located in parts of system address space 
that are beyond the last address in the executive image, are located through 
global pointers in the static part of the executive (the part found in the image 
SYS.EXE). These static locations are loaded when the structures in question 
are created or modified, as a part of either system initialization or some other 
loading mechanism. By using the SDA command SHOW SYMBOLS I ALL not 
only the addresses but also the contents of all global locations in the execu­
tive are put into SDA's output file. This list, together with the map file 
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SYS.MAP, enables any data structure to be located in system address space if 
the global name of the listhead that locates the structure is known. Appendix 
A contains a complete list of the static data locations used by the system. 

Layout of System Virtual Address Space 

A second useful application of SDA involves creating a picture of system 
address space. As Figure 26-2 shows, many of the pieces of system address 
space are constructed at initialization time. The sizes of the various pieces 
are determined by SYSBOOT parameters (see Chapter 26). By issuing the 
SDA command SHOW PAGE_ TABLE /SYSTEM, the contents of the entire 
system page table are listed. This listing, the symbol table described in the 
previous section, and the executive map file SYS$SYSTEM:SYS.MAP allow 
an accurate picture of system virtual address space to be drawn. In fact, this 
technique was used to generate Figures 1-6, 26-1, and 26-2. 

Layout of Pl Space 

SDA can also be used to obtain the layout of Pl space. Most of the pieces of 
Pl space (see Figure 1-7 and Table 26-4) are fixed in size. The Pl page tables 
defined in module SHELL determine the sizes of these pieces of Pl space. 
Other pieces may not even exist for some processes. In any case, the SDA 
command SHOW PROCESS/PAGE_ TABLES produces a complete layout of 
Pl space. This technique was used to generate Figure 1-7 and Table 26-4. 

31.4 INTERPRETING MDL FILES 

31.4.1 

662 

There are very many data structures and other system-wide constants used 
by the executive and other system components. These structures are defined 
with a special structure definition language called MDL (or Maynard Defini­
tion Language). This language allows data structures to be defined from a 
single source but used in either VAX-11 MACRO or BLISS-32. 

When a VMS system is built from source, a preprocessing program called 
MDL reads all system data structure definitions and produces an output file 
for each input file. One of these output files contains macro definitions for 
use by VAX-11 MACRO. The other output file is used by the BLISS compiler 
to produce BLISS macro definitions. This section is not an exhaustive discus­
sion of every MDL directive. Rather, it attempts to show how the MDL de­
scription of a data structure can be related to either a picture of the structure 
or the resulting VAX-11 MACRO or BLISS-32 definitions. 

Sample Structure Definitions 

The simplest way to illustrate how a structure is defined is to look at the 
resultant symbol definitions. One way to accomplish this is to compare the 
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MDL definition of a given structure with the resultant VAX-11 MACRO or 
BLISS-32 symbols. These symbols can be found in any listing that uses the 
structure in question. Alternatively, the command procedure listed in Sec­
tion 31.1. l.l can be used. 

There are three tables listed here to show the results of simple MDL direc­
tives. Individual MDL commands are briefly described in the following sec­
tions. Table 31-1 shows the result of the complete MDL definition of the 
logical name block (pictured in Figure 29-2). Notice that the structure has a 
variable length. The symbol LOG$K_LENGTH only represents the length of 
the fixed size portion of the structure, excluding the storage areas for the 
logical name and equivalence name counted strings. 

Table 31-2 illustrates the several uses of the S directive, using excerpts 
from the definitions for the PCB, the process header, and the timer queue 
element. Table 31-3 illustrates the eventual results of using MDL to define 
variable length bit fields. The AST control block is pictured in Figure 7-1. 
The specific fields within a virtual address are pictured in Figure 15-1. 

Commonly Used MDL Commands 

This section describes the MDL directives commonly used in defining struc­
tures used by the operating system. Emphasis is on reading the MDL files 
used by the system. A complete syntax of each command is not given. 
Rather, the features of each directive that are used by the system are empha­
sized. 

31.4.2.1 $STRUCT Directive. Each structure definition begins with a $STRUCT 
statement. This statement defines the prefix characters in each symbol defi­
nition. For example the following statement defines the PCB structure, 
where each symbol definition begins with the characters PCB: 

$STRUCT PCB 

In the default case (used by the operating system), the next character in each 
resultant symbol name is the dollar sign($). Constant definitions can have an 
underscore(_), a C_, or a K_ as the next character(s). Field definitions have a 
character (B, W, L, or Q) that represents the size of the field. The naming 
conventions that MDL symbols adhere to are listed in Chapter 32. 

31.4.2.2 F Directive. Fields in a data structure are defined with the F directive. The 
name of each field is the first argument of the field definition and forms the 
balance of a symbol name. The value of the symbol name is set equal to an 
internal counter. As each field definition is processed, the internal counter 
value is increased by the size of the field (1, 2, 4, or 8). The default size of a 
field is four, representing a longword. This default can be overridden by in­
cluding a second parameter to the F directive. Legal characters are B, W, L, Q, 
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Table 31-1: MDL Description and Resultant Symbol Definitions for Logical Name Block 

Resultant Symbol Value Effect on Internal 
MDL Directive Meaning of Directive Symbol Name (decimal) Counter Value 

$STRUCT LOG Begin LOG Structure 
Definition 

F LTFL,L Longword Field LOG$LLTFL 0 Increase by 4 
F LTBL,L Longword Field LOG$LLTBL 4 Increase by 4 
F SIZE,W Word Field LOG$W_SIZE 8 Increase by 2 
F TYPE,B Byte Field LOG$B_TYPE 10 Increase by 1 
F TABLE,B Byte Field LOG$B_ TABLE 11 Increase by 1 
F GROUP,W Word Field LOG$W _GROUP 12 Increase by 2 
F AMOD,B Byte Field LOG$B_AMOD 14 Increase by 1 
F ,B Skip One Spare Byte None Increase by 1 

(Even Though No 
Symbol Defined) 

F MBXUCB,L Longword Field LOG$LMBXUCB 16 Increase by 4 
L LENGTH Define Structure Length LOG$C_LENGTH 20 None 

to This Point LOG$K_LENGTH 20 None 
F NAME,T,O A Text String Begins Here LOG$T_NAME 20 None (Because Size 

ls Zero) 
c SYSTEM,O Define a Constant LOG$C_SYSTEM 0 None 
c GROUP,l Define a Constant LOG$C_GROUP 1 None 
c PROCESS,2 Define a Constant LOG$C_PROCESS 2 None 
c NAMLENGTH,64 Define a Constant LOG$C_NAMLENGTH 64 None 
E Terminate Structure 

Definition 
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and T. The first four possibilities correspond to the logical or integer V AX-11 
data types. The T argument indicates a text string, whose size appears as the 
third argument. (A count [third] argument for any field type increases the 
internal pointer value by the size of the field multiplied by the count.) 

31.4.2.3 L Directive. The L directive is used to create a label at a specified point in a 
data structure. The VMS operating system uses the L directive to define the 
length of a structure by giving the resultant name the suffix LENGTH. 

31.4.2.4 E Directive. The structure definition is terminated with an E directive. 

31.4.2.5 S Directive. It is often desirable to give a field two names. In addition, sub­
fields within a field often exist. The S directive defines a symbol with the 
indicated name and a value derived from the internal pointer when the cur­
rent F directive was issued. The second argument indicates how far into the 
current field the subfield exists. The third argument indicates the size of the 
subfield. For example, the following lines from the PCB structure definition 
result in a symbol PCB$W _MEM that has the same value as PCB$L_UIC and 
a second symbol PCB$W _GRP that is two larger than the other two symbols. 

F UIC,L 
S MEM,O,W 
S GRP,O,W 

Table 31-2 shows several examples of the S directive. 

31.4.2.6 C Directive. The C directive allows a constant or a series of constants to be 
defined. Depending on what other parameters are supplied, the C directive 
produces symbols of the form xyz$C_name, xyz$K_name, or xyz$_name. 
The example in Table 31-1 illustrates one use of the C directive. There are 
several other examples of constant definitions in either SYSDEF.MDL or 
STARDEF.MDL, such as the definitions of the DYN$ symbols that describe 
dynamically allocated structures or the JPI$ symbols, the codes that describe 
an information list to the $GETJPI system service. 

31.4.2.7 M and P Directives. The M and P directives are used together to allow the 
same fields in a data structure to have different definitions depending on the 
context in which they are used. For example, the UCB definition contains 
field definitions at the end of the structure that depend on the device that is 
described by a given UCB. The M directive (followed by a numeric argument) 
marks a specific position (internal byte counter value) in the structure. The P 
directive (followed by a numeric argument) restores the value of the internal 
counter to the value associated with that numbered mark position. 

665 



Table 31-2: Examples of the S Directive Definitions 

MDL Directive 

$STRUCT PCB 

F ARB,L 
F UIC,L 
s MEM,O,W 

s GRP,2,W 

F LOCKQFL,L 

L LENGTH 

E 
$STRUCT PHD 

F 
s 

PAGFIL,L 
PAGFIL,3,B 

Meaning of Directive 

Begin Definition of 
PCB Structure 

Longword Field 
Longword Field 
Word Subfield 

with Origin of 0 
Word Subfield 

with Origin of 2 
Longword Field 

Define Length of PCB 

Terminate PCB Definition 
Begin Definition 

of PHD Structure 

Longword Field 
Byte Subfield 

with Origin of 3 

Resultant 
Symbol Name 

PCB$LARB 
PCB$LUIC 
PCB$W_MEM 

PCB$W_GRP 

PCB$LLOCKQFL 

PCB$C_LENGTH 
PCB$K_LENGTH 

PHD$LPAGFIL 
PHD$B_PAGFIL 

Symbol Value 
(decimal} 

132 
136 
136 

138 

140 

156 
156 

28 
31 

Effect on Internal 
Counter Value 

Increase by 4 
Increase by 4 
None (Set Subfield 

Counter to 2) 
None (Set Subfield 

Counter to 4) 
Increase by 4 

None 

Increase by 4 
None 



°' °' ......... 

Table 31-2: Examples of the S Directive Definitions (continued) 

MDL Directive 

F PSTBASOFF,L 

F 
s 

F 

E 

POLRASTL 
ASTLVL,3,B 

PIBR,L 

$STRUCT TQE 

F PID,L 
s FPC,,L 
F AST,L 
s FR3,,L 
F ASTPRM,L 
s FR4,,L 
F TIME,Q 

E 

Meaning of Directive 

Longword Field 

Longword Field 
Byte Subfield 

with Origin of 3 
Longword Field 

Terminate PHD Definition 
Begin Definition 

of TQE Structure 

Longword Field 
Subfield with Same Value 
Longword Field 
Subfield with Same Value 
Longword Field 
Subfield with Same Value 
Quadword Field 

Terminate TQE Definition 

Resultant 
Symbol Name 

PHD$1-PSTBASOFF 

PHD$L_POLRASTL 
PHD$B_ASTL VL 

PHD$L_PlBR 

TQE$1-PID 
TQE$1-FPC 
TQE$1-AST 
TQE$1-FR3 
TQE$L_ASTPRM 
TQE$1-FR4 
TQE$Q_TIME 

Symbol Value 
(decimal) 

32 

200 
203 

204 

12 
12 
16 
16 
20 
20 
24 

Effect on Internal 
Counter Value 

Increase by 4 

Increase by 4 
None 

Increase by 4 

Increase by 4 
None 
Increase by 4 
None 
Increase by 4 
None 
Increase by 8 

CJ;) 

"""" -1::. 

ti' ...... 
t'll 

~ 
'-; 
t'll ...... ::;· 

()q 

8 
t-< 

:!:! 
i-.:. 
t'll 
I;> 



Table 31-3: Sample Variable Length Bit Field Definitions 

MDL Directive Meaning of Directive 

$STRUCT ACB Begin Definition of ACB Structure 

F RMOD,B Byte Field 
V< Begin Bit Field Definitions 
MODE,2 Bit Field of Size 2 and Origin 0 

,2 Skip 4 Spare Bits 
PKAST11,M Single Bit Field with Mask Definition 

NODELETE11,M Single Bit Field with Mask Definition 

QUOTA111M Single Bit Field with Mask Definition 

KAST Single Bit Field 
> End Bit Field Definitions 

F PID,L Longword Field 

E Terminate ACB Definition 

Resultant 
Symbol Names 

ACB$B_RMOD 

ACB$V_MODE 
ACB$S_MQDE 

ACB$V _PKAST 
ACB$M_PKAST 
ACB$V _NQDELETE 
ACB$M_NQDELETE 
ACB$V_QUOTA 
ACB$M_QUOTA 
ACB$V_KAST 

ACB$1-PID 

Symbol Value 
(decimal) 

11 

0 
2 
2 
4 
00000010 (hex) 
5 
00000020 (hex) 
6 
00000040 (hex) 
7 

12 

Internal Bit Counter 
(before) (after) 

0 2 

6 
4 5 

5 6 

6 7 

7 Beyond Limit 



Table 31-3: Sample Variable Length Bit Field Definitions (continued) 
Resultant Symbol Value Internal Bit Counter 

MDL Directive Meaning of Directive Symbol Names (decimal) (before) (after) 

$STRUCTVA Begin VA Bit Field Definitions 
V< Begin Bit Field Definitions 

BYTE,911M Bit Field of Size 9 and Origin 0 VA$V_BYTE 0 0 9 
VA$S_BYTE 9 
VA$M_BYTE OOOOOlFF (hex) 

VPN,2111M Bit Field of Size 21 and Origin 9 VA$V_VPN 9 9 30 
VA$5-VPN 21 
VA$M_PFN 3FFFFEOO (hex) 

Pl111M Single Bit Field at Bit 30 VA$V_Pl 30 30 31 
VA$M_Pl 40000000 (hex) 

SYSTEM111M Single Bit Field at Bit 31 VA$V_SYSTEM 31 31 32 w 
VA$M_SYSTEM 80000000 (hex) N 

> End Bit Field Definitions ~ 

V< Begin New Set of Bit Field Definitions S' ,9 Skip over the First Nine Bits .... 
VPG,2311M Bit Field of Size 23 and Origin 9 VA$V_VPG 9 9 32 

~ 

~ 
VA$S_VPG 23 .... 

~ 

VA$M_VPG FFFFFEOO (hex) .... 
:5• 

> End Second Set of Bit Definitions C>q 

E Terminate VA Definition s 
t-< 

°' ~ 

°' .....:. 
\0 ~ en 



Use of Listing and Map Files 

31.4.3 
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Bit Field Definitions-the V Directive 

Bit fields require two numbers to completely describe them, a bit position 
and a size. MDL always defines a bit position (indicated by a V _ in the sym­
bol name). The size of a field (indicated bys_ in the symbol name) is always 
defined when the field size is different from one. It is often convenient to 
define a mask symbol (indicated by M_ in the symbol name) that has ones in 
each bit position defined by the bit field and zeros elsewhere. MDL defines 
such symbols if so requested. 

Because this section is not trying to explain the entire MDL syntax but 
rather shows what symbols result from a given MDL definition, the simplest 
way to describe the bit field syntax is with some examples. Table 31-3 in­
cludes MDL directives extracted from the definition of the AST Control 
Block (ACB J that is pictured in Figure 7-1. Note that only the quota field has a 
mask symbol defined. Table 31-3 also contains the MDL description of the 
bit fields within a virtual address (see Figure 15-1 ). The definitions of the PSL 
bit fields and the STS bit fields (both located in STARDEF.MDLJ are more 
complicated illustrations of the syntax that these examples describe. 



32 Naming Conventions 

What's in a name? That which we call a rose 
By any other name would smell as sweet. 

-Romeo and fuliet 2, 11 

The conventions described in this chapter were adopted to aid implementors 
in producing meaningful public names. Public names are all names that are 
global (known to the linker) or that appear in parameter or macro definition 
files. 

Public names follow these conventions for the following reasons: 

• Using reserved names insures that customer-written software will not be 
invalidated by subsequent releases of DIGITAL products that add new 
symbols. 

• Using definite patterns for different uses tells someone readingthe source 
code what type of object is being referenced. For example, the form of a 
macro name is different from that of an offset, which is different from that 
of a status code. 

• Using length codes within a pattern associates the size of an object with its 
name, increasing the likelihood that reference to this object will use the 
correct instructions. 

• Using a facility code in symbol definitions gives the reader an indication of 
where the symbol is defined. Separate groups of implementors choose fa­
cility code names that will not conflict with one another. 

To fully conform with these standards, local. synonyms should never be de­
fined for public symbols. The full public symbol should be used in every 
reference to give maximum clarity to the reader. 

32.1 PUBLIC SYMBOL PATTERNS 

All DIGITAL symbols contain a dollar sign. Thus, customers and applica­
tions developers are strongly advised to use underscores instead of dollar 
signs to avoid future conflicts. 

Public symbols should be constructed to convey as much information as 
possible about the entities they name. Frequently, private names follow a 
similar convention. The private name convention is then the same as the 
public one with the underscore replacing the dollar sign in symbol names. 
Private names are used both within a module, and globally between modules 
of a facility that is never in a library. All names that might ever be bound into 
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a user's program must follow the rules for public names. In the case of inter­
nal names, a double dollar sign convention can be used as shown in item 5 in 
the following list of formats: 

1. System service macro names are of the form: 

$service-name 

A trailing _s or _G distinguishes the stack form from the separate argu­
ment list form. Details about the names of system service macros can be 
found in the VAX/VMS System Services Reference Manual. 

These names appear in the system macro library SYS$LIBRARY:S­
TARLET.MLB and represent a call to one of the VAX/VMS system ser­
vices or RMS services. 

The following examples show this form of symbol name. 

$ASCEFC_S Associate Common Event Flag Cluster 
$CLOSE Close a File 
$TRNLOG_G Translate Logical Name 

2. Facility-specific public macro names are of the form: 

$facility_macroname 

The executive does not use any symbol names of this form. 
3. System macros using local symbols or macros always use names of the 

form: 

$facility$macro-name 

This is the form to be used both for symbols generated by a macro and 
included in calls to it, and for internal macros that are not documented. 

The executive does not use any symbol names of this form. 
4. Status codes and condition values are of the form: 

facility$_status 

The following examples show this form of symbol name: 

RMS$_FNF File Not Found 
SS$_ILLEFC Illegal Event Flag Cluster 
SS$_WASCLR Flag Was Previously Clear 

5. Global entry point names are of the form: 

facility$entry-name 

The following examples show this form of symbol name: 

EXE$ALOPAGED Allocate Paged Dynamic Memory 
IOC$WFIKPCH Wait for Interrupt and Keep 

Channel 
MMG$PAGEFAULT Page Fault Exception Handler 

Global entry point names that are intended for use only within a set of 
related procedures but not by any calling programs outside the set are of 
the form: 



32.1 Public Symbol Patterns 

facility$$entry-name 

The executive does not use symbol names of this form. However, the 
Run-Time Library contains several examples of symbol names that fol­
low this convention, for example: 

BAS$$NUM_INIT Initialize the BASIC NUM Function 
FOR$$SIGNAL_STO Signal a FORTRAN Error and Call 

LIB$STOP 
OTS$$GET_LUN Get Logical Unit Number 

6. Global entry point names that have nonstandard calls (JSB entry point 
names) are of the following form, where _Rn indicates that RO through 
Rn are not preserved by the routine. 

facility$entry-name_Rn 

Note that the caller of such an entry point must include at least registers 
R2 through Rn in its own entry mask so that a stack unwind will restore 
all registers properly. 

The executive does not use this convention for its JSB entry points. 
However, the Run-Time Library does contain several examples of its use, 
for example: 

COB$CVTFP_R"I 
MTH$SIN_RL; 
STR$COPY_DX_Rll 

Convert Floating to Packed 
Single Precision Sine Function 
JSB entry to general string 
copying routine 

7. Global variable names are of the form: 

facility$Gt_variable-name 

The letter G indicates a global variable. The letter t represents the type of 
variable as defined in Section 32.2. 

The following examples show this form of symbol name: 

CTL$GQ_PROCPRIV 
EXE$GL_NONPAGED 
SCH$GL_CURPCB 

Process Privilege Mask 
First Free Block in Nonpaged Pool 
Address of PCB of Current Process 

8. Addressable global arrays use the letter A (instead of the letter G) and are 
of the form: 

facility$At_array-name 

The letter A indicates a global array. The letter t indicates the type of 
array element as defined in Section 32.2. 

The following examples show this form of symbol name: 

CTL$AQ_EXCVEC Array of Primary and Secondary 
Exception Vectors 

LOG$AL_LOGTBL Array of Logical Name Table 
Listheads 

PFN$AW_FLINK Array of Forward Links for PFN 
Lists 
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9. In the assembler, public structure offset names are of the form: 

structure$t_field-name 

The letter t indicates the data type of the field as defined in Section 32.2. 
The value of the public symbol is the byte offset to the start of the data 
element in the structure. 

The following examples show this form of symbol name: 

CEB$L_EFC Event Flag Cluster (in Common 
Event Block) 

GSD$W_GSTX Global Section Table Index (in 
Global Section Descriptor) 

PCB$B_PRI Current Process Priority (in 
Software PCB) 

10. In the assembler, public structure bit field offsets and single bit names 
are of the form: 

structure$V_field-name 

The value of the public symbol is the bit offset from the start of the field 
that contains the datum (and not from the start of the control block). 

The following examples show this form of symbol name: 

ACB$V_QUOTA 
PSL$LCURMOD 
UCB$LCANCEL 

Charge AST to Process AST Quota 
Current Access Mode 
Cancel I/0 on this unit 

11. In the assembler, public structure bit field size names are of the form: 

structure$S_field-name 

The value of the public symbol is the number of bits in the field. 
The following examples show this form of symbol name: 

ACB$S_MODE 
PSL$S_CURMOD 
PTE$S_PROT 

Access Mode of Requestor (2 bits) 
Current Access Mode (2 bits) 
Memory Protection on Page (~ bits) 

12. For BLISS, the functions of the symbols in the previous three items are 
combined into a single name used to reference an arbitrary datum. 
Names are of the following form, where x is the same as t for standard 
sized data (B, W, L, and Q) and x stands for V for arbitrary and bit fields: 

structure$x_field-name 

The macro includes the offset, position, size, and sign extension suitable 
for use in a BLISS field selector. Most typically, this name is defined by 
the following BLISS statement: 

MACRO 
structure$V_field-name = 

structure$t_field-name, 
structure$V_field-name, 
structure$S_field-name, 
<sign extension>%; 

VAX-11 MACRO v meaning 



32.1 Public Symbol Patterns 

13. Public structure mask names are of the form: 
structure$M_field-name 

The value of the public symbol is a mask with bits set for each bit in the 
field. This mask is not right justified. Rather, it has structure$V _field­
name zero bits on the right. 

The following examples show this form of symbol name: 
CEB$M_VALID Shared Memory Master CEB is Valid 
PSL$M_CURMOD Current Access Mode 
PTE$M_PROT Memory Protection on Page 

14. Public structure constant names are of the form: 
structure$K_constant-name 

The following examples show this form of symbol name: 
PCB$K_LENGTH 
SRM$K_FLT_OVF_F 
STS$K_SEVERE 

Length (in bytes) of Software PCB 
Code for Floating Overflow Fault 
Fatal Error Code 

For historical reasons, many of the constants used by the executive have 
the letter C instead of a K to indicate that the object data type is a con­
stant. 

Examples of this form of symbol name are: 
DYN$C_PCB Structure Type is Software PCB 
EXE$C_CMSTKSZ Size of Stack Space Added by 

Change Mode Handler 
PTE$C_URKW Protection Code of User R~ad, 

. Kernel Write 

15 .. PSECT names are of the form: 
facility$mnemonic 

When these names are put into a library, they have the form: 
_facility$mnemonic 

The following examples show symbols of the form facility$mnemonic: 
COPY$COPY_FILE File Copying Main Routine Program 

Section 
DCL$ZCODE Program Section Section That 

Contains Most Code for the 

JBC$MSGOUT 
DCL Command Interpreter 
Program Section Containing the Job 
Controller's Message Output 
Routine 

This convention is not adhered to as strictly as the other naming conven­
tions because .PSECT names control the way that the linker allocates 
virtual address space. Names will often be chosen to affect the relative 
locations of routines and the data that they reference. 

Some sample .PSECT names from the Run-Time Library show ex­
. amples of the fon;n _facility$mnemonic: 
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_LIB$CODE General Library (Read-Only) Code 
Section 

_MTH$DATA Data Section in Mathematics 
Library 

_OTS$CODE Code Portion of Language­
Independent Support Library 

The executive does not use this convention when forming its .PSECT 
names. Rather, it uses names that cause the desired sections to be placed 
in the correct parts of system space. For example, .PSECT names control 
those pieces of the executive that are pageable. In addition, .PSECT 
names allow data areas and code that references that data to be placed 
within 64K bytes so that word displacement addressing (rather than 
longword displacement) can be used to reference the data. 

The following examples show .PSECT names that are used in the exec­
utive: 

$$$220 One of the First Data Program 
Sections in the Executive 

$AEXENONPAGED Nonpaged Executive Code 
YEXEPAGED Pageable Executive Routines 

16. Public structure definition macro names are of the form: 

$facility_structureDEF 

Invoking this macro defines all symbols of the form structure$xxxxxx. 
Most of the public structure definitions used by the VMS operating 

system do not include the string "facility_" in the macros that define 
structure offsets. Rather, macros of the following form are used to define 
structure$xxxxxx symbols: 

$structureDEF 

The following examples show these macros: 

$LOGDEF Offsets into Logical Name Block 
$PCBDEF Offsets into Software Process 

Control Block 
$SSDEF System Service Status Codes 

32.2 OBJECT DATA TYPES 

676 

Table 32-1 shows the letters that are used for the various data types or are 
reserved for various purposes. 

N, P, and T strings are typically variable length. In structures or 1/0 rec­
ords, they frequently contain a byte-sized digit or character count preceding 
the string. If so, the location or offset is to the count. Counted strings cannot 
be passed in procedure calls. Instead, a string descriptor must be generated. 



32.3 Facility Prefix Table 

Table 32-1: Letters and the Data Types They Indicate 

Letter 

A 
B 
c 

J) 
E 
F 
G 
H 
I 

J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 
w 
x 
y 

z 

Data Type or Usage 

Address 
Byte Integer 
Single Character ( 1) 
Double Precision Floating 
Reserved to DIGITAL 
Single Precision Floating 
G_floating-point Values 
H_floating-point Values 
Reserved for Integer Extensions 
Reserved to Customers for Escape to Other Codes 
Constant 
Longword Integer 
Field Mask 
Numeric String (All Byte Forms) 
Reserved to DIGITAL as an Escape to Other Codes 
Packed String 
Quadword Integer 
Reserved for Records (Structure) 
Field Size 
Text (Character) String 
Smallest Unit of Addressable Storage 
Field Position (VAX-11 MACRO); Field Reference (BLISS) 
Word Integer 
Context Dependent (Generic) 
Context Dependent (Generic) 
Unspecified or Nonstandard 

( 1) In many of the symbols used by VAX/VMS, C is used as a synonym for 
K. Although K is the preferred indicator for constants, most constants 
used in VMS are indicated by a C in their name. Some constants, such as 
lengths of data structures, have both a C form and a K form. 

32.3 FACILITY PREFIX TABLE 

Table 32-2 lists the facility prefixes used by DIGITAL-supplied software. 
This list will grow over time as new facility prefixes are chosen. No one 
within DIGITAL is permitted to use a new code without registering it in a 
common place, thereby insuring that each facility name will be unique. 

Note that bit<27>, the customer facility bit, is clear in all of the facility 
codes listed here. Customers are free to use any of the facility codes listed 
here, provided that they set bit<27>. The default action of the message com­
piler is to set this bit. 

The location of the facility code within a status code and the meaning of 
the other fields in the status code are described in Chapter 10 of the V AX-11 
Utilities Reference Manual. 
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Table 32-2: Facility Names and Their Prefixes 

Condition 
Prefix Facility Description <27:16> 

Nucleus and System Processes 

SYSTEM System Service Status Codes 0 
RMS RMS Internals and Status Codes 
DEBUG Symbolic Debugger 2 
CLI Command Language Interpreters 3 
JBC Job Controller 4 
OPCOM Operator Communication 5 
RSX RSX-1 lM Application Migration Executive 6 
ERF Error Logger Format Process 8 
TRACE Traceback Facility 9 

Run-Time Library Components 

ELI BLISS Transportable Run-Time Library 20 
LIB General Purpose Library; Global Sections 21 
MTH Mathematics Library 22 
OTS Language Independent Object Time System 23 
FOR VAX-11 FORTRAN Run-Time Library 24 
COB VAX-11 COBOL Run-Time Library 25 
BAS VAX-11 BASIC Run-Time Library 26 
B32 BLISS-32 Specific Run-Time Library 27 
SORT VAX-11 SORT 28 
C74 COBOL-74 Specific Run-Time Library 29 
PLI PL/I Run-Time Library 30 
XPO Transportability Support Library 32 
PAS VAX-11 PASCAL Run-Time Library 33 
COR CORAL-66 Run-Time Library 34 
APL VAX-11 APL Run-Time Library 35 
STR String Manipulation Procedures 36 
LBR Librarian Subroutine Package 38 
FDV FMS-32 Forms Driver Library 41 
SCR Screen Formatting Package 44 
c VAX-11 C Run-Time Libary 53 
LINK VAX-11 Linker 100 
CREF Cross-Reference Facility 101 
DSUP Diagnostic Supervisor 102 
COPY COPY 103 
BTRAN AME Back Translator 104 
SYSMSG System Message Maker 105 
FORT VAX-11 FORTRAN Compiler 106 
COB74 VAX-11 COBOL-74 Compiler 107 
DIFF File Differences Utility 108 
PATCH VAX-11 Image File Patch Utility 109 
PAX VAX-11 Object Module Patch Utility 110 
BLS32 VAX-11 BLISS-32 Compiler 111 
APPEND APPEND 113 
MOUNT Volume Mount 114 
DISM Volume Dismount 115 
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Table 32-2: Facility Names and Their Prefixes (continued) 

Condition 
Prefix Facility Description <27:16> 

Utilities and Compilers 

UETP User Environment Test Package 116 
INIT Volume Initialization 117 
HELP Help Facility 118 
SET SET 119 
SHOW SHOW 120 
DIRECT DIRECTORY 121 
AUTHOR User Authorization Manager 122 
INS INSTALL Utility 123 
SYS GEN System Generation and Driver Loader Utility 124 
MACRO V AX-11 MACRO Assembler 125 
MAIL VAX/VMS MAIL Utility 126 
DSM DIGITAL Standard MUMPS 127 
PASCAL VAX-11 PASCAL Compiler 128 
CORAL CORAL-66 Compiler 129 
COBOL COBOL-79 Compiler 130 
SUM Source Update Merge Utility 132 
EDT DEC Standard Editor 133. 
LIBRAR VAX-11 Librarian 134 
PLIG VAX-11 PL/I Level-G Compiler 135 
BASIC VAX-11 BASIC Compiler 137 
FUT Forms Utility 140 
COB74T COBOL-74 to VAX COBOL Translator 143 
RENAME RENAME 144 
CREATE CREATE 145 
UNLOCK UNLOCK 146 
DELETE DELETE 147 
PURGE PURGE 148 
TYPE TYPE 149 
RUNOFF DEC Standard RUNOFF 150 
MESSAGE System Message Compiler 151 
CLEDIT CLI Data Base Editor 155 
ACC Accounting Utility 159 
BACKUP Backup Utility 163 
VERIFY File Structure Verification Utility 165 
PHONE Phone Utility 166 
ANALYZE Analyze Utility 177 
CONVERT Convert Utility 178 
EDF FDL Editor 179 
FDL FDL Utility 180 
cc VAX-11 C Compiler 185 
MONTITOR Monitor Utility 206 
SEARCH Search 215 
MP VAX-11/782 Multiprocessing 239 
SDA System Dump Analyzer 244 
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Table 32-2: Facility Names and Their Prefixes (continued) 

Condition 
Prefix Facility Description <27:16> 

Network Support Utilities 

NET DECnet ACP and NSP Protocol; DTS/DTR 501 
DAP DECnet DAP Procedures and Protocol 502 
FAL DECnet File Access Listener and Protocol 503 
NCP DECnet Network Control Program and Protocol 504 
NIC DECnet NICE Program and Protocol 505 
DLE DECnet Direct Line Executive 506 
BSCPTP 2780/3780 BISYNC Point to Point Emulator 507 
HLD DECnet Host Load Protocol 508 
REM DECnet Remote Terminal ACP and Protocol 510 
INS3271 3271 Protocol Emulator 511 
EVL DECnet Event Logger 512 
XK 3271 Bisynch Protocol Emulator 513 
LES DECnet PSI Layered Environment Services 514 
SNA SNA Application Interface 515 
SNADEBUG SNA Deb1113ging Facility 516 
SNARJE SNA Remote Job Entry 517 
SNATERM SNA 3270 Terminal Facility 518 
MOM DECnet Maintenance Operations Module 519 

Individual products such as compilers also get unique facility codes formed 
from the product name. They must be signed out in the above list. Facility 
prefixes should be chosen to avoid conflict with file types. 

Structure name prefixes are typically local to a facility. Refer to the indi­
vidual facility documentation for its structure name prefixes. Individual fa­
cility structure names do not cause problems because these names are not 
global, and are therefore not known to the linker. They become known at 
assembly or compile time only by explicitly invoking the macro defining the 
facility structure. 

For example, the macro $FORDEF defines all of the status codes that can 
be returned from the VAX-11 FORTRAN support library. The facility code of 
24 is included in the upper 16 bits of each of the status codes defined with 
this macro. 

Please note that DIGITAL does not provide a registration service for the 
customer facility codes. 
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Appendix A 

Executive Data Areas 

The writeable executive consists of several dynamically allocated tables as 
well as statically allocated data structures that are a part of the executive 
image SYS.EXE. This appendix summarizes all of these data areas, with an 
emphasis on the static executive database that is related to other material in 
this book. 

The information presented in this appendix was accumulated by incorpo­
rating data from the system map (SYS.MAP) with the contents of specific 
source modules. Information outside the scope of this book is simply sum­
marized. There is no attempt to include every global symbol in SYS.EXE in 
this appendix. Data blocks (such as unit control blocks or timer queue ele­
ments) are referenced as single entities. Global labels within such structures 
are ignored. Global labels associated with backward link pointers of doubly 
linked lists are also omitted. Names that appear in the "Global Symbol" 
column in lower case represent local symbols, names that are only used 
within the module in which they are defined. 

A.1 STATICALLY ALLOCATED EXECUTIVE DATA 

The cells that contain the data described in this section can be identified 
with specific source modules in the executive. Those cells that can be ad­
dressed directly with a global name are so indicated. Program section names 
(.PSECT names) are included in each section title to allow easy location of a 
given data area. Program sections of zero length declared in module MOAT 
for the purpose of defining global labels that separate major sections of 
SYS.EXE are not included here. They are listed in Table 26-2 and can also be 
found by examining SYS.MAP. 

A.1.1 System Service Vector Area ($$$000) 

The first four pages of system virtual address space contain the system serv­
ice vectors. These pages are read only. The global label MMG$A_ENDVEC, 
defined in module MOAT, represents the high-address end of the system 
service vector pages. 

A.1.2 File System Performance Monitor Data ($$$000PMS) 

This area consists of two blocks, both 70 longwords long, used to describe the 
cumulative behavior of the file ACPs servicing both Structure Level 1 and 
Structure Level 2. An additional 13 longwords are used to contain informa­
tion on general file operations. 
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Global Symbol Module Size Description of Data 

PMS$GLFCP PMSDAT 70 Longwords File system statistics 
for Level 1 ACP 

PMS$GLFCP2 PMSDAT 70 Longwords File system statistics 
for Level 2 ACP 

PMS$GL TURN PMSDAT Longword Number of window turns 

PMS$GLSPLIT PMSDAT Longword Number of split I/O 
transfers 

PMS$GLHIT PMSDAT Longword Number of transfers 
not requiring window 
turns 

PMS$GLDIRHIT PMSDAT Longword Number of directory 
LRU hits 

PMS$GL_DIRMISS PMSDAT Longword Number of director LRU 
misses 

PMS$GL_QUOHIT PMSDAT Longword Number of quota cache 
hits 

PMS$GL_QUOMISS PMSDAT Longword Number of quota cache 
misses 

PMS$GLFIDHIT PMSDAT Longword Number of file ID 
cache hits 

PMS$GL_FIDMISS PMSDAT Longword Number of file ID 
cache misses 

PMS$GLEXTHIT PMSDAT Longword Number of extent cache 
hits 

PMS$GL_EXTMISS PMSDAT Longword Number of extent cache 
misses 

PMS$GLOPEN PMSDAT Longword Number of currently 
opened files 

PMS$GLOPENS PMSDAT Longword Total number of file 
opens 

A.1.3 Process Database ($$$000_STACKS) 
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Module POAT defines kernel mode stacks for two system processes: the null 
process and the swapper process. Note that the global symbols for the 
swapper's kernel stack points to the base (high address) of the stack. 

Global Symbol Module Size Description of Data 

PDAT 32 Longwords Short stack for the 
null process 

SWP$A_KSTK PDAT 160 Longwords Kernel mode stack for 
swapper 
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A.1.4 Miscellaneous Bugcheck Information ($$$025) 

Module BUGCHECK maintains two longwords about a fatal bugcheck in 
progress. 

Global Symbol 

fataLspsav 

EXE$GLBUGCHECK 

Module 

BUGCHECK 

BUGCHECK 

Size 

Longword 

Longword 

Description of Data 

Fatal bugcheck in 
progress stack pointer 

Saved fatal bugcheck 
code 

A.1.5 Data Structures for Drivers Linked with the Operating System 
($$$100) 

Module DEVICEDAT contains data structures for the devices that are linked 
as a part of the executive image SYS.EXE. These devices are the null device 
(NL:), mailboxes, and the console terminal. The data structures for device 
OPAO (the console port driver) are assembled into the VAX/VMS operating 
system. The terminal class driver is loaded and linked to the console port 
driver by INIT; the other terminal port drivers are loaded by the SYSGEN 
command AUTOCONFIGURE. 

There are unit control blocks for three mailboxes set aside in DEVICEDAT. 
Unit control block zero is a skeleton UCB that is copied into any other UCB 
when a mailbox is created. The job controller's mailbox and OPCOM's mail­
box also use preallocated UCBs. 

Global Symbol Module Size Description of Data 

IOC$GLDEVLIST DEVICEDAT Longword Listhead of DDBs of 
all devices in the 
system 

IOC$GLADPLIST DEVICEDAT Longword Listhead of alf 
adapter control blocks 

IOC$GLDPTLIST DEVICEDAT Quadword Listhead of driver 
prolog tables 

TTY$GLDPT DEVICEDAT Longword Terminal class driver 
DPT pointer 

SYS$GL_BOOTDDB DEVICEDAT 52 Bytes Device data block for 
system disk 

SYS$GLBOOTUCB DEVICEDAT 252 Bytes Unit control block for 
system disk (22 extra 
longwords) 

OPA$GLDDB DEVICEDAT 52 Bytes Device data block for 
console terminal 

685 



Executive Data Areas 

A.1.6 

686 

Global Symbol Module Size Description of Data 

OPA$UCBO DEVICEDAT 320 Bytes Unit control block for 
console terminal (24 
extra longwords I 

OPA$CRB DEVICEDAT 84 Bytes Channel request block 
for console device 

opa$idb DEVICEDAT 32 Bytes Interrupt dispatch 
block for console 
device 

MB$GLDDB DEVICEDAT 52 Bytes Device data block for 
mailbox 

MB$UCBO DEVICEDAT 132 Bytes Unit control block 
template used in 
mailbox creation (not 
linked into mailbox 
DDB's UCB list) 

SYS$GLJOBCTLMB DEVICEDAT 116 Bytes Unit control block for 
job controller's 
mailbox (Unit 1) 

SYS$GLOPRMBX DEVICEDAT 132 Bytes Unit control block for 
operator's Mailbox 
(Unit 2) 

NL$GLDDB DEVICEDAT 52 Bytes Device data block for 
null device 

NL$GLUCBO DEVICEDAT 132 Bytes Unit control block for 
null device 

NET$WCB DEVICEDAT 48 Bytes Window control block 
for network pseudo 
device 

sys_crb DEVICEDAT 72 Bytes Channel request block 
for mailbox devices 

Driver Prolog Tables ($$$105-PROLOGUEJ 

The driver prolog tables for these drivers are also assembled and linked into 
the executive image. The contributions to this part of the writable executive 
come from the three driver modules (MBDRIVER, NLDRIVER, and 
CONINTDSP) that are linked with SYS.EXE. 

Global Symbol Module Size Description of Data 

MB$DPT MBDRIVER 57 Bytes Driver prolog table 
for mailbox driver 

NL$DPT NLDRIVER 57 Bytes Driver prolog table 
for null device driver 

OP$DPT CONINTDSP 57 Bytes Driver prolog table 
for console terminal 
device driver 



A.1.7 

A.1.8 

A.1 Statically Allocated Executive Data 

Linked Driver Code {$$$115_DRIVER) 

There is a read only section (six pages long) that contains the driver code for 
these drivers as well as code for the MA780 shared memory, the DR780 inter­
face, and interrupt dispatch code for the MASSBUS adapter. This section is 
bounded by the two global labels MMG$ALBEGDRIVE and 
MMG$AL_ENDDRIVE, defined in module MOAT. 

Memory Management Data {$$$210) 

The memory management data consists mainly of listheads for dynamically 
allocated structures. 

Global Symbol 

PFN$ALHEAD 

PFN$AL TAIL 

SCH$GLFREECNT 

SCH$GLMFYCNT 

pfn$aLcount 

PFN$GL_PHYPGCNT 

SCH$GLFREEREQ 

SCH$GLMFYLIM 

PFN$ALHILIMIT+8 

SCH$GLFREELIM 

SCH$GL_MYFLOLIM 

PFN$AL_LOLIMIT+8 

SCH$GL_MFYLIMSV 

SCH$GLMFYLOSV 

Module 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

ALLOCPFN 

PAGEFAULT 

Size 

3 Longwords 

3 Longwords 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

16 Longwords 

Description of Data 

Pointers to the 
heads of the free, 
modified, and bad 
page lists 

Pointers to the 
tails of the free, 
modified, and bad 
page lists 

Free page count 

Modified page count 

Bad page count 

Count of available 
physical pages 

Free pages required 
by the swapper 

Modified page list 
high limit 

Bad page list high 
limit 

Free page list low 
limit 

Modified page list 
low limit 

Bad page list low 
limit 

Saved high limit 
threshold of 
modified page list 

Saved low limit 
threshold of 
modified page list 

Page fault 
statistics for 
Monitor Utility 
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Global Symbol Module Size Description of Data 

MPW$ALPTE WRTMFYPAG Longword Pointer to modified 
page writer PTE 
array 

MPW$AW _PHVINDEX WRTMFYPAG Longword Pointer to process 
header vector index 
array used by the 
modified page 
writer 

MPW$GL_BADPAGTOTAL WRTMFYPAG Longword Total number if 
pages placed on the 
bad page list 

MMG$GLIACLOCK SYSIMGACT Longword Image activator 
interlock 

MMG$GLPFNLOCK SYSLKWSET Longword Countdown counter 
of pages remaining 
that may be locked 
in memory 

Page Fault Monitor Data ($$$215) 

The page fault monitor subsystem maintains three longwords of impure data. 

Global Symbol Module Size Description of Data 

PFM$GLSIZE SYSSETPFM Longword Size of allocated 
block 

PFM$GLPMBLST SYSSETPFM Longword Pointer to PMB list 
block 

SYSSETPFM Longword Count of processes 
using monitor 

Scheduler Data ($$$220) 

The scheduler's database is defined primarily in module SDAT. This module 
contains the queue headers for each of the scheduling states and related 
counters. Several other modules (particularly SWAPPER) also contribute to 
this program section. 

Global Symbol 

SCH$AQ_COMH 

Module 

SDAT 

SDAT 

Size 

Quadword 

Description of Data 

Spare quadword to 
terminate outswap 
scheduling scan 

32 Quadwords Listheads for 
computable states 
for all 32 software 
priority levels 



A.1 Statically Allocated Executive Data 

Global Symbol Module Size Description of Data 

SCH$AQ_COMOH SDAT 32 Quadwords Listheads for 
computable out-
swapped states for 
all 32 software 
priority levels 

SCH$AQ_ WQHDR SDAT 132 Bytes Wait queue headers 
(132 = 11 *12) for 11 wait states 

(wait queue header 
for CEF state 
not used) 

SCH$GL_ CURPCB SDAT Longword Address of PCB of 
current process 

SCH$GL_COMQS SDAT Longword Queue summary longword 
for COM state 

SCH$GL_ COMOQS SDAT Longword Queue summary longword 
for COMO state 

SCH$GB_SIP SDAT Byte Swap in progress flags 

SCH$V_SIP Bit Swap in progress 

SCH$V_MPW Bit Activity of modified 
page writer 

SCH$GB_RESCAN SDAT Byte Queue reordering 
notification flags 

SCH$V _REQRD Bit Indicates RELPFN has 
reordered the queue 

MMG$GB_FREWFLGS SDAT Byte SWAPPER/FREWSLE 
communication flags 

MMG$V _NOWAIT Bit Do not allow FREWSLE 
to enter a resource 
wait state for pages 
from the modified list 

MMB$V _NOLASTUPD Bit Do not allow FREWSLE 
to update WSLAST 

SCH$GW _PROCCNT SDAT Word Current number of 
processes which 
require swap file 
(does not count NULL 
or SWAPPER) 

SCH$GW _PROCLIM SDAT Word Maximum number of 
processes that this 
system allows 

Word Spare for alignment 

SWP$GL_SLOTCNT SDAT Longword Count of available 
swap slots 

SCH$GQ_ CEBHD SDAT Quadword Listhead for common 
event blocks 

SCH$GW _CEBCNT SDAT Word Number of common 
event blocks 
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Global Symbol Module Size Description of Data 

SCH$GW _OELPHDCT SDAT Word Number of process 
headers of already 
deleted processes 

SWP$GLSHELL SDAT Longword Shell process swap 
address 

SWP$GLINPCB SDAT Longword PCB address of process 
being swapped into 
memory 

SWP$GLISPAGCNT SDAT Longword Inswap page count 

SWP$GW _IBALSETX SDAT Word Balance slot index for 
inswap process 

SWP$GB_ISWPRI SDAT Byte Priority of inswap 
process 

Byte Spare for alignment 

SWP$GLISWPPAGES SDAT Longword Count of inswapped 
pages 

SWP$GLISWPCNT SDAT Longword Count of inswaps 
performed 

SWP$GLOSWPCNT SDAT Longword Count of outswaps 
performed 

SWP$GLHOSWPCNT SDAT Longword Count of header 
outswaps 

SWP$GLHISWPCNT SDAT Longword Count of header 
inswaps 

SCH$GLRESMASK SDAT Longword Resource wait mask 
vector 

SCH$GB_PRI SDAT Byte Priority of current 
process 

3 Bytes Spare for alignment 

SWP$GLSWTIME OSWPSCHED Longword Earliest time fornext 
exchange swap 

EXE$GLPWRDONE POWERFAIL Longword End time for power 
recovery interval 

EXE$GLPWRINTVL POWERFAIL Longword Allowable recovery 
interval in 10 
millisecond units 

ioroutine SWAPPER Longword Address of proper 
(read or write) build 
packet routine 

ioea SWAPPER Longword 1/0 end action routine 

rwsswp SWAPPER Longword Remaining working set 
swap address 

rsvapte SWAPPER Longword Remaining system 
virtual address of 
page table entries 
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Global Symbol Module 

rpgcnt SWAPPER 

oswppgs SWAPPER 

oswppcb SWAPPER 

SWP$GW _BALCNT SWAPPER 

SCH$GW _SWPFCNT SWAPPER 

Memory Management Data ($$$222) 

Size 

Word 

Word 

Longword 

Word 

Word 

Description of Data 

Remaining page count 

Outswap page count 

Address of PCB of 
outswap process 

Count of processes in 
balance set (swapper 
and null processes not 
counted) 

Count of successive 
outswap schedule 
failures 

This program section contains the data cell contribution of module MOAT to 
the executive. MOAT also defines global labels that separate data areas from 
read-only sections and that separate pageable code from nonpaged routines. 
In addition, MOAT allocates patch areas for the executive. 

Global Symbol Module Size Description of Data 

PHV$G1-PIXBAS MDAT Longword Address of process 
index array 

PHV$G1-REFCBAS MDAT Longword Address of process 
header reference count 
array 

EXE$GL_ CONFREG MDAT Longword Address of nexus 
device type byte 
array 

MMG$GL_ SBICONF MDAT Longword Address of a long-
word array containing 
the nexus slot virtual 
addresses 

EXE$G1-NUMNEXUS MDAT Longword Maximum nexus 
number possible on the 
system 

MMG$GL_RMSBASE MDAT Longword Pointer to base 
address of RMS image 

MMG$GL_ GBLSECFND MDAT Longword Last global section 
table entry found when 
deleting page file 
backing store 
addresses 

MMG$GL_GBLPAGFIL MDAT Longword Remaining page file 
available for global 
sections 
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Process Data for System Processes ($$$230) 

Two processes exist as a part of the system image. They are the swapper and 
the null process. In addition, there exists a system header containing the 
system page table (see Chapters 14 and 26) and a system PCB to support 
system paging. 

Global Symbol Module Size Description of Data 

nulphd POAT 376 Bytes Minimal process header 
(fixed portion only) 
for null process 

SCH$GLNULLPCB POAT 156 Bytes PCB for null process 

swpphd POAT 376 Bytes Minimal process header 
(fixed portion only) 
for swapper process 

SCH$GLSWPPCB POAT 156 Bytes PCB for swapper 
process 

MMG$ALSYSPCB POAT 156 Bytes System PCB 

SCH$GLPCBVEC POAT Longword Address of PCB vector 
of longwords 

SCH$GLMAXPIX POAT Longword Maximum process index 
for this system 

SCH$GLSEQVEC POAT Longword Address of sequence 
vector of words 

Console Interrupt Dispatch Data ($$$250) 

The console device driver maintains a small amount of impure storage. 

Global Symbol Module Size Description of Data 

op_ vector CONINTOSP 14 Longwords Vectors for console 
terminal driver prolog 
tables 

curr CONINTDSP Byte Current unit expecting 
output completion 

next CONINTOSP Byte Next unit awaiting 
output 

data CONINTOSP Word Next data for output 

SYSCOMMON-Miscellaneous Executive Data ($$$260) 

Module SYSCOMMON contains most of the miscellaneous listheads, 
counters, semaphores, and other data that is not directly tied to one of the 
major subsystems. Module ERRORLOG also makes a significant contribu­
tion to this program section. 



A.1 Statically Allocated Executive Data 

Global Symbol Module Size Description of Data 

EXE$GLFLAGS SYSCO MM ON Longword System flags longword 
(see Section A.1.17) 

EXE$GQ_ERLMBX SYSCOMMON Quadword Descriptor of error 
log mailbox 

Word Unit number (O = > 
none) 

Word Spare for alignment 
Longword Process ID of assigner 

EXE$GL_ USRCHMK SYSCOMMON Longword Address of system-wide 
user-written change 
mode to dispatcher 

EXE$GL USRCHME SYSCOMMON Longword Address of system-wide 
user-written change 
mode to executive 
dispatcher 

SWI$GLFQFL SYSCOMMON 6 Quadwords Fork queue listheads 
for IPL levels 6 to 11 
(IPL 7 used only as a 
place holder) 

LOG$AL_LOGTBL SYSCOMMON 3 Longwords Addresses of pointers 
to hash tables for 
system, group, and 
process logical name 
tables 

SYSCOMMON 2 Longwords Pointers to hash 
tables for system and 
group logical name 
tables 

LOG$AB_HTBLCNT SYSCO MM ON 3 Bytes Number of entries in 
system, group, and 
process logical name 
hash tables (expressed 
as a power of two) 

Byte Spare for alignment 

LOG$ALMUTEX SYSCOMMON 4 Words Mutexes for system and 
group logical name 
tables 

EXE$GLSYSUCB SYSCOMMON Longword Address of system disk 
UCB 

FIL$GT _DDDEV SYSCOMMON 14 Bytes Counted ASCII string 
for default device 
(SYS$SYSDEVICE) 

FIL$GT _ TOPSYS SYSCOMMON 10 Bytes Counted ASCIIstring 
for top-level directory 
in use on default 
device 

2 Bytes Spare for alignment 
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FIL$GQ_CACHE SYSCOMMON Quadword File read cache 
descriptor 

EXE$GQ_BQOTCB_D SYSCO MM ON Quadword Descriptor for boot 
control block 

EXE$GLSAVEDUMP SYSCOMMON Longword Number of blocks to 
release to the page 
file when a dump in 
the page file is 
copied 

IOC$GLPSFL SYSCOMMON Quadword Listhead for I/O 
postprocessing 
queue 

IOC$GL_IRPFL SYSCOMMON Quadword Listhead for IRP 
lookaside list 

IOC$GLIRPREM SYSCO MM ON Longword Address of partial 
packet 

IOC$GLIRPCNT SYSCOMMON Longword Current count of 
allocated IRPs 

IOC$GLIRPMIN SYSCOMMON Longword Minimum size of 
request that can be 
allocated an IRP 

IOC$GLSRPFL SYSCOMMON Quadword Listhead for SRP 
lookaside list 

IOC$GLSRPSIZE SYSCOMMON Longword Size of an SRP 

IOC$GLSRPMIN SYSCOMMON Longword Minimum size of 
request that can be 
allocated an SRP 
!not used) 

IOC$GL_ SRPSPLIT SYSCOMMON Longword Boundary between 
SRP and IRP 
lookaside lists 

IOC$GL SRPREM SYSCOMMON Longword Address of remaining 
packets 

IOC$GL SRPCNT SYSCO MM ON Longword Current count of 
allocated SRPs 

IOC$GLLRPFL SYSCOMMON Quadword Listhead for LRP 
lookaside list 

IOC$GL LRPSIZE SYSCOMMON Longword Size of an LRP 

IOC$GLLRPMIN SYSCOMMON Longword Minimum size of 
request that can be 
allocated an LRP 

IOC$GLLRPSPLIT SYSCOMMON Longword Boundary between 
LRP lookaside list 
and the main 
portion of nonpaged 
pool 
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Global Symbol Module Size Description of Data 

IOC$GLLRPREM SYSCO MM ON Longword Address of remaining 
packets 

IOC$GLLRPCNT SYSCOMMON Longword Current count of 
allocated LRPs 

IOC$GLPOOLFKB SYSCO MM ON 6 Longwords Fork block for pool 
expansion 

IOC$GLPFKBINT SYSCOMMON Longword Fork block interlock 
(O=free) 

IOC$GLAQBLIST SYSCOMMON Longword ACP queue block 
listhead 

IOC$GQ_MQUNTLST SYSCOMMON Quadword System-wide mounted 
volume list 

IOC$GQ_BRDCST SYSCOMMON Quadword Terminal broadcast 
message listhead 

IOC$GL CRBTMOUT SYSCO MM ON Longword List of CRBs to scan 
for timeouts 

EXE$GL_GSDGRPFL SYSCOMMON Quadword Listhead for group 
global section 
descriptor list 

EXE$GL GSDSYSFL SYSCOMMON Quadword Listhead for system 
global section 
descriptor list 

EXE$GL_ GSDFREFL SYSCOMMON Quadword Listhead for global 
section descriptor 
block lookaside list 

EXE$GL_GSDDELFL SYSCOMMON Quadword Listhead for global 
section descriptor 
block delete pending list 

EXE$GL WCBDELFL SYSCOMMON Quadword Listhead for window 
control block delete 
queue for GSD windows 

EXE$GL_SYSWCBFL SYSCOMMON Quadword Listhead for system 
window control 
block list 

EXE$GLSYSWCB SYSCOMMON 42 Bytes Window control block 
(with one retrieval 
pointer) for system 
image SYS.EXE 

PMS$GL_KERNEL SYSCOMMON 6 Longwords Timer statistics for 
time spent in each 
accesSI mode, on the 
interrupt stack, and 
in compatibility mode 

EXE$GLABSTIM SYSCO MM ON Longword Absolute time in 
seconds (for device 
driver timeout) 

Longword Spare for alignment 

695 



Executive Data Areas 

Global Symbol Module Size Description of Data 

EXE$GQ_SYSTIME SYSCOMMON Quadword System time in units 
of 100 nanoseconds 

EXE$GLPFAILTIM SYSCOMMON Longword Contents of PR$_ TODR 
at last power failure 

EXE$GLPFATIM SYSCOMMON Longword Duration of most 
recent power failure 
lin units of 10 
milliseconds) 

EXE$GL TQFL SYSCOMMON Quadword Timer queue listhead 

devicetim SYSCOMMON 32 Bytes Timer queue element 
for system subroutine 

EXE$AL TQENOREPT SYSCOMMON 32 Bytes Permanant last entry 
in timer queue 

IOC$GLMUTEX SYSCOMMON 2 Words I/O database mutex 

EXE$GL CEBMTX SYSCOMMON 2 Words Common event block 
list mutex 

EXE$GLPGDYNMTX SYSCOMMON 2 Words Paged dynamic memory 
mutex 

EXE$GL GSDMTX SYSCOMMON 2 Words Global section 
description list mutex 

EXE$GLSHMGSMTX SYSCOMMON 2 Words Shared memory global 
section descriptor 
list mutex 

EXE$GLSHMMBMTX SYSCOMMON 2 Words Shared memory mailbox 
list mutex 

EXE$GLENQMTX SYSCOMMON 2 Words Enqueue/dequeue tables 
mutex !not used) 

EXE$GLKFIMTX SYSCOMMON 2 Words Known file table mutex 

EXE$GLKNOWNFIL SYSCOMMON Longword Address of known file 
list vector 

KFI$GLF1 lAACP SYSCOMMON Longword Address of KFI for 
system disk ACP 

EXE$GL_GPT SYSCOMMON Longword Address of first free 
global page table 
entry 

SYSCOMMON Longword Dummy count of 
number of GPTEs in 
listhead 

SYS$GQ_ VERSION SYSCOMMON Quadword ASCII string that 
contains system 
version number 

SYS$GW _IJOBCNT SYSCOMMON 3 Words Current counts of 
interactive, network, 
and batch logins 
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Global Symbol Module Size Description of Data 

EXE$GW _SCANPIX SYSCO MM ON Word Process index of next 
process to check for 
priority boost 

EXE$GLSYSMSG SYSCOMMON Longword Address of system-wide 
message section 

EXE$GL USERUNDWN SYSCOMMON Longword Address of system-wide 
user rundown service 
vector 

EXE$GLNONPAGED SYSCOMMON Longword IPL at which nonpaged 
pool allocation will 
occur 

SYSCOMMON Longword Address of first free 
block of nonpaged pool 

SYSCOMMON Longword Dummy size of zero for 
listhead 

EXE$GLSPLITADR SYSCO MM ON Longword Address of boundary 
between LRP and IRP 
lookaside lists 

EXE$GLPAGED SYSCOMMON Longword Address of first free 
block of paged pool 

SYSCOMMON Longword Dummy size of zero for 
listhead 

RMS$GL~SFDBASE SYSCOMMON Longword Address of shared file 
database 

EXE$GLSHBLIST SYSCOMMON Longword Address of shared 
memory control block 
list 

EXE$GLRTBITMAP SYSCO MM ON Longword Address of real-time 
SPTE bitmap 

MCHK$GLMASK SYSCO MM ON Longword Function mask for 
current machine check 
recovery block 

MCHK$GLSP SYSCOMMON Longword Saved stack pointer for 
return at end of recovery 

EXE$GL_MCHKERRS SYSCO MM ON Longword Count of machine 
checks since bootstrap 

EXE$GLMEMERRS SYSCO MM ON Longword Count of memory errors 
since bootstrap 

10$GL UBA_INTO SYSCO MM ON Longword Count of UBA 
interrupts through 
vector 0 

EXE$GLBLAKHOLE SYSCOMMON Longword Physical page used to 
remap addresses of 
adapters that have 
experienced power 
failure 
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IO$GL_SCB_INTO SYSCOMMON Longword Count of unexpected 
SCB 
interrupts 

EXE$GL TENUSEC SYSCOMMON Longword Number of time loops 
executed in 10 
microseconds 

EXE$GLMP SYSCOMMON Longword Pointer to 
multiprocessor code 
(when loaded into 
pool) 

EXE$GL_SITESPEC SYSCOMMON Longword Longword that is 
available to 
privileged users 

EXE$GL_INTSTKLM SYSCOMMON Longword Top of interrupt stack 

LCK$GLIDTBL SYSCOMMON Longword Address of lock ID 
table 

LCK$GLNXTID SYSCOMMON Longword Pointer to next lock 
ID to use 

LCK$GLMAXID SYSCOMMON Longword Maximum lock ID 

LCK$GLHASHTBL SYSCO MM ON Longword Address of resource 
hash table 

LCK$GL_HTBLCNT SYSCOMMON Longword Number of entries in 
resource hash table 
(expressed as a power 
of two) 

LCK$GL TIMOUTQ SYSCOMMON Quadword Listhead for lock 
timeout queue (for 
deadlock detection) 

LCK$GL_PRCMAP SYSCOMMON Longword Address of process 
bitmap 

LCK$GB_MAXDEPTH SYSCOMMON Byte Maximum number of 
sublocks allowed 

3 Bytes Spare for alignment 

EXE$GLSYSFLAGS SYSCOMMON Longword System-wide status 
flags 

EXE$V _BLKHOLBSY SYSCOMMON Bit Blackhole page busy 

EXE$GLACMFLAGS SYSCO MM ON Longword Accounting manager 
control flags 

EXE$GLSVAPTE SYSCOMMON Longword SVAPTE for PTE that 
maps the blackhole page 

EXE$GQ_BLKHOLWQ SYSCOMMON Quadword Listhead for blackhole 
page wait queue 

Module ERRORLOG makes a significant contribution to program section 
$$$260. Most of the space is occupied by two 512-byte error message buffers. 
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Global Symbol Module Size Description of Data 

bufl ERRORLOG 512 Bytes First error log buffer 

buf2 ERRORLOG 512 Bytes Second error log 
buffer 

ERL$ALBUFADR ERRORLOG 2 Longwords Addresses ot two error 
log buffers 

ERL$GB_BUFIND ERRORLOG Byte Current buffer 
allocation indicator 

ERL$GB_BUFFLAG ERRORLOG Byte Buffer status flags 

ERL$GB_BUFPTR ERRORLOG Byte Format process 
(ERRFMT) buffer 
indicator 

ERL$GB_BUFTIM ERRORLOG Byte · Format process wake up 
timer 

ERL$GLERLPID ERRORLOG Longword Process ID of error 
format processs 

ERL$GLSEQUENCE ERRORLOG Longword Universal error 
sequence number 

A.1.15 Statistics Used by the Monitor Utility ($$$270NP) 

Module PMSDAT contains most of the data that is presented by the Monitor 
Utility. 

Global Symbol Module Size Description of Data 

PMS$GLDIRIO PMSDAT Longword Number of direct 1/0 
operations 

PMS$GLBUFIO PMSDAT Longword Number of buffered 1/0 
operations 

PMS$GLLOGNAM PMSDAT Longword Number of logical name 
translations 

PMS$GLMBREADS PMSDAT Longword Number of mailbox read 
operations 

PMS$GLMBWRITES PMSDAT Longword Number of mailbox 
write operations 

PMS$GL TREADS PMSDAT Longword Number of terminal 
read operations 

PMS$GL TWRITES PMSDAT Longword Number of terminal 
write operations 

PMS$GLIOPFMPDB PMSDAT Longword Address of performance 
data block 

PMS$GLIOPFMSEQ · PMSDAT Longword Master 1/0 packet 
sequence number 

PMS$GLARRLOCPK PMSDAT Longword Number of local 
packets arriving 
(DECNET class) 
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PMS$GLDEPLOCPK PMSDAT Longword Number of local 
packets departing 
(DECNET class) 

PMS$GL TRCNGLOS PMSDAT Longword Cumulative transit 
congestion loss 
(DECNET class) 

PMS$GLRCVBUFFL PMSDAT Longword Number of receiver 
buffer failures 
(DECNET class) 

PMS$GLENQNEW PMSDAT Longword Number of lock 
requests (LOCK class) 

PMS$GLENQCVT PMSDAT Longword Number of conversion 
requests (LOCK class) 

PMS$GLDEQ PMSDAT Longword Number of locks 
dequeued (LOCK class 

PMS$GLENQWAIT PMSDAT Longword Number of waiting 
locks (LOCK class) 

PMS$GLENQNOTQD PMSDAT Longword Number of requests not 
queued (LOCK class) 

PMS$GLDLCKSRCH PMSDAT Longword Number of deadlock 
searches performed 
(LOCK class) 

PMS$GLDLCKFND PMSDAT Longword Number of deadlocks 
found (LOCK class) 

PMS$GL_CHMK PMSDAT Longword Number of CHMK 
exceptions 

PMS$GLCHME PMSDAT Longword Number of CHME 
exceptions 

PMS$GLPAGES PMSDAT Longword Number of physical 
pages of memory 
configuration 

PMS$GW _BATCH PMSDAT Word Number of current 
batch jobs 

PMS$GW _INTJOBS PMSDAT Word Number of interactive 
users 

PMS$AL_READTBL PMSDAT 10 Longwords Histogram to count 
number of characters 
per terminal 
read operation 

PMS$AL WRITETBL PMSDAT 10 Longwords Histogram to count 
number of characters 
per terminal write 
operation 

PMS$GLREADCNT PMSDAT Longword Total number of 
terminal characters 
read since bootstrap 
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PMS$GL WRTCNT PMSDAT Longword Total number of 
terminal characters 
written since bootstrap 

PMS$GLPASSALL PMSDAT Longword Number of reads 
in PASSALL mode 

PMS$GLRWP PMSDAT Longword Number of read-with-
prompt reads 

PMS$GLLRGRWP PMSDAT Longword Number of read-with-
prompt reads of more 
than 12 characters 

PMS$GLRWPSUM PMSDAT Longword Total number of 
characters read in 
prompt mode 

PMS$GLNOSTDTRM PMSDAT Longword Number of reads not 
using standard terminals 

PMS$GLRWPNOSTD PMSDAT Longword Number of read-with-
prompt reads not using 
standard terminals 

PMS$GLLDPCTX PMSDAT Longword Number of LDPCTX 
instructions 

PMS$GLSWITCH PMSDAT Longword Number of switches 
from the current 
process 

PMS$GB_PROMPT PMSDAT 4 Bytes RTE input prompt 

PMS$GLDOSTATS PMSDAT Byte Flag to tum 
statistics code on 
and off 

3 Bytes Spare for alignment 

Entry Points for CPU-Dependent Routines ($$$500) 

Module SYSLOAVEC contains entry points for each CPU-dependent routine; 
module SCSVEC contains entry points for the loadable SCS code (SCS is 
described in Chapter 19). Each entry point contains a JMP instruction (with 
absolute addressing). The destination of each JMP is altered by INIT to point 
to the appropriate routine in the CPU-dependent image SYSLOAxxx.EXE 
(SYSLOA730.EXE, SYSLOA750.EXE, or SYSLOA780.EXE) that is loaded into 
nonpaged pool by INIT. 

There are two types of routines here. Those routines that are entered 
through the system control block must have their entry points longword 
aligned. Each of these routines has two spare bytes to preserve longword 
alignment. Other routines can have the six-byte JMP instructions packed 
together. 
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EXE$A1-LOAVEC SYSLOAVEC Address of start 
of vectors 

EXE$MCHK SYSLOAVEC 8 Bytes Machine check exception 
service routine 

EXE$INT54 SYSLOAVEC 8 Bytes Interrupt service 
routine for SCB 
vector 54 

EXE$INT58 SYSLOAVEC 8 Bytes Interrupt service 
routine for SCB 
vector 58 

EXE$INT5C SYSLOAVEC 8 Bytes Interrupt service 
routine for SCB 
vector SC 

EXE$INT60 SYSLOAVEC 8 Bytes Interrupt service 
routine for SCB 
vector 60 

UBA$INTO SYSLOAVEC 8 Bytes Interrupt service 
routine for UNIBUS 
vector 0 

UBA$UNEXINT SYSLOAVEC 6 Bytes Interrupt service 
routine for unexpected 
UNIBUS interrupts 

ECC$REENABLE SYSLOAVEC 6 Bytes Reenable memory error 
timers 

EXE$INIBOOTADP SYSLOAVEC 6 Bytes Initialize device adapter 

EXE$DUMPCPUREG SYSLOAVEC 6 Bytes Dump CPU-specific 
registers to error 
log buffer 

EXE$REGRESTOR SYSLOAVEC 6 Bytes Restore CPU-specific 
registers on power 
recovery 

EXE$REGSAVE SYSLOAVEC 6 Bytes Save CPU-specific 
register at power 
failure 

EXE$INIPROCREG SYSLOAVEC 6 Bytes lni tialize processor 
registers 

EXE$TESLCSR SYSLOAVEC 6 Bytes Test UNIBUS CSR for 
existence 

IOC$PURGDATAP SYSLOAVEC 6 Bytes Purge UNIBUS buffered 
datapath 

EXE$DW780_INT SYSLOAVEC 6 Bytes DW780 UBA adapter 
error interrupt routine 

EXE$RH780_INT SYSLOAVEC 6 Bytes RH780 MBA adapter 
error interrupt 
routine 

CI$INITIAL SYSLOAVEC 6 Bytes Initialize CI adapter 
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CI$INT SYSLOAVEC 6 Bytes Interrupt service 
routine for CI adapter 

UBA$INITIAL SYSLOAVEC 6 Bytes Initialize UNIBUS adapter 

INI$MPMADP SYSLOAVEC 6 Bytes Initialize multiport 
memory 

EXE$SHUTDWNADP SYSLOAVEC 6 Bytes Shut down any 
!all) adapters 

EXE$MCHK_ERRCNT SYSLOAVEC Longword Pointer to error counters 
in machine check 
routine 

EXE$LOAD _ERROR SYSLOAVEC Byte HALT instruction 
!initial destination 
of JMP instructions 
in vectors) 

SCS$GQ_CQNFIG SCSVEC Quadword Listhead for system 
descriptor blocks 

SCS$GQ_DIRECT SCSVEC Quadword Listhead for directory 
of processes in cluster 

SCS$G1-BDT SCSVEC Longword Buffer descriptor 
table for SCS block 
transmissions 

SCS$GL_CDL SCSVEC Longword Connection descriptor 
table pointing to list 
of SCS connections 

SCS$GL_RDT SCSVEC Longword Response descriptor table 

SCS$GL_MCLEN SCSVEC Longword Not used 

SCS$G1-MCADR SCSVEC Longword Pointer to CI 
port microcode 
paged pool 

SCS$A1-LOAVEC SCSVEC Address of start 
of vectors 

SCS$ACCEPT SCSVEC 6 Bytes Perform SCS accept 

SCS$ALLoc_ CDT SCSVEC 6 Bytes Allocate connection 
descriptor table 

SCS$ALLOC_RSPID SCSVEC 6 Bytes Allocate Response ID 

SCS$CONFIG _PTH SCSVEC 6 Bytes Configure with path 
to remote system 

SCS$CONFIG_SYS SCSVEC 6 Bytes Configure with 
System ID 

SCS$CONNECT SCSVEC 6 Bytes Perform SCS connect 

SCS$DEAL1-CDT SCSVEC 6 Bytes Deallocate connection 
descriptor table 

SCS$DEAL1-RSPID SCSVEC 6 Bytes Deallocate response ID 

SCS$DISCONNECT SCSVEC 6 Bytes Perform SCS disconnect 

SCS$ENTER SCSVEC 6 Bytes Insert an entry 
in SCS directory 
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SCS$LISTEN SCSVEC 6 Bytes Perform an SCS 
listen operation 

SCS$LOCLOOKUP SCSVEC 6 Bytes Look up a path block 

SCS$REMOVE SCSVEC 6 Bytes Remove an entry 
in SCS directory 

IOC$THREADCRB SCSVEC 6 Bytes Place CRB in SCS 
timer queue 

SCS$RESUMEWAITR SCSVEC 6 Bytes Resume when CRB is 
dequeued 

SCS$UNSTALLUCB SCSVEC 6 Bytes Resume when UCB 
is dequeued 

SCS$LKP _RDTCDRP SCSVEC 6 Bytes Search a response 
descriptor table 
for a CDRP 

SCS$LKP _RDTWAIT SCSVEC 6 Bytes Search a response 
ID wait queue 
fora CDRP 

Table of Adjustable SYSBOOT Parameters ($$$917) 

As described in Chapter 25, the executive image contains a copy of the work­
ing value of each SYSBOOT parameter. This table of values is written into 
the memory image of the executive by SYSBOOT and copied back to the 
executive disk image by SYSINIT. Global label MMG$A_SYSPARAM, de­
fined in module MDAT, locates the beginning of the parameter area. Global 
label EXE$A_SYSPARAM, defined in module SYSPARAM, has the same 
value. 

In the following list, the name of each parameter is included as a part of its 
description. Table A-I lists the SYSGEN parameters alphabetically and indi­
cates the names of the cells where each parameter is stored. 

Global Symbol 

EXE$GQ_ TODCBASE 

EXE$GLTODR 

SGN$GW _DFPFC 

SGN$GB_PGTBPFC 

Module Size 

SYSPARAM Quadword 

SYSPARAM Longword 

SYSPARAM Word 

· SYSPARAM Byte 

Description of Data 

Base value of 
time-of-day clock 
in system time format 
(not a parameter) 

Base value in 
time-of-year clock 
(not a parameter) 

Default page fault 
cluster size 
(PFCDEFAULT). 

Default page table 
page fault cluster size 
(PAGTBLPFC) 
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SGN$GB_SYSPFC SYSPARAM Byte Page fault cluster 
factor for system 
paging (SYSPFC) 

SGB$GB_KFILSTCT SYSPARAM Byte Number of known 
file lists 
(KFILSTCNT) 

Byte Spare for alignment 

SGN$GW _GBLSECNT SYSPARAM Word Global section 
count 
(GBLSECTIONS) 

SGN$GLMAXGPGCT SYSPARAM Longword Global page count 
(GBLPAGES) 

SGN$GLGBLPAGFIL SYSPARAM Longword Global page file 
page limit 
(GBLPAGFIL) 

SGN$GW _MAXPRCCT SYSPARAM Word Maximum process count 
(MAXPROCESSCNT) 

SGN$GW _PIXSCAN SYSPARAM Word Maximum number of 
processes to 
scan for priority 
boosting (PIXSCAN) 

SGN$GW _MAXPSTCT SYSPARAM Word Process section count 
(PROCSECTCNT) 

SGN$GW _MINWSCNT SYSPARAM Word Minimum working 
set size (MINWSCNT) 

SGN$GW _PAGFILCT SYSPARAM Word Number of page 
files (PAGFILCNT) 

SGN$GW _SWPFILES SYSPARAM Word Number of swap 
files (SWPFILCNT) 

SGN$GW _SYSDWSCT SYSPARAM Word Size of system 
working set count 
(SYSMWCNT) 

SGN$GW _ISPPGCT SYSPARAM Word Size in pages of 
interrupt stack 
(INTSTKPAGES) 

SGN$GLEKTRASTK SYSPARAM Longword Amount of interrupt 
stack that must 
remain free when 
performing deadlock 
searches 
(DLCKEXTRASTK) 

SGN$GLBALSETCT SYSPARAM Longword Balance set count 
(BALSETCNT) 

SGN$GLIRPCNT SYSPARAM Longword Count of preallocated 
I/O request packets 
(IRPCOUNT) 
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SGN$GL_IRPCNTV SYSPARAM Longword Maximum number of 
IRPS allowed on 
the IRP lookaside 
list (IRPCOUNTVJ 

SGN$G1-MAXWSCNT SYSPARAM Longword Maximum size of 
process working set 
(WSMAXJ 

SGN$G1-NPAGEDYN SYSPARAM Longword Number of bytes 
of nonpaged pool 
(NPAGEDYNJ (Truncated 
to page boundary 
bySYSBOOTJ 

SGN$G1-NPAGEVIR SYSPARAM Longword Maximum size of 
nonpaged pool 
(NPAGEVIRJ 

SGN$G1-PAGEDYN SYSPARAM Longword Number of bytes 
of paged pool 
(PAGEDYNJ (Trun-
cated to page 
boundary by 
SYSBOOTJ 

SGN$GL_MAXVPGCT SYSPARAM Longword Maximum virtual 
page count 
(VIRTUALPAGECNT) 

SGN$GL_SPTREQ SYSPARAM Longword Number of additional 
SPTEs to allocate 
(SPTREQJ 

SGN$G1-EXUSRSTK SYSPARAM Longword Extra user stack 
space (in bytes) 
allocated by image 
activator (EXUSRSTKJ 

SGN$G1-LRPCNT SYSPARAM Longword Initial number 
of packets in 
the LRP lookaside 
list (LRPCOUNTJ 

SGN$GL_LRPCNTV SYSPARAM Longword Maximum number of 
LRPs allows on the 
LRP lookaside 
list (LRPCOUNTV) 

SGN$G1-LRPSIZE SYSPARAM Longword Size of an 
LRP (LRPSIZE) 

SGN$G1-LRPMIN SYSPARAM Longword Smallest allocation 
request that 
can be allocated 
an LRP (LRPMIN) 
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SGN$GLSRPCNT SYSPARAM Longword Initial number of 
packets in SRP 
lookaside list 
(SRPCOUNT) 

SGN$GLSRPCNTV SYSPARAM Longword Maximum number of 
SRPs allows on the 
SRP looka.side 
list (SRPCOUNTV) 

SGN$GLSRPSIZE SYSPARAM Longword Size of an 
SRP (SRPSIZE) 

SGN$GLSRPMIN SYSPARAM Longword Smallest allocation 
request that can 
be allocated an 
SRP (SRPMIN) 

SGN$GW _PCHANCNT SYSPARAM Word Permanent 1/0 
channel count 
(CHANNELCNT) 

SGN$GW _IMGIOCNT SYSPARAM Word Defaultnumber , 
of pages mapped 
for image 1/0 
segment (IMGIOCNT) 

SCH$GW _QUAN SYSPARAM Word Length (in 10 
milliseconds units) 
of quantum (QUANTUM) 

MPW$GW _MPWPFC SYSPARAM Word Modified page 
writer cluster 
factor 
(MPW _ WRTCLUSTER) 

MPW$GW _HILIM , SYSPARAM Word High limit 
threshold of 
modified page 
list (MPW _HILIM) 

MPW$GW ...,LOLIM SYSPARAM Word Low limit 
threshold of 
modified page 
list (MPW _LOIJM) . 

,',' 

MPW$GB_PRIO SYSPARAM Byte Priority at which 
modified page 
writes will be queued 
(MPW_PRIO) 

SWP$GB_PRIO SYSPARAM Byte Priority at which 
swapper 1/0 
requests will be 
queued (SWP _PRIO) 
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MPW$GL_ THRESH SYSPARAM Longword Limit below which 
modified page 
writer will not 
reclaim pages 
(MPW _THRESH) 

SGN$G1-WAITLIM SYSPARAM Longword Limit above which 
processes creating 
modified pages 
must wait until 
pages have been 
released from 
modified page list 
(MPW _ WAITLIMIT) 

SGN$GW _ WSLMXSKP SYSPARAM Word Number of working 
set list entries 
to skip in 
modified scan 
of WSL (SKIPWSL) 

MMG$GL_PHYPGCNT SYSPARAM Longword Maximum number 
of physical pages 
to use (PHYSICALPAGES) 

SCH$GL_PFRATL SYSPARAM Longword Low limit page 
fault rate 
threshold (PFRAIL) 

SCH$GLPFRATH SYSPARAM Longword High limit page 
fault rate 
threshold (PFRATH) 

SCH$GL_PFRATS SYSPARAM Longword Page fault rate 
threshold for 
system paging 
(PFRATS) 

SCH$G1-WSINC SYSPARAM Longword Working set 
increment (WSINC) 

SCH$GL_ WSDEC SYSPARAM Longword Working set 
decrement 
(WSDEC) 

SCH$GW _AWSMIN SYSPARAM Word Minimum value 
of automatic 
working set 
adjustment 
(AWSMN) 

SCH$G1-AWSTIME SYSPARAM Longword Working set 
measurement 
interval (in 
10 msec units) 
(AWSTIME) 
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SCH$GLSWPRATE SYSPARAM Longword Swap rate for 
compute-bound 
jobs (SWPRATE) 

SGN$GLSWPPGCNT SYSPARAM Longword Number of pages 
to attempt to 
shrink a working set 
before attempting 
outswap 
(SWPOUTPGCNT) 

SGN$GLSWPINC SYSPARAM Longword Swap file 
allocation 
increment value 
(SWPALLOCINC) 

SCH$GW _IOTA SYSPARAM Word Amount of time 
(in 10-msec 
units) to charge 
against quantum 
when process 
goes into wait 
state (IOTA) 

SGN$GW _LQNGWAIT SYSPARAM Word Amount of time 
elapsed for a 
LEF orHIB 
process to be 
scheduled as a 
longwait process 
(LONGWAIT) 

SCH$GW _SWPFAIL SYSPARAM Word Number of outswap 
failures to happen 
before modifying 
selection algorithm 
(SWPFAIL) 

SGN$GL VMSDl SYSPARAM Longword DIGIT AL-reserved 
parameter (VMSDl) 

SGN$GL VMSD2 SYSPARAM Longword DIGITAL-reserved 
parameter (VMSD2) 

SGN$GL VMSD3 SYSPARAM Longword DIGITAL-reserved 
parameter (VMSD3) 

SGN$GL VMSD4 SYSPARAM Longword DIGITAL-reserved 
parameter (VMSD4) 

SGN$GLVMS5 SYSPARAM Longword DIGITAL-reserved 
parameter (VMSS) 

SGN$GLVMS6 SYSPARAM Longword DIGIT AL-reserved 
parameter (VMS6) 

SGN$GLVMS7 SYSPARAM Longword DIGITAL-reserved 
pararrwter (VMS 7) 
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SGN$GL VMS8 SYSPARAM Longword DIGITAL-reserved 
parameter (VMS8) 

SGN$GL USERD 1 SYSPARAM Longword Parameter reserved 
for users (USERDl) 

SGN$GL USERD2 SYSPARAM Longword Parameter reserved 
for users (USERD2) 

SGN$GL USER3 SYSPARAM Longword Parameter reserved 
forusers (USER3) 

SGN$GL USER4 SYSPARAM Longword Parameter reserved 
for users (USER4) 

SGN$GLEXTRACPU SYSPARAM Longword Extra CPU time 
after CPU time 
expiration (EXTRACPU) 

EXE$GLSYSUIC SYSPARAM Longword Maximum group 
code for system 
UIC (SYSUIC) 

IOC$GW _MVTIMEOUT SYSPARAM Word Time before 
abandoning mount 
verification attempt 
(MVTIMEOUT) 

IOC$GW _MAXBUF SYSPARAM Word Maximum buffered 
1/0 request size 
(MAXBUF) 

IOC$GW _MBXBFQUO SYSPARAM Word Default buffer 
quota for mailbox 
creation 
(DEFMBXBUFQUO) 

IOC$GW _MBXMXMSG SYSPARAM Word Default maximum 
message size 
for mailbox creation 
(DEFMBXMXMSG) 

IOC$GW _MBXNMMSG SYSPARAM Word Default number 
of messages for 
mailbox creation 
(DEFMBXNUMMSG)) 

SGN$GLFREELIM SYSPARAM Longword Low limit 
threshold of 
free page list (FREELIM) 

SGN$GLFREEGOAL SYSPARAM Longword Number of pages 
to attempt to free 
when the size of 
the free list is 
less than FREELIM 
(FREEGOAL) 
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SGN$GLGROWLIM SYSPARAM Longword Number of pages 
that must exist on 
the free list for 
processes to 

add pages to their 
working sets above 
WSQUOTA (BORROWLIM) 

SGN$GLBORROWLIM SYSPARAM Longword Number of pages 
that must exist on 
the free list for 
processes to 
extend their working 
set lists above 
WSQUOTA (GROWLIM) 

EXE$GL_LOCKRTRY SYSPARAM Longword Number of retries 
when attempting 
to lock a 
multiprocessor data 
structure (LOCKRETRY) 

IOC$GW _XFMXRATE SYSPARAM Word Maximum data 
rate 

IOC$GW _LAMAPREG SYSPARAM Word Number of UNIBUS 
map registers 
to preallocate for 
LPAll (LAMAPREGS) 

EXE$GL_RTIMESPT SYSPARAM Longword Number of 
preallocated SPTEs 
for connect 
to interrupt 
(REALTIME_SPTS) 

EXE$GL_CLITABL SYSPARAM Longword Number of pages 
for CLI symbol 
table (CLISYMTBL) 

LCK$GLIDTBLSIZ SYSPARAM Longword Size of the lock 
ID table (LOCKIDTBL) 

LCK$GL_HTBLSIZ SYSPARAM Longword Size of the 
resource hash table 
(RESHASHTBL I 

LCK$GL WAITTIME SYSPARAM Longword Deadlock detection 
timeout period 
(DEADLOCK_ WAIT) 

SCS$GW _BDTCNT SYSPARAM Word Number of buffer 
descriptor table 
entries allocated 
forSCS 
(SCSBUFFCNT) 
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SCS$GW _CDTCNT SYSPARAM Word Number of connect 
descriptor table 
entries allocated 
forSCS 
(SCSCONNCCNT) 

SCS$GW _RDTCNT SYSPARAM Word Number of response 
descriptor table 
entries allocated 
for SCS (SCSRESPCNT) 

SCS$GW _SCSMAXDG SYSPARAM Word Maximum SCS 
datagram size 
(SCSMAXDG) 

SCS$GW _MAXMSG SYSPARAM Word Maximum SCS 
sequenced message 
size (SCSMAXMSG) 

SCS$GW _FLOWCUSH SYSPARAM Word SCS flow control 
cushion 
(SCSFLOWCUSH) 

SCS$GB_SYSTEMID SYSPARAM Byte SCS system ID 
(SCSSYSTEMID) 

7 Bytes Spare for alignment 

SCS$GW _PASTRTRY SYSPARAM Word Number of CI 
will attempt to 
START (PASTRTRY) 

SCS$GW _PASTMOUT SYSPARAM Word Wakeup interval 
for CI port 
driver (PASTIMOUT) 

SCS$GW _PAPPDDG SYSPARAM Word Number of datagram 
buffers to queue 
for START 
(PASTDGBUF) 

SCS$GW _PAPOLINT SYSPARAM Word Time between polls 
(PANUMPOLL) 

SCS$GW _PAPOOLIN SYSPARAM Word Time between checks 
for SCS applications 
waiting for pool 
(PAPOOLINTERVAL) 

SGN$GW _ TPWAIT SYSPARAM Word Amount of time 
to wait for the 
time of day to 
be entered when booting 
(TIMEPROMPTWAIT) 

SCS$GB_ UDABURST SYSPARAM Byte Maximum number of 
longwords that the 
host is willing 
to accept per 
transfer 
(UDABURSTRATE) 
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LOG$G1-HTBLSIZ SYSPARAM Longword Size of system 
logical name hash 
table (LOGSHASHTBL) 

LOG$GL_HTBLSIZG SYSPARAM Longword Size of group 
logical name hash 
table (LOGGHASHTBL) 

LOG$G1-HTBLSIZP SYSPARAM Longword Size of process 
logical name hash 
table (LOGPHASHTBL) 

EXE$G1-DEFFLAGS SYSPARAM Longword System flags longword 
(not a parameter 
itself) 

EXE$V _BUGREBOOT Bit Automatic reboot 
on bugcheck 
(BUGREBOOT) 

EXE$V _CONCEALED Bit Enable use of 
concealed devices 
(CONCEALDEVICES) 

EXE$V _CRDENABLE Bit CRD error enable 
(CRDENABLE) 

EXE$V _BUGDUMP Bit Write system dump 
on bugcheck (DUMPBUG) 

EXE$V _FATA1-BUG Bit Make all bugchecks 
fatal (BUGCHECKFATAL) 

EXE$V _JOBQUEUES Bit Enable job controller 
queues (JOBQUEUES) 

EXE$V _MULTACP Bit Create separate ACP 
for each volume 
(ACP _MULTIPLE) 

EXE$V _NOAUTOCNF Bit Inhibit autoconfiguration 
of 1/0 devices 
(NOAUTOCONFIG) 

EXE$V _NOCLOCK Bit Do not start 
interval timer 
(NOCLOCK) 

EXE$V _NOCLUSTER Bit Inhibit page read 
clustering 
(NOCLUSTER) 

EXE$V _PQOLPGING Bit Enable paging of 
paged pool 
(POOLPAGING) 

EXE$V _REINITQUE Bit Create anew 
JBCSYSQUEUE.EXE 
(REINITQUE) 

EXE$V _SBIERR Bit Enable detection 
of SBI errors 
(SBIERRENABLE) 
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EXE$V _SETTIME Bit Prompt for system 
time in SYSBOOT 
(SETTIME) 

EXE$V _SHRFl lACP Bit Enable sharing of, 
file ACP (ACP _SHARE) 

EXE$V_SAVEDUMP Bit Save dump from 
page file (SAVEDUMP) 

EXE$V _SSINHIBIT Bit Inhibit system 
services on a 
per-process basis 
(SSINHIBIT) 

EXE$V _SYSPAGING Bit Enable paging of 
pageable system code 
(SYSPAGING) 

EXE$V _SYSUAFALT Bit Select alternate 
authorization file 
(UAFALTERNATE) 

EXE$V _SYSWRTABL Bit Leave entire execu· 
tive writeable 
(WRITABLESYS) 

EXE$V _RESALLOC Bit Enable resource 
allocation checking 
(RESALLOC) 

EXE$G1-MSGFLAGS SYSPARAM Longword Mount message flags 

EXE$V _DISMOUMSG Bit Inform operator console 
of dismounts 
(DISMOUMSG) 

EXE$V _MOUNTMSG Bit Inform operator 
console of mounts 
(MOUNTMSG) 

TTY$GL_DELTA SYSPARAM Longword Delta time for 
dialup timer scan 
(TTYSCANDELTA) 

TTY$GB_DIALTYP SYSPARAM Byte Dialup flags (DIALTYPE) 

(1 =>United Kingdom 
0 =>elsewhere) 

TTY$GB_DEFSPEED SYSPARAM Byte Default speed 
for terminals 
(TTY _SPEED) 

I 

TTY$GB_ RSPEED SYSPARAM Byte Default receive speed 
(TTY _RSPEED) 

TTY$GB_PARITY SYSPARAM Byte Default parity 
(TTY_PARITY) 

TTY$GW _DEFBUF SYSPARAM Word Default terminal 
line width 
(TTY_BUF) 
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TTY$GLDEFCHAR SYSPARAM Longword Default terminal 
characteristics 
(TTY _DEFCHAR) 

TTY$GLDEFCHAR2 SYSPARAM Longword Default terminal 
characteristics 
(second longword) 
(DEFCHAR2) 

TTY$GW _ TYPAHDSZ SYSPARAM Word Size type-ahead 
buffer 
(TTY_ TYPAHDSZ) 

TTY$GW _ALTYPAHD SYSPARAM Word Alternative type-
ahead buffer size 
(TTY _ALTYPAHD) 

TTY$GW _ALTALARM SYSPARAM Word Alternative type-ahead 
buffer alarm size 
(TTY _ALT ALARM) 

TTY$GW _DMASIZE SYSPARAM Word DMAsize 

TTY$GW _PROT SYSPARAM Word Default terminal 
allocation protection 
(TTY_PROT) 

TTY$GLOWNUIC SYSPARAM Longword Default terminal 
ownerUIC 
(TTY _OWNER) 

TTY$GW _CLASSNAM SYSPARAM Word Default terminal 
class name prefix 
(TTY _CLASSNAME) 

TTY$GB~ SILOTIME SYSPARAM Byte Default silo 
timeout value for 
DMF-32 (SILOTIME) 

SYS$GB_DFMBC SYSPARAM Byte Default multiblock 
count (RM5-DFMBC) 

SYS$GB_DFMBFSDK SYSPARAM Byte Default multibuffer 
count for sequential 
disk 1/0 
(RMS_DFMBFSDK) 

SYS$GB _DFMBFSMT SYSPARAM Byte Default multibuffer 
count for magtape 
1/0 (RM5-DFMBFSMTJ 

SYS$GB_DFMBFSUR SYSPARAM Byte Default multibuffer 
count for unit 
record devices 
(RMS_DFMBFSURJ 

SYS$GB_DFMBFREL SYSPARAM Byte Default multibuffer 
count for relative 
files RMS_DFMBFREL) 
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Global Symbol Module Size Description of Data 

SYS$GB_DFMBFIDX SYSPARAM Byte Default multibuffer 
count for indexed 
files DFMBFIDX) 

SYS$GB_DFMBFHSH SYSPARAM Byte Default multibuffer 
count hashed 
(RMs_DFMBFHSH) 

SYS$GB_RMSPROLOG SYSPARAM Byte Default Default RMS 
prolog value 
(RMs_PROLOGUE) 

SYS$GW _RMSEXTEND SYSPARAM Word Default file 
extend quantity 
(RMS_EXTEND_SIZE) 

SYS$GW _FILEPROT SYSPARAM Word Default file 
protection 
(RMS_FILEPROT) 

1' PQL$ALDEFAULT+4 SYSPARAM 12 Longwords Table of process 
quota list default 
values (see Table 20-3) 

PQL$AL_MIN +4 SYSPARAM Longwords Table of process 
quota list minimum 
values (see Table 20-3) 

PQL$AB_FLAG+ 1 SYSPARAM 12 Bytes Table of process 
quota list flags 

ACP$GW _MAPCACHE SYSPARAM Word Number of blocks 
in bitmap cache 
(ACP _MAPCACHE) 

ACP$GW _HDRCACHE SYSPARAM Word Number of blocks 
in file header cache 
(ACP _HDRCACHE) 

ACP$GW _DIRCACHE SYSPARAM Word Number of blocks 
in file directory 
cache (ACP _DIR CACHE) 

ACP$GW _ WORKSET SYSPARAM Word ACP working set size 
(ACP _ WORKSET) 

ACP$GW _FIDCACHE SYSPARAM Word Number of cached 
index file slots 
(ACP _FIDCACHE) 

ACP$GW _EXTCACHE SYSPARAM Word Number of cached 
disk extents 
(ACP _EXTCACHE) 

ACP$GW _EXTLIMIT SYSPARAM Word Fraction of disk 
to cache (ACP _EXTLIMIT) 

ACP$GW _QUOCACHE SYSPARAM Word Number of quota 
file entries to cache 
(ACP _QUOCACHE) 
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ACP$GW _SYSACC SYSPARAM Word Default access for 
system volumes 
(ACP _SYSACC) 

ACP$GB_MAXREAD SYSPARAM Byte Maximum number of 
blocks to read at 
once for directories 
(ACP _MAXREAD) 

ACP$GB_ WINDOW SYSPARAM Byte Default window size 
fot system volumes 
(ACP _WINDOW) 

ACP$GB_ WRITBACK SYSPARAM Byte Enable deferred cache 
write back 
(ACP _ WRITEBACK) 

ACP$GB_DATACHK SYSPARAM Byte ACP datacheck enable 
flags (ACP _DATACHECK) 

ACP$V _READCHK Bit Do datacheck on reads 

ACP$V _ WRITECHK Bit Do datacheck on writes 

ACP$GB_BASEPRIO SYSPARAM Byte ACP base software 
priority (ACP _BASEPRIO) 

ACP$GB_SWAPFLGS SYSPARAM Byte ACP swap flags 
(ACP _SWAPFLGS) 

ACP$V _SWAPSYS Bit Swap ACPs for /SYSTEM 
volumes 

ACP$V _SWAPGRP Bit Swap ACPs for /GROUP 
volumes 

ACP$V _SWAPPRV Bit Swap ACPs for private 
volumes 

ACP$V _SWAPMAG Bit Swap magtape ACPs 

SYS$GB_MXPRTSYM SYSPARAM Byte Maximum number of 
print symbionts 
AXPRINTSYMB) 

SYS$GB_DEFPRI SYSPARAM Byte Default priority for 
job initiations 
(DEFPRI) (also upper 
limit on "cruncher" 
process priority) 

SYS$GW _JJOBLIM SYSPARAM Word Limit for interactive 
jobs (IJOBLIM) 

SYS$GW _BJOBLIM SYSPARAM Word Limit for batch 
jobs (BJOBLIM) 

SYS$GW _NJOBLIM SYSPARAM Word· Limit for network jobs 
(NJOBLIM) 

SYS$GW _RJOBLIM SYSPARAM Word Limit for remote 
terminal jobs 
(RJOBLIM) 
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Table A-1 

SYSBOOT Parameter 

ACP _BASEPRIO 
ACP_DATACHECK 
ACP _DIR CACHE 
ACP _EXTCACHE 
ACP _EXTLIMIT 
ACP _FIDCACHE 
ACP _HDRCACHE 
ACP _MAPCACHE 
ACP _MAXREAD 
ACP _MULTIPLE 
ACP _QUOCACHE 
ACP_SHARE 
ACP _SWAPFLGS 
ACP_SYSACC 
ACP_WINDOW 
ACP _ WORKSET 
ACP _ WRITEBACK 
AWSMIN 
AWSTIME 
BALSETCNT 
BJOBLIM 
BLPAGFIL 
BUGCHECKFATAL 
BUG REBOOT 
CHANNELCNT 
CLISYMTBL 
CONCEALDEVICES 
CRDENABLE 
DEADLOCK_ WAIT 
DEFMBXBUFQUO 
DEFMBXMXMSG 
DEFMBXNUMMSG 
DISMOUMSG 
DLCKEXTRASTK 
DUMPBUG 
EXTRA CPU 
EXUSRSTK 
FREEGOAL 
FREE LIM 
GBLPAGES 
GBLSECTIONS 
GROWLIM 
IJOBLIM 
IMGIOCNT 
INTSTKPAGES 
IOTA 
IRPCOUNT 

Cell Name 

ACP$GB_BASEPRIO 
ACP$GB_DATACHK 
ACP$GW _DIR CACHE 
ACP$GW _EXTCACHE 
ACP$GW _EXTLIMIT 
ACP$GW _FIDCACHE 
ACP$GW _HDRCACHE 
ACP$GW _MAPCACHE 
ACP$GB_MAXREAD 
EXE$V _MULTACP (EXE$GLDEFFLAGS) 
ACP$GW _QUOCACHE 
EXE$V _SHRFl lACP (EXE$GLDEFFLAGS) 
ACP$GB_SWAPFLGS 
ACP$GW _SYSACC 
ACP$GB_ WINDOW 
ACP$GW _ WORKSET 
ACP$GB_ WRITBACK 
SCH$GW _AWSMIN 
SCH$GLAWSTIME 
SGN$GLBALSETCT 
SYS$GW _BJOBLIM 
SGN$GLGBLPAGFIL 
EXE$V _FATALBUG (EXE$GLDEFFLAGS) 
EXE$V _BUGREBOOT (EXE$GLDEFFLAGS) 
SGN$GW _PCHANCNT 
EXE$GLCLITABL 
EXE$V _CONCEALED (EXE$GLDEFFLAGS) 
EXE$V _CRDENABL (EXE$GL_DEFFLAGS) 
LCK$GL_ WAITTIME 
IOC$GW _MBXBFQUO 
IOC$GW _MBXMXMSG 
IOC$GW _MBXNMMSG 
EXE$V _DISMOUMSG (EXE$GLMSGFLAGS) 
LCK$GLEXTRASTK 
EXE$V _BUGDUMP (EXE$GLDEFFLAGS) 
SGN$GLEXTRACPU 
SGN$GLEXUSRSTK 
SGN$GLFREEGOAL 
SGN$GLFREELIM 
SGN$GL_MAXGPGCT 
SGN$GW _GBLSECNT 
SCH$GLGROWLIM 
SYS$GW _IJOBLIM 
SGN$GW _IMGIOCNT 
SGN$GW _ISPPGCT 
SCH$GW _IOTA 
SGN$GLIRPCNT 



Table A-1 (continued) 

SYSBOOT Parameter 

IRPCOUNTV 
JOBQUEUES 
KFILSTCNT 
LAMAPREGS 
LOCKIDTBL 
LOCKRETRY 
LOGGHASHTBL 
LOGPHASHTBL 
LOGSHASHTBL 
LONGWAIT 
LRPCOUNT 
LRPCOUNTV 
LRPMIN 
LRPSIZE 
MAXBUF 
MAXPRINTSYMB 
MAXPROCESSCNT 
MAXSYSGROUP 
MINWSCNT 
MOUNTMSG 
MPW _HILIMIT 
MPW _LOLIMIT 
MPW_PRIO 
MPW_THRESH 
MPW _ WAITLIMIT 
MPW _ WRTCLUSTER 
NJOBLIM 
NOAUTOCONFIG 
NOCLOCK 
NOCLUSTER 
NPAGEDYN 
NPAGEVIR 
ORROWLIM 
PAGEDYN 
PAGFILCNT 
PAGTBLPFC 
PANUMPOLL 
PAPOLLINTERVAL 
PAPOOLINTERVAL 
PASTDGBUF 
PASTIMOUT 
PASTRETRY 
PFCDEFAULT 
PFRATH 
PFRATL 
PFRATS 
PHYSICALPAGES 

A.1 Statically Allocated Executive Data 

Cell Name 

SGN$GLIRPCNTV 
EXE$V _JOBQUEUES (EXE$GLDEFFLAGS) 
SGN$GB_KFILSTCT 
IOC$GW _LAMAPREG 
LCK$GLIDTBLSIZ 
EXE$GLLOCKRTRY 
LOG$GLHTBLSIZG 
LOG$GLHTBLSIZP 
LOG$GLHTBLSIZ 
SCH$GW _LONGWAIT 
SGN$GLLRPCNT 
SGN$GLLRPCNTV 
SGN$GLLRPMIN 
SGN$GLLRPSIZE 
IOC$GW _MAXBUF 
SYS$GB_MXPRTSYM 
SGN$GW _MAXPRCCT 
EXE$GLSYSUIC 
SGN$GW _MINWSCNT 
EXE$V _MOUNTMSG (EXE$GLMSGFLAGS) 
MPW$GW _HILIM 
MPW$GW _LQLIM 
MPW$GB_PRIO 
MPW$GL THRESH 
MPW$GL WAITLIM 
MPW$GW _MPWPFC 
SYS$GW _NJOBLIM 
EXE$V _NQAUTOCNF (EXE$GLDEFFLAGS) 
EXE$V _NQCLOCK (EXE$GLDEFFLAGS) 
EXE$V _NOCLUSTER (EXE$GLDEFFLAGS) 
SGN$GLNPAGEDYN 
SGN$GLNPAGEVIR 
SCH$GLBORROWLIM 
SGN$GLPAGEDYN 
SGN$GW _PAGFILCT 
SGN$GB_PGTBPFC 
SCS$GB_PANPOLL 
SCS$GW _PAPOLINT 
SCS$GW _PAPOOLIN 
SCS$GW _PAPPDDG 
SCS$GW _PASTMOUT 
SCS$GW _PASTRTRY 
SGN$GW _DFPFC 
SCH$GLPFRATH 
SCH$GLPFRATL 
SCH$GL PFRATS 
MMG$GLPHYPGCNT 
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Table A-1 (continued) 

SYSBOOT Parameter 

PIXSCAN 
POOLPAGING 
PROCSECTCNT 
QUANTUM 
REALTIMLSPTS 
REINITQUE 
RESALLOC 
RESHASHTBL 
RJOBLIM 
RMS_DFMBC 
RMS_DFMBFHSH 
RMS_DFMBFIDX 
RMS_DFMBFREL 
RMs_DFMBFSDK 
RMs_DFMBFSMT 
RMs_DFMBFSUR 
SAVEDUMP 
SBIERRENABLE 
SCSBUFFCNT 
SCSCONNCNT 
SCSFLOWCUSH 
SCSMAXDG 
SCSMAXMSG 
SCSRESPCNT 
SCSSYSTEMID 
SETTIME 
SPTREQ 
SRPCOUNT 
SRPCOUNTV 
SRPMIN 
SRPSIZE 
SS INHIBIT 
SWPALLOCINC 
SWPFAIL 
SWPFILCNT 
SWPOUTPGCNT 
SWPRATE 
SWP_PRIO 
SYSMWCNT 
SYSPAGING 
SYSPFC 
TBSKIPWSL 
TIMEPROMPTWAIT 
TTY _ALT ALARM 
TTY _ALTYPAHD 
TTY_BUF 
TTY _CLASSNAME 

Cell Name 

SGN$GW _PIXSCAN 
EXE$V _PQOLPGING (EXE$GLDEFFLAGS) 
SGN$GW _MAXPSTCT 
SCH$GW _QUAN 
EXE$GLRTIMESPT 
EXE$V _REINITQUE (EXE$GLDEFFLAGS) 
EXE$V _RESALLOC (EXE$GLDEFFLAGS) 
LCK$GLHTBLSIZ 
SYS$GW -RJOBLIM 
SYS$GB_DFMBC 
SYS$GB_DFMBFHSH 
SYS$GB_DFMBFIDX 
SYS$GB_DFMBFREL 
SYS$GB_DFMBFSDK 
SYS$GB_DFMBFSMT 
SYS$GB_DFMBFSUR 
EXE$V _SAVEDUMP (EXE$GLDEFFLAGS) 
EXE$V _SBIERR (EXE$GLDEFFLAGS) 
SCS$GW _BDTCNT 
SCS$GW _CDTCNT 
SCS$GW _FLOWCUSH 
SCS$GW _MAXDG 
SCS$GW _MAXMSG 
SCS$GW _RDTCNT 
SCS$GB_SYSTEMID 
EXE$V _SETTIME (EXE$GLDEFFLAGS) 
SGN$GLSPTREQ 
SGN$GL_SRPCNT 
SGN$GLSRPCNTV 
SGN$GLSRPMIN 
SGN$GL_SRPSIZE 
EXE$V _SSINHIBIT (EXE$GLDEFFLAGS) 
SWP$GW _SWPINC 
SCH$GW _SWPFAIL 
SGN$GW _SWPFILES 
SWP$GLSWPPGCNT 
SCH$GLSWPRATE 
SWP$GB_PRIO 
SGN$GW _SYSDWSCT 
EXE$V _SYSPAGING (EXE$GLDEFFLAGS) 
SGN$GB_SYSPFC 
SGN$GW _ WSLMXSKP 
SGN$GW _ TPWAIT 
TTY$GW _ALTALARM 
TTY$GW _ALTYPAHD 
TTY$GW _DEFBUF 
TTY$GW _CLASSNAM 



Table A-1 (continued) 

SYSBOOT Parameter 

TTY _DEFCHAR 
TTY _DEFCHAR2 
TTY _DIAL TYPE 
TTY _DMASIZE 
TTY_OWNER 
TTY_PARITY 
TTY_PROT 
TTY_RSPEED 
TTY _SCANDELTA 
TTY _SILOTIME 
TTy_SPEED 
TTY_ TYPAHDSZ 
UAFALTERNATE 
UDABURSTRA TE 
USER3 
USER4 
USERDl 
USERD2 
VIRTUALPAGECNT 
VMSS 
VMS6 
VMS7 
VMSS 
VMSDl 
VMSD2 
VMSD3 
VMSD4 
VTIMEOUT 
WRIT ABLESYS 
WSDEC 
WSINC 
WSMAX 
XFMAXRATE 

A.1 Statically Allocated Executive Data 

Cell Name 

TTY$GLDEFCHAR 
TTY$GLDEFCHAR2 
TTY$GB_DIALTYP 
TTY$GW _DMASIZE 
TTY$GLOWNUIC 
TTY$GB_PARITY 
TTY$GW _PROT 
TTY$GB_RSPEED 
TTY$GLDELTA 
TTY$GB_SILOTIME 
TTY$GB_DEFSPEED 
TTY$GE_ TYPAHDSZ 
EXE$V _SYSUAFAL T(EXE$GLDEFFLAGS) 
SCS$GB_ UDABURST 
SGN$GL USER3 
SGN$GL USER4 
SGN$GL USERDl 
SGN$GL USERD2 
SGN$GLMAXVPGCT 
SGN$GLVMSS 
SGN$GLVMS6 
SGN$GLVMS7 
SGN$GLVMSS 
SGN$GL VMSDl 
SGN$GL VMSD2 
SGN$GL VMSD3 
SGN$GL VMSD4 
IOC$GW _MVTIMEOUT 
EXE$V _SYSWRTABL (EXE$GLDEFFLAGS) 
SCH$GL WSDEC 
SCH$GL WSINC 
SGN$GLMAXWSCNT 
IOC$GW _XFMXRATE 

The rest of module SYSPARAM consists of other system-wide parameters the 
values of which are not directly adjustable with SYSBOOT or SYSGEN; 
rather their values depend directly on the values of one or more adjustable 
parameters. 
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Global Symbol Module Size Description of Data 

SWP$GL_SHELLSIZ SYSPARAM Longword Pages required for 
shell process 

SWP$GW _BAKPTE SYSPARAM Word Number of process 
header pages for 
process header page arrays 

SWP$GW _EMPTPTE SYSPARAM Word Number of empty 
process header pages 
for working set list 
expansion 

SWP$GW _ WSLPTE SYSPARAM Word Number of process 
header pages for 
fixed area, working 
set list, and process 
section table 

SWP$GB_SHLP1PT SYSPARAM Byte Number of Pl page 
table pages required 
for SHELL 

Byte Spare for alignment 

SWP$GLBSLOTSZ SYSPARAM Longword Size (in pages) 
of balance slot 

SWP$GLMAP SYSPARAM Longword Address of swapper's 
I/O page table 

SWP$GLPHDBASVA SYSPARAM Longword Base address of 
process header window 

SGN$GLPHDAPCNT SYSPARAM Longword Count of SHELL 
header pages 

SGN$GL_PHDLWCNT SYSPARAM Longword Count of longwords 
in process header 

SGN$GLP1LWCNT SYSPARAM Longword Count of longwords 
to end of Pl page 
table 

SGN$GL_PHDPAGCT SYSPARAM Longword Count of all process 
header pages 
excluding page table 
pages 

SGN$GL_PTPAGCNT SYSPARAM Longword Count of page 
table pages 

MMG$GL_CTLBASVA SYSPARAM Longword Initial low address 
end of Pl space 

EXE$ALSTACKS SYSPARAM 2 Longwords Array of kernel 
mode system space stacks 

Longword Address of swapper's 
kernel stack 

EXE$GLINTSTK Longword Address of interrupt 
stack 

722 



A.1 Statically Allocated Executive Data 
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MMG$GLGPTBASE SYSPARAM Longword Base address of 
global page table 

MMG$GLGPTE SYSPARAM Longword Address of first GPTE 
(pseudo SPTE) at end 
of system page table 

MMG$GLMAXGPTE SYSPARAM Longword Highest GPTE Address 

MMG$GLMAXSYSVA SYSPARAM Longword Highest system virtual 
address (plus one) 

MMG$GLSPTBASE SYSPARAM Longword Base virtual address 
of system page table 

MMG$GLSPTLEN SYSPARAM Longword Length of system 
page table 

MMG$GLSYSPHD SYSPARAM Longword Virtual address of 
system header 

MMG$GLSYSPHDLN SYSPARAM Longword Size (in bytes) 
of system header 

SWP$GLBALBASE SYSPARAM Longword Base virtual address 
of balance slot area 

SWP$GLBALSPT SYSPARAM Longword Base virtual address 
in system page table 
for mapping balance slots 

MMG$GLSBR SYSPARAM Longword Physical address of 
system page table 
(Duplicates contents of 
PR$_SBR) 

MMG$GLNPAGEDYN SYSPARAM Longword Virtual address of 
beginning of nonpaged pool 

MMG$GL_NPAGNEXT SYSPARAM Longword Next virtual address 
for nonpaged pool 
extension 

MMG$GLIRPNEXT SYSPARAM Longword Next virtual address 
for IRP list extension 

MMG$GLLRPNEXT SYSPARAM Longword Next virtual address 
for LRP list extension 

MMG$GL_SRPNEXT SYSPARAM Longword Next virtual address 
for SRP list 
extension 

MMG$GL_PAGEDYN SYSPARAM Longword Virtual address of 
beginning of paged 
pool 

MMG$GL_MAXPFN SYSPARAM Longword Maximum PFN accounted 
for in PFN database 

MMG$GL_MINPFN SYSPARAM Longword Minimum PFN in 
PFN database 

EXE$GLRPB SYSPARAM Longword Virtual address of 
restart parameter block 
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Global Symbol Module Size Description of Data 

BOO$GLSPTFREL SYSPARAM Longword Virtual page number 
of lower end of 
pool of unused SPTEs 

BOO$GLSPTFREH SYSPARAM Longword Virtual page number 
of upper end of 
pool of unused SPTEs 

EXE$GLSCB SYSPARAM Longword Virtual address of 
system control block 

EXE$GB_CPUDATA SYSPARAM 16 Bytes System-specific information 

EXE$GB_ CPUTYPE SYSPARAM Byte CPU type read 
from PR$_SID 

3 Bytes Spare for alignment 

PFN$A_BASE SYSPARAM 8 Longwords Addresses of eight 
PFN database arrays 

PFN$ALPTE Longword Address of PTE array 

PFN$ALBAK Longword Address of backing store 
address array 

PFN$AW _REFCNT Longword Address of reference 
count array of words 

PFN$AW _FLINK Longword Address of combined 
forward link/global 
share count of 
words 

PFN$AW _SHRCNT Longword 

PFN$AW _BLINK Longword Address of combined 
backward link/working 
set list index array 
of words 

PFN$AW _ WSLX Longword 

PFN$AW _SWPVBN Longword Address of swap image 
virtual block number 
array of words 

PFN$AB_STATE Longword Address of STATE 
array of bytes 

PFN$AB_ TYPE Longword Address of TYPE array 
of bytes 

EXE$GT _STARTUP SYSPARAM 33 Bytes Counted ASCII string 
of name of 
startup command file 

A.1.18 Remainder of Executive Image 

The rest of the executive image consists of read-only code areas, read-only 
tables, and patch space. All other data areas are dynamically created as a part 
of system initialization. 
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A.2 Dynamically Allocated Executive Data 

Global label MMG$FRSTRONLY, defined in module MDAT, locates the 
beginning of the nonpaged executive routines. The paged executive is delim­
ited by the labels MMG$AL_PGDCODEN, also defined in MDAT. 

A.2 DYNAMICALLY ALLOCATED EXECUTIVE DATA 

Many of the data structures and areas of system address space are not a part 
of the executive image but instead are constructed when the system 
is initialized. The sizes of some of these areas depend on the values of 
SYSBOOT parameters. Other areas depend on the particular physical config­
uration. 

A.2.1 Restart Parameter Block 

The restart parameter block (RPB) is filled in at initialization time with boot­
strap parameters. The power failure interrupt service routine loads the vola­
tile machine state into the RPB before the system halts. During power recov­
ery, the restart parameter block allows the console logic to determine 
whether memory contents survived the power outage. The use of the restart 
parameter block is discussed in Chapters 24 and 27. 

A.2.2 PFN Database 

The PFN database consists of several arrays, contents of which describe the 
state of each page in physical memory. (To save memory, pages that contain 
the permanently resident executive are not accounted for in the PFN data 
base.) The PFN arrays are described in Chapter 14. Their use during page fault 
resolution is discussed in Chapter 15. PFN array manipulation during 
swapper operations is discussed in Chapter 17. 

A.2.3 Paged Dynamic Memory 

Paged dynamic memory contains all system-wide dynamically allocated 
structures that do not have to be permanently resident. Typical structures 
allocated from paged dynamic memory are listed in Chapter 3. 

A.2.4 Nonpaged Dynamic Memory 

Nonpaged pool contains all dynamically allocated structures that must be 
resident at all times. These structures may contain either code or data. There 
are actually two pool areas here. The normal nonpaged pool uses the same 
allocation routine as is used for paged pool. This pool area can have blocks of 
any size allocated from it. A second pool area of nonpaged pool contains three 
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lists of fixed-size blocks (the lookaside lists), linked together so that a block 
may be inserted or removed with the INSQUE and REMQUE instructions. 
The contents of this second area are often called the lookaside lists. The use 
of nonpaged pool is described in Chapter 3. 

A.2.5 Interrupt Stack 

The interrupt stack is used to service all hardware interrupts and all software 
interrupts except AST delivery. 

A.2.6 System Control Block 

The system control block is strictly speaking not a writeable data structure, 
although entries are sometimes modified by the executive debugger 
XDELTA, by the DCL commands START/CPU and STOP/CPU, and by 
SYSGEN code used to connect MA780 shared memory. 

A.2.7 Balance Slot Area 

The balance slot area is devoted exclusively to process headers. Any resident 
process has its process header in one of the balance slots. Balance slots are 
described in Chapter 14. Their use by the swapper is discussed in Chapter 17. 

A.2.8 System Header 

The system header is a system analog,ue to process headers. It allows system 
code to be pageable. The structures within the system header that are often 
altered are the system working set list and the system section table that 
contains global section table entries. 

A.2.9 System Page Table 

A.2.10 
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The portion of the system page table that undergoes the most change is that 
part that maps the balance slot area. Other operations can cause other areas 
of the system page table to change. 

Global Page Table 

The global page table is a pseudo extension of the system page table that 
allows GPTEs to be accessed with SVPNs. The global page table is altered 
when global sections are created and deleted. In addition, GPTEs can change 
as a result of page faults. 



A.3 Process-Specific Executive Data 

A.3 PROCESS-SPECIFIC EXECUTIVE DATA 

A.3.1 

Some process-specific data is stored in the process header. That data is acces­
sible (subject to synchronization considerations) whenever the process is res­
ident. Most of the process-specific data is found in Pl space. Pl space is only 
addressable when the process is the current process. The executive uses ASTs 
that execute in process context when it is necessary to acquire or modify 
such data from some other process. 

Pl Pointer Page 

The P 1 pointer page is a permanent member of the process working set. The 
entire pointer page is defined in executive module SHELL. 

Global Symbol 

CTL$GW _NMIOCH 

CTL$GW _CHINDX 

CTL$GLRMSPP 

CTL$GLRMSIP 

CTL$ALSTACK 

CTL$G1-LOGTBL 

CTL$GLCMSUPR 

CTL$GLCMUSER 

CTL$GLCMHANDLR 

CTL$AQ_EXCVEC 

Data Area Size 

Pl Pointer Page Word 

Pl Pointer Page Word 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Pl Pointer Page Longword 

Longword 

Pl Pointer Page Longword 

Description of Data 

Number of I/O 
channels 

Maximum channel index 

Pointer to RMS 
process I/O segment 

Pointer to RMS 
image I/O segment 

Maximum extent (low 
address limit) of 
kernel stack 

Initial value of 
kernel stack pointer 

Initial value of 
executive stack pointer 

Initial value of 
supervisor stack pointer 

Initial value of 
user stack pointer 

Pointer to process 
logical name table 

Spare 

Address of change 
mode to supervisor 
handler 

Pl Pointer Page Longword Address of change 
mode to user handler 

Pl Pointer Page Longword Address of compatibility 
mode handler 

Pl Pointer Page 8 Longwords Addresses of primary 
and secondary exception 
handlers for each 
of the four access modes 

727 



Executive Data Areas 

Global Symbol Data Area Size Description of Data 

CTL$GL_ THEXEC Pl Pointer Page 3 Longwords Termination handler 
listheads for executive, 
supervisor, and user 
access modes 

CTL$GQ_COMMON P 1 Pointer Page Quadword Descriptor (size and 
address) of per-process 
common area 

CTL$GLGETMSG Pl Pointer Page Longword Address of per-process 
page dispatcher 

CTL$AL_STACKLIM Pl Pointer Page 4 Longwords Limit on stack size 
for each access mode 

CTL$GL CTLBASVA Pl Pointer Page Longword Low address end of 
permanent part of Pl space 

CTL$GLIMGHDRBF Pl Pointer Page Longword Address of image 
activator's image header 
buffer 

CTL$GLRUNDNFLG Pl Pointer Page Longword Image rundown control flag 

RND$V _IACLOCK Bit Image activator lock 
must be reset 

CTL$GLPHD Pl Pointer Page Longword Address of P 1 
window that doubles 
maps the process 
header pages that are not 
page table pages 

CTL$GQ_ALLOCREG Pl Pointer Page Quadword Listhead for the 
process allocation 
region 

CTL$GQ_MOUNTLST Pl Pointer Page Quadword Listhead for the 
process private mounted 
volume list 

CTL$T _ USERNAME Pl Pointer Page 12 Bytes User name for process 
(blank-filled ASCII string) 

CTL$T _ACCOUNT Pl Pointer Page 8 Bytes Account name for 
process (blank-filled 
ASCII string) 

CTL$GQ_LOGIN Pl Pointer Page Quadword System time at 
process creation 

CTL$GLFINALSTS Pl Pointer Page Longword Exit status of latest 
image to execute 

CTL$GL WSPEAK Pl Pointer Page Longword Peak working set size 
for process 

CTL$GL VIR TPEAK Pl Pointer Page Longword Peak virtual size 
for process 

CTL$GL VOLUMES Pl Pointer Page Longword Count of mounted 
volumes 

CTL$GQ_ISTART Pl Pointer Page Quadword Image activation time 
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Global Symbol Data Area Size Description of Data 

CTL$GLICPUTIM Pl Pointer Page Longword Initial image CPU time 

CTL$GLIFAULTS Pl Pointer Page Longword Initial image fault 
count 

CTL$GLIFAULTIO Pl Pointer Page Longword Initial image fault 
1/0 count 

CTL$GLIWSPEAK Pl Pointer Page Longword Image working set peak 

CTL$GLIPAGEFL Pl Pointer Page Longword Image page file 
peak usage 

CTL$GL_IDIOCNT Pl Pointer Page Longword Initial image direct 
1/0 count 

CTL$GLIBIOCNT Pl Pointer Page Longword Initial image buffered 
1/0 count 

CTL$GLIVOLUMES Pl Pointer Page Longword Initial image volume 
mount count 

CTL$T _NODEADDR Pl Pointer Page 7 Bytes Remote node address 

CTL$T _NODENAME Pl Pointer Page 7 Bytes Remote node name 
(counted ASCII) 

CTL$T _REMOTEID Pl Pointer Page 17 Bytes Remote node ID 

Byte Spare for alignment 

CTL$GQ_PROCPRIV Pl Pointer Page Quadword Permanent process 
privilege mask 

CTL$GLUSRCHMK Pl Pointer Page Longword Address of per-process 
change mode to kernel 
dispatcher 

CTL$GLUSRCHME Pl Pointer Page Longword Address of per-process 
change mode to 
executive dispatcher 

CTL$GLPOWERAST Pl Pointer Page Longword Address of power 
recovery AST for process 

CTL$GB_PWRMODE' Pl Pointer Page Byte Access mode for 
power recovery AST AST 

CTL$GB_SSFIL TER Pl Pointer Page Byte System services inhibit 
filter mask 

2 Bytes Spare for alignment 

CTL$AL_FINALEXC Pl Pointer Page 4 Longwords Address of last 
chance exception 
handlers for each 
of the four access modes 

CTL$G_CCBBASE Pl Pointer Page Longword Address of base 
of 1/0 channel 
area 

CTL$GQ_DBGAREA Pl Pointer Page Quadword Descriptor (size and 
address) for debug 
symbol table 

CTL$GLRMSBASE Pl Pointer Page Longword Pointer to base 
of RMS image 
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Global Symbol Data Area Size Description of Data 

CTL$GL_PPMSG Pl Pointer Page 2 Longwords Address of 
process-permanent 
message section 

CTL$GB_MSGMASK Pl Pointer Page Byte Default message 
display flags 

CTL$GB_DEFLANG Pl Pointer Page Byte Default message language 

CTL$GW _PPMSGCHN Pl Pointer Page Word Channel to 
process-permanent 
message section 

CTL$GL USERUNDWN Pl Pointer Page Longword Per-process vector to 
user rundown service 

CTL$GLPCB Pl Pointer Page Longword Address of process 
control block 

CTL$GLRUF Pl Pointer Page Longword Pointer to recovery 
unit blocks (unused) 

CTL$GL SITESPEC Pl Pointer Page Longword Site-specific 
per-process cell 

CTL$GLKNOWNFIL Pl Pointer Page Longword Process known file 
list pointer 

CTL$ALIPASTVEC Pl Pointer Page 8 Longwords Vector for IPAST 
addresses 

CTL$GLCMCNTX Pl Pointer Page Longword Address of the AME 
context page 

CTL$GLIAFLNKPTR Pl Pointer Page Longword Address of IAF list 
(used by the debugger) 

Other Pl Space Data Areas 

The layout of Pl space is pictured in Chapter 1 and detailed in Chapter 26. 
Table 26-4 lists the global labels that delimit each area in Pl space. The 
remainder of this appendix summarizes data locations in specific Pl areas 
that are defined in module SHELL. The areas are presented in order of de­
creasing Pl virtual addresses. That is, the CLI data pages are presented first 
and occupy the highest Pl address range. The process 1/0 segment occupies 
the lowest Pl address range of the areas presented here and is listed last. 

Data Pages for Command Language Interpreter. Module SHELL sets aside an 
area for the generic CLI data pages. 

Global Symbol 

CTL$AL CLICALBK 

CTL$AG_CLIMAGE 

CTL$AG_CLIDATA 

Size 

2 Longwords 

2 Longwords 

Description of Data 

Call back vector for CLI 

Virtual address range 
into which CLI is mapped 

Rest of CLI data area 



A.3.2.2 

A.3.2.3 

A.3.2.4 

A.3 Process-Specific Executive Data 

Process Allocation Region. The process allocation area is a per-process pool 
area constructed exactly like paged and nonpaged dynamic memory. It ini­
tially requires two longwords. One longword describes the initial size of the 
block. The other contains a zero, indicating that there are no other unused 
blocks in the pool. 

Size 

Longword 

Longword 

Description of Data 

Initial forward link 
(contains zero) 

Initial size of region 

Compatibility Mode Context Page. Another Pl data area that module SHELL 
defines symbols for is the page used by the compatibility mode exception 
service routine. 

Global Symbol 

CTL$AL_CMCNTX 

Size 

10 Longwords 

7 Longwords 

1 Longword 

2 Longwords 

Description of Data 

General register 
contents stored by 
exception service routine 

Saved RO through R6 

Saved compatibility mode 
exception code 

Saved exception PC 
and PSL rest of page 
Used by compatibility 
mode emulator 

Process 1/0 Segment. The process 1/0 segment is used to hold all of the RMS 
context that exists for the life of the process. This includes all information 
about process permanent files, as well as pointers into the image 1/0 seg­
ment, the RMS context area that only exists while an image is active. There 
is a second area in SHELL called the process 1/0 segment. This portion of Pl 
space is no longer used. 

Global Symbol Size Description of Data 

PI0$GL_FMLH 2 Longwords Free memory listhead 
for process I/O 
segment 

PI0$GLIIOFSPLH 2 Longwords Free memory listhead 
for image I/O segment 

PI0$GW _STATUS Word RMS overall status 

PIO$GT _ENDSTR 16 Bytes End of data string 

PI0$GW _DFPROT Word Default file protection 

PI0$GB_DFMBC Byte Default multiblock count 
(RM5-DFMBC) 
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Global Symbol Size Description of Data 

PIO$GB_DFMBFSDK Byte Default multibuffer 
count for sequential 
disk 1/0 IRMS_DFMBFSDK) 

PIO$GB_DFMBFSMT Byte Default multibuffer 
count for magtape 
1/0 IRMS_DFMBFSMT) 

PIO$GB_DFMBFSUR Byte Default multibuffer 
count for unit record 
devices IRMS_DFMBFSUR) 

PIO$GB_DFMBFREL Byte Default multibuffer 
count for relative 
files IRMS_DFMBFREL) 

PIO$GB_DFMBFIDX Byte Default multibuffer 
count for indexed 
files IRMS_DFMBFIDX) 

PIO$GB_DFMBFHSH Byte Default multibuffer 
count hashed 
IRMS_DFMBFHSH) 

PIO$GB_RMSCOMPAT Byte Contains values 
representing current 
versions of RMS images 

PIO$GB_RMSPROLOG Byte Structure level for 
RMS files 

PIO$GW _RMSEXTEND Word Extend quantity for 
RMS files 

Byte Spare for alignment 

PIO$GT _DDSTRING 84 Bytes Default directory 
string 

PIO$G1-DIRCACHE 2 Longwords Directory cache 
listhead 

PIO$G1-DIRCFRLH Longword Free list for 
directory cache nodes (singly linked) 

PIO$GW _PIOIMPA 35 Longwords Process 1/0 segment 
context area 

PIO$GW _IIQIMPA 41 Longwords Image 1/0 segment 
context area 

PIO$AL_RMSEXH 4 Longwords RMS termination 
handler control block 

13 Longwords Free area that 
fills rest of page 
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Appendix B 

Data Structure Definitions 

This book has described the VMS operating system primarily in terms of the 
data structures that are used by the various components of the executive. The 
data structures used by the VMS operating system are defined in a language 
called MDL (Chapter 31) in one of two groups of files. These files also define 
most of the symbolic constants mentioned throughout this book. 

• Four files contain all structure and constant definitions used internally by 
the VMS operating system. The location of a particular facility's defini­
tions is determined by the initial letter of the facility name. The file names 
have the form [SYS.SRC]SYSDEFxx.MDL, where "xx" represent the letters 
AE, FL, MP, or QZ. The two letters indicate the initial letters of the facili­
ties contained in that file. The resultant macro definitions are stored in the 
special macro library SYS$LIBRARY:LIB.MLB used to assemble all compo­
nents of the VMS operating system and are available to users for special 
applications such as user-written device drivers and system services. 

• Four files named [VMSLIB.SRC]STARDEFxx.MDL contain all structure 
and constant definitions that are available for general applications (such as 
system service calls). Again, "xx" represents the letters AE, FL, MP, or QZ. 
The resultant macro definitions are stored in the default macro library 
SYS$LIBRARY:STARLET.MLB (as well as LIB.MLB). 

• Miscellaneous definitions mentioned in this book are defined in other 
files. In particular, the file [VMSLIB.SRC]SSMSG.MDL defines all symbols 
of the form SS$ _name. 

The distinction between the files in SYSDEFxx.MDL and STARDEFxx.MDL 
is that structures and constants defined in STARDEF, because they are stored 
in the library STARLET.MLB and are used in conjunction with system serv­
ices, will probably not change from release to release. Structures and con­
stants defined in SYSDEF (and stored in LIB.MLB) carry no such guarantee, 
requiring that programs that use such structure definitions must be reassem­
bled and relinked with each major release of the VAX/VMS operating system. 
The use of LIB.MLB in assembly language source programs (or LIB.132 in 
BLISS-32 programs) is in this way analogous to programs linked with 
SYS$SYSTEM:SYS.STB that must be relinked with each major release of the 
VAX/VMS operating system. 

This appendix summarizes the primary data structures used by the compo­
nents described in this book. A somewhat arbitrary division of data struc­
tures is made in order to keep the size of this appendix manageable. Table B-1 
lists all the data structures and constants defined in SYSDEF and STARDEF, 
showing how this arbitrary division is made. Only the first two classes are 
described in any detail in this appendix or elsewhere in this book. 
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Data Structure Definitions 

The five classes of structures that are listed here are: 

• Data structures used by memory management, the scheduler, and miscel­
laneous components. There is at least one figure or table in this book that 
describes each of these structures. 

• Constants such as condition codes, scheduling state codes, data structure 
types, and so on. 

• Data structures and device-specific constants used by the 1/0 subsystem, 
including device drivers. 

• Data structures used by the file control processes and related utilities such 
as MOUNT and INIT. 

• Miscellaneous data structures and constants. Some of these are defined in 
the manuals of the VMS documentation set. 

B.1 EXECUTIVE DATA STRUCTURES 

This first section mentions each data structure that is described in this book, 
including a brief summary of the structure and references to a more complete 
description elsewhere in the book. Three data structures, the software PCB,. 
the process header, and the job information block, are partially described in 
several places throughout the text. They are described here in t~eir entirety, 
with references to other partial descriptions. 

B.1.1 ACB-AST Control Block 

Purpose: 
Usual Location: 
Allocated from: 
Special Notes: 

ACB$8_ TYPE: 
ACB$B_AMOD: 

Figure B-1 
Layout of an ACB 
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1 

Describes pending AST for a process. 
AST queue with listhead in software PCB. 
Nonpaged pool. 
ACBs are usually a part of a larger structure, an 1/0 re­
quest packet (IRP) or a timer queue element (TQE). 

1 

:ACB$L_ASTQFL 

:ACB$L_ASTQBL 

:ACB$W_SIZE 

:ACB$LPID 

:ACB$L_AST 

:ACB$L_ASTPRM 

:ACB$L_KAST 



B.1 Executive Data Structures 

B.1.2 ACC-Accounting and Termination Message Block 

Purpose: 

Usual Location: 
References: 

Used to send a termination message to the job control­
ler when a process is deleted. The same message is also 
sent to the termination mailbox of the creator of the 
process. The structure is also used in the Send Message 
to the Accounting Manager system service. 
The termination message resides on the kernel stack. 
Table 22-1. 

B.1.3 ARB-Access Rights Block 

The access rights block currently consists of the privilege mask and UIC 
located at the end of the softwafe PCB. That is, the ARB is currently a part of 
the software PCB. The ARP pointer (PCB$L_ARB) currently points to this 
overlaid data structure. Figure B-24 shows an ARB within a software PCB. 
Figure B-15 shows that the first four longwords in a JIB can also be considered 
an ARB. Program references that use the ARB pointer in the software PCB to 
locate the ARB or any fields within the ARB (such as a privilege mask) will 
continue to work without modification should the ARB become an independ­
ent data structure in a future release of the VAX/VMS operating system. 

Purpose: 
Location: 
References: 

Defines process access rights and privileges. 
Currently a part of the software PCB. 
Table 21-1, Figures B-15 and B-24. 

B.1.4 BRD-Broadcast Message Descriptor Block 

Purpose: 
Usual Location: 
Allocated from: 

Contains broadcast message. 
In terminal broadcast list (listhead IOC$GL_BRDCST). 
Nonpaged pool. 

B.1.5 CEB-Common Event Block 

Purpose: 

Location: 

Allocated from: 

Contains description and wait queue for common 
event flag cluster. 
In common event block list (listhead 
SCH$GQ_CEBHD). (Master CEBs are located in shared 
memory and 
pointed to by a field in the slave CEB located in the 
common event block list on each processor.) 
Nonpaged pool. (Master CEBs are allocated from a CEB 
table located in shared memory.) 
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B.1.6 

B.1.7 

B.1.8 
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~ 
BRD$B_ TYPE: 

Spare: 

BRD$W_SCRLENGTH: 

BRD$W_ TRMUNIT: 

l 

l 

l u 

:BRD$L_FLINK 

:BRD$L_BLINK 

:BRD$W_SIZE 

:BRD$LPCB 

:BRD$L_PID 

:BRD$W_REFC 

:BRD$L_SCRDATA 

:BRD$L_CARCON 

:BRD$W_ TRMMSG 

:BRD$T _ TRMNAME 

BRD$L_DATA: ! :BRD$W_MSGLENGTH 

Figure B-2 
Layout of a Broadcast Descriptor Block 

CHF-Condition Handler Argument List Arrays 

Purpose: 
Usual Location: 

Describes condition or exception to condition handler. 
On stack of access mode in which exception or condi­
tion occurred. 

Special Notes: The $CHFDEF macro defines offsets into not only the 
primary argument list but also the signal and mecha­
nism arrays. 

DMP-Header Block of System Dump File 

Purpose: 
Location: 

Describes contents of dump file. 
First virtual block of SYS$SYSTEM:SYSDUMP.DMP or any 
other dump file. 

EMB-Error Log Message Block 

Purpose: Describes a particular error log entry in one of the error log 
buffers. There are several different forms of error message. 
They are all invoked with the $EMBDEF macro with one of 
several second parameters. For example, invoking the follow-



CEB$B_ TYPE: 
CEB$B_STS: l l 

CEB$W_STATE: l 
CEB$W_REFC: l 

l 

FigureB-3 
Layout of a Common Event Block 

l 
SS$_exception-name 

:f 
From Oto2 

Exception-Specific 
Parameters (Table 4-1) 

Exception PC 

Exception PSL 

FigureB-4 

N 

q-

Pushed 
by software 

Pushed 
by software 

B.1 Executive Data Structures 

:CEB$L_CEBFL 

:CEB$L_CEBBL 

:CEB$W_SIZE 

:CEB$L_PID 

:CEB$L_EFC 

:CEB$L_WQFL 

:CEB$L_WQBL 

:CEB$W_WQCNT 

:CEB$L_UIC 

:CEB$W_PROT 

:CEB$T _EFCNAM 

:CEB$L_SHB 

:CEB$W_INDX 

:CEB$L_MASTER 

N is the number of longwords from 
SS$_exceplion-name to the exception 
PSL. It ranges from 3 to 5. 

Arguments are pushed on to the kernel 
stack except for CHMS and CHMU 
exceptions where the supervisor or 
user stack is used. 

Layout of a Condition Handler Argument List Array 
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B.1.8.1 
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::? ~ 

Figure B-5 

:DMP$L_ERRSEQ 

:DMP$L_FLAGS 

:DMP$L_SBR 

:DMP$L_SLR 

:DMP$L_KSP 

:DMP$L_ESP 

:DMP$L_SSP 

:DMP$L_USP 

:DMP$L_ISP 

:DMP$L_REGS 

:DMP$L_SP 

:DMP$L_PC 

:DMP$L_SYSVER 

:DMP$L_CHECK 

:DMP$L_CRASHERL 

Layout of a System Dump File Header Block 

ing macro (from module ERRORLOG) defines symbols of the 
form shown following the macro instruction: 

$EMBDEF<DV,SU,TS,UI> 
EMB$x_DV_abc 
EMB$x_su_abc 
EMB$x_TS_abc 
EMB$x_UI_abc 

Almost all of the error message formats are related to a spe­
cific type of error. Only one type of error message buffer, the 
crash/restart error message (associated with a fatal bugcheck), 
is referenced in this book. 

EMB,CR-Crash/Restart Error Log Entry Format 

Purpose: 

References: 

Defines offsets for error log entries associated with fatal 
bugchecks. (Nonfatal bugchecks result in a slightly differ­
ent form of entry, designated by BC instead of CR.) 
Table 8-1. 



B.1.8.2. 

B.1 Executive Data Structures 

EMB,HD-Longword Header for All Entries 

The first longword in all error log entries is a header that defines the rest 
of the record. 

Purpose: 
References: 

Describes the rest of the error log entry. 
Table 8-1. 

B.1.9 FKB-Fork Block 

B.1.10 

Purpose: 

Usual Location: 

Allocated from: 

Special Notes: 

Stores minimum context for driver process or system 
timer subroutine. 
First six longwords of device unit control block or 
timer queue element of system subroutine. 
Nonpaged pool (except for statically allocated TQE or 
UCB). 
The one use of a system timer subroutine in VMS is a 
statically allocated timer queue element. 

GSD-Global Section Descriptor 

Purpose: 

Usual Location: 

Allocated from: · 

Special Notes: 

l FKB$B_ TYPE: 
FKB$B_FIPL: 

FigureB-6 
Layout of a Fork Block 

Contains identifying information about a global sec­
tion. 
Group or system GSD list. (Shared memory GSDs are 
located in shared memory.) 
Paged pool. (Shared memory GSDs are allocated from 
pages in shared memory set aside for shared memory 
GSDs.) 
There are three different forms of GSD: 

• Normal global section descriptor 
• Descriptor for PFN-mapped section 
• Descriptor for section that resides in shared memory 

I 

:FKB$L_FQFL 

:FKB$L_FQBL 

:FKB$W_SIZE 

:FKB$L_FPC 

:FKB$L_FR3 

:FKB$L_FR4 
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B.1.11 

B.1.12 

742 

GSD$B_ TYPE: 
Spare: 

GSD$W_GSTX: 

Spare: 

GSD$B_CREATPORT: 
GSD$B_DELETPORT: 

Figure B-7 

C8J I 

I 

~ 

I I I 

~ 

:GSD$L_GSDFL 

:GSD$L_GSDBL 

:GSD$W_SIZE 

:GSD$L_PCBUIC 

:GSD$L_FILUIC 

:GSD$W_PROT 

:GSD$L_IDENT 

:GSD$T _GSDNAM 

:GSD$W_FLAGS 

:GSD$L_BASEPFN 

:GSD$L_PAGES 

:GSD$L_REFCNT 

:GSD$B_LOCK 
:GSD$B_PROCCNT 

:GSD$L_BASPFN1 

:GSD$L_BASCNT1 

:Spare 

:GSD$L_PTECNT1 

Layout of a Global Section Descriptor 

IAC-Image Activation Control Flags 

Purpose: 

Usual Location: 
References: 

Describes activation options to the Image Activation 
system service. 
Fourth argument in argument list to system service. 
Section 21.1.1. 

IFD-Image File Descriptor Block 

Purpose: 

Usual Location: 
References: 

Returns information about image from image activator 
to its caller. 
In address space of caller of image activator. 
Section 21.1.1. 



B.1.13 

IFD$W_FILNAMOFF: 

Spare: 

IFD$W_CMCHAN: 

Figure B-8 
Layout of an Image File Descriptor 

IHx-Image Header Fields 

B.1 Executive Data Structures 

:IFD$W_SIZE 

:Spare 

:IFD$W_CHAN 

:IFD$L_CMKFIADR 

:IFD$W_FLAGS 

The image header contains several records that fully describe the image. The 
IHx structures define the fields within each record. 

B.1.13.1 IHA-Image Header Transfer Address Array 

Purpose: 
References: 

Figure B-9 

Defines transfer address( es) for image. 
Figure 21-9. 

:IHA$L_ TFRADR1 

:IHA$L_ TFRADR2 

:IHA$L_ TFRADR3 

Layout of an Image Header Transfer Address Array 

B.1.13.2 IHD-Image Header Record Definitions. This is the first record in the image 
header. Among other things, this portion of the image header contains offsets 
to the other records. The layout of an image header descriptor is shown in 
Figure B-10. 

Purpose: Describes the rest of the image header. 

B.1.13.3 IHl--'lmage Header Identification Section. This section contains such infor­
mation as the image name and the date and time that the link was performed. 
The layout of an image header identification section is shown in Figure B-11. 

B.1.13.4 IHP-Image Header Patch Section. This section describes the patch level of 
the image. The layout of an image header patch section is shown in Figure 
B-12. 

B.1.13.5 IHS-Image Header Symbol Table and Debug Section. For executable images 
that have included DEBUG support, this section locates the debug 

743 



Data Structure Definitions 

IHD$W_ACTIVOFF: 

IHD$W_IMGIDOFF: 

Spare: >< 
IHD$W_MINORID: 

Spare: >< T 

IHD$W_IMGIOCNT: 

Figure B-10 
Layout of an Image Header Descriptor 

:IHD$W_SIZE 

:IHD$W_SYMDBGOFF 

:IHD$W_PATCHOFF 

:IHD$W_MAJORID 

:IHD$B_HDRBLKCNT 
:IHD$B_IMGTYPE 

:IHD$Q_PRIVREQS 

:IHD$W_IOCHANCNT 

:IHD$L_LNKFLAGS 

:IHD$L_IDENT 

:IHD$L_SYSVER 

:IHD$L_IAFVA 

Figure B-11 

:IHl$T_IMGNAM 

:IH1$T_IMGID 

:IH1$Q_LINKTIME 

:IHl$T _LINKID 

:IHP$L_EC01 

:IHP$L_EC02 

:IHP$L_EC03 

:IHP$L_EC04 

:IHP$L_RW_PATSIZ 

:IHP$L_RW_PATADR 

:IHP$L_RO_PATSIZ 

Layout of an Image Header Identification Section 

Figure B-12 

:IHP$L_PATADR 

:IHP$L_PATCOMTXT 

:IHP$Q_PATDATE 

Layout of an Image Header Patch Section 
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B.1.14 

B.1.15 

B.1 Executive Data Structures 

IHS$W_GSTRECS:I ,_ ----~------< 
:IHS$L_DSTVBN 

:IHS$L_GSTVBN 

:IHS$W_DSTBLKS 

Figure B-13 
Layout of an Image Header Symbol Table 

symbol table within the image file. For shareable images, this section locates 
the universal symbol table at the end of the image file. 

ISD-Image Section Descriptor 

Purpose: 

Location: 

ISD$W_PAGCNT: 

Figure B-14 

Describes virtual address range and corresponding informa­
tion (virtual block range, global section name) to the image 
activator. 
Image header. 

l :ISD$W_SIZE 

:ISD$L_VPNPFC 

:ISD$L_FLAGS 

:ISD$L_VBN 

:ISD$L_IDENT 

:ISD$T _GBLNAM 

Layout of an Image Section Descriptor 

JIB:-Job Information Block 

The job information block appears in several figures in this book. Figure B-15 
shows all of the fields currently defined in this structure. Some of these fields 
are not currently used. 

Purpose: 

Location: 

Allocated from: 

Contains quotas pooled by all processes in the same 
job. 
Pointed to by PCB$L_JIB field of all PCBs in the same 
job. 
N onpaged pool. 
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B.1.16 

B.1.17 
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JIB$B_ TYPE: 
JIB$B_DAYTYPES: 

JIB$W_FILLM: 

JIB$W_ TQLM: 

JIB$W_PRCLIM: 

JIB$W_SHRFLIM: 

JIB$W_ENQLM: 

Figure B-15 

l 
:JIB$Q_PRIV 

:JIB$W_SIZE 

:JIB$L_UICLIST 

:JIB$L_BYTCNT 

:JIB$L_BYTLM 

:JIB$L_PBYTCNT 

:JIB$L_PBYTLIM 

:JIB$W_FILCNT 

:JIB$W_TQCNT 

:JIB$L_PGFLOUOTA 

:JIB$L_PGFLCNT 

:JIB$L_CPULIM 

:JIB$W_PRCCNT 

:JIB$W_SHRFCNT 

:JIB$W_ENQCNT 

:JIB$L_MPID 

:JIB$L_JLNAMFL 

:JIB$L_JLNAMBL 

:JIB$T _USERNAME 

:JIB$T _ACCOUNT 

:JIB$L_PDAYHOURS 

:JIB$L_ODAYHOURS 

Detailed Layout of Job Information Block IJIBJ 

KFH-Known File Header 

Purpose: 

Usual Location: 

Allocated from: 

Contains image header for any known image that is 
installed /HEADER_RESIDENT. 
Located through KFl$L_IMGHDR pointer in KFI for 
that known image. 
Paged pool. 

KFI-Known File Entry 

Purpose: Describes an image that has been made known to the 
system with the Install Utility. 



B.1.18 

B.1.19 

KFH$B_ TYPE: 

Spare: 

Figure B-16 

l><J 

B.1 Executive Data Structures 

:KFH$L_BUFENO 

:KFH$L_KFIAOR 

:KFH$W_SIZE 

Layout of a Known File Header 

Usual Location: 

Allocated from: 

In one of the known file lists. There is one list for each 
directory that has images installed from it. 
Paged pool. 

KFP-Known File Pointer Block 

Purpose: 
Usual Location: 
Allocated from: 

LKB-Lock Block 

Purpose: 

Allocated from: 

KFl$B_ TYPE: 
KFl$B_KFICTL: 

KF1$B_FILNAM: 
KFl$B_ TYPNAM: 

KF1$B_KFIQNUM: 
KFl$B_KFISEQ: 

KF1$W_GBLSECCNT: 

KFl$W_AMECOO: 

Figure B-17 

Acts as listhead for all KFis in a given directory. 
In known file list (listhead EXE$GL_KNOWNFIL). 
Paged pool. 

Contains information about a lock request to the lock 
manager. 
Nonpaged pool. 

l 

1 I 

~ 

:KFl$L_KFIQFL 

:KF1$L_KFIQBL 

:KFl$W_SIZE 

:KFl$L_ILIOOPEN 

:KF1$B_OEVUCB 
:KFl$B_OIRNAM 

:KFl$W_REFCNT 

:KFl$W_FLAGS 

:KF1$L_USECNT 

:KF1$L_WINOOW 

:KFl$L_IMGHOR 

:KFl$Q_PROCPRIV 

:KFl$B_MATCHCTL 
:Spare 

:KFl$L_IOENT 

Layout of a Known File Entry 
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l l --KFP$B_ TYPE: 
KFP$B_TYPE1: l l 

Figure B-18 
Layout of a Known File Pointer Block 

LOG$B_ TYPE:. 
LOG$B_ TABLE: 
LOG$B_AMOO: 

Spare: 

FigureB-20 

C8: 

Layout of a Logical Name Block 
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:KFP$B_QUECOUNT 

:Spare 

:KFP$W_SIZE 

:KFP$L_QUEO 

LKB$B_ TYPE: 
LKB$B_RMOO: 

LKB$W_STATUS: 

LKB$B_STATE: 
LKB$B_EFN: 

FigureB-19 

l 

l 

Layout of a: Lock Block 

:LOG$L_LTFL 

:LOG$L_L TBL 

:LOG$W_SIZE 

:LOG$W_GROUP 

:LOG$L_MBXUCB 

l 

l 

1 l 

-

:LKB$L_ASTQFL 

:LKB$L_ASTQBL 

:LKB$W_SIZE 

:LKB$L:_PID 

:LKB$L_AST 

:LKB$L_ASTPRM 

:LKB$L_KAST 

:LKB$L_CPLASTADR 

:LKB$L_BLKASTADR 

:LKB$L_LKSB 

:LKB$W_FLAGS 

:LKB$L_LKST1 

:LKB$L_LKST2 

:LKB$B_RQMODE 
:LKB$B_GRMODE 

:LKB$L_SQFL 

:LKB$L_SQBL 

:LKB$L_OWNQFL 

:LKB$L_OWNQBL 

:LKB$L_PARENT 

:LKB$L_REFCNT 

:LKB$L_RSB 



B.1.20 

B.1.21 

B.1.22 

B.1.23 

B.1 Executive Data Structures 

LOG-Logical Name Block 

Purpose: 

Usual Location: 

Allocated from: 

Contains logical and equivalence name strings for a 
given logical name. 
In one of three logical name tables: process, group, or 
system. 
Paged pool for group and system logical names, process 
allocation region for process logical names. 

MBX-Shared Memory Mailbox Control Block 

Purpose: 
Usual Location: 

Describes each mailbox that exists in shared memory. 
Pages in shared memory dedicated to mailbox control 
blocks. 

MCHK-Machine Check Error Mask Bit Definition 

Purpose: 

References: 

Describes particular set of machine check errors that a 
block of kernel mode code wishes to protect itself against. 
Section 8.3. 

MPM-Multiport Memory Adapter Registers 

Purpose: 

Location: 

MBX$W_UNIT: 

MBX$W_READER: 

MBX$W_WRITAST: 

MBX$W_MSGCNT: 

MBX$W_PROT: 

Figure B-21 

Symbolic names for registers that control operation of MA780 
multiport memory. 
I/O pages set aside for this adapter. 

I 

:MBX$Q_MSG 

:MBX$B_FLAGS 
:MBX$B_CREATPORT 

:MBX$W_REF 

:MBX$W_READAST 

:MBX$W_MAXMSG 

:MBX$W_BUFFQUO 

:MBX$L_OWNUIC 

:MBX$T_NAME 

Layout of a Shared Memory Mailbox Control Block 
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B.1.24 

B.1.25 

Figure B-22 

:MPM$L_CSR 

:MPM$L_CR 

:MPM$L_SR 

:MPM$L_INV 

:MPM$L_ERR 

:MPM$L_CSRO 

:MPM$L_CSR1 

:MPM$L_MR 

:MPM$L_llR 

:MPM$L_llE 

Layout of Multiport Memory Adapter Registers 

MTX-Mutex (Mutual Exclusion Semaphore) 

Purpose: 

Usual Location: 

31 17 16 15 

Mutexes control process access to protected data struc­
tures. 
Statically allocated longwords in module 
SYSCOMMON. 

0 

Status Ownership Count 

Figure B-23 

Write-in-Progress or 
Write Pending Flag 

Layout of a Mutual Exclusion Semaphore 

PCB-Process Control Block 

The term process control block can refer to two different structures in the 
VAX literature. All software documentation including this book refers to the 
software process control block as simply PCB and always prefixes the hard­
ware process control block with the word "hardware." 

B.1.25.1 Software Process Control Block. The software PCB appears in several figures 
in this book. However, each of these figures shows only those fields related to 
the purpose of the particular figure. The software PCB is illustrated in Figure 
B-24. 
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PCB$B_ TYPE: 
PCB$B_PRI: I 

PCB$W_MTXCNT: 

PCB$B_WEFC: 
PCB$B_PRIB: l 

PCB$W_TMBU: 

PCB$W_PPGCNT: 

PCB$W_BIOCNT: 

PCB$W_DIOCNT: 

PCB$W_PRCCNT: 

FigureB-24 

l 

B.1 Executive Data Structures 

:PCB$L_SQFL 

:PCB$L_SQBL 

:PCB$W_SIZE 

:PCB$B_ASTACT 
:PCB$B_ASTEN 

:PCB$L_ASTQFL 

:PCB$L_ASTQBL 

:PCB$L_PHYPCB 

:PCB$L_OWNER 

:PCB$L_WSSWP 

:PCB$L_STS 

:PCB$L_WTIME 

:PCB$W_STATE 

:PCB$W_APTCNT 

:PCB$W_GPGCNT 

:PCB$W_ASTCNT 

:PCB$W_BIOLM 

:PCB$W_DIOLM 

:PCB$T _TERMINAL 

:PCB$L_PQB 

:PCB$L_EFCS 

:PCB$L_EFCU 

:PCB$L_EFC2P 

:PCB$L_EFC3P 

:PCB$L_PID 

:PCB$L_PHD 

:PCB$T_LNAME 

:PCB$L_JIB 

:PCB$Q_PRIV 

:PCB$L_ARB 

:PCB$L_UIC 

:PCB$L_LOCKQFL 

:PCB$L_LOCKQBL 

:PCB$L_DLCKPRI 

:PCB$L_IPAST 

Detailed Layout of Software Process Control Block 
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Purpose: 

Location: 

Allocated from: 

Contains all the permanently resident information 
about a process. 
One of the scheduling state queues. Also pointed to by 
one of the PCB vector elements. 
Nonpaged pool. 

B.1.25.2 Hardware Process Control Block 

752 

Purpose: Contains hardware context of a process while it is not execut­
ing. 

Location: Part of the fixed portion of the process header. 

31 Hardware PCB 0 

KSP .. 
ESP 

SSP 

USP 

RO 

R1 

R2 

R3 

R4 

R5 

RS 

R7 

RB 

R9 

R10 

R11 

AP 

FP 

PC 

PSL 

POBR 
26 25 24 21 0 

~ AST~ LVL 
POLA 

21 P1BR 0 

><J P1LR 

FigureB-25 
Layout of the Hardware Process Control Block 

I 
PR$_PCBB 

• 
The process control block 

e register contains 
physical address 

bas 
the 
oft his structure 
fort he currently 
ex ecuting process. 



B.1.26 

B.1.27 

B.1.28 

PFL$B_ TYPE: 

PFL$B_PFC: I I 

I I PFL$BJLLOCSIZ: 

PFL$B_FLAGS: 

Figure B-26 

B.1 Executive Data Structures 

:PFL$L_BITMAP 

:PFL$L_STARTBYTE 

:PFL$W_SIZE 

:PFL$L_WINDOW 

:PFL$L_VBN 

:PFL$L_BITMAPSIZ 

:PFL$L_FREPAGCNT 

:PFL$L_MAXVBN 

:PFL$W_ERRORCNT 

:PFL$L_BITMAPLOC 

Layout of the Page File Control Block 

PFL-Page File Control Block 

Purpose: 

Allocated from: 

Contains data needed by pager to read from page file 
and by modified page to write to page file. 
Statically allocated in module SWAPFILE. 

PFN-PFN Database Definitions 

The $PFNDEF macro defines fields in the STATE, TYPE and BAK array ele­
ments. 

Purpose: 
Usual Location: 
References: 

PFN data base describes dynamic physical pages. 
Separate area in system address space. 
Figures 14-9 through 14-13. 

PHD-Process Header 

The process header contains process-specific memory management data and 
other process context that can be swapped. Offsets into the fixed portion of 
the process header are defined with the $PHDDEF macro. 

Purpose: 

Usual Location: 

The process header contains all process context that 
must reside in system space but can be outswapped. 
Process headers always reside in the balance slot area 
in system space. Process header pages that are not page 
table pages are double mapped by a range of Pl space 
addresses. 
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PHD$W_WSAUTH: 

PHD$W_WSDYN: 

PHD$W_WSLAST: 

PHD$W_WSEXTENT: 

PHD$W_DFWSCNT: 

PHD$W _PSTFREE: 

PHD$W_FLAGS: I 
PHD$W_PRCLM: 

PHD$W_PHVINDEX: 

PHD$W_WSLX: 

PHD$W_SWAPSIZE: 

PHD$W_WAITIME: l 

PHD$W_PTCNTVAL: 

PHD$W_PTCNTMAX: 

PHD$W_EXTDYNWS: 

FigureB-27 
Layout of the Process Header 

:PHD$0_PRIVMSK 

:PHD$W_WSLIST 

:PHD$W_WSLOCK 

:PHD$W_WSNEXT 

:PHD$W_WSAUTHEXT 

:PHD$W_WSQUOTA 

:PHD$L_PAGFIL 

:PHD$L_PSTBASOFF 

:PHD$W_PSTLAST 

:PHD$L_FREPOVA 
:PHD$L_FREPTECNT 
:PHD$L_FREP1VA 
:PHD$B_DFPFC 
:PHD$B_PGTBPFC 
:PHD$L_CPUTIM 
:PHD$W_QUANT 

:PHD$W_ASTLM 

:PHD$W_BAK 

:PHD$L_PAGEFL TS 

:PHD$W_WSSIZE 

:PHD$L_DIOCNT 

:PHD$L_BIOCNT 
:PHD$L_CPULIM 
:PHD$B_CPUMODE 
:PHD$B_AWSMODE 
:PHD$L_PTWSLELCK 
:PHD$L_PTWSLEVAL 

:PHD$W_PTCNTLCK 

:PHD$W_PTCNTACT 

:PHD$W_WSFLUID 

:PHD$L_PCB 

:PHD$L_ESP 
:PHD$L_SSP 
:PHD$L_USP 
:PHD$L_RO 
:PHD$L_R1 

PHD$W_RESPGCNT: 

PHD$W_CWSLX: 

Spare: 

-1 
General Registers 

l 
l 

~-L><J 

v 

00- I 

:PHD$L_Rn 

:PHD$L_PC 

:PHD$L_PSL 

:PHD$L_POBR 

:PHD$L_POLRASTL 

:PHD$L_P1 BR 

:PHD$L_P1 LR 

:PHD$W_EMPTPG 

:PHD$W_REQPGCNT 
:PHD$Q_AUTHPRIV 

:PHD$Q_IMAGPRIV 

:PHD$L_RESLSTH 

:PHD$L_IMGCNT 
:PHD$L_PFL TRATE 

:PHD$L_PFLREF 
:PHD$L_ TIMREF 

:PHD$L_MPINHIBIT 

:PHD$L_PGFL TIO 
:PHD$B_AUTHPRI 
:Spare 
:PHD$L_EXTRACPU 



B.1.29 

B.1.30 

B.1.31 

B.1.32 

- -
Figure B-28 

:PLV$L_TYPE 

:PLV$L_VERSION 

:PLV$L_KERNEL 

:PLV$L_EXEC 

:PLV$L_USRUNDWN 

:Spare 

:PLV$L_RMS 

:PLV$L_CHECK 

B.1 Executive Data Structures 

Layout of a Privileged Library Vector 

PLV-Privileged Library Vector 

Purpose: 

Usual Location: 

Describes privileged shareable image (containing user 
written system services) to the image activator. 
Part of privileged shareable image, usually residing in 
PO space. 

PQB-Process Quota Block 

Purpose: 

Usual Location: 

Allocated from: 

Used during process creation to store new process pa­
rameters that belong in the process header and in Pl 
space until those areas are accessible. 
Pointed to by longword (PCB$L_EFWM field) in the 
PCB. 
Nonpaged pool. 

PRM-Parameter Descriptor Block 

Purpose: Used by SYSBOOT and SYSGEN to fully describe each 
adjustable parameter. 

Usual Location: Address space of SYSBOOT or SYSGEN program. 

PSL-Processor Status Longword 

Purpose: 
Location: 

Describes state of processor. 
Processor internal register. 
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1 1,,a...,_,"'"" 

p~~:~B~~~: !----'-------'--------<- :PQB$W_SIZE 
:POB$T_IMAGE 1 M••~ I 

'1 es ,,. 

:PQB$L_ASTLM 

:PQB$L_BIOLM 

:PQB$L_BYTLM 

:PQB$L_CPULM 

:POB$L_DIOLM 

:PQB$L_FILLM 

:POB$L_PGFLQUOTA 

:PQB$L_PRCLM 

:PQB$L_TQELM 

:PQB$L_WSQUOTA 

:PQB$L_WSDEFAUL T 

:PQB$L_ENQLM 

:PQB$L_WSEXTENT 

:PQB$L_SWAPSIZE 

:PQB$T_USERNAME 

:PQB$T_ACCOUNT 

:PQB$T _DDSTRING 
k j-: 

PQB$B_MSGMASK: 1.._ _________ _JJ '"°"WJR£eRtn 

Spare: i:><J"'-'----'"'------'-----~J 
Figure B-29 
Layout of a Process Quota Block 



B.1.33 

B.1.34 

PRM$T_NAME: 

PRM$T_UNIT: 

Spare: 

Figure B-30 
Layout of a Parameter Descriptor Block 

31 30 29 26 27 26 25 24 23 22 21 20 16 15 

B.1 Executive Data Structures 

:PRM$L_ADDR 

:PRM$l_DEFAUL T 

:PRM$l_MIN 

:PRM$l_MAX 

:PRM$l_FLAGS 

:PRM$B_SIZE 
:PRM$B_POS 

Processor 
Status 
Word 

B 7 6 5 4 3 2 1 0 

0 
Current 
Mode 

Previous 
Mode 

0 IPL Must Be Zero c 

Interrupt Stack Flag 

First Part Done Flag Integer Overflow 

~---- Trace Pending ~-- Floating Overflow 

~----- Compatibility Mode ~--- Decimal Overflow 

Figure B-31 
Layout of the Processor Status Longword 

PTE-Page Table Entry Formats 

Purpose: 
Usual Location: 

References: 

Describes state and location of each. virtual page 
Process header contains PO and Pl page tables that de­
scribe process address space. The system page table in 
the system header contains the system page table. 
The various forms of a PTE are shown in Figure 14-3. 

PTR-Pointer Control Block 

Purpose: Acts as block header for arbitrary data structure. The 
VMS operating system uses one to contain the array of 
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B.1.35 

B.1.36 

758 

PTR$B_ TYPE: 
PTR$B_PTRTYPE: 

Figure B-32 

I l :PTR$W_SIZE 

:PTR$L_PTRCNT 

:PTR$L_PTRO 

Layout of a Pointer Control Block 

Usual Location: 
Allocated from: 

pointers to swap file table entries and page file control 
blocks. A second is used to contain the array of pointers 
to each known file list. 
At the head of most data structures. 
The page file and swap file vector is statically allocated 
in module SWAPFILE. The known file listhead is allo­
cated from nonpaged pool by SYSINIT. 

RBM-Real-Time Bitmap 

Purpose: 

Usual Location: 
Allocated from: 

Describes available SPTEs for connect-to-interrupt 
driver. 
Pointed to by EXE$GL_RTBITMAP. 
Non paged pool. 

RPB-Restart Parameter Block 

Purpose: 

Usual Location: 

RBM$B_ TYPE: 
Spare: 

Figure B-33 

Used by powerfail and recovery routines to save vola­
tile processor state. Used by the bugcheck routines to 
locate the bootstrap 1/0 driver and associated subrou­
tines. 
Physical page zero on system with no bad memory in 
the first 64K bytes. 

:RBM$L_STARTVPN 

:RBM$L_FREECOUNT 

:RBM$W_SIZE 

:RBM$L_BITMAP 

Layout of a Real-Time Bitmap 



RPB$B_DEVTYP: 
RPB$B_SLAVE: 

Spare: 

Figure B-34 

T T 

B.1 Executive Data Structures 

:RPB$L_BASE 

:RPB$L_RESTART 

:RPB$L_CHKSUM 

:RPB$L_RSTRTFLG 

:RPB$L_HAL TPC 

:RPB$L_HAL TPSL 

:RPB$L_HALTCODE 

:RPB$L_BOOTRO 

:RPB$L_BOOTR1 

:RPB$L_BOOTR2 

:RPB$L_BOOTR3 

:RPB$L_BOOTR4 

:RPB$L_BOOTR5 
:RPB$L_IOVEC 
:RPB$L_IOVECSZ 

:RPB$L_FILLBN 

:RPB$L_FILSIZ 

:RPB$Q_PFNMAP 

:RPB$L_PFNCNT 

:RPB$L_SVASPT 

:RPB$L_CSRPHY 
:RPB$L_CSRVIR 

:RPB$L_ADPPHY 

:RPB$L_ADPVIR 

:RPB$W_UNIT 

:RPB$T_FILE 

11-----4-0_B_yt_e_s ___ _,I '"'"''-00""" 

v v 

,, "1 

:::::><:::::] I :RPB$B_HDRPGCNT 
:RPB$B_BOOTNDT 
:RPB$L_ISP 
:RPB$L_PCBB 

:RPB$L_SBR 

:RPB$L_SCBB 

:RPB$L_SISR 

:RPB$L_SLR 

:RPB$L_MEMDSC 

v 64 B es v yt 

'1--------iT '"'""---'""c"' t j :RPB$B_WAIT 

Layout of the Restart Parameter Block 
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B.1.37 

B.1.38 

B.1.39 
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RSB$B_TYPE: 
RSB$B_DEPTH: l 1 

I 
l l RSB$W_PROT: 

RSB$B_RMOD: 

RSB$B_RSNLEN: 

I 

:RSB$L_HSHCHN 

:RSB$L_HSHCHNBK 

:RSB$W_SIZE 

:RSB$L_PARENT 

:RSB$L_REFCNT 

:RSB$L_BLKASTCNT 

:RSB$L_GRQFL 

:RSB$L_GRQBL 

:RSB$L_CVTQFL 

:RSB$L_CVTQBL 

:RSB$L_WTQFL 

:RSB$L_WTQBL 

:RSB$Q_VALBLK 

:RSB$B_GGMODE 
:RSB$B_CGMODE 

:RSB$W_GROUP 

:RSB$T _RESNAM v 
\ 31 Bytes I Spare: ~-~-~ 

Figure B·35 
Layout of a Resource Block 

RSB-Resource Block 

Purpose: 

Allocated from: 

Contains information about a resource locked by the 
lock manager. 
Non paged pool. 

SEC-Section Table Entry 

Purpose: 
Usual Location: 

Describes a process, global, or system section. 
In process or system header in area allocated for sec­
tion table entries. 

SHB-Shared Memory Control Block 

Purpose: 

Usual Location: 

Allocated from: 

Describes shared memory connected to specific proces­
sor. 
In list of shared memory control blocks (listhead 
EXE$GL_SHBLIST) in processor local memory. 
Non paged pool. 



B.1.40 

B.1.41 

B.1 Executive Data Structures 

SEC$W_SECXBL: l 

Spare: ><J 

:SEC$L_GSD 

:SEC$W_SECXFL 

:SEC$L_ VPXPFC 

:SEC$L_WINDOW 

:SEC$L_VBN 

:SEC$W_FLAGS 

:SEC$L_REFCNT 

:SEC$L_PAGCNT 

FigureB-36 
Layout of a Section Table Entry 

SHD-Shared Memory Data Page 

Purpose: 

Usual Location: 

Initial description of a specific shared memory control­
ler. 
Last physical page of shared memory. (Its processor­
specific virtual address is stored in the shared memory 
control block on each port connected to the shared 
memory.) 

STS-Return Status Field Definitions 

Purpose: 

References: 

SHB$B_TYPE: 
SHB$B_FLAGS: 

Figure B-37 

Describes return status from procedure (including system 
service). Describes condition name to condition handler. 
The field definitions are found in the VAX-11 Run-Time 
Library Reference Manual. 

l l 

l I 

:SHB$L_LINK 

:SHB$L_DATAPAGE 

:SHB$W_SIZE 

:SHB$L_REFCNT 

:SHB$L_BASGSPFN 

:SHB$B_NEXUS 
:SHB$B_PORT 

:SHB$L_POOLEND 

:SHB$L__ADP 

Layout of a Shared Memory Control Block 
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SHD$W_MBXMAX: 

SHD$B_BITMAPLCK: 
SHD$B_FLAGS: 

SHD$B_CEFLOCK: 

SHD$W_POLL: 

FigureB-38 

J 
I 

v.. ).-: 

:SHD$L_MBXPTR 

:SHD$L_GSDPTR 

:SHD$L_CEFPTR 

:SHD$L_GSBITMAP 

:SHD$L_GSPAGCNT 

:SHD$L_GSPFN 

:SHD$W_GSDMAX 

:SHD$W_CEFMAX 

:SHD$T _NAME 

:SHD$Q_INITIIME 

:SHD$L_CRC 

:SHD$W_GSDOUOTA 1 32Bytes I 

1
1--------~ :SHD$W_MBXQUOTA 

_ 32Bytes I 
f-----------1 :SHD$W_CEFQUOTA 

32 Bytes 
1 1 

:SHD$B_PORTS 
:SHD$B_INITLCK 
:SHD$B_GSDLOCK 
:SHD$B_MBXLOCK 

:SHD$W_PROWAIT 

:SHD$W_RESWAIT 
~ lt-----3

-
2
-B-yt-es----jl :SHD$W_RESAVAIL 

32 Bytes A' ,.. 

l 

v, 

T 
128 Bytes 

v, 

T 

:SHD$W_RESSUM 

:SHD$Q_PRQ 

:SHD$Q_POOL 

:SHD$Q_PRQWRK 

Layout of a Shared Memory Data Page 



B.1.42 

B.1.43 

B.1.44 

J J TQE$B_TYPE: 
TQE$B_RQTYPE: 

B.1 Executive Data Structures 

:TQE$L_TQFL 

:TQE$L_ TQBL 

:TQE$W_SIZE 

:TQE$L_PID 

:TQE$L_AST 

:TQE$L_ASTPRM 

:TQE$Q_TIME 

:TQE$Q_OEL TA 

Spare: >-s:::l J :TQE$B_RMOD 
. :TQE$B_EFN 

:TQE$L_RQPID 

FigureB-39 
Layout of a Timer Queue Element 

TQE-Timer Queue Element 

Purpose: 
Location: 
Allocated from: 

Describes pending timer or scheduled wakeup request. 
In timer queue (listhead EXE$GL_ TQFL). 
Nonpaged pool. 

VA-Virtual Address Field Definitions 

Purpose: 

References: 

Selects a page table and virtual page number for the address 
translation mechanism and page fault handler. 
Figure 15-1. 

WQH-Scheduler Wait Queue Header 

Purpose: 

Usual Location: 

WQH$W_WQSTATE: 

'Figure B-40 

Listhead for all PCBs of processes in given scheduling 
state. 
Statically allocated in module SDAT. 

:WQH$L_WQFL 

:WQH$L_WQBL 

:WQH$W_WQCNT 

Layout of the Scheduler Wait Queue Header 
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B.1.45 WSL-Working Set List Entry Field Definitions 

Purpose: 

Usual Location: 

References: 

Describes virtual page that is a member of 
process or system working set. 
In working set list in process or system 
header. 
Figures 14-4 and 14-5. 

B.2 CONSTANTS 

The files SYSDEF and STARDEF define many system-wide symbolic codes 
that identify structures, resources, quotas, priorities, and so on. Many of 
these constants are listed in either the VAX/VMS System Services Reference 
Manual or the VAX/VMS IIO User's Guide. Those that are most closely tied 
to the material presented in this book are listed here. 

B.2.1 BTD-Bootstrap Device Codes 

The bootstrap device codes are used to interpret the contents of RO to VMB, 
the primary bootstrap program. 

BTD$K_MB D MASSBUS Device 
BTD$K_DM 1 RKD6RKD7 
BTD$K_DL 2 RLD2 
BTD$K_DQ 3 RBD2RBllD 
BTD$K_UDA 17 UDA 
BTD$K_HSCCI 32 HSC on CI 
BTD$K_CONSOLE 6£; Console Block Storage Device 

The bootstrap device type codes are listed in Table 24-6. 

B.2.2 CA-Conditional Assembly Parameters 

The conditional assembly parameters control whether certain code is in­
cluded when components of the VMS operating system are assembled. These 
parameters were important during the initial development of the VMS oper­
ating system but are no longer used. All simulator code has been removed. 
All measurement code (used by the Monitor Utility) is always included. 

CA$_SIMULATOR 1 VMS System Running on Simulator 
CA$_MEASURE 2 Accumulate Statistics for MONITOR 
CA$_MEASURE_IOT L; Count IO Transactions for MONITOR 

B.2.3 DYN-Data Structure Type Definitions 
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All structures allocated from non paged and paged dynamic memory have a 
unique code in a typefield(atoffsetxyz$B_ TYPE= 10). SDA uses the con-
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tents of this field when formatting dumps of pool and in automatic format­
ting of a data structure with the FORMAT command. The results of invoking 
the $DYNDEF macro are summarized in Table B-2. 

Table B-2: Dynamic Data Structure Type Codes 

Symbolic Name 

DYN$C_ADP 
DYN$C_ACB 
DYN$C_AQB 
DYN$C_CEB 
DYN$C_CRB 
DYN$C_DDB 
DYN$C_FCB 
DYN$C_FRK 
DYN$C_IDB 
DYN$C_IRP 
DYN$C_LOG 
DYN$C_PCB 
DYN$C_PQB 
DYN$C_RVT 
DYN$C_TQE 
DYN$C_UCB 
DYN$C_VCB 
DYN$C_WCB 
DYN$C_BUFIO 
DYN$C_ TYPAHD 
DYN$C_GSD 
DYN$C_MVL 
DYN$C_NET 
DYN$C_KFI 
DYN$C_MTL 
DYN$C_BRDCST 
DYN$C_CXB 
DYN$C_NDB 
DYN$C_SSB 
DYN$C_DPT 
DYN$C_JPB 
DYN$C_PBH 
DYN$C_PDB 
DYN$C_PIB 
DYN$C_PFL 
DYN$C_SFT 
DYN$C_PTR 
DYN$C_KFH 
DYN$C_RVX 
DYN$C_EXTGSD 
DYN$C_SHMGSD 

Code 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

Structure Type 

Adapter Control Block 
AST Control Block 
ACP Queue Block 
Common Event Block 
Channel Request Block 
Device Data Block 
File Control Block 
Fork Block 
Interrupt Dispatch Block 
1/0 Request Packet 
Logical Name Block 
Software Process Control Block 
Process Quota Block 
Relative Volume Table 
Timer Queue Element 
Unit Control Block 
Volume Control Block 
Window Control Block 
Buffered 1/0 Buffer 
Terminal Type-Ahead Buffer 
Global Section Descriptor 
Magnetic Tape Volume List 
Network Message Block 
Known File Entry 
Mounted Volume List Entry 
Broadcast Message Block 
Complex Chained Buffer 
Network Node Descriptor Block 
Logical Link Subchannel Status Block 
Driver Prologue Table 
Job Parameter Block 
Performance Buffer Header 
Performance Data Block 
Performance Information Block 
Page File Control Block 
Swap File Table Entry 
Pointer Control Block 
Known File Image Header 
Relative Volume Table Extension 
Extended Global Section Descriptor 
Shared Memory Global Section Descriptor 
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Table B-2: Dynamic Data Structure Type Codes (Continued) 

Symbolic Name 

DYN$C_SHB 
DYN$C_MBX 
DYN$C_IRPE 
DYN$C_SLAVCEB 
DYN$C_SHMCEB 
DYN$C_JIB 
DYN$C_TWP 
DYN$C_RBM 
DYN$C_VCA 
DYN$C_SPECIAL 

DYN$C_SHRBUFIO 

Code 

42 
43 
44 
45 
46 
47 
48 
49 
so 
128 

128 

Structure Type 

Shared Memory Control Block 
Mailbox Control Block 
Extended 1/0 Request Packet 
Slave Common Event Block 
Shared Memory Master Common Event Block 
Job Information Block 
Terminal Driver Write Packet ($TTYDEF) 
Real Time SPT Bitmap 
Disk Volume Cache Block 
Code That Defines Beginning of Special 
Codes 
Shared Memory Buffered 1/0 Buffer 

B.2.4 107xx-I/O Space Address Specifications 

B.2.4.1 

B.2.4.2 
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The division of physical address between main memory addresses and 1/0 
space addresses is CPU dependent. 

10730-VAX-11/730 Physical Address Space Definitions. Physical address 
space on the VAX-11/730 is defined by a 24-bit address and is partitioned into 
physical memory addresses (ISM bytes, 000000 through EFFFFF) and 1/0 
space addresses (IM Byte, FOOOOO through FFFFFF). 

I0730$AL_IOBASE F20000 (hex) 
I0730$AL_PERNEX 2000 (hex) 

I0730$AL_NNEX 16 (dee) 
0$AL_UBOSP FCOOO (hex) 

Start of IO Space 
Size of Register Space for 
Each Nexus 
Maximum Nexus Number 
Address of UNIBUS 0 
Address Space 

10750-VAX-11/750 Physical Address Space Definitions. Physical address 
space on the VAX-111750 is defined by a 24-bit address and is evenly divided 
between main memory (Phys.Addr.<23> = O) and 1/0 space addresses 
(Phys.Addr.<23> = 1). Ten of the sixteen slot positions are fixed. Thus it is 
possible to identify the address space for UBIO registers and MASSBUS 0 reg­
isters. 

I0750$AL_IOBASE F20000 (hex) 

0$AL_MBBASE F28000 (hex) 

I0750$AL_UBBASE F30000 (hex) 

I0750$AL_NNEX 16 (dee) 
I0750$AL_PERNEX 2000 (hex) 

I0750$AL_UBOSP FCOOOO (hex) 

Base Address of Register 
Space for Slot 16 
Base Address of Register 
Space for MASSBUS 0 
Base Address of Register 
Space for UNIBUS 0 
Number of Adapters (Nexus) 
Size of Register Space for 
Each Nexus 
Base Address of UNIBUS O 
Address Space 
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Adapter assignments for the first ten slots are fixed. The following constants 
describe these assignments: 

I0750$C_SL_MEMO 0 Memory Controller 
I0750$C_SL_MPMO 1 Multiport Memory O 
I0750$C_SL_MPM1 2 Multiport Memory 1 
I0750$C_SL_MPM2 3 Multiport Memory 2 
I0750$C_SL_MBO L; MASSBUS 0 
I0750$C_SL_MB1 5 MASSBUS 1 
I0750$C_SL_MB2 6 MASSBUS 2 
I0750$C_SL_MB3 7 MASSBUS 3 
I0750$C_SL_UBO ll UNIBUS 0 
I0750$C_SL_UB1 9 UNIBUS 1 

I0780-VAX-11/780 Physical Address Space 
cal address space on the VAX-11/780 is defined 
and is evenly divided between main memory 
O) and 1/0 space addresses (Phys.Addr. <29> = 1 ). 

Definitions. Physi­
by a 30-bit address 
(Phys.Addr.<29> = 

I071l0$AL_IOBASE 20000000 (hex) Base Address of Register 

I071l0$AL_NNEX 
I071l0$AL_PERNEX 

I071l0$AL_UBOSP 

Space for TR O 
16 (dee) Number of Adapters (Nexus) 

2000 (hex) Size of Register Space for 
Each Nexus 

20100000 (hex) Base Address of UNIBUS O 
Address Space 

B.2.5 IPL-Processor Priority Level Definitions 

IPL. levels that are used for synchronization and other purposes by the VMS 
operating system are given symbolic names. 

IPL$_ASTDEL 2 AST Delivery Interrupt 
IPL$_SCHED 3 Resc~eduling Interrupt 
IPL$_IOPOST L; IO Postprocessing Interrupt 
IPL$_QUEUEAST 6 Fork Level Used for AST Queuing 
IPL$_SYNCH 7 System-Wide Synchronization Level 
IPL$_TIMER 7 Software Timer Interrupt 
IPL$_SCS ll SCS Synchronization Level 
IPL$_MAILBOX 11 Fork IPL for Mailbox Driver 
IPL$_HWCLK 2t; Hardware Clock Interrupt 
IPL$_POWER 31 Block Powerfail Interrupt 

A powerfail interrupt causes IPL to be raised to 30, not 31. Raising IPL to 31 
blocks all interrupts and serious conditions until IPL is lowered. 

The IPL values used for synchronization are listed in Table 2~1. Those val­
ues that correspond to software interrupt IPL values are also listed in Table 
6-1. 

B.2.6 JPI_;$GETJPI Data Identifier Definitions 

The $JPIDEF macro is used in argument lists to the $GETJPI system service 
to identify those data elements that are being requested. The symbolic names 
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defined by this macro are listed in Part II of the VAX/VMS System Services 
Reference Manual. 

B.2.7 MSG-System-Wide Mailbox Message Types 

The $MSGDEF macro defines codes to identify mailbox messages. The sym­
bolic names defined by this macro are listed in the VAX/VMS System Serv­
ices Reference Manual. 

B.2.8 NDT-Nexus (Adapter) Device Type 

B.2.9 

B.2.10 
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Each external adapter has an associated code that is used by VMB, INIT, and 
the power recovery routine to determine which adapter-specific action 
should be taken to (re)initialize each adapter. 

NDT$_MEM4NI II 
NDT$_MEM4I 9 
NDT$_MEM:LbNI :Lb 
NDT$_MEM:LbI 17 
NDT$_MB 32 
NDT$_UBO .1;0 
NDT$_UB:L t;:L 
NDT$_UB2 .1;2 
NDT$_UB3 .1;3 
NDT$_DR32 .l;ll 

NDT$_CI Sb 
NDT$_MPMD b.I; 
NDT$_MPM:L bS 
NDT$_MPM2 bb 
NDT$_MPM3 67 
NDT$_MEMb4NIL 104 

NDT$_MEMb4EIL :LOS 

NDT$_MEMb4NIU :LOb 

NDT$_MEMb4EIU 107 

NDT$_MEMb4I :LOil 

PQL-Process Quota List Codes 

4K Memory - Not Interleaved 
4K Memory - Interleaved 
:LbK Memory - Not Interleaved 
:LbK Memory - Interleaved 
MASSBUS 
UNIBUS 0 
UNIBUS :L 
UNIBUS 2 
UNIBUS 3 
DR32 
CI 
Multiport Memory 0 
Multiport Memory :L 
Multiport Memory 2 
Multiport Memory 3 
b4K Memory, Not Interleaved, 
Lower Controller 
b4K Memory, Externally Interleaved, 
Lower Controller 
b4K Memory, Not Interleaved, 
Upper Controller 
b4K Memory, Externally Interleaved, 
Upper Controller 
b4K Memory, Internally Interleaved 

The $PQLDEF macro defines symbolic codes that are passed to the Create 
Process system service. These symbols are listed in Part II of the VAX/VMS 
System Services Reference Manual. 

PR-Processor Register Definitions 

The $PRDEF macro defines symbolic names for the processor internal regis­
ters. Some of these registers are defined as part of the VAX architecture and 
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B.2 Constants 

are found in all processors. Others are specific to a single CPU. The internal 
processor registers are listed the VAX/VMS System Services Reference Man­
ual. Processor registers are described in the VAX Hardware Handbook. 

PRI-Priority Increment Class Definitions 

The $PRIDEF macro defines the priority increment classes. These constants 
are typically loaded into R2 before SCH$CHSE or SCH$CHSEP is called to 
make a process computable. 

PRI$_NULL 
PRI$_IOCOM 
PRILRESAVL 
PRI$_TIMER 
PRI$_TOCOM 
PRI$_TICOM 

0 No Priority Boost 
1 IO ~ompletion 
2 Resource Available 
2 Timer Request Complete 
3 Terminal Output Completion 
4 Terminal Output Completion 

Table 10~3 shows the correspondence between increment classes and the ac­
tual boosts. 

PRT-Protection Field Definitions 

The $PRTDEF macro defines the different contents of the protection field in 
a page table entry. (The $PTEDEF macro defines similar constants, except 
that the PRT$C_xxx symbols are values in the range from 0 to 15 while the 
PTE$C_xxx symbols have shifted these values into bit positions<30:27>.) 

PRT$C_NA a No Access 
PRT$C_RESERVED 1 Reserved 
PRT$C_KW 2 Kernel Write 
PRT$C_KR 3 Kernel Read 
PRT$c_uw 4 User Write 
PRT$C_EW 5 Executive Write 
PRT$C_ERKW b Executive Read, Kernel Write 
PRT$C_ER 7 Executive Read 
PRT$C_SW 8 Supervisor Write 
PRT$C_SREW 9 Supervisor Read, Executive Write 
PRT$C_SRKW 10 Supervisor Read, Kernel Write 
PRT$C_SR 11 Supervisor Read 
PRT$C_URSW 12 User Read, Supervisor Write 
PRT$C_UREW 13 User Read, Executive Write 
PRT$C_URKW 14 User Read, Kernel Write 
PRT$C_UR 15 User Read 

PRV,-Privilege Bit Definitions 

The $PRVDEF macro defines symbolic names for all recognized VMS privi­
leges. The symbolic names produced by this macro are described in Part II of 
the VAX/VMS System Services Reference Manual. 
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B.2.14 

B.2.15 

B.2.16 
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RSN-Resource Name Definitions 

The $RSNDEF macro defines constants that indicate the particular resource 
a process is waiting for when it is in the MWAIT state. The resource number 
is stored in the PCB$L_EFWM field in the PCB. 

RSN$_ASTWAIT 1 Wait f0r Delivery of an AST 
RSN$_MAILBOX 2 Wait for Mailbox Space 
RSN$_NPDYNMEM 3 Wait for Nonpaged Pool Space 
RSN$_PGFILE ,; Wait for Space in the Page File 
RSN$_PGDYNMEM 5 Wait for Paged Pool Space 
RSN$_BRKTHRU 6 Terminal Broadcast 
RSN$_IACLOCK 7 Image Activation Interlock 
RSN$_JQUOTA ll Job Pooled Quota 
RSN$_LOCKID 9 Lock IDs 
RSN$_SWPFILE 10 swapping File Space 
RSN$_MPLEMPTY 11 Modified Page List Empty 
RSN$_MPWBUSY 12 Modified Page Writer Busy 
RSN$_MAX 13 Maximum Resource Number 

SGN-SYSGEN Parameter Constant Definitions 

The $SGNDEF macro is used to define defaults values for SYSGEN. 

SGN$C_BALSETCNT 2<; 
SGN$C_DFWSCNT 100 
SGN$C_DFWSQUOTA 120 
SGN$C_GBLSECCNT <;O 
SGN$C_MAXGPGCNT 20<;/l 
SGN$C_MAXPAGCNT 163/l<; 
SGN$C_MAXPGFL <;096 
SGN$C_MAXPSTCNT 5 
SGN$C_MAXVPGCNT ll192 
SGN$C_MAXWSCNT 102<; 
SGN$C_MINWSCNT 10 
SGN$C_NPAGEDYN 2662<; 
SGN$C_NPROCS 6<; 
SGN$C_PAGEDYN 163/l<; 
SGN$C_PHYPAGCNT <;096 
SGN$C_SYSDWSCNT <;O 
SGN$C_SYSVECPGS <; 

SGN$C_SYSWSCNT 96 

Number of Processes in Balance Set 
Default Working Set Count 
Default Working Set Quota 
Global Section Count 
Global Page Count 
Physical Memory Size in Pages 
Default Maximum Paging File 
Maximum Number of PST Entries 
Maximum Process Virtual Size (Pages) 
Maximum Working Set Size (Pages) 
Minimum Working Set Size (Pages) 
Nonpaged Dynamic Pool Size 
Maximum Number of Processes 
Paged Dynamic Pool Size (Bytes) 
Actual Physical Page Count 
Default System Working Set Count 
Number of Pages of System 
Service Vectors 
System Working Set Count 

SS-System Service Completion Codes 

The $SSDEF macro defines all system wide status codes. The VAX/VMS Sys­
tem Services Reference Manual lists the symbolic names of all SS$_name 
symbols. (These symbols are defined in a separate file called 
[VMSLIB.SRC]SSMSG.MDL.) 



B.2.17 

B.3 Data Structures Used by the IIO Subsystem 

STATE-Scheduling States 

The $STATEDEF macro defines symbolic names for all scheduling states. 
Note that the prefix for each of the symbols is SCH$C .. and not STATE$C_. 

SCH$C_COLPG 1 Collided Page Wait 
SCH$C_MWAIT 2 Miscellaneous Wait 

(Resource Wait) 
( Mutex Wait) 

SCH$C_CEF 3 Common Event Flag Wait 
SCH$C_PFW t; Page Fault Wait 
SCH$C_LEF 5 Local Event Flag Wait (Resident) 
SCH$C_LEFO 6 Local Event Flag Wait (Outswapped) 
SCH$C_HIB 7 Hibernating (Resident) 
SCH$C_HIBO ll Hibernating (Outswapped) 
SCH$C_SUSP 9 Suspended (Resident) 
SCH$C_SUSPO 10 suspended (Outswapped) 
SCH$C_FPG 11 Free Page Wait 
SCH$C_COM 12 Computable (and Resident) 
SCH$C_COMO 13 Computable (Outswapped) 
SCH$C_CUR Lt; Current Process 

B.3 DATA STRUCTURES USED BY THE 1/0 SUBSYSTEM 

There are two classes of symbolic definitions used by the 1/0 subsystem. 
Data structures. used by device drivers are pictured the VAX/VMS Guide to 
Writing a Device Driver ("Device Drivers" in the tables following). Symbolic 
definitions specific to each device class are listed in the appropriate chapters 
of the VAX/VMS I/O User's Guide ("1/0 User's Guide" in the tables follow­
ing). The 1/0 function codes and device information block are also described 
in the VAX/VMS System Services Reference Manual ("System Services" in 
the tables following). The SCS and CI related data structures can be obtained 
by looking at the microfiche listings. 

B.3.1 1/0 Data Structures Defined in SYSDEF 

The following data structures are defined in SYSDEF and stored in LIB.MLB. 

Structure Name Acronym Described in 

Adapter Control Block ADP Device Drivers 
ACP Queue Block AQB 
Channel Control Block CCB Device Drivers 
Class Driver Request Packet CDRP Table 19-2 
Class Driver Data Block CDDB 
SCS Connection Descriptor List CDL 
SCS Connection Descriptor Table CDT 
CI Buffer Descriptor Table CIBDT 
CI Buffer Descriptor Format CIBD 
CI Buffer Handle Format CIBHAN 
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B.3.2 
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Structure Name 

CI Free Message/Datagram Queue 
Descriptor Table 
Channel (Controller) Request Block 
Device Data Block 
Driver Dispatch Table 
Driver Prolog Table 
Interrupt Dispatch Block 
I/O Request Packet 
1/0 Request Packet Extension 
MASSBUS Adapter Register Offsets 
Mass Storage Control Protocols 
SCS Path Block 
Port Descriptor Table 
MSCP Replacement and .Caching Table 
SCS Response Descrip~6r Table 
SCS Response Descriptor Format 
SCS Message Defin~tions 
SCS Connection Management 
Message Forma,t' 
SCS Directory Entry 
Terminal AST Packet 
Terminal Driver Write Request Block 
UNIBUS Adapter Register Offsets 
UNIBUS Interconnect Register Offsets 
Unit Control Block 
CRB Interrupt Transfer Vector 

Structure 

Acronym 

CIFQDT 

CRB 
DDB 
DDT 
DPT 
IDB 
IRP 
IRPE 
MBA 
MSCP 
PB 
PDT 
RCT 
RDT 
RD 
scs 
SCSCMG 

SDIR 
TAST 
TTY 
UBA 
UBI 
UCB 

VEC 

1/0 Data Stmctures Defined in STARDEF 

Described in 

Device Drivers 
Device Drivers 
Device Drivers 
Device Drivers 
Device Drivers 
Device Drivers 
Device Drivers 
Device Drivers 

Device Drivers 
Device Drivers 
Device Drivers 

Device Drivers 

The fr llowing data structures are defined in STARDEF and stored in both 
STARLET.MLB and LIB.MLB: 

Structure Name Acronym Described in 

Card Reader Status Bits CR I/O User's Guide 
Device Adapter, Type, DC I/O User's Guide 

and Class Definitions 
Device Characteristics DEV I/O User's Guide 
Device Information Block DIB 1/0 User's Guide 

System Services 
1/0 Function Code Definitions IO I/O User's Guide, 

System Services 
LPA-11 Characteristics LA I/O User's Guide 
Line Printer Characteristics LP 110 User's Guide 
Magtape Status Bits MT I/O User's Guide 
Printer/Terminal Carriage Control PCC 

Specifiers 
Special Symbols for Terminal Driver TT 1/0 User's Guide 
Additional Terminal Driver Symbols TT2 I/O User's Guide 



Structure Name 

DRl 1, W Device Characteristics 
DR32 Command Table and Packet 

Definitions 
DMC-11 Status and Characteristics 
Software DDCMP Definitions 

B.4 Data Structures Used by Files-11 

Acronym 

XA 

XF 
XM 
xw 

Described in 

IIO User's Guide 

1/0 User's Guide 
1/0 User's Guide 

B.4 DATA STRUCTURES USED BY FILES-11 

B.4.1 

B.4.2 

The data structures used by the file ACPs and associated utilities such as 
INIT and MOUNT are outside the scope of this book and are listed here for 
completeness. Any incidental references are indicated. The ANSI magnetic 
tape labels are pictured in the VAX-11 Record Management Services Refer­
ence Manual ("RMS Reference"). The attribute list descriptor (ATR) and file 
identification block (FIB) are described in the VAX/VMS IIO User's Guide. 

File System Data Structures Defined in SYSDEF 

The following data structures are defined in SYSDEF and stored in LIB.MLB. 

Structure Name 

ACP 1/0 Buffer Packet 
ACP Message to Bad Block Scan 
Complex Chained Buffer 
EOFl ANSI Magnetic Tape Label 
EOF2 ANSI Magnetic Tape Label 
EOF3 ANSI Magnetic Tape Label 
File Control Block 
HDRl ANSI Magnetic Tape Label 
HDR2 ANSI Magnetic Tape Label 
HDR3 ANSI Magnetic Tape Label 
Mounted Volume List Entry 
Magnetic Tape Volume List 
File Name Block 
Relative Volume Table 
Relative Volume Table Extension 
Volume Cache Block 
Volume Control Block 
VOLl ANSI Magnetic Tape Label 
Window Control Block 

Acronym 

AIB 
BBS 

orn 
EOl 
E02 
E03 
FCB 
HDl 
HD2 
HD3 
MTL 
MVL 
NMB 
RVT 
RVX 
VCA 
VCB 
VLl 
WCB 

Described in 

RMS Reference 
RMS Reference 
RMS Reference 

RMS Reference 
RMS Reference 
RMS Reference 

RMS Reference 

File System Data Structures'Defined in STARDEF 

The following' data structures are defined in STARDEF and stored in both 
STARLET.MLB and LIB.MLB: 
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Structure Name 

Attribute List Description 
File Identification Block 
File Identification 
Flag Bits for the $MOUNT System Service 

Acronym 

ATR 
FIB 
FID 

Described in 

1/0 User's Guide 
1/0 User's Guide 

System Services 

B.5 MISCELLANEOUS DATA STRUCTURES AND CONSTANTS 

This section lists the data structures and constants that are defined in 
SYSDEF.MDL or STARDEF.MDL but are not mentioned in this book. A de­
scription of any of these structures can be obtained by looking at the micro­
fiche listing of the file in which the structure is defined. Very few of these 
structures are described elsewhere in the documentation set. The connect­
to-interrupt facility is described in the VAX/VMS Real-Time User's Guide 
("Real-Time" in the table following). Some of the symbiont manager request 
codes are listed in the VAX/VMS System Services Reference Manual. The 
TPARSE control block is pictured in the VAX-11 Run-Time Library Refer­
ence Manual ("RTL Reference" in the table following). The accounting rec­
ord structure is shown in the VAX-11 Utilities Reference Manual ("Utilities" 
in the table following). 

B.5.1 Miscellaneous Data Structures Defined in SYSDEF 

B.5.2 
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The following data structures are defined in SYSDEF and stored in LIB.MLB: 

Structure Name Acronym Described in 

Generalized Name String Descriptor ABD 
Configuration Control Block ACF 
Accounting Manager Definitions ACM Utilities 
Connect-to-Interrupt Definitions CIN Real-Time 
Error Log Allocation Buffer Header ERL 
Change Image Section Protection ICP 
Cross Linker Image Header Format IHX 
RMS Impure Area Offset Definitions IMP 
Performance Buffer Header PBH 
Device Performance Data Block PDB 
Performance 1/0 Information Block PIB 
Interprocessor Request Block Definitions PRQ 
Remote Device Protocol Definitions RDP 
User Authorization File Record Format UAF 

Miscellaneous Data Structures Defined in STARDEF 

The following data structures are defined in STARDEF and stored in both 
STARLET.MLB and LIB.MLB: 
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B.5 Miscellaneous Data Structures and Constants 

Structure Name 

Command Language Interface Definition 
CLI Service Request Codes 
Generic Codes for Command Verbs 
Detached Job Initiate Message 
Operator Communication Message Types 
Symbiont Manager Job Record Header 
Symbiont Manager Queue Header 
Symbiont Manager Request Codes 
Symbiont Queue Header Record 
Symbiont Manager Queue Record 
Symbiont Queue Record Envelope 

Structure 
TPARSE Control Block 
Disk Usage Accounting File 

Acronym 

CLI 
CLISERV 
CLIVE RB 
DJI 
OPR 
SJH 
SMQ 
SMR 
SQH 
SQR 

SYM 
TPA 
USG 

Error Log Message Buffers Defined in SYSDEF 

Described in 

System Services 

RTL Reference 

The error log message buffers are defined in SYSDEF and are stored in 
LIB.MLB. The $EMBDEF macro, with one of fourteen different parameters, 
defines the various error message buffers used by the error logger. The buffer 
header and the error log entry for system crashes are described in Table 8-1. 
They are included in this list for completeness. 

Structure Name 

Buffer Header 
Entry Type Definitions 
Nonfatal Bugcheck Error 
Crash/Restart Error (Fatal Bugcheck) 
Device Error 
Machine Check Log 
SBI Faults and Asynchronous Write Errors 
Soft ECC Errors and SBI Alert 
System Service Messages 
System Startup Message 
Time Stamp Message 
UNIBUS Error Summary 
UNIBUS Adapter Undefined Interrupt 
Volume Mount/Dismount Message 

Acronym 

EMB,HDDEF 
EMB,ETDEF 
EMB,BCDEF 
EMB,CRDEF 
EMB,DVDEF 
EMB,MCDEF 
EMB,SBDEF 
EMB,SEDEF 
EMB,SSDEF 
EMB,SUDEF 
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$ADJSTK system service, 344 
$ALLOC system service, 396 
$ASCTIM system service, 643 
$ASSIGN system service, 393, 394 
$BINTIM system service, 643 
$BRDCST system service, 408 
$CANCEL system service, 402 
$CANTIM system service, 222 
$CANW AK system service, 222 
$CMEXEC system service, 179 
$CMKRNL system service, 179 
$CNTREG system service, 345 
$CRELOG system service, 630 
$CREMBX system service, 402 
$CREPRC system service, 443 
$CRMPSC system service 346 

in shared memory, 304 
$DALLOC system service, 396 
$DASSGN system service, 393 
$DCLCMH system service, 165 
$DELLOG system service, 631 
$DELMBX system service, 407 
$DELPRC system service 492 

operation, 492 
$DEL TV A system service, 345 
$DEQ system service 

operations, 254, 255 
$DERLMB system service, 150 
$ENQ system service 

operations, 250 
$EXIT system service 234, 482 

operation of, 482, 483 
$EXPREG system service, 342 
$FAO system service, 643 
$GETDVI system service, 411 
$GETJPI system service 639 

operation of, 639 
special kernel mode ASTs, 139 
wildcard support, 641 

$GETMSG system service, 635 
$GETSYI system service, 642 
$IMGSTA system service 481 

operations of, 481 
$LCKPAG system service, 358 
$LKWSET system service, 35 7 
$NUMTIM system service, 642, 643 
$PURGWS system service, 357 
$PUTMSG system service 63 7 

operation of, 63 7 
$QIO system service 

description of, 397, 398 
$SCHDWK system service 222 

operation, 220 
$SETIME system service, 215 
$SETIMR system service 

operation of, 222 
$SETPRA system service, 604 

$SETPRT system service, 359 
$SETPRV system service, 490 
$SETRWM system service, 195 
$SETSFM system service, 178, 179 
$SETSSF system service, 179 
$SETSWM system service, 359 
$SNDACC system service, 632 
$SNDERR system service, 634 
$SNDOPR system service 634 

operation of, 634 
$SNDSMB system service, 633 
$STRUCT (MDL directive), 663 
$TRNLOG system service, 631 
$ULKPAG system service, 358, 359 
$ULWSET system service, 358, 359 
$UPDSEC system service, 338 
$W AITFR system service, 228 
$WFLAND system service, 228 
$WFLOR system service, 228 

Abnormal image termination, 514 
Abort 

type of exception, 68 
ACB (AST control block) 

contents of, 127 
creation of, 129 
in image rundown, 487 
layout of, 736 

ACC (Accounting message block) 
layout of, 737 

Access mode 
and ASTs, 130 
transitions on VAX-11/782, 620 
used with ASTs, 127 

Access rights block, 446, 737 
Accounting 

of process deletion, 495 
Accounting manager 

communication with, 632 
Accounting message block, 737 
ACP (Ancillary control process) 

intervention, 419 
introduction to, 8 
necessary functions in bootstrap, 542 
system disk initialization, 564 

Adapter 
device types, 7 68 

Adapter configuration, 104 
Addressing mode 

unusual usage, 651 
.ADDRESS (Macro directive) 

address relocation fixups, 477, 478 
Address space 

control region, 26 
creation of, 342 
deletion of, 344 
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Address space (continued) 
introduction to, 24 
program region, 26 
virtual, 5 

Adjust Stack system service, 344 
Algorithms 

for logical name hashing, 628 
Allocate Device system service, 396 
Allocation 

device, 396 
of lookaside lists, 50 
of virtual memory, 346 

ALLOCPFN (PFN list manipulation routines) 
data areas described by, 68 7 

Altering page protection, 359 
Alternate page and swap files, 295, 299 
AME (Applications migration executive) 

activation of, 476 
Applications migration executive, 476 
ARB (Access rights block) 

description of, 446 
layout of, 737 

Architecture 
of the VAX family, 13 

Arithmetic exceptions, 72 
ASCII time strings, 643 
Assigning channels, 393 
Assign 1/0 Channel system service, 393, 394 
Assignment 

of local device, 394 
ASSUME (macro), 647 
AST level processor register, 127 
ASTs (Asynchronous system traps) 

access mode and queuing, 130 
accounting, 223 
attention, 140, 143 
delivering, 126 
delivery interrupts, 125, 133 
delivery mechanism, 133 
exit path, 136 
interrupts, 117 
lock manager, 253 
out-of-band, 143, 146 
piggyback, 130 
power recovery, 604 
process deletion, 492, 493 
queuing, 127 
special kernel mode, 130, 136, 137 
spurious, 133 
unwinding, 92 
and wait states, 198 

ATTACH (DCL command) 
operation of, 507 

Attached processor (VAX-11/782) 
description of, 609 
executing jobs, 618 
initialization of, 613 
preventing scheduling on, 618 

Attention ASTs 140 
delivery of, 141 
examples of, 142 
flushing list, 142 
terminal driver, 142, 143 

AUTOCONFIGURE (SYSGEN command) 
in STARTUP, 565 

Automatic working set adjustment 354 
at quantum end, 190 

Backing store address 280 
modified pages, 334 

Bad blocks 
in disks, 416 

Bad page list 
links in, 283, 284 

BAK array 
in PFN database, 280 

Balance slots 292 
arrays, 293 
size of, 294, 584 

Base time values, 215 
Batch jobs, 499 
Battery backup, 214 
BBSS instruction, 651 
Bit fields 

in MDL, 665, 666, 670 
Black hole page 

allocation of, 55 7 
BLINK array 

in PFN database, 283, 284 
Blocking AST 

lock manager, · 253 
BOOT58 

VAX-11/750 bootstrap, 527, 528 
Bootblack program 

VAX-11/750, 527 
Bootstrap·521, 99 

conversational, 546 
device codes, 764 
device driver, 542 
file operations, 542 
1/0, 542 
processor-specific, 521 
of VAX-11/782, 614 

Bootstrap programs 
primary, 530 
secondary, 542 

BORROWLIM (SYSBOOT parameter) 275 
in automatic working set size adjustment, 

356 
BRD (Broadcast descriptor block) 

description of, 408 
layout of, 737 

Broadcast descriptor block, 408 
Broadcast system service, 408 
Buffered I/O, 401 
Buffer pages 

double mapping, 439 
BUG-CHECK (macro), 150 
Bugchecks 150 

information data areas, 684, 685, 99 
mechanism for, 150 
operation of, 151 

BUGCHECK (Software bugcheck routines) 
data areas described by, 685 

Call frame 
change mode services, 166 
condition handlers, 79 

Call stack 
unwinding, 84 

Cancel I/O on Channel system service, 402 
Cancel Timer system service, 222 
Cancel Wakeup system service, 222 
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unsolicited input to start batch job, 502 

Catch-all condition handler 79, 95 
operations of, 462 
in process creation, 461 

Cathedral windows 
definition of, 417 
description of, 297 

CCB (Channel control block) 
in device assignment, 393, 394 

CEB (Common event block) 
description of, 197 
layout of, 737 
master and slave, 240, 307 

CEF wait state, 197 
Change mode 

condition handling, 65 
dispatching, 165, 166 
to executive· dispatcher, 168 
to executive vectors, 163 
handlers, 165 
instructions, 164, 165 
to kernel dispatcher, 168 
to kernel vectors, 163 

Channel control block, 393, 394 
Channel deassignment 

in image rundown, 48 7 
Channels 

assigning and deassigning, 393 
to terminals, 428 

CHME instruction, 165 
CHMK instruction, 165 
CI (Computer interconnect) 

DECnet communications, 420 
port driver (PADRIVER), 421 

Class drivers 420 
I/O processing, 422 
terminal, 422 

CLis (Command language interpreters) 
condition handlers, 97 
data pages, 730 
and image execution, 508 
initialization of, 509 
mapping at process creation, 504 
user-written, 179 

Clocks 
hardware, 212 
interval, 212 
powerfail, 215 
software, 214, 215 

Clustered reads, 329 
Cluster size 

page read maximum, 332 
C (MDL directive), 665 
CMI (Computer to memory interconnect), 

102 
CMODSSDSP (Change mode dispatcher), 168 
CNDRIVER (DECnet class driver), 420 
Coding techniques 

instruction speed, 649 
register conventions, 654 

COLPG wait state 193 
and pager, 340 

Command file 
site-specific startup, 565 

Common event flags 197, 225, 226 
affecting computability, 231 
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clusters, 240 
clusters in shared memory, 307 
permanent, 227 

Common event flag wait state, 197 
Communication 

interprocess, 225, 235 
using global sections, 239 
using MA780, 239 · 

COMO scheduling state, 191 
Compatibility mode 

context page, 730, 731 
exceptions, 7 4 
image activation, 476 

Computable states, 191 
COM scheduling state, 191, 206 
Conditional assembly parameters, 764 
Condition handlers 

action of, 83 
argument list arrays, 738 
call frame for, 79 
catch-all, 79, 95, 461, 462 
default, 95 
establishing, 77 
last chance, 79 
LIB$SIGNAL, 75 
removing, 78 
search for, 78 
search termination, 79 
used by CLI, 97 

Condition handling, 61 
Configuration-dependent routines 

initialization of, 555 
CONINTDSP (Console terminal class driver) 

data areas described by, 692 
CONINTERR (Connect-to-interrupt driver), 

115 
Connect-to-interrupt mechanism, ll5 
Console block storage device 

I/O, 438 
Console floppy, 438 
Console interface 435 

in VAX-111730, 435 
in VAX-111750, 436 
in VAX-11/780, 436 

Console subsystems 
VAX-111730, 521 
VAX-11/750, 524 
VAX-111780, 528 

Console terminal 435 
data areas, 685 
data transfers, 43 7 
DPT initialization, 556 
driver prolog tables, 686 
interrupt dispatch data, 692 
interrupt dispatching, 437 
port driver, 424 

Console TU58, 438 
Context 

hardware, 3 
software, 3, 4, 5 

Context switching 
hardware assistance,· 207 

CONTINUE (DCL command), 515 
Contract Region system service, 345 
Control 

of processes, 225 
Control C processing, 514 
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Control region 
introduction to, 26 

Control Y processing, 514 
Conventions 

naming, 671 
register, 654 
for sharing event flags, 229 

Conversational bootstrap, 546 
Conversion deadlocks, 256 
Convert ASCII String to Binary Time system 

service, 643 
Convert Binary Time to ASCII String system 

service, 643 
Convert Binary Time to Numeric Time 

system service, 642, 643 
Copy-on-reference pages 

page faults, 315 
Crash/restart 

error log entry formats, 740 
Create and Map Section system service, 346 
Create Logical Name system service, 630 
Create Mailbox system service, 402 
Create Process system service, 443 
Creation 

of address space, 342 
of mailboxes, 402, 403 
of processes, 443 
of virtual addresses, 342 

CUR scheduling state, 198 

Data areas 
executive, 681, 682, 683 

Database 
PFN, 279 

Data management 
concepts of, 8 

Data structures 
description of, 733 
global pages, 286 
lock manager, 244 
logical name, 625 
miscellaneous, 774 
page and swap files, 295 
shared memory, 302 
for swapping, 292 
type definitions, 764 

DCL (DIGITAL command language) 
activation of, 508 
command processing loop, 509 
initialization of, 509, 510, 511 
termination of, 513 

Deadlocks 
conversion of, 256 
detection of, 256 
lock manager, 255 
multiple resource, 257 
search, 256 
search example, 261 
unsuspected, 259 
victim selection, 262 

DEADLOCK-WAIT (SYSBOOT parameter), 
256 

Deallocate Device system service, 396 
Deallocation 

device, 396, 397 

of pool, 51 
Deassign I/O Channel system service, 393 
DEBUG (DCL command) 515 

exceptions, 72 
Debugger 

in image activation, 481 
watchpoint implementation, 359 

Declare Error Log Mailbox system service, 
150 

DECnet 
class driver (CNDRIVER), 420 
device driver, 429 

Default 
condition handlers, 95 
depth in SYS$UNWIND, 89 

DEFPRI (SYSBOOT parameter), 366 
Delete Logical Name system service, 631 
Delete Mailbox system service, 407 
Delete Process system service, 492 
Delete Virtual Address system service, 345 
Deletion 

of address space, 344 
of mailboxes, 402, 407 
of pages and scheduling, 345 
of processes, 492 
of subprocesses, 496 
of virtual addresses, 342 

Delivery 
of ASTs, 133 
of attention ASTs, 141 
of out-of-band ASTs, 144 

Delta time 
modified by $SETIME, 216 

Demand zero pages 273 
page faults for, 317 

Dequeue Lock Request system service, 254, 
255 

Dequeuing locks (lock manager), 250 
DEVICEDAT (Executive device data) 

data areas described by, 685 
Device drivers 414 

bootstrap, 542 
class and port drivers, 420 
data areas, 685 
errors in, 14 7 
magnetic tape, 419 
mailbox driver, 430 
map files, 660 
multiple restarts, 606 
network, 429 
pseudo, 428 
terminal driver, 422 

Device information 
device dependent, 412 
device independent, 411 

Devices 
allocation and deallocation of, 396 
. informational services for, 411 
IPL, 33 
notification of powerfail, 603 

Direct VO 
completion, 400 
in memory management, 299 
and swapper, 374, 375, 376 

Disk drivers 414 
ACP intervention, 419 



bad block handling, 416 
no ACP intervention, 418 
offset recovery, 416 

Dispatchers 
change mode, 165, 166 
system services, 162, 178 
user-written, 174 
user-written system-wide, 178 

DR32 
interrupts on, 112 

DSBINT (macro), 30 
DUDRIVER (MSCP class driver), 421 
Dynamic address space 

size of, 576 
Dynamic bad block handling 

disk drivers, 416 
Dynamic memory 

allocation example, 43, 44 
allocation of, 42, 43 
deallocation of, 45 
size of, 578 
use of, 53 

ECC error recovery 
disk drivers, 414 

Elapsed time cell, 215 
EMB (Error log message block) 

layout of, 738 
E (MDL directive), 665 
ENBINT (macro), 31 
Enqueue Lock Request system service, 250 
Entry points 

naming conventions, 672 
Equivalence name string, 625 
ERRFMT process 147 

overview, 149 
waking, 149 

Error detection 
VAX-11 RMS, 174 

Error handling, 14 7 
Error log 

buffers in SYSINIT, 563 
crash/restart entries, 7 40 
header entries, 741 
message buffers definitions, 775 

ERRORLOG (Error logger) 
data areas described by, 698 

Error logger 147, 634 
allocation of message buffer, 148 
mailbox, 149, 150 
operation of, 148 

Error log message block, 738 
Errors 

device driver, 147 
logging, 147 

Event flags 225 
in communication, 235, 236, 237, 238 
ownership conventions, 229 
posting, 230 
setting and clearing, 229 
shared, 229 
in shared memory, 240 
system services, 228 

Event reporting, 199, 200 
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Exceptions 
description of, 63 
handlers for traceback, 482 
hardware, 63 
in kernel or executive mode, 96 
primary and secondary vectors, 78 
service routines, 68 
software, 74 
vector handlers, 78 

EXE$EXTENDPOOL (Extend nonpaged pool), 
56 

EXE$FORK, 121 
EXE$G1-ABSTIM, 215 
EXE$GQ_SYSTIME 214 

calculated, 216 
EXE$GQ_TODCBASE, 215 
EXE$IMGFIX (Address Relocation Fixup 

system service) 476 
operation of, 479 

EXE$NAMPID (Check name or PID), 231, 
232 

Execution 
scheduling, 183 
selection of processes, 205 
states of (VAX-11/782), 616 

Executive 
dynamic locking of pages, 65 7 
initialization of, 550 
locating modules, 659 
map file for, 658 
memory requirements of, 587 
multiprocessing hooks in, 611 
reading listings of, 645 
size of image, 585 

Executive data 
dynamically allocated, 725 
read-only areas, 724 
statically allocated, 683 

Executive data structures, 736 
Executive mode 

AST, 174 
exceptions, 96 

EXIT (DCL command), 516 
Expand Region system service, 342 
Expansion 

of nonpaged pool, 56 
External adapters 

VAX-111730, 102 
VAX-11/750, 102 
VAX-11/780, 103 

External symbols 
locating, 659 

Facilities 
prefixes for, 676, 677 

FDT routines, 399 
File operations 

bootstrap, 542 
FILES-11 Data structures, 773 
File system 

data area, 683 
Filtering 

system services, 179 
Fixups 

address relocation, 476 

781 



Index 

782 

FLINK array 
in PFN database, 283, 284 

Floating slots 
VAX-11/750, 102 

Flushing 
attention AST list, 142 
modified page list, 370, 380 
out-of-band AST list, 145 

F (MDL directive), 663 
Forced exit, 234 
Fork 

dispatcher, 122 
IPL, 33 
layout of block, 741 
processing, 35, 121 

Formatted ASCII Output system service, 643 
Formatting support system services, 642 
PPG wait state 

and pager, 339 
in scheduling, 193 

FREEGOAL (SYSBOOT parameter), 360 
FREELIM (SYSBOOT parameter), 360 
Free page list 

identification of pages, 282 
links in, 283, 284 
scan by swapper, 380 
swapper actions, 360 

Function decision table, 399 

G' (Addressing mode) 
address relocation fixups, 477, 478 

Get Device/Volume Information system 
service, 411 

Get Job/Process Information system service, 
139, 639 

Get Message system service, 635 
Get System Information system service, 642 
Global locations 

examining with SDA, 661 
naming conventions, 672 
symbols, 659 

Global pages 
data structures, 286 
page faults for, 319 
page faults for copy-on-reference, 317, 322 
page faults for page-file backing-store 

pages, 323 
page faults for page file pages, 317 
page faults for read-only, 319 
page faults for read/write, 322 
page table, 273, 289 
process PTEs, 291, 292 
and swapper, 376 
swapper resolution for read-only, 384 

Global page table 
size of, 585 

Global page table entry, 288 
Global page table index, 273 
Global sections 

in communication, 239 
creation of, 346, 34 7 
shared memory, 304 

Global section table entry, 287 
GPTE (Global page table entry), 288 
GPTX (Global page table index), 273 

Granularity 
of pool allocation, 49 

GROWLIM (SYSBOOT parameter), 275 
GSD (Global section descriptor) 

description of, 286 
layout of, 741 

GSTE (Global section table entry), 287 

Hardware 
context (in rescheduling), 203 
exceptions caused by, 63 
interrupts 98, 100 
process control block layout, 752 
VAX-11/782, 612 

Hardware clock 
interrupt service routine, 123, 217 

Hardware context 
definition of, 3 

Hash chains 
lock manager, 249 

Hashing 
logical name algorithm, 628 

Hash tables 
lock manager, 248 
for logical names, 625 

Hibernation, 232 
HIBO wait state, 192 
HIB wait state, 192 
Hooks 

VAX-11/782, 610, 611 

IDC (Integrated disk controller), 102 
IFD (Image file descriptor block) 

layout of, 7 42 
Image activation 463, 464 

compatibility mode images, 476 
control flags described, 7 42 
from DCL, 509, 510, 511 
debugger, 481 
image startup, 480 
image with no global sections, 467 
implementation, 465 
known images, 474, 476 
overview, 467 
shareable images, 472 
system service, 465 
traceback handler, 481 

Image activator 
SYSIMGACT, 464 
user-written system services, 176 

Image file 
location using PSTE, 277 

Image file descriptor block, 7 42 
Image header 

fields, 743 
identification section, 7 43 
patch section, 7 43 
record definitions, 7 43 
symbol table, 743 
transfer address array, 7 43 

Image initialization 
from DCL, 509, 510, 511 

Images 
definition of, 5, 6 
exit, 482 



initialization, 463 
interrupted states, 515 
privileged, 9 
privileged shareable, 175 
run down of, 485 
termination from DCL, 513 

Image section descriptor, 7 45 
Image startup 480 

traceback handler, 95 
transfer vector array, 480 

Image termination (abnormal), 514 
Indirect message sections, 63 7 
Infinite loop 

in unwind, 88 
INIADP (Adapter initialization routine), 557 
INILOA (Loadable initialization code) 

in !NIT, 555 
Initial bootstrap 

VAX-11/730, 521 
V AX-111750, 524 
VAX-11/780, 528 

Initialization 
of executive, 550 
of images, 463 
of I/O adapters, 557 
of operating system, 548 
in process context, 559 
of shared memory, 302 
swap file, 372 
system bootstrap, 521 
of VAX-11/782, 613 

Initial quantum 
and outswap selection, 366 

!NIT (Processor initialization) 
control from SYSBOOT, 547 
described, 548 
executive initialization, 550 

Ins tall Utility 
in image activation, 474 

Instructions 
CHMx, 164, 165 
increasing speed, 649 
interlocked, 302 
size, 649 
unusual usage, 651 

Instruction set 
introduction to, 14 
VAX-11, 649 

Inswap 
candidate selection, 362, 382 
example, 386 
final processing, 389 
operation, 381, 389 
pages with I/O in progress, 384 
process header, 382 

Interactive jobs 499 
and LOGINOUT, 503 

Interlocked instructions, 302 
Internal errors 

machine check, 156 
Interprocess communication, 235 
Interprocessor communication 

interlocked instructions, 302 
Interrupt dispatching 

hardware, 98, 100, 99 
MA780, 112 
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Interrupted images 
state of, 515 

Interrupt priority level 
See IPL 

Interrupts 
AST delivery, 125, 133 
communication (VAX-11/782), 621 
connection to, ll 5 
console terminal, 43 7 
DR32, 112 
hardware, 98 
MA780, 112 
MASSBUS, 109 
reschedule process, 124 
rescheduling, 202 
software, 117 
UNIBUS, 105 
on VAX-111782, 616, 621 

Interrupt service routines 104 
buffered I/O completion, 401 
DR32 (DR750 and DR780), ll2 
hardware, 98 
hardware clock, 217 
I/O completion, 400 
MASSBUS, 109 
powerfail, 596 
restrictions, 104 
software, ll9 
software timer, 123, 218 
UNIBUS, 105 

Interrupt stack 
initialization, 546 
size of, 578 

Interval 
clock, 212 
count register, 214 
quantum expiration, 218 

Invalid page 
handler, 269 

Invalid PTE 
forms, 270 

Invalid virtual address 
pager action, 310 

I/O 
adapter initialization, 557 
address space specifications, 765, 766 
address space (VAX-11/782), 618 
bootstrap, 542 
buffered, 401 
cancellation, 402 
class driver, 422 
device dependence, 399 
device independence, 398 
direct, 400 
pager, 328 
postprocessing, 399, 400 
process context data areas, 730, 731 
queuing requests for, 397, 398 
subsystem concepts, 6 
swapper, 300 
system services, 393 

I/O completion 
buffered, 401 
direct, 400 

I/O data structures 
defined in STARDEF, 772 
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1/0 data structures (continued) 
defined in SYSDEF', 771 
swapper, 372 

I/O in progress 
inswap of pages, 384 
swap during, 286 

I/O postprocessing 123 
special kernel mode AST, 137 
synchronization, 35, 36 

IOTA ISYSBOOT parameter), 188 
IPL 3 32, 99, 33, 34 

interrupt, 121 
interrupt service routine, 202 
and pager, 309, 310 
symbolic definitions, 767 

IPL$_QUEUEAST !IPL 6), 33 
IPLLSYNCH !IPL 7) 

use of, 31 
IPL$_ TIMER !IPL 7), 123 
IPL !Interrupt priority level) 

in allocation of nonpaged pool, 4 7 
device, 33 
for hardware, 98 
software interrupt levels, 117 
used in synchronization, 30 

IRPs II!O request packets) 
allocation of, 50 
description of, 50 
use in memory management, 299 

ISD !Image section descriptor) 
layout of, 7 45 

JIB !Job information block) 
layout of, 7 45 
in process creation, 443 

Job controller 633 
process creation, 499 
use by $SNDACC, 632 

Job information block, 443, 745 

Kernel 
hardware implementation of, 13 
of operating system, 6 

Kernel mode 
ASTs, 130 
exceptions, 96 
and VAX-11/782, 620 

Kernel stack not valid 
condition handling, 65 

Kernel subsystems 
interface, 9 

KFH !Known file header) 
layout of, 7 46 

KFI !Known file entry) 
layout of, 7 46 

KFP !Known file pointer block) 
layout of, 7 47 

Known file entry, 746 
Known file header, 7 46 
Known file pointer block, 7 4 7 
Known images 

image activation of, 476 
initial activation of, 474 

Large request packets, 50 
Last chance condition handler, 79 
LDPCTX instruction 210 

use in executive, 211 
LEFO wait state, 191 
LEF wait state, 191 
LIB$ESTABLISH !Establish condition 

handler), 78 
LIB$FREE_ VM !Free virtual memory from 

program region), 346 
LIB$GET _ VM !Get virtual memory in 

program region), 346 
LIB$REVERT !Remove condition handler), 

78 
LIB$SIGNAL !Signal condition) 75 

operation of, 75 
Listing files 

reading, 645 
routine body, 646 
symbol table, 648 
table of contents, 648 

LKB !Lock block) 
description of, 245 
layout of, 747 

L !MDL directive), 665 · · 
Local device 

assignment of, 394 
Local event flags, 225 
Lock conversions, 254 
Lock database 

accessing, 249, 250 
Lock ID table, 247 
Lock manager 244 

ASTs, 253 
in communication, 238 
data structure initialization, 555 
data structures, 244 
deadlocks, 255 
granting locks, 252 
lock conversions, 254 
lock ID table, 24 7 
parent locks, 250 
queuing and dequeuing locks, 250 
resource hash table, 248 
sublocks, 250 
timeout queue, 256 
waiting locks, 253 

Lock Page in Memory system service, 
358 

Lock Pages into Working Set system 
service, 35 7 

Locks 
granting, 252 
queuing and dequeuing, 250 

Logging errors, 147 
Logical name blocks 62 7 

layout of, 7 49 
Logical names 625 

in communication, 239 
data structures, 625 
logical name blocks, 625 
searching, 62 7; 628 
system services, 629 
tables, 625 

LOGINOUT 503 
image, 503 



operations in batch jobs, 505 
operations in logout, 516 

Logout 
description of, 516 

LONGWAIT (Process swapping flag), 367, 
368 

Lookahead buffer 
optimizing instructions for, 649 

Lookaside lists 
allocation from, 50 
description of, 50 
initialization of, 56 
size of, 578 

LRPs (Large request packets) 
allocation of, 50 
description of, 50 

MA780 
adapter registers, 7 49 
interprocessor communcation, 239 
interrupts, 112 
interrupts (VAX-11/782), 114 
interrupt vectors (VAX-11/782), 612, 

613 
used in VAX-11/782, 609 

Machine check 156 
condition handling, 65 
error mask bit definitions, 749 
recovery blocks, 160 
recovery from, 161 

Macros 
BUG_CHECK, 150 
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searching, 636 
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Nested restarts 
prevention of, 606 

NETACP (Network ancillary control process) 
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Pageable executive 

load by SYSBOOT, 546 
Paged dynamic memory 

use of, 53 
Page deletion 

and scheduling, 345 
Paged pool 

mutex protection of, 47 
use of, 53 

Page fault monitor 
data areas, 688 

Page faults 308 
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description of, 270, 271 

PSW (Processor status word) 
layout of, 755 

PTE array 
modified page writer, 300 
in PFN database, 279 
swapper, 3 73 

PTE (Page table entry) 
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Resource wait 
introduction to, 40 
miscellaneous, 195 

Restarts 
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prevention of nested, 606 
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operation, 233 
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status field definitions, 761 

Return path for system services, 172 
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layout of, 758 
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location, 284 
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description of, 246 
layout of, 760 
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operations of, 430 
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SCB (System control block) 
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hardware interrupts, 100 
interrupt dispatching, 100 
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operations, 223 
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Schedule Wakeup system service, 222 
Scheduling 183 
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concepts of, 8 
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definition of, 420 
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SDA (System dump analyzer) 
description of, 154, 661 
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lock manager, 244 
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634 
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634 
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Serialized access, 35 
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processing, 432 
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Set System Service Failure Exceptions system 
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activation of, 472 
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control block layout, 760 
control structures, 302 
create and map sections, 304 
data page layout, 761 
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global sections, 304 
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of working set, 366 
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balance, 292 
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SOFTINT (macro), 118 
Software 

exceptions, 72, 74 
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Software clocks, 214, 215 
Software interrupts 117 

AST delivery, 125, 133 
request register, 118 
service routines, 119 
summary register, 118 

Software priority 184 
adjustment of, 187 
real-time, 185 

Software timer 
interrupt service routine, 123, 218 

Space allocation 
page file, 335 

SPAWN (DCL command) 
operation of, 506 

Special kernel mode ASTs 130 
$GETJPI, 640 
lock manager, 253 
piggyback, 130 
uses, 136, 13 7 

Spooled device 
assignment of, 394, 395 

SPTEs (System page table entries) 
free, 587 
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renormalization, 587 
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allocation of, 50 
description of, 50 

Stack 
expansion of user, 343 
use in exceptions, 63 

STARLET.MLB 
description of, 648 

START/CPU (DCL command), 61.1 
STARTUP (System startup process) 561, 564 

described, 564 
initialization of, 561 
operations, 564 

State 
changes in, 197, 198 
process scheduling, 183 
queues.1 191 
transitions, 200 
transitions on VAX-11/782, 616 
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STOP/CPU (DCL command), 615 
STOP (DCL command), 516 
STOP (VAX-11 COBOL command), 515 
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SUBMIT (DCL command), 500, 501, 502 
Subprocesses 

creation of, 445 
process deletion, 496 

Subsystems 
error logging, 147 
110, 393 

Summary longword, 206 
Supervisor mode 

bugchecks, 151 
termination handler, 508, 509 

Suspend process 233 
operation, 233 
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SWAPASAP (Process swapping flag), 368 
Swap files 

alternate, 299 
data structures, 295 
initialization of, 372, 563 
open by SYSINIT, 562 
structure, 295, 297 

Swap mode 
process, 359 

SW APOGOAL (Process swapping flag), 368 
Swapper 

activity, 368, 369 
data areas described by, 691 
flush modified page list, 380 
global pages, 376 
inswap example, 386 
inswap final processing, 389 
inswap of process header, 382 
IIO, 300, 372 
1/0 map, 374 
kernel modestack, 684 
main loop, 369 
memory management, 370 
and modified page writer, 299 
nonreentrancy, 301 
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Swapper (continued) 
outswap candidates, 366 
outswap operation, 373 
page file control blocks, 3 72 
pages with direct 1/0 in progress, 3741 3751 

376 
process, 361 
PTE array, 373 
rebuild process body, 383 
rebuild process header, 382 
rebuild process page tables, 383, 384 
rebuild working set list, 3831 384 
resolution of global read-only pages, 384 
responsibilities, 360 
scan of free page list, 380 
scan of working set list, 3 7 4 
selection of inswap candidate, 382 
selection table, 366 
shrink candidates, 366 
triggering events, 3681 369 
trimming, 357 
wake, 361 

Swapper map 
allocation by INIT, 556 

Swapping 360 
compared with paging, 361 1 362 
data structures, 292 
overview, 360 

Swap scheduling, 362 
Swap space 297 

allocation of, 3 72 
expansion of, 297 

SWP$SHELINIT (Shell initialization) 
operations of, 455, 456, 458 
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SWPRATE (SYSBOOT parameter), 362, 363, 
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SWPVBN array 

in PFN database, 286 
SYE Utility, 634 
Symbiont manager, 633 
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Symbol tables 

in listing files, 648 
Synchronization 30 

by IPL, 31, 32 
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in pool allocation, 4 7 

SYS.STE (System symbol table) 658 
concepts of, 9 

SYS$INPUT (Process permanent file) 
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SYS$0UTPUT (Process permanent file) 
creation of, 4471 448 
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485 

SYSBOOT (Secondary bootstrap program) 
approximations, 586 
data areas, 704 
description of, 542 
operations of, 543 
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space, 576 
use of parameter files, 566 

SYSCOMMON (Miscellaneous system data) 

data areas described by, 692, 693, 698, 99 
SYSDUMP.DMP (System dump file) 154 

header block layout, 738 
open by SYSBOOT, 545 

SYSGEN (System Generation Utility) 565 
parameter constant definitions, 770 
use of parameter files, 5 70 

SYSIMGACT (Image activator), 464 
SYSINIT (System initialization process) 560, 

561 
description of, 561 
operation, 561 
pool usage, 561 

SYSLOA VEC (System loadable routines) 
data areas described by, 701, 702, 704 
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in INIT, 555 
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data areas described by, 688 
SYSTARTUP.COM (Site-specific startup 

command file), 565 
System control block 
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System data structures, 733 
System events 197 
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reporting, 199, 200 
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miscellaneous data, 692 

System header 287 
configured by SYSBOOT, 546 
size of, 584 

System initialization 
bootstrap, 521 
loading terminal driver, 424 
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System map files 
using, 658 

System message files 
finding, 635 
open by SYSINIT, 564 
system services, 635 

System page table 289 
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size of, 572, 576 
and SYSBOOT parameters, 576 
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linking, 4 24 
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Timekeeping, 212 
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