RT-11 System Reference Manual
January 1976
DEC-11-ORUGA-C-D, DN1, DN2

Page Missing From Original
Document



Page Missing From Original
Document



-CONTENTS

Page
PREFACE xxi
CHAPTER 1 RT-11 OVERVIEW 1-1
1.1 PROGRAM DEVELOPMENT 1-2
1.2 SYSTEM SOFTWARE COMPONENTS 1-3
1.3 SYSTEM HARDWARE COMPONENTS 1-5
1.4 USING THE RT-11 SYSTEM 1-7
1.4.1 RT-11 Single-Job Monitor 1-7
1.4.2 RT-11 Foreground/Background Monitor 1-7
1.4.3 Facilities Available Only in RT-11 F/B 1-8
CHAPTER 2 SYSTEM COMMUNICATION 2-1
2.1 START PROCEDURE - 2-1
2.2 SYSTEM CONVENTIONS 2-3
2.2.1 Data Formats 2-3
2.2.2 Prompting Characters 2-4
2.2.3 Physical Device Names 2-4
2.2.4 File Names and Extensions 2-5
2.2.5 Device Structures 2-7
2.3 MONITOR SOFTWARE COMPONENTS 2-7.1
2.3.1 Resident Monitor (RMON) = 2-7.1
2.3.2 Keyboard Monitor (KMON) ) 2-7.1
2.3.3 User Service Routine (USR) 2-7.1
2.3.4 Device Handlers 2-8
2.4 GENERAL MEMORY LAYOUT 2-8
2.4.1 Component Sizes 2-9
2.5 ENTERING COMMAND INFORMATION 2-10
2.6 KEYBOARD COMMUNICATION (KMON) 2-11
2.6.1 Foreground/Background Terminal I/0O 2-13
2.6.2 Type-Ahead 2-14
2.7 KEYBOARD COMMANDS 2-14
2.7.1 Commands to Control Terminal I/O 2-15
(GT ON and GT OFF)
2.,7.2 Commands to Allocate System Resources 2-16
2.7.2.1 DATE Command 2-16
2.7.2.2 TIME Command 2-17
2.7.2.3 INITIALIZE Command 2-18
2.7.2.4 ASSIGN Command 2-18

iii January 197¢€



CLOSE Command

LOAD Command

UNLOAD Command

SET Command

Commands to Manipulate Memory Images
GET Command

Base Command

Examine Command

Deposit Command

SAVE Command

Commands to Start a Program

1 RUN Command

2 R Command
3

4

NN NNSNSNNNNNNNNNY

« e e e
e e % o 8 & s s ® & ° »
« e o s o « s e ®
WD oOodoa U,

« s e s s e 8

START Command

REENTER Command

Commands Used Only in a
Foreground/Background Environment
FRUN Command

SUSPEND Command

RSUME Command

DN
i bbb WWWWwwwddoDDND

N NN
.
NN
. e s
(S0, R0, |
“ s e
W N

MONITOR ERRCR MESSAGES
Monitor HALTS

NN
. .
@ @
.
ot

CHAPTER 3 TEXT EDITOR
3.1 CALLING AND USING EDIT
3.2 MODES OF OPERATION

SPECIAL KEY COMMANDS

COMMAND STRUCTURE
.1 Arguments
.2 Command Strings
.3 The Current Location Pointer
.4 Character- and Line-Oriented
: Command Properties
3.4.5 Command Repetition

3.5 MEMORY USAGE

EDITING COMMANDS
Input/Output Commands

Edit Read

Edit Write

Edit Backup

Read

Write

Next

List

Verify

End File

Exit

Pointer Relocation Commands
1 Beginning
2 Jump

3 Advance
1

2

« s e e e s
s & o s e e o e » o

HWOOJAUTEWN -

o

(o2 e Mo W e e W e W e Wo  Wa e ) We  We W e Mo W e We W o))

s & 8 ® 8 s & o e ® s e » s s 2 e

Search Commands
Get
Find

WWWWWWWWWW WWwWWwwwwww
(R R N N I N S e e O T

January 1976 iv

[ UL
W www WWwwwwwwewwwihhdorohdDpNo N

LI N A O N I |
ViU dww~rooOoow—oS o

DNDNRNNDNDNONNDNNNNNODNNNNDNDNDNDNDN

N NN
|
- Q0 O~y

NN

{
[}

WWWWWWwwWw
HH e
gt g oL



3.6.3.3 Position : 3-20
3.6.4 Text Modification Commands 3-20
3.6.4.1 Insert 3-20
3.6.4.2 Delete 3-21
3.6.4.3 Kill 3-22
3.6.4.4 Change 3-22
3.6.4.5 Exchange 3-23
3.6.5 Utility Commands 3-24
3.6.5.1 Save 3-24
3.6.5.2 Unsave 3-25
3.6.5.3 Macro 3-25
3.6.5.4 Execute Macro 3-26
3.6.5.5 Edit Version 3-27
3.6.5.6 Upper- and Lower-Case Commands 3-27
3.7 THE DISPLAY EDITOR 3-28
3.7.1 Using the Display Editor 3-29
3.7.2 Setting the Editor to Immediate Mode 3-30
3.8 EDIT EXAMPLE 3-32
3.9 EDIT ERROR MESSAGES 3-33
CHAPTER 4 PERIPHERAL INTERCHANGE PROGRAM (PIP) 4-1
4.1 CALLING AND USING PIP 4-1
4,1.1 Using the "Wild Card" Construction 4-1
4.2 PIP SWITCHES 4-2
4.2.1 Operations Involving Magtape or Cassette 4-4
4.2.2 Copy Operations 4-9
4.2.3 Multiple Copy Operations 4-11
4.2.4 The Extend and Delete Operations 4-13
4.2.5 The Rename Operation 4-15
4.2.6 Directory List Operations 4-15
4.2.7 The Directory Initialization Operation 4-18
4.2.8 The Compress Operation 4-19
4.2.9 The Bootstrap Copy Operation 4-20
4.2.10 The Boot Operation 4-20
4,.2.11 The Version Switch 4-21
4.2.12 Bad Block Scan (/K) 4-21
4.2.,12.1 Recovery from Bad Blocks 4-21
4.3 PIP ERROR MESSAGES 4-24
CHAPTER 5 MACRO ASSEMBLER . 5-1
5.1 SOURCE PROGRAM FORMAT 5=2
5.1.1 Statement Format 5 2
5.1.1.1 Label Field 5-3
5.1.1.2 Operator Field 5-3
5.1.1.3 Operand Field 5-4
5.1.1.4 Comment Field 5-4
5.1.2 Format Control 5-5
5.2 SYMBOLS AND EXPRESSIONS 5-5
5.2.1 Character Set 5-5
5.2.1.1 Separating and Delimiting Characters 5-6
5.2.1.2 Illegal Characters 5-7
5.2.1.3 Operator Characters 5-8
5.2.2 Symbols 5-9

v January 1976



s e s e s o o

o o o o o o o
.
N

NN NDNN

oo oo

CoOo~Jautd WwhN
.

(S}
.
w

RO U D W -

f O N A I T I i
b WNDHO

oottt ooy,

HOOdddOONNUTUIUTUT B BWWWWWWWNHEHEHER
. . . . .

o

« & o e o
s o s e o o
. .

« o
AL WN -

. e e

« e s e e o e

P .«
N

.
N = W=

UL o n

U U o g

January 1976

.
N =

Permanent Symbols

User-Defined and Macro Symbols
Direct Assignment

Register Symbols

Local Symbols

Assembly Location Counter
Numbers

Terms

Expressions

RELOCATION AND LINKING

ADDRESSING MODES

Register Mode

Register Deferred Mode
Autoincrement Mode
Autoincrement Deferred Mode
Autodecrement Mode
Autodecrement Deferred Mode
Index Mode

Index Deferred Mode

Immediate Mode

Absolute Mode

Relative Mode

Relative Deferred Mode

Table of Mode Forms and Codes
Branch Instruction Addressing
EMT and TRAP Addressing

ASSEMBLER DIRECTIVES

Listing Control Directives

.LIST and .NLIST

Page Headings

.TITLE

.SBTTL

. IDENT

Page Ejection

Functions: .ENABL and .DSABL Directives
Data Storage Directives

.BYTE

.WORD

ASCII Conversion of One or Two Characters
.ASCII

.ASCIZ

.RADS50

Radix Control

.RADIX

Temporary Radix Control: "D, "0, and "B
Location Counter Control

.EVEN

.ODD

.BLKB and .BLKW

Numeric Control

.FLT2 and .FLT4

Temporary Numeric Control: “F and "C
Terminating Directives

. END

.EOT

Program Boundaries Directive: .LIMIT
Program Section Directives

Symbol Control: .GLOBL

vi

5-47
5-47
5-48
5-49
5-50
5-50
5-51
5-51
5-51
5-54



5.5.11 Conditional Assembly Directives 5-55
5.5.11.1 Subconditionals 5-57
5.5.11.2 Immediate Conditionals 5-58
5.5.11.3 PAL-11R and PAL-11lS Conditional 5-59
Assembly Directives
5.6 MACRO DIRECTIVES 5-60
5.6.1 Macro Definition 5-60
5.6.1.1 +MACRO 5-~60
5.6.1.2 . ENDM 5-60
5.6.1.3 +MEXIT 5-61
5.6.1.4 MACRO Definition Formatting 5-61
5.6.2 Macro Calls 5-62
5.6.3 Arguments to Macro Calls and Definitions 5-62
5.6.3.1 Macro Nesting 5-63
5.6.3.2 Special Characters 5-64
5.6.3.3 Numeric Arguments Passed as Symbols 5-64
5.6.3.4 Number of Arguments 5-66
5.6.3.5 Automatically Created Symbols Within 5-66
User-Defined Macros
5.6.3.6 Concatenation 5-67
5.6.4 .NARG, .NCHR, and .NTYPE 5-68
5.6.5 .ERROR and .PRINT 5-70
5.6.6 Indefinite Repeat Block: .IRP and .IRPC 5-71
5.6.7 Repeat Block: L(REPT 5-73
5.6.8 Macro Libraries: .MCALL 5-74
5.7 CALLING AND USING MACRO 5-74
5.7.1 Switches 5-76
5.7.1.1 Listing Control Switches 5-76
5.7.1.2 Function Switches 5-77
5.7.1.3 Cross Reference Table Generation (CREF) 5-78
5.8 MACRO ERROR MESSAGES 5-84
CHAPTER 6 LINKER ' 6-1
6.1 INTRODUCTION 6-1
6.2 CALLING AND USING THE LINKER 6-2
6.2.1 Command String 6-2
6.2.2 Switches 6-3
6.3 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-4
6.4 GLOBAL SYMBOLS ' 6-5
6.5 INPUT AND OUTPUT 6-5
6.5.1 Object Modules 6-5
6.5.2 Load Module 6-5
6.5.3 Load Map 6-7
6.5.4 Library Files 6-8
6.6 USING OVERLAYS 6-10
6.7 USING LIBRARIES 6-15
6.7.1 User Library Searches 6-16
6.8 SWITCH DESCRIPTION 6-18
6.8.1 Alphabetize Switch 6-18
6.8.2 Bottom Address Switch 6-18

vii January 1976



OO0 W

« e s .
= o

[=)} AN
(Xe] 00 00 00 00 OO0 CO 0O Q0 O

~

CHAPTER

~
.
=

NONNDNDNDNDNDNDNDDNDND

NNNNNNNNINNAN
NN
* o » 9 e e o e @
VoUW

~
.
w

NN~

e o o o .

I S
. .
RNy

o o

~3
.

CHAPTER

.
WWWwWwWwwwwwwuwwww

~ o

WO WN

M= O

January 1976

Continue Switch

Default FORTRAN Library Switch
Include Switch

LDA Format Switch

Modify Stack Address

Overlay Switch

REL Format Switch

Symbol Table Switch

Transfer Address Switch

LINKER ERROR HANDLING AND MESSAGES
LIBRARIAN
CALLING AND USING LIBR

USER SWITCH COMMANDS AND FUNCTIONS
Command Syntax

LIBR Switch Commands

Command Continuation Switch
Creating a Library File

Inserting Modules Into a Library
Replace Switch

Delete Switch

Delete Global Switch

Update Switch

Listing the Directory of a Library File
Merging Library Files

COMBINING LIBRARY SWITCH FUNCTIONS

FORMAT OF LIBRARY FILES

Library Header

Entry Point Table (Library Directory)
Object Modules

Library End Trailer

LIBR ERROR MESSAGES
ON-LINE DEBUGGING TECHNIQUE

CALLING AND USING ODT
Return to Monitor, CTRL C
Terminate Search, CTRL U

RELOCATION
Relocatable Expressions

COMMANDS AND FUNCTIONS

Printout Formats

Opening, Changing and Closing Locations
Accessing General Registers (-7
Accessing Internal Registers

Radix 50 Mode, X

Breakpoints

Running the Program, r;G and r;P
Single Instruction Mode

Searches

The Constant Register, r;C

Memory Block Initialization, ;F and ;I
Calculating Offsets, r;O

viii

NN NNNNNNNNNAN
i
Lad HOLOVOJaUULbdWNDINOND

o

~
1
—

7-12



8.3.13 Relocation Register Commands, r;nR, ;nR, ;R 8-17
8.3.14 The Relocation Calculators, nR and n! 8-18
8.3.15 ODT Priority Level, SP 8-19
8.3.16 ASCII Input and Output, r;nA 8-20
8.4 PROGRAMMING CONSIDERATIONS 8-20
8.4.1 Functional Organization 8-20
8.4.2 Breakpoints 8-21
8.4.3 Searches 8-24
8.4.4 Terminal Interrupt 8-24
8.5 ODT ERROR DETECTION 8-25
CHAPTER 9 PROGRAMMED REQUESTS 9-1
9.1 FORMAT OF A PROGRAMMED REQUEST 9-2
9.2 SYSTEM CONCEPTS 9-5
9.2.1 Channel Number -(chan) 9-5
9.2.2 Device Block (dblk) 9-5
9.2.3 EMT Argument Blocks 9-5
9.2.4 Important Memory Areas 9-6
9.2.4.1 Vector Addresses 9-6
9.2.4.,2 Resident Monitor 9-7
9.2.4.3 System Communication Area 9-7
9.2.5 Swapping Algorithm 9-9
9.2.6 Offset Words 9-11
9.2.7 File Structure 9-13
9.2.8 Completion Routines 9-13
9.2.9 Using The System Macro Library 9-14
9.3 TYPES OF PROGRAMMED REQUESTS 9-14
9.3.1 System Macros 9-20
9.3.1.1 .DATE 9-20
9.3.1.2 . INTEN 9-21
9.3.1.3 .MFPS/.MTPS 9-21.1
9.3.1.4 .REGDEF 9-22
9.3.1.5 . SYNCH 9-22
9.3.1.6 «V1../. V2., 9-24
9.4 PROGRAMMED REQUEST USAGE 9-25
9.4.1 .CDFN 9-26
9.4.2 .CHAIN : 9-27
9.4.3 .CHCOPY 9-28
9.4.4 .CLOSE 9-30
9.4.5 .CMKT 9-31
9.4.6 .CNTXSW 9-32
9.4.7 .CSIGEN 9-33
9.4.8 .CSISPC 9-36
9.4.8.1 Passing Switch Information 9-3¢
9.4.9 .CSTAT 9-41
9.4.10 .DELETE 9-42
9.4.11 .DEVICE 9-44
9.4.12 .DSTATUS 9-45
9.4.13 .ENTER 9-47
9.4.14 LEXIT 9-49
9.4.15 .FETCH 9-50
9.4.16 .GTIM 9-51
9.4.17 .GTJB 9-52
9.4.18 .HERR/.SERR 9-53
9.4.19 .HRESET 9-55
9.4.20 .LOCK/.UNLOCK 9-56

ix January 1976



WCWOWOWWOWWOUWWWLWYWWYWWLWWLOWWLWIWLIWLWY LYWW WYLY WO
e e o e o s o & &
S R S N R S S A N I I T A o —  —t  al
. . P
BB LB BAWWWWWWWWWWNNDDNONNDNDNDN
[~

CHAPTER

CHAPTER 11

CHAPTER 12

January 1976

. LOOKUP

« MRKT

.MWAIT

. PRINT

. PROTECT

. PURGE

.QSET

.RCTRLO
.RCVD/.RCVDC/ . RCVDW
.READ/.READC/ .READW
.RELEAS

. RENAME

. REOPEN

.SAVESTATUS
.SDAT/.SDATC/ .SDATW
.SETTOP

.SFPA

.SPFUN

.SPND/.RSUM

.SRESET

.TLOCK

. TRPSET
.TTYIN/.TTINR
.TTYOUT/.TTOUTR

. TWAIT

.WAIT

+WRITE/ .WRITC/ .WRITW

CONVERTING VERSION 1 MACRO CALLS
TO VERSION 2

Macro Calls Requiring No Conversion
Macro Calls Which May Be Converted
EXPAND UTILITY PROGRAM

LANGUAGE

RESTRICTIONS

CALLING AND USING EXPAND

EXPAND ERROR MESSAGES

ASEMBL, THE 8K ASSEMBLER

CALLING AND USING ASEMBL

ASEMBL ERROR MESSAGES

BATCH

INTRODUCTION TO RT-11 BATCH
Hardware Requirements to Run BATCH
Software Requirements to Run BATCH
BATCH CONTROL STATEMENT FORMAT
Command Fields

Command Names

Command Field Switches

Specification Fields
Physical Device Names

10-6
11-1

11-1
11-7
12-1

12-1
12-1
12-2

12-2
12-2
12-2
12-3
12-5
12-6



12.4.10
12.4.11
12.4.12
12.4.13
12.4.14
12.4.15
12.4.16
12.4.17
12.4.18
12.4.19
12.4.20
12.4.21

12.4.22
12.4.23

12.5
12.5.1

12.9

APPENDIX A

File Specifications

Wild Card Construction
Specification Field Switches
Comment Fields

BATCH Character Set
Temporary Files

GENERAL RULES AND CONVENTIONS

BATCH COMMANDS
$SBASIC
SCALL
$CHAIN
SCOoPY
SCREATE
SDATA
SDELETE
SDIRECTORY
SDISMOUNT
SEOD

SEOJ
$FORTRAN
$JOB
SLIBRARY
SLINK
$MACRO
SMESSAGE
SMOUNT
SPRINT
SRT11
SRUN

$SEQUENCE
Example BATCH Stream

RT-11 MODE

Running RT-11 System Programs
Creating RT-11 Mode BATCH Programs
Labels

Variables

Terminal I/O Control

Other Control Characters

Comments

RT-11 Mode Examples

CREATING BATCH PROGRAMS ON PUNCHED CARDS
Terminating BATCH Jobs on Cards

OPERATING PROCEDURES

Loading BATCH

Running BATCH

Communicating with BATCH Jobs
Terminating BATCH

DIFFERENCES BETWEEN RT-11 BATCH AND
RSX-11D BATCH

ERROR MESSAGES

ASSEMBLY, LINK, AND BUILD INSTRUCTIONS

12-6
12-7
12-7
12-8
12-8
12-10

12-11

12-12
12-13
12-14
12-15
12-16
12-18
12-19
12-20
12-20
12-21
12-22
12-23
12-23
12-25
12-27
12-27
12-29
12-31
12-32
12-34
12-35
12-35
12-36
12-36

12-38
12-39
12-39
12-39
12-40
12-42
12-42
12-43
12-43

12-44
12-45

12-45
12-45
12-47
12-49
12-52

12-52

12-53

xi . January 1976



APPENDIX B

oww
—
N

NN

+ o s o @
@~ Ul W N

sl veRveRtvs R ve v Rt v iloe o]

w wWw
(o2 W)} (S, %] L ww
- [

ww o w o w
—

N~
.
-

January 1976

COMMAND AND SWITCH SUMMARIES

KEYBOARD MONITOR
Command Summary
Special Function Keys

EDITOR

Command Arguments

Input and Output Commands
Pointer Relocation Commands
Search Commands

Text Modification Commands
Utility Commands

Immediate Mode Commands

Key Commands

PIP
Switch Summary

MACRO/CREF

LINKER
Switch Summary

LIBRARIAN
Switch Summary

ODT
Command Summary

PROGRAMMED REQUESTS

BATCH
Switch Summary
Command Summary

DUMP
Switch Summary

FILEX
Switch Summary

SRCCOM
SWITCH SUMMARY

PATCH
Command Summary

PATCHO
Command Summary

MACRO ASSEMBLER, INSTRUCTION, AND
CHARACTER CODE SUMMARIES

ASCII CHARACTER SET

RADIX~-50 CHARACTER SET

MACRO SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

xii

oW
i
[

11 11 1
oo~N~Joonutn [0 o

EUWWD?U?(?WD‘J‘W oo

jer] C‘JU&
= O O

o

[exiivy]
11

o

[y



c.5 INSTRUCTIONS C-6
C.5.1 Double Operand Instructions Cc-8
C.5.2 Single Operand Instructions C-8
C.5.3 Rotate/sShift Cc-9
C.5.4 Operate Instructions C-11
C.5.5 Trap Instructions Cc-12
C.5.6 Branch Instructions Cc-13
C.5.7 Register Destination C-14
C.5.8 Register-Offset C-14
C.5.9 Subroutine Return C-14
C.5.10 Source-Register Cc-15
C.5.11 Floating-Point Source Double Register Cc-15
C.5.12 Source-Double Register c-17
C.5.13 Double Register-Destination Cc-17
C.5.14 Number c-18
Cc.5.15 Priority Cc-18
C.6 ASSEMBLER DIRECTIVES c-19°
c.7 MACRO/CREF SWITCHES c-23
c.7.1 Listing Control Switches Cc-23
C.7.2 Function Control Switches c-23
c.7.3 CREF Switches Cc-24
C.8 OCTAL/DECIMAL CONVERSIONS c-25
APPENDIX D SYSTEM MACRO FILE D-1
APPENDIX E PROGRAMMED REQUEST SUMMARY E-1
| E.1l PARAMETERS E-1
E.2 REQUEST SUMMARY E-1
APPENDIX F BASIC/RT-11 LANGUAGE SUMMARY F-1
F.1l BASIC/RT-11 STATEMENTS F-1
F.2 BASIC/RT-11 COMMANDS F-3
F.3 BASIC/RT~11 FUNCTIONS F-5
F.4 BASIC/RT-11 ERROR MESSAGES F~6
APPENDIX G FORTRAN LANGUAGE SUMMARY G-1
G.1 RUNNING A FORTRAN PROGRAM IN THE FOREGROUND G-1
G.2 FORTRAN CHARACTER SET G-2
G.3 EXPRESSION OPERATORS G-3
G.4 SUMMARY OF FORTRAN STATEMENTS G-4
G.5 COMPILER ERROR DIAGNOSTICS G-11
APPENDIX H F/B PROGRAMMING AND DEVICE HANDLERS H-1
H.1 F/B PROGRAMMING IN RT-11, VERSION 2 H-1
H.1l.1 Interrupt Priorities H-1
H.1l.2 Interrupt Service Routine H~2
H.1.3 Return from Interrupt Service H-2
H.1l.4 Issuing Programmed Requests at the Interrupt
Level H~2

xiii January 1976



i e

faslie oo fieetla s ciiaciifas =R o s a e oe o o

APPENDIX I

APPENDIX

APPENDIX K

= RR =
=

=
w N

APPENDIX L

« .
DO [l

|l ol o B

January 1976

MO NDN

S

R
I3 I N N RN O

w0 J

[N

wh -

w N =

o

Setting Up Interrupt Vectors

Using .ASECT Directives in Relocatable
Image Files

Using .SETTOP

Making Device Handlers Resident

DEVICE HANDLERS

PR

TT

CR

MT/CT

General Characteristics
Handler Functions

Magtape and Cassette End-of-File Detection

DX

EXAMPLE DEVICE HANDLERS

DEC 026/DEC 029 CARD CODE CONVERSION TABLE

DUMP

CALLING AND USING DUMP
DUMP Switches
Examples

DUMP ERROR MESSAGES
FILEX

FILEX OVERVIEW
File Formats

CALLING AND USING FILEX

FILEX Switch Options

Transferring Files Between RT-11
and DOS/BATCH (or RSTS)

Transferring Files to RT-11 from
DECsystem-10

Listing Directories

Deleting Files from DOS/BATCH (RSTS)
DECtapes

FILEX ERROR MESSAGES
SOURCE COMPARE (SRCCOM)
CALLING AND USING SRCCOM
Extensions

Switches

OUTPUT FORMAT

SRCCOM ERROR MESSAGES
PATCH

CALLING AND USING PATCH
PATCH COMMANDS

Patch a New File

Exit from PATCH
Examine, Change Locations in the File

xiv

o
| |
w

u:%:z
www
-

.
=

m:n::$:nn:m
oW

0
-
w W

s
|
N

=]
I

o

=

H-23

I-1

= HH
|
NN

= -
[} 1
[l o

1 | [ 11
=) v W N =

(<] C'l Q QLla [ |
~



L.2.4 Set Bottom Address L-4
L.2.5 Set Relocation Registers L-4
L.3 EXAMPLES USING PATCH L-4
L.4 PATCH ERROR MESSAGES L-7
APPENDIX M PATCHO M-1
M.1 CALLING AND USING PATCHO M-1
M.2 PATCHO COMMANDS M-1
M.2.1 OPEN Command M-1
M.2.2 POINT Command M-2
M.2.3 WORD Command M-2
M.2.4 BYTE Command M-3
M.2.5 DUMP Command M-4
M.2.6 LIST Command M-4
M.2.7 EXIT Command M-4
M.2.8 DEC Command M-5
M.2.9 HELP Command M-5
M.3 PATCHO LIMITATIONS M-5
M.4 EXAMPLES M-6
M.5 PATCHO ERROR MESSAGES M-7
M.5.1 Run-Time Error messages M-8
APPENDIX N DISPLAY FILE HANDLER N-1
N.1 DESCRIPTION N-1
N.1l.1 Assembly Language Display Support N-1
N.1l.2 Monitor Display Support N-2
N.2 DESCRIPTION OF GRAPHICS MACROS N-3
N.2.1 . BLANK N-3
N.2.2 .CLEAR N-4
N.2.3 . INSRT N-5
N.2.4 . LNKRT N-5
N.2.5 . LPEN N-7
N.2.6 . NAME N-9
N.2.7 . REMOV N-9
N.2.8 .RESTR N-9
N.2.9 . SCROL N-10
N.2.10 .START N-10
N.2.11 .STAT N-10
N.2.12 .STOP N-11
N.2,13 .SYNC/ .NOSYN N-11
N.2.14 . TRACK N-12
N.2.15 . UNLNK N-13
N.3 EXTENDED DISPLAY INSTRUCTIONS N-13
N.3.1 DJSR Subroutine Call Instruction N-13
N.3.2 DRET Subroutine Return Instruction N-14
N.3.3 DSTAT Display Status Instruction N-14
N.3.4 DHALT Display Halt Instruction N-14
N.3.5 DNAME Load Name Register Instruction N-15
N.4 USING THE DISPLAY FILE HANDLER N-16
N.4.1 Assembling Graphics Programs N-16
N.4.2 Linking Graphics Programs N-16

Xv January 1976



N.5 DISPLAY FILE STRUCTURE
N.5.1 Subroutine Calls
N.5.2 Main File/Subroutine Structure
N.5.3 BASIC/GT Subroutine Structure
N.6 SUMMARY OF GRAPHICS MACRO CALLS
N.7 DISPLAY PROCESSOR MNEMONICS
N.8 ASSEMBLY INSTRUCTIONS
N.8.1 General Instructions
N.8.2 VTBASE
N.8.3 VTCALl1 - VTCAL4
N.8.4 VTHDLR
N.8.5 Building VTLIB.OBJ
N.9 VTMAC
N.1l0 EXAMPLES USING GTON

APPENDIX O SYSTEM SUBROUTINE LIBRARY
0.1 INTRODUCTION
0.1.1 Conventions and Restrictions
0.1.2 Calling SYSLIB Subprograms
0.1.3 Using SYSLIB with MACRO
0.1.4 Running a FORTRAN Program in the Foreground
0.1.5 Linking with SYSLIB
0.2 TYPES OF SYSLIB SERVICES
0.2.1 Completion Routines
0.2.2 Channel-Oriented Operations
0.2.3 INTEGER*4 Support Functions
0.2.4 Character String Functions
0.2.4.1 Allocating Character String Variables
0.2.4.2 Passing Strings to Subprograms
0.2.4.3 Using Quoted-String Literals
0.3 LIBRARY FUNCTIONS AND SUBROUTINES
0.3.1 AJFLT
0.3.2 CHAIN
0.3.3 CLOSEC
0.3.4 CONCAT
0.3.5 CVTTIM
0.3.6 DEVICE
0.3.7 DJFLT
0.3.8 GETSTR
0.3.9 GTIM
0.3.10 GTJB
0.3.11 IADDR
0.3.12 IAJFLT
0.3.13 IASIGN
0.3.14 ICDFN
0.3.15 ICHCPY
0.3.16 ICMKT
0.3.17 ICSI
0.3.18 ICSTAT
0.3.19 IDELET
0.3.20 IDJFLT
0.3.21 IDSTAT
0.3.22 IENTER
0.3.23 IFETCH
0.3.24 IFREEC
0.3.25 IGETC

January 1976 Xvi

o
[

OO0 O00O0O0O0
AAUTW W N -



BREWWWWWWWwWwwwdDNNN

WWWWWWLRLWWWWWWWWWWLWWLWWLWWWWRWWLWWWWWLWWWWWWWWWWWWWWLWWWWWWWWWWWWWwwwWwwwwwww

¢« o o e s e * o * o

® e s * s 2 e ® & 2 8 s e @

e & o o 8 e & e e o s e e
" e o .

VOO OXNNNNNNNSNNNONONAAOONAAOOOUTUNUTUITUITOIUTUTUT U1 8 DD DD D

ojojoRojoNojeNoRojoe oo oo oo oo ofoRoNoRoNoNoNooNoToNoRoRoNoNoXoNoReNoNoNoNoXoRe Yo Yo Xo Re Ro Ro Re Je oo Ro ReRoRo o Ro Xeo)

e o o ® 8 e s o e s s & & e ¥ s e s s e s s w e =

IJCvT
ILUN
INDEX
INSERT
INTSET
IPEEK
IPOKE
IQSET
IRADS0
IRCVD/IRCVDC/IRCVDF/IRCVDW
IREAD/IREADC/IREADF/IREADW
IREMAN
IREOPN
ISAVES
ISCHED
ISDAT/ISDAC/ISDATF/ISDATW
ISLEEP .
ISPFN/ISPFNC/ISPFNF/ISPFNW
ISPY
ITIMER
ITLOCK
ITTINR
ITTOUR
ITWAIT
IUNITL
IWAIT
IWRITC/IWRITE/IWRITF/IWRITW
JADD
JAFIX
JCMP
JDFIX
JDIV
JICVT
JJCVT
JMOV
JMUL
JSuUB
JTIME
LEN
LOCK
LOOKUP
MRKT
MWAIT
PRINT
PURGE
PUTSTR
R50ASC
RADS50
RCHAIN
RCTRLO
REPEAT
RESUME
SCOMP
SCOPY
SECNDS
STRPAD
SUBSTR
SUSPND
TIMASC
TIME
TRANSL

xvii

January 1976



APPENDIX
GLOSSARY

INDEX

Number

1-1

NN NN
i
U W N

www
!
W=

>
!
—

87 TRIM
.88 UNLOCK
89 VERIFY

ERROR MESSAGE SUMMARY

TABLES

RT-11 Hardware Components

Prompting Characters
Permanent Device Names
File Name Extensions
Special Function Keys
SET Command Options

EDIT Key Commands
Command Arguments
Immediate Mode Commands

PIP Switches

Legal Separating Characters
Linker Switches

LIBR Switches

Forms of Relocatable Expressions

Internal Registers
Radix 50 Terminators

Summary of Programmed Requests
Requests Requiring the USR

Directives not Available in ASEMBL

Command Field Switches

File Name Extensions

Specification Field Switches

Character Interpretation

BATCH Commands

Operator Directives to BATCH Run-Time Handler
Differences Between RT-11 and RSX-11D BATCH

Card Code Conversions
DUMP Switches

FIT.EX Switch Options

January 1976 xviii

0-118
0-118
0-119
pP-1
GLOSSARY-1

INDEX-1



SRCCOM Switches
PATCH Commands
Description of Display Status Words

Summary of SYSLIB Subprograms
Special Function Codes

FIGURES

Number Page

2-1
2-2

RT-11 System Memory Maps
RT-11 Memory Map (GT40)

Display Editor Format

Assembly Source Listing of MACRO
Code Showing Local Symbol Blocks
Example of MACRO Line Printer
Listing (132-column Line Printer)
Example of Page Heading From
MACRO 80-column Line Printer
Symbol Table

Assembly Listing Table of Contents
.IRP and .IRPC Example

MACRO Source Code

CREF Listing Output

Linker Load Map for Background Job
Overlay Scheme

Memory Diagram Showing BASIC

Link with Overlay Regions

Run-Time Overlay Handler

Library Searches

Alphabetized Load Map for a Background Job

General Library File Format
Library Header Format
Format of Entry Point Table
Library End Trailer

EOF Card

Xix

5-81

6-10
6-11

6-12
6-17
6-19
7-12
7-13
7-13
7-14

12-45

January 1976






PREFACE

This manual describes the use of the RT-11 Operating System. It
assumes the reader is familiar with computer software fundamentals and
has had some exposure to assembly language programs. The section
"Additional and Reference Material" 1later in this Preface lists
documents that may prove helpful in reviewing those areas. The
Glossary provides definitions of technical terms used in the manual.

The user who is unfamiliar with RT-11 should first read those chapters
of interest (see "Chapter Summary" below) to become familiar with
system conventions. Having gained familiarity with RT-11, the user
can then reread the manual for specific information.

Chapter Summary

Chapter 1 discusses system hardware and software requirements. It
describes general system operations and 1lists specific components
available under RT-11.

Chapter 2 introduces the user to system conventions and monitor/memory
layout. It describes in detail the keyboard commands for controlling
jobs and implementing user programs.

Chapters 3 through 8 describe the system utility programs EDIT, PIP,
MACRO, LINK, LIBR, and ODT, respectively. These programs (a text
editor, file transfer ©program, assembler, linker, 1librarian, and
debugging program) aid the user in creating text files and producing
assembly-language programs.

Chapter 9, which describes programmed requests, is of particular
interest to the experienced programmer. It describes call sequences
that allow the user to access system monitor services from within
assembly-language programs.

Chapters 10 and 11 describe the 8K Assembler and EXPAND programs,
respectively. These programs are useful in RT-11 installations with
minimum memory configurations.

Chapter 12 describes the BATCH command language for RT-11. In BATCH
mode, the RT-11 system can be left to run unattended for long periods
of time.

The appendixes summarize the contents of the manual and describe
additional system wutility programs that can be used for extended
system operations. These programs include SRCCOM (a source file
comparison program); FILEX (a file translation program that allows

xxi January 1976



Preface

transfer of files between RT-11 and other DIGITAL operating systems)
PATCH and PATCHO (patching programs); DUMP (a file dump program)
and SYSLIB (a library of programmed reqguests for FORTRAN users).

.
’
°
1

Version History

The current RT-11 system (monitor) is Version 2C (V2C). Each system
component (monitors and utilities) is assigned a software
identification number in the form VXx—xXx. Current identification

numbers for V2C are listed in the RT-11 System Release Notes
(DEC~-11-CRNRA-A-D). To determine whether the <correct version of a
component 1is in use, examine its identification number and compare it

with the list. (The procedure for examining the version number
varies. Most system programs provide a special command; others print
the version number when an output listing is requested. Consult the

approiate chapter or appendix of this manual for each component.)

NOTE

Throughout this manual, any references
to V2 or V2B of RT-11 will pertain also
to V2C. The RT-11 System Release Notes
contain a comprehensive list of
differences between V2C and previous
versions of RT-11 (V2B, V2, VI1).

Change bars and asterisks in the outermost margins of the manual are
used to denote changes made to the text since the Version 2 release
(DEC-11-ORUGA-B-D). The date July 1975 in the lower outside corner of
a page indicates that the page was changed as a result of a
release-independent update that occurred in July, 1975. The date
January 1976 in the lower outside corner of the page indicates that
the page was changed specifically as a result of the V2C update.

The user who is already familiar with the Version 2B RT-11 System
Reference Manual (DEC-11~ORUGA-C-D,DN1) should first read the RT-11
System Release Notes document to note the major differences between
V2B and V2C, and then read those pages of the RT-11 System Reference
Manual that have changed as a result of the V2C update (identified by
the date January 1976) . The RT-11 System Generation Manual
(DEC-11-ORGMA-A-D) should also be read if customization for special
devices and features is required.

The user who 1is familiar with only the Version 2 RT-11 Svstem
Reference Manual (DEC-11-ORUGA-B-D) should read the following in
addition to those items mentioned in the preceding paragraph:

Chapter 2 (System Communication) ~ Tables 2-2, 2-3, and 2-5
Chapter 3 (Text Editor) ~ Section 3.6.5.6
Chapter 9 (Programmed Reqguests) - Sections 9.1 and 9.1.3.6
Chapter 12 (BATCH) - Entire Chapter
Appendix H (F/B Programming

And Device Handlers) - Sections H.2.4 and H.2.5
Appendix O (SYSLIB) - Entire Appendix

Finally, the user familiar with only the Version 1 RT-11 System
Reference Manual (DEC-11-ORUGA-A-D) should read this entire manual
with these exceptions:

January 1976 xxii



Preface

Chapter 3 (Text Editor) - note Section 3.7

Chapter 5 (MACRO Assembler) - note Section 5.7

Chapter 8 (ODT) - note restrictions in Section
8.1

Chapter 10 (EXPAND)
Chapter 11 (ASEMBL)
Appendix L (PATCH)

While knowledge of Versions 2 and 2B is sufficient for use of V2C,

knowledge of Version 1 is not; the user with Version 1 knowledge only
should carefully read the manual.

Additional and Reference Material

The following manuals provide an introduction to the PDP-11 computer
family and the basic PDP-11 instruction set:

PDP-11 Paper Tape Software Programming Handbook**
(DEC-11-XPTSA-B-D)

PDP-11 Processor Handbook*

PDP-11 Peripherals Handbook*

The following manual provides an introduction to the use of RT-11 by
presenting a simple demonstration of basic operating procedures:

RT~11 System Generation Manual* (DEC-11-ORGMA-A-D)

These manuals describe the capabilities of the optional high-level
language components:

BASIC/RT-11 Language Reference Manual** (DEC-11-LBACA-D-D)
PDP-11 FORTRAN Language Reference Manual#** (DEC-11-LFLRA-B-D)
RT-11/RSTS/E FORTRAN IV User's Guide** (DEC-11-LRRUA-A-D)

Summaries of the features provided by each language appear in this
manual in Appendixes F and G respectively.

Two PDP-11 system manuals are helpful when using FILEX (Appendix J) to
convert programs between DOS, RSTS, and RT-11 formats:

PDP-11 Resource Sharing Time-Sharing System User's Guide**
(DEC-11-ORSUA-D-D)
DOS/BATCH Handbook** (DEC-11-ODBHA-A-D)

Users of display hardware may wish to refer to the appropriate
hardware manual:

GT40/42 User's Guide*** (39H150)

GT44 User's Guide*** (39H250)

VT1l Graphic Display Processor Manual*** (79H650)
DECscope User's Manual*** (EK-VT50-0P)

The experienced programmer will want to read the following manual:

RT-11 Software Support Manual* (DEC-11-ORPGA-B-D)

*Included in the RT-11 Software Kit
**May be ordered from the DIGITAL Software Distribution Center
***May be ordered from DIGITAL Communication Services

xxiii Januwary 1976



Preface

Consult the following for a list of all manuals available in the RT-11
software documentation set:

RT-11 Documentation Directory* (DEC-11-ORDDA-A-D)

Documentation Conventions

Conventions used throughout this manual include the following:

1. Actual computer output is used in examples wherever possible.
When necessary, computer output is underlined to
differentiate from user responses.

2. A line feed (character or key) is represented in the text as
<LF>; a carriage return (character or key) is represented as
<CR>. Unless otherwise indicated, all commands and command
strings are terminated by a carriage return.

3. Terminal, console terminal, and teleprinter are general terms
used throughout all RT-11 documentation to represent any
terminal device, including DECwriters, displays, and
Teletypes****, RP02 is a generic term used to represent both
the RP11C/RP02 and RP11E/RPR0O2 disks.

4. Several characters in system commands are produced by typing
a combination of keys concurrently; for example, the CTRL
key is held down while typing an O to produce a command which
causes suppression of teleprinter output. Key combinations
such as this are documented as CTRL O, CTRL C, SHIFT N, and
so forth.

*Included in the RT-11 Software Kit
****Teletype is a registered trademark of the Teletype Corporation.

January 1976 xxiv



CHAPTER 1

RT-11 OVERVIEW

RT-11 is a single-user programming and operating system designed for
the PDP-11 series of computers. This system permits the use of a wide
range of peripherals and up to 28K of either solid state or core
memory (hereafter referred to as memory).

RT-11 provides two operating environments: Single~Job operation, and
a powerful Foreground/Background (F/B) capability(1l).

Single-Job operation allows only one program to reside in memory at
any time; execution of the program continues until either it is
completed or it is physically interrupted by the user at the
console, ’

In a Foreground/Background environment, two independent programs may
reside in memory. The foreground program is given priority and
executes until it relinquishes control to the background program; the
background program is allowed to execute until control is again
required by the foreground program, and so on. This sharing of system
resources greatly increases the efficiency of processor usage.

To handle both operating environments, RT-=11 offers two completely
compatible and versatile monitors (Single-~job and F/B); either monitor
provides complete user control of the system from the console terminal
keyboard. Monitor commands which allow the user to direct single-job,
foreground, and background operations are described in Chapter 2.

In addition to the monitor facilities, RT-1l offers a full complement
of system programs; these allow program development using high level
languages such as FORTRAN IV and BASIC or assembly language (MACRO or
EXPAND/ASEMBL) . System programs are summarized in Section 1.2 and are
discussed in detail in individual chapters and appendixes of this
manual,

(1) The uses and advantages of each environment are outlined later in
this chapter.



RT-11 Overview

1.1 PROGRAM DEVELOPMENT

Computer systems such as RT-11 are often used extensively for program
development. The programmer makes use of the programming "tools"
available on his system to develop programs which will perform
functions specific to his needs. The number and type of "tools"
available on any given system depend on a good many factors--the size
of the system, its application and its cost, to name a few. Most
DIGITAL systems, however, provide several basic program development
aids: these generally include an editor, assembler, linker, debugger,
and often a librarian; a high level language (such as FORTRAN IV or
BASIC) is also usually available.

An editor is used to create and modify textual material. Text may be
the 1lines of code which make up a source program written in some
programming language, or it may be data; text may be reports, or
memos, or in fact may consist of any subject matter the user wishes,
In this respect using an editor is analogous to using a
typewriter--the user sits at a keyboard and types text. But the
advantages of an editor far exceed those of a typewriter because once
text has been created, it can be modified, relocated, replaced,
merged, or deleted=--all by means of simple editing commands. When the
user 1is satisfied with his text, he can save it on a storage device
where it is available for later reference.

If the editor is used for the purpose of writing a source program,
development does not stop with the creation of this program. Since
the computer cannot understand any language but machine language
(which is a set of binary command codes), an intermediary program is
necessary which will convert source code into the instructions the
computer can execute., This is the function of an assembler,

The assembler accepts alphanumeric representations of PDP-11 coding
instructions (i.e., mnemonics), interprets the code, and produces as
output the appropriate object code. The user can direct the assembler
to generate a listing of both the source code and binary output, as
well as more specific listings which are helpful during the program
debugging process. In addition, the assembler is capable of detecting
certain common coding errors and of issuing appropriate warnings.

The output produced by the assembler is called object output because
it 1is composed of object {or binary) code., On PDP-11l systems, the
object output is called a module and contains the user's source
program in the binary language which is acceptable to a PDP-11l
computer,

Source programs may be complete and functional by themselves;
however, some programs are written in such a way that they must be
used in conjunction with other programs (or modules) in order to form
a complete and logical flow of instructions. For this reason the
object code produced by the assembler must be relocatable--that is,
assignment of memory locations must be deferred until the code is
combined with all other necessary object modules. It is the purpose
of linker to perform this relocation.

The linker combines and relocates separately assembled object
programs. The output produced by the 1linker consists of a load
module, which is the final linked program ready for execution. The
user can, at his option, request a load map which displays all
addresses assigned by the linker,

1-2



RT-11 Overview

Very rarely is a program created which does not contain at least one
unintentional error, either in the logic of the program or in its
coding. Errors may be discovered by the programmer while he is
editing his program, or the assembler may find errors during the
assembly process and inform the programmer by means of error codes.,
The 1linker may also catch certain errors and issue appropriate
messages. Often, however, it is not until execution that the user
discovers his program is not working properly. Programming errors may
be extremely difficult to find, and for this reason a debugging tool
is usually available to aid the programmer in determining the cause of
his error.

A debugging program allows the wuser to interactively control the
execution of his program, With it, he can examine the contents of
individual locations, search for specific bit patterns, set designated
stopping points during execution, change the contents of locations,
continue execution, and test the results, all without the need of
re-editing and re-assembling.

When programs are successfully written and executed, they may be
useful to other programmers. Often routines which are common to many
programs (such as I/O routines) or sections of code which are used
over and over again, are more useful if they are placed in a library
where they can be retrieved by any interested user. A librarian
provides such a service by allowing creation of a library file. Once
created, the library can be expanded, updated, or listed.

High level languages simplify the programmer's work by providing an
alternate means of writing a source program other than assembly
language mnemonics. Generally, high 1level languages are easy to
learn--a single command may cause the computer to perform many machine
language instructions. The user does not need to know about the
mechanics of the computer to use a high level language. In addition,
some high level languages (like BASIC) offer a special immediate mode
which allows the user to solve equations and formulas as though he
were using a calculator. Assembling and linking are done
automatically so that the user can concentrate on solving the problem
rather than using the system.

These are a few of the programming tools offered by most computer
systems. The next section summarizes specific programming aids
available to the user of RT-1l.

1.2 SYSTEM SOFTWARE COMPONENTS
The following is a brief summary of the RT-1ll system programs:

1. The Text Editor (EDIT, described in Chapter 3) is wused to
create or modify source files for use as input to language
processing programs such as the assembler or FORTRAN, EDIT
contains powerful text manipulation commands for quick and
easy editing of a text file., EDIT also allows use of a VTI1l
display processor (such as the GT44), if one is part of the
hardware configuration (see Section 1.3).

2, The MACRO Assembler (Chapter 5) brings the capabilities of
macros to the RT-11] system with 12K (or more) memory.
(Macros are instructions in a source or command language
which are equivalent to a specified sequence of machine

1-3



RT=11 Overview

10.

instructions or commands.) The assembler accepts socurce files
written in the MACRO 1language and generates a relocatable
object module to be processed by the Linker before loading
and execution. Cross reference 1listings of assembled
programs may be produced using CREF in conjunction with the
MACRO Assembler,

EXPAND (Chapter 10) is used in an 8K F/B job area or 8K
systems (or in larger systems with programs of great size) to
expand macros in an assembly language program into macro-free
source code, thus allowing the program to be assembled in 8K
using ASEMBL,

ASEMBL (Chapter 11) is an assembler designed for use in an 8K
RT-11 system, an 8K F/B job area, or larger systems where
symbol table space is a factor. ASEMBL, is a subset of
MACRO-11 with more limited features. (CREF is not available
under ASEMBL,)

The Linker (LINK, described in Chapter 6) fixes (i.e., makes
absolute) the values of relocatable symbols and converts the
relocatable object modules of compiled or assembled programs
and subroutines into a load module which can be loaded and
executed by RT-1l1l., LINK can automatically search library
files for specified modules and entry points; it can produce
a load map (which lists the assigned absolute addresses) and
can provide automatic overlay capabilities to very large
programs. The Linker can also produce files suitable for
running in the foreground.

The Librarian (LIBR, see Chapter 7) allows the user to create
and maintain his own 1library of functions and routines,
These routines are stored on a random access device as
library files, where they can be referenced by the Linker,

The Peripheral Interchange Program (PIP, see Chapter 4) is
the RT=-11 file maintenance and utility program. It is used
to transfer files between all devices which are part of the
RT-11 system, to rename or delete files, and to obtain
directory listings.

SRCCOM (Source Compare, described in Appendix K) allows the
user to perform a character-by-character comparison of two or
more text files. Differences can be listed in an output file
or directly on the line printer or terminal, thus providing a
fast method of determining, for example, if all edits to a
file have been correctly made.

FILEX (Appendix J) allows file transfers to occur between
DECtapes used under the DECsystem=-10 or PDP-1l1 RSTS systen,
and DECtape and disk used under the DOS/BATCH system, and any
RT-11 device.

The PATCH utility program (Appendix L) is used to make minor
modifications to memory image files (output files produced by
the Linker); it is used on files which do or do not have
overlays. PATCHO (Appendix M) is wused to make minor
modifications to files in object format (output files
produced by the FORTRAN compiler and the Librarian, or MACRO
and ASEMBL assemblers).

1-4



RT-11 Overview

11l. ODT (On~line Debugging Technique, described in Chapter 8)
aids in debugging assembled and linked object programs. It
can print the contents of specified locations, execute all or
part of the object program, single step through the object
program, and search the object program for bit patterns.

12, DUMP (Appendix I) is used to print for examination all or any
part of a file in octal words, octal bytes, ASCII and/or
RAD50 characters (see Chapter 5).

13. BATCH (Chapter 12) is a complete job control language that
allows RT-11 to operate unattended. The BATCH stream may be
composed of RT-11 monitor commands or system=-independent
BATCH jobs (jobs that will run on any DIGITAL system
supporting the BATCH standard; currently RT-11 and RSX-11D).
BATCH streams can be executed under the Single-Job Monitor
or in the background under the F/B Monitor.

14. The RT-11 FORTRAN System Subroutine Library (SYSLIB, Appendix
0) is a collection of FORTRAN callable routines that make the
programmed requests and various utility functions available
to the FORTRAN programmer. SYSLIB also provides a complete
string manipulation package and two-word integer package for
RT-11 FORTRAN.

BASIC and FORTRAN IV are two high 1level languages available under
RT-11l. Summaries of their language features and commands are provided
in Appendixes F and G of this manual.

1.3 SYSTEM HARDWARE COMPONENTS

The minimum RT-11 system (that is, one that does not use the F/B
capability) requires a PDP-11 series computer with at least 8K of
memory, a random—-access device, and a console terminal. The F/B
capability requires at least 16K of memory and a line frequency clock.
For specific hardware/software interdependent requirements, refer to
the RT-11l System Release Notes.

Devices supported by RT-11 are 1listed in Table 1-1. The third
(middle) column lists devices for which support is initially provided
in the system as distributed; these devices can be used with no
modification (to either the monitor tables or the handlers) necessarv,
The devices in the fourth column are supported after simple
modifications to the monitor tables or handlers. The system
customization section of the RT-11 System Generation Manual describes
how to make these modifications. The fifth column lists devices for
which no support is provided., but which may be interfaced by the user.
Currently, the k864 disk is the only device in this category, and
instructions for its interface are provided in the RT-11 Software
Support Manual.

Consult the RT-11 System Generation Manual for modifications that may
be made to existing system devices (for example, varying the baud rate
of a terminal).

1-5 January 1976



RT-11 Overview

Table 1-1

RT-11 Hardware Components

System-Installed

Devices Re-
quiring System

User-Installed

Category Controller Devices Modification Devices
DISK
DECpack RK11 RKO5
Cartridge
Fixed-head RF11 RS11
RC11 RS64
RH11 RJISO3 RJIS04
Removable RP11 RPO2 RPO3
Pack
Diskette RX11 RX01 RX01 (second
controller)
DECTAPE TCl1 TUS6
MAGTAPE T™11/TMALl TU1l0,TS03
RH11 TJUl6
CASSETTE TAll TU60
HIGH-SPEED PCll PCll (both)
PAPER TAPE PR11 PR11 (reader only)
READER/PUNCH
LINE PRINTER Ls1l LsS1ll, LAl80
Lv1il LV1l (printer only)
LP1l1 all LP1l controiled
printers
CARD READER CR11 CR11
CM11 CcM1l
TERMINAL DL11 LT33, LT35
LA30P, LA36, LA30S
vI50, VIs2,
VTO05
DISPLAY VT1l1l VE14-L,VR17-L
PROCESSOR
CLOCK KW1ll-L
January 1976 1-6




RT=L1 Overview

RT-~1l operates in environments ranging from 8K to 28K words of memory.
Reconfiguration for different memory sizes is unnecessary--the same
system device operates on any PDP-1l1l processor with 8K to 28K of
memory and makes use of all memory available,

1.4 USING THE RT-11 SYSTEM

As mentioned earlier in the chapter, the RT-11l system offers two
complete operating environments. Each is controlled by a single user
from the console terminal keyboard by means of an appropriate
monitor-=-Single-Job or Foreground/Background. Both monitors are
completely compatible and allow full user interaction with all
features which are a part of the operating environment in use.

The choice of which environment to use, and, consequently, which
monitor to run, depends upon the needs of the user. The next two
sections provide information useful in determining which monitor is
more suitable for certain applications.

1.4.1 RT-1l Single-Job Monitor

The RT-11 Single-Job Monitor provides a single-user, single-program
system which can operate in as little as 8K of memory. Since the
Single-Job Monitor itself requires approximately one-half the memory
space needed by the Foreground/Background Monitor, this system is
ideal for extensive program development work; a much larger area of
memory is available for the user program and its buffers and tables.
Programs requiring extremely high data rates are best run in the
Single-Job environment, since interrupts can be serviced at a much
higher rate.

All system programs (listed in Section 1.2) can be used under the
Single-Job Monitor, and many of the features of the
Foreground/Background Monitor (i.e., XMON commands and programmed
requests not used to control foreground jobs) are supported.

In effect, the Single-Job Monitor is much smaller and slightly faster
than the Foreground/Background Monitor; it can best be used when
program size is the important factor.

1.4.2 RT-1ll Foreground/Background Monitor

Quite often the central processor of a computer system may spend a
large percentage of time waiting for some external event to occur, the
most common event being the completion of an I1/0 transfer (this is
particularly true of real time jobs). Many users would like to take
advantage of this unused capacity to accomplish other lower-priority
tasks such as further program development or complex data analysis.
The Foreground/Background system provides this capability.

In a Foreground/Background system the foreground job is the
time-critical, on-line job, and is given top priority; whenever
possible the processor runs the foreground job. However, when the
foreground job reaches a state in which no more processing can be done



RT=11 Overview

until some external event occurs, the monitor will ¢try to run the
lower priority background job, The background job then runs until the
foreground job is again in a runnable state, at which point the
processor will interrupt the background job and resume the foreground
job.

In general, the RT-1l Foreground/Background System is designed to
allow a time-critical job to run in the foreground, while the
background does non-time-critical jobs, such as program development,
(All RT-11 system programs run as the background job in a F/B system.)
Thus, the user can run FORTRAN, BASIC, MACRO, etc. in the background
while the foreground may be collecting data and storing and/orn
analyzing it.

Most user programs written for an RT-11 System can be 1linked (using
the Linker described in Chapter 6) to run as the foreground job,
There are a few coding restrictions, and these are explained in
Appendix H, F/B Programming and Device Handlers. A foreground program
has access to all of the features available to the background job
(opening and closing files, reading and writing data, etc.). In
addition, the F/B System gives the wuser the ability to set timer
routines, suspend and resume F/B jobs, and send data and messages
between the two jobs.

1.4.3 Facilities Available Only in RT-11] F/B

As mentioned previously, RT-11 F/B allows the user to write and
execute two independent programs. Some features which are available
only to the F/B user include:

1. Mark Time--This facility allows user programs to set clock
timers to run for specified amounts of time. When the timer
runs out, a routine specified by the user is entered. There
may be as many mark time requests as desired, providing
system queue space is reserved (see ,QSET, Chapter 9).

2, Timed Wait--This feature allows the user program to "“sleep"
until the specified time increment elapses. Typically, a
program may need to sample data every few seconds or even
minutes, While the program is idle, the other job can run,
The timed wait accomplishes this; when the time has elapsed,
the issuing job is again runnable (see ,TWAIT, Chapter 9).

3. Send Data/Receive Data--It is possible, under RT-11 F/B, to
have the foreground and background programs communicate with
one another. This is accomplished with the send/receive data
functions. Using this facility, one program sends messages
(or data) in variable size blocks to the other job. This can
be used, for example, to pass data from a foreground
collection program directly to a background analysis program
(see .SDAT/.RCVD, Chapter 9),



CHAPTER 2

SYSTEM COMMUNICATION

The monitor is the hub of RT-1l system communications; it provides
access to system and user programs, performs input and output
functions, and enables control of background and foreground jobs.

The user communicates with the monitor through programmed requests and
keyboard commands. The keyboard commands (described in Section 2.7)
are used to load and run programs, start or restart programs at
specific addresses, modify the contents of memory, and assign and
deassign alternate device names.

Programmed requests (described in detail in Chapter 9) are source
program instructions which pass arguments to the monitor and request
monitor services. These instructions allow user assembly language
programs to utilize the available monitor features.

2.1 START PROCEDURE

After the system has been built (see the RT-11 System Generation
Manual), the monitor can be loaded into memory from disk or DECtape as

follows:

1. Press HALT.

2. Mount the system device on unit 0 (or the appropriate unit if
a unit other than 0 is to be used).

3. WRITE PROTECT the system unit.

If the hardware configuration includes a hardware bootstrap capable of
booting the system device,

1. Set the switch register to the appropriate address and press
LOAD ADRS,

2. If a second address is required, set the switch register to
that address.

3. Press START.

2-1 January 1976




System Communication

If a hardware bootstrap is not available, or if an RK disk unit
other than 0 is to be used as the system device, one of the following
bootstraps must be entered manually using the Switch Register. First
set the Switch Register to 1000 and press the LOAD ADRS switch. Then
set the Switch Register to the first value shown for the appropriate
bootstrap and raise the DEPosit switch. Continue depositing the
values shown.

Disk
DECtape (RK Disk other

(RK11,RKO05) than Unit 0) (RF11l) (RJS03/4) (RP11/RP02) (RX11l/RX01)

12700 12700 12700 12700 12705 12705 12702
177344 177406 177406 177466 172044 176716 1002n7**

12710 12710 12760 5010 12745 12715 12701

177400 177400 XRXXXX * 5040 177400 177400 177170

12740 12740 4 12740 12745 12745 130211

4002 5 12700 177400 71 5 1776

5710 105710 177406 12740 32715 105715 112703

100376 100376 12710 5 100200 100376 7

12710 5007 177400 105710 1775 5007 10100

3 12740 100376 100762 10220

105710 5 5007 5007 402

100376 105710 12710

12710 100376 1

5 5007 6203

105710 103402

100376 * xxxxxx = 20000 for unit 1 112711

5007 40000 for unit 2 111023

60000 for unit 3 30211

100000 for unit 4 1776

120000 for unit 5 100756

140000 for unit 6 103766

160000 for unit 7 105711

100771

5000

22710

240

** n = 4 for unit 0 1347

6 for unit 1 122702

247

5500

5007

When all the values have been entered, set the switches to 1000 and
press the LOAD ADRS and START switches,

?he mgnitor. loads into memory and prints one of the following
identification messages followed by a dot (.) on the terminal:

RT-11SJ V02C-xx
RT-11FB V02C-xXx

The message printed indicates which monitor (Single-Job or F/B) has

been loaded; the user may determine which is to be loaded during the
system build operation.

After the message has printed, the system device should be WRITE
ENABLED. The monitor is ready to accept keyboard commands.

January 1976 2~2



System Communication

To bring up an alternate monitor while under control of the one
currently running (in this case, F/B), run PIP to perform the following
operations:

1. Preserve the running monitor by renaming it to yyyyyy.S¥S
(the actual name yyyyyy is not significant, although it is
suggested that yyMNSJ for Single-Job and yyMNFB for Fore-
ground/Background be used to be consistent with system con-
ventions; yy in this case represents the disk type):

LR PIFP
FRKO . REKMNFB. SYS5=RKO:MONITR. SYSA/RY
?REBROT?

2. Rename the desired monitor to MONITR.SYS:

#RKO :MONITR, SYS=RKO I RKNHNSJ., SYS/RY
PREBOGT?

3. Write the new bootstrap from the new MONITR.SYS file
(using the PIP /U option; A is a dummy filename, which
must be present in the command line):

ARKOA=RKO :MONITR. 53YS U

4. Reboot the system.
*RK8:7/0

RT-115J VB2L-82

Refer to the RT-~1l System Generation Manual for an example of switching
monitors.

2=-2.1 January 1976




This page intentionally blank.



System Communication

2,2 SYSTEM CONVENTIONS

Special character commands, file naming procedures and other
conventions that are standard for the RT-1l system are described in
this section. The user should be familiar with these conventions
before running the system,

2.2.1 Data Formats

The RT-1ll system makes use of five types of data formats: ASCITI,
object, memory image, relocatable image, and load image.

Files in ASCII format conform to the American National Standard Code
for Information Interchange, in which each character is represented by
a 7-bit code. Files in ASCII format include program source files
created by the Editor, listing and map files created by various system
programs, and data files consisting of alphanumeric characters. A
chart containing ASCII character codes appears in Appendix C,

Files in object format consist of data and PDP-1ll1 machine language
code. Object files are those output by the assembler or FORTRAN
compiler and are used as input to the Linker.

The Linker can output files in memory image format (.SAV), relocatable
image format (.REL), or load image format (.LDA).

A memory image file (.SAV) is a 'picture' of what memory will look
like when a program is loaded., The file itself requires the same
number of disk blocks as the corresponding number of 256-word memory
blocks.

A relocatable image file (.REL) is one which can be run in the
foreground. It differs from a memory image file in that the file is
linked as though its bottom address were 0. When the program is called
(using the monitor FRUN command), the file is relocated as it is
loaded into memory. (A memory image £ile requires no such
relocation.) .

2-3 January 1976



System Communication

A load image (or .LDA) file may be produced for compatibility with the
PDP-11 Paper Tape System and is loaded by the absolute binary loader.
LDA files can be loaded and executed in stand-alone environments
without relocation.

2.2.2 Prompting Characters

The following table summarizes the characters typed by RT-1ll to
indicate to the user either that the system is awaiting user response
or to specify which 3job (foreground or background) 1is producing
output:s

Table 2-1
Prcocmpting Characters
Character Meaning
. The Keyboard Monitor is waiting for a command (see

Section 2.3.2).

* The Command String Interpreter is waiting for a
command string specification as explained in
Sections 2.3.3 and 2.5.

1 When the console terminal is being used as an
input file, the uparrow prompts the user to enter
information from the keyboard, If the dinput is
entered under EDIT or BASIC (or any program that
accepts input in special terminal mode as
described in Chapter 9), the characters entered
are not echoed, Typing a CTRL Z2 marks the
end-of=file,

> The > character is used (under the F/B Monitor and
only if a foreground job is active) to identify
which job, foreground or background, is producing
the output currently appearing on the console
terminal., Each time output from the background
job is to appear, B> is printed first, followed by
the output. If the foreground 3job 1is to print
output, F> is typed first. B) and F)> are also
printed as a result of the CTRL B and CTRL F
commands described in Table 2-4,

2,2.3 Physical Device Names

Devices are referenced by means of a standard two-character device
name. Table 2-2 lists each name and its related device, If no unit
number is specified for devices which have more than one unit, unit 0
is assumed.




System Communication

Table 2-2
Permanent Device Names
Permanent Name I/0 Device
CR: Card Reader (CR11l/CMLl).
CTn: TAll cassette (n is the unit number, 0 or 1).
DK: The default logical storage device for all files.

DK is initially the same as SY: (see below), but the
assignment (as a logical device name) can be changed
with the ASSIGN Command (Section 2.7.2.4).

DKn: The specified unit of the same device type as DK.

DPn: RP02 disk (n is an integer in the range 0-7).

DSn: RJS03/4 fixed-head disks (n is in the range 0-7).

DTn: DECtape n, where n is a gnit number (an integer in
the range 0 to 7, inclusive).

DXn: RX0l1l Floppy disk (n is 0 or 1).

Lp: Line printer.

MMn : TJUl6 magtape (n is in the range 0-7).

MTn: TM11l (industry compatible) magtape (n is an integer
between 0 and 7, inclusive).

PP: High-speed paper tape punch.

PR: High-speed paper tape reader,

H RF1l fixed-head disk drive,

RKn: RK disk cartridge drive n (n is in the range 0 to
7 inclusive),

SY: System device; the device and unit from which the
systenm is bootstrapped. (RT=11 allows
bootstrapping from any RK unit; refer to Section
2.1.) The assignment as a logical device name car

be changed with the ASSIGN command (Section 2.7.2.4).

S¥n: The specified unit of the same device type as that
from which the system was hootstrapped.

TT: Terminal keyboard and printer.

In addition to the fixed names shown in Table 2-2, devices can be
assigned 1logical names. A logical name takes precedence over a
physical name and thus provides device independence. With this
feature a program that is coded to use a specific device does not need
to be rewritten if the device is unavailable., Refer to Section
2,7.2.4 for instructions on assigning logical names to devices.

2.2,4 File Names and Extensions

Files are referenced symbolically by a name of one to six alphanumeric
characters followed, optionally, by a period and an extension of up to
three alphanumeric characters. (Excess characters in a filename may
cause an error message.) The extension to a filename generally
indicates the format of a file. It is a good practice to conform to

2-5 January 1976




System Communication

the standard filename extensions for RT-1ll. If an extension is not:
specified for an input or output file, most system programs assign
appropriate default extensions, Table 2=3 1lists the standard
extensions used in RT-11,

Table 2-3
File Name Extensions
Extension ] Meaning
«BAD Files with bad (unreadable) blocks; this

extension can be assigned by the user
whenever bad areas occur on a device. The
.BAD extension makes the file permanent in
that area, preventing other files from using
it and consequently becoming unreadable.

«BAK Editor backup file.

«BAS BASIC source file (BASIC input).

.BAT BATCH command file.

.CTL BATCH control file generated by the
BATCH compiler.

-CTT BATCH internal temporary file.

« DAT BASIC or FORTRAN data file.

.DIR Directory listing file

«DMP DUMP output file,

JFOR FORTRAN IV source file (FORTRAN input).

.LDA Absolute binary file (optional Linker
output) .

JLLD Library listing file.

.LOG BATCH log file.

.LST Listing file (MACRO or FORTRAN output).

«MAC MACRO or EXPAND source file (MACRO, EXPAND,
SRCCOM input),

<MAP Map file (Linker output).

+OBJ Relocatable binary f£file (MACRO, ASEMBL,

FORTRAN IV output, Linker input, LIBR input
and output).

«PAL Output file of EXPAND (the MACRO expander
program) , input file of ASEMBL.

<REL Foreground job relocatable image (Linker
output, default for monitor FRUN command).

+SAV Memory image or SAVE file; default for R,
RUN, SAVE and GET Keyboard Monitor commands;
also default for output of Linker.

-50U Temporary source file generated by BATCH.

.SYS System files and handlers.




System Communication

If a filename with a blank extension is to be used in a command line
in which a default extension is assumed (by either the monitor or a
system program), the user must insert a period after the filename to
indicate that there is no extension. For example, to run the file
TEST, type:

. RUN TEST,

If the period after the filename is not given, the monitor assumes the
.SAV extension and attempts to run a file named TEST.SAV,

2.2.5 Device Structures

RT-11 devices are categorized by the physical structure of the device
and the way in which the device allows information to be processed.

All RT-11 devices are either random-access or sequential-access devices.
Random-access devices allow blocks of data to be processed in a random
order -- that is, independent of the data's physical location on the
device or its location relative to any other information. All disks
and DECtape fall into this category. Random-access devices are some-
times also called block-replaceable devices, because individual data
blocks can be manipulated (rewritten) without affecting other data
blocks on the device. Sequential-access devices require that data be
processed sequentially; the order of processing data must be the same
as the physical order of the data. RT-11l devices that are considered
sequential devices are magtape, cassette, paper tape, card reader,
line printer, and terminal.

File-~structured devices are those devices that allow the storage of
data under assigned filenames. RT-11 devices that are file-structured
include all disks, DECtape, magtape, and cassette. Nonfile-structured
devices, on the other hand, are those used to contain a single logical
collection of data. These devices are used generally for reading and
listing information, and include line printer, card reader, terminal,
and paper tape devices.

Finally, file-structured devices are classified further as RT-11 direc-
tory-structured devices if they provide a standard RT-11 directory at
the. beginning of the device (the standard RT-11 directory is defined

in the RT-11 Software Support Manual). The directory contains informa-
tion about all files stored on the device and is updated each time a
file is moved, added, or deleted from the device. RT-11 directory-
structured devices include all disks and DECtapes. NonRT-11 directory-
structured devices are file-structured devices that do not have the
standard RT-11 directory structure at their beginning. For example,
some devices, such as magtape and cassette, have directory-type infor-
mation stored at the beginning of each file; the device must be read
sequentially to obtain all information about all files.

It is possible to interface a device to the RT-1l1 system with a user-
defined directory structure; procedures are explained in the RT-11
Software Support Manual.

2-7 January 1976




System Communication

2,3 MONITOR SOFTWARE COMPONENTS
The main RT=-11l monitor software components are:
Resident Monitor (RMON)
Keyboaxrd Monitoxr (KMON)
User Service Routine (USR) and Command String Interpreter (CSI)
Device Handlers

The reader may find Figure 2-1 helpful while reading the following
descriptions,

2.3.1 Resident Monitor (RMON)

The Resident Monitor is the only permanently memory-resident part of
RT=11. The programmed requests for all services of RT-~1ll are handled
by RMON, RMON also contains the console terminal service, error
processor, system device handler, EMT processor, and system tables.

2.3.2 Keyhoard Monitor (KMON)

The Keyboard lMonitor provides communication between the user at the
console and the RT-1ll system, Monitor commands allow the user to
assign logical names to devices, run programs, load device handlers,
and control F/B operations. A dot at the left margin of the console
terminal page indicates that the Keyboard Monitor is in memory and is
waiting for a user command.

2.3.3 User Service Routine (USR)

The User Service Routine provides support for the RT=-11 file
structure, It loads device handlers, opens files for read or write
operations, deletes and renames files, and creates new files. The
Command String Interpreter (the use of which is described in Section
2.5) is part of the USR and can be accessed by any program to
interpret device and file I/0O information.

January 1976 2-7.1



This page intentionally blank.



System Communication

2.3.4 Device Handlers

Device handlers for the RT=-1ll system perform the actual transfer of
data to and from peripheral devices. New handlers can be added to the
system as files on the system device and can be interfaced to the
system by modifying a few monitor tables (see the RT~ll Software
Support Manual, DEC-11-ORPGA-B-D for instructions on how to interface
a new handler to the RT=1l monitor).

2.4 GENERAL MEMORY LAYOUT

When the RT-11 System is first bootstrapped from the system device,
memory is arranged as shown in the left diagram of Figure 2-1 (this is
the case for either the Single-Job or Foreground/Background Monitor,
since no foreground job exists yet), The background job is the RT-11
module KMON,

When an RT=-11 foreground job is 4initiated (via the monitor FRUN
command, Section 2.7.5,1l), room is created for the foreground job to
be loaded by decreasing the amount of space available to the
background job. The memory maps in Figure 2-1 illustrate the system
layout before and after a foreground job is loaded. (Refer also to
Chapter 6, Section 6.5.) )

RMON RMON
USR HANDLERS
KMON FJOB
BEFORE
LOADING USR AFTER
ForeGroUE HIGH LOADING
: UND KMON
o8 | ADDRESSES FOREGROUND
| jo8
| 1 |
| ) '
| : 1 :
1 ]
0 0
Figure 2=~1

RT-11 System Memory Maps

As shown in the figures, the process of 1loading a foreground job
requires that the USR and KMON be physically moved. Once a foreground
job is running, it is possible to communicate with either the
background or foreground job via sgpecial commands (described in
Section 2,7). All of the terminal support functions described in
Section 2,6 are availabhle under both the Single-job and F/B Monitors.

In addition to FRUN, other monitor commands can alter the memory map;
these are LOAD, UNLOAD, GT ON, and GT OFF, LOAD causes device
handlers to be made resident until an UNLOAD command is performed.
UNLOAD deletes handlers which have been loaded. GT ON and GT OFF
cause terminal service to utilize the VT=-1ll display hardware. Figure
2-2 illustrates the placement of display modules and device handlers
in memory following the GT ON, LOAD, and FRUN commands:

2-8



System Communication

RMON

GT40 (GT ON GT OFF)

HANDLERS

F JOB
HIGH
USR ADDRESSES

KMON

e e
o

Figure 2-=2
RT-11 Memory Map (GT40)

RT-11 maintains a free memory list to manage memory. Thus, when a

handler is unloaded, the space the handler occupied is returned to the
free memory list and is reclaimed by the background.

2.4.1 Component Sizes

Following are the approximate sizes (in woxds) of the components for
RT-11, Version 2C (sizes reflect RK).

F/B Single-job
RMON , 3575(10) 1703 (10)
USR 2050(10) 2050(10)
KMON 1800(10) 1540(10)

In the F/B system, the background area must always be large enough to
hold KMON and USR (3.9K words). The following list indicates the total
space available for the loaded device handlers, the foreground job,
and the display handler., Note that the low memory area from 0-477 is
never used for executable programs. (These sizes also allow room for
the 3.5K RMON),

Machine size (words) Space available (words)
16K 8.5K
24K 16.5K
28K 20.5K

With the Single-Job Monitor, RMON requires only 1.67K. The following
list shows the amount of space available to users with the Single-Job
Monitor:

2-9 January 1976



System Communication

Machine size (words) Program space available (words)
8K 6K
16K 14K
24K 22K
28K 26K

2.5 ENTERING COMMAND INFORMATION

Once either monitor has been loaded and a system program started, the
user must enter the appropriate command information before any opera-
tion can be performed.

In most cases, the Command String Interpreter immediately prints an
asterisk at the left margin. The user must then type a command string
in the general format:

OUTPUT=INPUT/SWITCH

(A few system programs -- EDIT, PATCH, PATCHO -- require that this com-
mand information be entered in a slightly different format. Complete
instructions are provided in the appropriate chapter.)

Tn all cases, the format for OUTPUT is:
dev:filnam.ext[n],...devifilnam,ext [n]

INPUT is:

devefilnam.ext,...dev:filnam,ext
and SWITCH is:

/s:oval or /slidval
where:

dev: in each case is an optional two to three-character
name from Table 2-2 whose usage conforms to the
NOTE below,

filnam.ext in each case is the name of a file (consisting of
one to six alphanumeric characters followed
optionally by a dot and a zero to three-character
extension). As many as three output and six input
files may be allowed.

[n] is an optional declaration of the number of blocks
(n) desired for an output file. n is a decimal
number (<65,535) enclosed 1in square brackets
immediately following the output f£ilnam.ext to
which it applies.

/ssoval or is one or more optional switches whose functions

/stdval vary according to the program in use (refer to the.
switch option table in the appropriate chapter),
oval is either an octal number or one to three
alphanumeric characters (the first of which must
be alphabetic) which will be converted to radix-=50
(see Section 5.5.4 of the MACRO chapter). dval is
a decimal value preceded by an exclamation point.

January 1976 2-10



System Communication

Throughout this manual, the /s:oval construction
is used; however, the /sldval format is always
valid, Generally, these switches and their
associated values, if any, should follow the
device and filename to which they apply.

If the same switch is to be repeated several times
with different values (e.g., /L:MEB/L:TTM/L:CND to
MACRO) the line may be abbreviated as
/LsMEB:TTM:CND; octal, RAD50, and decimal values
may be mixed.

= if required, is a delimiter that separates the out-
put and input fields. The < sign may be used in
place of the = sign. The separator can be omitted
entirely if there are no output files.

NOTE

As illustrated in the general format of
a command line, the command 1line
consists of an output list, a separator
(= or <), and an input list.
Omission of a device specification in
either the input or output list is han-
dled as follows:

DK: is assumed if the first file in a
list has no explicit device., DK (or the
device associated with the first file)
is default wuntil another device is
indicated; that device then becomes
default until a new one is used, and so
on. If the following command is
entered, for example, to MACRO:

*#OTL:FIRST. OBJ, LP:=TASK. 1, RK1:TRSK. 2. TASK. =

it is interpreted as though all devices
had been indicated as follows:
*DTi:FIEST.UEJ,LP:=DK:THSKA1;&K1:THSH.2;RK1:THSK.?

2.6 KEYBOARD COMMUNICATION (KMON)

Special function keys and keyboard commands allow the user to
communicate with the RT-11 monitor and allocate system
resources, manipulate memory images, start programs, and use
foreground/background services.

The special functions of certain terminal keys used for communication
with the Keyboard Monitor are explained in Table 2~4, Note that in the
F/B system, the Keyhoard Monitor always runs as a background job.

CTRL commands are entered by holding the CTRL key down while typing
the appropriate letter,

2-11 January 1976



System Communication

Table 2-4
Special Function Keys

Key

Function

CTRL A

CTRL B

CTRL E

CTRL F

Valid when the monitor GT ON command has been typed and
the display 4is in use. The command does not echo on
the terminal. It is used after a CTRL S has been typed
to effectively page output. Console output is
permitted to resume until the screen is completely
filled; text previously displayed is scrolled upward
off the screen. CTRL A has no special meaning if GT ON
is not in effect or if a SET TTY NOPAGE command has
been given (see Section 2.7.2.8).

Under the F/B Monitor echoes B> on the terminal (unless
output is already coming from the background job) and
causes all keyboard input to be directed to the
background Jjob. At least one line of output will be
taken from the background job (the foreground job has
priority, and control will revert to it if it has
output). All typed input will be directed to the
background job until control is redirected to the
foreground job (via CTRL F). CTRL B has no special
meaning when used under a Single-Job Monitor or when a
SET TTY NOFB command has been issued (see Section
2,7.2.8).

CTRL C echoes as "C on the terminal and is wused to
interrupt program execution and return control to the
keyboard monitor. If the program to be interrupted is
waiting for terminal input, or is using the TT handler
for input, typing one CTRL C is gsufficient to interrupt
execution; in all other cases, two-CTRL Cs are neces-
sary. Note that under the F/B Monitor, the job which is
currently receiving input will be the job that is stopped
(determined by whether a CTRL F or CTRL B was most re-
cently typed). To ensure that the command is directed
to the proper job, type CTRL B or CTRL F before typing
CTRL C.

Valid when the monitor GT ON command has been typed ancl
the display is in use, The command does not echo on
the terminal, but causes all terminal output to appear
on both the display screen and the console terminal
simultaneously. A second CTRL E disables console
terminal output. CTRL E has no special meaning if
GT ON is not in effect.

Under the F/B Monitor echoes F> on the terminal and
instructs that all keyboard input be directed to the
foreground job and all output be taken from the
foreground job. If no foreground job exists, F? is
printed and control is directed to the background job.
Otherwise, control remains with the foreground job
until redirected to the background job (via CTRL B) or
until the foreground job terminates. CTRL F has no
special meaning when used under a Single-Job Monitor,
or when a SET TTY NOFB command has been used (see
Section 2.7.2.8).

2-12




System Communication

Table 2-4 (Cont.)
Special Function Keys

Key Function

CTRL O Echoes 10 on the terminal and causes suppression of
teleprinter output while continuing program execution,
Teleprinter output is re-enabled when one of the
following occurs:

1. A second CTRL O is typed,
2. A return to the monitor occurs, or

3. The running program issues a « RCTRLO
directive (see Chapter 9). (RT-11 system
programs reset CTRL O to the echoing state
each time a new command string is entered.)

CTRL Q Does not echo, Resumes printing characters on the
terminal from the point at which printing was
previously stopped (via CTRL S). CTRL Q has no special
meaning if a SET TTY NOPAGE command has been used (see
Section 2,7.2.8).,

CTRL S Does not echo. Temporarily suspends output to the
terminal wuntil a CTRL Q is typed. If GT ON is in
effect, each subsequent CTRL A causes output to proceed
until the screen has been refilled once. This feature
allows users with high-speed terminals to f£fill the
display screen, stop output with CTRL S, read the
screen, and then continue with CTRL Q@ or CTRL A,
(Typing CTRL C in this case also continues output.)
Under the F/B Monitor, CTRIL S has no special meaning if
a SET TTY NOPAGE has been used,

CTRL U Deletes the current input 1line and echoes as 1{U
followed by a carriage return at the terminal. (The
current line is defined to be all characters back to,
but not including, the most recent line feed, CTRL C or
CTRL 2,)

CTRL 2 Echoes 412 on the terminal and terminates input when
used with the terminal device handler (TT). The CTRL 2
itself does not appear in the input buffer. If TT is
not being used, CTRL Z has no special meaning.

RUBOUT Deletes the last character from the current line and
echoes a backslash plus the character deleted. Each
succeeding RUBOUT deletes and echoes another character.
An enclosing backslash is printed when a key other than
RUBOUT is typed. This erasure is done right to left up
to the beginning of the current line.

2.6.1 Foreground/Background Terminal I/0

It is important to note that console input and output under F/B are
independent functions; input can be typed to one job while output is
printed by another. The user may be in the process of typing input to
one job when the other job is ready to print on the terminal. In
this case, the job which is ready to print interrupts the user
and prints the message on the terminal; input control is not re-
directed to this job, however, unless a CTRL B or CTRL F is explicitly
typed. If input is typed to one job while the other has output
2-13




System Communication

control, echo of the input is suppressed until the job accepting input
gains output control; at this point all accumulated input is echoed.

If the foreground job and background 3job are both ready to print
output at the same time, the foreground job has priority. Output from
the foreground job prints until a line feed is encountered, at which
point output from the background job prints until a line feed is
encountered, and so forth.

When the foreground job terminates, control reverts automatically to
the background job.

2.6.2 Type-Ahead

The monitor has a type-ahead feature which allows terminal input to be
entered while a program is executing. For example:

R FIF
+DT1: TRFE=FR:

DT1: L

+13-FEE-74

TRFE 78 13-FEE-74
456 FREE ELOCKS

While the first command line is executing, the second line (DTl:/L) is
entered by the user, This terminal input is stored in a buffer and
used when the first operation has completed.

If a single CTRL C is typed while in this mode, it 1is put into the
buffer. The program currently executing exits when a terminal input
request needs to be satisfied. A double CTRL C returns control to the
monitor immediately.

If type-ahead input exceeds 80 characters, the terminal bell rings and
no characters are accepted until part of the type—ahead buffer is used
by a program or characters are deleted. No input is lost. Type-ahead
is particularly useful in specifying multiple command lines to system
programs, as shown in the preceding example. If a job 1is terminated
by typing two CTRL C's, any unprocessed type-ahead is discarded.

NOTE

If type-ahead is wused in conjunction
with EDIT or BASIC, there is no terminal
echo of the characters but they are
stored in the buffer until a new command
is needed. The characters are echoed
only when actually used by the program.

2.7 KEYBOARD COMMANDS

Keyboard commands allow the user to communicate with the monitor.
Keyboard commands can be abbreviated; optional characters in a
command are delimited (in this section only) by braces. Keyboard
commands require at least one space between the command and the first
argument. All command lines are terminated by a carriage return.

2-14



System Communication

All commands, with the exception of those described in Section 2.7.5,
may be used under either the Single-Job or F/B Monitor. The commands
described in Section 2.7.5 apply only to the F/B Monitor.

NOTE

Any reference made to "the background
job" applies as well to the Single-Job
Monitor, since the background job in a
F/B  system is equivalent to the
single=job environment in its normal
state,

2.7,1 Commands to Control Terminal I/O (GT ON and GT OFF)

GT ON/GT OFF

The GT ON and GT OFF commands are used to enable and disable the
scroller (VT-1ll display hardware). GT ON causes the display screen to
replace the console as the terminal output device, Switch options
allow the user to control the number of lines to appear on the screen
and to position the first line wvertically. Output appears on the
display in the same format as it would on the console (i.e., output,
text, and commands are displayed in the order in which they occur).
GT ON is not permitted in an 8K configuration.

The form of the GT ON command is:

Gr ON{/L:n}{/T:n}

where:

/L:n represents an optional switch setting indicating the
number of lines of text to display; the suggested
range is:

12" screen 1<{=n<{=37 octal (31 decimal)
(GT40, DEClab)
17" screen 1<{=n{=50 octal (40 decimal)
(GT44)
/T:n represents an optional switch setting indicating the

top position of the scroll display; the suggested
range is:

12" screen 1<{=n<=1350 octal (744 decimal)
(GT40, DEClab)

2-15



System Communication

17" screen 1<{=n<¢=1750 octal (1000
(GT44) decimal)

If no switches are specified, a test for the screen size is performed
and default values are automatically assigned as follows:

12" screen /L:37 (31 decimal)
(GT40, DEClab) /T:1350 (744 decimal)

17" screen /L250 (40 decimal)
(GT44) /T:1750 (1000 decimal)

Line length is always set to 72 for 12" screen and 80 for 17" screen.
Once the display has been activated with the GT ON command, CTRL A,
CTRL S, CTRL E and CTRL Q can be used to control scrolling behavior.
These commands are described in Section 2.6.

NOTE

ODT is one exception to the use of GT
ON. This system program has its own
terminal handler and cannot make use of
the display; output will appear only on
the console terminal whenever ODT is
running.

The GT OFF command clears +t+he display and resumes output on the
teleprinter. The command format is:

GT OFF

If GT ON and GT OFF are used when no display hardware exists or when a
foreground job is active, the ?ILL CMD? messadge is printed,

2.7.2 Commands to Allocate System Resources

DATE

2.7.2,1 DATE Command - The DATE command enters the indicated date to
the system, This date is then assigned to newly created files, new
device directory entries (which may be listed with PIP), and 1listing
output until a new DATE command is issued,

The form of the command is:
DAT{E} {dd-mmm—yy}

where dd-mmm-yy is the day, month and year to be entered. dd is a
decimal number in the range 1=-31; mmm is the first three characters of
the name of the month, and yy is a decimal number in the range 73-99.
If no argument is giwven, the current date is printed.

January 1976 , 2-16



System Communication

Examples:

DATE &1-FEE-T4 Enter the date 21-FEB-74 as the current
system date.

, DAT Print the current date.

21-FEEB-74

If the date is entered in an incorrect format, the ?DAT? error
message is printed.

TIME

2.7.2,2 TIME Command - The TIME command allows the user to find out
the current time of day kept by RT-=11l or to enter a new time of day.
If no KWll-L clock is present on the system, the ?NO CLOCK? errox
message is generated. If the time is entered in an incorrect format,
the ?TIM? nmessage is printed.

The form of the command is:

TIM{E} {hh:mm:ss}
where hh:mm:ss represents the hour, minute, and second. Time is
represented as hours, minutes, and seconds past midnight in 24-hour
format (e.g., 1:25:00 P.M. is entered as 13:25:00). If any of the
arguments are omitted, 0 is assumed. If no argument is given, the
current time of day is output.

Examples:

LTIM 8:15:2% Sets the time of day to 8 hours, 15
minutes and 23 seconds.

L TIM Approximately 10 minutes later, the

B8 2527 TIME command outputs this time.

LTIME 1g8:5 Sets the time of day to 18:05:00.

Under the F/B Monitor, after the time reaches 24:00, the time and date
will be reset when the user next issues a TIME command (or .GTIM pro-
grammed request). Time and date are not reset under the Single-Job
Monitor. Month and year are not updated under either monitor.

The clock rate is initially set to 60-cycle. Consult the RT-11 System
Generation Manual if conversion to a 50~cycle rate is necessary.

2-17 January 1976




System Communication

INITIALIZE

2.7.2.3 INITIALIZE Command - The INITIALIZE command is used to reset:
several background system tables and do a general "clean-up" of the
background area; it has no effect on the foreground job. In
particular, this command makes non-resident those handlers which were
not loaded (via LOAD), purges the background's I/O channels, disables
CTRL O, performs a hard reset, clears locations 40-53, resets the KMON
stack pointer, and under the F/B monitor performs an .UNLOCK.

Under the Single-Job Monitor a RESET instruction is done (see Chapter
9). Under the F/B Monitor, I/0 is stopped by entering each busy de-
vice handler at a special abort entry point.

The form of the command is:

IN{ITIALIZE}
The INITIALIZE command can be used prior to running a user program, or
when the accumulated results of previously issued GET commands (see
Section 2.7.3.1) are to be discarded.

Example:

JIN Initializes system background job

ASSIGN

2.7.2.4 ASSIGN Command - The ASSIGN command assigns a user-defined
(logical) name as an alternate name for a physical device. This is
especially useful when a program refers to a device which is not
available on a certain system. Using the ASSIGN command, I/O can be
redirected to a device which is available. Only one logical name can
be assigned per ASSIGN command, but several ASSIGN commands (14
maximum) can be used to assign different names to the same device,
This command is also used to assign FORTRAN logical units to device
names,

N

January 1976 -13



System Communication

The form of the command is:

ASS {IGN} { {dev}: udev

where:

dev

udev

is any standard RT-1ll (physical) device name
(refer to Table 2-2) with the exception of DK and
sy,

is a 1-3 character alphanumeric (logical) name to
be used in a program to represent dev (if more
than three characters are given, only the tirst
three are actually used). DK and SY may be used
as logical device names.

is a delimiter character (can be a colon, equal
sign, and, if separating physical and logical
devices, space).

The placement of the delimiter is very important in the ASSIGN
command; it must be placed exactly as shown in the following

examples:

ASSIGH DTL INP Physical device DT1 is assigned the

logical device name INP, Whenever a
reference to INP: is encountered,
device DT1l: is used.

.ASSIGN DT3:DK Physical device name DT3 is assigried the

default device name DK. Whenever DK is
reterenced or defaulted to, DT3 is used.
(Note that the initial assignment of DK
is thus changed.)

CASSIGH LP=3 FORTRAN logical wunit 9 becomes the

physical device name LP. All references
to unit 9 wuse the 1line printer for
output.

Assignment of logical names to logical names is not allowed.

If only a logical device name is indicated in the command 1line, that
particular assignment (only) is removed. Thus:

.RASSIGH 3 Deassigns the logical name 9 from its
physical device (LP, in the case above).
.R55IGN =DK Removes assignment of logical name DK

from its physical device (DT3, in the
case above).

If neither a physical device name nor a logical device name is
indicated, all assignments to all devices are removed.

. RS5IGMH

All previous logical device assignments
are removed.

2-19 January 1976



System Communication

CLOSE

2.7.2.5 CLOSE Command - The CLOSE command causes all currently open
output files in 'the background job to become permanent files., If a
tentative open file is not made permanent, it will eventually be
deleted. The CLOSE command is most often used after CTRL C has been
typed to abort a background job and to preserve any new files that job
had open prior to the CTRL C; it has no effect on a foreground job.

The form of the command is:
CLO{SE}

The CLOSE command makes temporary directory entries permanent.

Example:

R OERIT The Editor has a temporary
+EWNTESTS$ file open (TEXT), which is
+*IRECDES preserved by .CLOSE,

0

CLOSE

LOAD

2,7.2.6 LOAD Command = The LOAD command is wused to make a device
handler resident for use with background and foreground jobs.
Execution is faster when a handler is resident, although memory area
for the handler must be allocated. Any device handler to be used by a
foreground job must be loaded before it can be used.

The form of the command is:

LOA{Q} dev{,dev=B}{;dev=F,...}

where:
dev represents any legal RT-1ll device name.
= represents a delimiter, denoting device ownership.
B represents the background job.
F represents the foreground job.,

The dev=F (and dev=B) construction is wvalid only under the
Foreground/Background system, When used under the Single-Job Monitor,
the ?ILL EV? error message occurs,

2-20



System Communication

A device may be owned exclusively by either the foreground or
background job. This may be used, for example, to prevent the I/0O of
two different jobs from being intermixed on the same non-file
structured device., For example:

o L QYA PRy PRy Ll The papertape punch belongs to the
background job while the paper tape
reader 1is available for wuse by
either the background or foreground
job; the line printer is owned by
the foreground Jjob. All three
handlers are made resident in
memory.

Different units of the same random-access device controller may be owned
by different jobs. Thus, for example, DTl may belong to the background
while DTS5 may belong to the foreground job. If no ownership is
indicated, the device is available for public use.

To change ownership of a device, another LOAD command may be used; it
is not necessary to first UNLOAD the device. For example, if RK1l has
been assigned to the foreground job as in the example above, the
command :

o LD RINL =B
reassigns it to the background job.
The system unit of the system device cannot be assigned ownership, and
attempts to do so will be ignored. Other units of the same type as
the system device, however, can be assigned ownership.
LOAD is valid for use with user-assigned names. For example:

SASETEN RIZTXY

el XY

If the Single-Job, DECtape~based Monitor is being used, loading the
necessary device handlers into memory can significantly improve the
throughput of the system, since no handlers need to be 1loaded
dynamically (in other words, they need not be loaded, as required,
from the DECtape).

UNLOAD

2,7.2.7 UNLOAD Command = The UNLOAD command is used to make handlers
that were previously LOADed non-resident, freeing the memory they were
using.

2=-21 January 1976



System Communication

The form of the command is:
UNL{OAD} dev{,dev,...}
where:
dev represents any legal RT-1l device name.

UNLOAD clears ownership for all units of an indicated device type.
For example, typing:

. UNL EEZ
clears all units of RK. (A request to unload the system device
handler clears ownership for any assigned units for that device, but
the handler remains resident.)
Any memory freed is returned to a free memory 1list and eventually
reclaimed for the background job after the UNLOAD command is given.
UNLOAD is not permitted if the foreground job is running. Such an
action might cause a handler which is needed by the foreground job to
become non-resident.
Example:

. UNLORLD LF, FF The lineprinter and paper tape
punch handlers are released and the
area which they used is freed.

A special function of this command is to remove a terminated
foreground job and reclaim memory, since the space occupied by the
foreground job is not automatically returned to the free memory list

when it finishes. In this instance, the device name FG is used to
specify the foreground job. For example:

CUNL FG
FG can be mixed with other device names.

However, if, for example, DT2 has been assigned the name FG and loaded
into memory as follows:

SEAESLGEN DT2FG
LT FGE

the command:
UL D F

causes the foreground job, not DT2, to be unloaded. To unload DT2,
this command must be typed:

. UNLORD BTZ



System Communication

SET

2,7.2.8 BSET Command - The SET command is wused to change device
handlex characteristics and certain system configuration parameters.

The form of the command is:

SET dev:{NO}option=value{,{No}option=value,..}

where:
dev: represents any legal RT=-1ll1 physical device
name (and in addition, TTY and USR).
{No}option is the feature or characteristic to be
altered.
=value is a decimal number required in some cases.

A space may be used in place of or in.addition to the colon, equal
sign, or comma. Note that the device indicated (with the exception of

TTY and USR) must be a physical device name and is not affected by logical
device name assignments which may be active. The name of the
characteristic or feature to be altered must be legal for the
indicated device (see Table 2-5) and may not be abbreviated.

The SET command locates the file SY:dev,SYS and permanently modifies
it. No modification is done if the command entered is not completely
valid. If a handler has already been loaded when a SET command is
issued for 1it, the modifications will not take effect until the
handler is unloaded and a fresh copy called in from the system device.

Table 2-5 lists the system characteristics and parameters which may be
altered (those modes designated as "normal" are the modes as set in the
distribution copies of the drivers):

Table 2-5
SET Command Options
Device Option Alteration
LP CR Allows carriage returns to be sent to the

printer. The CR option should be set for any
FORTRAN program using formatted I/0O, to allow
the overstriking capability for any line print-
er, and when using the LS11 or LP05 line print-
ers (since the last line in the buffer mav
otherwise be lost). This is the normal mode.

Lp NOCR Inhibits sending carriage returns to the line
printer. The line printer controller causes a
line feed to perform the functions or a carriage
return, so using this option produces a signi-
ficant increase in printing speed on LP11l print-
ers.

LP CTRL Causes all characters, including nonprinting con-
trol characters, to be passed to the line printer.
This mode may be used for LS11 line printers.
(Other line printers will print space for control
characters.)

(continued on next page)
2-23 January 1976




System Communication

Table 2-5 (Cont.)
SET Command Options

Device Option Alteration

Lp NOCTRL Ignores nonprinting control characters. This is
the normal mode.

LP FORMO Causes a form feed to be issued before a
request to print block =zero. This is the
normal mode.

LP NOFORMO Turns off FORMO mode.

LP HANG Causes the handler to wait for user
correction if the line printer is not ready
or becomes not ready during printing, This
is the normal mode.

New users should note that when expecting
output from the line printer and it appears
as though the system is not responding or is
in an idle state, the line printer should be
checked to see if it is on and ready to
print.

LP NOHANG Generates an immediate error if the 1line
printer is not ready.

LP LC Allows lower case characters to be sent to
the printer. This option should be used if
the printer has a lower case character set.

LP NOLC Causes lower case characters to be translated
to upper case before printing. This is the
normal mode.

LP WIDTH=n Sets the line printer width to n, where' n is
a number between 30 and 255. Any characters
printed past column n are ignored. The NO
modifier is not permitted.

- CR CODE=n Modifies the card reader handler to use
either the DEC 026 or the DEC 029 card codes
(refer to Appendix H). n must be either 26 or
29, The NO modifier is not permitted.,

CR CRLF Causes a carriage return/line feed to be
appended to each card image. This is the
normal mode.

CR NOCRLF Transfers each card image without appending a
carriage return/line feed.

CR HANG Causes the handler to wait for user
correction 1f the reader is not ready at the
start of a transfer, This is the normal
mode.,

CR NOHANG Generates an immediate error if the device is
not ready at the start of a transfer. Note
that the handler will wait regardless of how
the option is set if the reader becomes "not
ready" during a transfer (i.e., the input
hopper is empty, but an end-of-file card has
not yet been read).

January 1976 2-24 (continued on next page)



System Communication

rable 2-5 (Cont.)
SET Command Options

Device Option Alteration

CR IMAGE Causes each card column to be stored as a
12-bit binary number, one column per word.
The CODE option has no effect in IMAGE mode.
The format of the 12-bit binary number is:
PDP-11 WORD

15 14 13 12 1 10 9 8 7 [ 5 4 3 2 1 0

UNUSED (ALWAYS 0) |ZONE|ZONE|ZONE|ZONE|ZONE(ZONE ZONE|ZONE | ZONE|ZONE | ZONE| ZONE
12 1 0 1 2 3 4 5 6 7 8 9

This format allows binary card images to be
read and is especially useful if a special
encoding of punch combinations is to be used.
Mark-sense cards may be read in IMAGE mode.

CR NOIMAGE Allows the normal translation (as specified
by the CODE option) to take place; data is
packed one column per byte, Invalid punch
combinations are translated into the error
character, ASCII "\" (backslash), which is
octal code 134. This is the normal mode.

CR TRIM Causes trailing blanks to be removed from
each card read, It is not recommended that
TRIM and NOCRLF be used together since card
boundaries will be difficult to find., This
is the normal mode.

CR NOTRIM Transfers a full 80 characters per card.

CT RAW Causes the cassette handler to perform a
read-after-write check for every record
written, and retry if an output error
occurred, If three retries fail, an output
error is detected.

CT NORAW Causes the cassette handler to write every
record directly without reading it back for
verification. This significantly increases
transfer rates at the risk of increased error
rates, Normal mode is NORAW,

The following options, with the exception of HOLD/NOHOLD and
COPY/NOCOPY, are available in the Foreground/Background System only;
HOLD/NOHOLD and COPY/NOCOPY are available in both systems. These
options are not permanent, and must be reissued whenever the monitor
is re-bootstrapped. They can be made permanent by modifying the moni-
tor as described in Chapter 2 of the RT-1l1 Software Support Manual.
(Note that the device specification is TTY, not TT, because the hand-
ler itself is not changed.)

TTY COPY Enables use of the auto-print mode of the
VT50 copier option, if present. The com-
mand is a no-op for any terminal other than
the VT50, but a "}" character may be printed
on the terminal. Consult the VT50 Video Ter-
minal Programmer's Manual for more infor-
mation.

TTY NOCOPY Disables use of the auto-print mode of the
VT50 copier option, if present. The command
is a no-op for any terminal other than the
VT50, but a " " character may be printed on
the terminal. This is the normal mode.

2-25 (continued on next page)
January 1976



System Communication

Table 2-5 (Cont.)
SET Command Options

Device

Option

Alteration

TTY

TTY

TTY

TTY

TTY

TTY

TTY

TTY

TTY

CRLF

NOCRLF

FB

NOFB

FORM

NOFORM

HOLD

NOHOLD

PAGE

Causes the monitor to issue a carriage
return/line feed on the console terminal
whenever it attempts to type past the right
margin (as set by the WIDTH option). This is
the normal mode.

Causes no special action to be taken at the
right margin,

Causes the monitor to treat CTRL B and CTRL F
characters as background and foreground
program control characters and does not
transmit them to the user program., This is
the normal mode.

Causes CTRL B and CTRL F to have no special
meaning.

NOTE

SET TTY NOFB is issued to KMON,
(which runs as a background job)
and disables all communication with
the foreground job. To enable
communication with the foreground
job, issue the command SET TTY FB.

Indicates that the console terminal is
capable of executing hardware form feeds.

Causes the monitor to simulate form feeds by
typing eight line feeds. This is the normal
mode,

Enables use of the hold screen mode of op-
eration for the VT50 terminal. The commancl
is a no-op for any terminal other than the
VT50, but a "[" character may be printed on
on the terminal. The command is wvalid for
F/B and Single-Job Monitors. Consult the
VT50 Video Terminal Programmer's Manual for
more information.

Disables use of the hold screen mode of op-
eration for the VTS50 terminal. The command
is a no-op for any terminal other than the
VT50, but a "\" character may be printed on
the terminal. This is the normal mode.

Causes the monitor to treat CTRL S and CTRL ¢
characters as terminal output hold and unhold
flags, and does not transmit them to the user
program., This is the normal mode.

(continued on next page)




System Communication

Table 2-5 (Cont.)
SET Command Options

Device Option Alteration

TTY NOPAGE Causes CTRL S and CTRL Q to have no special
meaning.

TTY SCOPE Causes the monitor to echo RUBOUTS as

backspace~space-backspace. This mode should
be used when the console is a VT05/VT50 or
when GT ON is in effect.

TTY NOSCOPE Causes the monitor to echo RUBOUTs as
backslash followed by the character deleted.
This is the normal mode.

TTY TAB Indicates that the console terminal is
capable of .executing hardware tabs.

TTY NOTAB Causes the monitor to simulate tab stops
every eight positions. The normal mode is
NOTAB, VT05/VT50 terminals generally have
hardware tabs.

TTY WIDTH=n Sets the width of the console terminal to n
positions, for the use of the CRLF option., n
must be in the range 30-~255 (decimal). The
width is initially set to 72.

The following variant of the SET command is wused to prevent the
background job from ever placing the USR in a swapping state (note
that USR replaces a device specification in the command line):

SET USR {No} SWAP

This is useful when running on a DECtape based system, or when running
a foreground job which requires the USR but has no memory allocated
into which to read it. When the monitor is bootstrapped, it is in the
SWAP condition, i.e., the background may place the USR in a swapping
state via a SETTOP.

The Single-Job Monitor behaves as though the following options are
set: NOTAB, NOFORM, PAGE, NOCRLF, NOSCOPE, NOHOLD,

2-27




system Communication

2.7.3 Commands to Manipulate Memory Images

GET

2.7.3.1 GET Command - The GET command (valid for use with a
background job only) loads the specified memory image file (not ASCII
or object) into memory from the indicated device.

The form of the GET command is:

GE{T} dev:filnam.ext

where:
dev: represents any legal RT-11 device name. If a
device is not specified, DK: is assumed. Note
that devices MT and CT are not block-replaceable
devices and therefore cannot be used in a GET
command .
filnam.ext represents a valid RT-11 filename and extension.

If an extension is not specified, the extension
+SAV is assumed.

The GET command is typically used to load a program into memory for
modification and/or debugging. The GET command can also be used in
conjunction with the Base, Examine, Deposit, and START commands to
test patches, and can be used with SAVE to make patches permanent,
Multiple GETs can be used to combine programs. Thuss:

Loads ODT into memory

. GET ODT. SAY
Loads PROG,.SAV into
. GET PROG memory with ODT
. 5TART (ODTs starting address) Starts execution with ODT

(see Chapter 8).

The GET command cannot be used to load overlay segments of programs;
it may only be used to load the root segment (that part which will not
be overlaid; refer to Chapter 6, Linker).

Multiple GETs can be used to build a memory image of several programs.
If identical locations are required by any of the programs, the later
programs overlay the previous ones.

Examples:

GET DT3:FILEi. SAY Loads the file FILEl.SAV into memory
from DECtape unit 3.

GET MARME1 Loads the file NAMEl,.SAV from device DK,

January 1976 2-28



System Communication

BASE

2.7.3.2 Base Command - The B command sets a relocation base. This
relocation base is added to the address specified in subsequent
Examine or Deposit commands to obtain the address of the location to
be referenced. This command is useful when referencing linked modules
with the Examine and Deposit commands. The base address can be set to
the address where the module of interest is loaded. The form of the
command is:

B {1ocation}
where:

location represents an octal address used as a base address for
subsequent Examine and Deposit commands.

NOTE
A space must follow the B command
even if an address is not specified
(the B{space) command is equivalent
to B 0).

Any non—-octal digit terminates an address. If location
is odd, it is rounded down by one to an even address.

The base is cleared whenever user program execution is initiated.

Examples:
CEA Sets base to 0 (A represents space).
. B Zoa Sets base to 200.
. B z81 Sets base to 200,

2-29 January 1976



System Communication

EXAMINE

2.7.3.3 Examine Command - The E command prints the contents of the
specified location(s) in octal on the console terminal, The form of
the Examine command is:

E location m{-location n}
where:s

location represents an octal address which is added +to the
relocation base value (the value set by the B Command)
to get the actual address examined. Any non-octal
digit terminates an address. An odd address 1is
truncated to become an even address.

If more than one location is specified (location m-location n), the
contents of location m through location n inclusive are printed. The
second location specified (location n) must not be less than the first
location specified, otherwise an error message is printed. If no
location is specified, the contents of 1location 0 are printed,
Examination of locations outside the background area is illegal.

Examples:

E 1860 Prints contents of location 1000 (added
4@l to the base value if other than 0).

E 18681-1681¢2

27401 67624 127460 0600OE GROAGE QOARED

Prints the contents of locations 1000
(plus the base value if other than 0)
through 1013.

¥}

DEPOSIT

2.7.3.4 Deposit Command -~ The Deposit command deposits the specified
value(s) starting at the location given.,

The form of the command is:

D location=va1uel{valuez,...valuen}

January 1976 2=30



System Communication

where:

location represents an octal address which is added to the
relocation base value to get the actual address where
the values are deposited. Any non=-octal digit is
accepted as a terminator of an address.

value represents the new contents of the location. 0 is
assumed if a value is not indicated.

If multiple values are specified (valuel,...,valuen), they are
deposited beginning at the location specified. The DEPOSIT command
accepts word or byte addresses but executes the command as though a
word address was specified. An odd address is truncated by one to an
even address. All values are stored as word quantities.

Any character that is not an octal digit may be used to separate the

locations and values in a DEPOSIT command. However, two (or more)
non-octal separators cause 0's to be deposited at the location
specified (and those following). For example:

.D 56,,, Deposits 0's in locations 56, 60, and 62.
The user should be aware of situations like the above, which causes

system failure since the terminal vector (location 60) is zeroed.

An error results when the address specified references a location
outside the background job's area.

Examples:

D 18E6=3785 Deposits 3705 into location 1000
.E 1684886 Sets relocation base to 1000

. 1588=2583 Puts 2503 into location 2500

.E @ Resets base to 0

SAVE

2.7.3.5 SAVE Command - The SAVE command writes specified user memory

~areas to a named file and device in save image format. Memory is
written from location 0 to the highest memory address specified by the
parameter list or to the program high limit (location 50 in the system
communication area).

The SAVE command does not write the overlay segments of programs; it
saves only the root segment (refer to Chapter 6, Linker).

The form of the command is:

SAV{E} dev:filnam,ext {parameters}

where:
dev: represents one of the standard RT-11 block-replaceable
device names, If no device 1is specified, DK is
assumed.,
2-31

January 1976



System Communication

file.ext represents the name to be assigned to the file being
saved. If the file name is omitted, an error message
is output. If no extension is specified, the extension
«SAV is used.

parameters represent memory locations to be saved. RT-11 transfers
memory in 256-word blocks beginning on boundaries that
are multiples of 256 (decimal). If the locations speci-
fied make a block of less than 256 words, enough addi-
tional locations are transferred to make a 256-word block.

Parameters can be specified in the following format:

areal ,areal—-arean
where:
areal represent an octal number (or numbers
area2—-arean separated by dashes). If more than one number

is sgpecified, the second number must Dbe
greater than the first.

The start address and the Job Status Word are given the default value
0 and the stack is set to 1000. If the user wants to change these or
any of the following addresses, he must first use the DEPOSIT command
to alter them and then SAVE the correct areas:

Area Location
Start address 40
Stack 42
JSW 44
USR address 46
High address 50
Fill characters 56

If the values of the addresses are changed, it 1is the user's
responsibility to reset them to their default values. See Chapter 9
for more information concerning these addresses.

Examples:

.SAYE FILEL 1006606-110680, 1466808-141008
Saves locations 10000 (8) through
11777(8) (11000 starts the first word of
a new block, therefore the whole block,
up to 12000, 4is stored) and 14000(8)
through 14777(8) on DK with the name
FILEl.SAV,

. SAYE DT1:NAM. NEW 186006
Saves locations 10000 through 10777 on
DT1l: with the name NAM.NEW,

.44 2a080

. SAY SY PRI 1686808-5777
Sets the reenter bit in the JSW and
saves locations 1000 through 5777.

January 1976 2-32



System Communication

2,7.4 Commands to Start a Program

RUN

2.7.4.1 RUN Command = The RUN command (valid for use with a
background job only) loads the specified memory image file into memory
and starts execution at the start address specified in location 40,
Under the F/B system, 10 words of user stack area are required to
start a user program, and the stack address (location 42) must be
initialized to some part of memory where these 10 words will not
modify it.

The form of the command is:
RU{N} dev:filnam,ext
where:

dev: is any standard device name specifying a
block-replaceable device. If dev: is not specified,
the device is assumed to be DK. Note that devices MT
and CcT are not block-replaceable devices and
therefore cannot be used in a RUN command.

filnam.ext is the file to be executed. If an extension is not
specified, the extension .SAV is assumed,

The RUN command is equivalent to a GET command followed by a START
command (with no address specified).

NOTE

If a file containing overlays is to be RUN from
a device other than the system device, the handler
for that device must be loaded (see Section 2.7.2.6)
before the RUN command is issued.

Examples:

.RUN DT1:5RCH. 5AY Loads and executes the file SRCH.SAV

from DT1.

. RUN PRCG Loads PROG,.SAV from DK and executes the
program,

. GET FROG1L Loads PROG1l,SAV from device DK without
executing it. Then combines PROGl and

. RUN FROGEZ PROG2.SAV in memory and begins execution

at the starting address for PROG2.

2-33



System Communication

2.7.4.2 R Command - This command (valid for use with the background
job only) is similar to the RUN command except that the file specified
must be on the system device (SYs).
The form of the command is:

R filnam.ext

No device may be specified. If an extension is not given, the
extension .SAV is assumed,

Examples:
LR OHYZ. sAY Loads and executes XYZ.SAV from SY,.

. R SRC Loads and executes SRC,SAV from SY.

START

2.7.4.3 START Command - The START command begins execution of the
program currently in memory (i.e., loaded via the GET command) at the
specified address. START dces not clear or reset memory areas.

The form of the command is:
ST{ART} {address}
where:

address is an octal number representing any lé-bit
address. If the address is omitted, or if 0 is
given, the starting address in location 40 will be
used.

If the address given does not exist or is not an even address, a trap
to location 4 occurs. In this case a monitor error message appears.
If no address is given, the program's start address from location 40
is used.

July 1975 2-34



System Communication

Examples:

CGET FELE L Loads FILE.l into memory and starts execution
SETART at location 1000,

GET FILEM Loads FILEA.SAV, then combines FILEA.SAV with
FILEB,.SAV and starts execution at FILEB's
COET FILER start address.

S 5T

REENTER

2.7.4.4 REENTER Command - The REENTER command starts the program at
its reentry address (the start address minus two). REENTER does not
clear or reset any memory areas and is generally used to avoid
reloading the same program for repetitive execution. It can be used
to return to a program whose execution was stopped with a CTRL C.

The form of the command is:
RE {ENTER}

If the reenter bit (bit 13) in the Job Status Word (location 44) is
not set, the REENTER command is illegal.

For most system programs, the REENTER command restarts the program at
the command level.

If desired, the reentry point in a user program can branch to a
routine which initializes the tables and stack, fetches device
handlers etc., and then continue normal operation.

Example:
R PIF CTRL C interrupts the PIP
#,/F directory listing and transfers
MONITE. S¥& control to the monitor level.
[directory prints] REENTER returns control to PIP,

S X o

- e typed)
EEENTER

*

2,7.5 Commands Used Only in a Foreground/Background Environment
It is important to note that in order to control execution of a

foreground job, the commands in this section must be typed to KMON,
which is running as the background job. Thus, for example, to SUSPEND

2-35



System Communication

the foreground job, the user must be sure he is directing input to
KMON as follows:
Fa Foreground job is running. Control
(tB typed) is redirected to the background job
E> and PIP is called (the foreground
R PIF is still active). CTRL C stops PIP
*7C and starts KMON. The foreground
. SUSFEND job 1is suspended. (See Section
2,.7.5.2.)
FRUN
2.7.5.1 FRUN Command = The FRUN command is used to initiate
foreground jobs. FRUN will only run relocatable files produced with
the Linker /R switch (using the Linker supplied with RT-11l, Version

2) . Any handlers used by a foreground job must be in memory.

The form of the command is:

FRU{N} dev:file.ext {/N :n} {/s :n} {/P}

where:

dev:

file.ext

/N:n or /Nin

/S:n or /Sin

represents a block replaceable RT-11l device, If
dev: 1is not specified, DK: is assumed.
represents the job to be executed. The default

extension for a foreground job is .REL.

repregsents an optional switch used to allocate n

words (not bytes) over and above the actual
program size., (If running a FORTRAN program, a
special formula is used to determine n. Refer to

Appendix G for this information.)

represents an optional switch used to allocate n
words (not bytes) for stack space. Normally,
stack space is set by default to 128 words and is
placed in memory below the program. To change the
stack size, use /S:n; the stack is still placed in
memory under the program, To relocate the stack
area, use an .ASECT (see Chapter 5) to define the
start of the user stack in location 42, This
overrides the /S switch.

represent.s an optional switch (at the end of the
FRUN command) for debugging purposes. When the
carriage return is typed, FRUN prints the load
address of the program, but does not start the

2-36



System Communication

program, The foreground job must be explicitly
started with the RSUME command (see Section
2.7.5.3) . For example:

. FEUN DRTRAF
LOADED AT 125444

If ODT is used with the foreground job, this
feature provides the means for determining where
the job actually was loaded.

The program is started when the RSUME command is
given, allowing the programmer to examine or
modify the program before starting it.

If another foreground job is active when the FRUN command is given, an
error message is printed, If a terminated foreground job is occupying
memory, that region is first reclaimed., Then if the file indicated is
found and will fit in memory, the 3job is installed and started
immediately. FRUN destroys the background job's memory image.

Examples:
.FRUN F1 Runs program Fl,REL stored on device DK.
.FRU DT1:F2 Runs F2.REL which is on DTl.
SUSPEND

2,7.5.2 SUSPEND Cormand - The SUSPEND command is wused to stop
execution of the foreground job.

The form of the command is:

suS {PEND}
No arguments are required., Foreground I/0 transfers in progress will
be allowed to complete; however, no new I/0 requests will be issued
and no completion routines will be entered (see Chapter 9 for a
discussion of completion routines). Execution of the job can be
resumed only from the keyboard.
Example:

. SUSFEND Suspends execution of the foreground job currently
running,

2-37



System Communication

RSUME

2.7.5.3 RSUME Command - The RSUME command is used to resume execution
of the foreground job where it was suspended. Any completion routines
which were scheduled while the foreground was suspended are entered at
this time.

The form of the command is:

RSU{ME}
No arguments are required.
Example:
. RSU Resumes execution of the foreground job currently
suspended,

2.8 MONITOR ERROR MESSAGES

The following error messages indicate fatal conditions that can occur
during system boot:

Message Meaning

?B-1/0 ERROR An I/0 error occurred during system boot.
?B-NO BOOT ON VOLUME No bootstrap has been written on volume.
?B-~-NO MONITR.SYS No monitor exists on volume being booted.
?B-=NOT ENOUGH CORE There is not enough memory for the system

being booted (e.g., attempting to boot
F/B into 8K).

The following error messages are output by the Keyboard Monitor.

Message Meaning
¢ADDR? Address out of range in E or D command.
?DAT? The DATE command argument was illegal,

or no argument was given and the date
has not yet been set.

?ER RD OVLY? An I/0 error occurred while reading a
KMON overlay to process the current
command. This is a serious error,
indicating that the system file
MONITR.SYS is unreadable.

F? A CTRL F was typed under the F/B monitor
and no foreground job exists.

?F ACTIVE? Neither FRUN nor UNLOAD may be used when
a foreground job already exists and is
active,

?F1L NOT FND? File specified in R, RUN, GET, or FRUN

command not found.

?FILE? No file named where one is expected,
January 1976 2-38



System Communication

Message Meaning
?ILL CMD? Illegal Keyboard Monitor command or

command line too long.

?ILL DEV? Illegal or nonexistent device, or an
attempt was made to make a device
handler resident for use with a
foreground job (dev=F) when the
Single-Job Monitor was running.

?NO CLOCK? No KW1llL clock is available for the TIME
command,

?NO FG? A SUSPEND, RSUME, or UNLOAD FG command
was given, but no foreground job was in
memory.

?20VR COR? Attempt to GET or RUN a file that is too
big.

?PARAMS ? Bad parameters were typed to the SAVE
command,

?REL FIL I/O ER? Either the program requested is not a

REL file or a hardware error was
encountered trying to read or write the
file.

?SV FIL I/O ER? I/0 error on .SAV file in SAVE (output)
or R, RUN, or GET (input) command. Pos-
sible errors include end-of-file, hard
error, and channel not open.

?SY I/0 ER? I/0 error on system device (usually
reading or writing swap area).

?TIM? The TIME command argument was illegal.,

The following messages are output by the RT-1l Resident Monitor when
an unrecoverable error has occurred. Control passes to the Keyboard
Monitor. The program in which the error occurred cannot be restarted
with the RE command. To execute the program again, use the R or RUN
command .

The format for fatal monitor error messages is:

?M=-text PC where PC 1s the address+2 of the
location where the error occurred.

Note that ?M errors can be inhibited in certain cases by the use of
the .SERR macro; see Chapter 9 for details.

Message Meaning
?M=-BAD FETCH Either an error occurred while reading

in a device handler from SY, or the
address at which the handler was to be
loaded was illegal,

2-39 January 1976



System Communication

?M-DIR IO ERR

?M-DIR OVFLO

?M-DIR UNSAFE

?M=FP TRAP

?M-ILL ADDR

?M-ILL CHAN

?M-ILL EMT

?M~-ILL USR

?M-NO DEV

?M-OVLY ERR

?M-SWAP ERR

?M-SYS ERR

January 1976

An error occurred doing I/O in the
directory of a device (e.g., .ENTER on a
write-locked device).

No more directory segments were
available for expansion (occurs during
file creation (.ENTER)).

In F/B only, this message may appear in
addition to any of the other diagnostics
listed in this section. It indicates
that the error occurred while the USR
was updating a device directory. One or
more files on that device may be lost.

A floating-point exception trap
occurred, and the user program had no
«SFPA exception routine active (see
Chapter 9).

Under the F/B Monitor, an address
specified in a monitor call was odd or
was not within the job's limits.

A channel number was specified which was
too large,

An EMT was executed which did not exist;
i.e., the function code was out of
bounds.

The USR was called from a completion
routine. This error does not have a
soft return (i.e., L.SERR will not
inhibit this message; see Chapter 9).

A READ/WRITE operation was tried but no
device handler was in memory for it.

A user program with overlays failed to
successfully read an overlay.

A hard I/O0 error occurred while the
system was attempting to write a user
program to the system swap blocks.

This is usually caused by a write-
locked system device. Under the Single-
Job Monitor, this may cause the system
to halt.

An I/O error occurred while trying to
read KMON/USR into memory, indicating
that the monitor file is situated on the
system device in an area that has

developed one or more bad blocks. The
monitor prints the message and loops
trying to read KMON. The message 1is a

warning that the system device is bad.

2~40



System Communication

If, after several seconds, it is
apparent that attempts to read KMON are
failing, halt the processor. It may be
1mpossible to boot the volume because of
the bad area in the monitor file. Use
another system device to verify the bad
blocks and follow the recovery procedures
described in section 4.2.12.1 of Chapter

4,
?M-TRAP TO 4 The job has referenced illegal memory
?M=-TRAP TO 10 or device registers, an illegal instruc-

tion was used, stack overflow occurred,

a word instruction was executed with an
odd address, or a hardware problem caused
bus time-out traps through location 4.

If CSI errors occur and input was from the console terminal, an error
message is printed on the terminal.

Message Meaning
?DEV FUL? Output file will not fit.
?FIL NOT FND? Input file was not found,
?ILL CMD? Syntax error.,
?2ILL DEV? Device specified does not exist.

2.8.1 Monitor HALTS

There are two HALT instructions in the RT=11 V02 monitors, one each in
F/B and Single-Job. The Single-Job Monitor will halt only if I/0
errors occur during swap operations to the system device. If the S/J
Monitor halts, look for a write-locked system device,

The F/B Monitor will halt if a trap to location 4 occurs or if I/0
occurs while the system is performing critical operations from which
it cannot recover, If the F/B Monitor halts, 1look for use of

non-existent devices, traps from interrupt service routines, or
user~corrupted queue elements.,

The monitor halts can be detected by their address, which is high in
memory, above the resident base address (location 54).

When a monitor halt occurs, do not attempt to restart the system by
pressing CONTinue on the processor; the system must be rebooted.

2-41 January 1976






CHAPTER 3

TEXT EDITOR

The Text Editor (EDIT) is used to create and modify ASCII source files
so that these files can be used as input to other system programs such
as the assembler or BASIC. Controlled by user commands from the
keyboard, EDIT reads ASCII files from a storage device, makes
specified changes and writes ASCII files to a storage device or lists
them on the line printer or console terminal. EDIT allows efficient
use of VT-1ll display hardware, if this is part of the system
configuration.

The Editor considers a file to be divided into logical wunits called
pages. A page of text is generally 50-60 lines long (delimited by
form feed characters) and corresponds approximately to a physical page
of a program 1listing. The Editor reads one page of text at a time
from the input file into its internal buffers where the page becomes
available for editing. Editing commands are then used to:

Locate text to be changed,
Execute and verify the changes,
Output a page of text to the output file,

List an edited page on the line printer or console terminal.

3.1 CALLING AND USING EDIT
To call EDIT from the system device type:
R EDIT

and the RETURN key in response to the dot (.) printed by the monitor.
EDIT responds with an asterisk (*) indicating it is in command mode
and awaiting a user command string.

Type CTRL C to halt the Editor at any time and return control to the
monitor, To restart the Editor type .R EDIT or the ,REENTER command
in response to the monitor's dot. The contents of the buffers are
lost when the Editor is restarted.



Text Editor

3.2 MODES OF OPERATION

Under normal usage, the Editor operates in one of two different modes
Command Mode or Text Mode. In Command Mode all input typed on the
keyboard is interpreted as commands instructing the Editor to perform
some operation, In Text Mode all typed input is interpreted as text
to replace, be inserted into, or be appended to the contents of the
Text Buffer.

Immediately after being loaded into memory and started, the Editor is
in Command Mode. An asterisk is printed at the left margin of the
console terminal page indicating that the Editor is waiting for the
user to type a command. All commands are terminated by pressing the
ALTMODE key twice in succession. Execution of commands proceeds from
left to right. Should an error be encountered during execution of a
command string, the Editor prints an error message followed by an
asterisk at the beginning of a new line indicating that it is still in
Command Mode and awaiting a legal command. The command in error (and
any succeeding commands) is not executed and must be corrected and
retyped.

Text mode is entered whenever the user types a command which must be
followed by a text string. These commands insert, replace, exchange,
or otherwise manipulate text; after such a command has been typed,
all succeeding characters are considered part of the text string until
an ALTMODE is typed. The ALTMODE terminates the text string and
causes the Editor to reenter Command Mode, at which point all
characters are considered commands again.

A special editing mode, called Immediate Mode, can be used whenever
the VT-11 display hardware is running. This mode is described in
Section 3.7.2.

3.3 SPECIAL KEY COMMANDS

The EDIT key commands are listed in Table 3-1l., Control commands are

typed by holding down the CTRL key while typing the appropriate
character,

Table 3-1
EDIT Key Commands
Key Explanation
ALTMODE Echoes $. A single ALTMODE terminates a text

string. A double ALTMODE executes the command
string. For example,

#+GHOY A, BE$-10$$

CTRL C Echoes at the terminal as 4C and a carriage
return. Terminates execution of EDIT commands,
and returns to monitor Command Mode. A double
CTRL C is necessary when I/0 is in progress. The
REENTER command may be used to restart the Editor,
but the contents of the text buffers are lost.

(continued on next page)



Text Editor

Table 3-1 (cont.)
EDIT Key Commands

Key

Explanation

CTRL O

CTRL U

RUBOUT

TAB

CTRL X

Echoes 10 and a carriage return, Inhibits
printing on the terminal until completion of the
current command string. Typing a second CTRL O
resumes output.

Echoes tU and a carriage return. Deletes all the
characters on the current terminal input line.
(Equivalent to typing RUBOUT back to the beginning
of the line.)

Deletes character from the current line; echoes a
backslash followed by the character deleted. Each
succeeding RUBOUT typed by the user deletes and
echoes another character. An enclosing backslash
is printed when a key other than RUBOUT is typed.
This erasure is done right to left up to the last
carriage return/line feed combination. RUBOUT may
be used in both Command and Text Modes.

Spaces to the next tab stop. Tab stops are
positioned every eight spaces on the terminal;
typing the TAB key causes the carriage to advance
to the next tab position,

Echoes tX and a carriage return. CTRL X causes
the Editor to ignore the entire command string
currently being entered, The Editor prints a
{CR>CLF> and an asterisk to indicate that the user
may enter another command. For example:

*TRECD
EFGRH™X
o*

A CTRL U would only cause deletion of EFGH;
CTRL X erases the entire command.

3.4 COMMAND STRUCTU

EDIT commands fall i

RE

nto six general categories:

Category Commands Section
Input/Output Edit Backup 3.6.1.3
Edit Read 3.6.1.1

Edit Write 3.6.1.2

End File 3.6.1.9
Exit 3.6.1.10

List 3.6.1.7

Next 3.6.1.6

Read 3.6.1.4

Verify 3.6.1,8

Write 3.6.1.5

Pointer location Advance 3.6.2.3
Beginning 3.6.2.1

Jump 3.6.2,2

3-3




Text Editor

Search Find
Get
Position

¢« o o
(o)< N o))
¢« o o
www
e o o
w=N

Text modification Change
Delete
eXchange
Insert
Kill

e o s o o
(=2« W W= <)
e o o o o

e o o o o
WH U NS

Utility Edit Console
Edit Display
Edit Lower
Edit Upper
Edit Version
Execute Macro
Macro
Save
Unsave

NNNNNN aonoaoaoana NN

¢« o s e 8
* o o o o

NN [GREGESGRE NG RGRE N o Lo )
* ® 0 o 8
N~ Wd OO

A ALTMODE
Imnmediate Mode CTRL D
CTRL G

CTRL N

CTRL V

RUBOUT

WWwwwww WWwwwwwwww WWwwww www

¢ o & o o 0
* & o o 9 0

The general format for the first five categories of EDIT commands is:

nCtext$
or
nC$

where n represents one of the legal arguments listed in Table 3-2, C
is a one- or two-letter command, and text is a string of successive
ASCII characters.

As a rule, commands are separated from one another by a single
ALTMODE; however, if the command requires no text, the separating
ALTMODE is not necessary. Commands are terminated by a single
ALTMODE; typing a second ALTMODE begins execution. (ALTMODE is used
differently when Immediate Mode is in effect; Section 3.7.2 details
its use in this case,)

The format of Display Editor commands is somewhat different from the
normal editing command format, and is described in Section 3.7.

3.4.1 Arguments

An argument is positioned before a command letter and is used either
to specify the particular portion of text to be affected by the
command or to indicate the number of times +the command should be
performed, With some commands, this specification is implicit and no
arguments are needed; other editing commands require an argument,
Table 3-2 lists the formats of arguments which are used by commands of
this second type.



Text Editor

Table 3=2
Command Arguments

Format Meaning

n n stands for any integer in the range -16383 to
+16383 and may, except where noted, be preceded by
a + or =, If no sign precedes n, it is assumed to
be a positive number. Whenever an argument is
acceptable in a command, its absence implies an
argument of 1 (or -1 if only the - is present).

0 0 refers to the beginning of the current line.
/ / refers to the end of text in the current Text
Buffer.

= = is used with the J, D and C commands only and
represents -n, where n is equal to the length of
the last text argument used.

The roles of all arguments are explained more specifically in
following sections.

3.4.2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage returns and line feeds within a command
string may be used freely to increase command readability but are
ignored wunless they appear in a text string. Commands used to insert
text can contain text strings that are several lines long. Each line
is terminated with a <CR)XLF> and the entire command is terminated
with a double ALTMODE.

Several commands can be strung together and executed in sequence. For
example,

text object text object
—

#BEGMOY FC, RE$F-ZCRI$SKEGLLE @PRZESF
second third fifth
command command command

first command fourth

command

Execution of a command string begins when the double ALTMODE is typed
and proceeds from left to right. Except when they are part of a text
string, spaces, carriage return, line feed, and single ALTMODES are
ignored. For example:

*BGMOV RB$=CCLE R1$AVESF




Text Editor

may be typed as:

+B¢$ GHOY RAE
=CCLRE R1¢
At Ve

with equivalent execution.

3.4.3 The Current Location Pointer

Most EDIT commands function with respect to a movable reference
pointer which is normally located between the most recent character
operated upon and the next character in the buffer. At any given time
during the editing procedure, this pointer can be thought of as
representing the current position of the Editor in the text. Most
commands use this pointer as an implied argument. Commands are
available for moving the pointer anywhere in the text, thereby
redefining the current location and allowing greater facility in the
use of other commands.

3.4.4 Character- and Line~Oriented Command Properties

Edit commands are line-oriented or character-oriented depending on the
arguments they accept. Line-oriented commands operate on entire lines
of text. Character-oriented commands operate on individual characters
independent of what or where they are.

When using character-oriented commands, a numeric argument specifies
the number of characters that are involved in the operation. Positive
arguments represent the number of characters in a forward direction
(in relation to the pointer), negative arguments the number of
characters in a backward direction. Carriage return and line feed
characters are treated the same as any other character., For example,
assume the pointer is positioned as indicated in the following text (1
represents the current position of the pointer):

MOV #VECT ,R2<{CR>{LF> 4
CLR @R2<{CR><LF>

The EDIT command =-2J backs the pointer by two characters.

MoV $VECT ,R2KCR><LF>
CLR @R2{CRY{LF>

The command 10J advances the pointer forward by ten characters and
places it between the CR and LF characters at the end of the second
line.

MOV #VECT ,R2<CR><LF>
CLR @R2KCR>KLF>

Finally, to place the pointer after the "C" in the first line, a =14J
command is used. The J (Jump) command is explained in Section 3.6.2.2,

MoV #VECT ,R2{CR><LF>
CLR @R2<{CR><LF>



Text Editor

When using line-oriented commands, a numeric argument represents the
number of 1lines involved in the operation. The Editor recognizes a
line of text as a unit when it detects a (CR>{LF> combination in the
text., When the user types a carriage return, the Editor automatically
inserts a line feed. Positive arguments represent the number of lines
forward (in relation to the pointer); this is accomplished by counting
carriage return/line feed combinations beginning at the pointer. So,
if the pointer is at the beginning of a line, a line~oriented command
argument of +1 represents the entire line between the current pointer
and the terminating 1line feed. If the current pointer is in the
middle of the line, an argument of +1 represents only the portion of
the line between the pointer and the terminating line feed.

For example, assume a buffer of:

MOV %PC,R1<CR><LF>

ADD #DRIV=-. ,R1{CR><LF>
MOV #VECT ,R2<{CR><LF>
CLR @R2<CR>XLF>

The command to advance the pointer one line (1lA) causes the following
change:

MOV PC,R1<{CR><LF>

4+ADD #DRIV-. ,R1<{CR><LF>
MoV #VECT ,R2<CR><LF>
CLR @R2<{CR><LF>

The command 2A moves the pointer over 2 <CR)>{LF)> combinations:

MOV PC,R1<{CR><LF>

ADD #DRIV=-. ,RL{CRY><LF>

MOV #VECT, R2<CRY<LF>
+CLR @R2<{CR><LF>

Negative line arguments reference lines in a backward direction (in
relation to the pointer). Consequently, if the pointer is at the
beginning of the line, a line argument of -1 means "the previous line"
(moving backward past the first (CR>LF> and up to but not including
the second <CR><LF>; if the printer is in the middle of a 1line, an
argument of -1 means the preceding 1 1/2 lines. Assume the butfer
contains:

MOV PC,R1<CR>XLF>

ADD #DRIV~, ,R1L{CR>XLF>

MOV #VECT ,R2<{CR><LF>

CLR  @R2<CRI><LF)>

A command of =lA backs the pointer by 1 1/2 lines.

Mov PC,R1<{CR><LF>

+ADD #DRIV-, ,R1<CR)<LF>
MoV #VECT , R2Z{CR><LF>
CLR @R2<CR><LF>



Text Editor

Now a command of «l1lA backs it by only 1 line.

+Mov PC,R1{CRY><LF>
ADD #DRIV=-.,R1{CR><LF>
MOV $VECT, R2Z{CR)><LF>
CLR @R2{CRY><LF>

3,4.5 Command Repetition

Portions of a command string may be executed more than once by
enclosing the desired portion in angle brackets (<>) and preceding the
left angle bracket with the number of iterations desired. The
structure is:

Cl$C23n<C3$C45>C5835

where Cl, C2,...C5 represent commands and n represents an iteration
argument, Commands Cl and C2 are each executed once, then commands C3
and C4 are executed n times. Finally command C5 is executed once and
the command line is finished. The iteration argument (n) must be a
positive number (1 to 16,383), and if not specified is assumed to be
1. If the number is negative or too large, an error message is
printed. Iteration brackets may be nested up to 20 levels. Command
lines are checked to make certain the brackets are correctly used and
match prior to execution.

Essentially, enclosing a portion of a command string in iteration
brackets and preceding it with an iteration argument (n) is equivalent
to typing that portion of the string n times., For example:
*EGAAR$ZIC-DIES-J:VES
is equivalent to typing:
*BGAAARS$-0IEBS$-J-DIBF-T-DIBS-JVESF
and:
*#BIC2CADIYESY
is equivalent to typing:
*BADADYRDADVYARDADYS S
The following bracket structures are examples of legal usage:
<KL
L0

The foilowing bracket structures are examples of illegal combinations
which will cause an error message since the brackets are not properly
matched:

><<
<LL>>

During command repetition, execution proceeds from left to right until
a right bracket is encountered. EDIT then returns to the last left

3-8



Text Editor

bracket encountered, decrements the iteration counter and executes the
commands within the brackets. When the counter is decremented to 0,
EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the
innermost brackets and then works its way back again. The most common
use for iteration brackets is found in commands such as Unsave, that
do not accept repeat counts. For example:

*ICUnES

Assume a file called SAMP (stored on device DK) is to be read and the
first four occurrences of the instruction MOV #200,R0 on each of the
first five pages are to be changed to MOV #244,R4. The following
command line is entered:

+EBSAMPSSINGCEGHOY #2080, ROF=TEICGOF=CAIELD0EXNFS

)

A
The command line contains three sets of iteration loops (A,B,C) and is
executed as follows:

Execution initially proceeds from left to right; the file SAMP is
opened for input, and the first page is read into memory. The pointer
is moved to the beginning of the buffer and a search is initiated for
the character string MOV #200,R0. When the string is found, the
pointer is positioned at the end of the string, but the =J command
moves -the pointer back so that it is positioned immediately preceding
the string. At this point, execution has passed through each of the
first two sets of iteration loops (A,B) once. The innermost loop (C)
is next executed three times, changing the 0s to 4s. Control now
moves back to pick up the second iteration of loop B, and again moves
from left to right. When loop C has executed three times, control
again moves back to loop B. When loop B has executed a total of 4
times, control moves back to the second iteration of loop A, and so
forth until all iterations have been satisfied.

3.5 MEMORY USAGE

The memory area used by the Editor is divided into four 1logical
buffers as follows:

MACRO BUFFER

High Memory
SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory
TEXT BUFFER




Text Editor

The Text Buffer contains the current page of text being edited, and
the Command Input Buffer holds the command currently being typed at
the terminal. If a command currently being entered by the user is
within 10 characters of exceeding the space available in the Command
Buffer, the message:

* CB ALMOET FULL =

is printed. If the command can be completed within 10 characters, the
user may finish entering the command; otherwise he should type the
ALTMODE key twice to execute that portion of the command line already
completed. The message is printed each time a character is entered in
one of the last 10 spaces.

If the user attempts to enter more than 10 characters the message:
?CEB FULL?

is printed and all commands typed within the last 10 characters are
ignored. The user again has 10 characters of available sgpace in which
to correct the condition.

The Save Buffer contains text stored with the Save (S) command, and
the Macro Buffer contains the command string macro entered with the
Macro (M) command. (Both commands are explained in Section 3.6.5.)

The Macro and Save Buffers are not allocated space until an M or S
command is executed. Once an M or S command is executed, a OM or 0U
(Unsave) command must be executed to return that space to the free
area.

The size of each buffer automatically expands and contracts to
accommodate the text being entered; i1f there is not enough space
available to accommodate required expansion of any of the buffers, a
"2*NO ROOM*?" error message is typed.

3.6 EDITING COMMANDS

3.6.1 Input/Output Commands

Input commands are used to create files and read them into the Text
Buffer where they become available for editing or listing., Output
commands cause text to be listed on the console terminal or line-
printer or written out to a storage device. Some commands are
specifically designed for either input or output functions, while a
few commands serve both purposes.

Once editing is completed and the page currently in the Text Buffer is
written to the output file, that page of text is unavailable for
further editing until the file is closed and reopened.

3.6.1.1 Edit Read - The Edit Read command opens an existing file for
input and prepares it for editing. Only one file can be open for input
at a time.

3-10



Text Editor

The form of the command is:
ERdev:filnam.ext$

The. string argument (dev:filnam.ext) is limited to 19 characters and
specifies the file to be opened. If no device is specified, DK: is
assumed, If a file is currently open for input, that file is closed;
any edits made to the file are preserved.

Edit Read does not input a page of text nor does it affect the
contents of the other user buffers (see Section 3.5.)

Edit Read can be used on a file which is already open to close that
file for input and reposition EDIT at its beginning. The first Read
command following any Edit Read command inputs the first page of the
file.

Examples:
*ERDTL:SAMP. MAC$$  Opens SAMP,MAC on device DT1l: for input.

*ERSOURCESS Opens SOURCE on device DK: for input.

3.6.1.2 Edit Write = The Edit Write command sets up a file for
output of newly created or edited text, However, no text is output
and the contents of the user buffers are not affected. Only one file
can be open for output at a time. Any current output files are closed

The form of the command is:
EWdev:filnam.ext [n]$

The string argument (dev:filnam.ext[n]) is limited to 19 characters
and is the name to be assigned to the output file being opened. If
dev: is not specified, DK: is assumed. [n] is optional and
represents the length of the file to be opened. If not specified, one
half the largest available space is used; if this is not adequate for
the output file size, the EF and EX commands will not close the output
file, and all edits will be lost. It is thus recommended that the I[n]
construction be used whenever there is doubt as to whether enough space
is available on the device for the output file.

If a file with the same name already exists on the device, the o0ld file
is deleted when an EXit, End File or another Edit Write command is
executed.

Examples:

+EWDK :TEST. MAC$S Opens the file TEST.MAC on device DK:
for output.

*ENFILE. BRSL111%% Opens the file FILE.BAS (allocating 11
blocks) on the device DK: for output,

3.6.1.3 Edit Backup - The Edit Backup command is used to open an
existing file for editing and at the same time create a backup version
of the file. Any currently open file will be closed. No text is read
or written with this command.

3-11 January 1976



Text Editor

The form of the command is:

EBdev:filnam.ext[n]$

The device designation, filename and extension are 1limited to 19
characters. If dev: is not specified, DK: is assumed. [n] is
optional and represents the length of the file to be opened; if not
specified, one-half the largest available space is used.

The file indicated in the command 1line must already exist on the
device designated since text will be read from this file as input. At
the same time, an output file is opened under the same filename and
extension. After an EB command has been successfully executed, the
original file (used as input) is renamed with the current filename and
a JBAK extension; any previous file with this filename and a ,BAK
extension is deleted. The new output file is closed and assigned the
name as specified in the EB command. This renaming of files takes
place whenever an Exit, End File, Edit Read, Edit Write or Edit Backup
command is executed.

Examples:

+EBSY BASL. MACES Opens BAS1.MAC on SY. When editing is
complete, the old BAS1.,MAC becomes
BAS1.BAK and the new file becomes
BAS1.MAC. Any previous version of
BAS1.BAK is deleted.

+EBBRSZ. BAS[151§% Opens BAS2,.BAS on DK (allocating 15
blocks). When editing is complete, the
old BAS2.BAS is labeled BAS2,.BAK and the
new file becomes BAS2.BAS. Any previous
version of BAS2,BAK is deleted.

In EB, ER and EW commands, leading spaces between the command and the
filename are illegal (the filename is considered to be a text string).
All dev:file.ext specifications for EB, ER and EW commands conform to
the RT-11 conventions for file naming and are identical to filenames
entered in command strings used with other system programs.

3.6.1.4 Read - The Read command (R) causes a page of text to be read
from the input file (previously specified in an ER or EB command) and
appended to the current contents, if any, of the Text Buffer.

The form of the command is:
R

No arguments are used with the R command and the pointer is not moved,
Text is input until one of the following conditions is met:

l. A form feed character, signifying the end of the page, is
encountered, At this point, the form feed will be the last
character in the buffer; or



Text Editor

2. The Text Buffer is within 500 characters of being full.
(When this condition occurs, Read inputs up to the next
{CRY>XLF) combination, then returns to Command Mode. An
asterisk is printed as though the Read were complete, but
text will not have been fully input); or

3. An end-of=file condition is detected, (the *EOF* message is
printed when all text in the file has been read into memory
and no more input is available).

The maximum number of characters which can be brought into memory with
an R command is approximately 6,000 for an 8K system. Each additional
4K of memory allows approximately 8,000 additional characters to be
input. An error nmessage is printed if the Read exceeds the memory
available or if no input is available.

3.6.1.5 Write = The Write command (W) moves lines of text from the
Text Buffer to the output file (as specified in the EW or EB command).
The format of the command is:

nW Write all characters beginning at the pointer and
ending at the nth <{CR><LF> to the output file.

-nW Write all characters beginning on the =nth 1line and
terminating at the pointer to the output file.

OW Write the text from the beginning of the current 1line
to the pointer.

/W  Write the text from the pointer to the end of the
buffer.,

The pointer is not moved and the contents of the buffer are not
affected. If the buffer is empty when the Write is executed, no
characters are output.

Examples:

*5HES Writes the next 5 lines of text starting
at the pointer, to the current output
file.

#-2NES Writes the previous 2 1lines of text,

ending at the pointer, to the current
output file.

*BAUES Writes the entire Text Buffer +to the
current output file,



Text Editor

3.6.1.6 Next - The Next command acts as both an input and output
command since it performs both functions. First it writes the current
Text Buffer to the output file, then clears the buffer, and finally
reads in the next page of the input file. The Next command can be
repeated n times by specifying an argument before the command. The
command format is:

nN

Next accepts only positive arguments (n) and leaves the pointer at the
beginning of the buffer, If fewer than n pages are available in the
input file, all available pages are input to the buffer, output to the
current file, and deleted from the buffer; the pointer is left
positioned at the beginning of an empty buffer, and an error message
is printed. This command is equivalent to a combination of the
Beginning, Write, Delete and Read commands (B/W/DR). Next can be used
to space forward, in page increments, through the input file,

Example:

*2N$$ Writes the contents of the current Text
Buffer to the output file, Read and
write the next page of text., Clear the
buffer and then read in another page.

3.6.,1.7 List - The List command prints the specified number of lines
on the console terminal. The format of the command is:

nL Print all characters beginning at the
pointer and ending with the nth
<CR><LF>.

-nL Print all characters beginning with the

first character on the =-nth line and
terminating at the pointer,

oL Print from the beginning of the current
line up to the pointer.

/L Print from the pointer to the end of the
buffer.

The pointer is not moved after the command is executed.

Examples:

*-2L 4% Prints all characters starting at the
second preceding line and ending at the
pointer,

#dL$8% Prints all characters beginning at the
pointer and terminating at the 4th
{CR><LF>.

Assuming the pointer location is:

MOVB 5(R1),@R2
ADD, R1,(R2)+



Text Editor

The command:

*-1L$%

Prints the previous 1 1/2 lines up to the pointer:

MOVB 5(R1),@R2
ADD

3.6.1,8 Verify - The Verify command prints the current text line
(the 1line containing the pointer) on the terminal., The position of
the pointer within the line has no effect and the pointer does not
rnove, The command format is:

v

No arguments are used. The V command is equivalent to a OLL (List)
command.

Example:

*VE$ The command causes the current line of
AROD R1, ¢REV+ text to be printed.

3.6.1.9 End File - The End File command closes the current output
file. This command does no input/output operations and does not move
the pointer, The buffer contents are not affected. The output file
is closed, containing only the text previously output.

The form of the command is:
EF

No arguments are used. Note that an implied EF command is included in
EW and EB commands.

3.6.1.10 EXit - The EXit command is used to terminate editing, copy
the text buffer and the remainder of the input file to the output file,
close input and output files, and return control to the monitor. It
performs consecutive Next commands until the end of the input file is
reached, then closes both the input and output files.

The command format is:
EX

No arguments are used. Essentially, Exit 1is wused to copy the
remainder of the input file into the output file and return to the
monitor. Exit is legal only when there is an output file open. If an
output file is not open and it is desired to terminate the editing
session, return to the monitor with CTRL C.



Text Editor

NOTE

An EF or EX command is necessary in
order to make an output file permanent,
If CTRL C is wused to return to the
monitor without a prior execution of an
EF command, the current output file is
not saved. (It can however, be made
permanent using the monitor CLOSE
command; see Section 2.,7.2.5.)

An example of the contrasting uses of the EF and EX commands follows.
Assume an input file, SAMPLE, contains several pages of text. The
user wishes to make the first and second pages of the file into
separate files called SAM1 and SAM2, respectively; the remaining
pages of text will then make up the file SAMPLE. This can be done
using these commands:

+*EWSAM1SS
*ERSAMFLE$#
*#RNEF$4
*ENSAMZES
*NEF ¢ ¢
*EWNSAMFLESERSES

The user might note that the EF commands are not necessary in this

example since the EW command closes a currently open output file
before opening another.

3,.6.2 Pointer Relocation Commands

Pointer relocation commands allow the current location pointer to be
moved within the Text Buffer.

3.6.2.1 Beginning - The Beginning command moves the current location
pointer to the beginning of the Text Buffer.

The command format is:
B

There are no arguments.

For example, assume the buffer contains:
MOVB 5(R1) ,@R2
ADD R1l, (R2)+

CLR Q32
MOVB 6(R1) ,@R2



Text Editor

The B command:
*EES
moves the pointer to the beginning of the Text Buffer:
+MOVB  5(R1),@R2
ADD Rl, (R2)+

CLR @R2
MOVB 6(R1l) ,@R2

3.6.2,2 Jump = The Jump command moves the pointer over the specified
number of characters in the Text Buffer.

The form of the command is:

(+ or =) nJ Move the pointer (backward or forward) n
characters.
0J Move the pointer to the beginning of the current

line (equivalent to 0Aa).

/J Move the pointer to the end of the Text Buffer
(equivalent to /A).

=J Move the pointer backward n characters, where n
equals the length of the last text argument used.

Negative arguments move the pointer toward the beginning of the
buffer, positive arguments toward the end. Jump treats carriage
return, line feed, and form feed characters the same as any other
character, counting one buffer position for each.

Examples:
#3J$4 Moves the pointer ahead three
characters.,
k-4 J$$ Moves the pointer back four characters.
+BS$GABCE=TSS Move the pointer so that it immediately

precedes the first occurrence of 'ABC'
in the buffer.,

3.6.2.3 Advance - The Advance command is similar to the Jump command
except that it moves the pointer a specified number of lines (rather
than single characters) and leaves it positioned at the beginning of
the line.

The form of the command is:

nA Advance the pointer forward n lines and
position it at the beginning of the nth
line.



Text Editor

-nA Move the pointer  backward past n
{CR><LF> combinations and position it at
the beginning of the -nth:line,

oa Advance the pointer to the beginning of
the current line (equivalent to 0J).

/A Advance the pointer to the end of the
Text Buffer (equivalent to /J).

Examples:

*3IA$S Moves the pointer ahead three lines.
Assuming the buffer contains:

CLR @R2

+A

The command:

*BHFE
Moves the pointer to:

+CLR @R2

3.6.3 Search Commands

Search commands are used to locate specific characters or strings of
characters within the Text Buffer.

3.6.3.1 Get - The Get command starts at the pointer and searches the
current Text Buffer for the nth occurrence of a specified text string.
If the search is successful, the pointer is left immediately following
the nth occurrence of the text string. If the search fails, an error
message is printed -and the pointer is left at the end of the Text
Buffer, The format of the command is:

nGtexts$

The argument (n) must be positive and is assumed to be 1 if not
otherwise specified, The text string may be any length and
immediately follows the G command. The search is made on the portion
of the text between the pointer and the end of the buffer.

Example:
Assuming the buffer contains:

4MOV  PC,Rl
MOV $VECT,R2
CLR @R2

MOVB 5(R1) ,@R2
ADD R1l, (R2) +
CLR @R2

MOVB 6 (R1) ,@R2



Text Editor

The command:
*GADDSS$
positions the pointer at:
ADD. $DRIV-. ,R1
The command:

*3GERESS
positions the pointer at:

ADD R1l, (R2)+
CLR @R2,

After search commands, the pointer is left immediately following the
text object. Using a search command in combination with =J will place
the pointer before the text object, as follows:

*GTEST$=J4$

This command combination places the pointer before 'TEST'.

3.6.3.2 Find - The Find command starts at the current pointer and
searches the entire input file for the nth occurrence of the text
string. If the nth occurrence of the text string is not found in the
current buffer, a Next command is automatically performed and the
search is continued on the new text in the buffer, When the search is
successful, the pointer is left immediately following the nth
occurrence of the text string. If the search fails (i.e., the
end-of-file is detected for the input file and the nth occurrence of
the text string has not been found), an error message is printed and
the pointer is left at the beginning of an empty Text Buffer.

The form of the command is:
nFtext$

The argument (n) must be positive and is assumed to be 1 if not
otherwise specified.

By deliberately specifying a nonexistent search string, the user can
close out his file; that is, he can copy all remaining text from the
input file to the output file.

Find is a combination of the Get and Next commands.
Example:

#2FMOYE ELR1), GRZSH Searches the entire input file for
the second occurrence of the text
string MOVB 6 (R1) ,@R2, Each
unsuccessfully searched buffer is
written to the output file,



Text Editor

3.6.3.3 Position - The Position command searches the input file for
the nth occurrence of the text string. If the desired text string is
not found in the current buffer, the buffer is cleared and a new page
is read from the input file, The format of the command is:

nPtexts$

The argument (n) must be positive, and is assumed to be 1 if not
otherwise specified, When a P command 1is executed the current
contents of the buffer are searched from the location of the pointer
to the end of the buffer. If the search is unsuccessful, the buffer
is cleared and a new page of text is read and the cycle is continued.

If the search is successful, the pointer is positioned after the nth
occurrence of the text. If it is not, the pointer is left at the
beginning of an empty Text Buffer.

The Position command is a combination of the Get, Delete and Read
commands ; it is most wuseful as a means of placing the location
pointer in the input file. For example, if the aim of the editing
session is to create a new file from the second half of the input
file, a Position search will save time,

The difference between the Find and Position commands is that Find
writes the contents of the searched buffer to the output file while
Position deletes the contents of the buffer after it is searched.

Example:

#+PADD K1, (REI+$¥F Searches the entire input file for the
specified string ignoring the
unsuccessfully searched buffers.

3.6.4 Text Modification Commands

The following commands are used to insert, relocate, and delete text
in the Text Buffer,

3.6,4.1 Insert - The Insert command causes the Editor to enter Text
Mode and allows text to be inserted immediately following the pointer.
Text is inserted until an ALTMODE is typed and the pointer is
positioned immediately after the last character of the insert. The
command format is:

Itext$
No arguments are used with the Insert command, and the text string is
limited only by the size of the Text Buffer and the space available.
All characters except ALTMODE are legal in the text string. ALTMODE
terminates the text string.
NOTE
Forgetting to type the I command will

cause the text entered to be executed as
commands.,

3-20



Text Editor

EDIT automatically protects against overflowing the Text Buffer during
an Insert, If the I command is the first command in a multiple
command line, EDIT ensures that there will be enough space for the
Insert to be executed at least once. If repetition of the command
exceeds the available memory, an error message is printed.

Example:
* THOY #EBUFF. R2 Inserts the specified text at
MOy #LINE. R1 the current 1location of the
MOVE -1(RZy, ROEE pointer and leaves the pointer
* positioned after RO.

3.6,4.2 Delete - The Delete command removes a specified number of
characters from the Text Buffer. Characters are deleted starting at
the pointer; upon completion, the pointer is positioned at the first
character following the deleted text.

The form of the command is:

(+ or =) nD Delete n characters (forward or backward
from the pointer).

0D Delete from beginning of current line to
the pointer (equivalent to O0K).

/D Delete from pointer to end of Text
Buffer (equivalent to /K).

=D Delete -n characters, where n equals the
length of the last text argument used.

Examples:

#2088 Deletes the two characters immediately
preceding the pointer.

+*E4FMOY R1$=D¥ Deletes the text string ‘*MOV R1°', (=D
used in combination with a search
command will delete the indicated text
string).
Assuming a buffer of:

ADD R1, (R2)+
CLR +@R2

the command:
*QD$F
leaves the buffer with:

ADD R1l, (R2)+
4@R2



Text Editor

3.6.4.,3 Xill = The Kill command removes n lines from the Text
Buffer, Lines are deleted starting at the location pointer; upon
completion of the command, the pointer is positioned at the beginning
of the line following the deleted text. The command format is:

nkK Delete lines beginning at the pointer
and ending at the nth <{CR><LF>.

-nkK Delete lines beginning with the first
character in the =-nth line and ending at
the pointer.

0K Delete from the beginning of the current
line to the pointer (equivalent to 0D),

/K Delete from the pointer to the end of
the Text Buffer (equivalent to /D).

Example:

*2h$% Delete lines starting at the current
location pointer and ending at the 2nd
{CRXXLF>.

Assuming a buffer of:

ADD R1l, (R2)+
CLR, @R2
MOVB 6 (R1) ,@R2

the command:
* RS
alters the contents of the buffer to:

ADD R1, (R2) +
CLR,

Kill and Delete commands perform the same function, except that Kill
is line-oriented and Delete is character-oriented.

3.6.4.4 Change - The Change command replaces n characters, starting
at the pointer, with the specified text string and leaves the pointer
positioned immediately following the changed text.

The form of the command is:

(+ or =) nCtext$ Replace n characters (forward or backward from the
pointer) with the specified text.

OCtext$ Replace the characters from the beginning of the
line up to the pointer with the specified text
(equivalent to 0X).

/Ctexts$ Replace the characters from the pointer to the end
of the buffer with the specified text (equivalent
to /X).

3-22



Text Editor

=Ctext$ Replace =-n characters with the indicated text
string, where n represents the length of the last
text argument used.

The size of the text is limited only by the size of the Text Buffer
and the space available. All characters are legal except ALTMODE
which terminates the text string.

If the C command is to be executed more than once (i.e., it is
enclosed in angle brackets) and if there is enough space available so
that the command can be entered, it will be executed at least once
(provided it appears first in the command string). If repetition of
the command exceeds the available memory, an error message is printed.
The Change command is identical to executing a Delete command followed
by an Insert (nDItext$).

Examples:

#SCHVECTSS Replaces the five characters to the
right of the pointer with #VECT.

Assuming a buffer of:

CLR @rR2
MOV, 5(R1) ,@R2

The command:
*WCARDDESS
leaves the buffer with:

CLR @R2
ADDB, 5(R1) ,@R2

=C can be used in conjunction with a seaxch command to replace a
specific text string as follows:

*GFIFTY:$=CFIVE % Find the occurrence of the text string
FIFTY: and replace it with the text
string FIVE:,

3.6.4.5 Exchange - The Exchange command exchanges n lines, beginning
at the pointer, with the indicated text string and leaves the pointer
positioned after the changed text.

The form of the command is:

nXtext$ Exchange all characters beginning at the pointer
and ending at the nth <CR>LF)> with the indicated
text.

-nXtext$ Exchange all characters beginning with the first
character on the =-nth 1line and ending at the
pointer with the indicated text.

O0Xtext$ Exchange the current line from the beginning to
the pointer with the specified text (equivalent to
0c).

3-23



Text Editor

/Xtext$ Exchange the lines from the pointer to the end of"
the buffer with the specifed text (equivalent to
/C) .

All characters are legal in the text string except ALTMODE which
terminates the text.

The Exchange command is identical to a Kill command £followed by an
Insert (nKItext$), and accepts all legal line-oriented arguments.

If the X command is enclosed within angle brackets so that it will bhe
executed more than once, and if there is enough memory space available
so that the X command can be entered, it will be executed at least
once (provided it is first in the command string). If repetition of
the command exceeds the available memory, an error message is printed.

Example:
*2KADD  R1, (RZY+ Exchanges the two lines to
CLR @Rz the right of the pointer location
34 with the text string.

&

3,6,5 Utility Commands

3.6.5.1 Save - The Save command starts at the pointer and copies the
specified number of lines into the Save Buffer (described previously
in Section 3.5).

The form of the command is:

ns
The argument (n) must be positive. The pointer position does not
change and the contents of the Text Buffer are not altered. Each time
a Save is executed, the previous contents of the Save Buffer, if any,
are destroyed., If the Save command causes an overflow of the Save
Buffer, an error message is printed.
Example:

Assume the Text Buffer contains the following assembly language
subroutine:



Text Editor

; SUBROUTINE MSGTYP

sWHEN CALLED, EXPECTS RO TO POINT TO AN

;ASCII MESSAGE THAT ENDS IN A ZERO BYTE,
;TYPES THAT MESSAGE ON THE USER TERMINAL

«ASECT
.=1000

MSGTYP: TSTB (%0) ;s DONE?
BEQ MDONE ; YES-RETURN

MLOOP: TSTB @#177564 ;NO-IS TERMINAL READY?
BPL MLOOP ;s NO-WAIT
MOVB (%0)+,@#177566 ;YES PRINT CHARACTER
BR MSGTYP ;s LOOP

MDONE: RTS %7 ;s RETURN

The command:
#145¢%

stores the entire subroutine in the Save Buffer; it may then be
inserted in a program wherever needed by using the U command.

3.6.5.2 Unsave - The Unsave command inserts the entire contents of
the Save Buffer into the Text Buffer at the pointer location and
leaves the pointer positioned following the inserted text.

The form of the command is:

U Insert in the Text Buffer the contents of the Save
Buffer.

ou Clear the Save Buffer and reclaim the area for text.
Zero is the only legal argument to the U command.
The contents of the Save Buffer are not destroyed by the Unsave
command (only by the 0U command) and may be Unsaved as many times as
desired,
If there is no text in the Save Buffer and the U command is given, the
?*NO TEXT*? error message is printed. If the Unsave command causes

an overflow of the Text Buffer, the ?*NO ROOM*? error message is
displayed.

3.6.5.3 Macro - The Macro command inserts a command string into the
EDIT Macro Buffer., The Macro command is of the form:

M/command string/ Store the command string in the Macro

Buffer.
oM Clear the Macro Buffer and reclaim the
or area for text.

M//

/ represents the delimiter character. The delimiter is always the
first character following the M command, and may be any character
which does not appear in the Macro command string itself,

3-25



Text Editor

Starting with the character following the delimiter, EDIT places the
Macro command string characters into its internal Macro Buffer until
the delimiter is encountered again. At this point, EDIT returns to
Command Mode., The Macro command does not execute the Macro string;
it merely stores the command string so that it can be executed later
by the Execute Macro (EM) command. Macro does not affect the contents
of the Text or Save Buffers.

All characters except the delimiter are legal Macro command string
characters, including single ALTMODEs to terminate text commands.
All commands, except the M and EM commands, are legal in a command
string macro.

In addition to the OM command, typing the M command immediately
followed by two 1identical characters (assumed to be delimiters) and
two ALTMODE characters also clears the Macro Buffer.

Examples:
Mo E e Clears the Macro Buffer
*MAGROE-CLS/$$ Stores a Macro to change RO to Rl.
NOTE

Be careful to choose infrequently used
characters as macro delimiters; use of
frequently used characters can lead to
inadvertent errors. For example,

M GMOY RO$=CR0D R1$ $%
THNO FILE®?

In this case, it was intended that the
macro be GMOV RO$=CADD R1l$ but since the
delimiter character (the character
following the M) is a space, the space
following MOV is wused as the second
delimiter, terminating the macro, EDIT
then returns an error when the R0$=
becomes an illegal command structure.

3.6.5.4 Execute Macro - The Execute Macro command executes the
command string specified in the last Macro command.

The form of the command is:
nEM

The argument (n) must be positive. The macro is executed n times and
returns control to the next command in the original command string.



Text Editor

Examples:

*MA/EGROF-CLEES

*B1lOOOENSS - Executes the MACRO stored in

F#SRCH FAIL IN MRCKO®: the previous example. An error

* message is returned when the
end of buffer is reached.
(This macro effectivelychanges
all occurrences of RO in the
Text Buffer to Rl.)

+IMOV FPC, RL$ZEMICLE BRZ$SF In a new program, inserts
* MOV PC,Rl1 then executes the
command in the Macro Buffer
twice before inserting CLR
@RrR2,

3.6.5,5 Edit Version - The Edit Version command displays the version
number of the Editor in use on the console terminal.

The form of the command is:
EVS
Example:

*EV$S
vea-o1
*

3.6.5.6 Upper- and Lower-Case Commands - Users who have any upper/
lower-case terminal as part of their hardware configuration may take
advantage of the upper- and lower-case capability of this terminal.
Two editing commands, EL and EU, permit this.

When the Editor is first called (R EDIT), upper-case mode is assumed;
all characters typed are automatically translated to upper case. To
allow processing of both upper- and lower~case characters, the Edit
Lower command is entered:

Kll.e e
%41 Text and commands can be erntered in URFER and lower case.$bd
X

The Editor now accepts and echoes upper- and lower-case characters
received from the keyboard, and outputs text on the teleprinter in
upper- and lower-case.

To return to upper-case mode, the Edit Upper command is used:

KEL G4

Control also reverts to upper-case mode upon exit from the Editor (via
EF, EX, or CRTL C).




Text Editor

Note that when an EL command has peen issued, Edit commands can be en-
tered in either upper- or lower-case. Thus, the following two commands
are equivalent:

KETEXTE=0rnew tarxtEUds
K TEXTE=ornew taxtbvis

The Editor automatically translates (internally) all commands to upper-
case independent of EL or EU.

3.7 THE DISPLAY EDITOR

In addition to all functions and commands mentioned thus far, the
Editor has additional capabilities to allow efficient use of VT-1ll
display hardware which may be part of the system configuration (GT40,
GT44, DECLAB 11/40).

The most apparent feature is the ability to use the display screen
rather than the console terminal as a window into the Text Buffer for
printout of all textual input and output. When all the features of
the display Editor are in use, a 12" screen displays text as shown in
Figure 3-~1:

{GET AN INPUT LINE
FFCNT. RO {ANY RESERVED FF’§?

INO
10 PRECEDING gé;rggg\é;T $YES. UPDATE PAGE NUMBER
LINES OF TEXT N YINIT NEW CREF SEQUENCE
CURSOR % WINDOW
{CURRENT LINE) l \ INTO THE
SLINBUF. R2 TEXT BUFFER
R2.LCBEGL ISET UP BEGINNING
AND 9 FOLLOWING MOy - SLINENDLCENDL AND END OF LINE MARKERS
LINES OF TEXT ST SMLONT 1IN SYSTEM MACRO?

403 tYES. SPECIAL

<EHDC
.IF HDF XMACRO

SEPARATION LINE

3 PRECEDING
COMMAND LINES

CURRENT COMMAND
LINE

Figure 3-1
Display Editor Format

January 1976 3-28



Text Editor

The major advantage is that the user can now see immediately where the.
pointer is. The pointer appears between characters on the screen as a
bright blinking L-shaped cursor and can be detected easily and
quickly. Note that if the pointer is placed between a carriage return
and line feed, it appears in an inverted position at the beginning of
the next line,

In addition to displaying the current line (the 1line containing the
cursor), the 10 1lines of text preceding the current line and the 9
lines following it are also in view., Each time a command string is
executed (via a double ALTMODE) this portion of the screen is
refreshed so that it reflects the results of the commands just
performed.

The lower section of the screen contains 4 lines of editing commands.
The command 1line currently being entered is last, preceded by the
three most recent command lines. This section is separated from the
text portion of the screen by a horizontal line of dashes. As new
command lines are entered, previous command lines are scrolled upward
off the command section so that only four command lines are ever in
view.

A 17" screen displays 30 lines of text and 8 command lines.

3.7.1 Using the Display Editor

The display features of the Editor are automatically invoked whenever
the system scroller is in use and the user types:

R EDIT

However, if the system does not contain VT=11] display hardware, the
display features are not enabled.

Providing that the system does contain VT-1ll display hardware and that
the wuser wishes to employ the screen during the editing session, he
may activate it in one of two ways (all editing commands and functions
previously discussed in this chapter are valid for use):

l. If the scroller is in use (i.e., the GT ON monitor command
has been typed prior to calling the Editor), EDIT recognizes
this and automatically continues using the screen for display
of text and commands. However, it rearranges the scroller so
that a "window" into the Text Buffer appears in the top
two/thirds of the screen, while the bottom third is used to
display command lines. This arrangement is shown in Figure
3"10

The Edit Console command can be used to return the scroller
to its normal mode so that text and commands appear as
described in Chapter 2, Section 2.7.1 (i.e., using the full
screen for display of command lines, and eliminating the
window). The form of the command is:

EC

3-29 January 1976



Texc Editor

For example:

*EREC2L$S The second and third 1lines of the
current buffer are listed on the screen;
there is no window into the Text Buffer
at this point.

Subsequent EC commands are ignored if the window into the
Text Buffer is not being displayed.

To recall the window, the Edit Display command is used:
ED
The screen is again arranged as shown in Figure 3-1.

2, Assume the' scroller is not in use (i.e., the GT ON command
has not been typed, or the monitor GT OFF command has been
typed prior to calling the Editor). When the user calls EDIT,
an asterisk appears on the console terminal as described in
Section 3,1, Using the ED command at this time provides the
window into the Text Buffer; however, commands continue to
be echoed to the console terminal.

When ED is used in this case, it must be the first command
issued; otherwise, it becomes an illegal command (since the
memory used by the display buffer and code, amounting to over
600 words, is reclaimed as working space). The display cannot
be used again until a fresh copy of EDIT is loaded.

While the display of the text window is active, ED commands
are ignored.

Typing the EC command clears the screen and returns all
output to the console terminal,

NOTE

Under the Single-Job Monitor only, after
the editing session is over, it is
recommended that the screen be cleared
by either typing the EC command, or
returning to the monitor and wusing the
monitor INITIALIZE command. Failure to
do this may cause unpredictable results.

3.7.2 Setting the Editor to Immediate Mode

An additional mode is available in EDIT to provide an easier and
faster degree of interaction during the editing session. This mode is
called Immediate Mode and combines the most-used functions of the Text
and Command Modes--namely, to reposition the pointer and to delete and
insert characters.

Immediate Mode may be used only when the VT=-11] display hardware is

active and the Editor is running; it is entered by typing two
ALTMODES (only) in response to the Command Mode asterisk:

*$$



Text Editor

The Editor responds by echoing an exclamation point on the screen.
The exclamation character remains on the screen as long as control
remains in Immediate Mode.

Once Immediate Mode has been entered, only the commands in Table 3-3
are usred. None of these commands echoes, but the text appearing on the
screen is constantly refreshed and updated during the editing process.
Note that no EDIT commands other than those in Table 3-3 may be used
while control remains in Immediate Mode.

To return control to the display Editor's normal Command Mode at any
time while in Immediate Mode, type a single ALTMODE, The Editor
responds with an asterisk and the user may proceed using all normal
£diting commands. (Immediate Mode commands typed at this time will be
accepted as Command Mode input characters.) To return control to the
monitor while in Immediate Mode, type CTRL C.

Table 3-3
Immediate Mode Commands

Command Meaning
CTRL N Advance the pointer (cursor) to the
: beginning of the next line (equivalent
to A).
CTRL G Move the pointer (cursor) to the
beginning of the previous line

(equivalent to =-a).

CTRL D Move the pointer (cursor) forward by one
character (equivalent to J).

CTRL V Move the pointer (cursor) back by one
character (equivalent to =J).

RUBOUT Delete the character immediately
preceding the pointer (cursor)
(equivalent to ~D).

CTRL C Return control to the monitor,

ALTMODE (one only) Return control to Command Mode.

(two) Direct control to Immediate Mode.,
Any other character Insert the character as text positioned
than those above immediately before the pointer (cursor)

(equivalent to I).




Text Editor

3.8 EDIT EXAMPLE

The following example illustrates the use of some of the EDIT commands
to change a program stored on the device DK. Sections of the terminal

output are coded by letter and corresponding explanations

example,

R EDIT
A +ERDK:TESTL. MACSS
+EWDE : TESTE. HRC$S$

*R$F
f“f‘llL$$
i TEST PROGRAM
STRRT: MoV #1600, L6 ;i INITIRLIZE STRCK
Moy #MSG, ke ; POINT R@ TO MESSAGE
Bﬁ JER A7y MBOTYR PPRINT IT
HALT i STOF
MSG: CASCIIALIT WORKSS
. BYTE 19
. BYTE 12
L . BYTE @

C{ua 1J 50%%
*GPROGRAMS$
D{*GL$$
i PROGRAM*I TO TEST SUBROUTINE MSGTYF. TYPES
E{ ; “THE TEST FROGRAM WORKS"
JON THE TEMINIMNRMINAL %S
*F. ASCII %%
F{XGCTHE TEST PROGRAM WORKS$$

*F.BYTETK
G{ #F. E¥YTE O$Vs$4

.BYTE @
r *1
. END
$BESLSS
; FROGRRM TO TEST SUEBROUTINE MSGTYFR. TYFPES
; "THE TEST FPROGRRHM WORKS"
; ON THE TERMINAL
STRART: MOY #1668, Xé i INITIRLIZE STHCK
H< Moy #MSH, Z@ i POINT R® TO MESEHRGE
SEROAT7 yMBGTYR P FREINT IT
HALT i STOF
MSG: .RSCIIATHE TEST PROGRAM WORESA
.BYTE 15 '
.BYTE 12
.BYTE @&
. END
\
#EX3S

follow the



Text Editor

A The EDIT program is called and prints an *., The input file is
TEST1.MAC; the output file is TEST2,.MAC and the first page of
input is read.

B The buffer contents are listed.

Cc Be sure the pointer is at the beginning of the buffer. Advance
pointer one character (past the ;) and delete the "TEST ".

D Position pointer after PROGRAM and verify the position by listing
up to the pointer.

E Insert text. RUBOUT used to correct typing error.

F Search for .ASCII/ and change "IT WORKS" to "THE TEST PROGRAM
WORKS",

G CTRL X typed to cancel P command. Search for ", ,BYTE 0" and
verify location of pointer with V command.

H Insert text. Return pointer to beginning of buffer and 1list
entire contents of buffer.

I Close input and output files after copying the current text
buffer as well as the rest of input file into output file. EDIT
returns control to the monitor.

3.9 EDIT ERROR MESSAGES

The Editor prints an error message whenever one of the error
conditions 1listed next occurs., Prior to executing any commands, the
Editor first scans the entire command string for errors in command
format (illegal arguments, illegal combinations of commands, etc.). If
an error of this type is found, an error message of the form:

?ERROR MSG?

is printed and no commands are executed. The user must retype the
command,

If the command string is syntactically correct, execution is started.
Execution errors are still possible, however (buffer overflow, I/0
errors, etc.), and if such an error occurs, a message of the form:

?*ERROR MSG*?

is printed. In this case, all commands preceding the one in error are
executed, while the command in error and those following are not
executed. Most errors will generally be of the syntax type and can be
corrected before execution,



Text Editor

When an error occurs during execution of a Macro, the message format

is:

?message IN MACRO?

or

?*message IN MACRO*?

depending on when it is detected.

Message

*CB ALMOST FULL*

?CB FULL?

?*DIR FULL*?

?%EOF*?

?*FILE FULL*?

?*FILE NOT FND*?
?*HDW ERR*?

?ILL ARG?

?2ILL CMD?

?*ILL DEV*?

?ILL MAC?

Explanation

The command currently being entered is within
10 characters of exceeding the space
available in the Command Buffer.

Command exceeds the space allowed for a
command string in the Command Buffer,

No room in device directory for output file,

Attempted a Read, Next or file searching
command and no data was available.

Available space for an output file is full.
Type a CTRL C and the CLOSE monitor command
to save the data already written.

Attempted to open a nonexisting file for
editing.

A hardware error occurred during I/O. May be
caused by WRITE LOCKed device. Try again,

The argument specified is illegar for the
command used., A negative argument was
specified where a positive one was expected
or argument exceeds the range + or - 16,383,

EDIT does not recognize the command
specified; ED was not the first command
issued when used to activate the display
hardware.

Attempted to open a file on an \illegal
device, or attempted to use display hardware
when none was available (it may be in use by
the other job).

Delimiters were improperly used, or an
attempt was made to enter an M command during
execution of a Macro or an EM command while
an EM was in progress.



Text Editor
Message
2*ILL NAME*?

?*NO FILE*?

?*NO ROOM*?

?2*NO TEXT*?

?*SRCH FAIL*?

2"<{>"ERR?

Explanation

File name specified in EB, EW, or ER is
illegal.

Attempted to read or write when no file is
open,

Attempted to Insert, Save, Unsave, Read,
Next, Change or Exchange when there was not
enough room in the appropriate buffer,
Delete unwanted buffers to create more room
or write text to the output file. .

Attempted to call in text from the Save
Buffer when there was no text available,

The text string specified in a Get, Find or
Position command was not found in the
available data.

Iteration brackets are nested too deeply or
used illegally or brackets are not matched.






CHAPTER 4

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is the file transfer and
maintenance utility for RT-11l, PIP is used to transfer files between
any of the RT-1l devices (listed in Table 2-2), merge and delete files
from these devices, and list, zero, and compress device directories.

4.1 CALLING AND USING PIP
To call PIP from the system device type:
R PIP

in response to the dot printed by the Keyboard Monitor. The Command
String Interpreter prints an asterisk at the left margin of the
terminal and waits to receive a 1line of filenames and command
switches. PIP accepts up to six input filenames and three output
filenames; command switches are generally placed at the end of the
command string but may follow any filename in the string. There is no
limit to the number of switches which may be indicated in a command
line, as long as only one operation (insertion, deletion, etc.) is
represented.

Since PIP performs file transfers for all RT-11 data formats (asc1z,
object, and image) there are no assumed extensions for either input or
output files; all extensions, where present, must be explicitly
specified.

Following completion of a PIP operation, the Command Strirg
Interpreter prints an asterisk at the left margin of the teleprinter
and waits for another PIP command line. Typing CTRL C at any time
returns control to the Keyboard Monitor. To restart PIP, type R PIP
or the REENTER command in response to the monitor's dot.

4.1.1 Using the "Wild Card" Construction

PIP follows the standard file specification syntax explained in
Section 2.5 (Chapter 2) with one exception: the asterisk character
can be used in a command string to represent filenames or extensions.
The asterisk (called the "wild card") in a file specification means
"all", For instance, "*,MAC" means all files with the extension .MAC.

4-1



Peripheral Interchange Program

regardless of filename. "FORTN,.*" means all files with the filename
FORTN regardless of extension., "*.*" means all files, regardless of
name or extension.

The wild card character is legal in the following cases only (switches
are explained in the next section):

1. Input file specification for the copy and multiple copy
operations (i.e., no switch, /I, /B, and /A) .

2., File specification for the delete operation (/D).

3. Input and output file specifications for the rename operation
(/R) .

4. Input and output file specifications for the multiple copy
operation (/X).

5. Input file specifications for the directory list operations
(/L, /E, /F).

Operations on files implied by the wild card asterisk are performed in
the order in which the files appear in the directory. System files
with the extension .SYS and files with bad blocks and the extension
.BAD are ignored when the wild card character is used unless the /Y
switch is specified.

Examples:

ok BRKAD Causes all files with the extension .EBAK
(regardless of their filenames) to be
deleted from the device DK,

%, TST=# BAK/R Renames all files with a .BAK extension
(regardless of filenames) so that these
files now have a +TST extension
(maintaining the same filenames).

KIRICL § Ko K/ XY Ko K Transfers all files, including system
files, (regardless of filename or
extension) from device DK to device RKl,

KK MACY XL, OBI/L Lists all files with MAC and .OBJ
extensions.

4,2 PIP SWITCHES

The various operations which can be performed by PIP are summarized in
Table 4=-1. If no switch is specified, PIP assumes the operation is a
file transfer in image (/I) mode. Detailed explanations "of the
switches follow the table,



Peripheral Interchange Program

Table 4-=1
PIP Switches

Switch Section

Explanation

/A

/B
/c

/D
/E

/F

/G

/I or no
switch

/K

/L

4.2.2

4.,2,2
4,2,2

4,2,4

4,2.6

Copies file(s) in ASCII mode; ignores nulls and
rubouts; converts to 7-bit ASCII; CTRL Z (32 octal)

treated as logical end-of-file on input.
Copies files in formatted binary mode.

May be used in conjunction with another switch to
cause only files with current date (as designated
using the monitor DATE command) tn be included in
the specified operation.

Deletes file(s) from specified device.

Lists the device directory including unused spaces
and their sizes. An empty space on a cassette or
magtape directory represents a deleted file.
Sequence numbers are listed for cassettes.

Prints a short directory (filenames only) of the
specified device.

Ignores any input errors which occur during a file
transfer and continues copying.

Copies file(s) in image mode (byte by byte), This
is the default switch.

Scans the specified device and types the absolute
block numbers (in octal) of any bad blocks on the
device.

Lists the directory of the specified device,
including the number of files, their dates, and
the number of blocks used by each file. Sequence
numbers are listed for cassettes.,

Used when I/0 transfers involve either cassette or
magtape. n represents the numeric position of the
file to be accessed in relation to the physical
position of the cassette or magtape on the drive.
If n is positive, the tape spaces forward from its
current position until eithexr the filename or the
nth file is found; if n is negative, the tape is
rewound first, and then it spaces forward until
either the filename or the nth file is found. If
n is 0 (or not indicated) the tape is rewound and
searched for the filename. For wild card
operations, specification of /M with a positive
argument will prevent the tape from rewinding
between each file involved in the operation.

Used with /Z to specify the number of directory
segments (n) to allocate to the directory.

Bootstraps the specified device (DTO, RKn, RF, DPn,
DSn, DXn only).

4-3 (continued on next page)




Peripheral Interchange Program

Table 4-1 (Cont.)
PIP Switches

Switch Section Explanation

/Q 4,2,2 When used in conjunction with another PIP
operation, causes PIP to type each filename which
is eligible for a wild card operation and to ask
for a confirmation of its inclusion in the
operation. Typing a "Y" causes the named file +to
be included in the operation; typing anything
else excludes the file., The command line is not
processed until the user has confirmed each file
in the operation,

/R 4,2.5 Renames the specified file,

/S 4.2,.8 Compresses the files on the specified directory
device so that free blocks are combined into one
area.

/T 4,2.4 Extends number of blocks allocated for a file,

/U 4.2.9 Copies the bootstrap from the specified file into
absolute blocks 0 and 2 of the specified device.

/v 4,2.11 Types the version number of the PIP program being
used,

/W 4,2,6 Includes the ahsolute starting block and any extra

directory words in the directory listing for each
file on the device (numbers in octal). Used with
/F, /L, ox /E,

/X 4.2,3 Copies files individually (without concatenation).
/Y 4,2,2 Causes system files and .BAD files to be operated
on by the command specified, Attempted

modifications or deletions of .SYS or ,BAD files
without /Y are not done and cause the message ?NO
SYS ACTION? to be printed.

/Z:n 4.2,7 Zeroes (initializes) the directory of the
specified device; n is used to allocate extra
words per directory entry. When used with /N, the
number of directory segments for entries may be
specified. When used with cassette, /Z writes a
sentinel file at the beginning of the tape: with
magtape, /Z writes a volume label followed by a
dummy file followed by double tape marks
indicating logical end-of-tape.

4.2.1 Operations Involving Magtape or Cassette

PIP operations involving cassette and magtape devices are handled
somewhat differently than other RT=1l1] devices, because of the
sequential nature of these devices. The last file on a cassette or
magtape (the logical end-of-tape) is specially formatted so that it
marks the end of current data and indicates where new data may begin
(double end-of-file for magtape, sentinel file or physical end-of-tape
for cassette). Therefore, operations which designate specific block
lengths (such as /T and /N) are meaningless, and unused spaces on the
tape (resulting from file deletions) cannot be filled.




Peripheral Interchange Program

PIP operations which are legal using cassette and magtape (including
the bootable magtape on which the system may have been distributed)
include the following: /A, /B, /D, /E, /F, /G, /I, /L, /M, /Q, /V,
/M, /X, /Y, and /Z. Usually the device (CT or MT) is rewound each
time an operation is performed. Since there is no inclusive directory
at the beginning of the tape the only way to access a file is to
search the tape from the beginning until it is found. However, the
/M:n switch is available for situations where it is not necessary or
desirable to rewind the tape before each operation. TIf the argument
(n) is positive, the operation indicated will not rewind the tape
first, but will space forward until it finds either the nth file, the
filename indicated in the command line, or the logical end-of-tape,
whichever occurs first. If the argument is negative, the cassette or
magtape will be rewound first and then spaced forward until the file-
name (or nth file, or logical end-of-tape) is found. Thus:

/M:1 means suppress rewind, begin operation at
current position.

/M:=1 means rewind tape and access the first file
on it.

Remember that when /M:n is used, n is interpreted as an octal number.
/Min must be used if it is intended that n represent a decimal number.

For example, assume the directory of a cassette on unit 1 is:

17-JUL=-74

FILE .1 B S-MAY-74
FILE .2 @ 5-MAY-T4
FILE .3 I 13-MAY-74
FILE .4 1 28-JUN=-74
FILE .5 2 17-JUL~-74

5 FILES, 2 BLOCKS
*

and the last PIP operation involved FILE.4, leaving the cassette
positioned at the end of FILE.4., To access FILE.2, the next operation
{for example, deleting FILE.2) could use the /M construction:

#0TL DM -2/

In this case, the cassette rewinds first, then spaces forward from its
current position to the second file in sequence and deletes it, (In a
delete operation, the dummy filename is necessary; otherwise, a
non-£file structured delete is performed and the tape is zeroed. See
Section 4.2.4).

Another useful application of the /M switch involves a case where a
number of files are to be created on a magtape or cassette. Using the
construction:

e

#MT  # #sW=FILE 1, FILE. 2. . ~M: 108E

prevents a rewind from occurring before each new file is created on
the tape. Normal operation (when creating a new file on magtape or
cassette) is to rewind, then search the tape for the logical end. If
a file with the same name as the one being created is encountered, it
is Jeleted and the new file is opened at the logical end of the tape.
The /M:1000 command first causes the tape to space forward until it
reaches the logical end-of-tape, (assuming less than 1000 (octal)
files on the tape), at which point the next file is entered, and so
on. If the tape were already positioned at the end of the tape, an

4-5 January 1976



Peripheral Interchange Program

/M:1 would suffice to cause the new file to be written there. Note
that creation of a new file with the /M switch can result in several
files with the same name on the same tape; those files occurring
before the tape position are not searched for duplication prior to the
creation of the new file,

RT-11 magtapes sometimes contain a dummy file at the beginning of the
tape, which is written when the tape 1is initialized with the /Z
switch, This file shows up in extended directories (/E) as an
(UNUSED> entry in the first file position. Deleted files on magtape
or cassette do not show up in /F or /L directory listings, but must
always be considered when the /M:n switch is used. Care must always
be taken to use a /E directory when counting file position prior to
using that position as an /M:n argument; <UNUSED) files must be
counted as files on the tape,

For example:

R FIF

*MTa: E Extended directory: shows
11-SEP-74 absolute file positions.,
< LINUSED > 5}

A . MAC 48 11-SEFP-74

E . MAC 15 11-SEF-V4

< UNUSED > 2

[ . MAC 2 11-SEF-74

3 FILES, 57 BLOCKS

#MTO: /L Normal directory; does
11-SEP-74 not accurately display
A . MAC 48 11-SEF-T4 file positions.

B . MALC 15 41-SEF-T74

] . MRLC 2 11-SEF-74

X FILES, 57 ELOCKS

If the user wished to access file A.MAC on the magtape in the example
above, /M:=2 must be used (/M:=1 would access the first empty file).
Likewise, B,MAC is accessed with /M:-3. Rewind can also be suppressed
for cassette and magtape as input devices by specifying a very large
number in conjunction with wild card transfers from magtape or
cagsette,

ok, owsMTH %, kS ZHAGSE

This transfers all files from MTO:; to DK: without rewinding between
each file. The argument 2000 is an arbitrarily large number; any
number larger than the actual number of files on the tape will
suffice.

The most common method for spacing to the end of the tape is:

#DUMMY=MTa : DUMMY /I 2080
PFIL NOT FND?

where DUMMY is a file name which does not exist on the tape. Note
that an error message is printed when the end of the tape is reached.

July 1975 4-6



Peripheral Interchange Program

Directory listings of magtapes include the 1length of each file in
256 (decimal) word blocks., In cassette directories, however, sequence
numbers rather than block numbers are printed. Sequence numbers
indicate the sequential ordering of a file in cases where it has been
continued on more than one cassette. In the example cassette
directory 1listing (at the beginning of this section), the numbers in
the middle column represent sequence numbers; both FILE.3 and FILE.4
are the second segments of continued files. All files on cassette are
initially assigned a sequence number of 0 (meaning this is the first
segment of the cassette file, not that the file has no length). The
sequence number is automatically updated whenever the file must be con-
tinued as a result of a full cassette.

During I/0 transfer operations involving cassette, if the cassette is
full before the transfer has finished, the message:

CTn: PUSH REWIND OR MOUNT NEW VOLUME

is printed; n represents the number of the drive (0 or 1) on which
the current cassette 1is mounted. If the cassette rewind button is
subsequently pushed, an error message is typed (IN or OUT ERR) and the
tape is rewound.

To continue an output operation, mount a new cassette (which has been
properly formatted as described in Section 4.2,7) on the same drive.
The new cassette is rewound automatically and a file is opened on it
under the same name and extension; the sequence number in its
directory is updated to reflect the continuation, and the transfer
continues.

If the message occurs during an input operation, mount the cassette
containing the continued portion of the £file on the drive; the
cassette is rewound first, PIP then looks for a file with the same
name and extension and the proper sequence number and continues the
input operation. The message is repeated if the next segment is not
found.

For example:

*CTO FILE. RGA=DTL:ASC. MAC, DK BALOR. MAC ~A
CTO: PUSH REWIND OR MOUNT NEW VOLUME

This copies in ASCII mode the file ASC.MAC from DECtape 1 and
BALOR.MAC from device DK and combines them under the name FILE.AGA on
CT0. The cassette runs out of room and requests that a new one be
mounted. The operation continues automatically when the second
cassette has been mounted.

A directory of the second cassette in the above operation is next
requested; note that the sequence number of FILE.AGA is 1, signifying
it is the second part of a continued file,

*CT@: /L

23-MAY=~74

TRA «BIN @ 16-FEB-74
FILE +AGA 1 23-MAY-74

2 FILES, | BLOCKS

*
(The number of blocks in a cassette directory simply represents the
total of sequence numbers in the directory.)

Any cassette mounted in response to a continuation message MUST have
been previously initialized at some time as described in Section
4.2.7.

4-7 January 1976



Peripheral Interchange Program

If a full cassette is mounted or an attempt is made to access some
file on it that does not exist, the con;inuation message recurs.
The operation may be continued by mounting another cassette.

Note that if an attempt is made to access a file which has a non-zero
sequence number (during some operation which is not a continuation of
an operation), the file will not be found.

To copy multiple files to a cassette using a wild card command, use
the following:

*CTn:* ., *=DEV:*.,*%/X/M:1 (rewind is inhibited)

Continue to mount new cassettes in response to the PUSHE REWIND OR
MOUNT NEW VOLUME message. Do not abort the process at any time (using
two CTRL Cs) since continuation files may not be completed and no sen-
tinel file will be written on the cassette.

To read multiple files from a cassette, use the following:
*DEV:* ,*=CTn:*.*/X/M:1000 (rewind is inhibited)

Whenever a continued volume is detected, the PUSH REWIND OR MOUNT NEW
VOLUME message will appear, until the entire file has been copied (as-
suming that each sequential cassette is mounted in response to each oc-
currence of the message). Whenever PIP has copied the final section

of a continued file, it will return to command level. To copy the
remaining files on that cassette, reissue the command:

*DEV:*.*=CTn:*.*/X/M:1000

Repeat the process as often as necessary to copy all files. Do not

abort the process at any time (using two CTRL Cs) since continuation
files may not be completed.

If the end of a tape is reached during a magtape 1/0 operation, an IN
or OUT ERR message is printed. 1In the case of an output operation,
the magtape backspaces and deletes the partial file by writing logical
end of tape over the file's header label. The operation must then be
repeated using another magtape.

If CTRL C is typed during any output operation to cassette or magtape,
an end-of-tape or sentinel file is not written on the tape first.
Consequently, no future enters may occur to the tape unless one of two
recovery procedures is followed:

l. Transfer all good files from the bad tape to another tape and
zero the bad tape in the following manner:

*devl:* ,*/X=devO:filel,file2,...filen/M:1000
*dev0:/2
dev0:/Z ARE YOU SURE ?

This causes a logical end-of-tape to be written onto the bad
tape and makes it again available for use.

January 1976 4-8



Peripheral Interchange Program

2, Determine the sequential number of the file which was
interrupted and use the /M construction to enter a
replacement file (either a new file or a dummy file).
Assuming the bad file is the 4th file on the tape, use a
command line of this construction:

*dev0:file.new=£file,dum/M:~4

A logical end-of-tape now exists on the tape, making it
available for use.

Since magtapes and cassettes are not random access devices, each unit
can have only one file accessed at a time. Avoid PIP command strings
which specify the same unit number for both input and output, since a
loss of information can occur. For example:

*CT@: FILEl .MAC=CT@:FILEl «MAC
?FIL NOT FND?
*

The result of this operation is to delete FILEl.MAC before the error
message is printed, and the tape label structure may be destroyed.

Recovery procedures for errors caused by bad tapes are described in
RT-11 Software Support Manual.

4-8.1 January 1976



This page intentionally blank.



Peripheral Interchange Program

4.2,2 Copy Operations

A command line without a switch causes files to be copied onto the
destination device in image mode (byte by byte). This operation is
used to transfer memory image (save format) files and any files other
than ASCII or formatted binary. For example:

#ABCCKY2 Makes a copy of the file named XYZ on
device DK and assigns the name ABC,
(Both files exist on device DK following
the operation).

*5Y:BRCK. BIN=FR:~/1 Copies a tape from the papertape reader
to the system device in image mode and
assigns it the name BACK.BIN.

The /A switch is used to copy file(s) in ASCII mode as follows:

#DT1:FL<FZ2- A Copies F2 from device DK onto device DTl
in ASCII mode and assigns the name F1,

Nulls and rgbouts are ignored in an ASCII mode file transfer. CTRL Z
(32 octal) is treated as logical end-of-file if encountered in the
input file.

The /B switch 1is used to transfer formatted binary files, The
formatted binary copy switch should be used for .0BJ files produced by
the assembler or FORTRAN and for .LDA files produced by the Linker.,
For example:

DK FILE. OBJ<FR.“F Transfers a formatted binary file from
the papertape reader to device DK and
assigns the name FILE.OBJ.

When performing formatted binary transfers, PIP verifies checksums and
prints the message ?CHK SUM? if a checksum error occurs.

If neither /A nor /B is used in a copy operation that involves a paper
tape device, the size of the output file in the operation depends upon
the memory size of the system. The transfer mode defaults to image
mode and PIP attempts to do a single read to fill its input buffer.
When a read from the paper tape reader encounters end-of-tape, no count
of words transferred can be returned; PIP assumes its input buffer is
full and copies it to the output device. The output file size thus
depends upon the input buffer size, which is determined by the memory
size of the system. The output file will have several blocks of zeroes
after the end of the paper tape image. If copying to the punch, large
amounts of blank tape will be punched after the input tape image is
output. The extra length is harmless, but can be avoided by use of /A
or /B. Image mode files (for example, .SAV files) cannot reliably be
transferred to or from paper tape.

To combine more than one file into a single file, use the following
format:

*DK :RACDTL BB, CC, CD AT )
‘ Transfers files BB, CC and DD to device
DK as one file and assigns this file the
name AA,

4-9 January 1976




Peripheral Interchange Program

*DT2 :MERGE=0Te : FILEZ, FILEZAH
Merges ASCII files FILE2 and FILE3 on
DT2 into one ASCII file named MERGE on
device DT3,

Errors which occur during the copy operation (such as a parity error)
cause PIP to output an error message and return for another command

string.

The /G switch is used to copy files but ignore all input errors. For
example:

#*ARECCDTL . TOFPAG Copies file TOP in image mode from
device DT1 to device DK and assigns the
name ABC. Any errors during the copy
operation are ignored.

January 1976 4-9.1



This page intentionally blank.



Peripheral Interchange Program

*0T2 . COMBLDTL  F1, FE-RSG
Copies files Fl and F2 in ASCII mode
from device DTl to device DT2 as one
file with the name COMB, Ignores input
errors.,

The wild card construction may be used for input file specifications
during copy operations. Be sure to use the /Y switch if system files
(.8YS) are to be copied. For example:

XDTLIFROGL X «MAC Copies, in image mode, all files with a
+MAC extension from device DK to device
DT1 and combines them under the name
PROG1.

AR XK=[ITE K. %/G/Y/X Copies to device DK, in image mode, all
files (including .SYS files) from device
DT3; ignores any input errors,

If only files with the current date are to be copied (using the wild
card construction), the /C switch must also be used in the command
line. For example:

*DT2 HNZ=ITEML. */C, ITEMZ/H
Copies, in ASCII mode, all files having
the filename ITEM1 and the current date,
(the date entered using the monitor DATE
command) and copies ITEM2 (regardless of
its date) from device DK to device DT2
and combines them under the name NN3,

*DTI ok, w=k A C K Copies all files with the current date
from DK to DT3. Note that commands of
this nature are an efficient way to
backup all new files after a session at
the computer.

The /Q switch 1s used in conjunction with another PIP operation and
the wild card construction to list all files and allow the user the
opportunity to confirm indiwvidually which of these files should be
processed during the wild card expansion. Typing a "¥" causes the
named file to be processed; typing anything else excludes the file.
For example:

KK ORIDTL IR OBI/Q/X

FIRST +ORJ7PY Copies the files FIRST.OBJ and
GETR  .ORJ® CARJ.OBJ to the disk in

RORDY L QRJ?P image mode from DECtape 1

CARY  LORJ?Y and ignores the others.

The file allocation scheme for RT-1l1l normally allows half the entire
largest available space or the second largest space, or a maximum size
(a constant which may be patched in the RT-11 monitor; see the RT-11
System Generation Manual), whichever is largest, for a new file. The
user can, using the |n] construction explained in Chapter 2, force
RT-11 to allow the entire largest possible space by setting n=177777.
If n is set equal to any other value (other than 0 which is default
and gives the normal allocat+ion described first above), that size will
be allocated for the fi-

Januarv 1976 4-10



Peripheral Interchange Program

Therefore, assume that the directory for a given device shows a free
area of 200 blocks and that PIP returns an ?0UT ER? message when a
transfer is attempted to that device with a file which is longer than
100 blocks but less than 200 blocks. Transfers in this situation can
be accomplished in either of two ways:

l. Use the [n] construction on the output file to specify the
desired 1length (refer to Chapter 2, Section 2.5 for an
explanation of the [n] construction).

2., Use the /X switch during the transfer to force PIP to
allocate the correct number of blocks for the output file,
This procedure will operate correctly if the input device is
DECtape or disk. .

For example, assume that file A is 150 blocks 1long and that a
directory 1listing shows that there is a 200 block <unused) space on
DT1l:

. R FIF
*#LTL: A=A
0UT ER? File longer than 100 blocks.
*#DTL:ARL15@ 1=R

or Either command causes a correct
*DT1:A=A/K transfer.

4,2,3 Multiple Copy Operations

The /X switch allows the transfer of several files at a time onto the
destination device as individual files. The /A, /G, /C, /Q, /B and /Y
switches can be used with /X. If /X is not indicated, all output files
but the first will be ignored.

Exampless

Copies, in image mode, FILEA, FILEB and
FILEC from device DTl to device DK as
separate files called FILEl, FILE2 and
FILE3, respectively.

*DT2 Fd. *=F2. %/ Copies, in image mode, all files named

?NO0 SYS RCTION? F2 (except files with ,.SY¥S or .BAD

* extensions) from device DK to device
DT2. Each file is assigned the filename
Fl but retains its original extension.

ADTL K A=DTRik %/ X Copies, in image mode, all files on

PNO SYS ACTION? device DT2 to device DT1 (except files
with .SYS or .BAD extensions); the files
are copied separately and retain the
same names and extensions,

*DTL :FILEL, FILEZ2<FILER. ¥*/A~G/¥
This command line assumes there are two
files with the filename FILEA (and any
extension excluding +SYS or «BAD
extensions) and copies these files in

4-11



Peripheral Interchange Program

ASCII mode to device DT1l. The files are
transferred in the order they are found
in the directory; the first file found
is copied and assigned the name FILEL,
and the second 1is assigned FILE2, If
there is a third, it is ignored and a
fourth causes an ?0UT FIL? error.

*DTO % SYS=% SYS/KAY
Copies all system files from device DK
to device DTO.

File transfers performed via normal operations place the new file in
the largest available area on the disk. The /X switch, however,
places the copied files in the first free place large enough <o
accommodate it. Therefore, the /X switch should be used whenever
possible (i.e., when no concatenation is desired) as an aid to
reducing disk fragmentation,

*H=E
and
*R=EH

perform the same operation; however, using the second construction
whenever possible increases the system disk-usage efficiency.

For example, assume the directory of DTl is:

9-MAY-F4
MONITR. SYS iz S-MAY-Td
UNUSED > ¢
FR . E¥YE 2 S-MAY-T4
< UNUSED > B5&8&
2 FILES, 34 BLOCKS

538 FREE BLOCKS
To copy the file PP.S5YS (2 blocks long) from DK to DT1l, the command:
*DTL PP, SYS=FF. SYEAY

can be entered, and the new directory is:

9-MAY-74

MHONITR. S¥S 32 S-MAY-T4
< UNUSED > e
FR . 5Y¥S ¢ S-MAY-V4
FF . S¥S ¢ 8-MAY-74

<. UNUSED > 526
3 FILES, 36 BLOCKS
528 FREE BLOCKS
If the command:
*DT1:PP. SYS=FFP. SYS5/Y/XK

had been entered, the new directory would appear:

4-12



Peripheral Interchange Program

9-MAY-74
MONITR. S¥YS 32 S5-MAY-74
PP . 5¥S & 9-MAY-74
PR . 5¥S ¢ 5-MAY-74

< UNUSED > 528
3 FILES, 36 BLOCKS
528 FREE BLOCKS

4.2.4 The Extend and Delete Operations

The /T switch is used to increase the number of blocks allocated for
the specified file. The file associated with the /T switch must be
followed by a numeric argument of the form [n) where n is a decimal
number indicating the number of blocks to be allocated to the file at
the completion of the extend operation.

The format of the /T switch is:
dev:filnam.ext[n]=/T

A file can be extended in this manner only if it is followed by an
unused area of sufficient size (on whichever device it is located) to
accommodate the additional length of the extended file. It may be
necessary to create this space by moving other files on the device
using the /X switch.

Specifying the /T switch in conjunction with a file that does not
currently exist creates a file of the designated length.

Error messages are printed if the /T command makes the specified file
smaller (?EXT NEG?) oxr if there is insufficient space following the
file (?ROOM?),

Examples:

*ABCL 280 1=/T Assigns 200 blocks to file ABC on device
DK.

*DTL RYZL 108107 Assigns 100 blocks to the file named XYZ
on device DT1,

The /D switch is used to delete one or more files from the specified
device. The wild card character (*) can be used in conjunction with
this command,

Only six files can be specified in a delete operation if each file to
be deleted is individually named (i.e., if the wild card character is
not used).

A cassette or magtape may be initialized by indicating the /D switch
and omitting any filenames. For example:

aMT A0
#CT: /D

Both devices are zeroed., This is not the case with the other RT-11
devices, where omission of a filename causes no action to occur,



Peripheral Interchange Program

When a file is deleted on block-replaceable devices, the information
is not destroyed. The file name is merely removed from the directory.
If a file has been deleted but not overwritten, it can be recovered
with the /T switch by specifying a command of the form:

filena.ext [n]=/T

where filena.ext is the name desired and n is the length of the
deleted file. For examples:

#*0T1: A E

4-JUN-74
R . MAC 16 ZI-JUN-T74
B . MAC 17 3-JUN-74
C . MAC 19 -JUN-74
< UNUSED » S18@

3 FILES, 54 EBLOCKS

518 FREE BLOCKS

*bT1:EB. MAC/D

*DT1:/E

4-JUN-74

f . MAC 1§ 3I-JUN-74
< UNUSED > 17

C . MAC 19 3I-JUN-74
< UNUSED » 3S1@

2 FILES, %7 BLOCKS

527 FREE BLOCKS
File B.MAC could now be recovered by:
*DT1:B..MACL L7 1=/T

The /T switch looks for the first unused area large enough to
accommodate the requested file length. If the file to be recovered is
in the first area large enough to accommodate the size specified, the
preceding command is sufficient. If not, all larger unused spaces
preceding the desired file must be given dummy names before the
recovery can be made.

For instance, assume the previous example with the exception that
A.MAC has a 33 block unused file before it, so that the directory
looks like:

*DT1:/E

4-JUN-74

< UNUSED > 23

A . MRC 18 3-JUN-74
T UNUSED > 17

c . MRC 19 Z3I-JUN-74

UNUSED > 477
FILES, 37 BLOCKS
527 FREE BLOCKS

P

A recovery of B.MAC would require:

*DTL:DUMMYI 33 1=/T
*DT1:B. MACL 17 1=¢T

4-14



Peripheral Interchange Program

If the 33 block unused area was not named prior to B.MAC, the first 17
blocks of the 33 block area would become B,MAC, Note that magtape and
cassette files cannot be recovered once deleted,

Examples:

*FILEL. SAYAD Deletes FILEl.SAV from device DK.

*DTL %, /D Deletes all files from device DTl except
those with a .SYS or .BAD extension. If
there is a file with a .SYS or .BAD
extension, the message ?NO SYS ACTION?
is printed to remind the user that these
files have not been deleted.

wx, MAC /D Deletes all files with a .MAC extension
from device DK.

*DTL:BL, T2 R4, 0T AASD
Deletes the files specified from the
associated devices.

KRKL K R/NY Deletes all files from device RKl.

4.2.5 The Rename Operation

The /R switch is used (in a manner similar to the multiple copy
command described in Section 4.2.3) to rename a file given as input
with the associated name given in the output specification. There
must be an equal number of input and output files and they must reside
on the same device, or an error message will be printed. The /Y
switch must be used in conjunction with /R if .SYS files are to be
renamed.,

The Rename command is particularly useful when a file on disk or
DECtape contains bad blocks, By renaming the file with a .BAD
extension, the file permanently resides in that area of the device so
that no other attempts to use the bad area will occur. Once a file is
given a .BAD extension it cannot be moved during a compress operation.
«BAD files are not renamed in wild card operations unless /Y is used.

Examples:

#DT1:F1, ¥1<0T1:F@, X6/F Renames FO to Fl1 and X0 to X1 on
device DT1,

*FILEL. #<FILEZ. %/ Renames all files on device DK with
the name FILE2 (except files with
«SY¥YS or .BAD extension) to FILEL,
retaining the original extensions.

/R cannot be used with magtape or cassette.

4,2.6 Directory List Operations

The /L switch lists the directory of the specified device. The
listing contains the current date, all files with their associated
creation dates, total free blocks on the device if disk or DECtape,
the number of files 1listed, and number of blocks used by the files

4-15 July 1975



Peripheral Interchange Program

(sequence number for cassette)., File lengths, number of blocks and
number of files are indicated as decimal values. If no output device
is specified, the directory is output to the terminal (TT:).

Examples:

*DT1: /L Outputs complete directory of
1-AUG-74 device DT1 to the terminal.

MONITR. 5¥S 32 $-MAY-74

FFP . 5YS e 9-MAY-74

FR . SYS 2 Y-MAY-74

Fe . REL 15

MERGE e

conMe g

& FILES, 55 EBLOCKS
569 FREE EBLOCKS

KOTRECT=DT33 /. Outputs complete directory of
device DT3 to a file, DIRECT,
on the device DK,

4, MACAL Lists on the terminal a

1-AUG-74 directory of files on device
YTHAC . MAC 7oea-JuL-v4 DK with the extension .MAC,
FILEZ . MAC 1

FILES, & EBLOCKS
7e8 FREE BLOCKS

* 1ol P3

*CT1: AL Lists all files on cassette
19-SEF-74 drive 1. For cassette only,
FATL1 . FOR @ 18-SEF-74 the third column represents
PARTZ2 . FOR 6 1L8-SEF-74 the sequence number, In
InuL . 0BJ @ 1e-SEF-74 this example, the first seg-
SERT . FTH g Le-SEF-74 ment of each file is on this
4 FILES, & ELOCKS cassette. (See Section
4.2.1.)

The /E switch lists the entire directory including the unused areas
and their sizes in blocks (decimal); an empty space appears in
cassette and magtape directories to designate a deleted file.

Examples:

Outputs to the terminal a
e 7 4 complete directory of the

GATOH o HLF device DK including the size
CHESS L, H5AV

of unused areas.
AT o FOR
TRADEG . MaC 8] R

3

¥

January 1976 4-16



Peripheral Interchange Program

= UNUSED = 2
TRIG  LORJ & A-BER-T4

TR R 2
BAG OB 2
s UNUSED 20

1L OBRS 13Y
ECT 1
230

s 4280 RBLOCKS

 RLOCKSE
*LFP:=CT1: E Outputs to the 1line printer
11»SEPw?4 a complete directory of
A #MAC ® 11a8EpeTa cassette drive 1. 0's
A MAC ? 11e3EP=T4 represent segment numbers,
8 SMAC ® 11+8EP=74

3 FILES, @ BLOCKS

The /F switch lists only filenames, omitting the file 1lengths and
associated dates.

Examples:

#DT@: ~F Outputs a filename directory

TRACE . MAC of the device DTO0 to the

CARGO . REL terminal.

EMAP . 0BJ

RAR

#LF =0T F Outputs a filename directory
of the device CT1l to the line
printer.

A «MAC

A JMAC

8 e MAC

The /L, /E and /F commands have no effect on the files of the speci-
fied device. If the /W switch is used in conjunction with the /L or

/E switches, the absolute starting block of the file and extra words

(in octal) will be included in the listing (for all but cassette and

magtape). For example:

KRKL /L. /W

10 )

DEART L O8 1

PN 1
1

1é& v
17 0
20 G
33 v

The first three columns indicate the filename and extension, block
length, and date. The fourth column shows the absolute starting block
(in octal), and the fifth column shows the contents of each extra word
per directory entry (in octal). (This is allocated using the /Z:n
switch; see Section 4.2.7.)

4-17 January 1976



Peripheral Interchange Program

Using the /L, /E, or /F switch in conjunction with a device and
filename causes the filename, and optionally the date and file length,
to be output rather than a directory of the entire device, For
example:

*FL. SAYAL
causes:
4-JUN-74
Fi CSAY 18  4-JUN-T4

iv18 FREE BLOCKS
*

to be output, providing the file exists on device DK,

Directories are made up of segments which are two blocks 1long. Full
directory 1listings with multiple segments contain blank lines as
segment boundaries.

4.2.7 The Directory Initialization Operation

The /Z switch clears and initializes the directory of an RT-11 direc-
tory-structured device and writes logical end-of-file to a cassette
or magtape device. The /Z operation must always be the first opera-
tion performed on a new (that is, previously unused) device. The
form of the switch is:

/Z:n

where n is an optional octal number to increase the size of each direc-
tory entry on a directory-structured device. If n is not specified,

each entry is 7 words long (for filename and file length information)

and 70 entries can be made in a directory segment. When extra words

are allocated, the number of entries per directory segment decreases. The
formula for determining the number of entries per directory segment is:

507/ ((# of extra words)+7)

For example, if the switch /Z:1 is used, 63 entries can be made per
segment.

More information concerning the format of directory entries is supplied
in Chapter 3 of the RT-11 Software Support Manual.

When /Z is used, PIP responds as follows:
device/Z ARE YOU SURE ?
For example:

*DT1: /2
bT1:/2 ARE YOU SURE 7

Answer Y and a carriage return to perform the initialization. An
answer beginning with a character other than Y is considered to be no.

Example:
*DT1: /2
DT1:/2 RRE ¥YOU SURE *Y¥<CR>
* Zeroes the directory on device DTl and
allocates no extra words for the
directory.

January 1976 4-18



Peripheral Interchange Program

The /N switch is used with /2 to specify the number of directory seg-
ments for entries in the directory. The form of the switch is:

/N:n

where n is an octal number less than or equal to 37. 1Initially RT-11
allocates four directory segments, each two blocks (512 words) long.

Refer to Chapter 3 of the RT-11 Software Support Manual for more in-

formation.

Example:

KRIL L 7Z82/7N1S Zeroes the directory on device RK1l, al-
locates two extra words per directory
entry and allocates six directory seg-
ments.

4.2.8 The Compress Operation

The /S switch is used to compress the directory and files on the speci-
fied device, condensing all the free (unused) blocks into one area.
Input errors are reported on the console terminal unless the /G switch
is used; output errors are always reported. In either case, the com-
press continues. /S can also be used to copy DECtapes and disks.

When DT, DP, or RK devices are copied, /S serves to both initialize
the volume and to copy directory and files. When DX disks are copied,
however, the output diskette must first be initialized using /Z to
write the appropriate volume identification. (It is important to

note that the /S switch destroys any previous directory on the output
device. The new directory on the output device has the same number

of segments as the directory on the input device.) /S does not copy
the bootstrap onto the volume.

To increase the number of directory blocks in a two-volume compress
(that is, from one volume to another rather than from one volume to
itself), use the /N:in switch in conjunction with the /S switch (any
attempts to decrease the directory size are ignored).

/S does not move files with the .BAD extension. This feature provides
protection against reusing bad blocks which may occur on a disk.
Files containing bad blocks can be renamed with the .BAD extension and
are then left in place when a /S is executed.

If a compress operation is performed on the system device, the
message:

2REBOOT?

is printed to indicate that it may be necessary to reboot the system.
If .SYSs files were not moved during the compress operation, it is not
necessary to reboot the system.

NOTE

Rebooting the system in response to the
?REBOOT? warning message should ONLY be
done AFTER the operation which generated
the message is complete, ?REBOOT? does
not signify that the system should be

4-19 January 1976




Peripheral Interchange Program

rebooted immediately; the user should
wait for the "*" signifying that PIP is
ready for another command before
rebooting.

If the command attempts to compress a large device to a smaller one,
an error results and the directory of the smaller device is zeroed,
If a device is being compressed in place, input and output errors are
reported on the terminal and the operation continues to completion.

Exanmples:

#SY /8 Compresses the files on the system
TREEBOOT? device SY:
#DT1:ARCDTE A Trans fers and compresses the files from

device DT2 to device DT1l, Device DT2 is
not changed. The filename A is a dumnmy
specification required by the Command
String Interpreter.

/S cannot be used when a foreground job is present; a ?FG PRESENT?
error message results if this is attempted.

4,2,9 The Bootstrap Copy Operation

The bootstrap copy switch (/U) copies the bootstrap portion of the
specified file into absolute blocks 0 and 2 of the specified device,

Examples:

#DERCDE MONITR., S¥Y&AU
Writes the bootstrap file MONITR,SYS in

blocks 0 and 2 of the device DK, A is a
dummy filename,

HOTIMONLTR, SYS/ /Y =RKIDTMNS S 85Y8

KO § v S TITMNG . SY &/
Writes the Single-Job DECtape Monitor
to device DTO0 and then writes the boot-
strap into blocks 0 and 2 (the bootstrap
is written from disk rather than DECtape
because disk is faster).

4,2,10 The Boot Operation

The boot switch reboots the system, reinitializing monitor tables and
returning the system to the monitor level. The boot switch performs
the same operation as a hardware bootstrap.

Example:

RO A1) Reboots the device DK.



Peripheral Interchange Program

If a boot switch is specified on an illegal device, the message:
?BAD BOOT?

is printed. Legal devices are DT0, RKO-RK7, RF, SY, DK, DPO-DP7,
DX0-DX1, and DS0-DS7. ©Note that /0 is illegal if a foreground job
is present; the ?FG PRESENT? error message results. The user must
abort the foreground job and unload it before using /O.

4.2.11 The Version Switch

The Version switch (/V) outputs a version number message (representing
the version of PIP in use) to the terminal using the form:

PIP V02-XX

The rest of the command line, if any, is ignored.

4,2,12 Bad Block Scan (/K)

The bad block switch (/K) scans the specified device and types the
absolute block numbers of those blocks on the device which return
hardware errors. The block numbers typed are octal; the first block
on a device is 0(8). Note that if no errors occur, nothing will be
output. A complete scan of a disk pack takes several minutes,

Example:

KRG /N Scan disk drive 2 for bad blocks.
BLOCK 140 1S Bal

P VA N Scan drive 0. No blocks are bad.
X

4.2.12.1 Recovery from Bad Blocks

As a disk ages, the recording surface wears. Eventually unrecoverable
I/0 exrors occur during attempts to read or write a bad disk block.
PIP protects against usage of bad disk areas by ignoring files with a
.BAD extension (unless the /Y switch is used). Once a bad block is
uncovered in an I/0 operation, it can be located using the /K switch
and a .BAD file can be created which encompasses the bad block.

When a hardware I/O error is detected, the recovery procedure is as
follows:

1. Use the PIP /K switch to scan the device and print on the
terminal the absolute block numbers (in octal) of the bad
blocks. For example:

R FIF
*RKL: K
BLOCK

»

=4
=4
2

3 IS EAD

4-21 January 1976



Peripheral Interchange Program

2, Obtain an extended directory with the /W switch, showing the
starting block numbers of all the files on the disk.,

3. If a bad block occurs in a file with valuable information,
copy the £file to another file using the /G switch. In most
cases, only 1 bit (character) of the file is affected.

4, If the file is small, it can then be renamed with a .BAD
extension to prevent further use of that disk area.

5. If the file is large or the bad block occurs in an empty
area, a l-block .BAD file can be created using the /T switch
as follows:

a. Delete the bad file (if any).

b. If the bad block is at block n of the free area, create a
file of 1length n-=l1 with the /T switch. Remember that
there must be no spaces larger than n-l1l blocks before the
desired one (refer to Section 4.2.4). Also note that the
block numbers printed in the /K and /W operations are
octal, while the argument to the /T operation is decimal.

c. Create a l-=block .BAD file with the /T switch to cover
the bad block,

d. Delete any temporary files created during the operation.

For example, assume the extended directory is:

NEWSRC ,BAT 8 11=SEP=T4 6203

RYTEMP,BAT 27 11e8EP=T4 6213

PIP +MAC 150 12=8EP=74 62db

<« UNUSED » 154

VERIPY,84AV 3 6726

« UNUSED » 3¢@

PIP «08J 1% 12=SEP=74 7405

MKPIP ,CTL 1 12«8EPe74 T424

MKVE2RK,CTL 4 12=SEPeT4 7425

vTLIB ,08J 10 {2«5EPe74 74314

« UNUSED » 159

A i §2=SEP=T4 7671

PIP «LST 300 3=SEPe74 7675 Block 7723 (octal) of
. PIP.LST is bad.

and a bad block is detected at block 7723 (octal) of the file PIP,LST.
To recover, make a copy, ignoring the error, and delete the bad file:

*RK1:FIFA. LST=RKL:FIF. LST/G
*REL:FIF. LSTAD

The directory now reads:

L]

L]
NEWSRC,BAT 8 11=SEP=T4 6203
RYTEMP,BAT 27 11=SEP=T74 6213
PIP «MAC 150 12=SEP=T74 6246

4-22



Peripheral Interchange Program

< UNUSED > 154

VERIFY,SAV 3 6726
PIPA ,LST 300 18=SEP=74 6731
PIP ,0BJ (S 12=SEP=74 7405
MKPIP ,CTL | 12=SEP=74 7424
MKV2RK,CTL 4 12=SEP=T74 7425
VTLIB ,0BJ 12 12=SEP=T4 743}
< UNUSED > 150

A 4 {2«SEP=T4 7671

An unused area following A contains block 7723 (octal), which
is bad. Continuing in PIP:

*REL: TEMF. 8620154 1=/T
ARKL:TEMP. @BZ04561=/T
#REL: TEMP. 064022 1=T

This £fills the unused areas with temporary files. Specifying
TEMP,004 with a length of 22 blocks makes the file just long
enough to precede the bad block (i.e., 7675 (octal) and 22
(decimal) equal 7723, which would be the starting block
number of the next file created). The directory now contains:

NEWSRC,BAT 8 11=SEP=T74 62023
RTTEMP,BAT 27 1i=SEP=T4 6213
PIP «MAC 1502 12=SEP=T74 6246
TEMP ,2@2 154 18=SEP=T4 6474
VERIFY, SAYV 3 6726
PIPA ,LST 300 18«SEP=74 6731
PIP 0BJ 15 12=SEP=T74 7405
MKPIP ,CTL 1 12=8SEP=T74 7424
MKV2RK,CTL =~ 4 12=SEP=T74 7425
vTL1lB ,0BJ 10 12=SEP=T74 743}
TEMP ,083 150 1B=SEP=74 T443
A 4 12=SEP=T74 7671
TEMP ,084 22 18=SEP=T74 7675

Continuing with PIP:

#REL FILE. BARLL I=-Y"T Create a bad file.,

The directory now contains:
L]

NEWSRC,BAT 8 {1=8SEP=T74 6203
RTTEMP ,BAT 27 11=SEP=T74 6213
PIP «MAC 152 12=SEP=T4 6246
TEMP ,082 154 18=SEP=T74 6474
VERIFY,S5AV 3 6726
PIPA ,LST 300 18=SEP=T4 6731
PIP .08J 15 12=SEP~74 7405
MKPIP ,CTL 1 12=SEP=T74 7424
MKV2RK,CTL 4 12=SEP=74 7425
vrLlie ,08J 10 12=SEP=T74 7431
TEMP ,083 15@ 18=SEP=74 7443
A 4 12=SEP=T4 7671

4-23



Peripheral Interchange Program

TEMP Q04
FILE ,BAD

22 {B=SEP=T4 7675
1 18=SEP=74 7723

Bad block is here.

Next delete all temporary files and rename PIPA,LST +to
PIP.LST, The final directory now contains:

NEWSRC,BAT
RTTEMP,BAT
PIP  .MAC
< UNUSED »
VERIFY,SAV
PIP  ,LST
PIP  ,0BJ
MKPIP ,CTL
MKV2RK,CTL
VTLIB ,08J
< UNUSED »
A

< UNUSED »
FILE _BAD

8 11l=SEP=T74 6203
27 11=3EP=T74 6213
150 12=SEP=74 6246
154
3 6726
300 18=SEP=74 6731
15 12=SEP=T4 7405
{1 {2=SEP=T4 7424
4 12=SEP=T4 7425
10 12=SEP=T74 7434
i5e
4 12=8EP=T4 7671
22
1 18=SEP=T74 7723

Disks with many bad blocks can often be reused by
reformatting them. First copy all desired files, since
reformatting destroys all information contained on a volume.

4.3 PIP ERROR MESSAGES

The following error messages are output on the terminal when PIP is

used incorrectly:
Errors

?BAD BOOT?

?BOOT COPY?

?CHK SUM?

?COR OVR?

?DEV FUL?

?ER RD DIR?

?ER WR DIR?

?EXT NEG?

?FG PRESENT?

?FIL NOT FND?

January 1976

Meaning

A boot switch was specified on an illegal
device.

An error occurred during an attempt to write
bootstrap with /U switch.

A checksum error occurred in a formatted
binary transfer,

Memory overflow-~too many devices and/or file
specifications (usually *.* operations) and
no room for buffers,

No room on device for file,

Unrecoverable error reading directory. Check
volume for off-line or write-locked conditicn
and try the operation again,

Unrecoverable error writing directory. Try
again,

A /T command attempted to make file smaller,

An attempt was made to use /O or /S while a
foreground job was still in memory. Unload
it if it is no longer desired.

File not found during a delete, copy, or re-
name operation, or no input files with the
expected name or extension were found during
a *.* expansion.

4-24



Peripheral Interchange Program

?ILL CMD?

?ILL DEV?
?ILL DIR?

?ILL REN?
?2ILL SWT?
?IN ER?

?0UT ER?

?0UT FIL?
?ROOM?

The following warning

The command specified was not syntactically
correct; a device name is missing which
should be specified, a switch argument is too
large, a filename 1s specified where one is
inappropriate, or a nonfile-structured device
is specified for a file-structured operation.

Illegal or nonexistent device.

The device did not contain a properly ini-
tialized directory structure (EOT file on
magtape and cassette; empty file directory
on other devices). Use /Z.

Illegal rename operation. Usually caused by
different device names on the input and out-
put sides of the command string.

Illegal switch or switch combination.

Unrecoverable error reading file. Try again
(this error is ignored during /G operation).

Unrecoverable error writing file. Perhaps a
hardware or checksum error; try recopying
file. Also may be caused by an attempt to
compress a larger device to a smaller one or
by not enough room when creating a file. The
system takes the largest space available and
divides it in half before attempting to in-
sert the file. Try the [n] construction or
/X switch.

Illegal output file specification or missing
output file.

Insufficient space following file specified
with a /T switch.

messages are output by PIP:

CTn: PUSH REWIND OR MOUNT NEW VOLUME

?NO .SYS/.BAD
ACTION?

?REBOOT?

A new cassette must be mounted on drive n to
allow continuation of an I/0O operation. The
operation is continued automatically as soon
as the new cassette is mounted.

The /Y switch was not included with a command
specified on a .SYS or .BAD file. The com-
mand is executed for all but the .SYS and
.BAD files. A *.* transfer is most likely

to cause this message.

.8YS files have been transferred, renamed,
compressed or deleted from the system device.
It may be necessary to reboot the system.

NOTE

The message is typed immediately
after execution of the relevant
command has begun, but the actual
reboot operation must not be per-
formed until PIP returns with the
prompting asterisk for the next
command. If the system is halted
and rebooted before the prompting
asterisk returns, disk information
may be lost.

4-25 January 1976



Peripheral Interchange Program

dev:/Z ARE YOU SURE?

January 1976

If any of the ,.SYS files in wuse by the
current system (MONITR,SYS and handler files)
have been physically moved on the system
device, it 1is necessary to reboot the system
immediately. If not, +this message can be
ignored, If the cause of the message was a
/S operation, the system need be rebooted
only 1f there was an empty space before any
of the .8YS files or if the /N:n switch was
used to increase the number of directory
segments. The need to reboot can be
permanently avoided by placing all .SYS files
at the beginning of the system device, then
avoiding their involvements in PIP operations
by not using the /Y switch,

Confirmation must be given by the user before
a device can be zeroed.



CHAPTER 5

MACRO ASSEMBLER

MACRO is a 2-pass macro assembler requiring an RT-11 system
configuration (or background partition) of 12K or more. Macros are
instructions in a source or command language which are equivalent to a
specified sequence of machine instructions or commands. Users with
minimum memory configurations must use ASEMBL and EXPAND and should
read this chapter and Chapters 10 and 11 before assembling any
programs. (The macro features not supported by ASEMBL are indicated
in this chapter; many of the features not available in ASEMBL are
supported by EXPAND,)

Some notable features of MACRO are:

1. Program control of assembly functions

2. Device and file name specifications for input and output
files

3. Error listing on command output device

4, Alphabetized, formatted symbol table listing

5. Relocatable object modules

6. Global symbols declaration for linking among object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User defined macros
10. Comprehensive set of system macros
1l1. Extensive listing control, including cross reference listing

Operating instructions for the MACRO assembler appear in Section 5.7.



MACRO Assembler

5.1 SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines; each
source line contains a single assembly language statement followed by
a statement terminator. A terminator may be either a 1line feed
character (which increments the 1line count by 1) or a form feed
character (which resets the line count and increments the page
count by 1).

NOTE

EDIT automatically appends a 1line feed
to every carriage return encountered in
a source program. For listing format,
MACRO automatically inserts a carriage
return before any line feed or form feed
not already preceded by one.

An assembly language line can contain up to 132(decimal) characters
(exclusive of the statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

5.1.1 Statement Format

A statement can contain up to four fields which are identified Dby
order of appearance and by specified terminating characters. The
general format of a MACRO assembly language statement is:

label: operator operand(s) ;comments

The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other.

The assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words or performing
an assembly process. A statement contains one of these fields and may
contain all four types. Blank lines are legal.

Some statements have one operand, for example:

CLR R@
while others have two:

MoV #344,R2
An assembly language statement must be complete on one source 1lin .
No continuation 1lines are allowed. (If a continuation is attempt.:d
with a line feed, the assembler interprets this as the statement

terminator.)

MACRO source statements may be formatted with EDIT so that use of the
TAB character causes the statement fields to be aligned. For example:



MACRO Assembler

Label Operator Operand Comment
Field Field Field Field
CHECK: BIT #1,R0 ;IS NUMBER ODD?
BEQ EVEN ;NO, IT'S EVEN
MOV #-1,0DDFLG ;ELSE SET FLAG
EVEN: RTS PC ;s RETURN

5.1.1.1 Label Field - A label is a user-defined symbol that is
unique within the first six characters and is assigned the value of
the current location counter and entered into the user-defined symbol
table. The value of the label may be either absolute (fixed in memory
independently of the position of the program) or relocatable (not
fixed in memory), depending on whether the location counter value (see
Section 5.2.6) is currently absolute or relocatable.

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100(octal), the statement:

ABCD1 MOV A)B

assigns the value 100 (octal) to the label ABCD. Subsequent reference
to ABCD references location 100(octal)., In this example if the
location counter was declared relocatable within the section, the
final value of ABCD would be 100 (octal) plus a value assigned by LINK
when it relocates the code, called the relocation constant. (The
final value of ABCD would therefore not be known until link-time.
This is discussed later in this chapter and in Chapter 6.)

More than one label may appear within a single label field, in which
case each label within the field is assigned the same value. For
example, if the current location counter is 100 (octal), the multiple
labels in the statement:

ABCH ERREXSs MASK? MOV A,B

cause each of the three labels--ABC, ERREX, and MASK--to be equated to
the value 100 (octal).

A symbol used as a label may not be redefined within the user program.
An attempt to redefine a 1label results in an error flag in the
assembly listing.

5.1.1.2 Operator Field - An operator field follows the 1label field
in a statement and may contain a macro call, an instruction mnenmonic,
or an assembler directive. The operator may be preceded by zero, one
or more labels and may be followed by one or more operands and/or a
comment. Leading and trailing spaces and tabs are ignored.

When the operator is a macro call, the assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated and
the action to be performed on any operand(s) which follow. When the
operator is an assembler directive, it specifies a certain function or
action to be performed during assembly.

5-3



MACRO Assembler

An operator is legally terminated by a space, tab, ox any
non-alphanumeric character (symbol component).

Consider the following examples:

MOV A,B (space terminates the operator MOV)
MOVeA,B {@ terminates the operator MOV)

When the statement line does not contain an operand or comment, the
operator is terminated by a carriage return followed by a line feed or
form feed character.

A blank operator field is interpreted as a .WORD assembler directive
(See Section 5.5.3.2).

5.1.1.3 Operand Field - An operand is that part of a statement which
is manipulated by the operator. Operands may be expressions, numbers,
or symbolic or macro arguments (within the context of the operation).
When nultiple operands appear within a statement, each is separated
from the next by one of the following characters: comma, tab, space,
or paired angle brackets around one or more operands (see Section
5.2.1.1). Multiple delimiters separating operands are not legal (with
the exception of spaces and tabs--any combination of spaces and/or
tabs represents a single delimiter). An operand may be preceded by an
operator, a label or another operand and followed by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL S MOV A,B JCOMMENT

The space between MOV and A terminates the operator field and begins
the operand field; a comma separates the operands A and B; a
semicolon terminates the operand field and begins the comment field.

5.1,1.4 Comment Field - The comment field is optional and may
contain any ASCII characters except null, rubout, carriage return,
line feed, vertical tab or form feed. All other characters, even
special characters with defined usage, are ignored by the assembler
when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the

other three field types. Comments must begin with the semicolon
character and end with a statement terminator.

5-4



MACRO Assembler

Comments do not affect assembly processing or program execution, but
are useful in source 1listings for later analysis, debugging, or
documentation purposes.

5,1.2 Format Control

Horizontal or line formatting of the source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII text; or unless they are used as the operator field terminator.
Thus, these characters can be used to provide an orderly source
program. A statement can be written:

LABEL sMOV(SP)*,TAG)POP VALUE OFF STACK
or, using formatting characters, it can be written:

LABELY MOV (SP)*,TAG JPOP VALUE OFF 8STACK
which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed
character. A page of n 1lines is created by inserting a form feed
(CTRL FORM) after the nth line. (See also Section 5.5.1.6 for a
description of page formatting with respect to macros and Section
5.5.1.2 for a description of assembly listing output.)

5,2 SYMBOLS AND EXPRESSIONS

This section describes the various components of legal MACRO
expressions: the assembler character set, symbol construction,
numbers, operators, terms and expressions,

5.2.1 Character Set
The following characters are legal in MACRO source programs:

l. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case letters. Lower-case letters can only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, (ASCIZ, ' (single
quote) or " (double quote) statements if .ENABL LC is in
effect.

2. The digits 0 through 9.

3. The characters . (period or dot) and $ (dollar sign) which
are reserved for use 1in system program symbols (with the
exception of local symbols; see Section 5.2.5).

4. The following special characters:



MACRO Assembler

Character Designation Function
carriage return formatting character
line feed
form feed gsource statement terminators

vertical tab

: colon label terminator

= equal sign direct assignment indicator

k] percent sign register term indicator

tab item or field terminator

space item or field terminator

# number sign immediate expression indicator

@ at sign deferred addressing indicator

( left parenthesis initial register indicator

) right parenthesis terminal register indicator

. comma operand field separator

H semicolon comment field indicator

< left angle bracket initial argument or expression
indicator

> right angle bracket terminal argument or expression
indicator

+ plus sign arithmetic addition operator or
auto increment indicator

- minus sign arithmetic subtraction operator
or auto decrement indicator

* asterisk arithmetic multiplication
operator

/ slash arithmetic division operator

& ampersand logical AND operator

! exclamation logical inclusive OR operator

" douhle quote douhle ASCII character indicator

' single quote single ASCII character indicator

t uparrow universal unary operator,
argument indicator

\ backslash macro numeric argument indicator

(not available in ASEMBL)

5.2.1.1 Separating and Delimiting Characters - Reference is made in
the remainder of the chapter to legal separating characters and macro
argument delimiters. These terms are defined in Table 5-~1 and
following.

Table 5-1
Legal Separating Characters
Character Definition Usage

space one or more spaces A space 1is a legal separator
and/or tabs only for argument operands.
Spaces within expressions are

ignored.
’ comma A comma is a legal separator

for both expressions and
argument operands.

Cona? paired angle brackets Paired angle brackets are used
to enclose an argument:.,

(Continued on next page)




MACRO Assembler

Table 5-1 (cont.)
Legal Separating Characters

Character Definition Usage
particularly when that
argument contains separating
characters. Paired angle

brackets may be used anywhere
in a program to enclose an
expression for treatment as a

term. (The angle bracket
construction should be used
when the argument contains

unary operators.)

Neoo\ Up arrow construction This construction is
where the up arrow equivalent in function to the
character is followed paired angle brackets and
by an argument is generally used only where
bracketed by any paired| the argument contains angle
printing characters. brackets.

Macro arguments may appear in several forms to allow for special

cases.

1.

The rules to observe when separating arguments are:

If an argument string contains only non-separating characters
(those not defined in Table 5-~1) and no spaces, then it may
appear in the argument list separated, if necessary, from the
other arguments by commas.

If an argument string contains separating characters or
spaces, but does not contain the characters < or > (left or
right angle brackets), then the argument may appear enclosed
in paired angle brackets (e.g., <argument string>). The
paired angle brackets are removed before the argument string
is used, Successive pairs of angle brackets may be used to
enclose an argument; only the outermost pair is removed.

If an argument string contains separating characters or
spaces (possibly including the left or right angle bracket
characters), then it may appear in the following form:
t\argument string\ where the backslashes may be replaced by
any character not appearing in the argument string, The
uparrow and backslashes (or other character) are removed
before the argument string is substituted into the text.

Note that regardless of the method used to specify an argument, it

must be

separated from any other arguments by commas,

5.2.1.2 Tllegal Characters - A character can be illegal in one of
two ways:
1. A character which 1s not recognized as an element of the

MACRO character set is always an illegal character and causes
immediate termination of the current line at that point, plus
the output of an error flag in the assembly listing, For
example:

LABEL~*A: MOV A,B

Since the backarrow is not a recognized character, the entire
line is treated as a:

+WORD LABEL

statement and is flagged in the listing.
5-7 July 1975




MACRO Assembler

2, A legal MACRO character may be illegal in context. Such a
character generates a Q error on the assembly listing.

5.2.1.3 Operator Characters - Under MACRO, 1legal unary operators
(operators applying to only one operand) are as follows:

Unary
Operator Explanation Example
+ plus sign +A (positive value of A,
equivalent to A)
- ninus sign -A (negative, 2's complement,
value of A)
* uparrow, universal 1F3.0 (interprets 3.0 as a
unary operator l1-word floating-point
(this usage is number)

described in
greater detail

in Sections 1C24 (interprets the one's
5.5.4.2 and 5.5.6.2). complement of the binary
representation of 24(8))
tD127 (interprets 127 as a decimal
number)
1034 (interprets 34 as an octal
number)

t+B11000111 (interprets 11000111 as a
binary value)

The unary operators described above can be used adjacent to each other
in a term, For example:

tCt012
-105

Legal binary operators under MACRO are as follows:

Binary

Operator Explanation Example
+ addition A+B
- subtraction A-B
* multiplication A*B (l16-bit product returned)
/ division A/B (l6=bit quotient returned)
& logical AND A&B
{ logical inclusive OR AlB

All binary operators have the same priority. Division and

multiplication are signed operations. Items can be grouped for
evaluation within an expression by enclosure in angle brackets, Terms
in angle brackets are evaluated first, and remaining operations are
performed left to right., For example:

+WORD 1+2%3 7118 11 OCTAL
s WORD 1+«42%3» 118 7 OCTAL

5-8



MACRO Assembler

5.2.2 Symbols

There are three types of symbols: permanent, user-~defined and = macro.
MACRO maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST) and the Macro Symbol Table
(MST). The PST contains all the permanent symbols and is part of the
MACRO Assembler load module. The UST and MST are constructed as the
gsource program is assembled; user-defined symbols are added to the
table as they are encountered,

5.2.2.1 Permanent Symbols - Permanent symbols consist of the
instruction mnemonics (Appendix C) and assembler directives and macro
directives (sections 5.5 and 5.6, Appendix C). These symbols are a
permanent part of the assembler and need not be defined before being
used in the source program.

5.2.2,2 User=-Defined and Macro Symbols - User-defined symbols are
those used as labels or defined by direct assignment (Section 5.2.3).
These symbols are added to the User Symbol Table as they are
encountered during the first pass of the assembly. Macro symbols are
those symbols used as macro names 1in the operator field (Section
5.6.1). These gsymbols are added to the Macro Symbol Table as they are
encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs, and periods only; any other character is
illegal.

The $ and . characters are reserved for system software symbols (for
example, the system macro symbol .READ); it is recommended that $ and
. not be inserted in user-defined or macro symbols,

The following rules apply to the creation of user-defined and macro
symbols:

l. The first character must not be a number (except in the case
of local symbols, see Section 5.2.5).

2. Each symbol must be unique within the first six characters.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
assenmbler.

4, Spaces, tabs, and illegal characters mnmust not be embedded
within a symbol.

The value of a symbol depends upon its use in the program, A symbol
in the operator field may be any one of the three symbol types. To
determine the value of the symbol, the assembler searches the three
symbol tables in the following order:

l. Macro Symbol Table

2., Permanent Symbol Table

3. User-Defined Symbol Table

5-9



MACRO Assembler

A symbol found in the operand field is sought in the:
1. User-Defined Symbol Table
2. Permanent Symbol Table

in that order. The assembler never expects to find a macro name in an
operand field.

These search orders allow redefinition of Permanent Symbol Table
entries as user-defined or macro symbols. The same name can be
assigned to both a macro and a label.

User-defined symbols are eithex internal or external (global)., All
user-defined symbols are internal unless explicitly defined as being
global with the ,GLOBL directive (see Section 5.5.10).

Global symbols provide links between object modules, A global symbol
defined as a label is generally called an entry point (to a section
of code)., Such symbols are referenced from other object modules to
transfer control throughout the load module (which may be composed of
a number of object modules).

Since MACRO provides program sectioning capabilities (Section 5.5.9),
two types of internal symbols must be considered:

1. Symbols that belong to the current program section, and
2, Symbols that belong to other program sections.

In both cases, the symbol must be defined within the current assembly;
the significance of the distinction is critical in evaluating
expressions involving type (2) above (see Section 5.2.9).

5.2.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the user symbol table and the specified
value is associated with it. A symbol may be redefined by assigning a
new value to a previously defined symbol. The latest assigned value
replaces any previous value assigned to a symbol.

The general format for a direct assignment statement is:

symbol = expression
Symbols take on the relocatable or absolute attribute of their
defining expression. However, if the defining expression is global,

the symbol is not global unless explicitly defined as such in a .GLOBL
directive., For example:

Asi JTHE SYMBOL A IS EQUATED TO THE
JVALUE 1

BsfAel EMASKLOW JTHME SYMBOL B I8 EQUATED TO THE
JVALUE OF THE EXPRESSION

cs Om=3 JTHE SYMBOL D I8 EQUATED 10 3

5-10



MACRO Assenbler

E: MOV #1,ABLE JLABELS C AND E ARE EQUATED TO THE

JLOCATION OF THE MOv COMMAND
The following conventions apply to direct assignment statements:

l. An equal sign (=) must separate the symbol from
expression defining the symbol value,

2. A direct assignment statement is usually placed in

the

the

operator field and may be preceded by a label and followed by

a comment.

NOTE

If the program jumps to or references
the label of a direct assignment
statement, it is actually referencing
the following instruction statement.
For example:

W B,v1000

(R} Ds3

Et MOV D, ABLE
)
JMP C

This code causes a jump to the label E.

3. Only one symbol can be defined by any one direct assignment

statement,

4., Only one level of forward referencing is allowed. That
the following arrangement is illegal:

X=X
Y =2
2 =1

is,

X and Y are both undefined throughout pass 1. X is undefined
throughout pass 2 and causes an error flag in the assembly

listing.

5.2.4 Register Symbols

The eight general registers of the PDP-1l are numbered 0 through 7 and

can be expressed in the source program as:

%0
3l

%7



MACRO Assembler

The digit indicating the specific register can be replaced by any
legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer create and use symbolic names
for all register references., A register symbol may be defined in a
direct assignment statement among the first statements in the program,
A register symbol cannot be defined after the statement which uses it.
The defining expression of a register symbol must be absolute. For
example:

R Xx0Q JREGISTER DEFINITION
Rim%1
Re=Xx2
RS=Xx3
R4mXd
RSu¥S
SPaXe
PCa¥%7

The symbolic names assigned to the registers in the example above are
the conventional names used in all PDP-11 system programs. Since
these names are fairly mnemonic, it is suggested the user follow this
convention. Registers 6 and 7 are given special names because of
their special functions, while registers 0 through 5 are given similar
names to denote their status as general purpose registers.

All register symbols must be defined before they are referenced. A
forward reference to a register symbol causes phase errors in an
assembly.

The % character can be used with any term or expression to specify a
register., (A register expression less than 0 or greater than 7 is
flagged with an R error code,) For example:

CLR X3#1
is equivalent to:

CLR X4
and clears the contents of register 4, while:

CLR 4
clears the contents of memory address 4.
In certain cases a register can be referenced without the wuse of a
register symbol or register expression; these cases are recognized

through the context of the statement. An example is shown below:

JER §5,8UBR JFIRST QPERAND FIELD MUST ALWAYS
JBE A REGISTER

5.2.5 Local Symbols

Local symbols are specially formatted symbols used as labels within a
given range.



MACRO Assembler

Local symbols provide a convenient means of generating labels to be
referenced by branch instructions. Use of local symbols reduces the
possibility of multiply-defined symbols within a user program and
separates entry point symbols from local references. Local symbols,
then, are not referenced from other object modules or even from
outside their local symbol block.

Local symbols are of the form n$, where n is a decimal integer from 1
to 127, inclusive, and can only be used on word boundaries, Local
symbols include:

18
278
59%

104s

Within a local symbol block, 1local symbols can be defined and
referenced. However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

Local symbols 64$ through 127$ can be generated automatically as a
feature of the macro processor (see Section 5.6.3.5 for further
details). When using local symbols the user is advised to first use
the range from 1$ to 638§.

A local symbol block is delimited in one of the following ways:

1. The range of a single local symbol block can consist of those
statements between two normally constructed symbolic labels.
(Note that a statement of the form:

LABEL=.

is a direct assignment, does not create a label in the strict
sense, and does not delimit a local range.)

2. The range of a local symbol block is terminated upon
encountering a .CSECT directive.

3. The range of a single local symbol block can be delimited
with .ENABL LSB and the first symbolic label or .CSECT
directive following the .DSABL LSB directives. The default
for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 5-l.
The maximum offset of a local symbol from the base of its local symbol

block is 128 decimal words. Symbols beyond this range are flagged
with an A error code.



MACRO Assembler

5.2.6 Assembly Location Counter

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:

At MOV #,,R0 }o REFERS YO LOCATION &,
11.,E,, THE ADDRESS OF THE
JMOV INSTRUCTION

(# is explained in Section 5.4.9).

At the beginning of each assembly pass, the assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the 1location where
the object data is stored may be changed by a direct assignment
statement altering the location counter:

.=expression

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another. If an
expression is assigned to the current location counter in a
relocatable CSECT, an error flag 1is generated. (The construction
.=.+expression must be used.)

Similar to other symbols, the location counter symbol has a mode
associated with 1it, either absolute or relocatable; the mode cannot:
be external. The existing mode of the 1location counter cannot be
changed by using a defining expression of a different mode.



MACRO Assembler

Line
Number

Octal

Expansion

oeeQRe
puaoee

e OO NPA LW -

N> o a o 10 4o po Jn
SOE~NOCOVRIEWNN-T

Qeoeo

aeone

éeone

voeae
vooao

n
P

2ven4
PeeRe

N
n

vaple

2ooe0
“oean

vvNvmne
~NouUte i

n
»®

veond
2%006

w
® v

voaite

W W W
Wi T e

2ee00
aaeae

n
E 3

Qgon4
vooae

W W
ow

vap1e2

W
O e

B
«Q

enpep

F -
-

Asgembly

pveeee

auanpn*
IMPURE?
gupapaer
IMPPASY
avoepar
IMPLINGS
pvoenar

XCTPRG?
p1e7pe
Quooun’
ou50208 181
e2areo
veaqaaer
191374

pveepa’
XCTPAS?
pl2Te0
ovoepor
ovs502n 18t
e227e2
auvpapar
101374

Qupoae*
XCTLINS

pi1aTo0

gepoane

pusS020 181
peaToe

puooenr

101374

ovadene
Queee? IMPTOP
oveonL”

Source Code Comments

LMCALL ,REGDEF,,,v2,,

+REGDEF
.Ivalﬂ
RueX®
«SBYTL SECTOR INITIALIZATION
+CSECT IMPURE JIMPURE STORAGE ARFEA
+CSECT IMPPAS JCLEARED EACH PASS
2CSECT IMPLIN JCLEARED EACH LINE
+CSECT XCTPRG JPROGRAM
PINITIALIZATION
MOV #IMPURE,RD
CLR (RA)* ICLEAR IMPURE AREA
o] 14 #IMPTOP,RQ
BMI 18
oCSECT XCTPAS IPASS INITIALIZATION
MOV #IMPPAS,RQ
CLR (RO)+ JICLEAR IMPURE PART
CMP ¥IMPTOP,RQ
BuY 18
«CSECT XCTLIN JLINE INITIALIZATION
MOV #IMPLIN,RQ
CLR (RA)+
of 1 #IMPTOP,RQ
BHY 18
+CSECT MIXED IMIXED MODE SECTOR
+WORD 0
«END
Figure 5-1

Source Listing of MACRO Code Showing Local Symbol Blocks

5-15



MACRO Assembler

The mode of the location counter symbol can be changed by the use of
the ASECT or- .CSECT directive as explained in Section 5.5.9.

Examples:
s ASECT

500 JSET LOCATION COUNTER TO
JABSOLUTE 500

FIRSTE MOV o+1@,CNUNT JTHE LABEL FIRST HAS THE VALUE
1500(8)
J.+10 EQUALS 510(8), THE
JCONTENTS OF THE LDCATION
1512(8) WILL BE DEPOSITED
COUNT: LWORD @ JIN LOCATION COUNT,

. 5520 JTHE ASSEMBLY LOCATION COUNTER
INOW HAS A VALUE OF
1ABSOLUTE s20(8),

SECOND! MOV ,, INDEX JTHE LABEL SECOND HAS THE
IVALUE S22(8)
JTHE CONTENTS OF LOCATION
1520(8), THAT 18, THE BINARY
JCODE FOR THE INSTRUCTION
JITSELF WILL BE DEPOSITED IN
INDEX: LWURD @ JLOCATION INDEX,

2 CSECT

o Ba+20 )JSET LOCATION COUNTER YO
JRELOCATABLE 20 OF THE
JUNNAMED PROGRAM SECTION,

THIRDI LWORD @ JTHE LABEL THIRD HAS THE
JVALUE OF RELOCATABLE 20,

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement:

' B.r100
reserves 100 (octal) bytes of storage space in the program. The next

instruction is stored at 1100, (The .BLKW and .BLKB directives can
also be used to reserve blocks of storage; see Section 5.5.5.3.)



MACRO Assembler

5.,2.7 Numbers

The MACRO Assembler assumes all numbers in the source program are to
be interpreted in octal radix unless otherxwise specified. The assumed
radix can be altered with the .RADIX directive or individual numbers
can be treated as being of decimal, binary, or octal radix (see
Section 5.5.4.,2).

Octal numbers consist of the digits 0 through 7 only. A number not
specified as a decimal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number,

Negative numbers are preceded by a minus sign (the assembler
translates them into two's complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too 1large to f£it into 16 bits (177777<{n) is
truncated from the left and flagged with a T error code in the
assembly listing.

Numbers are always considered absolute quantities (that is, not
relocatable).

The single-word floating-point numbers which can be generated with the
tF operator (see Section 5.5.6.2) are stored in the following format:

15 14 7 6 0

SIGN 8-BIT EXPONENT 7-BIT MANTISSA

Refer to PDP-11/45 Processor Handbook for details of the
floating=-point format.

5.2.8 Terms

A term is a component of an expression. A term may be one of the
following:

1. A number whose l1l6-bit value is used,

2. A symbol that is interpreted according to the £ollowing
hierarchy:

a. a period that causes the value of the current location
counter to be used

b. a permanent symbol whose basic value is used and whose
arguments (if any) are ignored

c. user defined symbols

d. an undefined symbol that is assigned a value of zero and
inserted in the user-defined symbol table

(92}
!
)
e |



MACRO Assembler

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character or a double quote followed by two
ASCII characters, which results in a word containing the
7-bit ASCII value of the character(s). (This construction is
explained in greater detail in Section 5.5.3.3.)

4. An expression enclosed in angle brackets, Any gquantity
enclosed in angle brackets is evaluated before the remainder
of the expression in which it is found. Angle brackets are
used to alter +the left to right evaluation of expressions
(for example, to differentiate between A*B+C and A*<{B+C)) or
to apply a unary operator to an entire expression (=<A+B>).

5.2.9 Expressions

Expressions are combinations of terms that are joined together by
binary operators and that reduce to a 1l6-bit value. The operands of a
.BYTE directive are evaluated as word expressions before truncation to
the low-order eight bits., Prior to truncation, the high-order byte
must be zero or all ones (when the byte value is negative, the sign
bit is propagated). The evaluation of an expression includes the
evaluation of the mode of the resultant expression--that is, absolute,
relocatable or external. Expression modes are defined further below.

Expressions are evaluated left to right with no operator hierarchy
rules except that wunary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator, (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

—-+=A
is equivalent to:
={+{=A0D

The value of an external expression is the value of the absolute part
of the expression; e.g., EXT+A has a value of A, This is modified by
the Linker to become EXT+A,

Expressions, when evaluated, are either absolute, relocatable, or
external. For the programmer writing position independent code, the
distinction is important.

1. An expression is absolute 1f its wvalue 1is £fixed. An
expression whose terms are numbers and ASCII conversions has
an absolute value. A relocatable expression minus a
relocatable term, where both items belong to the same program
section, is also absolute.

2, An expression is relocatable if its value is fixed relative
to a base address but will have an offset value added when
linked. Expressions whose terms contain 1labels defined in
relocatable sections and the assembly location counter (in
relocatable sections) have a relocatable value,

3. An expression is external (or global) if its wvalue 1is only
partially defined during assembly and is completed at link

5-18



MACRO Assembler

time. An expression whose terms contain a global symbol not
defined in the current program is an external expression.
External expressions have relocatable values at execution
time if the global symbol is defined as being relocatable or
absolute if the global symbol is defined as absolute.

An example of the three expression types follows:

+ASBECT
%100
ABSSYMs, ) THE VYALUE OF AB8SYM IS
INOT RELOCATABLE, BECAUSE
IWE ARE IN AN ASECT

+CSECT MAIN JSTART RELOCATABLE
JPROGRAM SECTION

WGLOBL EXTVAL JEXTVAL 15 DEFINED ELSEWHERE,
PITS VALUE wILL NOT BE KNOWN
JUNTIL LINK TIME

BEGSYMI BLKW 4 JTHE VALUES OF BEGSYM
WASCII /ABCOD/ JAND ENDSYM ARE
+EVEN PRELOCATABLE, BECAUSE
ENDSYMm, JTHE ADDRESS AT WHICH
PUMAIN" WILL BE LOADED
1I8 NOT DETERMINED UNTIL
TLINK TIME

S8IZE = ENDSYM=BEGSYM JHOWEVER, THE
JVALUE OF SIZE IS KNOWN
P(IT I8 12,)AT ASSEMBLY
PTIME AND 15 ABSOLUTE

RELEXP = ENDSYM=BEGSYMe, FPRELEXP (m,e12,) 18
JRELOCATABLE

EXTEXP1T ,wORD EXTVAL+4 JTHE EXPRESSION MEXTVAL#4M
118 EXTERNAL (OR GLOBAL)
PBECAUSE EXTVAL IS DEFINED
JIN ANOTHER PROGRAM UNIT,

CHARAn ') JTHE VALUE OF CHARA
118 ABSQLUTE

5.3 RELOCATION AND LINKING

The output of the MACRO Assembler is an object module which must be
processed by LINK before loading and execution (refer to Chapter 6 for
details). The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and turns the object module
into a load module.

To enable the Linker to fix the value of an expression, the assembler
issues certain directives to the Linker together with required
parameters. In the case of relocatable expressions, the Linker adds
the base of the associated relocatable section (the location in memory
of relocatable 0) to the value of the relocatable expression provided

5-19



MACRO Assembler

by the assembler. In the case of an external expression, the value of
the external term in the expression is determined by the Linker (since
the external symbol must be defined in one of the other object modules
which are being linked together) and adds it to the walue of the
external expression provided by the assembler,

All words that are to be modified (as described in the previous
paragraph) are marked with an apostrophe in the assembly listing. A G
in the listing indicates that the value is external, or that a global
is added to that value, Thus, the binary text output looks as
follows:

2250263 CLR EXTERNAL(RS) JVALUE OF EXTERNAL 8YMBOL
eoeeees
JASSEMBLED ZERO) WILL BE
JMODIFIED BY THME LINKER,

poeSees CLR EXTERNAL#6(RS) JTHE ABSOLUTE PORTION OF THE
200080266
JEXPRESSION (200006) I8 ADDED
I1BY THE LINKER TO THE VALUE OF
JTHE EXTERNAL SYMBOL

0052635 CLR RELOCATABLE(RS) JASSUMING WE ARE IN A

220040
JRELOCATABLE SECTION
PAND THE VALUE OF RELOCATABLE
118 RELOCATABLE 49

5.4 ADDRESSING MODES

The program counter (PC, register 7 of the eight general registers)
always contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule is:

Whenever the processor implicitly uses the program counter
to fetch a word from memory, the program counter is
automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two
so that it is pointing to the next word in memory; if an instruction
uses indexing (Sections 5.4.7, 5.4.9 and 5.4.11]) the processor uses
the program counter to fetch the base from memory. Hence, using the
rule above, the PC increments by two, and now points to the next word.

The following conventions are used in this section:
1. Let E be any expression as defined in Section 5.2.
2, Let R be a register expression. This 1is any expression

containing a term preceded by a % character or a symbol
previously equated to such a term.

5-20



MACRO Assembler

Examples:

Rom=X@ JGENERAL REGISTER @
RisR@ey JGENERAL REGISTER
R2mi+%! JGENERAL REGISTER 2

Let ER be a register expression or an expression in the range
0 to 7 inclusive,

Let A be any general address specification which produces a
6=-bit mode address field as described in Sections 3.1 and 3.2
of the PDP-11 PROCESSOR HANDBOOK (both 11/20 and 11/45
versions) .

The addressing specifications, A, can be explained in terms of E, R,
and ER as defined above, Each is illustrated with the single operand
instruction CLR or double operand instruction MOV,

5.4.1 Register Mode

The register contains the operand,

5.4,2

Format for A: R

Examples: Ro=sXO IDEFINE RO AS REGISTER 0
CLKR R2 JCLEAR REGISTER @

Register Deferred Mode

The register contains the address of the operand.

Format for A: @R or (ER)

Examples: CLK #RY 1BOTH INSTRUCTIONS CLEAR
JTHE WORD AT THE ADDRESS
CLK (Rt) JCONTAINED IN REGISTER ¢

5.4.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand. (See NOTE below.)

5-21



MACRO Assembler

Forma

Examp

A 2 error code is printed with each instruction which

t for A: (ER)+

les: CLN® (RQ) + JEACH INSTRUCTION CLEARS
CLR (RO+3)+ ITHE WORD AT THE ADORESS
CLK (R2)* JCONTAINED IN THE SPECIFIED

JREGISTER AND INCREMENTS

JTHAT REGISTER’S CONTENTS

1BY Two,

CL¥B (R4)+ JCLEARS THE BYTE AT THE

1ADDRESS SPECIFIED BY THE
JCONTENTS OF R4 AND
1 INCREMENTS R4 BY ONE,

NOTE

Both JMP and JSR instructions using
non-deferred autoincrement mode,
autoincrement the register before its
use on the PDP-11/20 and 11/05 (but not
on the PDP-11/40 or 11/45). In double
operand instructions of the addressing
form %R, (R)+ or %R,-(R) where the source
and destination registers are the same,
the source operand is evaluated as the
autoincremented or autodecremented
value, but the destination register, at
the time it is used, still contains the
originally intended effective address.

In the following two examples, as
executed on the PDP-11/20, RO originally
contains 100,

MoV RQ, (RB) + JTHE QUANTITY (@2 18 MOVED

170 LOCATION 10a

mov R@,=(RO) )THE QUANTITY 76 18 MOVED

JTO LOCATION 76

The use of these forms should be avoided
as they are not compatible with the
PDP-11/05, 11/40 and 11/45.

is

not

compatible among all members of the PDP-1ll family. This is merely a

warning code.

5.4.4 Autoincrement Deferred Mode

The register contains the pointer to the address of the operand.

contents of the register are incremented after being used.

The



MACRO Assembler

Format for A: AQ(FR)+
Example: cLR O(R3)e+ JCONTENTS OF REGISTER 3 POINT
1TD ADDRESS OF WORD TO BE

JCLEARED, AND REGISTER 3 18
JTHEN INCREMENTED RY TWO

5.4.5 Autodecrement Mode

The contents of the register are decremented before being used as the
address of the operand (see NOTE under autoincrement mode).

Fornat for A: =~ (ER)

Examples: CLR »(RD) IDECREMENT CONTENTS OF
CLK o (R2) JIBEFORE USING A8 ADDRESSES

I0F WORDS TO BE CLEARED,

5.4.6 Autodecrement Deferred “Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand,

Format for A: @-=(ER)

Example: cLR #o (R2) IDECREMENT CONTENTS OF
JREGISTER 2 BY TWD BEFORE
JUSING AS A POINTER
1TO ADDRESS OF wORD TO BE
JCLEARED,

5.4.7 Index Mode

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER, The value E is called the base.

Format for A: E(ER)

Examples: CLR X+2(R1) JEFFECTIVE ADDRESS IS X«2 PLUS
)THE CONTENTS OF REGISTER 1§
CLR w2 (R3) PEFFECTIVE ADDRESS IS =2 PLUS

JTHE CONTENTS OF REGISTER 3,

5.4.8 Index Deferred Mode

An expression plus the contents of a register gives the pointer to the
address of the operand.

5-23



MACRO Assenmbler

Format for A: QE(ER)
Example: CLR 014(R4) 11IF REGISTER 4 HOLDS 100 AND

JLOC 114 HOLDS 2004,
JILOCATION 2000 I8 CLEARED,

5.4.9 Immediate Mode

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC.

Format for A: #E

Examples: MOV #100,R2 JMOVE AN OCTAL 129 TO
JREGISTER o
MoV #X,R0 fMOVE THE VALUEB OF THE SYMBOL X TO

JREGISTER 0

The operation of this mode can be explained by the following example,
The statement MOV #100,R3 assembles as two words. These are:

012703
000100

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

5.4.10 Absolute Mode

Absolute mode is the equivalent of immediate mode deferred. @#E
specifies an absolute address which is stored in the second or third
word of the instruction. Absolute mode is assembled as an
autoincrement deferred of register 7, the PC,

Format for A: @#E

Examples: MQV oN122,RQ FMOVE THE VvALUE OF CONTENTS
JOF LOCATION 1020 70O
JREGISTER @,

CLR oux JCLEAR THE CONTENTS OF THE
ILOCATION WHOSE ADDRESS IS X,

5.4.11 Relative Mode

Relative mode is the normal mode for memory references,

5-24



MACRO Assembler

Format for A: E

Examples: CLR 1e0 JCLEAR LDCATION 1p0@

MoV XY JMOV THE CONTENTS OF LDCATION X
1T0 LOCATION Y,

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X-PC, which 1is called an offset. The operation is explained as
follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the
assembled code is:

Location 20: 016703
Location 22: 000054

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22, The source operand mode is 67, that is,
indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC., The PC now points
to location 24, To calculate the address of the source operand, the
base 1is added to the designated register, that is, BASE+PC=54+24=100,
the operand address.

Since the assembler considers "." as the address of the first word of
the instruction, an equivalent index mode statement would be:

MOV 100-.-4(PC) ,R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance or offset (in
bytes) between the operand and the current PC. If the operator and
its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate
correctly anywhere in memory.

5,4.12 Relative Deferred Mode

Relative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: QE

Example: MOV eX,RQ JMOVE THE CONTENTS QOF THE
JLOCATION WHOSE ADDRESS I8 IN
}X INTO REGISTER @

5.4.,13 Table of Mode Forms and Codes

Each instruction assembles into at least one word. Operands of the
first six forms listed below do not increase the 1length of an
instruction. Each operand in one of the other modes, however,
increases the instruction length by one word.

5-25



MACRO Assembler

Form Mode Meaning

R On Register mode

@R or (ER) 1n Register deferred mode

(ER) + 2n Autoincrement mode

@ (ER) + 3n Autoincrement deferred mode
- (ER) 4n Autodecrement mode

@= (ER) S5n Autodecrement deferred mode

n represents the register number,

Any of the following forms adds one word to the instruction length:

Form Mode Meaning

E (ER) 6n Index mode

@E (ER) 7n Index deferred mode

#E 27 Immediate mode

Q#E 37 Absolute memory reference mode

E 67 Relative mode

QE 77 Relative deferred reference mode

n represents the register number, Note that in the last four forms,
register 7 (the PC) is referenced,

NOTE

An alternate form for @R is (ER) .
However, the form @Q(ER) is equivalent to
@0 (ER) .

The form Q#EFE differs from the form E in
that the second or third word of the
instruction contains the absolute
address of the operand rather than the
relative distance between the operand
and the PC. Thus, the instruction
CLR @#100 clears absolute 1location 100
even 1if +the instruction is moved from
the point at which it was assembled.
See the description of the .ENABL AMA
function in Section 5.5.2, which directs
the assembly of all relative mode
addresses as absolute mode addresses.

5.4.14 Branch Instruction Addressing

The branch instructions are 1l-word instructions, The high byte
contains the op code and the low byte contains an 8-bit signed offset
which specifies the branch address relative to the PC. Upon execution
of a branch instruction, the hardware calculates the branch address as
follows:

1. Extend the sign of the offset through bits 8-15,

2, Multiply the result by 2. This creates a word offset rather
than a byte offset,.

5-26



MACRO Assembler

3. Add the result to the PC to form the final branch address.

The assembler performs the reverse operation to form the byte offset
from the specified address, Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the term -2 in the calculation.

Byte offset = (E=-PC)/2 truncated to eight bits.
Since PC = ,+2, we have:
Byte offset = (E-.~-2)/2 truncated to eight bits.
NOTE

It is illegal to branch to a location
specified as an external symbol, or to a
relocatable symbol from within an
absolute section, or to an absolute
symbol or a relocatable symbol or
another program section from within a
relocatable section,

5.4.15 EMT and TRAP Addressing

The EMT and TRAP instructions do not use the low=-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte, If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big (>377(8)) it is truncated to eight bits and a T
error flag is generated.

5.5 ASSEMBLER DIRECTIVES

Directives are statements which cause the assembler to perform certain
processing operations.,

Assembler directives can be preceded by a 1label, subject to
restrictions associated with specific directives, and followed by a
comment. An assembler directive occupies the operator field of a
MACRO source line, Only one directive can be placed on any one line.,
Zero, one, or more operands can occupy the operand field; legal
operands differ with each directive and may be either symbols,
expressions, or arguments,

5.5.1 Listing Control Directives

5.5,1,1 LLIST and ,NLIST - Listing options can be specified in the
text of a MACRO program through the ,LIST and .NLIST directives.
These are of the form:

+LIST arg
+NLIST arg



MACRO Assembler

where arg represents one or more optional arguments. When used
without arguments, the 1listing directives alter the listing level
count, The listing level count causes the listing to be suppressed
when it is negative. The count is initialized to zero, incremented
for each .LIST and decremented for each .NLIST. For example:

«LIST ME
«MACRQ LTEST ILIST TEST

JA=THIS LINE SHOULM L.IST
oNLIST

1B=THIS LINE SHOULD NOT LIST
+NLIST

JCeTHIS LINE SHOULD NOT LIST
JLISY

JD=THIS LINET&HOULD NOT LIST (LEVEL NOT BACK TO ZERO)
LIS

JEeTHIS LINE SHOULD L.IST (LEVEL BACK TO ZEROQ)
+ENDM
LTEST JCALL THE MACRD

JA=THIS LINE SHOULD LIST
JE=THIS LINE SHOULD L.IST (LEVEL BACK TO ZEROD)

The primary purpose of the level count is to allow macro expansions to
be selectively 1listed and yet exit with the level returned to the
status current during the macro call,

The use of arguments with the listing directives does not affect the
level count; however, LLIST and .NLIST can be used to override the
current listing control. For example:

+MACRO XX

L
oLI8T ILIST NEXT LINE
Xs,
oNLIST 10D NOT 18T REMAINDER
JOF MACRO EXPANSION

.

.
2+ ENDM

«NLIST ME 100 NOT LIST MACRO EXPANSIONS
XX

Xs,

Allowable arguments for use with the listing directives are as follows
(these arguments can be used singly or in combination):

Argument Default Function

SEQ list Controls the 1listing of source 1line
sequence numbers.

LOC list Controls the 1listing of the location
counter (this field would not normally
be suppressed).

BIN list Controls the listing of generated binary
code (supersedes BEX).

5-28



MACRO Assembler

BEX

SRC

coM

MC

CND

LD

TOC

TTM

SYM

list

list

no list

no list

list

no list

list

Terminal
mode

list

Controls listing of binary extensions;
that is, prevents listing those
locations and binary contents beyond the
first 1line of an expansion. This is a
subset of the BIN argument,

Controls the listing of the source code.

Controls the listing of comments. This
is a subset of the SRC argument and can
be used to reduce 1listing time and/or
space where comments are unnecessary.

Controls listing of macro definitions
and repeat range expansions (has no
effect in ASEMBL).

Controls 1listing of macro calls and
repeat range expansions (has no effect
in ASEMBL).

Controls 1listing of macro expansions
(supersedes MEB; has no effect in
ASEMBL) .,

Controls 1listing of macro expansion
binary code. A ,LIST MEB causes only
those macro expansion statements
producing binary code to be 1listed.
This is a subset of the ME argument (has
no effect in ASEMBL).

Controls the 1listing of unsatisfied
conditions and all .IF and .ENDC
statements., This argument permits
conditional assemblies to be 1listed
without including unsatisfied code.

Controls listing of all listing
directives having no arguments (those
used to alter the listing level count).

Controls listing of table of contents on
pass 1 of the assembly (see Section
5.5.,1.4 describing the «SBTTL
directive). The full assembly listing is
printed during pass 2 of the assembly.

Controls 1listing output format (has no
effect in ASEMBL). The TTM argument (the
default case) causes output lines to be
truncated to 72 characters. Binary code
is printed with the binary extensions
below the first binary word, The
alternative (JNLIST TTM) to Terminal
mode is 1line printer mode, which is
shown in Figure 5-2,

Controls the listing of the symbol table
for the assembly.

5-29



MACRO Assembler

An example of an assembly listing as sent to a 132-column line printer
is shown in Figure 5-2, Notice that binary extensions for statements
generating more than one word are spread horizontally on the source
line. An example of an assembly listing as sent to an 80-column line
printer is shown in Figure 5-3 (this is the same format as a terminal
listing). Notice that binary extensions for statements generating more
than one word are printed on subsequent lines.,

Figure 5-4 illustrates a symbol table listing., With the exception of
local symbols and macro names, all user-defined symbols are listed in
the symbol table. The characters following the symbols 1listed have
special meanings as follows:

= the symbol is assigned in a direct assignment

statement
% the symbol is a register symbol
R the symbol is relocatable
G the symbol is global

The final value of the symbol is expressed in octal. If the symbol is
undefined six asterisks are printed in place of the octal number.

CSECT numbers are listed if the symbol is in a named CSECT, All
CSECTs are listed at the end of the table with their lengths and
corresponding number,



MACRO Assembler

LNdNT 40 Ond 9vidd

3714 40 ON3 9¥4¢
LNdNT 3H0OW ON 41 HINVHE!

NOTLY307 Lix3N NI 3YOLS ONVY
NVMI IX3IN 804 TYI Llvm v 3Lv3Nd!

(x123UTIg SUTT WUMTOD-ZET)
but3ysTT I93UTIJ SUTT OYDVW JO oTdwexdy

<PRNHIINS>+ 1HIHLd ‘<P eNHIINS>+1EL%8

dIANNN (%74) Q¥023H 13S3y¢
1NdNT 40 GNZ 9v1d ‘S3At
INVHI Llsvd

NVHI LX3IN 0L 3JAOWS

NYH) LNANI LIN3I¥AND L1394

¢3714 40 ON3IS NHIJ¥S+1814017403%01%

Z-G sInb1ig
N3N
oo’ ix AOW
N¥NL3Y
By'ien AQW
$1 §J4
¢ Livm®
Jde ' Dy AOW
A’ ISNIm® sld
NHIJHS*NVHI ‘e AOwW
AOW
NHIINS+WNAND3Y 872
§1 IHg
‘840 dW)
1] INT
CYINHIINSENYH] AOw
On¢ $2 038
118
E] 419
4SS MOV Iag
@ve+iwIsSNIN
INIT 3J¥N0S IVIISAHdA L399 ii8s’

181
ige

1174139

(98¢ean

12lueoue

12 39vd vlig23LT p/=d3c=/,

Tagavne

4Ll

avepel
1298204
12188024
1923038
Atvana
129£can

v0@Q2¢

Bos2te

paseie
£aveEal

LTRATY
vBL2Ge
LEABT R
LELETR
LEWGEe
Liatnl
Levnved
neeevia
anegie
peving
FANE4Y
gévcewr

orevgl

g9Gveue
egquaua
aSueun
Pruveed
Zruend
vwpugun
CIN AT
ceazun
geuneuy
hea2ee
viseund
2lazen
LAY}
vuagva
sRagve
9LLten
0LLiRo
994189
yG/16¢
9G/1e2

— (N TIOO N O

ANIT 324n0S IvIISAHd L39

60=20WA O¥IVW Tleyy

J3x31y

5-31



MACRO Assembler

(BUT3STT TRUTWID] S JeuIOF Sues)
ISJIUTAG SUTT WMTOO-08 OdOVYW woxy BuipeeH obeg yo oydwexz
€~-g @anbta
NENi3dy 96220 @
120080
INdNI 40 N3 9v144 BH'TR AOW 1T voL2TY 25029 20
Nanl3y tg¢ as0ee 1¢
LLLLLY
3714 40 ON3 9v4d P ERRET AOW YnL2T8 nno2e A2
LNdNI 3¥0AW ON 41 HONVHES g3 §J¢ cONEBT 2n0eD 61
] LIve® aneca 81l
NOILlva07 1x3N NI 33018 anvi Jde oy AOW L19D1Y 98020 LI
anznos
YHY LX3AN 804 1v) LIvm ¥V 31vIydd BHYLSNImM® slg WeL258 2802m 91
+29¢200
NHIJNS+NVHI ‘Qu AOW LEP210 92028 S%
2908209
+0816200
<HANHIJHS>+TELIHL4 <N ¥NHIIYS> 481N TE AOW LEL§T@ 02020 Nl
4922000
438WNN (X78) QH0I3¥ L3Syl NHIJYS+WNNDIIY k) LEPSee 1in2o €1
LNdNI 40 GN3 9v1d ‘s3Ad g1 IHg Ligtel 21p20 21
2TvooY
INVHI Lsve M EREE dnd L2pe2a 9obze 11
NYHD LX3IN OL 3FA0W? a2y INI VP2S0P noL2e 21
295200
NYHD LNdANT INJEdND 1398 Q¥ NKHIJHS+NVHI AOW POLETY @BY2RdR 6
ON{ t2 03g nenidd 94iL100 €
2210009
néeee
23714 40 On3E NHJJNS+1d14017403°01# 114 LEL2ED @oLlto0 L
2y k) YPesee 99L100 9
288 MQv3ays 9%L1002 S
$I1d139 9S.100 §
@y2+LWI=LSNIM gnerps g
4
INIT 374008 vIISAHd 139 7L118s* i

INIT 338N0S IVIISAHE L3S
12 39vd §2ipEidd hi=d3s=5 62=28WA 0¥IVW 3T=ly J3X3L¥

5-32



MACRO Assembler

RTEXEC RT=11 MACRO VMB2=po Se=SEP=T74 2213031213
SYMBOL TABLE
ABSEXPz *Axnkw ARGCNTE *xkxx*x (
BINCHN= Q00004 BINDAT QQ@2322R 204
BPMB =z Q0@@20 BUFTBL @A2374RG aes
CHNSPC @2@312R 2R3 CHRPNT= xxkxh*x
CMILEN= @@R123 CNTTBL 200360RG ae3
CONT ARORYUQRG 012 CORERR 0OQ1726R 010
CR 2 0090015 CRFBUF @22n76RG Q04
CRFCHNa Q290@12 CRFCNT @0@2004R6G a7
CRFE = 200100 CRFFLG Q@@@a@R @ar
CRFM = QpQ@10 CRFP = @goaa2n
CRFR = 000004 CRFS = ponpee
CRFTAB 0@QQ026R A3 CRFTST Q0Q@M2RG a7
CTLTBL QOQ0OOR PA3 DATE PA1A2BR 21
DEFEXT 0@O@104R @223 DEVFUL 00@a2ser 283
DNC Z RAkkAkA EDMASKE wkwxax (
EMTERR= Q00252 ENDPY = kkxnx
ENDSWT QO0@434R @10 ERR PA1662R gie
ERRBTSz *kwkkx ( ERRCNTE #xaudnx
FF = A0QQ14 FILNF Qpa264R 03
FINCL 221636R P10 FINMSG @Q1@30R ey
FINMS? @@1072R pa4  FINPY A0Q776R 210
FINSM, Q@2124RG P21®@ FRECOR Q0@2@R6R a7
GETRSQE kxakkx G GSARG = wkaxix
HIGHAD= 00Q05@2 ILLCMD Q0@0226R aa3
IMPURT @@@042R PBT7T  IMPURS Q0QQQ@R war
.
[ ]
RTEXEC RT=i{ MACRO VM@2=Q9 S=SEP=T74 22330123
SYMBOL TABLE
TIME A2@210R 233 TIMTIM 0@@1916R 2od
TMPCNT= Q000214 TSTSTK Q221704RG i
TTLBUFz kkkkkw G TTLLEN= Q20040
USRLNC= Q@00Qd6 VT = pO0QL3
WRTERR P@2306R 219 XBAW = 220000
XMITA = kkkxsx G SCLOUT @2030p6RG 210
$SFLUSH QB2732RG 213 SNLISTE wawnax G
SREADW QQ2422RG 210 $wWAIT AYR2T30RG 21p
SWRITW DOB2134RG 212
» ABS, Q00000 poo
PeNo00n 0ot
DPURE poeuog 202
DPURES 0@p4ip 203
MIXEDS 0@2376 pay
SWTSES @ooone 285
SWTSEC 0no2ere 226
IMPURS @@00u42 207
MAINS an3az24 210
ERRORS DETECTED: @
FREE CORE$ 13433, WORDS

+LP1/C/L2BEXERPYtRTPAR,RPARAM,RCIOCH,RTEXEC

Figure 5-4
Symbol Table

PAGE 29+

ASSEM =
BLKTBL=
CHAN
CLKS? =
CONFIG=
CPL =
CRFC =
CRFDAT
CRFLEN=
CRFPNT
CRFSPC
CSJERR
DATTIM
DIvea
ED,ABS=
ENDP2 =
ERRB
EXMFLG=
FIN
FINMSY
FINP2
GETPLI
HDRTTL.
ILLDEV
INIOF

PAGE 29+

TIMWRD
TTLBRK=
TTYBUF=
WINST =
XEDPIC=
SEDABL=
$READ

SWRITE

Akkkkx
PO2310R
BR2362R
Lo 31N
200300
Avo120
pRAQo4n
AB2352R
ave2n4
P2PA64R
@AN114R
nABR214R
PR1PA4RG
BO1240R
kkkkkk
Ahkkkkk G
pRA1a2R
kkAkkkk
A01434RG
nA1@S2R
P0B7T76R
PA1756RG
Mo1102RG
QoP240R
A22106R

POM2Q4UR
khkkhkk G
PRN616
1042402
0naeenn
Akkkkk G
P02422RG
A02134RG

and
a4

a4

en3
203
an3
a4
oi@

a1e

@e1e
204
010
210
a4
203
g1

223

210
210



MACRO Assembler

5.5.,1.2 Page Headings = The MACRO Assembler outputs each page in the
format shown in Figure 5-3. On the first line of each listing page the
assembler prints (from right to left):

1. title taken from LTITLE directive (most recent one
encountered)

2. assembler version identification
3. the date and time of day if entered
4. page number

The second line of each 1listing page contains the subtitle text
specified in the last encountered .SBTTL directive.

5.5.1.3 JTITLE - The .TITLE directive is used to print a heading in
the output 1listing and to assign a name to the object module. The
heading printed on the first line of each page of the listing is taken
from the first 31 characters of the argument in the ,TITLE directive.
The first six characters (symbol name) of this same line are also used
as the name of the object module. These six characters must be
Radix~50 characters (any characters beyond the first six are ignored).
Non-Radix=-50 characters are not acceptable.

For example:

«TITLE PROG TO PERFORM DAILY ACCOUNTING
causes PROG TO PERFORM DAILY ACCOUNTIN to be printed in the heading
for each page and causes the object module of the assembled program to

be PROG (this name is distinguished from the filename of the object
module specified in the command string to the assembler).

If there is no TITLE statement, the default name assigned to the first
object module is:

+MAIN,
The first tab or space following the ,TITLE directive is not

considered part of the object module name or header text, although
subsequent tabs and spaces are significant.

If there is more than one ,TITLE directive, the last ,TITLE directive
in the program conveys the name of the object module.

5.5.1.4 .SBTTL = The .SBTTL directive is used to provide the
elements for a printed table of contents of the assembly listing. The
text following the directive is printed as the second line of each of
the following assembly listing pages until the next occurrence of a
.SBTTL directive.

for example:

«SBTTL CONDITIONAL ASSEMBLIES

5-34



MACRO Assembler

The text:

CONDITIONAL ASSEMBLIES

is printed as the second 1line of each of the following assembly

listing pages.

During pass 1 of the assembly process, MACRO automatically prints a
table of contents for the listing containing the line sequence number

and text of each .SBTTL directive in the program,
inhibited by specifying the .NLIST TOC directive within

contents

the source.

An example of a table of contents is shown in Figure 5-5.

2MAIN, RTeil MACRO VMO2~09 SeSEP=74 22130123
TABLE OF CONTENTS

{= 29
i= 37
2w
Iw
Um
Sw
T=
{0w
il=
{2=
13=
4=
1S5
16m
17=
18=
19m
20
lm
22w
23m
2lim
25m
2bw=
27=
29m=

. e h s ek s Bt e e s A s e s e e [\ N\ e 5n a4 See e

Table of Contents text is taken from the text of
associated numbers are the page and line numbers of

directive.

The

RTm11 MACRO PARAMETER FILE
COMMON PARAMETER FILE
ASSEMBLY OPTIONS
VARIABLE PARAMETERS
GL.OBALS
SECTOR INITIALIZATION
SUBROUTINE CALL DEFINITIONS
MISCELLANEOUS MACRO DEFINITIONS
MCIOCH = 1/0 CHANNEL ASSIGNMENTS
*AKKREXECH KW
PROGRAM START
INIT OUTPUT FILES
SWITCH HANDLERS
END=QF=PASS ROUTYINES
SWITCH AND DATE DATA AREAS
INIT QUTPUT FILES (CONTINUED)
FINISH ASSEMBLY AND RESTART
MEMORY MANAGEMENT

GET PHYSICAL SOURCE LINE

SYSTEM MACRO HANDLERS
WRITE ROUTINES

READ ROUTINE

COMMON I/0 ROUTINES
MESSAGES

I/70 TABLES

FINIS

Figure 5=5
Assembly Listing Table of Contents

the .SBTTL directives.

5-35

each

Such a table of

«SBTTL



MACRO Assembler

5.5.1.5 JIDENT - The .IDENT directive is not used oxr supported by
the RT-11 system, but is handled by MACRO for compatibility with other
systems. .IDENT provides a means of labeling the object module
produced as a result of a MACRO assembly. In addition to the name
assigned to the object module with the .TITLE directive, a character
string (up to six characters, treated like a .RAD50 string) can be
specified between paired delimiters. For example:

.IDENT /VO0SA/
The character string:
V0OO5A

is converted to Radix~50 notation and output to the global symbol
directory of the object module.

When more than one ,IDENT directive is found in a given program, the
last .IDENT found determines the symbol which is passed as part of the
object module identification.

5.5.1.6 Page Ejection (.PAGE Directive) - There are several means of
obtaining a page eject in a MACRO assembly listing:

1. After a line count of 58 lines, MACRO automatically performs
a page eject to skip over page perforations on line printer
paper and to formulate terminal output into pages.

2., A form feed character used as a line terminator (or as the
only character on a line) causes a page eject. Used within a
macro definition a form feed character causes a page eject.
A page eject is not performed when the macro is invoked,

3. More commonly, the .PAGE directive is used within the source
code to perform a page eject at that point. The format of
this directive is:

«PAGE

This directive takes no arguments and causes a skip to the
top of the next page.

Used within a macro definition, the .PAGE is ignored, but the
page eject is performed at each invocation of that macro.

5.5.2 Functions: .ENABL and .DSABL Directives

Several functions are provided by MACRO through the .ENABL and .DSABL
directives. These directives use 3-character symbolic arguments to
designate the desired function and are of the forms:

«ENABL arg
.DSABL arg

where arg is one of the legal symbolic arguments defined below.



MACRO Assembler

The following

list describes the symbolic arguments and their

associated functions in the MACRO language:

Symbolic
Argument

ABS

CDR

FPT

LC

LSB

PNC

Function

Enabling of this function (has no effect in
ASEMBL) produces absolute binary output;
(i.e., for input to the Paper Tape Software
System absolute binary loader using a .BIN
extension instead of ,0BJ). The default case
is .DSABL ABS,

Enabling of this function directs the
assembly of all relative addresses (address
mode 67) as absolute addresses (address mode
37). This switch is wuseful during the
debugging phase of program development,

The statement .ENABL CDR (has no effect 1in
ASEMBL) causes source columns 73 and greater
to be treated as comments. This accommodates
sequence numbers in card columns 72-80,

Fnabling of this function (has no effect in
ASEMBL) causes floating point truncation,
rather than rounding as is otherwise
performed. .DSABL FPT returns to floating
point rounding mode.

Enabling of this function causes the
assembler to accept lower case ASCII input
instead of converting it to upper case (has
no effect in ASEMBL).

Enable or disable a local symbol block (has
no effect in ASEMBL), While a local symbol
block is normally entered by encountering a
new symbolic label or .CSECT directive,
.ENABL LSB forces a local symbol block which
is not terminated until a label or .CSECT
directive following the ,DSABL LSB statement
is encountered, The default case is .DSABL
LSB,

The statement ,DSABL PNC (has no effect in
ASEMBL) inhibits binary output until an
.ENABL PNC is encountered. The default case
is LENABL PNC,

An incorrect argument causes the directive containing it to be flagged

as an error.

5.5.3 Data Storage Directives

A wide range of data and data types can be generated with the
following directives and assembly characters:

5-37



MACRO Assembler

+BYTE

«WORD
'

«ASCII
+ASCIZ
.RADS50
1B
tD
10

These facilities are explained in the following sections.

5.5.3.1 LBYTE - The ,BYTE directive is used to generate successive
bytes of data. The directive is of the form:

+BYTE exp IWHICH STORES THE QCTAL
JEQUIVALENT OF THE EXPRESSION
JEXP IN THE NEXT BYTE

«BYTE expl,exp2, sWHICH STORES THE 0NCTAL
1EQUIVALENTS OF THE LIST QF
JEXPRESSIONS IN SUCCESSIVE BYTES,

A legal expression must have an absolute value (or contain a reference
to an external symbol) and must result in eight bits or less of data.
The 16-bit value of the expression must have a high-order byte (which
is truncated) that is either all zeros or all ones. Each operand
expression is stored in a byte of the object program, Multiple
operands are separated by commas and stored in successive bytes. For
example:

SAM=S
W Bat410
«BYTE *D48,8AM )060 (OCTAL EQUIVALENT OF 48
, JDECIMAL) 18 STORED IN LOCATION
1411 «» 205 18 STORED IN
ILOCATION 411

If the high~order byte of the expression equates to a value other than
0 or -1, it is truncated to the low-order eight bits and flagged with
a T error code. If the expression is relocatable, an A-type warning
flag is given.

At link time it is likely that relocation will result in an expression
of more than eight bits, in which case, the Linker prints an error
message., For example:

.BYTE 23 1STORES OCTAL 23 IN NEXT BYTE

8
.BYTE B JRELOCATABLE VALUE CAUSES AN UtAM
. JERROR FLAG

5-38



MACRO Assembler

Here, X has an absolute value,

oGLOBL X
Xe3
«BYTE X JSTORES 3 IN NEXT BRYTE

and can be linked later with another program:

oGLOBL X
«BYTE X

If an operand following the .BYTE directive is null, it is interpreted
as a zero, For example (assume assembly begins at relocatable 0):

oBoed20
+BYTE " ) ZEROS ARE STORED IN BYTES
p42@, 421, AND 422,

5.5.3.2 L.WORD - The .WORD directive is used to generate successive
words of data. The directive is of the form:

+WORD €Xp JWHICH STORES THE QCTAL
JEGUIVALENY OF THE EXPRESSON
JEXP IN THE NEXT WORD

«WORD expl,exp2... IWHICH STORES THE OCTAL
JEQUIVALENTS OF THE LIST OF
JEXPRESSIONS IN SUCCESSIVE
JWORDS

where a legal expression must result in 16 bits or less of data. Each
operand expression is stored in a word of the object program.

Multiple operands are separated by commas and stored in successive
words, For example:

SALs0

« 8,500

«WORD 177535, ,+4,8AL PSTORES 177535, %06, AND @
1IN WORDS Se@, S@e, AND S04,

If an expression equates to a value of more than 16 bits, it 1is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero, For example:

o B3,+500
«WORD 5 JSTORES 2,5,@2 IN LOCATIONS
1500, SP2, AND 504

A blank operator field (any operator not recognized as a macro call,
op~-code, directive or semicolon) is interpreted as an implicit ,WORD
directive. Use of this convention is discouraged. The first term of
the first expression in the operand field must not be an instruction
mnemonic or assembler directive unless preceded by a + or - operator.

5-39




MACRO Assembler

For example:

LYY JTHE OP=CODE FOR MOV, WHICH IS
LABELS +MOV,LABEL jolgeee, IS STORED IN LOCATION
1442, 44@ IS STORED IN
PLOCATION 442,

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemoni.c or assembler dirxective. Therefore, if an instruction
mnemonic, macro call, or assembler directive is misspelled, the ,WORD
directive 1is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR 4,8

Two error codes result: A and U, Two words are then generated, one
for MOR A and one for B,

5,5.3.3 ASCII Conversion of One or Two Characters = The ' and "
characters are used to generate text characters within the source
text., A single apostrophe followed by a character results in a term
in which the 7-bit ASCII representation of the character is placed in
the low-order byte and zero is placed in the high-order byte. For
example:

MOV #°A,RQ
results in the following 16 bits being moved into RO:
0000000001000001
The ' character is never followed by a carriage return, null, RUBOUT,

line feed, or form feed. (For another use of the ' character, see
Section 5.6.3.6.)

STMNT1
GETSYM
BEQ s
CMPB OCHRPNT, 871 ICOLON DELIMITS LABEL FIELD
8EQ LABEL
CMPB OCHRPNT,#*f» TEQUAL DELIMITS
BEQ ASGMT JASSIGNMENT PARAMETER

A double quote followed by two characters results in a term in which
the 7-bit ASCII representations of the two characters are placed. For
example:
MOV WYAB,RQ
results in the following binary word being moved into RO:
0100001001000001

Note that the first character is placed in the low-order byte and the
second character in the high-order byte.



MACRO Assembler

The " character is never followed by a carriage return, null, rubout,
line feed, or form feed. For example:

JDEVICE NAME TABLE

DEVYNAMI ,wWORD "RF JRF DISK
+WORD "RK JRK DISK

DEVNKBS ,WORD "re JTERMINAL KEYBOARD
«WORD "or JIDECTAPE
+ WORD '"e JLINE PRINTER
+WORD "PR JPAPER TAPE READER
«WORD "ep JIPAPER TAPE PUNCH
+WORD a JTABLE*S END

5.5.3.4 LASCII - The ,ASCII directive translates character strings
into their 7-bit ASCII equivalents for use in the source program. The
format of the .ASCII directive is:

+ASCII /character string/

where: character string is a string of any acceptable printing
ASCII characters including spaces. The
string may not include null characters,
rubout, return, line feed, vertical tab,
or form feed. Nonprinting characters
can be expressed in digits of the
current radix and delimited by angle
brackets. (Any legal, defined
expression is allowed between angle
brackets.)

/ / are delimiting characters and may be any
printing characters other than ; ¢ and =
characters and any character within the
string.

As an example:

Al oASCII /MELLO/ )STORES ASCII REPRESENTATION OF
PTHE LETTERS H E L L O IN
JCONSECUTIVE BYTES

The order of the characters as they are stored in memory is
illustrated below.



MACRO Assembler

o
1001 ] 1000

1003 E H 1002
1005 L L 1004
1007 O 1006

e

WASCI] /ABC/«i5>«i2>/DEF/
JSTORES
1104,102,403,15,12,104,105,106
JIN CONSECUTIVE BYTES

+ASCITI /<AB>/ JSTORES 74,1Q21,122,76 IN
JCONSECUTIVE BYTES

The ; and = characters are not illegal delimiting characters, but are
preempted by their ‘significance as a comment indicator and assignment
operator, respectively. For other than the first group, semicolons
are treated as beginning a comment field. For example:

Directive Result Explanation

+ASCII ;ABC; /DEF/ ABCDETF Acceptable, but not
recommended procedure.

+ASCII /ABC/;DEF; ABC 3DEF; 1is treated as a comment
and ignored.

«ASCII /ABC/=DEF= ABCDETF Acceptable, but not
recommended procedure,

+ASCII =DEF= The assignment .ASCII=DEF is
performed and an error

generated upon encountering
the second =,

5¢5.3.5 LASCIZ - The .ASCIZ directive is equivalent to the LASCII
directive with a 2zero byte automatically inserted as the final
character of the string. For example:

When a list or text string has been created with a
«ASCIZ directive, a search for the null character
can determine the end of the list as follows:

CRs15
LFei2

L]

MoV YHELLO, P

5-42



MACRO Assembler

MOV #LINBUF,RR
X1 MOve (R{)+, (R2)» IMOVE A CHARACTER OF THE
JMESSAGE STRING INTO THE
POUTPUT BUFFER
BNE X IBRANCH BACK IF BYTE
INOT EQUAL TO @

HELLOS LASCIZ «<CR»« F»/MACRO=11 VOOiIA/<CR>»<|F>
1 INTRQ MESSAGE

5.5.3.6 .RAD50 - The .RAD50 directive allows the user the capability
to handle symbols in Radix=50 coded form (this form is sometimes
referred to as MOD40 and is used in PDP-1ll system programs). Radix-50
form allows three characters to be packed into sixteen bits;
therefore, any 6-character symbol can be held in two words. The form
of the directive is:

«RADS0 /string/

where: / / delimiters can be any printing
characters other than the =, ¢, and ;

characters.
string is a 1list of the characters to be

converted (three characters per word)
and may consist of the characters A
through 2, 0 through 9, dollar ($), dot
(.) and space ( ). If there are fewer
than three characters (or if the last
set is fewer than three characters) they
are considered to be left justified and
trailing spaces are assumed. Illegal
nonprinting characters are replaced with
a ? character and cause an I error flag
to be set. Illegal printing characters
set the Q error flag.

The trailing delimiter may be a carriage return, semicolon, or
matching delimiter. (A warning code is printed if it is not a
matching delimiter, however.) For example:

KW A

20 00040 QO3e2e3 «RADS@ /ABC

el JPACK ABC INTO ONE WORD

ee vQpde vo3eee +RADSQ /AB/ JPACK AB (SPACE) INTO ONE WORD,
23 vavdd eepeee +RADSG 7/ JPACK THREE SPACES INTO ONE WORD
24 Q0046 Q003223 +RADSQ® /ABCD/ JPACK ABC INTO FIRST WORD AND

20050 Ql44ue
iD (SPACE)(SPACE) INTO SECOND WORD

Each character is translated into its Radix-50 equivalent as
indicated:

5-43



MACRO Assembler

Radix-50
Character Equivalent (octal) ASCII (octal)
(space) 0 40
A-2Z 1-32 101-132
$ 33 44
. 34 56
undefined 35 undefined
0-9 36-47 60-71

Note that another character could be defined for code 35, which is
currently unused.

The Radix-=-50 equivalents for three characters (C1,C2,C3) are combined
in one l1l6-bit word as followss:

Radix=50 value = ((C1*50)+C2)*50+C3
For example:

Radix=-50 value of ABC is ((1*50)+2)*50+3 or 3223
See Appendix E for a table to quickly determine Radix-50 equivalents.
Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RAD50
statements whenever leaving the text string to insert special codes.,
For example:

«ASCII «101> JEGUIVALENT YO LASCII/A/

«RADS@ /AB/«35>)STORES 3255 IN NEXT WORD,

CHRim}§

CHR2s2

CHR3= S

.

«RADS2 <LHRI»<CHRE»<CHR3» JEQUIVALENT TO RADS@G/ABC/

5.5.4 Radix Control

5.5.4.1 .RADIX
Numbers used in a MACRO source program are initially considered to be
octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10
This is done via the .RADIX directive of the form:

.RADIX n

where n is one of the acceptable radices.

5-44



MACRO Assembler

The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (octal). For example:

«RADIX 10 IBEGINS SECTION OF CODE WITH
JDECTIMAL RADIX

RADIX PREVERTS TO OCTAL RADIX
L]

In general it is recommended that macro definitions not contain or
rely on radix settings from the .RADIX directive. The temporary radix
control characters should be used within a macro definition. (tD, tO,
and 1B are described in the following section.) A given radix is valid
throughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested that the wuser specify values using the
temporary radix controls.

5.5.4.2 Temporary Radix Control: tD, %0, and 4B - Once the user has
specified a radix for a section of code, or has determined to use the
default octal radix, he may discover a number of cases where an
alternate radix is more convenient (particularly within macro
definitions). For example, the creation of a mask word might best be
done in the binary radix.

MACRO has three unary operators to provide a single interpretation in
a given radix within another radix as follows:

4Dx (x is treated as being in decimal radix)
t0x (x is treated as being in octal radix)
tBx (x is treated as being in binary radix)

For example:

tD123

t0 47

tB 00001101
t0<A+3>

Notice that while the uparrow and radix specification characters may
not be separated, the radix operator can be physically separated from
the number by spaces or tabs for formatting purposes. Where a term or
expression 1s to be interpreted in another radix, it should be
enclosed in angle brackets.

These numeric quantities may be used any place where a numeric value
is legal.

A temporary radix change from octal to decimal may be made by
specifying a decimal radix number with a "decimal point". For example:

5-45



MACRO Assembler

100. (144(8))
1376. (2540(8))
128. (200(8))

5.5.5 Location Counter Control

The four directives that control movement of the location counter are
.EVEN and .ODD which move the counter a maximum of one byte, and ,BLKB
and .BLKW which allow the user to specify blocks of a given number of
bytes or words to be skipped in the assembly.

5.5.5.1 JEVEN - The LEVEN directive ensures that the assembly
location counter contains an even memory address by adding one if the
current address is odd. If the assembly location counter is even, no
action 1is taken. Any operands following a .EVEN directive are
ignored.

The .EVEN directive is used as follows:

«ASCIZ /THIS 18 A TEST/

+EVEN JASSURES NEXY STATEMENT
JBEGINS ON A wOKD BOUNDARY

«WORD XxYZ

5.5.5.2 .0DD - The .0ODD directive ensures that the assembly location
counter is odd by adding one if it is even. For example:

JCODE TO MOVE DATA FROM AN INPUT LINE
170 A BUFFER

N=S JBUFFER HAS 5 WORDS
]
.
« 000
BYTE Nx2 ICOUNT®2N BYTES
BUFF1 «BLKW N JRESERVE BUFFER OF N WORDS

MOV #BUFF,R2 JADDRESS OF EMPTY BUFFER IN RR
MOV #LINE,RY JADDRESS QF INPUT LINE 18 IN R¢
MOVB ei1(R2),R0 JGET COUNT STORED IN BUFFe! IN RO

AGAINT MQVB (R1)+, (R2})+ JMOVE BYTE FROM LINE INTO BUFFER
BEQ DONE JWAS NULL CHARACTER SEEN?
DEC RO IDECREMENT COUNT
BNE AGAIN INOT=Q, GEY NEXT CHARACTER
L
L)
CLRB »(R2) JOUT OF ROOM IN BUFFER, CLEAR LAST
OONES JWORD

LINE? «ASCIZ /TEXT/

5~-46



MACRO Assembler

In this case, .0ODD is used to place the buffer byte count in the byte
preceding the buffer, as follows:

COUNT BUFF-2

BUFF

5.5.5.3 .BLKB and .BLKW - Blocks of storage can be reserved using
the LBLKB and .BLKW directives. .BLKB is used to reserve byte blocks
and ,BLKW reserves word blocks. The two directives are of the form:

+«BLKB exp
« BLKW exp

where exp is the number of bytes or words to reserve. If no argument
is present, 1 1is the assumed default value. Any legal expression
which is completely defined at assembly time and produces an absolute
number is legal. For example:

!

e ;

3

4 vauera* »CSECT IMPURE

S Quvvde PASS: WBLKW

) INEXT GROUP MUST 8TAY TOGETHER
7 Qoeovee SYMBOL?Y .BLKW 2 1SYMBOL ACCUMULATOR

8 900voe MODE:

9 Q000026 FLAGSE ,BLKB 1 IFLAG BITS

190 veee? SECTOR: ,.BLKkB 1 JSYMBOL/EXPRESSION TYPE
il vaele VALUES LBLKW 1 JEXPRESSIUN VALUE

ié aooele RELLVLS BLKW

13 BLKW 2 1END OF GROUPED DATA

14 0avew CLCNAMS ,BLKW 2 JCURRENT LOCATION COUNTER
15 avee4 CLCFGS: ,BLKB 1

ie 0o@ees CLCSEC: ,BLKB 1

17 veple CLCLOC: ,BLKW 1.

18 0or39 CLCMAX: ,BLKW

19 pavavy* END

The .BLKB directive has the same effect as:
.=.texp

but is easier to interpret in the context of source code.

5.5.6 Numeric Control

Several directives are available to provide software complements to
the floating=-point hardware on the PDP-1l.

5~47



MACRO Assembler

A floating=-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal exponent.
The list of number representations below contains seven distinct,
valid representations of the same floating-point number:

As can be gquickly inferred, the list could be extended indefinitely
(e.g., 3000E-3, ,L03E2, etc.). A leading plus sign is ignored (e.g.,
+3,0 is considered to be 3.0). Leading minus signs complement the sign
bit. No other operators are allowed (e.g., 3.0+N is illegal).

Floating-point number representations are valid only in the contexts
described in the remainder of this section.

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order excess bit 1s added to the low~order
retained bit. For example, if the number were to be stored in a
2-word field, but more than 32 bits were needed for its value, the
highest bit carried out of the field would be added to the least
significant position. In order to enable floating-point truncation,
the L.ENABL FPT directive is used and .DSABL FPT is used to return to
floating~point rounding.

565¢6.]l LFLT2 and .FLT4 - Like the L(WORD directive, the two
floating-point storage directives cause thelr arguments to be stored
in-line with the source program (have no effect in ASEMBL). These two
directives are of the form:

+FLT2 argl,arg?2,...
+FLT4 argl,arg2,...

where argl,arg2, etc. represent one or more floating point numbers
separated by commas.

.FLT2 causes two words of storage to be generated for each argument
while .FLT4 generates four words of storage.

5-48



MACRO Assembler

The following code shows the use of the .FLT4 directive:

B

PVo2RY 037314 ATOFTEE ,FLT4 §,Ewl 110"w}
PYoYRe 146314
PYAQA4 146314
V42026 146315
5 Q00212 B364u3 oFLTG | ,Em? Jle”eg
Quaeate 153412
Q02014 036560
P0QRie 121727
6 200020 V347e1 JFLTE | ,E=d 1{0"wy
Qavuvee 1335427
dY00ved ¥S434e
Q0026 BluS4S
7T 200032 231453 FLTG 1 ,E=8 110"»8
QVe032 146167
Q0234 VipeLH
00236 LWeBTLT
8 Q0040 veeTde FLT4 1 ,E=106 §10%=16
POboue 112624
PUea44 137304
vodede véeT4l
9 QYURAVSY vnssL7 +FLT4 1,Em32 j10°=32
BluusSe 130436
AYBV5H4 126505
gRouvshe ul4ees

5.5.6.2 Temporary Numeric Control: ¢tF and tC - Like the temporary
radix control operators, operators are available to specify either a
l-word floating-point number (tF=-not available in ASEMBL) oxr the
one's complement of a l-word number (1C). For example:

FL3.7: tF3.7

creates a l-word floating=-point number at location FL3.7 containing
the value 3.7 as follows:

SIGNT s EXPONENT MANTISSA

This l=-word floating—-point number is the <first word of the 2- or
4-word floating-point number format shown in the PDP-11 Processor
Handbook, and the statement:

CMP151: $+Cl51

stores the one's complement of 151 in the current radix (assume
current radix is octal) as follows:

5~49 January 1976



MACRO Assembler

177626

Since these control operators are unary operators, their arguments may
be integer constants or symbols, and the operators may be expressed
successively. For example:

1C1D25 or 1C31 or 177746

The term created by the unary operator and its argument is then a term
which can be used by itself or in an expression, For example:

1C2+6
is equivalent to:

<1C2>+6 or 177775+6 or 000003
For this reason, the use of angle brackets is advised, Expressions
used as terms or arguments of a unary operator must be explicitly

grouped,

An example of the importance of ordering with respect to unary
operators is shown below:

tFl.0 = 040200
tF-1.0 = 140200
-1Fl.0 = 137600
-tF-1.0 = 037600

The argument to the tF operator must not be an expression and should
be of the same format as arguments to the .FLT2 and ,FLT4 directives.

5.5.7 Terminating Directives

5.5.7.1 .END - The .END directive indicates the physical) end of the
source program. The .END directive is of the form:

.END exp

where exp is an optional argument which, if present, indicates the
program entry point, i.e., the transfer address.

5-50



MACRO Assembler

When the load module is loaded, program execution begins at the
transfer address indicated by the .END directive. In a runtime system
(the load module output of the Linker) a LEND exp statement should
terminate the first object module and .END statements should terminate
any other object modules.

5¢5.7.2 LEOT = Under the RT=-11 System, the .EOT directive is
ignored. The physical end file allows several physically separate
tapes to be assembled as one program.

5.5.8 Program Boundaries Directive: LLIMIT

The .LIMIT directive reserves two words into which the Linker puts the
low and high addresses of the load module's relocatable code (the load
module is the result of the link). The low address (inserted into the
first word) is the address of the first byte of code. The high
address is the address of the first free byte following the relocated
code. These addresses are always even since all relocatable sections
are loaded at even addresses. (If a relocatable section consists of
an odd number of bytes, the Linker adds one to the size to make it
even.)

5.5.9 Program Section Directives

The assembler provides for 255(10) program sections: an absolute
section declared by .ASECT, an unnamed relocatable program section
declared by .CSECT, and 253(10) named relocatable program sections
declared by .CSECT symbol, where symbol is any legal symbolic name.
These directives allow the user to:

1. Create his program (object module) in sections:

The assembler maintains separate location counters for each
section. This allows the user to write statements which are
not physically contiguous but will be loaded contiguously.
The following examples will clarify this:



MACRO Assembler

Al
a1
ct
81t

At
B
ci

X3
Ye

Dt

+CSECT )START THE UNNAMED RELOCATABLE SECTION

e JABSEMBLED AT RELOCATABLE 0O,

2 JRELOCATABLE @ AND

2 IRELOCATABLE 4

CLR & JASSEMBLE CODE AY

CLR B JRELOCATABLE ADDRESS

CLR C 16 THROUGHW 21

WAJECY JSTART THE ABSOLUTE SECTION

B4 JASSEMBLE CODE AY

JWORD ,+2,HALT ABSOLUTE 4 THROUGH 7

«CSECT JRESUME THE UNNAMED RELOCATABLE
13ECTION

INC A JASSEMBLE CODE AT

BR 8T JIRELOCATABLE @2 THROUGH 27

+END

The first appearance of .CSECT or .ASECT assumes the location
counter is at relocatable or absolute zero, respectively.
The scope of each directive extends until a directive to the
contrary is given. Further occurrences of the same ,CSECT or
.ASECT resume assembling where the section was left off.

«CSECT COMY 10ECLARE SECTION COM{

" JASSEMBLED AT RELOCATABLE 02
2 JASSEMBLED AT RELOCATABLE 2
2 JASSEMBLED AT RELOCATABLE 4
«CSECT COM2 IDECLARE SECTION COM2

@ JASSEMBLED AT RELOCATABLE @2
2 JASSEMBLED AT RELOCATABLE 2
«C3ECT cCoOMy JRETURN TO COM{

2 JASSEMBLED AT RELOCATABLE ¢
«END

The assembler automatically begins assembling at relocatable
zero of the unnamed .CSECT if not instructed otherwise; that
is, the first statement of an assembly is an implied .CSECT.

All labels in an absolute section are absolute; all 1labels
in a relocatable section are relocatable. The location
counter symbol, ".", is relocatable or absolute when
referenced in a relocatable or absolute section,
respectively. Undefined internal symbols are assigned the
value of relocatable or absolute zero in a relocatable or
absolute section, respectively. Any labels appearing on a
+ASECT or .CSECT statement are assigned the value of the
location counter before the ,ASECT or .CSECT takes effect.
Thus, if the first statement of a program is:

At «ASECY

then A is assigned to relocatable zero and is associated with
the unnamed relccatable section (because the assembler
implicitly begins assembly in the unnamed relocatable
section).

Since it is not known at assembly time where the program
sections are to be loaded, all references between sections in
a single assembly are translated by the assembler to
references relative to the base of that section. The
agsembler provides the Linker with the necessary information
to resolve the linkage. Note that this is not necessary when

5-52



MACRO Assembler

Al

Yt
Xs

making a reference to an absolute section (the assembler
knows all load addresses of an absolute section).

Examples:

«ASECT

81000

CLR X TASSEMBLED AS CLR BASE OF UNNAMED
JRELOCATABLE SECTION #i12

JMP Y JASSEMBLED AS JMP BASE OF UNNAMED
JRELOCATABLE SECTION + 10

+CSECT

MOV R@,R}

JMP A JASSEMBLED AS JMP 100

HALT

2

«END

In the above example the references to X and Y were
translated into references relative to the base of the
unnamed relocatable section,

Share code and/or data between object modules (separate
assemblies) :

Named relocatable program sections operate as FORTRAN labeled
COMMON ; that is, sections of the same name from different
assemblies are all loaded at the same location by LINK. The
unnamed relocatable section is the exception to this as all
unnamed relocatable sections are loaded in unique areas by
LINK.

Note that there is no conflict between internal symbolic
names and program section names; that is, it is legal to use
the same symbolic name for both purposes, In fact,
considering FORTRAN again, this is necessary to accommodate
the FORTRAN statement:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program
section and also the fourth element of this program section.

Program section names should not duplicate .GLOBL names. In
FORTRAN language, COMMON block names and SUBROUTINE names
should not be the same.

The .ASECT and ,CSECT program section directives are provided in MACRO
to allow the wuser to specify an unnamed absolute or relocatable

section.

These directives are formatted as follows:
+ASECT

+CSECT
.CSECT symbol

5-53



MACRO Assembler

The single absolute section can be declared with an:
+«ASECT
directive. No name can be associated with the absolute section

specified by means of the JASECT directive. The single unnamed
relocatable program section can be declared with a:

«CSECT
directive.

All named relocatable sections are loaded in unique areas by LINK. Up
to 253(10) named relocatable program sections can be declared with:

.CSECT symbol
directives, where symbol is any legal symbolic name.

The assembler automatically begins assembling at relocatable zero of
the unnamed .CSECT if not instructed otherwise; that is, the first
statement of an assembly is an implied .CSECT.

5.5.10 Symbol Control: .GLOBL

If a program is created in segments which are assembled separately,
global symbols are used to allow reference to one symbol by the
different segments.

A global symbol must be declared in a .GLOBL directive., The form of
the .GLOBL directive 1is:

«GLOBL syml,sym2,...

where:
syml,sym2, etc. are legal symbolic names, separated by
commas, tabs, or spaces where more than
one symbol is specified.

Symbols appearing in a .GLOBL directive are either defined within the
current program or are external symbols, in which case they are
defined in another program which is to be 1linked with the current
program, by LINK, prior to execution.

A .GLOBL directive line may contain a label in the 1label field and
comments in the comment field.

JOEFINE A SUBROUTINE WITH 2 ENTRY POIN
JCALLS AN EXTERNAL SUBROUTINE PINTS which

cs
o e A TR
X1 :g;, :::g! JCALL EXTERNAL SUBROQUTINE ©
Bt :;3 :3RSJ¢,R;EX!T JOEFINE ENTRY B
CLR R
BR X

January 1976 5-54



MACRO Assembler

In the previous example, A and B are entry symbols (entry points), C
is an external symbol and X is an internal symbol,

A global symbol is dgfined only when it appears in a .GLOBL directive.
A symbol is not considered a global symbol if it is assigned the value
of a global expression in a direct assignment statement.

References to external symbols can appear in the operand field of an
instruction or assembler directive in the form of a direct reference,
Y-

CLA EXY
+WORD ExT
CLR eEXT

or a direct reference plus or minus a constant, i.e.:

Owe

CLR EXTeD
+«WORD EXTe2
CLR eEXTeD

A global symbol defined within the program can be used in the evalua-
tion of a direct assignment statement, but an external symbol cannot.
Since MACRO determines at the end of pass 1 whether a given global sym-
bol is defined within the program or is expected to be external, a con-
struction such as the following will cause errors at link time:

. GLOBL FREE
LGLOBL LIMITE
FREE=LIMITS+Z PFREE WILL NOT EE
s DEFINED UNTIL PASS 2

LIMITS: LINMIT

FREE will be flagged as an undefined global at link time. To allow
correct linking, define FREE after LIMITS:.

5.5.11 Conditional Assembly Directives

Conditional assembly directives provide the programmer with the
capability to conditionally include or ignore blocks of source code in
the assembly process. This technique is used extensively to allow
several variations of a program to be generated from the source
program,

The general form of a conditional block is as follows:

+IF cond,argument(s) ;START CONDITIONAL BLOCK
. 7STATEMENTS IN RANGE OF
. s CONDITIONAL
. s BLOCK
+ENDC sEND CONDITIONAL BLOCK
where: cond is a condition which must be met if the block is

to be included in the assembly. These conditions
are defined below.

5-55 January 1976




MACRO Assembler

argument (s)

range

are a function of the condition to be tested. If
more than one argument is specified, they must be
separated by commas.

is the body of code which is included in the
assembly or ignored depending upon whether the
condition is met.

The following are the allowable conditions:

Conditions
Positive Complement Arguments Assemble Block If

EQ NE expression expression=0 (or # 0)

GT LE expression expression>0 (or <0)

LT GE expression expression<0 (or >0)

DF NDF symbolic symbol is defined
argument {or undefined)

B NB macro~type argument is blank
argument (or nonblank)

IDN DIF two macro-type arguments identical
arguments separated (or different)
by a comma

2 NZ expression same as EQ/NE

G expression same as GT/LE

L expression same as LT/GE

IF DIF and IF IDN are not available in ASEMBL.

NOTE

A macro-type argument is enclosed in
angle brackets or within an up-arrow
construction (as described in Section
5¢2.1.1) . For example:

{A,E,C>
t/124/
For example:
ALPHAB®]
oIF EQ,)ALPHAS} JASSEMBLE IF ALPHA+1sQ
L]
[ ]
«ENDC

Within the conditions DF and NDF the following two operators are
allowed to group symbolic arguments:

&

1

logical AND operator

logical inclusive OR operator

5-56



MACRO Assembler

For example:

oIF DF,8YML & SYM2 PASSEMBLE IF BOTH SYM{
. JAND 8YM2 ARE DEFINED
L

«ENDC

5.5.11,1 Subconditionals = Subconditionals may be placed within
conditional blocks to indicate:

1. assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
be assembled,

2, assembly of a non-contiguous body of code within the
conditional block depending upon the result of the
conditional test to enter the block,

3. unconditional assembly of a body of code within a conditional

block. )
There are three subconditional directives, as follows:
Subconditional Function

«IFF The code following this statement up to the next
subconditional or end of the conditional block is
included in the program if the value of the
condition tested upon entering the conditional
block is false.

«IFT The code following this statement up to the next
subconditional or end of the conditional block is
included in the program if the value of the
condition tested upon entering the conditional
block is true,

+IFTF The code following this statement up to the next

subconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested upon entering the
conditional block.

The implied argument of the subconditionals is the value of the
condition upon entering the conditional block. Subconditionals are
used within outer 1level conditional blocks. Subconditionals are
ignored within nested, unsatisfied conditional blocks.

For example:



MACRO Assembler

o IF DF,8YM JASSEMBLE BLOCK IF 8YM I8 DEFINED
«IFF JTASSEMBLE THE FOLLOWING CODE ONLY IF
JSYM 18 UNDEFINED

W IFT JASSEMBLE THE FOLLOWING CODE ONLY IF
J8YM I8 DEFINED

JIFTF JASSEMBLE THE FOLLOWING CODE
JUNCONDITIONALLY
[ ]
]
]
LENDC
W1F DF, X JASSEMBLY TESTS FALSE
JIF DF,Y JTESTS FALSE
JIFF INESTYED CONDITIONAL
JIGNORED WITHIN NESTED, UNSATISFIED
* JCONDITIONAL BLOCK
[ ]
JIFT INDT SEEN
»
JENDC
+JENDC
However,
.1F OF X JTESTS TRUE
JdF DF,Y JTESTS FALSE
JIFF )18 ASSEMBLED

JOUTER CONDITIONAL SATISFIED,

JIFT INOT ASSEMBLED

<ENDC
«ENDC

5.5.11.2 Immediate Conditionals = An immediate conditional directive
is a means of writing a l-line conditional block, In this form, no
.ENDC statement is required and the condition is completely expressed
on the line containing the conditional directive. Immediate
conditions are of the form:

.IIF cond, arg, statement

where: cond is one of the 1legal conditions defined for
conditional blocks in Section 5.5.11.

5-58



MACRO Assembler

arg is the argument associated with the conditional
specified, that is, either an expression, symbol,
or macro-type argument, as described in Section
5.5.11.

statement is the statement to be executed if the condition
is met.

For example:

AIF DF,FOO,BEQ ALPHA

This statement generates the code:

BEQ ALPHA
if che symbol FOO is defined,

A label must not be placed in the label field of the .IIF statement.
Any necessary labels may be placed on the previous line, as in the
following example:

LABEL?
«lIF DF,FPP BEQ ALPMA

or included as part of the conditional statement:

I1IF DF,FOO LABELS BED ALPHA

5.5.11.3 PAL-11lR and PAL~1lS Conditional Assembly Directives - In
order to maintain compatibility with programs developed under PAL-11R
and PAL-115, the following conditionals remain permissible under
MACRO. It is advisable that future programs be developed using the
format for MACRO conditional assembly directives.,

Directive Argunents Assemble Block if

«IFZ or .IFEQ expression expression=0

+IFNZ or.,IFNE expression expressions0

.IFL or ,IFLT expression expression<0

«IFG or ,IFGT expression expression)>0

«IFGE expression expression=>0

«IFLE expression expression<=0

«IFDF logical expression expression is true(defined)

« IFNDF logical expression expression is false (undefined)

The rules governing the usage of these directives are now the same as
for the MACRO conditional assembly directives previously described.
Conditional assembly blocks must end with the .ENDC directive and are
limited to a nesting depth of 16(10) levels (instead of the 127(10)
levels allowed under PAL-11lR).

5-59



MACRO Assembler

5.6 MACRO DIRECTIVES

5.6.1 Macro Definition

It is often convenient in assembly language programming to generate a
recurring coding sequence with a single statement, In order to do
this, the desired coding sequence 1is first defined with dummy
arguments as a macro. Once a macro has been defined, a single
statement calling the macro by name with a 1list of real arguments
(replacing the corresponding dummy arguments in the definition)
generates the correct sequence or expansion.

5.6.1.1 L.MACRO - The first statement of a macro definition must be a
.MACRO directive (not available in ASEMBL). The ,MACRO directive is of
the form:

«MACRO name, dummy argument list
where:

name is the name of the macro. This name is any legal
symbol. The name chosen may be used as a label
elsewhere in the program,

represents any legal separator (generally a comma
or space).

dummy zero, one, or more legal symbols which may appear
argument anywhere in the body of the macro definition,
list even as a label. These symbols can be used

elsewhere in the user program with no conflicts of
definition, Where more than one dqummy argument is
used, they are separated by any legal separator
(generally a comma).

A comment may follow the dummy argument list in a statement containing
a +MACRO directive, For example:

«MACRO ABS A,B JOEFINE MACRO ABS WITH TWO ARGUMENTS
A label must not appear on a .MACRO statement., Labels are sometimes

used on macro calls, but serve no function when attached to .,MACRO
statements.

5.6.1.2 LENDM - The final statement of every macro definition must
be an .ENDM directive (not available in ASEMBL) of the form:

+ENDM name

where name is an optional argument and is the name of the macro being
terminated by the statement.,

For example:

5-60



MACRO Assembler

.ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)
If specified, the symbolic name in the ,ENDM statement must correspond
to that in the matching .MACRO statement. Otherwise the statement is
flagged and processing continues. Specification of the macro name in
the LENDM statement permits the assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain
a label,

An example of a macro definition is shown below:

«MACRQ TYPMSG MESSGE )TYPE A MESSAGE

JSR RS, TYPMSG
+WORD MESSGE
»ENDM

5.6.1.3 LMEXIT - In order to implement alternate exit points from a
macro (particularly nested macros), the .MEXIT directive is provided.
«MEXIT (not available in ASEMBL) terminates the current macro as
though an LENDM directive were encountered. Use of ,MEXIT bypasses
the complications of conditional nesting and alternate paths. For
example:

«MACRO ALTR  N,A,B
.

.

JIF EQ,N  JSTART CONDITIONAL BLOCK

L]

[
JMEXTT JEXIT FROM MACRO DURING CONDITIONAL

1BLOCK

JENDC JEND CONDITIONAL BLOCK

.

.
<ENOM INORMAL END OF MACRD

In an assembly where N=0, the .MEXIT directive terminates the macro
expansion.

Where macros are nested, a .MEXIT causes an exit to the next higher
level, A MEXIT encountered outside a macro definition is flagged as
an error.

5.6.1.4 Macro Definition Formatting - A form feed character used as
a line terminator in a macro source statement (or as the only
character on a line), causes a page eject when the source program is
listed. Used within a macro definition, a form feed character also
causes a page eject. A page eject is not performed, however, when the
macro is invoked.

5-61



MACRO Assembler

Used within a macro definition, the .PAGE directive is ignored, but a
page eject is performed at invocation of that macro.

5.6.2 Macro Calls

A macro must be defined prior to its first reference. Macro calls are
of the general form:

label: name, real arguments
where: label represents an optional statement label.
name represents the name of the macro specified in the

.MACRO directive preceding the macro definition.

’ represents any legal separator (comma, space, Or
tab). No separator is necessary where there are no
real arguments. (Refer to Section 5.2,1.1l.)

real arguments
are those symbols, expressions, and values which
replace the dummy arguments in the .MACRO
statement. Where more than one argument is used,
they are separated by any legal separator.

Where a macro name is the same as a user label, the appearance of the
symbol in the operation field designates a macro call, and the
occurrence of the symbol in the operand field designates a label
reference. For example:

ABS1I MOV #RO,RY JABS IS USED AS A LABEL
L]
.
BR ABS JABS IS CONSIDERED A LABEL
[
[
ABS F4,ENT,LAR JCALL MACRO WITH 3 ARGUMENTS

Arguments to the macro call are treated as character strings whose
usage is determined by the macro definition.

5.6.3 Arguments to Macro Calls and Definitions

Arguments within a macro definition or macro call are separated from
other arguments by any of the separating characters described in
Section 5.2.1.1. For example:

+MACRO REN A,B,C JMACRO DEFINITION

REN ALPHA,BETA,«Cy,C2> IMACRO CALL



MACRO Assembler

Arguments which contain separating characters are enclosed in paired
angle brackets., An up-arrow construction is provided to allow angle
brackets to be passed as arguments.

For example:
REN <«<MQV XopY>, 844, WEV

This call would cause the entire statement:
MOV X,y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity wuntil their use in the
macro expansion,

The up-arrow construction could have been used in the above macro call
as follows:

REN T/MOV X, Y/, %44, WEY
which is equivalent to:
REN <MOV XoY>,844,NEV

Since spaces are ignored preceding an argument, they can be used to
increase legibility of bracketed constructions,

5.6.3.1 Macro Nesting - Macro nesting (nested macro calls), where the
expansion of one macro includes a call to another macro, causes one
set of angle brackets to be removed from an argument with each nesting
level, The depth of nesting allowed is dependent upon the amount of
memory space used by the program. To pass an argument containing
legal argument delimiters to nested macros, the argument should be
enclosed in one set of angle brackets for each level of nesting, as
shown below:

RowxQ
RimXy
Xs§Q

+MACRO LEVEL1 DUM1,DUM2
LEVELE2 DUM{
LEVELe DuUMg

+ENDM

+MACRO LEVELR DUMS3
DUM3

ADD #10,RD

MOV R@, (R1)+
+ENDM

A call to the LEVELl macro:
LEVELY «<«<MQV XyRg»>, ««CLR Rg»»

causes the following expansion:

5-63



MACRO Assembler

MOV X, R@E

ADD #¥10,R0
MOV RO, (R1)+
CLR RO

ADD #10,RD
mMov R@y(Ry)e

wWhere macro definitions are nested (that is, a macro definition is
entirely contained within the definition of another macro) the inner
definition is not defined as a callable macro until the outer macro
has been called and expanded. For example:

+MACRQO LV! A,8B
1 ]
.
JMACRO LV A
[ ]
[ ]
JENDM
<ENDM

The LV2 macro cannot be called by name until after the first call to
the LV1 macro. Likewise, any macro defined within the LV2 macro
definition cannot be referenced directly until LV2 has been called.

5.6.3.2 8pecial Characters - Arguments may include special characters
without enclosing the argument in a bracket construction if that
argument does not contain spaces, tabs, semicolons, or commas. Fer
example:

.MACRO PUSH ARG
MOV ARG, = (SP)
LENDM

PUSH Xe3(%e)
generates the following code:

MOV Xe3(%2),=(8P)

5.6.3.3 Numeric Arguments Passed as Symbols = When passing macro
arguments, a useful capability is to pass a symbol which can be
treated by the macro as a numeric string. An argument preceded by the
unary operator backslash (\) is treated as a number in the current
radix. (\ is not available in ASEMBL,) The ASCII characters
representing the number are inserted in the macro expansion; their
function is defined in context (see Section 5.6.3.6 for an explanation
of single-quote usage). For example:

5-64



MACRO Assembler

+MACRO CONT A,B
A’B13 +WORD
«ENDM
Cs0
+MACRO INC A,B
CNT Ay \B
BaBey
«ENDM
[ ]
L[]

INC x,C

The macro call would expand to:

xXas «WORD
A subsequent identical call to the same macro would generate:
X1t «WORD

and so on for later calls. The two macros are necessary because the
dummy value of B cannot be wupdated in the CNT macro. In the CNT
macro, the number passed is treated as a string argument. (Where the
value of the real argument is 0, a single 0 character is passed to the
macro expansion.)

The number being passed can also be used to make source listings
somewhat clearer. For example, versions of programs created through
conditional assembly of a single source can identify themselves as
follows:

«MACRQO IQT §YM JASSUME THAT THE SYMBOL ID TAKES
+IDENT /8YM/ FON A UNIQUE 2 DIGIT VALUE FOR
«ENDM 107 JEACH POSSIBLE CONDITIONAL

JASSEMBLY OF THE PROGRAM

+MACRO OUY ARG
107 Q0SATARG

L]

.

. .
our \ID JWHERE 0@5A IS THE UPDATE VERSION

JOF THE PROGRAM AND ARG INDICATES
JTYHE CONDITIONAL ASSEMBLY VERSION

The above macro call expands to:
« IDENT /005AXX/
where XX is the conditional value of ID,

Two macros are necessary since the text delimiting characters in the
«IDENT statement would inhibit the concatenation of a dummy argument.

5-65



MACRO Assembler

5.6.3.4 Number of Arguments - If more arguments appear in the macro
call than in the macro definition, the excess arguments are ignored.
If fewer arguments appear in the macro call than in the definition,
missing arguments are assumed to be null (consist of no characters).
The conditional directives .IF B and ,IF NB can be used within the
macro to detect null arguments.

A macro can be defined with no arguments.

5.6.3.5 Automatically Created Symbols Within User-Defined Macros -

MACRO can be made to c¢reate symbols of the form n$ where n is a
decimal integer number such that 64<=n<=127. Created symbols are al-

ways local symbols between 64$ and 127$. Such local symbols are crea-

ted by the assembler in numerical order, i.e.:

643
65$

1268
1278

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must otherwise be explicitly stated
as an argument with each macro call or the same 1label 1is generated
with each expansion (resulting in a multiply-defined label), Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label.

The range of these local symbols extends between two explicit labels.
Each new explicit 1label causes a new local symbol block to be
initialized.

The macro processor creates a local symbol on each call of a macro

whose definition contains a dummy argument preceded by the ?
character. For example:

«MACRO ALPHA A, 78

TSTY A

BEQ B

ADD #5,4A
-]

«ENDM

Local symbols are generated only where the real argument of the macro
call is either null or missing., If a real argument is sgspecified in
the macro call, the generation of a 1local symbol is inhibited and
normal replacement is performed. Consider the following expansions of
the macro ALPHA above,

January 1976 5-66



MACRO Assembler

Generate a local symbol for missing argument:

ALPHA L}’
TSY L3}
BE® 648
ADD #5,%4

LR R
Do not generate a local symbol:
ALPHA Xe,XYZ

TSY Xxe
BEQ Xy2
ADD #5,%2

XYZs

These assembler—-generated symbols are restricted to the first sixteen
(decimal) arguments of a macro definition.

5.6.3.6 Concatenation - The apostrophe or single quote character (')
operates as a legal separating character in macro definitions. An '
character which precedes and/or follows a dummy argument in a macro
definition is removed, and the substitution of the real argument
occurs at that point. For example:

+MACRO DEF A,B8,C
AfB; WASCIZ /C/

+ WORD reA*r’R

+ENDHM

When this macro is called:

CEF X,Y,<MACRO-11’
it expands as follows: .
XYt «ASCIZ /MACRO=11/

+HORD rxry

In the macro definition, the scan terminates upon f£inding the first °
character, Since A is a dummy argument, the ' is removed. The scan
resumes with B, notes B as another dummy argument and concatenates the
two dummy arguments. The third dummy argument is noted as going into
the operand of the .ASCIZ directive., On the next line (this example
is for purely illustrative purposes) the argument to .WORD is seen as
follows: The scan begins with a ' character. Since it 1is neither
preceded nor followed by a dummy argument, the ' character remains in
the macro definition. The scan then encounters the second ' character
which 1is followed by a dummy argument and is discarded. The scan of
the argument A terminates upon encountering the second ' which is also
discarded since it follows a dummy argument. The next ' character is
neither preceded nor followed by a dummy argument and remains in the
macro expansion, The last ' character is followed by another dummy
argument and is discarded., (Note that the £five ' characters were
necessary to generate two ' characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can be used,
with one quote removed at each level of macro nesting.

5-67



MACRO Assembler

5.6.4 JNARG, .NCHR, and .NTYPE

These three directives allow the wuser to obtain the number of
arguments in a macro call (.NARG), the number of characters in an
argument (.NCHR), or the addressing mode of an argument (.NTYPE),
(They are not available in ASEMBL.) Use of these directives permits
selective modifications of a macro depending upon the nature of the
arguinents passed,

The .NARG directive enables the macro being expanded to determine the
number of arguments supplied in the macro call and is of the form:

label: -NARG symbol
where: label is an optional statement label

symbol is any legal symbol which is equated to the number
of arguments in the macro call currently being
expanded. The symbol can be used by itself or in
expressions.

This directive can occur only within a macro definition. An example
of the use of .NARG follows.

.MACRO ARGS Al A2, A3,4Ad

NARG  NUM

IIF Eo NUM-l IIF ‘2' ‘3, Ad WERE
INOT SPECIFIED

+WORD Al

+IFF JIF ALL ARGS WERE GIVEN
+WORD Al

JASCII /AE/

JWORD A3

JASCII /44y

LENDC

+ENDM

ARGS ALPHA

JWORD ALPHA generated
ARGS ALPHA,RETA,GAMMA,DELTA

+WORD ALPHA

JASCII /BETay generated

+WORD GAMMA
«ASCII /DELTA/

The NCHR directive enables a program to determine the number of
characters in a character string, and is of the form:

label: «NCHR symbol, <{character string)
where: label is an optional statement label
symbol is any legal symbol which is equated to the number
of characters 1in the specified character string.

The symbol is separated from the character string
argument by any legal separator.

5-68



MACRO Assembler

{character string>
is a string of printing characters which should
only be enclosed in angle brackets if it contains
a legal separator, A semicolon also terminates
the character string.

This directive can occur anywhere in a MACRO program. For example:

«MACRD CHARS A
+NCHR NUM, A

WABSCII A/

«IF EQ NUM&t JIF THE STRING CONTAINS
1AN EVEN NUMBER OF
JCHARACTERS

+WORD -l

«LFF PIF STRING LENGTH IS 0ODD

BYTE LT

«ENDC

<ENDM

For example, using the above definition, the code:
CHARS ALPHA
expands to:

+ASCII /ALPHA/
+BYTE -2

and
CHARS BETA

expands to:

«ASCII /BETA/
.WORD -]

The .NTYPE directive enables the macro being expanded to determine the
addressing mode and register of any argument, and is of the form:

label: «NTYPE symbol, arg
where: label is an optional statement label
symbol is any legal symbol, the low order 6-bits of which
is equated to the 6-bit addressing mode of the
argument, The symbol 1is separated from the
argument by a legal separator. This symbol can be
used by itself or in expressions.

arg is any legal macro argument (dummy argument) as
defined in Section 5.6,3,

This directive can occur only within a macro definition. An example
of .NTYPE usage in a macro definition is shown below:

5-69



MACRO Assembler

«MACRQ SAVE ARG
+NTYPE SYM, ARG

«1F EW,S5YMe70
Mov ARG, TEMP
J1FF

MOV #ARG, TEMP
JENDC

«ENDM

Using this definition, the code:
SAVE R

expands to:
MOV wRe, TEMP

and
SAVE ALPHA

expands to:

MOV ¥ALPHA, TEMP

5.6.5 JERROR and .PRINT

JREGISTER MQDE

INON=REGISTER MODE

The .ERROR directive (not available in ASEMBL) is
messages to the listing file during assembly pass 2. A common use is

to provide diagnostic announcements of a rejected or
call. The form of the .ERROR directive is as follows:

label: +ERROR exprjtext

where: label

expr is an opt:ional legal expression whose
the 1listing file when the
directive is encountered., Where
the text only is output to the listing

output to

specified,
file,

-.

output.

text is the string to be output to the
string is terminated by

The text
terminator.

Upon encountering a .ERROR directive anywhere in a MACRO program,

is an optional statement label

denotes the beginning of the text

assembler outputs a single line containing:

1, the sequence number of the .ERROR directive line,

2, the current value of the location counter,

3, the value of the expression if one is specified, and,

5-70

erroneous

used to output

macrao

value is
« ERROR

not

string to Dbe

listing file.

line

the



MACRO Assembler

4. the text string specified.
For example, assume the following error macro occurs:

«MACRQ STORE SRC,DEST

«NTYPE A,DEST

oIF EQ,<A&7>»=6 JIF STaCK POINTER USED

JERROR AJUNACCEPTABLE MACRO ARGUMENT
«IFF

MOV SRC,DEST

JENDC

JENDM

STORE R3,04(SP)

and the following line is output:
kwkkew P
20002 wowpeve «ERROR AJUNACCEPTABLE MACRO ARGUMENT

This message is used to indicate an inability of the subject macro to
cope with the argument DEST which is detected as being indexed
deferred addressing mode (mode 70) with the stack pointer (%6) used as
the index register. The line is flagged on the assembly listing with
a P error code.

The JPRINT directive is identical to .ERROR except that it is not
flagged with a P error code. (.PRINT is not available in ASEMBL,)

5.6.6 Indefinite Repeat Block: .IRP and .IRPC

An indefinite repeat block (not available in ASEMBL) is a structure
very similaxr to a macro definition. An indefinite repeat is
essentially a macro definition which has only one dummy argument and
is expanded once for every real arqgument supplied. An indefinite
repeat block is coded in-line with its expansion rather than being
referenced by name as a macro is referenced. An indefinite repeat
block is of the form:

label: +IRP arg,<real argunments )

L]
(range of the indefinite repeat)

+« ENDM

where: label is an optional statement label. A label may not
appear on any .IRP statement within another macro
definition, repeat range or indefinite repeat
range, or on any .ENDM statement.

arg is a dummy argument which is successively replaced
with the real arguments in the .IRP statement.



MACRO Assembler

{real arguments>
is a list of arguments to be used in the expansion
of the indefinite repeat range and enclosed in
angle brackets, Each real argument is a string of
zZero or more characters or a list of real
arguments (enclosed in angle brackets). The real
arguments are separated by commas.

range is the code to be repeated once for each real
argument in the list. The range may contain macro
definitions, repeat blocks, or other indefinite
repeat blocks. Note that only created symbols
should be used as labels within an indefinite
repeat range.

An indefinite repeat block can occur either within or outside macro
definitions, repeat ranges, or indefinite repeat ranges. The rules
for creating an indefinite repeat block are the same as for the
creation of a macro definition (for example, the .MEXIT statement is
allowed in an indefinite repeat block). Indefinite repeat arguments
follow the same rules as macro arguments. A second type of indefinite
repeat block is available which handles character substitution rather
than argument substitution. The .IRPC directive is used as follows:

label: .IRPC arg,string

(range of indefinite repeat)

» ENDM
On each iteration of the indefinite repeat range, the dummy argument
(arg) assumes the value of each successive character in the string.
Terminators for the string are: space, comma, tab, carriage return,
line feed, and semicolon.

Figure 5-6 is an example of .IRP and ,IRPC usage.

IRRTST RT=1{ MACRD VMD2=09 11104149 PAGE |

1

e

3

[}

5

6 ,TITLE IRPTST

7 oLIST MD, MC, ME

8 ©vwavaoe RO#%0

9 QvRauue eiz700 MOV #TABLE. RO
oegeser

5-72



MACRO Assembler

10 o IRP X)«A,B,C,D,E,F>
i1
12 Moy X, (RO)*
15 «ENDM
VORY4 N16T20 MOV Ay (RO)+
eRee32
20012 Q216720 MoV B,(RO)e
20030
V014 R1672D MOV Cr(RR)+
eegeee
00p2¢ Ble720 MOV Ds(RO)*
vegned
A0R24 VieTRD MOV Ey(RO)
pove2e
d2u3Y 216720 MOV Fy(RO)+
00R020
14 «IRPC X,ABCDEF
15 WASCII /Xy
16 «ENDM
00034 101 WASCII /av
oe3s 102 WASCII /B/
Bov3e 103 JASCII  /C/
oop37? 104 +JASCII /D/
a0pup 108 JASCLI /E/
YN 106 JASCII  /F/
17
18 02042 pu11ay A « WORD "AB
19 Y0044 QU1Sp2 B! +WORD "ge
20 v004e 42103 C1 o WORD "eo
21 20050 e425e4 D3 «WORD "DE
22 00052 043105 E3 +WORD "EF
23 000S4 v43ISpe Fi « WORD "FG
24 vOBSe TABLES ,BLKW 6
25 wopeRL "’ »END
Figure 5=6

.IRP and .IRPC Example

5.6.7 Repeat Block: LREPT

Occasionally it is useful to duplicate a block of code a number of
times in 1line with other source code., (.REPT is not available in
ASEMBL.) This is performed by creating a repeat block of the form:

label: «REPT expr

(range of repeat block)

3

5-73



MACRO Assembler

- ENDM ;OR .ENDR

where: label is an optional statement 1label. The LENDR or
.ENDM directive may not have a label., A REPT
statement occurring within another repeat block,
indefinite repeat block, or macro definition may
not have a label associated with it.

expr is any legal expression controlling the number of
times the block of code is assembled., Where
expr<0, the range of the repeat block is not
assembled.

range is the code to be repeated expr number of times.
The range may contain macro definitions,
indefinite repeat blocks, or other repeat blocks,
Note that no statements within a repeat range can
have a label.

The last statement in a repeat block can be an LENDM or (ENDR
statement, The .ENDR statement is provided for compatibility with
previous assemblers.

The .MEXIT statement is also legal within the range of a repeat block.

5.6.8 Macro Libraries: .MCALL

All macro definitions must occur prior to their referencing within the
user program. MACRO provides a selection mechanism for the programmer
to indicate in advance those system macro definitions required by his
program,

The . MCALL directive is used to specify the names of all system macro
definitions not defined in the current program but required by the
program (not available in ASEMBL). The .MCALL directive must appear
before the first occurrence of a macro call for an externally defined
macro., ‘The MCALL directive is of the form:

«MCALL argl,arg2,eee

where argl,arg2, etc. are the names of the macro definitions required
in the current program,

when this directive is encountered, MACRO searches the system library
file, SYSMAC.SML, to find the requested definition(s). MACRO searches
for SYSMAC.SML on the system device (SY:).

See Appendix D for a listing of the system macro file SYSMAC, SML)
stored on the system device.

5.7 CALLING AND USING MACRO

The MACRO Assembler assembles one or more ASCII source files
containing MACRO statements into a single relocatable binary object
file., Assembler output consists of this binary object file and an

January 1976 5-74



MACRO Assembler

optional assembly listing followed by the symbol table listing., CREF
(Cross Reference) listings may also be specified as part of the
assembly output by means of switch options,

MACRO is executed using the RT-11 Monitor R command as follows:

«R MACRO
The assembler responds by typing an asterisk (*) to indicate readiness
to accept command string input. In response to the * printed by the
assembler, the user types the output file specification(s), followed
by an equal sign or left angle bracket, followed by the input file
specification(s) in a command line as follows:

*dev:obj,dev:list/s:arg=dev:sourcel,..,dev:sourcen/s:arg

where: dev: is any legal RT-11 device for output;
must be file-structured for input
obj is the binary object file
list is the assembly listing file containing
the assembly listing and symbol table
sourcel, are the ASCII source files containing
.« gSOUrcen the macro source program(s); a maximum
of six source files is allowed
/s:arg represents a switch and argument as

explained in Section 5.7.1

A null specification in either of the output file fields signifies
that the associated output file is not desired.

-One or more switches can be indicated with the appropriate file
specification to provide MACRO with information about that file.

The default case for each file specification is noted below:

file device filename extension
object DK: - .OBJ
listing device used - «LST
for object
output
sourcel DK: - «MAC
source2 device used - +MAC
. for last source
. file specified
sourcen
system system device SYSMAC «SML
macro SY:
file

Type CTRL C to halt MACRO at any time and return control to the
monitor., To restart the assembler type R MACRO or the REENTER command
in response to the monitor's dot.

5-75 January 1976



MACRO Assembler

NOTE

If tC was typed while a CREF listing was
being produced, the REENTER command may
not be accepted. In this case, type R
MACRO to restart the assembler.

5.7.1 Switches

There are three types of switch options: listing control switches,
function switches, and CREF specification switches. The listing
control switches (/L,/N) provide capabilities similar to those
described in detail in section 5.5.1.1. The function control switches
(/D,/E) provide function control as described in Section 5.5.2;
arguments for these switches are summarized in Section 5,7.1l.2. CREF
control switches allow the user to obtain a detailed cross-referenced
listing of his assembled file, and are described in detail in Section
5.7.1.3, Multiple arguments may be specified for a particular switch,
if desired, by separating each switch value from the next by a colon.
For example:

/N:TTM:CND

These switches turn off teleprinter mode and suppress printing of
unsatisfied conditionals (as described in the next section). Also, the
switches are not restricted to appearing near a particular file in the
command string; /N:TTM, for example, is legal in all of the following
places:

* ,LP:/N:TTM=source
* ,LP:=source/N:TTM
* /N:TTM,LP:=source

and they are all equivalent in function.

5.7.1.1 Listing Control Switches - A listing control switch (/L for
list or /N for nolist) is indicated in a command line as follows:

*dev:obj.ext,dev:1list,.ext/s:arg=dev:source,ext

where s:arg represents /L or /N; the remainder of the command line
abbreviations are as described in Section 5.7.

The /N switch with no argument causes only the symbol table, table of
contents and error listings to be produced. The /L switch with no
arguments causes .LIST and .NLIST directives that appear in the source
program but have no arguments to be ignored. A summary of the argu-
ments which are valid for the listing control switches follows (refer
to Section 5.5.1.1 for details):

Argument Default Controls listing of
SEQ list Source line sequence numbers
LOC list Location counter
BIN list Generated binary code
BEX list Binary extensions

January 1976 5-76



MACRO Assembler

SRC list Source code

COM list Comments

MD list Macro definitions, repeat
range expansions

MC list Macro calls, repeat range expansions

ME nolist Macro expansions

MEB nolist Macro expansion binary code

CND list Unsatisfied conditionals, .IF and
.ENDC statements

LD nolist Listing directives with no arguments

TOC list Table of Contents

TTM terminal mode Listing output format

SYM list Symbol table

For exa@ple, a command line in the following format allows binary code
go be listed throughout the assembly using the 132-column line printer
ormat:

*,LP:/L:MEB/N:TTM=FILE

5.7.1.2 Function Switches = The function control switches (/D for
disable and /E for enable) are used to enable or disable certain
functions in source input files and are indicated in the command line
as follows:

*dev:obj.ext,dev:list,.ext=dev:isource/s:arg
/s:arg here represents either /D:arg or /E:arg. A summary of the

arguments which are valid for use with the function control switches
follows (refer to Section 5.5.2 for details):

Argument Default Enables or disables

ABS disable Absolute binary output

AMA disable Assembly of all absolute addresses
as relative addresses

CDR disable Source columns 73 and greater to be
treated as comments

FPT disable Floating point truncation

LC disable Accepts lower case ASCII input

LSB disable Local symbol block

PNC enable Binary output

For example, the following commands assemble a file allowing all 80
columns of each card to be used as input (note that since MACRO is a
two-pass assembler, the cards cannot be read directly from the card
reader; input from any nonfile-structured device must first be trans-
ferred to a file-structured device before assembly):

Use of either the function control or 1listing control switches and
arguments at assembly-time will override any corresponding listing or
function control directives and arguments in the source program. For
example, assume the following appears in the source program:

+NLIST MEB

N MACRO References

+LIST MEB
5-77 January 1976




MACRO Assembler

The "MFB" printing will be disabled for the block indicated; however,
if /L:MEB is indicated in the assembly command line, both the ,NLIST
MEB and the .LIST MEB will be ignored and the "MEB" printing will be
enabled everywhere in the program,

5.7.1.3 Cross Reference Table Generation (CREF) - A cross reference
table of all or a subset of all symbols used in the source program and
the statements where they were defined or wused can be obtained
automatically following an assembly by specifying /C:arg with the
assembly listing file specification (and any 1listing or function
control specifications) as follows:

*dev:obj.ext,dev:list,.ext/s:arg/Csarg=devssource.ext

/s:arq represents /L:arg, /N:arg, /E:arg, or /D:arg. (If the listing
device is magtape or cassette, and a CREF listing is desired, the
handler must first be loaded, using the monitor LOAD command.)

There are six sections to a complete cross reference listing:

l. Cross reference of program symbols (i.e., labels used in the
program and symbols used on the left of the "=" operator),

2. Cross reference of register-equate symbols (those symbols
which are defined in the program by a "SYMBOL=%N", 0<{=N<{=7,
construct., (Normally this consists of the symbols RO, R,
R2, R3, R4, R5, SP, and PC,)

3. Cross reference of MACRO symbols (names of macros as defined
by a +MACRO directive, or as specified in a (MCALL
directive).

4. Cross reference of permanent symbols (all operation mnemonics
and assembler directives).

5. Cross reference of control sections (those names specified as
the operand of a .CSECT directive, plus the blank .CSECT and
the absolute section ". ABS." which are always defined by
MACRO) ,

6. Cross reference of errors (all errors flagged on the 1listing
are grouped by error type).

Any or all of the above sections may be included in the cross
reference listing as desired. The associated switch options and their
arguments are listed below:

Switch

Argument Section Type

/C:S User-defined symbols

/C:R Register symbols

/C:M Macro symbolic names

/Cs:P Permanent symbols
(instructions, directives)

/C:C Control sections (.CSECT
symbolic names)

/C:E Error codes

/C<no arg?> Equivalent to /C:S:M:E

January 1976 5-78



MACRO Assembler

The specification of a /C switch in a command string causes a
temporary file, "DK:CREF.TMP", to be generated. If device DK: is
write-locked or contains insufficient free space for the temporary
file, the user may allocate the temporary file on another device. To
do so, a third output file specification is given in the MACRO command
string; this file is then used instead of DK:CREF,TMP, and is purged
after use., For example, a command string of this type:

*,LP:,RK2:TEMP, TMP=SOURCE/C
causes "RK2:TEMP,TMP" to be used as the temporary file.

Figure 5-7 illustrates assembled source code and Figure 5-8 contains
the CREF output. The command line used to produce these listings was:

*,ILP:/C:S:M:R:P:C:E/N:BEX=EXAMPL

An explanation of the CREF output follows the figures,

5-~79 January 1976



9pOD 90INOS OYOVH

/I =C DINHTI
o a4 TS ra

MACRO Assembler

lyvlis ON3° 10008V0 6%
et
¥344N8 3INIT LNdNI¢ *2L gy1e® ty¥344N8 25000 L§
39v¥04S ¥IMSNY INIA30Y MA18°% SuIMENY 970LR 9%
(11
Til=14 0L N¥Ni3H4 1Ix3° nvBRe ng
H3MSNV NI 380iS OnNVi d3MSNYV'D AOW i58212 @2yape ¢
‘¥ans ¥3IHML0 T1IvJ 38713¢ 2yuns 1Iv3 ngoeo g
L3S A¥¥VYD JI 3INIT M3IN Vv L139¢ Fe-1 %Y $J8 29.t0l 2%@00 1%
08JIVW 1IV3J INCANII 1¥ens 1YY 92000 0%
148NS Y04 (¥344n189)S¥0v = gy cy'3344nan AOW §0L210 22000 6e
O¥3Z MIIm 3INIT 40 GN3 9vIi4 387134 +(cy) a8 220501 0erud ge
INIQVIY d33% = A4UNI $1 ang elg 00 9106l L2
40334 3INIT v LI Swvm! FRERE Y HdWd L2v0u21 21280 9¢
¥344N8 NI 34018 ONVY +(24) ‘ou gA0W 22uDil viove g
@3 OANI MVHI v Qv3al NIALL® 1S hUBVE ne
(¥4344n9)sydy = 2u¢ 2y'y3ddnen AOW 1LMVLIS 200210 Q0002 £
12383 v 3INId43Q¢ 90¥a 12383° J0D20YR ee
14
SANILNONENS TYNN¥3ILXT OMLY c¥gnNs  ‘1yans  g019° e
61
WONZ® gl
IWVYN’Id ast i
O8IVW ¥3SN v 3NI430¢ IWVN 1Iv0 QHIVHS 91
St
LIX3® 'NIALL® TIVIW° aw
g
0334 3INIT 804 0GWASH 21e 347 210000 el
11
L% a1)d (VvBLD 21
9% 3dS 9Qv0LY 6
S% sGy SPUREO g
% =y OVBLe L
£% 2§y §UVPLO 9
2% =2y 20vbue S
1% sla 100000 o
SI08WAS H3LSI93u 3IHL 3NI43IAL 2% s0y Q0VAV0 £
é
ONILSIT FONIYISIH=~SS0¥I 40 3INgwWwvx3a 3ILIL° i

1 39vd 66111:22 hi=d3SeS

60=20WA CHIVW 11=L¥ L1SIT IININIA3Y“SS0¥I 30 3VdWVX3I

5-80



MACRO Assembler

and3anQo BUuT3ISTT JMUD
8~-G oanbtg

2s=i
=1
68=1 Te=1
9¢é=1
#i8=1 6c=1
#9¢=1

#od=1 eydns
ge=1 1dgns
#ee=1 1HVYLS
#elel 47

§2=1 Hd444Ny
*ifel HIMENY
ne=1i ¢

( Cu=tun 4383) 34VLI AInINF438 SSUBI
t=8 39vd 6511222 hi=d3iS=§ 60=CWWA UNIVW bi=1l8 LSIT IINA¥IJIH=-SS08T Ju FVdWV X3

9poD 90INOS OYOUW
(*3uc)) L-S °2xnbta

TdWYX3sXA8IN/32I3d188WESTY/ 2d!

SOy0M 89291 13303 3I3¥4

cop

100

vee
9 xxxxx¥» 3 2NHNS
4" H00Redp LY¥ViS 9ydpevY= ds
roveduLa ne SVBVULXe 1 X
TodoRoxs Ty dvbubuxs By

ciduee = 471 2wl Y0506 H344NE 200

@ 203103130 sy0x¥3
29T000 90ud
260200
Qvobly “sev *

9 xxuxuy 3 JNENS
SUB0BYXs Sy
200000 %s 2y
LupoouXs ad

¥9n008U N¥IMBNY

378vL T0HWAS

+1 39vd 6S5:11:22 hl=d3s=5 60=20WA QuIVW 1T=ld L1817 FONIY3II38=SS03T 40 3INdWVX3

5-81



MACRO Assembler

andang Pur3lsTI ATID
(*3u0D) g-§ =anbrd

T=wW 39Vd 6S:T1ie¢ nmi=ddiS=S

T=¥ 39Vd 65:11:22 ti=d3§=S

=1 2e=1
heé=1
ve=1|

#9lel
Bpi=i
#yl=1

Tvd
NIALL®
LIX3®

( 24=1aA 4343) 374vi JINIFyF438 $SUND
60=2BKA OHIVW bI=Ld 1SIT FONIH4448=88040 du 371dWVX3

¥ee=1

*ge=1 xyd=1 *ed=i
gg=i 9e=1 Ge~i
¥e=1 »e=1

H R R R
e oo
[

— vt w e et

an=1
LIRS
4gl=1

d$
Sy
Va
1Y}
2d
Ty
2L ]
Jd

( dU=10A 4382) 3dvL 4INIHId38 SSUHID
6B=20WA QHIVA bi=Lly LSIT 3IINIFEIAFY=S60¥D 4U 3I7dwWvX3

5-82



MACRO Assembler

andanQ bur3lsTT JTID
(*3uoD) g-g =anbra

1= 39vd 6S:11:¢2 hiL=d38-S

T=d 39Yd 65311822 Pi=d3§=§

JUNd

‘sav °

( Cu=TUA 4303) 3N8VL 3IN3A3434 SS0MD
6U=CcBWA U¥IVW tl=ld LISIT JUNI¥IIIH=$50840 40 3INdWvX3

£s-1i 6c=1
eg=1
he=1

s@-1
gd=1
weE=1
=1
9e=1
A
Lé=1
we=1

i=1
ti=1
Gle|
te=1
pe=1
6e=1
¢e=1
95 =1
LE=1

HAOW
AOKW
¥Sr
iwW3

9dWd

44713
aNg
$J%

I1LIL®
TIVIN®
QaJvi®
a1’
18019°
an3*
13382°
myig*
w18’

( 20=-i0A 43¥3) 378v1 3ONFuI434 SSUHD
60=20WA 0¥3VW El=Lld 1817 JINIHIFFE=SS08I 40 Adwvx3

5~83



MACRO Assembler

Cross reference tables, if requested, are generated at the end of a
MACRO assembly 1listing. Each table begins on a new page (the tables
in Figure 5-8 have been consolidated due to space considerations),.
Symbols, control sections, and error codes are listed at the left
margin of the page; corresponding references are indicated next to
them across the page from left to right., A reference is of the form
p-1, where p is the page on which the symbol, control section, or
error code appears, and 1 is the line number within the page. A
number sign (#) appears next to a reference wherever a symbol has been
defined, An asterisk appears next to a reference wherever a
destructive reference has been made to the symbol (i.e., the contents
of the location defined by that symbol has been altered at that
point).

The CREF output requested in the preceding figures included user
defined symbols, macro symbolic names, control sections, error codes,
register symbols, and permanent symbols. Since no errors were
generated in this assembly, no CREF output for error codes was
produced.

5.8 MACRO ERROR MESSAGES

MACRO error messages enclosed in question marks are output on the
terminal. The single-letter error codes are printed in the assembly
listing.

In. terminal mode these error codes are printed following a field of
six asterisk characters and on the line preceding the source line
containing the error., For example:

IITI TN
26 00236 000002' .WORD REL1+REL2

Error Code Meaning

A Addressing error. An address within the instruction is
incorrect. Also may indicate a relocation error. The
addition of two relocatable symbols is flagged as an A
error., May also indicate that a local symbol is being
defined more than 128 words from the beginning of a
local symbol block.

B Bounding error, Instructions or word data would be
assembled at an odd address in memory. The location
counter is updated by +1l.

D Multiply-defined symbol referenced. Reference was made
to a label (not a local label) that is defined more than
once.

E End directive not found. (A .END is generated.)

I Illegal character detected., 1Illegal characters which

are also non-printing are replaced by a ? on the
listing. The character is then ignored.

L Line buffer overflow, i.e., input line greater than 132

characters. Extra characters on a line are ignored in
terminal mode.

January 1976 5-84



MACRO Assembler

M Multiple definition of a label. A label was
encountered which was equivalent - (in the first six
characters) to a previously encountered label.

N Number containing 8 or 9 has decimal point missing.

(o] Opcode error, Directive out of context.

P Phase error. A label's definition or value varies from
one pass to another or a local symbol occurred twice
within a local symbol block.

Q Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a line feed or
form feed.

R Register—-type error, An invalid use of or reference to
a register has been made.

T Truncation error. A number generated more than 16 bits
of significance or an expression generated more than 8
bits of significance during the use of the .BYTE
directive,

4] Undefined symbol. An undefined symbol was encountered
during the evaluation of an expression. Relative to
the expression, the undefined symbol is assigned a
value of zero.

2 Instruction which is not compatible among all members
of the PDP-11 family.

Error Message Explanation

?BAD SWITCH?

The switch specified was not
recognized by the program.

?INSUFFICIENT CORE? There are too many symbols in the
program  being assembled. Try
dividing program into

separately-assembled subprograms.

?2I/0 ERROR ON CHANNEL n? A hardware error occurred while

attempting to read from or write to
the device on the channel specified
in the message. (Channel numbers
(0<{=n<=10 octal) are assigned to
files in the manner described in
Section 9.4.7, Chapter 9.)

Note that the CREF temporary file
is on channel 2 even if it was not
specified in the command string
(i.e., if the default file
DK:CREF,.TMP is used),

5-85 January 1976



MACRO Assembler

?NO INPUT FILE?

?0UTPUT DEVICE FULL?

TOO MANY OUTPUT FILES

No input file was specified and
there must be at least one input
file.

No room to continue writing output.
Try to compress device with PIP.

Too many output files were speci-
fied.

All CREF error messages begin with C- to distinguish them from MACRO
error messages. When a CREF error occurs, the error message is prin-
ted on the console terminal and CREF chains back to MACRO; MACRO
prints an asterisk, at which time another command line may be entered.

Error Message

?C-CHAIN-ONLY-CUSP?

?C-CRF FILE ERROR?

?C-DEVICE?

?C-LST FILE ERROR?

January 1976

Explanation

An attempt was made either to "R
CREF" or to "START" a copy of CREF
which was in memory. CREF can only
be "chained" to.

An output error occurred while
accessing "DK:CREF.TMP", the tem-
porary file passed to CREF.

An invalid device was specified to
CREF.

An output error occurred while
attempting to write the cross-
reference table to the listing file.



CHAPTER 6

LINKER

6.1 INTRODUCTION

The RT-11 Linker converts object modules produced by either one of the
RT-11 assemblers or FORTRAN IV into a format suitable for loading and
execution. This allows the user to separately assemble a main program
and each of its subroutines without assigning an absolute load address
at assembly time. The object modules of the main program and
subroutines are processed by the Linker to:

1. Relocate each object module and assign absolute addresses

2., Link the modules by correlating global symbols defined in one
module and referenced in another module

3. Create the initial control block for the linked program

4, Create an overlay structure if specified and include the
necessary run-time overlay handlers and tables

5. Search user specified libraries to locate unresolved globals

6. Optionally produce a load map showing the layout of the load
module

The RT-11 Linker requires two or three passes over the input modules.
During the first pass it constructs the global symbol table, including
all control section names and global symbols in the input modules. If
library files are to be linked with input modules, an intermediate
pass is needed to force the modules resolved from the library file
into the root segment (that part of the program which is never
overlaid). During the final pass, the Linker reads the object modules,
performs most of the functions 1listed above, and produces a load
module (.LDA for use with the Absolute Loader, save image (.SAV) for a
Single-job system or for the background job of an F/B System, and
relocatable (.REL) format for the foreground iob of an F/B System).

The Linker runs in a minimal RT-11 system of 8K; any additional memory
is used to facilitate efficient linking and to extend the symbol table.
Input is accepted from any random-access device on the system; there
must be at least one random-access device (disk or DECtape) for save
image or relocatable format output.

6-1 January 1976



Linker

6.2 CALLING AND USING THE LINKER
To call the Linker, type the command:
R LINK

and the RETURN key in response to the Keyboard monitor's dot. The
Linker prints an asterisk and awaits a command string.

Type CTRL C to halt the Linker at any time and return control to the
monitor, To restart the Linker, type R LINK or the REENTER command in
response to the monitor's dot. The Linker outputs an extra line feed
character when it is restarted with REENTER or after an error in the
first command line. When the Linker is finished 1linking, control
returns to the CSI automatically. An extra line feed character
precedes the asterisk printed by the CSI.

6.2.1 Command String

The first command string entered in response to the Linker's asterisk
has the following format:

*dev:binout,devimapout=deviobjl,deviobj2,.../sl/82/83
where:

dev: is a random-access device for all files except
dev:mapout, which can be any legal output de-
vice. If dev: is not specified, DK is assumed.
If the output is to be LDA format (that is,
the /L switch was used), the output file need
not be on a random-access device.

binout is the name to be assigned to the Linker's
save 1mage, LDA format, or REL format output
file, This file 4is optional; if not
specified, no binary output is produced.
(save image is -the assumed output format
unless the /L or /R switches are used.)

mapout is the optional load map file,

objl,e.e are files of one or more object modules to be
input to the Linker (these may be library
files).

/sl/s2/s83 are switches as explained in Table 6-1 and

Section 6.8,
If the /C switch is given, subsequent command lines may be entered as:
*objm,objn,.../s8l/s2
The /C switch is necessary only if the command string will not fit on
one line or if the overlay structure is used. If an error occurs in a

continued command line (e.g., ?FILE NOT FND?), only the line in error
need be retyped.

January 1976 6-2



Linker

If an output file is not specified, the Linker assumes that the
associated output is not desired. For example, if the load module and
load map are not specified, only error messages (if any) are printed
by the Linker.

The default values for each specification ares

Device Filename Extension
Load Module DK: none SAV, REL(/R), LDA(/L)
Map Output Same as none MAP

load module
Object Module DK: or same none OBJ

as previous
object module

If a syntax error is made in a command string, an error message is
printed. A new command string can then be typed following the
asterisk.

If a nonexistent file is specified a fatal error occurs; control is
returned to the command string interpreter, an asterisk is printed and
a new command string may be entered,

6.2.2 Switches

The switches associated with the Linker are listed in Table 6-1l. The
letter representing each switch 1is always preceded by the slash
character. Switches must appear on the line indicated if the command
is continued on more than one line., They may be positioned anywhere
on the line. (A more detailed explanation of each switch is provided
in Section 6.8.)

Table 6-1
Linker Switches

Switch Command

Name Line Meaning
/A 1st Alphabetizes the entries in the load map.
/B:n 1st Bottom address of program is indicated as

n (illegal for foreground links).

/C any Continues input specification on another
command line. Used also with /O.

/F 1st Instructs the Linker to use the default
FORTRAN 1library, FORLIB.OBJ; note that
FORLIB does not have to be specified in
the command line.

/I 1st Includes the global symbols to be
searched from the library.

/L 1st Produces an output file in LDA format
(illegal for foreground links).

(Continued on next page)



Linker
Table 6-1 (Cont.)
Linker Switches

Switch Command

Name Line Meaning

/M or 1st Stack address is to be specified at the
/M:n terminal keyboard or via n,

/0:n any but Indicates that the program will be an

the 1st overlay structure; n specifies the
overlay region to which the module is
assigned.

/R 1st Produces output in REL format; only
files in REL format will run in the
foreground (REL format files may not be
run under a Single-Job system)

/S 1st Allows the maximum amount of space in
memory to be available for the Linker's
symbol table. (This switch should only
be wused when a particular link stream
causes a symbol table overflow.)

/T or 1st Transfer address is to be specified at
/Ts:n terminal keyboard or via n.

6.3 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS

A program produced by one of the RT-1l assemblers or FORTRAN IV can
consist of an absolute program section, declared by the .ASECT
assembler directive, and relocatable program sections declared by the
.CSECT assembler directive. A .CSECT directive is assumed at the
beginning of the source program. The instructions and data in
relocatable sections are normally assigned locations beginning at
1000 (octal) or 0 for a foreground link. The assignment of addresses
can be influenced by command string switches and the size of the
absolute section (.ASECT, if present)., Each control section 1is
assigned a memory address; the Linker then appropriately modifies all
instructions and/or data as necessary to account for the relocation of
the control sections.

NOTE

Foreground prcograms cannot use LASECTs
beyond 1000 (octal); as a general
practice, they should be avoided under a
Foreground/Background system,

The RT-11l Linker handles the absolute section as well as the named and
unnamed control sections. The unnamed control section is internal to
each object module. That is, every object module can have an unnamed
control section but the Linker treats each control section
independently. Each is assigned an absolute address such that it
occupies an exclusive area of memory. Named control sections, on the
other hand, are treated globally; if different object modules have
control sections with the same name, they are all assigned the same
absolute load address and the size of the area reserved for loading of
the section is the size of the largest. Thus, named control sections
allow for the sharing of data and/or instructions among object
modules, This is the same as the handling and function of COMMON in
FORTRAN IV. The names assigned to control sections are global and can
be referenced as any other global symbol.

6-4




Linker

NOTE

If relocatable code is to be linked for
the foreground, no location may be filled
more than once (using location counter
arithmetic); any such location may be
improperly relocated during the FRUN and
may cause program or system failure.

For example, the following code illustrates

a program using location counter arithmetic
that is illegal if linked for the foreground.
Note that the code at line 15 starts at 0 due
to location counter modification. To correct
this program for foreground linking, remove
all .=.~- instructions.

«MAIN, RTel} MACRO VMR2wi? PAGE 1§

1 paganR* JCSECT TEST

2 LGLOBL 4,B,C

3 .MCALL ..Va..'.REGDEF

4 aeeand eeVeaa

S ooonmR +»REGDEF

6 QoRone ARBNRAG JWORD A

Y 000202 Q16701 STARTE MOV As6,R|
Q0000606

8 oooons 060127 ADD R1, (PC)»

9 000010 ANAAQAG SWORD B

12 peoro2’ W30

11 000n2 0PONRAG SWORD Aed

12 poonp2’ aBowd

13 opone AneRR26 »WORD B+2

14 eepnon* L

15 00000 PANORALH JWORD C+6

16 poena’ +END START

6-4.1 January 1976




This page intentionally blank.



Linker

6.4 GLOBAL SYMBOLS

Global symbols provide the 1link, or communication, between object
modules. Global symbols are created with the (GLOBL assembler
directive (see Chapter 5). If the global symbol is defined in an
object module (as a label or by direct assignment), it is called an
entry symbol and other object modules can reference it. If the global
symbol is not defined in the object module, it is an external symbol
and is assumed to be defined (as an entry symbol) in some other object
module.

As the Linker reads the object modules it keeps track of all global
symbol definitions and references. It then modifies the instructions
and/or data which reference the global symbols. Undefined globals are
printed on the console terminal after pass 1 (or pass 2 if a library
file is also linked).

6.5 INPUT AND OUTPUT

Linker input and output is in the form of modules; one oxr more input
modules (object files produced by either assembler or FORTRAN IV) are
used to produce a single output (load) module.

6.5.1 Object Modules

Object files, consisting of one or more object modules, are the input
to the Linker (the Linker ignores files which are not object modules).
Object modules are created by the RT-11 assemblers or FORTRAN IV. The
Linker reads each object module at least twice (three times if library
files are linked). During the first pass each object module is read to
construct a global symbol table and to assign absolute values to the
control section names and global symbols. If 1library files are
linked, a second pass is needed to resolve the undefined globals from
the library files and force their associated object modules into the
root; on the final pass, the Linker reads the object modules, links
and relocates the modules and outputs the load module.

6.5.2 Load Module

The primary output of the Linker is a load module which may be loaded
and run under RT-11. The load module is output as a save image file
(sAV) for use under a Single-Job system or the background job. Under
an F/B System, the /R switch must be used to produce a REL
(reloctable) format foreground load module if the job is to run in the
foreground. An absolute load module (LDA) is produced if the module
is to be loaded by the Absolute Loader.

The load module for a save image file is arranged as follows:

Root Segment Overlay
Segments
(optional)

For a REL image file, the load modules are arranged as:



Linker

Root Segment Overlay Resident Overlay
Segments REL REL Blocks
(optional) Blocks (optional)

The first 256-word block of the root segment (main program) contains
the memory usage map and the locations used by the Linker to pass
program control parameters. The memory usage map outlines the blocks
of memory wused by the load module and is located in locations 360 to
377.

The control parameters are located in locations 40-50 and contain the
following information when the module is loaded:

Address Information
40: Start Address of program
42 Initial setting of R6 (stack pointer)
44:; Job Status Word
46: USR Swap Address (0 implies normal location)
50: Highest Memory Address in user's program

For a foreground link the following additional parameters contain
information:

34,36 TRAP Vector

52 Size of Resident (words)

54: Sum of the Resident and largest Overlay Region
(words)

56: F/B Identification

60: Address of Resident REL Block

Memory locations 0-476 (comprising the interrupt vectors and systen
communication area) may be assigned initial values by using an .ASECT
assembler statement and will appear in block 0 of the load module, but
there are restrictions on the use of .ASECTs in this region. The
Linker does not permit an .ASECT of location 54 or of locations
360-377 (the memory usage map is passed in those locations). In
addition, for foreground links, an LASECT of words 40-60 is not
permitted (additional parameters are passed to FRUN in those
locations).

Any location which is not restricted may be set with an +ASECT, but
caution should be wused in changing the system communication area.
Restricted areas, such as the region 360-377, must be dinitialized by
the program itself. There are no restrictions on .ASECTs if the
output format is LDA. -

Locations in the region 0-476 which are initialized by an .ASECT in a
program may never be loaded when the program is executed. There are
two reasons for this. For background tasks (or the Single-Job system)
the R, RUN, and GET commands will not load an address protected by the
monitor's memory protection map. The addresses normally protected
include such important areas as the system device and console device
vectors, but protection may be extended dynamically (e.g., by a
foreground task issuing a .PROTECT call). For foreground tasks, the
FRUN command will load only 1locations 34-50 (34 is the TRAP
instruction vector) and all other .ASECTs are ignored. The procedure
for loading these locations is to do so at run-time using MOV
instructions.

January 1976 6-6



Linker

6.5.3 Load Map

If requested, a load map is produced following the completion of the
initial pass(es) of the Linker, This map, shown in Figure 6-1,
diagrams the layout of memory for the load module,

Each .CSECT included in the linking process is listed in the load map.
The entry for a.CSECT includes the name and low address of the section
and its size (in bytes). The remaining columns contain the entry
points (or globals) found in the section and their addresses.

The map begins with the name of the load module and the date of
creation. The modules located in the root segment of the load module
are listed next, followed by those modules which were assigned to
overlays in order by their region number (see Section 6.6). Any
undefined global symbols are then listed. The map ends with the
transfer address (start address) and high limit of relocatable code.

NOTE

The load map will not reflect the
absolute addresses for a REL file
created to be run as a foreground job;
the base relocation address specified at
FRUN time must be added to obtain the
absolute addresses.

For example, assume the FRUN command is used to run the program
RELTST:

SFRUN RELTST/F
LOADETD AT 137150

When linked, the following load map is produced:

RTwil LINK X03=16 LOAD MAP
RELTST,REL 03=SEP74

SECTION ADDR 394 ) ENTRY ADDR ENTRY ADDR ENTRY ADDR

. ABS, 00QO@Q0 oP@350 8TKSIZ gemel2 SFVEC 20p320 SCRPOS 201730

TSTVTL Q@@350 Q00326

$GT8 Q00676 Q01116 SDSINT 0Q0Q@6Te SSTOPF Q0@710 3SNR 000752
STACKP 200764 STATBF 021106 SOPC oR114e
SLINKF Q21146 SLCDIS ©@01152 SLCNT eQ1132
SDSVEC @011S4 STACKE @@12@2 SOFILE 0@21226

Y8 01244 SBLANK @pieadae  SLINK eo1232
$BYPAS 001256 SCTRAK Q@1260 SLSRA eo1276
SCUSER @@i30e SNULL 201316 X7 eoi326
sY?Y 01330 SLPINT 001404 SLPBUF Q01434

SNRBUF 201446 STRAKC 0Q@1562 SXSTOR 001572
SYSTOR @@1574 SSOINT @0Q1672 SVSTIN Q01676
§VSTP eat722 SPDVH P01756 SPEXIT Q201764



Linker

QVERLAY REGION oeooe! SEGMENT o020}

$GT1 Pe201e 00Ld21e SVINIT Q02016 SVFDEL 0u2100 SV8TOP Q22it4
SYNYRT 002130 SVRMOV Q02174 SVYSTRT Q02214

$Gve op2226 0bRIGR SVYBLNK Q@2226 SYRSTR 002256 3SVSRCH 002300

$6T3 002332 000132 SVTRAK @2@2332 SVLPEN Q02410 SVSTPM 002420
SNOSYN Q@@2430 S8SYNC 202440 SNAME 2024592

QVERLAY REGION poR0ROI SEGMENT @pceae
$6T4 epenie QARee@2 SVYRTLK 002016 SYUNLK @p2300 SVLSET 02404
SVSCRL Qoe251e

TRANSFER ADDRESS = pop3sn
HIGH LIMIT = ppRez0

To determine the address of TSTVTl, 137150 must be added to 000350;
thus 137520 is the absolute address of TSTVT1l. The transfer address
is 137150 plus 350, or 137520,

6.5.4 Library Files

The RT-11 Linker has the capability of automatically searching
libraries, Libraries are composed of library files~-specially
formatted files produced by the Librarian program (Chapter 7) which
contain one or more object modules. The object modules provide
routines and functions to aid the user in meeting specific programming
needs. (For example, FORTRAN has a special library containing all
necessary computational functions--TAN, ATAN, etc.) By using the
Librarian, libraries can be created and updated so that routines which
are used more than once, or routines which are used by more than one
progran, may be easily accessed, Selected modules from the
appropriate library file are linked as needed with the user program to
produce one load module. Libraries are further described in Section
6.7 and in Chapter 7.

NOTE
Library files that have been combined

under PIP are illegal as input to both
the Linker and the Librarian.



Linker

RT=11 LINK
SQRT ,S8AV

SECTION ADDR
« ABS, Q0OQ0QQV

Ratuew
J01eee
Q02604

205104

BuSeed

Qus366
vo5406
Avs5454

Av553e
295574
wes7702

2n6Rl6

avenee
Que154d
SERRTH Q06156
SERRS Qu6es5e
P11116
Riaese
B130%4
21347¢
013600
niayee
214364
@144a72
215366
215478
216112

Ve3=0a1

81%€E
ee1e00

peecee
Q81364
gealae

QeR160

peaiee

Qeee2e
Qoepde
Qoopee

aeRe3s
@0e174
goones

P00044

PdRpTe
QepaRe
Qoeiee
ne2e3?
201534
eegnzaee
nRo4te
Qua10e
bvasee
Qonaee
avolae
200674
ovR110
aued1d
@eouvae

TRANSFER ADDRESS = @o100#8
HIGH LIMIT s Q216154

LOAD MAP
19«8EP=T4
ENTRY ADDR
SUSRSW papoee
SLRECL Qooeele
$0T1 potede
0CIS Q02604
RCIS ee3nQe
GCOS pQ4144
DCOos go4164
18NS 05124
SLENTR Q05130
MOI58S PQOSe6d
MO1$SA QoS24
REL S nas3ang
MOTSMS QU534
MOI1$0S Q05330
MOISIS @u5344
IFRS PpasS3ee
EOL® 2054026
TVLS 05454
TVGY Av5476
CALS P0553e
SGRT 225574
MOF SRS @@5770
MOFSRP Q@612
NMISIM QQeR16
BEGS 226036
BRAS PoeR%0Q
FOOS$ PRedee
§A0TS pa6i1sd
$FI0 p116002
$FMTDR Q12652
SCLOSE 213054
LCIS 013472
SGETRE Q13600
SPUTRE 214102
SFCHNL P14364
SOPEN Pl447e
SOUMPL 215360
SPUTBL 015476
SWAIT Qlette
Figure 6-1

ENTRY

Svapsa
$STRACE

ICIS
ocos
FCOs

$ISNTR

MOLSSS
MOTISIS
MOTSIM
MOISMM
MOISOM
MOISIM
IFWS

TVFS
TvPS
CALS
MOF SRM
NMIS!I
BGTS

BNES
EXIT

SFMTDW

LCcos
STTYIN

SGETBL

ADDR

epoeel
PR4737

ooRele
ee371e
Po415e

nasi1@

PR5264
205300
pesS3ed4
ees5320
2e5334
205352
205400

PaS546e
nes5504
2e5544
2R5776
deeee
LY T

206054
eoeaTd

2127082

M13540
213722

n1567e

Linker Load Map for Background Job

ENTRY

SNLCHN

SGETY
IC0s
ECOS

L8NS

MOISEM
MOLSIS
MOISIA
MOISMA
MOISPA
MOIS14A

TVDS
TVlS
MOFSRA
BLES
BGES

BLTS
STPS

SINITI

SEOFIL

ADDR

QpeeRe

Q02772
eo3722
Q4156

ees124

pesaTe
ees30¢
aes3t0e
pe5324
805340
205360

285470
PesSsSte
o06Q0R6
006034
2Qep4e

006056
Q06074

212750

016046



Linker

6.6 USING OVERLAYS

The RT~1l program overlay facility enables the user to have virtually
unlimited memory space for an assembly language or FORTRAN program. A
program using the overlay facility can be much larger than would
normally fit in the available memory space, since portions of the
program (called overlay segments) reside on a backup storage device
(disk or DECtape).

The RT-1ll overlay scheme is a strict multi-region arrangement; it is
not tree-structured. Figure 6-2 diagrams this scheme. The overlay
system which the user constructs from his completed program is
composed of a root segment, memory-resident overlay regions, and the
overlay segments stored on the backup storage device. The root
segment is a required part of every overlay program and contains all
transfer addresses; it must therefore never be overlaid. An overlay
region corresponds to a run-time area of memory that is shared by two
or more subroutines (called co-resident subroutines); there is a
distinct memory area for each overlay region. Overlay segments are
portions of the save image or REL format file from which the user's
program is run; these are brought into memory as needed,

A=A/C = Root
B/0:1/C = Segment 1
= Region 1
c/0:1/C = Segment 2
D/0:2/C = Segment 3
} = Region 2
E/0:2 = Segment 4
Figure 6-2

Overlay Scheme

Overlay regions are specified to the Linker wvia the /0O switch as
described in Section 6.8.8., The size of the overlay region is
calculated by the Linker to be the size of the largest group of
subroutines that can occupy the region at one time. The Linker
creates the overlay regions and edits the program to produce the
desired overlays at run-time.

Figure 6-3 shows a diagram of memory for a program which has an
overlay structure and Figure 6-4 is a listing of the run-time overlay
handler.



Linker

ADDRESSO
SYSTEM AREA

400 OVERLAY HANDLER

AND TABLES
(INCLUDED BY LINKER)

ROOT SEGMENT
OF PROGRAM
(BASICR ,FPMP)

IDENTIFICATION WORD

|
OVERLAY REGION 1
(BASICX) (BASICE)

IDENTIFICATION WORD

OVERLAY REGION 2

(BASICH)

= :L
MONITOR
Figure 6-3

Memory Diagram Showing BASIC Link With Overlay Regions

«SBTTL THE RUNeTIME QVERLAY HANDLER

THE FOLLOWING CUOVE 1S INCLUDED IN THE USER'S PROGRAM BY THE
LINKER WHENEVER UVERLAYS ARE REQUESTED BY VTHE USER,

5848 MILCROSECONDS (APPROX) IS ADOED TO EACH REFERENCE OF

A RESIDENT OVeRLAY SEGMENT,

- W wm W

THE RUN=TIME OVERLAY HANDLER IS CALLED BY A DUMMY
SUBROUTINE OF THek FOLLOWING FORM3

! JSR RS, 30VRH JCALL TO CUMMON COUE
«WORD <OVERLAY #» I8 OF DESIRED SEGMENT
o WORD <ENTRY ADDR>» JACYUAL CORE ADOR

- =

ONE OyMMY ROUTINE DF THE ABOVE FORM I8 STORED IN THE RESIDENT
PORTION UF THe USER'S PROGRAM FUR EACH ENTRY POINT TO

AN OVERLAY SEGMENT, AblL REFERENCES TOD THE ENTRY POINT ARE
MOULFIELD BY THE WINKER TO INSTEAD BE REFERENCES TQ THE APPRQO=
PRIATE OUMMY RQUTINE, EACH OVERLAY SEGMENT IS CALLED INTO
COWME A3 A UNIT anND MUST BE COUNTIGUOUS IN CORE, AN OVERLAY

- e . e we we



Linker

-~

SEGMENT MAY MaVe ANY NUMBER OF ENTRY POINTS, TO THE LIMITS
OF CURE MEMORY, ONLY QNE SEGMENT AT A TIME MAY OCCUPY AN
OVERLAY REGION,

} RESTRICTIONSS
} SINCE REFERENCES TO OVERLAY SEGMENTS ARE AUTOMATICALLY TRANS=
] LATED BY THE LINKER [NTQ REFERENCES TO DUMMY SUBROUTINES,
} THe PRUGRAMMER MUST NOT ATTEMPT TO REFERENCE DATA IN AN QVERe
7 LAY BY UIING GLOBAL SYMBOLS,
SOVTAR®120V+SUVRME®SOVRH
SQVRAY MOV Rarw(SP)
MOV Ri,=(5P)
MOV R2:=(SP)
$OyRNB1Y
! MoV (R3) +,Rg JPICK UP OVERLAY NUMBER
BR $FIRST JFIRST CALL ONLY * w »
Moy RUIR1
SOVRHMAL ADOD 4#s0VTABeS,RY JCALC TABLE ADOR
Moy (R1)+,R2 JGET CORE ADOR OF QVERLAY REGION
LMP Ro)eR2 118 UVERLAY ALREADY RESIDENT?
vEQ SENTER JYES) BRANCH TO IT
oREADW  17)w2,(RL)*, (R1)+ JREAD FROM OVERLAY FILE
BCS PERR
SENTERE MmOy (SF)+,R2 JRESTURE USER!'S REGS
MOV (SF)+, R
MoV (SF)e,RQ
MOy #RD,RY JGET ENTRY ADDRESS
RTS RS JENTER QVERLAY ROUTINE AND
JRESTORE USER'S RS
SFIRSTH MoV #12500, SUVRHA IRESTORE SWITCH INBTR
MoV (PCY+,R1 ISTART ADDR FOR CLEAR DPERATION
SHRQOOQOTH owORD ) IHIGH ADDR OF ROQT SEGMENT
MOV (PC)e,R2 FCOUNT
$HOVLY! LWORD ) PHIGH LIMIT OF OVERLAYS
154 CLR (R1)# JCLEAR ALL OVERLAY REGIONS
cMp Ri,R2
BLO 1s
BR SOVRHB JAND RETURN TO CALL IN PROGRESS
SERR? EMT 370 JGENERATE ALWAYS FATAL ERROR
BYTE 2,373 JAND DISREGARD SOFT ERRQR
SOVRHEL

- -

OVERLAY SEOMENT TaABLE FOLLOWS?E
SOVTABS 2WURD “CORE ADDR>»,<RELATIVE BLK»,<WORD CHUUNT>
THREE WURDY PER ENTRY, ONE ENTRY PER OVERLAY SEGMENT,

ALSO, THERE IS ONE wORD PREFIXED TO EACH GVERLAY REGION
THAT IODENTIFIES THE SEGMENY CURRENTLY RESIDENT IN THAT REGION,
THiS WURD IS8 AN INDEX INTQO THE SOVTAB TABLE,

Figure 6-4
The Run-Time Overlay Handler



Linker

There is no special code or function call needed to use overlays but
the following rules must be observed when referencing parts of the
user program which might be overlaid.

1.

4.

6.

Calls or branches to overlay segments must be made directly
to entry points in the segment. Entry points are locations
tagged with a global symbol (refer to Chapter 5, Section
5.5.10). For example, if ENTER is a global tag in an overlay
segment:

JMP ENTER is legal, but
JMP ENTER+6 is illegal.

Entries in overlay segments can be used only for transfer of
control and not for referencing data within an overlay
section (e.g., MOV ENTER,R4 is illegal if ENTER is in an
overlay segment, but MOV #ENTER,R7 is legal because it is
used for transfer of control). A violation of this rule
cannot be detected by the assembler or Linker so no error is
issued; however, it can cause the program to use incorrect
data.

When calls are made to overlays, the entire return path must
be in memory. This will happen if these rules are followed:

Calls (with expected return) may be made from an overlay
segment only to entries in the same segment, the root
segment, or an overlay segment with a greater region
number.,

Calls to entries in the same region as the call must be
entirely within the same segment, not another segment in
the same region.

Jumps (with no expected return) can be made from an
overlay segment to any entry in the program. However,
jumps should not reference an overlay region whose number
is 1lower than the region from which the last unreturned
call was made (e.g., if a call was made from region 3,
then no Jjumps should reference regions 1, 2 or 3 until
the call has returned).

Subroutines in the root segment may be called from
overlay segments; in turn, they may call entries from
the same overlay segment which called them, or from the
root segment, or from another overlay segment with a
greater region number, Such subroutines are considered
part of the overlay segment which called them.

A ,CSECT name cannot be used to pass control to an overlay.
It will not cause the appropriate segment to he loaded into
memory (e.d., JSR PC,OVSEC is illegal if OVSEC is used as a
.CSECT name in an overlay). As stated in 1 above, a global
symbol must be used to pass control from one segment to the
next.

Channel 17 (octal) cannot be used by the user program because
overlays are read on that channel.

Object modules acquired from a library file cannot be placed
into overlays.

6-13



Linker

Library files may not be specified on the same command line
as an overlay.

Overlay regions must be specified in ascending order and are
read-only. Unlike USR swapping, an overlay segment does not
save the segment it is overlaying. Any tables, variables, or
instructions that are modified within a given overlay segment
are re—initialized to their original wvalues in the SAV or REIL
file if that segment has been overlaid by another segment,
Any variables or tables whose values must be maintained
across overlays should be placed in the root segment,

.ASECTs of any size in an overlay foreground 1link are
illegal; the error message ?ILL ASECT? is printed and the
line is aborted.

The following information should be noted when writing FORTRAN

overlays.

1.

When dividing a FORTRAN program into a root segment and
overlay regions (and subsequently dividing each overlay
region into overlay segments), routine placement should be
carefully considered. The user should always remember that:
it is illegal to call a routine 1located in a different
overlay segment in the same overlay region, or an overlay
region with a lower numeric value (as specified by the Linker
overlay switch, /O:n) from the calling routine, The user
should divide each overlay region into overlay segments which
never need to be resident simultaneously (i.e., if segments A
and B are assigned to region X, they cannot call each other
because they occupy the same locations in memory).

The FORTRAN main program unit must be placed in the root
segment.

In an overlay environment, subroutine calls and function
subprogram references may refer only to one of the following:

A FORTRAN library routine (e.g., ASSIGN, DCOS)

A FORTRAN or assembly language routine contained in the
root segment

A FORTRAN or assembly language routine contained in the
same overlay segment as the calling routine

A FORTRAN or assembly language routine contained in a
segment whose region number is greater than that of the
calling routine

In an overlay environment, COMMON blocks must be placed so
that they are resident when referenced. Blank COMMON is
always resident since it 1is always placed in the root
segment. All named COMMON must be placed either in the root
segment, or into the segment whose region number is lowest of
all segments which reference the COMMON block. A named
COMMON block cannot be referenced by two segments in the same
region unless the COMMON block appears in a segment of a
lower region number. The Linker automatically places a
COMMON block into the root segment if it is referenced by the
FORTRAN main program or by a subprogram that is located in

6-14



Linker

the root segment., Otherwise the Linker places a COMMON block
in the first segment encountered in the Linker command string
that references that COMMON block.

5. All COMMON blocks which are initialized (by use of DATA

statements) must be 80 initialized in the segment in which
they are placed.

Refer to the RT-11/RSTS-11 FORTRAN IV User's Guide for more details.

The .ASECT never takes part in overlaying in any way (i.e., if part of
an JASECT is destroyed by overlay operations, it is not restored by
the overlay handler).

The aforementioned sets of rules apply only to communications among
the various modules that make up a program., Internally, each module
must only observe standard programming rules for the PDP-11 (as
described in the PDP-1ll Processor Handbook and in Chapter 5).

It should be noted that the condition codes set by a user program are
not preserved across overlay segment boundaries.

The Linker provides overlay services by including a small resident
overlay handler (Figure 6-4) in the same file with the user program to
be used at program run-time, This overlay handler plus some tables
are inserted into the user's program beginning at the bottom address
computed by the Linker. The Linker moves the user's program up in
memory by an appropriate amount to make room for the overlay handler
and tables, if necessary.

6.7 USING LIBRARIES

Libraries are specified in a command string in the same fashion as
normal modules; they may be included anywhere in the command string,
with the exception of overlay lines., If a global symbol is undefined
at the time the 1library is encountered in the input stream and a
module is included in the 1library which includes that global
definition, that module is pulled from the library and linked into the
load image. Only the modules needed to resolve references are pulled
from the library; unused modules are not linked.

NOTE

Modules in one library may call modules
from another library; however, the
libraries must appear in the command
string in the order in which they are
called. For example, assume module X in
library ALIB calls SQRT from the FORTRAN
library. To correctly resolve all
globals, the order of ALIB and the
FORTRAN library should appear in the
command line as:

Zalte AL T RAE
Zle 0L T B FORL TR

oxr

6-15 January 1976



Linker

Module B is the root. It calls X from
ALIB and brings X into the root, X in
turn calls SQRT which is brought from
FORLIB into the root.

FORTRAN libraries cannot precede their root segment in a command line
as this creates a bad transfer address, For example:

HR=ROOT A

R =ROOT » FORLLITR

are legal, but:
A ORL DB e ROOT

is not., Unpredictable results will occur,

6.7.1 User Library Searches

Object modules from the named user libraries built by the Librarian
are relocated selectively and linked by the Linker., The RT-1l1l Linker
searches a specified library file during the library pass as follows
(refer to Figure 6=5 for a flowchart representation of this process):

l. If there are any undefined globals in the Linker's table
when a library is encountered in the command string, proceed
to step 2; otherwise skip this library (go to step 5).

2. Read the library directory.

3. If any of the undefined globals can be defined by a module
in this library, include the relevant module into the linked
output file; otherwise, go to step 5.

4, If any undefined globals remain in the Linker's table and
they have not been looked for in the library, return to step
2; otherwise go to step 5.

5. Close the library file.

6. Go to the next element in the command string.
This search method allows modules to appear in any order in the
library. Any number of libraries may be specified in a link, and they

may be positioned anywhere, with the exception of overlay segments and
the restrictions noted in Section 6.7.



Linker

1S
THERE A FILE

C EXIT PASS IN THE COMMAND

LINE
?

YES

OPEN FILE

ISIT
A LIBRARY NO

FILE PROCESS FILE
?

YES

ARE
THERE
UNDEFINED GLOBALS
!
YES

READ
LIBRARY DIRECTORY

SEARCH
UNDEFINED GLOBALS
FROM LIBRARY

LIBRARY
SCANNED

?

MORE
UNDEFINED GLOBALS

{ CLOSE LIBRARY J—u

Figure 6-=5
Library Searches

NOTE

For faster Linker performance, the user
should specify all object files before
library files, and all user library

files before the system library files.
For example:

6-17



Linker

KAy Te LISEL LR AF

where A and B are object modules, USELIB
is a user-created library file, and /F
denotes the default FORTRAN library,
FORLIE.,

Libraries are input to the Linker as any other input file, Assume the
following command string to the Linker:

¥ TALKOL SOV L T=MATN QR J e MEASBUR , 0.

This causes program MAIN.OBJ to be read from DK: as the first input
file. Any undefined symbols generated by program MAIN.OBJ should be
satisfied by the library file MEASUR.OBJ specified in the second input
file, The load module, TASKOl.SAV is put on DK: and a load map goes
to the line printer.

6.8 SWITCH DESCRIPTION

The switches summarized in Table 6-1 are described in detail below.

6.8.1 Alphabetize Switch

The /A switch requests the Linker to list 1linked modules in
alphabetical order as follows: .CSECTs, module names, and entry
points within modules. The load map is normally arranged in order by
module address as shown in Figure 6-1, Figure 6-6 is an example of an
alphabetized load map for a background job,

6.8.2 Bottom Address Switch

The /B switch specifies the lowest address to be used by the
relocatable code in the load module. When /B is not specified, the
Linker positions the load module so that the lowest address is
location 1000 (oc¢tal), or 0 for a foreground link. If the .ASECT
length is greater than 1000, the length of .ASECT is used.

The form of the bottom switch is:

/B:n
n is a six-digit wunsigned octal number which defines the bottom
address of the program being linked. An error message results if n is
not specified as part of the /B command.
If more than one /B switch is specified during the creation of a load
module, the first /B switch specification is used.

NOTE

The bottom value must be an unsigned

even octal number, If the value is odd,
an error message is generated,

6-18



Linker

RTeil LINK
SQRT ,5AV

SECTION ADOR
« ABS, 0209000
neiered

veieea
A26Rd4

205104

nesSeed

205366
QaSaQe
Qw5454

205536

Pe5574
aes770

Aoeuls

Av6bE
vee1s4d
SERRTB  0QR61S6
SERRS nReese
211116
212652
Q13usS4
A1347¢
Q13000
yi410¢e
B14s64
a1447¢
15366
215476
@1611e

Vei=gl

SI1ZE
egioae

peeeew
221364
ega3ne

noa16d

eeoiee

geawvee
uoeQue
auaeee

woeule
Q60174
avapee

puend4

QuuoTe
peaeae
vueriea
Queel7
A01534
Ppoene
QuoLle
Qen1de
neRsde
puoeee
Q00106
QeReT4
Peaito
Q0R414
QvPp4de

LOAD M
19~3EP

ENTRY

SLRECL
STRACE

$0T1
pcos
GCO%
0CIs
$GET
ISNS
SLSNTR
MOI®laA
MOIsMA
MOIS$SSA
MOTS0A
MOISt1A
MOLS$IS
1FRS
ECLS
TVD$
TVl &
CALS
SGRT
MOF $RaA
MOF $RS
HEQS
BLES
BRAS
EXIT
$ADTS

$F10
$§FMTOR
SCLOSE
LCIs
SGETRE
3PUTRE
SFCHNL
$OPEN
SDUMPL
SEOFIL
$wWALT

TRANSFER ADDRESS » yr100@

HIGH LIMIT = 0

Alphabetized Load Map for a Background Job

16154

AP
oT4d

ADDR

egee19
PQ4737

eQ1246
po4ted
Po4l44
Bo26R4
paeTre
205104
0n5130
Pus31v
PeSs24
pese74
QusS34e
PYsS3ew
oes300
PRS366
Q%4026
Pus4TR
PUS454
205536
705574
poevRe
Qus770
puedle
0034
P0605Q
Aved74
206154

w1160
p12ese
P13054
n13472
213000
214102
A14364
RL447e
215366
216040
e1eile

Figure 6-6

ENTRY

SNLCHN
SVOR5A

ECOS
ICIS
0cos

L8NS

MOISIM
MOTSMM
MOIS$SM
MOISaM
MOISIM
MOLSSS
IFws

TVFS
TVvPs
CaLS
MOF $RM
BGES
BLTS

NMISt]
FOOS

SFMTDW

LCOS
STYYIN

$GETBL

ADDR

ooroes
eo0001

204156
poeele
203712

eeS1ed

PsS3a4
053202
pesSeTe
PRS334
R535¢
PpSeb«
05402

205462
Pa5504
205544
easT7e
YT
Q06056

Paeees
LY LY

a127ee

213540
213722

P15676

ENTRY
SUSRSW

FCOS
108
RC1S

SISNTR

MOISIS
MOISMS
MOI$8S
MOIS$@S
MOIS!S
RELS

TVIS
TVES
MOF $RP
BGTS
BNES

NMISIM
STPS

SINITI

SPUTBL

ADDR
Qeovee

eQ4152
Q23720
ve3eQe

eesS11e

ges3ee
205314
eesee6d
203330
Q053544
205300

205512
205476
eoepie
evepdd
206054

26016
PveaT4

e12750

215476



Linker

/B is illegal with foreground links. (0 is assumed.)
Example:

KOUTFUT o L 3= INFUT /RS S00 Causes the input file to be
linked starting at location
500 (octal),

6,8.,3 Continue Switch

The Continue switch (/C) is used to allow additional lines of command
string input. The /C switch is typed at the end of the current line
and may be repeated on subsequent command lines as often as necessary
to specify all input modules for which memory is available. If memory
is exceeded, an error message is output, A /C switch is not entered
on the last line of input.

Example:

FOUTEFUT vl P = TNFLT /T Input is to be continued on
¥ the next 1line; the Linker:
prints an asterisk,

6.8.4 Default FORTRAN Library Switch

By indicating the /F switch in the command line, the FORTRAN library,
FORLIB,OBJ on the default device (SY:), is linked with the other
object modules specified; the user does not need to specify FORLIB,
For example:

KFLLE v LF ik, QRAAF

The object module AB,0BJ and the FORTRAN library FORLIB are linked
together to form a load module called FILE,SAV. (Note that the FORLIB
default is SY:FORLIB.OBJ, not DK:FORLIB,OBJ.)

6.8.5 Include Switch

The /I switch allows subsequent entry at the keyboard of global
symbols to be taken from any library and included in the linking
process. When the /I switch is specified, the Linker prints:

LIBRARY SEARCH:

Reply with the list of global symbols to be included in the load
module; type a carriage return to enter each symbol in the list. A
carriage return alone terminates the list of symbols, This provides a
method for forcing modules (which are not called by other modules) to
be loaded from the library.,

Example:
KOUTELIT o L S THFUT o XL TR AT
L.EBRARY SEARCH? Linker prints LIBRARY SEARCH:
# <CR> User enters A, GETSYM, etc, which are
GETSYM <CR)> to be included in the linking process,
CHAR CRD> Each symbol is entered by typing
HFLG <CR)> a carriage return; the list is termi-
<CR> nated by an additional carriage return.



Linker

6.8.6 LDA Format Switch

The LDA format switch (/L) causes the output file to be in LDA format
instead of save image format. The LDA format file can be output to any
device, including devices that are not block-replaceable such as paper
tape or cassette, and is useful for files which are to be loaded with
the Absolute Loader. The default extension .LDA 1is assigned when the
/L switch is used.

The /L switch cannot be used in conjunction with the overlay switch
(/0) or in foreground links (/R).

Example:
* DU ol P 2 TN T2 Links disk files IN and 1IN2;
outputs an LDA format file
OUT.LDA to the system device
and a load map to the line
printer,
6.8.7 Modify Stack Address
The stack address, location 42, is the address which contains the
user's stack pointer. The /M switch allows terminal keyboard
specification of the user's stack address.
The form of the switch is:
/M:n

n is an even unsigned 6-digit octal number which defines the stack
address. If n is not specified, the Linker prints the message:

STACK ADDRESS =
In this case, specify the global symbol whose value is the stack
address. A number cannot be specified, and if a nonexistent symbol is
specified, an error message is printed and the stack address is set to
the system default (1000 for save files, 0 for REL),

Direct assignment (via .ASECT) of the stack address within the program
takes precedence over assignment with the /M switch.

Example:
KOUTFUT=INPLTAM

TACK ADDRESE = BEG

6.8.8 Overlay Switch

The Overlay switch (/0) is used to segment the load module so that the
entire program is not memory resident at one time (overlay feature).
This allows programs larger than the available memory to be executed.
The switch has the form:

/0:n

6-21 January 1976



Linker

where n is an unsigned octal number (up to six digits in length)
specifying the overlay region to which the module is assigned. The /0
switch must follow (on the same line) the specification of the object
modules to which it applies, and only one overlay region can be
specified on a command line., Overlay regions cannot be specified on
the first command line as this is the root segment, Therefore, the /C
continuation switch must be used.

Co-resident overlay routines (a group of subroutines which occupy the
overlay region and segment at the same time) are specified as follows:

*OBJA,O0BJB,0BJC/0:n/C
*OBJD,OBJE/O:m/C

All modules mentioned until the next /0 switch will be co-resident
overlay routines. If at a later time the /O switch is given with the
same value previously used (same overlay region), then the
corresponding overlay area is opened for a new group of subroutines.
The new group of subroutines will occupy the same locations in memory
as the first group, but not at the same time. For example, if
subroutines in object modules R and S are to be in memory together,
but are never needed at the same time as T, then the following
commands to the Linker make R and S occupy the same memory as T (but
at different times):

KMATNy LF=ROOTAC
KReS/00LAT
XT/7040

The above could also be written as:

A MALN L3 =ROOT AT

¥RAVTLAT
XG50
X700
Example:
¥ OUTEUT L = INFUT G Establishes two overlay
XK ORIN/03LAC regions
¥ ORJE/022

Overlays must be specified in order of increasing region number. For
example:

SROLINK
Ky /L
XBA0LAT
*CAOTL/T
F0A001 /6

Ly FAOL2/C
kG033

The following overlay specification is illegal since the overlay
regions are given in a random numerical order (an error message is
printed in each case):

January 1976 6-22



Linker

FLAT 20

KB/ LAT

A0 TOGNORED
KEAODLS

FHADII3A0
K e BT

A0

6.8.9 REL Format Switch

The REL format switch (/R) causes the output file to be in REL format
for use as a foreground job under the F/B Monitor. REL format files
must be used in a foreground job (they may not be used under a
Single~Job system). The /R switch assigng the default extension .REL
to the output file,

Example:

RDTEIFTLEQ L i=FTLET s NEXT/AR Disk files FILEI and NEXT are
linked and output to DT2 as
FILEO.REL; a load map is
output to the line printer.

The /B and /L switches cannot be used with /R since a foreground REL
job has no bottom address and is always relocated by FRUN, A ?BAD
SWITCH? error message is generated if this is attempted.

6.8.10 Symbol Table Switch

Use of the symbol table switch in the command 1line instructs the
Linker to allow the largest possible memory area for its symbol table
at the expense of making the link process slower. With the /S switch,
library directories are not made resident in memory, but are left on
disk., For example:

KOUTF v L 3 ENFLUT QBD LIBRRL CORJ s LIBRZ . OBJAS

The directories of the library files LIBR1 and LIBR2 are not brought
into memory, resulting in more room in the symbol table but longer
link tinme.

If the /S switch is not used and the memory available to the Linker is
approximately 10K or larger, the library directory is brought into
memory (providing there is room); the directory is kept there until
the library has been completely processed, thus reducing the size of
the Linker's symbol table. If there is not enough room in memory for
the directory (as is the case in an 8K system), the Linker determines
this and leaves the directory on disk regardless of whether the /S
switch was-used or not.

The /S switch should be wused only if an attempt to link a program
failed because of symbol table overflow. Often, use of /S will allow
the program to link.



Linker

6.8.11 Transfer Address Switch

The transfer address is the address at which a program is to be
started when executed via an R, RUN, or FRUN command. The Transfer
Address switch (/T) allows terminal keyboard specification of the
start address of the load module to be executed., This switch has the
form:

/T:n

where n is a six-digit unsigned octal number which defines the
transfer address. If n is not specified, the message:

TRANSFER ADDRESS =

is printed. 1In this case, specify the global symbol whose value is
the transfer address of the load module, followed by a carriage
return. A number cannot be specified in answer to this message. When
a nonexistent symbol is specified, an error message is printed and the
transfer address is set to 1 (so that the program cannot be executed).

If the transfer address specified is odd, the program does not start
after loading and control returns to the monitor.

Direct assignment (.ASECT) of the transfer address within the program
takes precedence over assignment with the /T switch. The transfer
address assigned with a /T has precedence over that assigned with a
.END assembly directive,

Example:

¥ ROG LOGLy FROG2yORTAT The files PROGl,.0BJ,PR0OG2,0BJ

TRANSFER ADNRESS = and ODT,0BJ are linked to-

0.00T gether and started at ODT's
transfer address.

6.9 LINKER ERROR HANDLING AND MESSAGES

The following error messages can be output by the Linker, The
messages enclosed in question marks are output to the terminal; the
other messages are only warnings and are included in the load map. If
a load map is not requested in the command string, all messages are
output to the terminal.

Message Meaning
ADDITIVE REF OF XXXXXX Rule 1 of overlay rules explained in Section
AT SEGMENT # yyyyyy 6.6 has been violated., xxxxxx represents the
entry point; YYYYYy represents the segment
number,
?/B NO VALUE? The /B switch requires an unsigned even

octal number as an argument.

?/B ODD VALUE? The argument to the /B switch was not an
unsigned even octal number.

?BAD GSD? There 1is an error in the global symbol
directory (GSD). The file is probably not a

January 1976 6-24



Linker

legal object module, This error message
occurs on pass 1 of the Linker,

BAD OVERLAY AT SEG # YyYYYYY

?BAD RLD?

?BAD SWITCH?

?BAD x SWITCH IGNORED?

BYTE RELOCATION ERROR AT

?CORE?

?ERROR ERROR?

?2ERROR IN FETCH?

?FILE NOT FND?
?FORLIB NOT FND?

?HARD I/0O ERROR?

?ILL ASECT?

Overlay tries to store text outside its
region; check for a .ASECT in overlay.
YYYYYY represents the segment number,

There 1is an invalid relocation directory
(RLD) command in the input file; the file is
probably not a legal object module, The
message occurs on pass 2 of the Linker.

LINK did not recognize a switch specified on
the £first command line, On a subsequent
command line, a bad switch causes this
warning message but does not restart the
Linker.

LINK did not recognize a switch (x) specified
in the command line. The switch is ignored
and linking continues.

XXXXXX

Linker attempted to relocate and 1link byte
quantities but failed. =xxxxxx represents the
address at which the error occurred, Failure
is defined as the high byte of the relocated
value (or the linked value) not being all
zero. In such a case, the value is truncated
to 8 bits and the Linker continues processing
(for save image and LDA files only; byte
relocation 1is completely illegal for REL
files).

There is not enough memory to accommodate the
command or the resultant load module,

An error occurred while the Linker was in the
process of recovering from a previous system
Oor user error,

The device is not available.

Input file was not found.

The user indicated via the /F switch that the
FORTRAN library, FORLIB, was to be linked
with the other object modules in the command
line, and the Linker could not find
FORLIB.OBJ on the system device.

A hardware error occurred; try the operation
again,

The user has attempted to place an LASECT
above 1000 in a foreground link or to place
an .ASECT into an overlay foreground link,

625 January 1976



Linker

?LDA FILE ERROR?

?/M ODD VAL?

?MAP FILE ERROR?

MULT DEF OF XXXXXX

?NO INPUT?

/0O IGNORED

?0UTPUT FULL?

?REL FILE ERR?

?SAV FILE ERR?

?STACK ADDRESS UNDEFINED

?SYMBOIL TABLE OVERFLOW?

?T00 MANY OUTPUT FILES?

There was a hardware problem with the device
specified for LDA output or the device was
full. '

An odd value has been specified for the stack

"address, Control returns to the Linker and

another command line may be indicated.

There was a hardware problem with the device
specified for map output or the device is
full.

The symbol, xxxxxx, was defined more than
once, ' C o

No input files were specified.

Overlays have been specified in the wfong
order (see overlay restrictions); the overlay
switch is ignored.

The output device was full.

The Linker encountered a problem writing the
REL file; try the operation again.

The Linker encountered a problem writing the
save image file; try the operation again.

OR IN OVERLAY?
The stack address specified by the /M switch
was either undefined or in an overlay, The
stack address is set to the system default.

There were too many global symbols used 1in
the program, Retry +the 1link using the /S
switch, If the error still occurs, the 1link
cannot take place in the available memory.

The Linker allows specification of only two
output files.

TRANSFER ADDRESS UNDEFINED OR IN OVERLAY?

UNDEF GLBLS

UNDEFINED GLOBALS
XXXXXX
XXXXXX

January 1976

The transfer address was not defined or was
in an overlay.

A load map was requested and undefined
globals existed.

The globals listed (xxxxxx) were undefined.
If a load map -is requested, this condition
also causes the warning message, UNDEF GLBLS,
to be printed on the terminal.

6-26



CHAPTER 7

LIBRARIAN

The RT-1ll system provides the user with the capability of maintaining
libraries which may be composed of functions and routines of his
choice. Each library is a file containing a library header, library
directory (or entry point table), and one or more object modules. The
object ‘modules in a library file may be routines which are repeatedly
used in a program, routines which are used by more than one program,
or routines which are related and simply gathered together for ease in
usage--the contents of the library file are determined by the user's
needs. An example of a typical library file is the FORTRAN library,
FORLIB,.OBJ, This library is provided with the FORTRAN package and
contains all the mathematical functions needed for normal usage.

Object modules in a library file are accessed from another program via
calls to their entry points; the object modules are linked with the
program which uses them by the Linker (Chapter 6) to produce a single
load module. :
The RT-11 Librarian (LIBR) allows the user to create, update, modify,
list, and maintain library files.

7.1 CALLING AND USING LIBR

The RT-11 Librarian is called from the system device by entering the
command s

- R LIBR

in response'to the dot printed by the Keyboard Monitor. The Command
String Interpreter prints an asterisk at the left margin on the
console terminal when it is ready to accept a command line.

Type,CTRL C to halt the Librarian at any time and return control to
the monitor. To restart the Librarian, type R LIBR or the REENTER
command in response to the monitor's dot,



Librarian

7.2 USER SWITCH COMMANDS AND FUNCTIONS
The user maintains library files through the use of switch commands.
Functions which can be performed include object module deletion,

insertion and replacement, library file creation, and listing of a
library file's contents.

7.2.1 Command Syntax
LIBR accepts command strings in the following general format:

*dev:lib,dev:list=dev:input/sl/s2/83

where:

dev: represents a legal RT=-11l device specification

1lib represents the library file to be created or
updated

list represents a listing file for the library's
contents

input : represents the filenames of the input object
modules

/81l,... represents one or more of the switches listed

in Table 7-1

Devices and filenames are specified by the user in the standard RT-11
command string syntax, with default extensions assigned as follows:

File Extension
list file: «LLD
library file: .OBJ
input files: .OBJ

If no device is specified, the default device (DK:) is assumed.

Each input file is made up of one or more object modules, and is
stored on a given device under a specific filename and extension.
Once an object module has been inserted into a 1library £ile, the
module is no longer referenced by the name of the file of which it was
a part, but by its: individual module name., (This module name has been
assigned by the assembler either via a L.TITLE statement in the
assembly source program, or, if no .TITLE statement is present, with
the default name .MAIN.; see Chapter 5.) Thus, for example, the input
file FORT.OBJ may exist on DT2: and may contain an object module
called ABC. Once the module is inserted into a 1library file,
reference is made only to ABC (not FORT.OBJ).

7.2.2 LIBR Switch Commands

Table 7-1 summarizes the switches available for use under RT-11 LIBR.
Switches are explained in detail following the table.

7-2



Llibrarian

Table 7-1
LIBR Switches

Position In

Switch Command String Meaning
/C Any line Command continuation; the command is
but last too long for the current 1line and is
continued on the next line
/D 1st line only |Delete; delete mobdules from a library
file
/G lst line only | Global deletion; delete entry points
from the library directory
/R lst line only [ Replace; replace modules in a library
file
/U lst line only |Update; insert and replace modules in a

library file

There is no switch to indicate module insertion. The function of
inserting a module into a library file is assumed in the absence of
other switches.

7.2.2.1 Command Continuation Switch - The Command Continuation switch
is necessary whenever there is not enough room to enter a command
string on one line and additional lines are needed. The /C switch is
typed at the end of the current line and may be repeated at the end of
subsequent command lines as often as necessary as long as memory is
available; if memory is exceeded, an error message is output., A /C
switch is not entered on the last line of input.

Command Format:

*dev:lib,dev:list=dev:inputl,dev:input2,...,/C

*dev:inputn
where:
dev: represents a device specification
1lib represents the filename of the library to be

created or updated

list represents the filename of a listing file containing
the library file's contents

input represents the filenames of the input modules to be
inserted into the library

/C represents the Continuation switch, indicating
that the command is to be continued on the following
line




Librarian
Examples:

AITLSTRACK

In this example, a library file is created on the default device (DK:)
under the filename ALIB.OBJ; a listing of the library file's contents
is created as LIBLST.LLD also on the default device; the filenames of
the input modules are MAIN.OBJ, TEST.OBJ, FXN,OBJ, and TRACK,OBJ, all
from DT1.

KBLIB=MATN/C
KRNI TESTAC
KR XN/
KDTL L TRACK

A library file is created on the default device, (DK:) under the name
BLIB. No listing is produced. Input files are MAIN from the default
device, TEST from RKl:, FXN from RKO: and TRACK from DT1.
Another way of writing this command line is:

XBLITB=MATNy RKLITESTy RKOEFXN/C
ROTLITRACK

7.2.2.2 Creating a Library File - A library file is created whenever
a filename 1is indicated on the output side of a command line which
does not represent a list file. ,
Command Format:

*dev:lib=dev:inputl,...,dev:inputn‘

where:
dev: represents a device specification
1lib represents the filename of the library to be created
input represents the filenames of the input modules to be
inserted into the new library
Example:

ANEWL TR=F TRET y SECOND

A new library called NEWLIB.OBJ is created on the default device
(DK:). The modules which will make up this library file are in the
files FIRST.OBJ and SECOND.OBJ, both on the default device.

Assume this command line is next entered:

KNEWL IR LLST=THIRDy FOURTH
The already existing library file NEWLIB is destroyed when the new
library file is created. A listing of the library file's contents is

created under the filename LIST, and the object modules in the files
THIRD and FOURTH are inserted into the library file NEWLIB,



Librarian

7.2.2.3 Inserting Modules Into & Library - The Insert function is
‘assumed whenever an input file does not have an associated switch;
‘the modules in the file are inserted into the library file named on
the ‘output side of the command string. Any number of input files are
allowed. 1If an ‘attempt is made to insert a file which contains an
entry point or .CSECT having the same name as an entry point or ,CSECT
already existing in the library file, a warning message is printed.
However, the 1library file is wupdated, ignoring the entry point or
_CSECT in error; and control returns to the CSI; the user may enter
another command string.

Although the user may insert object modules which exist under the same
name (as assigned by the L(TITLE statement) this practice is not
recommended because of the difficulty involved when replacing or
updating-these modules (refer to Sections 7.2.2.4 and 7.2.2.7).

NOTE

The library operations of module
insertion, replacement, deletion, merge,
and update' are actually performed in
conjunction with the library file
creation operation. Therefore, the
library file to which the operation is
directed must be indicated on both the
input and output sides of the command
~line, since effectively a "new" output
library ‘file is created each time the
operation 'is performed. The 1library

“fileé ‘must “be specified first in the
input field.

Command Format:

*devilib=dev:lib,devsiinputl,...,dev:inputn

where:
devse - represents a device specification
1lib represents the filename of an existing 1library
file
input represents the filenames of the modules to be
inserted into the library file
Example:

FLY = 0XY s DT LEF @ o FRe F U

‘The modules included in the files FA,0BJ, FB,OBJ, and FC,OBJ on DTl:
are inserted into a library file named DXY.OBJ on the default device.
The library header and Entry Point Table of the 1library file are
-updatéd-accordingly (see Section 7.4).

7.2.2.4 Replace Switch = The Replace function is used to replace
modules in a library file. All modules contained in the file(s)
indicated as input will replace existing modules of the same names in
the library file specified as output.

7-5 January 1976



Librarian

An error message is printed and no modules are replaced if an old
module does not exist under the same name as an input module, or if
the user specifies the /R switch on a library file, /R must follow
each input filename containing modules for replacement, .

Command Format:

*dev:lib=dev:1lib,inputl/R,...,dev:inputn/R

where:
dev: represents a device specification
1lib represents the filename of an existing 1library
file
input represents the names of the files containing
modules to be replaced
/R represents the Replace switch
Examples:

KTF =TIy INAy INEB/R INC
This command line indicates that the modules in the file INB.OBJ are
to replace existing modules of the same names in the library file
TFIL.CBJ. The object modules in the files INA,OBJ and INC.OBJ are to
be added. All files are stored on the default device DK:.

KXF L =TF Ty INAy ITNBARy ING

The same operation occurs here as in the preceding example, except
that this updated library file is assigned the new name XFIL.

7.2.2.5 Delete Switch - The Delete switch deletes modules and all
their associated entry points from the library.

Command Format:

*dev:lib=dev:1ib/D
where:
dev: repregsents the device on which the library file
exists
1lib represents the filename of an existing library
file
/D represents the Delete switch; may be

positioned anywhere on the input side of the
command line

When the /D switch is used, the Librarian prints:

MOD NAME:



Librarian

The user should respond with the name of the module to be deleted
followed by a carriage return; he may continue until all modules to
be deleted have been entered. Typing only a carriage return (either
on a line by itself or immediately after the MOD NAME: message)
terminates input and initiates execution of the command line.

Examples:

XOTI3STRAP=DTISTRAF /T

MOD NAME
SGN <CRD
TAN <CR>
{CR>

The modules SGN.OBJ and TAN.OBJ are deleted from the library file
TRAP.OBJ on DT3:.

KL TBF DLl TRFIL AT ARC /R » DEF

MO NAME S
FIRST <CR>
<CR>

The module FIRST.OBJ is deleted from the library (LIBFIL); the module
ABC,OBJ replaces an old module of the same name in the library, and
the modules in the file DEF.OBJ are inserted into the library.

L TBF DL =L TRF LD

MOD NAME
X<CR>

X <CR>
{CR>

Two modules of the same name are deleted from the library file LIBFIL

(module names are assigned with the ,TITLE statement as described in
Section 7.2.1). '

7.2.2.6 Delete Global Switch - The Delete Global switch gives the
user the ability to delete a specific entry point from a library
file's Entry Point Table.

Command Formats:

*dev:lib=dev:1lib/G

where:
dev: represents the device on which the library file
exists
1lib represents the filename of an existing library
file



Librarian

/G - represents the Delete Global switch; may - be
BT positioned anywhere on the input side of the
command.-line « : o SRR

When the /G switch is used, the Librarian prints:
ENTRY POINT:

The user should respond with the name of the entry point to be deleted
followed by a carriage return; he may continue until all entry points
to be deleted have been entered. Typing only a carriage return
(either on a line by itself or immediately after the ENTRY POINT:
message) terminates input and initiates execution of the command line.

Example:
KROL L s=ROLL AG
ENTRY FOTNT S
NAMEMA <CR>
NAMEER <CR>
<CR>

This command instructs LIBR to delete the entry points NAMEA and NAMEB
from the entry point table found in the library file ROLL.OBJ on DK:.

Since entry points are only deleted from the Entry Point Table (and
not from the library itself) whenever a library file is updated, all
entry points that were previously deleted are restored unless the /G
switch is again used to delete them. This feature allows the user to
recover from inadvertently deleting the wrong entry point.

January 1976 7-8



Librarian

7.2.2,7 Update Switch - The Update switch allows the user to update a
library file by combining the insert and replace functions. If the
object modules included in an input file in the command ' line already
exist in the library file, they are replaced; if not, they are
inserted. (No error messages are printed when using the Update
function as might occur under the Insert and Replace functions.) /U
must follow each input file containing modules to be updated,

Command Format:

*dev:lib=dev:lib,dev:iinputl/U,...,devsinputn/U

where: :
devs: 7. represents a device-specification
1lib represents the fileﬁame of an existing library
< oo file T ‘ '
input represents the names of files containing object
modules to be updated.
/U ) represents the Update switch‘
:EQamﬁies: . ; " .
KEAL TR=BAL IR FOLT/U» TAL s BART /U

This command line instructs LIBR to update the library file BALIB,OBJ
.on.; the -default ' :device, First the modules in FOLT.OBJ and BART,OBJ
replace old modules of the same hames in ‘the library file, or if  none
already exist - under their names, the modules are inserted. Then the
modules from the file TAL.OBJ -are ‘inserted; an -error message 1is
printed if the name of the module in TAL,OBJ already exists.

KXL TR XL LR/ Dy Z/UL0G

MOX NAME 3

X {CR>

X {CR>

<CR>

ENTRY FOINTS
. <CR>

2l <CR>

There .are two..:.object ' - modules: of. the same name (X) in both 2 and
XLIB; .these are first deleted from XLIB. This ensures that both
modules X in file 2 are correctly placed into the ‘library. Entry
points SEC and SECl are also deleted from the Entry Point Table,
but automatically return when the libary (XLIB) is updated.

7.2.2.8 Listing the Directory of a Library File - The user may
specify that a listing of the contents of a library file be output by
indicating both the library file and a:list file in the command 1line.
Since a 1library file is not being created or updated, it is not
necessary to indicate: the filename on the output side of the command
line;- ‘however a comma must-be used to designate a null output library
file.

7-9



Librarian

Command Formats:

* ,LP:=dev:1lib
or
*,dev:list=dev:lib
where:
dev: represents a device specification
1ib represents the file name of an existing library file
LP: indicates the listing is to be sent directly to the

line printer
list represents a list file of the library file's contents
Examples:
Ky DT20L TS =l TRF T

This command line outputs to DECtape 2 as LIST.LLD a listing of the
contents of the library file LIBFIL,OBJ on the default device.

Myl =L IR

This command outputs on the line printer a listing of all modules in
the library file FLIB.OBJ stored on the default device. Assuming this
library is composed of modules STOP, WAIT, and IMUL, is 2 blocks long,
was created on September 6, 1974, and the listing was requested on
September 6, 1974, the directory format appears as follows:

RT={l LIBRARIAN X@2e®5 6=SEPa7 4

FLIB 6=SEPe’4 2 BLOCKS

MODULE ENTRY/GCSECT ENTRY/CSECT ENTRY/CSECT

§TQp STPS

WALT SWAIT

IMUL MUISIS MUISMS MUISPS
MUIsss sML1

7.2.2.9 Merging Library Files - Two or more library files may be
merged under one filename by indicating all the library files to be
merged in a single command line., The individual library files are not
deleted following the merge.

Command Format:

*dev:lib=dev:inputl,...,dev:inputn

where:
dev: represents a device specification
1ib represents the name of the library file which will

contain all the merged files (if a library file

7-10



Librarian

already exists under this name, it must also be
indicated in the input side of the command line in
order to be included in the merge)
input represents the library files to be merged together
Thus, the command:
AMATN=MATNy TRIGSTFy BAT
combines library files MAIN,OBJ, TRIG,OBJ, STP.OBJ,.and BAC.OBJ under
the existing library file name MAIN,OBJ; all files are on the default
device DK:.
RFORT =M By

This command creates a library file named FORT.OBJ and merges existing
library files A.OBJ, B.OBJ, and C.OBJ under the filename FORT.OBJ.

NOTE
Library files that have been combined

under PIP are illegal as input to both
the Librarian and the Linker,

7.3 COMBINING LIBRARY SWITCH FUNCTIONS

Two or more library functions may be requested in the same command
line. The Librarian performs functions in the following order:

l. /C
2, /D
3. /G
4. /U
5. /R

6., Insertions
7. Listing

RETLE p L3 =F TLE /Ty MODXy MODY /R

MO NAME S
XYZ {CR>
A <CR>
<CR>
Functions in this example axre performed in order, as follows:

1. Delete modules XY%.,0BJ and A.OBJ from the library file
FILE,OBJ

2. Replace any duplicate of the module in the file MODY.OBJ
3, Insert the modules in the file MODX,O0BJ

4, List the contents of FILE.OBJ on the line printer



Librarian

7.4 FORMAT OF LIBRARY FILES

A library file is a contiguous file consisting of a header, an Entry
Point Table (library directory) and one or more library object
modules, as illustrated in Figure 7-1: :

LIBRARY HEADER

ENTRY POINT TABLE

! OBJECT MODULES |

LIBRARY END TRAILER BLOCK

Figure 7-1
General Library File Format

The folloﬁing péragraphs describe in -detail each éomponent of a
library file.

7.4.1 Library Header

The header section of a library file contains 17 (decimal) words which
describe the current status of the file (refer to Figure 7-2). This
includes information relating to the version of the Librarian in use,
the date and time of file creation or update, the relative starting
address of the Entry Point Table (EPT), the number of EPT entries
available and in use, and the placing of the next module to be
inserted into the library file. The contents of the library header
are updated as the library file is modified, so that LIBR can always
quickly and easily access the information it needs to perform its
functions. PFigure 7-2 illustrates the header format.



Librarian

FORMATTED BINARY
BLOCK HEADER

568
7 | LBRARIAN CODE
x| version numeer
0 | reserven : )
x| YEAR MONTH DAY ©
.
0
0 RESERVED
N 0

12g | EPT RELATIVE START ADDRESS - °

X1 EPT ENTRIES ALLOCATED IN BYTES
DEriae il 0 Ty g0 |EPT ENTRIES AVAILABLE (NOT USEDINIVERSION 1) <

<3 20| NEXT INSERT RELATIVE BLOCK‘NUMBER

T TS

x3 NEXT BYTE WITHIN BLOCK -

0 NOT USED (MUST BE ZERO) I
Figure 7-2

“ Library Headetr Format

7.4.2 Entry Point Table (Library Directory)

The Entry Point Table is .located immediately after the library header.
It is composed of four-word entries which include the names,
addresses, and entry points of all object modules in the library file.
The first two words of an entry in the EPT contain the Radix 50 name
by which an entry point, CSECT, or moditle is referenced. The third |
word provides a pointer to the: object.module where an entry point is
defined. The fourth word contains the total number of CSECTs in the

object module (information needed by the Linker), and the relative
byte within the block pointing to the object module's starting point,
as shown in Figure 7-3. . )
0 SYMBOL  (RAD 50)
"2 SYMBOL (RAD50)
4 ADDRESS OF BLOCK " - 7 BIT15=1-MODULE NAME l
= @-CSECT OR ENTRY POINT NAME
6 | BT MODULE | RELATIVE BYTE IN BLOCK | RELATIVE BYTE MAXIMUM=7775

CSECTS MAXIMUM =177g

L 'vFigure 7-3.
. Format of Entry Point Table



Librarian

7.4.3 Object Modules

Object modules follow the Entry Point Table, An object module
consists of ‘three main types of data blocks: a global symbol
directory, text blocks, and a relocation directory. The information
contained in these data blocks is used by the Linker during creation
of a load module.

7.4.4 Library End Trailer

Following all object modules in a library file is a specially coded
library end trailer which signifies the end of the file. This trailer
is illustrated in Figure 7-4.

1 FORMATTED BINARY HEADER

10 FORMATTED BINARY LENGTH

10 TYPE CODE

o NOT USED (MUST BE ZERO)

357 CHECKSUM BYTE

Figure 7-~4
Library End Trailer

7.5 LIBR ERROR MESSAGES

The following error messages are printed following incorrect wuse of

LIBR; if any errors result during library processing, the user must
reenter the command.

Message Meaning

?BAD LIBR? The user has attempted to build a
library file containing no directory
entries or he has given an illegally
constructed library file to the
Librarian as input.

?BAD OBJ? A bad object module was detected during
input.
?CSECT ERROR? The wuser has extended beyond the

allowable ,CSECT space for an object
module to be placed in the library
(i.e., the object module contains
greater than 127(decimal) .CSECTs).



Librarian
Message

?DEV FULL?

?FIL NOT FND?

?ILL CMD?

xxxxxx ILL DEL

?ILL DEV?

XXxXxXxx ILL INS

XXXXxx ILL REPL

?IN ERR?

?LIBR FIL ILL REPL?

?NO CORE?

?20UT ERR?

Meaning

The device is full; LIBR is unable to
create or update the indicated library
file. The CSI prints an asterisk and
waits for the user to enter another
command line,

One of the input files indicated in the
command line was not found. The CSI
prints an asterisk; the command may be
reentered,

An illegal command was used in the
command line. The CSI prints an
asterisk; the command may be reentered,

An attempt was made to delete from the
library's directory a module or an entry
point that does not exist; XXXXXX
represents the module or entry point
name. The name is ignored and processing
continues.

An illegal device was specified in the
command line. The CSI prints an
asterisk; the command may be reentered.

An attempt was made to insert a module
into a library which contains the same
entry point as an existing module.
XXXXXX represents the entry point name.
The entry point is ignored but the module
is still inserted into the library.

An attempt was made to replace in the
library file a module which does not
already exist, XXXXXX represents the
module name. The module is ignored and
the library is built without it.

An unrecoverable hardware/software error
has occurred while processing an input
file. The CSI prints an asterisk and
waits for another command to be entered.

The user has specified that a library
file be replaced by another library
file. Only object modules can be
replaced.,

Available free memory has been used up.
The current command is aborted and the
CSI prints an asterisk; a new command
may be entered,

An unrecoverable hardware/software error
has occurred while processing an output
file. This may indicate that there is
not enough space left on the device to
create the 1library file, even though
there may be enough directory entries.
The CSI prints an asterisk and waits for
the user to enter another command.

7-15 January 1976






CHAPTER 8

ON-LINE DEBUGGING TECHNIQUE

RT-11 On~line Debugging Technique (ODT) is a system program that aids
in debugging assembled and linked object programs. From the keyboard,
the user interacts with ODT and the object program to:

1. Print the contents of any location for examination or
alteration.

2. Run all or any portion of an object program using the
breakpoint feature.

3. Search the object program for specific bit patterns.

4. Search the object program for words which reference a
specific word.

5. Calculate offsets for relative addresses.

6. Fill a single word, block of words, byte or block of bytes
with a designated value.

The assembly listing of the program to be debugged should be readily
available when ODT is being used. Minor corrections to the program
can be made on-line during the debugging session, and the program may
then be run under control of ODT to verify any changes made. Major
corrections, however (such as a missing subroutine), should be noted
on the assembly 1listing and incorporated in a subsequent updated
program assembly.

8.1 CALLING AND USING ODT

ODT is supplied as a relocatable object module. It can be linked with
the user program (using the RT-1l1 Linker) for an absolute area in
memory and loaded with the user program. When linked with the user
program, ODT should reside in low memory, starting at 1000, to accom-
modate its stack.

Once loaded in memory with the user program, ODT has three legal start
or restart addresses. The lowest (0.ODT) is used for normal entry,
retaining the current breakpoints. The next (0.0DT+2) is a restart
address which clears all breakpoints and re-initializes ODT saving the
general registers and clearing the relocation registers., The last
address (0.0DT+4) is used to reenter ODT. A reenter saves the
Processor Status and general registers and removes the breakpoint

8-1 January 1976



Oon-Line Debugging Technique

instructions from the user

error message.
command. (;P

program,
Breakpoints which were set are reset on the
is illegal after a BE message.) The ;G and ;P commands

ODT prints the Bad Entry (BE)
next ;G

are used to run a program and are explained in Section 8.3.7.

The absolute address used is the address
0.0DT is always the lowest address of

shown in the Linker load map.

of the entry point 0,0DT

opT+172, i.e., 0.0DT is relative location 172 in ODT.

NOTE
If linked with an overlay structured
file, ODT should reside in the root

segment so it is always
inserted

breakpoint
be destroyed if it
program execution.

If ODT is being used in a

Foreground/Background

in memory. A
in an overlay will

is overlaid during

environment with

another job running, ODT's priority bit must be set to 0 as follows:

*$FP/BBBOB7 @ (CRY

This puts ODT into the wait state at level 0, not 7. If this

is not

done, all interrupts (including clock) will be locked out while ODT is

waiting for terminal input.
Examples:

1.
.GET USER. SRY

. START 11ve

007 vYei1-81
b

2. Loading ODT with the User

3.
LSTART 1174

*

January 1976

ODT Linked with the User Program:

User program previously 1linked to
ODT is brought into memory.

Value (1172) of entry point 0,0DT
(determined from Linker load map)
is used to start ODT.

Program:

ODT is loaded into memory.
User program is loaded into memory.

Assuming ODT has been linked for a
bottom address of 40000, ODT starts.

Restarting ODT Clearing Breakpoints:

Assuming ODT was originally
linked for a bottom address of 1000,
this command (0.ODT+2)
re-initializes ODT and clears any

previous breakpoints.

8-2



On-Line Debugging Technique

4, Reentering ODT:

CSTART 1476 Assuming ODT was 1linked for a
b bottom address of 1000, the value
BEGBLl212 of 0.0ODT 1172+4 is used as the

* start address.

5. Using ODT with Foreground/Background Jobs:

It is possible to use ODT to debug programs written as either
background or foreground jobs. In the background or under
the Single-Job Monitor, ODT can be linked with the program as
described in Example 1 above.

To debug a program in the foreground area, it is recommended
that ODT be run in the background while the program to be
debugged is in the foreground. The sequence of commands to

do this is:
. FRUN FROG~F Load the foreground program.
LOADED AT XXXXXX The first address of the job is
. RUN ODT printed (xxxxxx)
Run ODT in the background
obT  vYei-ai and set a relocation register
*XXXXXX; OR to the start of the job. SF
*$F /000008 G<CR> is the format register. It
*8; 6 should be cleared to enable proper
address print out. 0;G starts the
. Rsu Keyboard Monitor again, and L.RSU

starts the foreground job.

The copy of ODT used must be linked low enough so that it
will fit in memory along with the foreground job.

NOTE

Since ODT uses its own terminal handler,
it cannot be wused with the display
hardware. If GT ON has been typed, ODT
will ignore it and direct I/0 only to
the console terminal.

8.1.1 Return to Monitor, CTRL C

If ODT is awaiting a command, a CTRL C from the keyboard calls the
RT-11 Keyboard Monitor. The monitor responds with a 1C on the
terminal and awaits a Keyboard Monitor command. (The monitor REENTER
command may be used to reenter ODT only if the user program has set
the reenter bit. Otherwise ODT is reentered at address O0,0DT+4 as
shown above.)



On-Line Debugging Technique

8.1.2 Terminate Search, CTRL U

I1f typed during a search printout, a C W U terminates the search and
ODT prints an asterisk.

8.2 RELOCATION

When the assembler produces a binary object module, the base address
of the module is taken to be location 000000, and the addresses of all
program locations as shown in the assembly 1listing are indicated
relative to this base address. After the module is linked by the
Linker, many values within the program, and all the addresses of
locations in the program, will be incremented by a constant whose
value is the actual absolute base address of the module after it has
been relocated. This constant is called the relocation bias for the
module. Since a linked program may contain several relocated modules
each with its own relocation bias, and since, in the process of
debugging, these biases will have to be subtracted from absolute
addresses continually in order to relate relocated code to assembly
listings, RT-11 ODT provides an automatic relocation facility.

The basis of the relocation facility 1lies in eight relocation
registers, numbered 0 through 7, which may be set to the values of the
relocation biases at different times during debugging. Relocation
biases should be obtained by consulting the memory map produced by the
Linker., Once set, a relocation register is used by ODT to relate
relocatable code to relocated code. For more information on the exact
nature of the relocation process, consult Chapter 6, the RT-1l Linker.

8.2.1 Relocatable Expressions

A relocatable expression is evaluated by ODT as a 16=bit (6=-digit
octal) number and may be typed in any one of the three forms presented
in Table 8-1. In this table, the symbol n stands for an integer in the
range 0 to 7 inclusive, and the symbol k stands for an octal number up
to six digits long, with a maximum value of 177777. If more than six
digits are typed, ODT takes the last six digits, truncated to the
low-order 16 bits. k may be preceded by a minus sign, in which case
its value is the two's complement of the number typed. For example:

k (number typed) Values
1 000001
-1 177777
400 000400
-177730 000050
1234567 034567



On-Line Debugging Technique

Table 8-1
Forms of Relocatable Expressions (r)
r Value of r
A) k The value of r is simply the value of k.
B) n,k The value of r is the value of k plus

the contents of relocation register n.
If the n part of this expression is
greater than 7, ODT uses only the last
octal digit of n,

C) C or Whenever the letter C is typed, ODT
C,k or replaces C with the contents of a
n,C or special register called the Constant
c,C Register, This value has the same role

as the k or n that it replaces (i.e.,
when used in place or n it designates a
relocation register). The Constant
Register is designated by the symbol $C
and may be set to any value, as
indicated below.

In the following examples, assume in each case that relocation
register 3 contains 003400 and that the constant register contains
000003,

K]

Value of r

000005
C 177761
C 003400
0;C 003550
;C 003377

000003
C 003403
Cc 003400
:C 003410
c 003403

N N W N NS 8§ e

aHEoNNO |

- O we w

QOO wQwww il un

NOTE

For simplicity most examples in this
section use Form A, All three forms of r
are equally acceptable, however.

8.3 COMMANDS AND FUNCTIONS

When ODT is started (as explained in Section 8.1) it indicates
readiness to accept commands by printing an asterisk on the left
margin of the terminal page. Most of the ODT commands can be issued
in response to the asterisk. For example, a word can be examined and
changed if desired, the object program can be run in its entirety or
in segments, or memory can be searched for certain words or references
to certain words. The discussion below explains these features. In
the following examples, characters output by ODT are underlined to
differentiate from user input.

8.3.1 Printout Formats

Normally, wpen ODT prints addresses (as with the commands , t, «, e,
<, and >) it attempts to print them in relative form (Form B in Table

8-5




On-Line Debugging Technique

8-1). ODT looks for the relocation register whose value is closest but
less than or equal to the address to be printed, and tpen reprgsents
the address relative to the contents of the relocation register.
However, if no relocation register fits the requirement, Fhe address
is printed in absolute form. Since the relocation reglsge?s. are
initialized to -1 (the highest number) the addresses are initially
printed in absolute form. If any relocation register subsequently has
its contents changed, it may then, depending on the command, qualify

for relative form.

For example, suppose relocation registers 1 and 2 contain 1000 and
1004 respectively, and all other relocation registers contain numbers
much higher. Then the following sequence might occur (the slash
command causes the contents of the location to be printed; the line
feed command (KLF)>) accesses the next sequential location):

¥774,/860008 (LF>
fae776 0680608 CLFY

1, 0000608 /000BEE <LF> (absolute location 1000)
1, G0@0B2 /600006 <LF> (absolute location 1002)
2, 0800000 /00BGRO (absolute location 1004)

The printout format is controlled by the format register, $F. Normally
this register contains 0, in which case ODT prints addresses
relatively whenever possible. $F may be opened and changed to a
non-zero value, however, in which case all addresses will be printed
in absolute form (see paragraph 8.3.4, Accessing Internal Registers).

8.3.2 Opening, Changing, and Closing Locations

An open location is one whose contents ODT prints for examination,
making those contents available for change., In a closed location, the
contents are no longer available for change. Several commands are
used for opening and closing locations.

Any command used to open a location when another location is already
open causes the currently open location to be closed. The contents of
an open location may be changed by typing the new contents followed by
a single-character command which requires no argument (i.e., <LF> , t,
RETURN, +, &, >, ().

The Slash, /

One way to open a location is to type its address followed by a slash:

#1808/ 812746

Location 1000 is open for examination and is available for change.

If the contents of an open location are not to be changed, type the
RETURN key and the location is closed; ODT prints an asterisk and
waits for another command. However, to change the word, simply type
the new contents before giving a command to close the location:

*10068-/012746 B12345 {CRD

*



On-Line Debugging Technique

In the example above, location 1000 now contains 012345 and is closed
since the RETURN key was typed after entering the new contents, as
indicated by ODT's second asterisk.,

Used alone, the slash reopens the last location opened:

*18808/°812345 2348 <{CRD>
i{,;g@q-’ga

In the example above, the open location was closed by typing the
RETURN key. ODT changed the contents of location 1000 to 002340 and
then closed the location before printing the *, The single slash
command directed ODT to reopen the last location opened. This allowed
verification that the word 002340 was correctly stored in location
1000.

Note again, that opening a location while another is open
automatically closes the currently open location before opening the
new location.

Also note that if an odd numbered address is specified with a slash,

ODT opens the location as a byte, and subsequently behaves as if a
backslash had been typed (see the following paragraph).

The Backslash, \

In addition to operating on words, ODT operates on bytes. One way to
open a byte is to type the address of the byte followed by a
backslash., (On the LT33 or LT35 terminal \ is typed by pressing the
SHIFT key while typing the L key.) This causes not only the printing
of the byte value at the specified address but also the interpreting
of the value as ASCII code, and the printing of the corresponding
character (if possible) on the terminal:

»1001\161 =A

A backslash typed alone reopens the last open byte. If a word was
previously open, the backslash reopens its even byte:

*10682-/000604 004 =

The LINE FEED Key, <LF>

If the LINE FEED key is typed when a location is open, ODT closes the
open location and opens the next sequential location:

*1006/082348 <LF> ( <LF> denotes typing the LINE FEED key)
6810862 A B1c2v48

In this example, the LINE FEED key caused ODT to print the address of
the next location along with its contents, and to wait for further
instructions. After the above operation, location 1000 is closed and
1002 is open. The open location may be modified by typing the new
contents.

If a byte location was open, typing the LINE FEED key opens the next
byte location.
8-7



On-Line Debugging Technique

The Up~Arrow, t or "

If the up-arrow (or circumflex) is typed when a location is open
(up-arrow is produced on an LT33 or LT35 by typing SHIFT N), ODTcloses
the open location and opens the previous location., To continue from
the example above:

+BH1862-812748 ¢
G81660 802346

Now location 1002 is closed and 1000 is open. The open location may
be modified by typing the new contents.

If the opened location was a byte, then up-arrow opens the previous
byte.

The Back=Arrow, <« or

If the back-arrow (or underline) is typed (via SHIFT O on an LT33 or
LT35 terminal) to an open word, ODT interprets the contents of the
currently open word as an address indexed by the Program Counter (PC)
and opens the addressed location:

1006/ BOBRBE «
601016 /0BE4AS

Notice in this example that the open location, 1006, was indexed by
the PC as if it were the operand of an instruction with address mode
67 as explained in Chapter 5.

A modification to the opened location can be made before a line feed,
up-arrow, or back-arrow is typed. Also, the new contents of the
location will be used for address calculations using the back-arrow
command., Example:

#1808 8868222 4 <LF> (modify to 4 and open next location)
pEA182 S6BO111 &1t (modify to 6 and open previous location)
660160 /0008064 188+ (change to 100 and open location indexed

ABR2Bz /123456 by PC)

Open the Addressed Location, @

The at symbol @ (SHIFT P on the LT33 or LT35 terminal) may be used to
optionally modify a location, close it, and then use its contents as
the address of the location to open next.

#1066/061044 @ (open location 1044 next)

8081644 /608568

*1006/0010644 2100€ (modify to 2100 and open location
gpzi86 SEGB8167 2100)




On-Line Debugging Technique

Relative Branch Offset, >

The right—-angle bracket, >, will optionally modify a 1location, close
it, and then use its low-order byte as a relative branch offset to the
next word to be opened. For example:

*1032/060467 361> (modify to 301 and interpret as a
BBBE3E /0000LD relative branch)

Note that 301 is a negative offset (~77). The offset is doubled before
it is added to the PC; therefore, 1034+(~176)=636,

Return to Previous Sequence, <

The left-angle bracket, <, allows the user to optionally modify a
location, close it, and then open the next location of the previous
sequence which was interrupted by a back-arrow, @, or right-angle
bracket command. Note that back~arrow, @, or right-angle bracket
causes a sequence change to the word opened. If a sequence change has
not occurred, the left-angle bracket simply opens the next location as
a LINE FEED does. This command operates on both words and bytes.

*1032/060467 301> (> causes a sequence change)
880636 /B00BLE < (return to original sequence)
0019834 /0010840 @ (@ causes a sequence change)
60168408 /0008485 e85 = < (< now operates on byte)
pB1835 \N@gdBe = < (< acts like <LF>)

681836 084 =

8.3.3 Accessing General Registers 0-7

The program's general registers 0-7 are opened with a command in the
following format:

*$n/
where n is the integer representing the desired register (in the range

0 through 7). When opened, these registers can be examined or changed
by typing in new data as with any addressable location. For example:

*$0./008083% <CR> (R0 was examined and closed)

*

*$4/066474 464<{CR> (R4 was opened, changed, and closed)
»*

The example above can be verified by typing a slash in response to
ODT's asterisk:

/0008464

The LINE FEED, up-arrow, back-arrow or @ command may be used when a
register is open.



On-Line Debugging Technique

8.3.4 Accessing Internal Registers

The program's Status Register contains the condition codes of the most
recent operational results and the interrupt priority level of the
object program. It is opened by typing $S. For example:

$S represents the address of the Status Register., In response to $S
in the example above, ODT printed the 16-bit word, of which only the
low-order eight bits are meaningful, Bits 0-3 indicate whether a
carry, overflow, zero, or negative (in that order) has resulted, and
bits 5~7 indicate the interrupt priority level (in the range 0-7) of
the object program. (Refer to the PDP-11 Processor Handbook for the
Status Register format.)

The $ is used to open certain other internal locations listed in Table
8=2:
Table 8=2
Internal Registers

Register Function

$B location of the first word of the breakpoint table
(see Section 8.3.6).

$M |mask location for specifying which bits are to be
examined during a bit pattern search (see Section
8.3.9).

$P location defining the operating priority of ODT
(see Section 8.3.15).

$s location containing the condition codes (bits 0-3)
and interrupt priority level (bits 5-7) (explained
above) .

$c location of the Constant Register (see Section
8.3.10).

SR location of Relocation Register 0, the base of the
Relocation Register table (see Section 8.3.13).

SF location of Format Register (see Section 8.3.1).

8.3.5 Radix 50 Mode, X

The Radix 50 mode of packing certain ASCII characters three to a word
is employed by many DEC-supplied PDP-1l system programs, and may be
employed by any programmer via the MACRO Assembler's " .RAD50"
directive. ODT provides a method for examining and changing memory
words packed in this way with the X command.

When a word is opened and the X command is typed, ODT converts the
contents of the opened word to its 3-character Radix 50 equivalent and
prints these characters on the terminal. One of the responses in
Table 8-3 can then be typed:



On-Line Debugging Technique

Table 8-3
Radix 50 Terminators
Response Effect
RETURN key <CR> Closes the currently open location.

LINE FEED key <LF)> |[Closes the currently open location and
opens the next one in sequence.

t key Closes the currently open location and
opens the previous one in sequence,

Any three Converts the three specified characters

characters whose into packed Radix 50 format.

octal code is 040
(space) or greater.

Legal Radix 50 characters for this last response are:

. $ Space 0 through 9 A through 2

If any other characters are typed, the resulting binary number is
unspecified (that is, no error message is printed and the result is
unpredictable) . Exactly three characters must be typed before ODT
resumes its normal mode of operation. After the third character is
typed, the resulting binary number is available to be stored in the
opened location by closing the location in any one of the ways listed
in Table 8-~3. Example:

#1000/ 842431 W=KBI CBR <CR>
*1000/6811421 X=CEA

NOTE

After ODT has converted the three
characters to binary, the binary number
can be interpreted in one of many
different ways, depending on the command
which follows. For example:

#1234 /863337 K=PRO XIT/B8137@4

Since the Radix 50 equivalent of XIT is
113574, the final slash in the example
will cause ODT to open location 113574
if it is a 1legal address. (Refer to
paragraph 8.5 for a discussion of
command legality and detection of
errors.)

8.3.6 Breakpoints

The breakpoint feature facilitates monitoring the progress of program
execution. A breakpoint may be set at any instruction which is not
referenced by the program for data. When a breakpoint is set, ODT
replaces the contents of the breakpoint 1location with a trap
instruction so that program execution is suspended when a breakpoint

8-11



on-Line Debugging Technique

is encountered. The original contents of the breakpoint location are
restored, and ODT regains control.

With ODT, up to eight breakpoints, numbered 0 through 7, can be set at
any one time, A breakpoint is set by typing the address of the
desired location of the breakpoint followed by ;B. Thus r;B sets the
next available breakpoint at location r. (If all 8 breakpoints have
been set, ODT ignores the r;B command.) Specific breakpoints may be
set or changed by the r;nB command where n is the number of the
breakpoint. For example:

*1028; B (sets breakpoint 0)
fiﬂs@iﬁ (sets breakpoint 1)
*18443; B (sets breakpoint 2)
¥10832; 1B

(resets breakpoint 1)

*
The ;B command removes all breakpoints. Use the ;nB command to remove
only one of the breakpoints, where n is the number of the breakpoint.
For example:

; 2B (removes the second breakpoint)

F1 ¥

A table of breakpoints is kept by ODT and may be accessed by the user,
The $B/ command opens the location containing the address of
breakpoint 0. The next seven locations contain the addresses of the
other breakpoints in order, and can be sequentially opened using the
LINE FEED key. For example:

*$B-/0010828 <LF>
nnnnnn /881632 <LF>
nnnnnn ¢ nnnnnn (nnnnnn=address internal to ODT)

In this example, breakpoint 2 is not set. The contents printed is an
address internal to ODT and can be determined by checking the Linker
Load Map (see Chapter 6).

It should be noted that a repeat count in a Proceed command refers
only to the breakpoint that has most recently occurred. Execution of
other breakpoints encountered is determined by their own repeat
counts.

8.3.7 Running the Program, r;G and r;P

Program execution is under control of ODT., There are two commands for
running the program: r;G and r;P., The r;G command is used to start
execution (Go) and r;P to continue (Proceed) execution after halting
at a breakpoint. For example:

w1 808; G

Execution is started at 1location 1000, The program runs until a
breakpoint 1is encountered or until program completion, unless it gets
caught in an infinite loop, in which case it must be either restarted
or reentered as explained in Section 8.1.

Upon execution of either the r;G or r;P command, the general registers
0-6 are set to the values in the locations specified as $0-$6 and the

8-12



On-Line Debugging Technique

processor Status Register is set to the value in the 1location
specified as $S.

When a breakpoint is encountered, execution stops and ODT prints Bn;
(where n is the breakpoint number), followed by the address of the
breakpoint. Locations can then be examined for expected data. For
example:

*10818; 3B (breakpoint 3 is set at location 1010)
*1E00; G (execution started at location 1000)
EZ; B1818 (execution stopped at location 1010)

To continue program execution from the breakpoint, type ;P in response
to ODT's last *,

When a breakpoint is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before
recognizing the breakpoint. This can be done by setting a proceed
count using the k;P command; this command specifies the number of
times the breakpoint is to be encountered before program execution is
suspended (on the kth encounter). The count, k, refers only to the
numbered breakpoint which most recently occurred., A different proceed
count may be specified for the breakpoint when it is encountered.
Thus:

QELQQEQ%Q (execution halted at breakpoint 3)
;i?gbi}s (reset breakpoint 3 at location 1026)

. (set proceed count to 4 and
E3; 8@1826 continue execution; loop through
* breakpoint three times and halt on
fourth occurrence of the breakpoint)

Following the table of breakpoints (as explained in Section 8.3.6) is
a table of proceed command repeat counts for each breakpoint. These
repeat counts can be inspected by typing $B/ and nine LINE FEEDs. The
repeat count for breakpoint 0 is printed (the first seven LINE FEEDs
cause the table of breakpoints to be printed; the eighth types the
single instruction mode, explained in the next section, and the ninth
LINE FEED begins the table of proceed command repeat counts). The
repeat counts for breakpoints 1 through 7, and the repeat count for
the single-instruction trap follow in sequence. Before a proceed
count is assigned a value by the user, it is set to 0; after the count
has been executed, it is set to -1l. Opening any one of these provides
an alternative way of changing the count as the location, once open,
can have its contents modified in the usual manner by typing the new
contents and then the RETURN key. For example:

nnnnnn /gp1a3i6 <LF> (address of breakpoint 7)

nnnnnn /pe66:68 <LF> (single instruction address)

nnnnnn /geeeeEe 15 <LF> (count for breakpoint 0; change to 15)
nnnnnn /papeee <LF> (count for breakpoint 1)

nnnnn_ /8aea68. <LF> (count for breakpoint 7)
nnnnnn_/nnnnnn (repeat count for single instruction

mode; the single instrucion address

8-13



On~Line Debugging Technique

is an address internal to the wuser
program if single instrucion mode is
used)

The address indicated as the single instruction address and the repeat
count for single instruction mode are explained next.

8.3.8 Single Instruction Mode

Wwith this mode the number of instructions to be executed before
suspension of the program run can be specified, The Proceed command,
instead of specifying a repeat count for a breakpoint encounter,
specifies the number of succeeding instructions to be executed. Note
that breakpoints are disabled when single instruction mode is
operative,

Commands for single instruction mode are:

:nsS Enables single instruction mode (n can have any
non-zero value and serves only to distinguish this
form from the form ;S). Breakpoints are disabled.

n;p Proceeds with program run for next n instructions
before reentering ODT (if n is missing, it is
assumed to be 1). Trap instructions and associated
handlers can affect the Proceed repeat count. See
Section 8.4.2.

;S Disables single instruction mode.

Wwhen the repeat count for single instruction mode is exhausted and the
program suspends execution, ODT prints:

B8;nnnnnn

where nnnnnn is the address of the next instruction to be executed.
The $B breakpoint table contains this address following that of
breakpoint 7. However, unlike the table entries for breakpoints 0-7,
direct modification has no effect.

Similarly, following the repeat count for breakpoint 7 is the repeat
count for single instruction mode. This table entry may be directly
modified and thus is an alternative way of setting the
single-instruction mode repeat count. In such a case, ;P implies the
argument set in the $B repeat count table rather than an assumed 1.

8.3.9 Searches

With ODT all or any specified portion of memory can be searched for
any specific bit pattern or for references to a particular location.



On-Line Debugging Technique

Word Search, r;W

Before initiating a word search, the mask and search limits must be
specified. The location represented by $M is used to specify the mask
of the search. $M/ opens the mask register. The next two sequential
locations (opened by LINE FEEDs) contain the lower and upper limits of
the search. Bits set to 1 in the mask are examined during the search;
other bits are ignored. Then the search object and the initiating
command are given using the r;W command where r is the search object.
When a match is found, (i.e., each bit set to 1 in the search object
is set to 1 in the word being searched over the mask range) the
matching word is printed. For example:

*$M/300080 177488 <LE> (test high=-order eight bits)
nnnnnn /Ra86EGE 1668 <LFY (set low address limit)
nnnnnn A/@aaaae 1848 {CRD> (set high address limit)
*408; N (initiate word search)

21648 /806770
BRi6z4 /8668484
»

In the above example, nnnnnn is an address internal to ODT; this
location varies and is meaningful only for reference purposes. In the
first line above, the slash was used to open $M which now contains
177400; the LINE FEEDs opened the next two sequential locations which
now contain the upper and lower limits of the search.

In the search process an exclusive OR (XOR) is performed with the word
currently being examined and the search object, and the result is
ANDed to the mask. If this result is zero, a match has been found and
is reported on the terminal. Note that if the mask is zero, all
locations within the limits are printed.

Typing CTRL U during a search printout terminates the search.

Effective Address Search, r;E

ODT provides a search for words which address a specified location.
Open the mask register only to gain access to the low and high limit
registers., After specifying the search limits (as explained for the
word search), type the command r;E (where r is the effective address)
to initiate the search.

Words which are either an absolute address (argument r itself), a
relative address offset, or a relative branch to the effective
address, are printed after their addresses. For example:

x$M 177408 <LF> (open mask register only to gain
nnnnnn /8810880 1818 <LF> access to search limits)
nnnnnn /981840 1068 <CR)

#1034; E (initiating search)
501016 /801086 (relative branch)

6p16054 /882767 (relative branch)

*1020; E (initiating a new search)
@apiezz2 177774 (relative address offset)
01830 /861820 (absolute address)




on-Line Debugging Technique

Particular attention should be given to the reported effective address
references because a word may have the specified bit pattern of an
effective address without actually being so used. ODT reports all
possible references whether they are actually used as such or not.

Typing CTRL U during a search printout terminates the search.

8.3.10 The Constant Register, r;C

It is often desirable to convert a relocatable address into its value
after relocation or to convert a number into its two's complement, and
then to store the converted value into one or more places in a
program. The Constant Register provides a means of accomplishing this
and other useful functions.

When r;C is typed, the relocatable expression r is evaluated to its
6-digit octal value and is both printed on the terminal and stored in
the Constant Register. The contents of the Constant Register may be
invoked in subsequent relocatable expressions by typing the letter C.
Examples follow:

#-4432; C=173346 (the two's complement of 4432 is placed
in the Constant Register)

C <CR> (the contents of the Constant Register
are stored in location 6632)

*1888; 1R (relocation Register 1 is set to 1000)
#1, 4272; C=@@527E (relative location 4272 is reprinted as

an absolute location and stored in the
Constant Register)

8.3.11 Memory Block Initialization, ;F and ;I

The Constant Register can be used in conjunction with the commands ;F
and ;I to set a block of memory to a given value. While the most
common value required is zero, other possibilities are plus one, minus
one, ASCII space, etc.

When the command ;F is typed, ODT stores the contents of the Constant
Register in successive memory words starting at the memory word
address specified in the lower search 1limit, and ending with the
address specified in the upper search limit.

when the command ;I is typed, the low~order 8 bits in the Constant
Register are stored in successive bytes of memory starting at the byte
address specified in the lower search limit and ending with the byte
address specified in the upper search limit,

For example, assume relocation register 1 contains 7000, 2 contains
10000, and 3 contains 15000. The following sequence sets word
locations 7000-7776 to zero, and byte locations 10000-14777 to ASCII
spaces,



On=-Line Debugging Technique

(open mask register to gain access
*$M/BBOOEE <LF> to search limits)
nnnnnn_/@e@E#Ee 1,8 LF> (set lower limit to 7000)
nnnnnn /geeaee 2, -2 <LF> (set upper limit to 7776)
*+0; C=0060060 (Constant Register set to zero)
i F (Locations 7000-7776 set to zero)

*$M/000600 <LF)
nnnnnn./@e7e6e0 2, 8 <LF> (set lower limit to 10000)

nnnnnn,/g@877 7?6 3. -1 <CR> (set upper limit to 14777)

wd@; C=000648 (Constant Register set to 40
1 (SPACE))

* (Byte locations 10000~14777 are set

to value in low-order 8 bits of
Constant Register)

8.3.12 Calculating Offsets, r;O

Relative addressing and branching involve the use of an offset--the
number of words or bytes forward or backward from the current location
to the effective address. During the debugging session it may be
necessary to change a relative address or branch reference by
replacing one instruction offset with another. ODT calculates the
offsets in response to the r;0 command.

The command r;O0 causes ODT to print the 1l6-«bit and 8-bit offsets from
the currently open location to address r. For example:

#346/000034 414; 0 poBE4d 922 22 <CRD
+/00RB22

In the example, location 346 is opened and the offsets from that
location to location 414 are calculated and printed. The contents of
location 346 are then changed to 22 (the 8-bit offset) and verified on
the next line.

The 8-bit offset is printed only if it is in the range -128(decimal)
to 127(decimal) and the 16~bit offset is even, as was the case above.
For example, the offset of a relative branch is calculated and
modified as follows:

*1834/1083421 1634, 0 177776 IF7 “@el = IVV (CR>

*/1@377°7

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

8.3.13 Relocation Register Commands, r;nR, ;nR, ;R

The use of the relocation registers is defined in Section 8.2. At the
beginning of a debugging session it is desirable to preset the
registers to the relocation biases of those relocatable modules which
will be receiving the most attention,

This can be done by typing the relocation bias, followed by a
semicolon and the specification of relocation registers, as follows:

8-17



On-Line Debugging Technique

r;nR

r may be any relocatable expression and n is an integer from 0 to 7.
If n is omitted it is assumed to be 0. As an example:

*1008; 5K (puts 1000 into relocation register 5)
*5,100; 5K (effectively adds 100 to the contents
* of relocation register 5)

Once a relocation register is defined, it can be used to reference
relocatable values. For example:

AZEE08 1R (puts 2000 into relocation register 1)
A1, 2176 add468 (examines contents of location 4176)
=1,3V12; 88 (sets a breakpoint at location 5712)

In certain uses, programs may be relocated to an address below that at
which they were assembled. This could occur with PIC code (Position
Independent Code) which is moved without the use of the Linker. In
this case the appropriate relocation bias would be the two's
complement of the actual downward displacement. One method for easily
evaluating the bias and putting it in the relocation register is
illustrated in the following example.

Assume a program was assembled at location 5000 and was moved to
location 1000. Then the sequence:

x10008; 1K
*1, ~5008; 1K
*

enters the two's complement of 4000 in relocation register 1, as
desired.

Relocation registers are initialized to =1, so that unwanted
relocation registers never enter into the selection process when ODT
searches for the most appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation
registers to -1, type ;R.

ODT maintains a table of relocation registers, beginning at the
address specified by $R. Opening $R ($R/) opens relocation register 0.
Successively typing a line feed opens the other relocation registers
in sequence. When a relocation register is opened in this way, it may
be modified like any other memory location.

8.3.14 The Relocation Calculators, nR and n!

When a location has been opened, it is often desirable to relate the
relocated address and the contents of the location back to their
relocatable values. To calculate the relocatable address of the
opened location relative to a particular relocation bias, type n!,
where n specifies the relocation register., This calculator works with
opened bytes and words. If n is omitted, the relocation register
whose contents are closest but less than or equal to the opened
location is selected automatically by ODT. In the following example,
assume that these conditions are fulfilled by relocation register 2,

January 1976 -18

o3



On-Line Debugging Technique

which contains 2000, To find the most likely module that a given
opened byte is in:

*2380N011 = !'=2, 608500

Typing nR after opening a word causes ODT to print the octal number
which equals the value of the contents of the opened location minus
the contents of relocation register n. If n is omitted, ODT selects
the relocation register whose contents are closest but less than or
equal to the contents of the opened location. For example, assume the
relocation bias stored in relocation register 1 is 7000; then:

*1,500/066086 1R=1, 1710066

The value 171000 is the content of 1,500, relative to the base 7000.
An example of the use of both relocation calculators follows.

If relocation register 1 contains 1000, and relocation register 2
contains 2000, then to calculate the relocatable addresses of location
3000 and its contents, relative to 1000 and 2000, the following can be
performed,

*3I06D/000440 1'=1, BEZEEP 2'=2, PELEEE 1R=1, 177418 2R=2, 176416

8.3.15 ODT Priority Level, $P

$P represents a location in ODT that contains the interrupt (or
processor) priority 1level at which ODT operates. If $P contains the
value 377, ODT operates at the priority level of the processor at the
time ODT is entered. Otherwise $P may contain a value between 0 and 7
corresponding to the fixed priority at which ODT operates.

To set ODT to the desired priority level, open S$P. ODT prints the
present contents, which may then be changed:

*$P/B0BBBBE 37V <{CR>
*

If $P is not specified, its value is seven.

ODT priority must be set to 0 if ODT is being used in an F/B
environment with another job running.,

Breakpoints may be set in routines which run at different priority
levels. For example, a program running at a low priority may use a
device service routine which operates at a higher priority level. If
a breakpoint occurs from a low-priority routine, ODT operates at a low
priority; if an interrupt occurs from a high priority routine, the
breakpoints in the high priority routine will not be recognized since
they were removed when the low priority breakpoint occurred. That is,
interrupts set at a priority higher than the one at which ODT is
running will occur and any breakpoints will not be recognized, oDT
disables all breakpoints from the program whenever it gains control,

8-19 January 1976



On-Line Debugging Technique

Breakpoints are enabled when ;P and ;G commands are executed, For
example:

»$F /000807 5

*1000; B

*2000; B

*x1008; G

B0, 001000

* (an interrupt occurs and is serviced)

If a higher level interrupt occurs while ODT is waiting for input the
interrupt will be serviced, and no breakpoints will be recognized.

8.3.16 ASCII Input and Output, r;nA
ASCII text may be inspected and changed by the command:
r;nA
where r is a relocatable expression, and n is a character count. If n
is omitted it is assumed to be 1. ODT prints n characters starting at

location r, followed by a carriage return/line feed. Type one of the
following:

{CR> ODT outputs a carriage return/line feed and
an asterisk and waits for another command.

<LF> ODT opens the byte following the last byte
output.

Up to n characters of text

ODT inserts the text into memory, starting at
location r. If fewer than n characters are
typed, terminate the command by typing
CTRL U, causing a carriage return/line
feed/asterisk to be output. However, if
exactly n characters are typed, ODT responds
with a carriage return/line feed, the address
of the next available byte and a carriage
return/line feed/asterisk.

ODT does not check the magnitude of n,

8.4 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
OoDT, However, it does provide a better understanding of how ODT
pgrfor@s some of its functions and in certain difficult debugging
situations, this understanding is necessary.

8.4,1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command clecoding, command execution, and various
utility routines.

The command decoder interprets the individual commands, checks ior

command errors, saves input parameters for use in command execution,
and sends control to the appropriate command execution routine,

January 1976 8-20



On-Line Debugging Technique

The command execution routines take parameters saved by the command
decoder and use the utility routines to execute the specified command.
Command execution routines exit either to the object program or back
to the command decoder,

The utility routines are common routines such as SAVE-RESTORE and I/O.
They are used by both the command decoder and the command executers.

8.4.2 Breakpoints

The function of a breakpoint is to give control to ODT whenever the
user program tries to execute the instruction at the selected address.,
Upon encountering a breakpoint, all of the ODT commands can be used to
examine and modify the program.

When a breakpoint is executed, ODT removes all the breakpoint
instructions from the user's code so that the locations may be
examined and/or altered. ODT then types a message on the terminal of
the form Bn;k where k is the breakpoint address (and n is the
breakpoint number), The breakpoints are automatically restored when
execution is resumed.

A major.restriction in the use of breakpoints is that the word where a
breakpoint was set must not be referenced by the program in any way
since ODT altered the word. Also, no breakpoint should be set at the
location of any instruction that clears the T=bit. For example:
MOV #240,177776 ;SET PRIORITY TO LEVEL 5
NOTE

Instructions that cause or return from

traps (e.g., EMT, RTI) are likely to

clear the T-bit, since a new word from

the trap vector or the stack is loaded
into the Status Register,

A breakpoint occurs when a trace trap instruction (placed in the user
program by ODT) is executed. When a breakpoint occurs, the following
steps are taken:

l. Set processor priority to seven (automatically set by trap
instruction).

2, Save registers and set up stack.
3. If internal T-bit trap flag is set, go to step 13.
4, Remove breakpoints.

5. Reset processor priority to ODT's priority or user's
priority.

6. Make sure a breakpoint or single-instruction mode caused the
interrupt.

7. If the breakpoint did not cause the interrupt, go to step 15.
8. Decrement repeat count.

9. Go to step 18 if non-zero; otherwise reset count to one.

10. Save terminal status.

1ll. Type message about the breakpoint or single-instruction mode
interrupt.

8-21 January 1976



On-=Line

12.
13.
14,
15.
le.
17.

18,

Debugging Technique

Go to command decoder.

Clear T-bit in stack and internal T-bit flag.
Jump to the Go processor.

Save terminal status.

Type BE (Bad Entry) followed by the address.

Clear the T-bit, if set, in the user status and proceed to
the command decoder.

Go to the Proceed processor, bypassing the TT restore
routine,

Note that steps 1-5 inclusive take approximately 100 microseconds

during

which time interrupts are not permitted (ODT is running at

level 7).

When a proceed (;P) command is given, the following occurs:

1.

The proceed is checked for legality.

The processor priority is set to seven.

The T-bit flags (internal and user status) are set.

The user registers, status, and Program Counter are restored,
Control is returned to the user.

When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of the

breakpoint sequence are executed, breakpoints are restored,
and program execution resumes normally.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction

causing

1.

2.

a trap, the following occurs:

When the breakpoint occurs as described above, ODT is
entered.

When ;P is typed, the T-bit is set and the IOT, EMT, TRAP, or
other trapping instruction is executed.

This causes the current PC and status (with the T=-bit
included) to be pushed on the stack.

The new PC and status (no T-bit set) are obtained £from the
respective trap vector.

The whole trap service routine is executed wisthout any
breakpoints.

When an RTI is executed, the saved PC and PS (including the
T=bit) are restored. The instruction following the
trap-causing instruction is executed. If this instruction is
not another trap-causing instruction, the T-bit trap occurs,
causing the breakpoints to be reinserted in the user program,

8-22



On-Line Debugging Technique

or the single~-instruction mode repeat count to be
decremented. 1If the following instruction is a trap~causing
instruction, this sequence is repeated starting at step 3.

NOTE

Exit from the trap handler must be via
the RTI instruction. Otherwise, the
T-bit 1is lost. ODT can not regain
control since the breakpoints have not
been reinserted yet,

Note that the ;P command is illegal if a breakpoint has not occurred
(ODT responds with ?); ;P is legal, however, after any trace trap
entry.

The internal breakpoint status words have the following format:

l. The first eight words contain the breakpoint addresses for
breakpoints 0-7. (The ninth word contains the address of the
next instruction to be executed in single-instruction mode.)

2. The next eight words contain the respective repeat counts,
The following word contains the repeat count for
single-instruction mode.)

These words may be changed at will, either by wusing the breakpoint
commands or by direct manipulation with S$B.

When program runaway occurs (that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where a breakpoint has not been placed), ODT may be given control by
pressing the HALT key to stop the computer,and restarting ODT (see
Section 8.1). ODT prints *, indicating that it is ready to accept a
command,

If the program being debugged uses the teleprinter for input or
output, the program may interact with ODT to cause an error since ODT
uses the teleprinter as well, This interactive error will not occur
when the program being debugged is run without ODT.

Note the following rules concerning the ODT break routine:

l. If the teleprinter interrupt is enabled upon entry to the ODT
break routine, and no output interrupt is pending when ODT is
entered, ODT generates an unexpected interrupt when returning
control to the program,

2, If the interrupt of the teleprinter reader (the keyboard) is
enabled upon entry to the ODT break routine, and the program
is expecting to receive an interrupt to input a character,
both the expected interrupt and the character are lost,

3. If the teleprinter reader (keyboard) has just read a
character into the reader data buffer when the ODT break
routine is entered, the expected character in the reader data
buffer is lost.



On-Line Debugging Technique

8.4.3 Searches

The word search allows the user to search for bit patterns in
specified sections of memory. Using the $M/ command, the user
specifies a mask, a lower search limit ($M+2), and an upper search
1imit ($M+4). The search object is specified in the search command
itself.

The word search compares selected bits (where ones appear in the mask)
in the word and search object. If all of the selected bits are equal,
the unmasked word is printed.
The search algorithm is:
1. Fetch a word at the current address.
2. XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.
4. If the result of step 3 is zero, type the address of the
unmasked word and its contents. Otherwise, proceed to step
5.
5. Add two to the current address. If the current address is
greater than the wupper 1limit, type * and return to the
command decoder, otherwise go to step 1.
Note that if the mask is zero, ODT.  prints every word between the
limits, since a match occurs every time (i.e., the result of step 3 is
always zero).
In the effective address search, ODT interprets every word in the
search range as an instruction which is interrogated for a possible
direct relationship to the search object. The mask register is opened
only to gain access to the search limit registers, '

The algorithm for the effective address search is (where (X) denotes
contents of X, and K denotes the search object):

1. Fetch a word at the current address X.
2. If (X)=K [direct reference], print contents and go to step 5.

3, If (X)+X+2=K [indexed by PC], print contents and go to step
5.

4, If (X) is a relative branch to K, print contents.
5. Add two to the current address. If the current address is
greater than the upper limit, perform a carriage return/line

feed and return to the command decoder; otherwise, go to
step 1.

8.4.4 Terminal Interrupt

Upon entering the TT SAVE routine, the following occurs:

8-24



On-Line Debugging Technique

1. Save the LSR status register (TKS).

2., Clear interrupt enable and maintenance bits in the TKS.

3. Save the TT status register (TPS).

4, Clear interrupt enable and maintenance bits in the TPS.
To restore the TT:

l. Wait for completion of any I/0 from ODT.

2. Restore the TKS,

3. Restore the TPS.

NOTES

If the TT printer interrupt is enabled
upon entry to the ODT break routine, the
following may occur:

1. If no output interrupt is
pending when ODT is entered, an
additional interrupt always
occurs when ODT returns control
to the user.

2, If an output interrupt is
pending upon entry, the
expected interrupt occurs when
the user regains control,

If the TT reader (keyboard) is busy or
done, the expected character in the
reader data buffer is lost,

If the TT reader (keyboard) interrupt is
enabled upon entry to the ODT break
routine, and a character is pending, the
interrupt (as well as the character) is
lost.

8.5 ODT ERROR DETECTION

ODT detects two types of error: illegal or unrecognizable command and
bad breakpoint entry, ODT does not check for the legality of an
address when commanded to open a location for examination or
modification., Thus the command:

*AP7PTS
PM-TRAF TO 4 0@3362

references nonexistent memory, thereby causing a trap through the
vector at location 4. If this vector has not been properly
initialized, unpredictable results occur.

8-25



On-Line Debugging Technique

Typing something other than a legal command causes ODT to ignore the
command, print:

(echoes illegal command) ?
*

and wait for another command. Therefore, to cause ODT to ignore a
command just typed, type any illegal character (such as 9 or RUBOUT)
and the command will be treated as an error, i.e., ignored,

ODT suspends program execution whenever it encounters a breakpoint,
i.e., traps to its breakpoint routine, If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BEnnnnnn
*

and waits for another command. BEnnnnnn denotes Bad Entry from
location nnnnnn. A bad entry may be caused by an illegal trace trap
instruction, setting the T-bit in the status register, or by a jump to
the middle of ODT.



CHAPTER 9

PROGRAMMED REQUESTS

A number of services at the machine language level which the monitor
regularly provides to system programs are also available to
user-written programs. These include services for file manipulation,
command interpretation, and facilities for input and output
operations. User programs call these monitor services by means of
"programmed requests", which are assembler macro calls written into
the user program and interpreted by the monitor at program execution
time .

NOTE

Programmed requests used in Version 2
differ from those used in Version 1l; for
example, the channel number in Version 1
was limited to the range 0-17, where it
is not in Version 2; blank fields in
macro calls were not allowed in Version
l, and are in Version 2; a .area
argument points to an argument list in
Version 2, where arguments were pushed
on the stack in Version 1.

Programs written for use under Version 1
will assemble and execute properly when
the ..V1l.. macro call (explained in
Section 9.3.1.5) is included, but it is
to the user's advantage to convert these
programs so they use the new Version 2
macro calls wherever possible. Only
macro calls which are used with the
current version of RT-11 (Version 2) are
discussed in this chapter. See Section

9.5 for instructions on converting
Version 1 macro calls to the Version 2
format.

The macro definitions for both Version 1 and Version 2 requests are
included in the file SYSMAC.SML (in 8K systems, the system macro
library is called SYSMAC,.8K); Appendix D provides a 1listing of
SYSMAC.SML. Refer to Chapter 5 for general information related to the
use of macro calls.,

The FORTRAN programmer should note that the system subroutine library
(SYSLIB) gives him the same capability (under FORTRAN) to use the
programmed requests which are available to the machine language
programmer and described in this chapter. SYSLIB users should first
read this chapter and then read Appendix O.

9-1



Programmed Requests

9.1 FORMAT OF A PROGRAMMED REQUEST

The basis of a programmed request is the EMT instruction, used to
communicate information to the monitor. When an EMT is executed,
control is passed to the monitor, which extracts appropriate
information from the EMT and executes the function required. The
low-order byte of the EMT instruction contains a code which is
interpreted as:

Low-Order Byte
of EMT Meaning

377 Reserved; RT-1l1 ignores this EMT and returns
control to the user program immediately.

376 Used internally by the RT-11 monitor; this EMT
code should never be used by user programs.

375 Programmed request with several argumentss RO
must point to a list of arguments which designates
the specific function.

374 Programmed request with one argument: RO contains
a function code in the high-order byte and a
channel number (see Section 9.2.1) or 0 in the
low-order byte.

360-373 Used internally by the RT-11 monitor; these EMT
codes should never be used by user programs,.

340-357 Programmed request with arguments on the stack
and/or in RO,

0-337 Version 1 programmed request. These EMTs use
arguments both on the stack and in RO. They are
supported for binary compatability with Version 1
programs.,

A programmed request consists of a macro call followed, where
necessary, by one or more arguments. Arguments supplied to a macro
call must be legal assembler expressions since arguments will be used
as source fields in MOV instructions when the macros are expanded at
assembly time. The following two formats are used:

1. PRGREQ ARG1,ARG2,...ARGN

2. PRGREQ AREA,ARG1l,ARG2,...ARGN
Form 1 above contains the arguments ARGl through ARGN; no argument
list pointer is required. Macros of this form generate either an EMT
374 or one of the EMTs 340-357. Certain arguments for this form may be
omitted; refer to the listing of SYSMAC.SML in Appendix D.
In form 2 above, AREA is a pointer to the argument list which contains

the arguments ARGl through ARGN. This form always causes an EMT 375
to be generated. Blank fields are permitted; however, if the AREA

January 1976 9~2



Programmed Requests
argument is blank, the macro assumes that RO points to a valid

argument block (see Section 9.2.3), If any of the fields ARGl to ARGN
are blank, the corresponding entries in the argument list are left

untouched. Thus,
.PRGREQ AREA,Al,A2

points RO to the argument block at AREA and fills in the first and
second arguments, while:

«PRGREQ AREA

points RO to the block, and £fills in the first word but does not f£ill
in any other arguments.

The call:
«PRGREQ ,Al

assumes RO points to the argument block and fills in the Al argument,
but leaves the A2 argument alone. The call:

+« PRGREQ

generates only an EMT 375 and assumes that both RO and the block to
which it points are properly set up.

The arguments to RT-1ll programmed request macros all serve as the
source field of a MOV instruction which moves a value into the
argument block or RO, For example:

+PRGREQ CHAR
expands into:

MOV CHAR,RO
EMT 357

Care should be taken to make certain that the arguments specified are
legal source fields and that the address accurately represents the
value desired. If the value is a constant, immediate mode [#] should
be used; if the value is in a register, the register mnemonic [Rn]
should be used; if the value is indirectly addressed, the appropriate
register convention is necessary [@Rn], and if the value is in memory,
the label of the location whose value is the argument is used.

Following are some examples of both correct and incorrect macro calls.
Consider the general request:

«PRGREQQ .AREA,.ARGl,...ARGN

9-3 January 1976



Programmed Requests

A more common way of writing a request of this form is:
+PRGREQ #AREA,#ARGl,...#ARGN

In this format, the address of AREA is put directly into the argument
list. AREA is the tag which indicates the beginning of the argument
block. For example:

«PRGREQ #AREA, #4

AREA: L BLKW 3

When a direct numerical argument is required, the # causes the correct
value to be put into the argument block. For example:

+-PRGREQ #AREA, #4
is correct, while:
.PRGREQ #AREA,4

is not. This form interprets the 4 as meaning "move the contents of
location 4 into the argument block", where the number 4 itself should
be moved into the block.

If the request is written ass
+PRGREQ AREA, #4

it is interpreted as "use the contents of location AREA as the list
pointer", when the address of AREA is actually desired. This
expansion could be used with the following form:

+PRGREQ LIST1,#4

LISTl: AREA
AREA: «BLKW3

In this case, the content of location LIST1l is the address of the
argument list. Similarly, this form is correct:

.PRGREQ LIST1,NUMBER
LIST1l: AREA
NUMBER: 4

In this case, the contents of the locations I.IST1 and NUMBER are the
argument list pointer and data value; respectively.

NOTE
All registers except RO are preserved
across a programmed request. (In
certain caseas, RO may contain

information passed back by the monitor;
however, unless the description of a
request indicates that a specific value
is returned in RO, it may be assumed
that the contents of RO are
unpredictable upon return from the
request). With the exception of calls to
the €SI, the position of the stack
pointer is also preserved across a
programmed request.
9-4



Programmed Requests

9.2 SYSTEM CONCEPTS

Some basic operational characteristics and concepts of RT-11 are
described below.

9.2.1 Channel Number (chan)

A channel number is a logical identifier in the range 0 to 377(octal)
for a file or "set of data" used by the RT-1ll monitor. Thus, when a
file is opened on a particular device, a channel number is assigned to
that file. To refer to an open file, it is only necessary to refer to
the appropriate channel number for that file,

9.2.2 Device block (dblk)

A device block is a four-word block of radix-50 information which
specifies a physical device and file name for an RT-11 programmed
request. (Refer to Chapter 5 for an explanation of .RAD50 strings.)
For example, a device block representing a file FILE.EXT on device DK:
could be written as:

.RAD50 /DK /
.RAD50 /FIL/
«RAD50 /E /
«RAD50 /EXT/

The first word contains the device name, the second and third words
contain the file name, and the fourth contains the extension. Device,
name, and extension must each be left-justified in the appropriate
field. This string could also be written as:

«RAD50 /DK FILE EXT/

Note that spaces must be used to £ill out each field., Note also that
the colon and period separators do not appear in the actual RAD50
string. They are used only by the monitor keyboard interface to
delimit the various fields.

9.2.3 EMT Argument Blocks
Programmed requests which call the monitor via EMT 375 use RO as a

pointer to an argument list. In general, this argument list appears
as follows:

address contents
Function Channel
b < Code Number
X+2 argumentl
x+4 argument2



Programmed Requests

RO points to location x. The even (low-order) byte of 1location =x
contains the channel number named in the macro call., If no channel
number is required, the byte is set to 0. The odd (high-order) byte of
x is a code specifying the function to be performed. Locations x+2,
x+4, etc. contain arguments to be interpreted. These are described
in detail under each request,

Requests which use EMT 374 set up RO with the channel number in the
even byte and the function code in the odd byte. They require no
other arguments.

9.2.4 Important Memory Areas

9.2.4.1 Vector Addresses (0~-37, 60-477) -~ Certain areas of memory
between 0 and 477 are reserved for use by RT-=11l. KMON does not load
these locations from the save image file when it initiates a program,
i.e., R, RUN, and GET will not load these words. However, no hardware
memory protection is supplied. Thus, programs should never alter the
contents of the indicated areas at run-time.

Locations Contents

0,2 Monitor restart, Executes LEXIT request andl
returns control to KMON,

4,6 Time out or bus error trap; RT-1l sets this to
point to its internal trap handler,

10,12 Reserved instruction trap; RT-11 sets this to
point to its internal trap handler.

30,32 EMT trap vector and status.

40-57 RT-11 system communication area (see below).
60,62 TTY input interrupt vector and status,

64,66 TTY output interrupt vector and status.

100,102 KW1lL vector and status.
204,206 RFll vector and status.
214,216 TCll vector and status.
220,222 RKO05 vector and status.
330,332 GT40 shift out interrupt vector and status.
These areas are not replaced by RT-11l, If they are destroyed by a

program, the system must be re-bootstrapped, or the program must
restore them,



Programmed Requests

9.2,4.2 Resident Monitor - Section 2.4 of Chapter 2 describes the
placement of monitor components when either the Single-Job Monitor or
F/B Monitor is brought into memory; included is the approximate size
of each monitor component and the size of the area available for
handlers and user programs.

9.2.4.3 System Communication Area - RT-1l1l uses bytes 40-~57 to hold
information about the program currently executing, as well as certain
information used only by the monitor. A description of these bytes
follows:

Bytes Meaning and Use
40,41 Start address of job. When a file is linked into

an RT=11l memory image, this word is set to the
starting address of the job either with the Linker
/T switch or as an argument in the ,END statement
of the program, When a foreground program is
executed, the FRUN processor relocates this word
to contain the actual starting address of the
program,

42,43 Initial value of the stack pointer. If it is not
set by the user program in an .,ASECT, it defaults
to 1000 or the top of the LASECT in the
background, whichever is larger. If a foreground
program does not speclfy a stack pointer in this
word, a default stack (128 decimal words) is
allocated by FRUN immediately below the program,
The initial stack pointer can also be set with the
Linker /M switch option,

44,45 Job Status Word. Used as a flag word for the
monitor. Certain bits are maintained by the
monitor exclusively while others must be set or
cleared by the user job, Those bits in the
following list which are marked by an asterisk are
bits which must be set by the user job.

Since the currently unassigned bits may be used in
future releases of RT-1ll, user programs should not
use these bits for internal flags,

Bit
Number Meaning

15 USR swap bit. (Unused in F/B.) The
monitor sets this bit when programs do
not require the USR to be swapped. See
Section 9.2.5 for details on USR
swapping.

14 Lower—-case bit. When set (automatically
by EDIT when the EL command is typed),
disables conversion of lower-case to
upper-case.

*13 Reenter bit, When set, this bit

indicates that the program may be
restarted from the terminal with the
REENTER command.,

9-7 January 1976



Programmed Requests

*12 Special mode TT bit. When set, this bit
indicates that the job is in a "special"
keyboard mode of input. Refer to the
explanation of the +TTYIN/.TTINR
requests for details.

11-10 For F/B Monitor use only.

9 Overlay Bit. Set (by the Linker) if the
job uses the Linker overlay structure.

8 CHAIN bit. If this bit is set in a
job's save image, words 500-776 are
loaded from the save file when the job
is started even if the job is entered
via CHAIN. (These words are normally
used to pass parameters across CHAINs.)
The bit is set when a job is running if
and only if the job was actually entered
with CHAIN,

*7 Error halt bit, When set, this bit
indicates a halt on an I/0 error. If
the user desires to halt when any I/O
device error occurs, this bit should be
set. (Unused in F/B.)

*6 Inhibit TT wait bit. For use with the
Foreground/Background system., When set,
this bit inhibits the monitor from
entering a console terminal wait state.
Refer to the sections concerning
.TTYIN/.,TTINR, and .TTYOUT/.TTOUTR for
more information,

5-0 Unused.

46,47 USR load address, Normally 0, this word may be
set to any valid word address in the user's
program. See Section 9.2.5, Swapping Algorithm,
for details of use.

50,51 High memory address. The monitor maintains the
highest address the user program can use in this
word. The Linker sets it initially. It is
modified only via the .SETTOP (Set Top of Memory)
monitor request, ’

52 EMT error code. If a monitor request results in
an error, the code number of the error is always
returned in byte 52 and the carry bit is set. Each
monitor «call has its own set of possible errors.
It is recommended that the user program reference
byte 52 with absolute addressing, rather than
relative addressing. For example:

ERRWRD = 52

TSTE ERRWRD ;s RELATIVE ADDRESSING
TSTE @#ERRWRD ; ABSOLUTE ADDRESSING

July 1975 9-8



Programmed Requests NOTE

Location 52 must always be addressed as
a byte, never as a word, since byte 53

will be used in future releases of
RT-11.

53 Reserved for future system use.

54,55 Address of the beginning of the Resident Monitor.,

RT-11l always loads the resident into the highest
available memory locations; this word points to
its first 1location. It must never be altered by
the user. Doing so will cause RT-11 to
malfunction.

56 Fill character (7-bit ASCII)., Some high-speed
terminals require filler (null) characters after
printing certain characters, Byte 56 should
contain the ASCII 7-bit representation of the
character after which fillers are required.

57 Fill count. This byte specifies the number of
fill characters required. If bytes 56 and 57=0,
no fillers are required.

The required f£ill characters are:

Value of
Terminal No. of fills Word 56

Serial LA30 @ 300 baud 10 after carriage return 5015
Serial LA30 @ 150 baud after carriage return 2015
Serial LA30 @ 110 baud after carriage return 1015

N AN

vVT05 @ 2400 baud after line feed 2012
VTO05 @ 1200 baud after line feed 1012
vT05 @ 600 baud after line feed 412

9.2.5 Swapping Algorithm

Programmed requests are divided into two categories according to
whether or not they require the USR to be in memory (see Table 9-2).
Any request which requires the USR in memory may also require that a
portion of the user program be saved temporarily on the system device
scratch blocks (i.e., be "swapped out") to provide room for the USR.
The USR will be read into the swapped region.

During most normal operations, this swapping is invisible to the user
and he need not be concerned about it., However, it is possible to
optimize programs so that they require little or no swapping. This is
particularly useful when operating in an F/B environment, since under
the F/B system, the USR will be swapped for both background and
foreground jobs regardless of which job required it. If the USR is
not swapped, neither the foreground nor the background job will be
slowed down by the swapping process.

The following items should be considered if a swap operation is
necessary:

l. The background job - If a .SETTOP request in a background job
specifies an address beyond the point at which the USR

9-9



Programmed Requests

normally resides, a swap will be required when the USR is
called. More details concerning the .SETTOP request are in
Section 9.4.36.

The value of location 46 - If the user either assembles an
address into word 46 or moves a value there while the program
is running, RT-11 uses the contents of that word as an
alternate place to swap the USR. If location 46 is 0, this
indicates that the USR will be at its normal location in high
memory.

NOTES

l. If the USR  does not require
swapping, the value in location 46
is ignored. Swapping is a
relatively time-consuming operation
and is avoided, if possible.

2. A foreground job should always have
a value in location 46 unless it is
certain that the USR will never be
swapped. If the foreground job does
not allow space for the USR and a
swap 1is required, a fatal error
occurs. (The SET USR NOSWAP
command, explained in Chapter 2,
ensures that the USR will be
resident.)

3. Care should be taken when specifying
an alternate address to location 46.
The single-~-job system does not
verify the legality of the USR swap
address. Thus, if the area to be
swapped overlays the Resident
Monitor, the system is destroyed.

4, The user should also take care that
the USR is never swapped over any of
the following areas: the program
stack; any parameter block for
calls to the USR; any I/0 buffers,
device handlers, or completion
routines being used when the USR is
called.,

The following is an example of the way a background program can avoid
unnecessary USR swapping.

.MCALL .,VC?..,,.REGDEFu.SETYnPc.FXYT

l've’l

JREGNEF .
RMPTR=S4 IPOINTFR TO RMON IS AT Sd,
USRLOC=e266 JPAINTER TO USR LOCATION IS

1AT Phk BYTES INTQ RMQON,

START:

MoV e#RMPTR,RY 1k => RESTUENT MONITOR

MoV USRLOC (k1) ,RO IR  => USSP

TSV - (Bi) JPOINT JUST BELOW

July 1975 9-10



Programmed Requests

cMP RY,e#52 IDNES USR SWAP OVER UIS?
RH 18 IND, OK
MOV #=2,RQ PYES, USR MUST SWAP

181¢ LSETTQP FASK FOR MFMORY UP TO 1J8R
MQv RO,HILIM JR? 8 HIGH LTMIT OF MEMORY

PACTUALLY RRANTEDP RY MONTTOR,

«EX]IT

HILIM3  ,WURD f FCONTAINS HI LTIMYT OF MEMORY
+END START

9.2.6 Offset Words

There are several words which always have fixed positions relative to
the start of the Resident Monitor. It is often advantageous for user
programs to be able to access these words, This is done with the
code:

RMON = 54
MOV @#RMON,register
MOV OFFSET (register) ,register

Here, register is any general register and OFFSET is a number from the
following list:

OFFSET (Bytes) Contents
262 System date. (See .DATE request.)
266 Start of normal USR area. This is where the

USR will reside when it is non~swapping. It
is useful to be able to perform a .SETTOP in
a background job such that the USR is always
resident., (An example is in Section 9,.,2,5.)

270 Address of I/O exit routine for all devices.
The exit routine is an internal queue
management routine through which all device
handlers exit once the I/O transfer is
complete, Any new devices added to RT-11
must also use this exit location,

275 Unit number of system device (device from
which system was last bootstrapped).

276 Monitor version number (2-377). The user can
always access the version number to determine
if the most recent monitor is 'in use.

277 Update number. Patches to the monitor always
increment the update number., This provides a
means of checking that all patches have been
made. (This number should be accessed by
MOVB rather than MOV),

300 Configuration word., This is a string of 16
bits used to indicate information about
either the hardware configuration of the
system, or a software condition. The bits
and their meanings are:

9-11 July 1975




Programmed Requests

304-313

January 1976

314

324

354

Bit ¢ Meaning
0 0 = Single-Jdob Monitor
1l = F/B Monitor
2 1 = GT40 display hardware exists
3 1 = RT-11 BATCH is in control
of the background
5 0 = 60-cycle clock
1 = 50~-cycle clock
6 1l = 11/45 floating-point
hardware exists
7 0 = No foreground job is in memory
1 = Foreground job is in memory
8 1 = User is linked to the GT40
scroller
9 1 = USR is permanently resident
(via a SET USR NOSWAP)
11 1 = Processor is an 11/¢3
15 1 = KW1llL clock is present

(always set if 11/¢3)

The other bits are reserved for future use
and should not be accessed by user programs,

These locations contain the addresses of the
console terminal control and status
registers. The order is:

304 Keyboard status
306 Keyboard buffer
310 Printer status
312 Printer buffer

These locations can be changed, for example,
to reflect a second terminal; thus RT-11 can
be made to run on any terminal present on the
system which is connected to the machine via
the DL1l multiple terminal interface. (Refer
to the RT-11 Software Support Manual
(DEC-11-ORPGA=B~-D) .

The maximum file size allowed in a 0 1length
.ENTER, This can be adjusted by the user
program or by using the PATCH program to be
any reasonable value., The default value is
177777 (decimal) blocks, allowing an
essentially unlimited file size.

Address of .SYNCH entry. User interrupt
routines may enter the monitor through this
address to synchronize with the job they are
servicing.

Address of VT1ll display processor display
stop interrupt vector.

9-12



Programmed Requests

9.2.7 File Structure

RT-11l uses a "contiguous" file structure. This type of structure
implies that every file on the device is made up of a contiguous group
of physical blocks. Thus, a file that is 9 blocks 1long occupies 9
contigquous blocks on the device.

A contiguous area on a device can be in one of the following
categories:

l. Permanent file. This is a file which has been .CLOSEA on a
device, Any named files which appear in a PIP directory
listing are permanent files.

2. Tentative file. Any file which has been created via ,ENTER,
but not .CLOSEd, is a tentative file entry. When the ,CLOSE
request is given, the tentative entry becomes a permanent
file, If a permanent file already exists under the same
name, the old file is deleted. If a .CLOSE is never given,
the tentative file is treated like an empty entry.

3. Empty entry. When disk space is unused or a permanent file
is deleted, an empty entry is created. Empty entries appear
in a PIP /E directory listing as {UNUSED)> N, where N is the
decimal block length of the empty area.

Since a contiguous structure does not automatically reclaim unused
disk space, the device may eventually become "fragmented". A device is
fragmented when there are many empty entries which are scattered over
the device. RT-11 PIP has an option which allows the user to collect
all empty areas so that they occur at the end of a device. Refer to
Chapter 4 for details,

9.2.8 Completion Routines

Completion routines are user-written routines which are entered
following an operation. On entry to a completion routine, RO contains
the channel status word for the operation; Rl contains the octal
channel number of the operation. The carry bit is not significant.

Completion routines are handled differently in the Single-Job and the
F/B versions of RT-1l. In the Single-Job version, completion routines
are totally asynchronous and can interrupt one another. 1In F/B,
completion routines do not interrupt each other. Instead they are
queued and made to wait until the correct 3job 4is running. For
example, if a foreground job is running and an I/0 transfer initiated
by a background job completes and wants to go to a completion routine,
the background routine 1is queued and will not execute until the
foreground gives up control of the system, If the foreground is
running and a foreground I/0 transfer completes and wants a completion
routine, that routine will be entered immediately if the foreground is
not already inside a completion routine. If it is in a completion
routine, that routine continues to termination, at which point any
other completion routines are entered in a first in/first out manner.
If the background is running and a foreground I/O transfer completes
and needs a completion routine, the background is suspended and the
foreground routine is entered immediately.

9-13



Programmed Requests

The restrictions which must be observed when writing completion
routines are:

1. Completion functions cannot issue a request which would cause
the USR to be swapped in. They are primarily used for
issuing READ/WRITE commands, not for opening or closing
files, etc. A fatal monitor error is generated if the USR is
called from a completion routine.

2. Completion routines should never reside in the memory space
which will be used for the USR, since the USR can be
interrupted when I/O terminates and the completion routine is
entered. If the USR has overlaid the routine, control
passes to a random place in the USR, with a HALT or error
trap the likely result.

3. The routihe must be exited via an RTS PC, as it is called
from the monitor via a JSR PC,ADDR where ADDR is the
user-supplied address,

4. If a completion routine uses registers other than RO or R1,
it must save them upon entry and restore them before exiting.

9.2.9 Using the System Macro Library

User programs for RT-1l should always be written using the system
macro library (SYSMAC.SML), supplied with RT=-1l. This ensures
compatibility among all user programs and allows easy modification by
redefining a macro. A listing of SYSMAC.SML appears in Appendix D.

The system macro library for 8K systems appears on the system device
as SYSMAC.S8K.

Suggestions for writing foreground programs are in Appendix H, F/B

Programming and Device Handlers. This appendix should be read in
conjunction with Chapter 9 before coding F/B programs.

9.3 TYPES OF PROGRAMMED REQUESTS

There are three types of services which the monitor makes available to
the user through programmed requests. These are:

1., Requests for File Manipulation

2, Requests for Data Transfer

3, Requests for Miscellaneous Services
Table 9-1 summarizes the programmed requests in each of these
categories alphabetically. Those marked with an asterisk function
only in a F/B environment; they are ignored under the Single-Job

Monitor. The EMT and function code for each request (where
applicable) are included.



Programmed Reque

sts

Table 9-1
Summary of Programmed Requests

Mnenmonic

EMT &
Code

Section

Purpose

File Manipulatio

n Requests

* ,CHCOPY

+CLOSE

+DELETE

<ENTER

« LOOKUP

« RENAME

+« REOPEN

+«SAVESTATUS

375113

374] 6
3751 0

375] 2
375 1

375 4

375| 6

375 5

9.4.3

9.4.4
9.4.10

9.4.13

9.4,21

9.4.32

9.3.33

9.4.34

Establishes a link and allows one
job to access another job's
channel.

Closes the specified channel.

Deletes the file from the specified
device.

Creates a new file for output,

Opens an existing file for input
and/or output via the specified
channel,

Changes the name of the indicated
file to a new name,

Restores the parameters stored via
a SAVESTATUS request and reopens
the channel for I/O.

Saves the status parameters of an
open file in user memory and frees
the channel for future use.

Data Transfer Re

quests

*,RCVD
* , RCVDW
* .RCVDC

«READ

« READC

375| 26

375; 10

375 10

9.4.29

9.4.30

9.4,30

Receives data., Allows a job to
read messages ox data sent by
another job in an F/B environment.
The three modes correspond to the
READ, .READC, and READW modes,

Transfers data via the specified
channel to a memory buffer and
returns control to the user program
when the transfer request is
entered in the I/O queue, No
special action is taken upon
completion of I/0.

Transfers data via the specified
channel to a memory buffer and
returns control to the user program
when the transfer request is
entered in the I/0O queue. Upon
completion of the read, control
transfers asynchronously to the
routine specified in the .READC
request.

9-15 (continued on next page)




Programmed Requests

Table 9-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT & Sectilon Purpose
Code
« READW 375{10 |9.4.30 Transfers data via the specified
channel to a memory buffer and
returns control to the user program
only after the transfer is
complete,

* ,SDAT 375(25 |9.4.35 Allows the user to send messages or

* SDATC data to the other Jjob in an F/B

* ,SDATW environment. The three modes cor-
respond to the .(WRITE, .WRITC and
WRITW modes.

«TTYIN 340|=-~ |9.4.43 Transfers one character from the

«TTINR keyboard buffer to RO.

«TTYOUT 341 (-~ |9.4.44 Transfers one character from RO

«TTOUTR to the terminal input buffer.

<WRITE 375{11 |9.4.47 Transfers data via the specified
channel to a device and returns
control to the user program when
the transfer request is entered in
the I/0 queue., No special action
is taken wupon completion of the
I/0.

+WRITC 375(11 |9.4.47 Transfers data via the specified
channel to a device and returns
control to the wuser program when
the transfer request is entered in
the I/O queue. Upon completion of
the write, control transfers
asynchronously to the routine
specified in the .WRITC request.

«WRITW 375(11 |9.4.47 Transfers data via the specified
channel to a device and returns
control to the wuser program only
after the transfer is complete,

Miscellaneous Services

«CDFN 375({15 [9.4.1 Defines additional channels for
doing I/0.

«CHAIN 374110 |9.4.2 Chains to another program (in the
background job only).

* ,CMKT 375/ 23 |9.4.5 Cancels an unexpired mark time
request.,

* . CNTXSW 375033 |9.4.6 Requests that the indicated memory
locations be part of the F/B
context switch process.,

+CSIGEN 344| -~ |9.4.7 Calls the Command String
Interpreter (CSI) in general mode.
.CSISPC 345| == |9.4.8 Calls the CSI in special mode.

9-16 (continued on next page)




Programmed Requests Table 9~1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT & Section Purpose
Code
* CSTAT 375127 9.4.9 Returns the status of the channel
indicated.
+DATE ———|==19,3,1.1 Moves the current date information
into RO,
* DEVICE 3751141} 9.4,11 Allows user to turn off device

interrupt enable in F/B upon
program termination,

+DSTATUS 342(-~] 9.4,12 Returns the status of a particular
device.

«EXIT 350 |-~} 9.4.14 Exits the user program and returns
control to the Keyboard Monitor,

« FETCH 343|~=| 9.4,15 Loads device handlers into memory.

«GTIM 375121 9.4.16 Gets time of day.

+«GTJB 375|120 9.4,17 Gets parameters of this job.

«HERR 374 5| 9.4,18 Specifies termination of the job on

fatal errors.

+HRESET 357|=--1 9.4.19 Terminates I/O transfers and does a
«SRESET operation,

+«INTEN m——l==19,.3,1,2 Notifies monitor that an interrupt
has occurred and to switch to
"gsystem state", and sets the
processor priority to the correct
value.

«LOCK 346|-~| 9.4,20 Makes the monitor User Service
‘ Routines (USR) permanently resident
until .EXIT or .UNLOCK is executed.
The user program is swapped out if

necessary.
.MFPS - -=1]9.3.1.3 Reads the priority bits in the
processor status word (does not

read the condition codes).

* , MRKT 375( 22| 9.4.22 Marks time; i.e,., sets
asynchronous routine to occur after
a specified interval,

.MTPS === --19.3.1.3 Sets the priority bits, condition
codes, and T bit in the processor
status word.

* MWAIT 374, 11| 9.3.23 Waits for messages to be processed.

«PRINT 351 =~ | 9,4,24 Outputs an ASCII string to the
terminal.

* ,PROTECT 375/ 31| 9.4.25 Requests that vectors in the area
from 0-476 be given exclusively to
this job.

(continued on next page)
9-17 January 1976




Programmed Requests

Table 9-1 (Cont.)
summary of Programmed Requests

Mnemonic EMT & Section Purpose
Code

«PURGE 374 3 |9.4.26 Clears out a channel,

«QSET 353 |=-- |9.4.27 Expands the size of the monitor I/O
queue.

+«RCTRLO 355|-~ [9.4.28 Enables output to the terminal.

« REGDEF ~==|=-= 19.3.1.4 Defines the PDP-11 general
registers.

« RELEAS 343|-- |9.4.31 Removes device handlers from
memory.

* ,RSUM 374| 2 (9.4.39 Causes the main line of the job to
be resumed where it was suspended
with .SPND.

«SERR 374| 4 [9.4.18 Inhibits most fatal errors £from
causing the job to the aborted.

«SETTOP 354|-- |9.4.36 Specifies the highest memory
location to be used by the user
program,

«SFPA 375/30 |9.4.37 Sets user interrupt for floating
point processor exceptions.

« SPFUN 375/32 (9.4,.38 Performs special functions on
magtape and cassette units.

* ,SPND 374 1 {9.4.39 Causes the running Job to be
suspended.

«SRESET 352| -~ 19.4,40 Resets all channels and releases
the device handlers from memorye.

«SYNCH ——w=| == 19.3.1.5 Enables user program to perform
monitor programmed requests from
within an interrupt service
routine,

* ,TLOCK 374] 7 [9.4.41 Indicates if the USR is currently
being used by another Job and
performs a ,LOCK if available.

+«TRPSET 375 3 | 9.4.42 Sets a user intercept for traps to
locations 4 and 10.

* TWAIT 375/ 24 | 9.4.45 Suspends the running job for a
specified amount of time,

« UNLOCK 347 -- | 9.4.20 Releases USR if a LOCK was done,
The user program is swapped in if
required.

. V1., -} =-=19.3.1.6 Enables expansions to occur in
Version 1 format.

eeV2e0 ——=|==19.3.1.6 Enables expansions to occur in
Version 2 format.

JWAIT 374 0| 9.4,46 Waits for completion of all I/O on
a specified channel,

January 1976

9-18




Programmed Requests

Requests requiring the USR (as explained in Section 9.2.5) differ
between the Single-Job and F/B Monitors. Table 9-2 indicates which
requests require the USR to be in memory. Those requests marked by an
asterisk are Version 2 macros only., The CLOSE request on non-file
structured devices (LP, PP, TT, eta,) does not require the USR under:
either monitor,

9-18.1 January 1976



This page intentionally blank.



Programmed Requests

Table 9-2
Requests Requiring the USR
Request F/B Single=Job
*  CDFN No Yes
*  CHAIN No No
* ,CHCOPY No N/A
+CLOSE (see Note 1) Yes Yes
* ,CMKT No N/A
*  CNTXSW No N/A
+CSIGEN Yes Yes
«CSISPC Yes Yes
* CSTAT No N/A
+DELETE Yes Yes
* DEVICE No N/A
«DSTATUS Yes Yes
+ENTER Yes Yes
+FEXIT No No
+ FETCH Yes Yes
* ,GTIM No No
* ,GTJB No No
* HERR No No
+HRESET No Yes
+LOCK (see Note 2) Yes Yes
« LOOKUP Yes Yes
* ,MRKT No N/A
* MWAIT No N/A
« PRINT No No
* ,PROTECT No N/A
* ,PURGE No No
+QSET Yes Yes
+« RCTRLO No No
* . RCVD/RCVDC /ARCVDW No N/A
« READ/READC /READW No No
+« RELEAS Yes Yes
« RENAME Yes Yes
+« REOPEN No No
* ,RSUM No N/A
« SAVES TATUS No No
* ,SDAT /SDATC/SDATW No N/A
* ,SERR No No
+SETTOP No No
* ,SFPA No No
* ,SPFUN No No
* ,SPND No N/A
* _SRESET No Yes
* ,TLOCK (see Note 3) No No
* , TRPSET No No
+TTINRATTYIN No No
+«TTOUTR/ , TTYOUT No No
* ,TWAIT No N/A
« UNLOCK No No
+WAIT No No
+WRITE/WRITC/WRITW No No

9-19



Programmed Requests

Note 1l: Only if channel was opened via .ENTER,
Note 2: Only if USR is in a swapping state.

Note 3: Only if USR is not in use by the other job.

9.3.1 System Macros

The following five macros are included in the system macro 1library,
but are not programmed requests in that they cause no EMT instruction
to be generated:

+DATE « SYNCH
+« INTEN eeV2,,
« REGDEF

They can be used in the same manner as the other macro calls; their
explanations follow.

.DATE

9.3.1.1 (DATE

This request moves the current date information from the system date
word into RO. The date word returned is in the following format:

Bit: 14 10 9 5 4 0
MONTH DAY YEAR-72 (DECIMAL)
(1-12.) (1-31.)

Macro Call: +DATE

Errors:

No errors are returned, A zero result in RO indicates that no DATE
command was entered.



Programmed Requests

ANTEN

9.3.1.2 LINTEN
This request is used by user program interrupt service routines to:

1. Notify the monitor that an interrupt has occurred and to
switch to "system state",

2. Set the processor priority to the correct value.

In Version 2 of RT-1ll, all external interrupts cause the processor to
go to level 7 (see Appendix H), ,INTEN is used to lower the priority
to the value at which the device should be run. On return from
«INTEN, the device interrupt can be serviced, at which point the
interrupt routine returns via an RTS PC, It is very important to note
that an RTI will not return correctly from an interrupt routine which
specifies an .INTEN.,

Macro Call: LINTEN ,priority, pic

where: .priority is the processor priority at which the user
wishes to run his interrupt routine.

pic is an optional argument which should be
non~blank if the interrupt routine is written
as a PIC (position independent code) routine.
If the routine does not have to be PIC, it is
recommended that the PIC field be left blank;
the non-PIC version is slightly faster than
the PIC version.

The user is advised to read Appendix H for more details concerning the
use of .INTEN and .SYNCH,

Errors:
None,
Example:

Refer to Section 9.3.1.5, .SYNCH, for an example,

9-21 January 1976



Programmed Requests

.MFPS/.MTP3S

9.3.1.3 .MFPS/.MTPS

The .MFPS and .MTPS macro calls allow processor-independent user access
to the processor status word.

The .MFPS call is used to read the priority bits only; condition codes

are destroyed during the call and must be directly accessed (using con-
ditional branch instructions) if they are to be read in a processor-

independent manner.

Macro Call: .MFPS .addr

where: .addr is the address into which the processor status
is to be stored; if .addr is not defined, the
value is returned on the stack. Note that only
the priority bits are significant.

The .MTPS call is used to set the priority, condition codes, and T bit
with the value designated in the call.

Macro Call: .MTPS .addr

where: .addr is the address of the word to be placed in the

processor status word; if .addr is not defined,
the processor status word is taken from the
stack. Note that the high byte on the stack is
set to zero when .addr is present. If .addr is
not present, the user should set the stack +to
the appropriate value. In either case, the
whole word on the stack is put in the processor
status word.

The contents of R0 are preserved across either call.
Errors:

None.

January 1976 9-21.1



Programmed Requests

Example:

START?

PICKA?

10$1
QHEAD!

)} THREE
01t
Q2!
03:

oMCALL ,,V2,,,.REGDEF, .MFPS, ,MTPS, ,EXIT

.Ivaﬂ.
«REGDEF

JSR PC,PICKG

JEXIT

.MFPS

MOV #QHEAD,R&
LMTPS #340
MOV R4 ,RS
BEQ 10$

MOV @RS, eR4
MTPS

cL2

RTS PC

LWORD Q1

QUEUE ELEMENTS
+WORD 02,0,
.WORD 03,0,0
LWORD 0,0,

«END START

FRICK A QUEUE ELEMENT

1SAVE PREVIOUS PRIORITY IN SP

IPOINT TO QUEUE HEAD
IRAISE PRIORITY 7O 7
1RS POINTS TO NEXT ELEMENT

INO MORE ELEMENTS AVAILARLE

IRELINK THE QUEUE
JRESTORE PREVIOUS PRIORITY
JFLAB SUCCESS

1QUEUE

9-21.2

January 1976




Programmed Requests

.REGDEF

9.3.1.4 JREGDEF

This macro call defines the PDP-1ll general registers as RO through R5,
SP, and PC,

Macro Call: +MCALL ,REGDEF, 4.
+« REGDEF

Errors:
None.,
Example:

Refer to the example for the .SYNCH request. Appendix D shows the
expansion of .REGDEF.

.SYNCH

9.3.1.5 LSYNCH

This macro call enables the user program to perform monitor programmed
requests from within an interrupt service routine. Unless a .SYNCH is
used, issuing programmed requests from interrupt routines is not
supported by the system and should not be performed. .SYNCH, like
.INTEN and .DATE, is not a programmed request and generates no
EMT instructions.

Macro Call: .SYNCH ,area

where: . .area is the address of a seven=word area which the
user must set aside for use by .SYNCH. The
7-word block appears as:

Word 1 RT=11 maintains this word; its
contents should not be altered by
the user,

Word 2 The current job's number, This can
be obtained by a .GTJB call.

Word 3 Unused,

January 1976 9=-22



Programmed Requests

Word 4 Unused.

Word 5 RO argument, When a successful
return is made from L,SYNCH, RO
contains this argument.

Word 6 Must be =1,

Word 7 Must be 0.

Note:s

«SYNCH assumes that the user has not pushed anything on the stack
between the LINTEN and .SYNCH calls. This rule must be observed for
proper operation,

Exrrors:

The monitor returns to the location immediately following the .SYNCH
if the .SYNCH was rejected. The routine is still unable to issue
programmed requests, and R4 and R5 are available for use. Errors
returned are due to one of the following:

1. Another .SYNCH which specified the same 7-word block is still
pending,

2. An illegal job number was specified in the second word of the
block. The only currently legal job numbers are 0 and 2,

3., If the job has been ahorted or for some reason is no longer
running, the .SYNCH will fail.

Normal return is to the word after the error return with the routine
in user state and thus allowed to issue programmed requests., RO
contains the argument which was in word 5 of the block. RO and Rl are
free to be used without having to be saved. (R4 and R5 are not free.)
Exit from the routine should be done via an RTS PC. (Refer to Appendix
H, Section H.1.4, and to the RT-11 Software Support Manual,
Section 6.4.)

Example:
.MCALL OOVQGQD-REGDEF
'.Va..
«REGDEF
«MCALL  LGTJR, INTFN, ,WRITF, ,SYNCH, FXTIT, ,PRINT
STARTy MQV #J0B RS 10UTPUT OF ,GYJR GORS HERE
+GTJR #AREA,RS 1GFT JOB NUMRER
MoV (RS) ,SYNRLK+2 ISTORE THE JOB NUMRER INTOD SYNCH ALOCK
PIN HERE WE SET UP INTFRRUPY
IPROCESSING, AND START UP THE
JINTERRUPTYNG PEVIECE,
INTRPTE ,INTEN % 160 INTO SYSTEM STATF
TRUN AY LEVEL FIVE
PINTERRUPT PROCESSING -«
INOTHING CAN G0 ON STACK
«SYNCH #SYNBLK ITIME TO WRITE A BUFFER
RR SYNFAXIL ISYNEH BLOCK IN USE

9-23




Programmed Requests

TRETURN HERE AT PRTORITY 2, NATE: ,SYNCH MNOPS RTI

JHWRITC #AREA,CHAN,BUFF,WCNT, #CRTNY ,RLK
IWRITE A BUFFER

RCS WYPATL ITFAILEN SOMEMOW
IRF-INTTYIALIZE FNR MORFE
_ RTS8 Pe PINTERRUPTS ANN EXIT
SYNBLKY ,WORD @
«WORD 4 1J0B NUMRER
«WORN ”
JHORD 0
. WORD 5 PR® CONTAINS & oM SUCCESSFUL
, 1SYNCH
WORD “l,0 18FT UP FpDR MONITOW
SYNFAIL?.
M./ V2.
9.3.1.6 ..Vl../..v2..
Any program that uses system MACROs must specify the version format
(Version 1 or Version 2) in which the macro calls are to be expanded.
Assembly errors at macro calls will result if the proper version

designation is not made.

The ..V1.. macro call enables all macro expansions to occur in Version
1 format. (Note that any requests marked with an asterisk in Table
9-1 are not valid as Version 1 requests, and thus will be flagged as
errors if they are assembled in Version 1 form.)

Macro Call: .MCALL ..V1..
«oV1l..

This causes all macros in the program to be assembled in Version 1
form and the symbol ...Vl to be defined. User programs should not use
this symbol. The ..V1l.. macro expands into:

ee.V1=1

To cause all macro expansions to occur in Version 2 format, the ..V2..
macro call is used. Using ..V2.. causes the symbol ...V2 to be
defined. Likewise, user programs should not use this symbol.

Macro Call: +MCALL ..V2..
..V2..

The ..V2.. macro expands into:

.MCALL ...CM1,...CM2,...CM3,...CM4
.. v2=1

January 1976 9-24



Programmed Requests
Note:

It is possible that user programs will exist in which both Version 1
and Version 2 macros are present. To allow proper assembly, the user
should include the statements:

.MCcALL ..V1..,...CM1l,...CM2,...CM3,...CM4
..V1..

to define the utility macros (CM1l, CM2, etc.) used by other Version 2
macros. This causes all macros which existed in Version 1 to assemble
in Version 1 format, while those macros new to Version 2 are correctly
generated as Version 2 macros. Note that in this case a macro which

existed in Version 1 (such as .READ) will expand in the Version 1
format.
Run-time or assembly errors will occur if both the ..V1.. and ..V2..

macro calls are used in a program.
Example:

All examples in Chapter 9 illustrate the Version 2 format. Users are
urged to use the ..V2.. macro call in their programs.

9.4 PROGRAMMED REQUEST USAGE

This section provides a description of each of the programmed requests
alphabetically. The following parameters are commonly used as
arguments in the various calls:

.addr an address, the meaning of which depends on the
request being used

.area a pointer to the EMT argument 1list (for those
requests which require a list); see Section 9.2.3

.blk a block number specifying the relative block in a
file where an I/O transfer is to begin

Jbuff a buffer address specifying a memory location into
or from which an I/0 transfer is to be performed

«Chan a channel number in the range 0-377(octal)

.crtn the entry point of a completion routine; see

Section 9.2.8

.count file number for magtape/cassette operations (see
Appendix H); if this argument is blank, a value of
0 is assumed

«dblk the address of a four-word RAD50 descriptor of the
file to be operated upon; see Section 9.2.2

. num a number, the value of which depends on the
request

.went a word count specifying the number of words to be
transferred to or from the buffer during an I/O
operation

Additional information concerning these parameters (and others not
defined here) is provided as necessary under each request.

9-25




Programmed Requests

.CDFN

9.4.1 .CDFN

The .CDFN request is used to redefine the number of I/O channels.
Each job, whether foreground or background, is initially provided with
16 (decimal) I/O channels, numbered 0-15. .CDFN allows the number to
be expanded to as many as 255(decimal) channels.

Note that .CDFN defines new channels; the previously-defined channels
are not used. Thus, a .CDFN for 20(decimal) channels (while the 16
original channels are defined) causes only 20 I/O channels; the space
for the original 16 is unused,
Note that if a program is overlaid, channel 15 is used by the overlay
handler and should not be modified. (Other channels can be defined and
used as usual.)
Macro Call: L.CDFN .,area, .addr, .num

where: .addr is the address where the I/0 channels begin

.num is the number of I/0 channels to be created

Request Format:

RO = .area: 15| 0
.addr
- num

The space used to contain the new channels is taken from within the
user program. FEach I/O channel requires 5 words of memory. Thus, the
user must allocate 5*N words of memory, where N is the number of
channels to be defined.

It is recommended that the .CDFN request be used at the beginning of a
program, before any I/O operations have been initiated. If more than
one .CDFN request is used, the channel areas must either start at the
same location or not overlap at all. The two requests ,SRESET and
.HRESET cause the user's channels to revert to the original 16
channels defined at program initiation., Hence, any .CDFNs must be
reissued after using those directives.

Errors:
Code Explanation
0 An attempt was made to define fewer channels than
already exist.
Example:
.MCALL ..va'l' .REGD!'
l'vzll
«REGDEF

JMCALL LCOFN, ,PRINT, EXIT
STARTT LCDFN  #ROLIST,SCHANL,#40Q,

BCS aA0COF
+PRINT #MSGY
JEXIT
BADCOF: ,PRINT WMSGR2
JEXIT
M8G1 ASCIZ /.CDFN 0,K,/

+EVEN
MSG2! «ASCIZ /BAD ,COFN/

January 1976 9-26



Programméd Requests

+EVEN
RALISTT ,BlLkw 3 JEMT ARGUMENT LIST
CHANLS  ,BLKW Q0.8 PROOM FOR CHANNELS

«END STARY

The example defines 40 (decimal) channels to start at location CHANL.
An error occurs if 40 or more channels are already defined.

9-26.1 January 1976



This page intentionally blank.



Programmed Requests

.CHAIN

9.4.2 LCHAIN

This request allows a background program to pass control directly to
another background program without operator intervention. Since this
process may be repeated, a large "chain" of programs can be strung
together,

The area from locations 500-507 contains the device name and file name
(in RAD50) to be chained to, and the area from locations 510-~777 is
used to pass information between the chained programs,

Macro Call: .CHAIN
Notes:

l. No assumptions should be made concerning which areas of
memory will remain intact across a .CHAIN. In general,
500-777 is the only area guaranteed to be preserved across
a .CHAIN.

2, I/0 channels are left open across a .CHAIN for use by the new
program. However, I/0 channels opened via a .CDFN request
are not available in this way. Since the monitor reverts to
to the original 16 channels during a .CHAIN, programs which
leave files open across a .CHAIN should not use .CDFN.
Furthermore, non-resident device handlers are released during
a .CHAIN, and must be .FETCHed again by the new program,

3. A program can determine whether it was CHAINed to or RUN from
the keyboard by examining bit 8 of the JSW. This bit is on
during program execution only if the program was entered via
CHAIN. If a program normally loads into area 500-777, bit 8
of the JSW should be set during program assembly. This causes
the monitor to load the area properly. If the bit is not set,
locations 500-777 are preserved from the chaining program,
causing the new program to malfunction.

Errors:

«CHAIN is implemented by simulating the monitor RUN command (described
in Chapter 2), and can produce any errors which RUN can produce. If
an error occurs, the .CHAIN is abandoned and the Keyboard Monitor is
entered.

When using .CHAIN, care should be taken for initial stack placement,
since the program being "chained to" is started. The Linker normally
defaults the initial stack to 1000(octal); if caution is not observed,

the stack may destroy chain date before it can be used (see Chapter 2,
the RUN command).

9-27 January 1976



Programmed Requests

Example:

.MC‘LL ..VE....R!GC’EF

l'an.
+REGDEF
CMCALL  LCHAIN, ,TTYIN

START:
MOV #5020, R} JSET UP TO CHAIN
MOV #CHPTR, R2 JDEVICE, FILE NAME TO S00=%11
JREPT &
MOV (R2) %) (R1)+
+ENDR

LOOPE L TTYIN INOW GET A COMMAND LINE
MOVE RO, (R1)* JAND PASS IT TO THE JOB
cMPB RD, #12 JIN LOCATIONS 512 AND UP
BNE LOOP JLOOP UNTIL LINE FEED
CLRB (R1)e IPUT IN A NULL BYTE
LCHAIN

CHPTR: L,RADS® /DK /
«RADSO® /YECOD /
+RADSO /8AV/
JEND SYARTY

.CHCOPY

9,4,3 .CHCOPY (F/B only)

The .CHCOPY request opens a channel for input, logically connecting it
to a file which is currently open by the other job for either input or
output. This request may be used by either the foreground or the
background. .CHCOPY must be done before the first .READ or .WRITE.

Macro Call: .CHCOPY ,area, .chan, .ochan

where: .chan is the channel which the job will use to read
the data.
.Oochan is the channel number of the other job which

is to be copied

Request Format:

RO = .area: ‘13|,chan

<0ochan

.CHCOPY is legal only on files which are on disk or DECtape; however,
no errors are detected by the system if another device is used. (To
close a channel following use of .CHCOPY, use either the .CLOSE or
.PURGE request.)

Notes:

1. If the other job's channel was opened via an .ENTER in order
to create a file, the copier's channel indicates a file which
extends to the highest block that the creator of the file had
written at the time the ,CHCOPY was executed.

January 1976 9-28



Programmed Requests

2. A channel which is open on a nonfile-structured device
should not be copied, because intermixture of buffer requests
may result,

3. A program can write to a file (which is being created by the
other job) on a copied channel just as it could if it were
the creator, When the copier's channel is closed, however,
no directory update takes place.

Errors:

Code Explanation

0 Other job does not exist, does not have
enough channels defined, or does not have the
specified channel (.ochan) open.

1 Channel (.chan) already open.

Example:

In this example, .CHCOPY is used to read data currently being written
by the other job. The correct block number and channel to read is
obtained by a .RCVDW command. The channel number will be in MSG+4.

I"CALL ..VZ..:.REGDEF

.Qval'
+REGOEF
oMCALL ,CHCOPY, ,RCYDW, ,PURGE, ,READW, ,EXIT, PRINT
8T
«PURGE -~ %0 JMAKE SURE wE HAVE CLEAR
JCHANNEL
+RCVOW WAREA, #M8G, w2 IREAD TWO WORDS, BLOCK #
JAND CHANNEL
BCS NOJOB INO JOB THERE
+CHCOPY ®AREA,wQ,M8G6%4 JCHANNEL ® 18 IN THERE
BCS BUSY 1BUT BUSY
+READW SAREA,#Q,¥BUFF,»256,,M806+2 JGET THE CORRECT BLOCK
8cs ROERR
+PRINT #0KMSG
JEXTY
NOJOB: LPRINT #MS8G!Y
JEXIT
BUSYs PRINT #M8G2
JEXIT
RDERR: ,PRINT #MS§G3
JEXITY
AREAY BLKW 9
M8G oBLKW 3

BUFF1 eBLKW 256,
MSG1Y «ASCIZ /NO JOB/
MSGes +ASCIZ /BUSYL/
MSG3!S +ASCIZ /READ ERROR/
OKMSGs LASCIZ /READ OK/
+EVEN

JEXIT

+END ST



Programmed Requests

.CLOSE

9.4.4 .CLOSE

The .CLOSE request terminates activity on the specified channel and
frees it for use in another operation. The handler for the associated
device must be in memory.

Macro Call: LCLOSE .chan

Request Format:

R0 6 ].cnan]

A .CLOSE is required on any channel opened for either input or output.,
A .CLOSE request specifying a channel that is not opened is ignored.

A .CLOSE performed on a file which was opened via .ENTER causes the
device directory to be updated to make that file permanent. A file
opened via .LOOKUP does not require any directory operations. If the
device associated with the specified channel already contains a file
with the same name and extension, the old copy is deleted when the new
file is made permanent. When an entered file is .CLOSEd, its
permanent length reflects the highest block written since it was
entered; for example, if the highest block written is block number o,
the file is given a length of 1; if the file was never written, it is
given a length of 0. If this length is less than the size of the area
which was allocated at .ENTER time, the unused blocks are reclaimed as
an empty area on the device.

Erxors:

.CLOSE does not return any errors. If the device handler for the
operation is not in memory, a fatal monitor error is generated.

Example:

An example which illustrates the .CLOSE request follows the discussion
of the .WRITW request in Section 9.4.47.



Programmed Requests

CMKT

9.4.5 .CMKT (F/B only)

The .CMKT request causes one or more outstanding mark time requests to
be cancelled (mark time requests are discussed in Section 9.4.22).

Macro Call: .CMKT .area, .id, .time

where: .id is a number used to identify each mark time
request to be cancelled. If more than one mark
time request has the same .id, that with the
earliest expiration time is cancelled. If .id =

0, all nonsystem mark time requests (i.e., in
the range 1-177377) for the issuing job are can-
celled.

.time is the pointer to a two-word area in which the

Monitor will return the amount of time
remaining in the cancelled request., The Ffirst
word contains the high-order time, the second
contains the low-order. If an address of 0 is
specified, no value is returned. If .id = 0,
the .time parameter is ignored and need not be
indicated.

Request Format:

RO =3 ,area: 23|0

.id
.time

Notes:

l. Cancelling a mark time request frees the associated queue
element for other uses.

2. A mark time request can be converted into a timed wait by
issuing a .CMKT followed by a .TWAIT, and specifying the same
+time area.

Errors:
Code Explanation
0 The .id was not =zero; a mark time with that

identification number could not be found (implying
that the request was never issued or that it has
already expired).

9-31 January 1976



Programmed Requests

Example:

See the example following the description of the .MRKT request.

CNTXSW

9.4.6 LCNTXSW (F/B only)

A context switch is an operation performed when a transition is made
from running one 3job to running the other. The .CNTXSW request is
used to specify locations to be included in the context switch.

Macro Call: .CNTXSW ,area, .addr

where: .addr is a list of addresses terminated by a 2zero
word. The addresses in the list must be even
and:

a. 1in the range 2-476, or

b. in the user job area, or

c. in the I/O page (addresses
160000-177776) .

Request Format:

RO 2 .area: |33]0
.addr

The system always saves the parameters it needs to uniquely identify
and execute a job, including all registers, and the locations:

34/36 Vector for TRAP instruction
40-52 System Communication Area

If an .SFPA request (Section 9.4.37) has been executed with a non-zero
address, all floating point registers and the floating point status
are also saved.

It is possible that both jobs may want to share the use of a
particular location and that 1location is not included in normal
context switch operations. For example, if a program uses the IOT
instruction to perform some internal user function (such as print
error messages), it must set up the vector at 20 and 22 to point to an
internal IOT trap handling routine, If both foreground and background
wish to use IOT, the IOT vector must always point to the proper
location for the job which is executing., Including locations 20 and
22 in the .CNTXSW list for both jobs will accomplish this.

If .,CNTXSW is issued more than once, only the latest 1list is used;
the previous address 1list is discarded. Thus, all addresses to be
switched must be included in one 1list, If the address (.,addr) is
zero, no extra locations are switched. The list may not be in an area

9-32



Programmed Requests

into which the USR swaps, nor may it be modified while a job is
running.

Errors:

Code Explanation

0 One or more of the above conditions was violated.
Example:

In this example, .CNTXSW request is used to specify that locations 20
and 22 (IOT vector) and certain necessary EAE registers be context
switched. This allows both jobs to use IOT and the EAE simultaneously
yet independently.

+MEALL  4oV2o4s 4REGDEF, ,CNTXSW, ,PRINT, ,EXIT

voVaa, 1CALL FOR V2 MACROS
«REGDEF JOEFINE REGISTERS
STARTY MQV #LIST,RQ )SET R@ TO QUR OWN LISY
«CNTXSW ,#8NAPLS JTHE LISY OF ADDRS I8
1AT SWAPLS,
8cc 13
«PRINY #ADDERR JADORESS ERROR(SHOULD NOT
10CCUR)
EXIT
183
«PRINT #CNTOK
EXIT
SWAPLST LWORD ee JADORESSES TO INCLUDE IN L1IS8T
«WORD ee
«WORD 177302
«WORD 177304
«WORD 177310
« WORD 2
LISTH BYTE 2,33 JFUNCTION CODE WORD
«WORD e JTHE MACRO FILLS THIS ONE,
ADDERRI ,ASCIZ /ADDRESSING ERROR/
+EVEN
CNTOKS  ,ASCIZ /CONTEXT SWITCH 0,K./
«EVEN

+END START

.CSIGEN

9.4.7 .CSIGEN

The .CSIGEN request calls the Command String Interpreter (CSI) in
general mode to process a standard RT-1l command string (see Chapter 2
for the description of a standard command string). In general mode,
all file L,LOOKUPs and .ENTERS as well as handler .FETCHs are

9-33



Programmed Requests

performed. When called in general mode, the CSI closes channels 0-10
(octal).

Macro Call: .CSIGEN .devspc, .defext, .cstring

where: .devspc is the address of the memory area where the
device handlers (if any) are to be loaded.

.defext is the address of a four-word block which
contains the RAD50 default extensions. These
extensions are used when a file is specified
without an extension.

.cstring is the address of the ASCIZ input string or a
#0 if input is to come from the console
terminal. (In a F/B environment only, if the
input is from the console terminal, an
- UNLOCK of the USR is automatically
performed, even if the USR is locked at the
time.) If the string is in memory, it must
not contain a <CR)XLF>, but must terminate
with a zero byte. If the .cstring field is
left blank, input is automatically taken from
the console terminal.

.CSIGEN loads all necessary handlers and opens the files as specified,
The area specified for the device handlers must be large enough to
hold all the necessary handlers simultaneously. If the device
handlers exceed the area available, the user program may be destroyed.
The system, however, is protected from this.

When the EMT is complete, register 0 points to the first available
location above the handlers.

The four-word block pointed to by .defext is arranged as:

Word 1: default extension for all input channels
Words 2,3,and 4: default extensions for output channels 0,1,2
respectively

If there is no default for a particular position, the associated word
must contain a zero. All extensions are expressed in Radix 50. For
example, the following block can be used to set up default extensions
for a macro assembler:

DEFEXT: .RAD50 "MAC"
+«RADS50 "OBJ"
+«RADS0 "LST"
+«WORD 0

In the command string:

*DTO0 : ALPHA ,DT1 :BETA=DT2: INPUT

the default extension for input is MAC; for output, OBJ and LST. The
following cases are legal:

*DT0:OUTPUT=
*DT2: INPUT

In other words, the equal sign is not necessary in the event that only
input files are specified.
January 1976 9-34



Programmed Requests

When control returns to the user program after a call to .CSIGEN, all
the specified files have been opened for input and/or output. The
association is as follows: the three possible output files are
assigned to channels 0, 1, and 2; the six input slots are assigned to
channels 3 through 10. A nvll specification causes the associated
channel to remain inactive. For example, in the following string:

*,LP:=F1,F2

channel 0 is inactive since the first slot is null. Channel 1 is
associated with the line printer, and channel 2 is inactive. Channels
3 and 4 are associated with two files on DK:, while channels 5 through
10 are inactive. The user program can determine whether a channel is
inactive by issuing a .WAIT request on the associated channel, which
returns an error if the channel is not open.

Switches and their associated values are returned on the stack; see
Section 9,4.8.1 for a description of the way switch information is
passed.

Errors:

If CSI errors occur and input was from the console terminal, an error
message describing the fault is printed on the terminal and the CSI
retries the command (these messages appear in Section 9.4.8.1). If the
input was from a string, the carry bit is set and byte 52 contains the
error code, The errors are:

Code Explanation

0 Illegal command (bad separators, illegal filename,
command too long, etc.).

1 A device specified is not found in the system tables.

2 Unused.

3 An attempt to .ENTER a file failed because of a full
directory.

4 An input file was not found in a .LOOKUP.

Example:

This example uses the general mode of the CSI in a program to copy an
input file to an output file, Command input to the CSI is from the
console terminal.

QMCALL .oVEau.REGDEF

seV2a,

+REGDEF

«MCALL L CSIGEN, ,READW, PRINT, ,EXIT, ,WRITW,,CLOSE, ,SRESET
ERRWD=Sg

STARTS LCSIGEN WDSPACE,®DEXT JGET STRING FROM TERMINAL

MOV RO, BUFF JR® HAS FIRST FREE LOCATION
CLR INBLK JINPUT BLOCK #
MOV #LIST,RS JEMT ARGUMENT. LI87T
READ? +READW R5,#3,BUFF,¥256,,INBLK JREAD CHANNEL 3
BCC es INO ERRQRS
T878 ORERRWD JEOF ERROR?
BEQ EQF 1YES
MOV BINERR,RD

9-35 January 1976



Programmed Requests

153 «PRINT JERROR MESSAGE
CLR RO JHARD EXIY
JEXIT
2 JWRITW RS, #0,BUFF,#256,,INBLK JWRITE THE BLOCK
acc NOERR INO ERRQR WRITING
MoV BWTERR,RD
BR 18 JHARD OUTYPUY ERROR
NOERRS INC INBLK J1GET NEXT BLOCK
BR READ JLOOP UNTIL DONE
EQF1 «CLOSE %0 JCLOSE OUTPUT CHANNEL
+CLOSE #3 JAND INPUT CHANNEL
+SRESET JRELEASE HANDLEK FROM MEMQRY
BR START 1GO FOR NEXT COMMAND LINE
DEXT? «NORD 2,2,0,0 INO DEFAULT EXTENSIONS
BUFF1? «WORD 2 11/0 BUFFER STARTY
INBLKE  (WORD ? JRELATIVE BLOCK TO READ/WRITE
LISTH wBLKW S JEMT ARGUMENT LIST
INERRS LASCIZ /INPUT ERROR/
«EVEN
WTERRS ,ASCIZ /OQUTPUT ERROR/
«EVEN
DSPACEs, JHANDLER SPACE

+END START

.CSISPC

9.4,8 .CSISPC

The .CSISPC request calls the Command String Interpreter in special
mode to parse the command string and return file descriptors and
switches to the program. In this mode, the CSI does not perform any
handler fetches, .CLOSEs, ,ENTERs, or ,LOOKUPs.

Macro Call: .CSISPC .outspec, .defext, .cstring

where: .outspc is the address of the 39-word block to
contain the file descriptors produced by
.CSISPC., This area may overlay the space
allocated to .cstring if desired,

.defext is the address of a four-word block which
contains the RAD50 default extensions. These
extensions are used when a file is specified
without an extension.

July 1975 9-36



Programmed Requests

.cstring is the address of the ASCIZ input string or a
#0 if input is to come from the console
terminal. If the string is in memory, it
must not contain a <CR>LF> but must
terminate with a zero byte. If ,cstring is
blank, input is automatically taken from the
console terminal.

The 39-word file description consists of nine file descriptor blocks
(five words for each of three possible output files; four words for
each of six possible input files) which correspond to the nine
possible files (three output, six input). If any of the nine possible
filenames are not specified, the corresponding descriptor block is
filled with zeroes.

The five-word blocks hold four words of RADS50 representing
dev:file.ext, and 1 word representing the size specification given in
the string. (A size specification is a decimal number enclosed in
square brackets [], following the output file descriptor.) For
example,

*DT3:LIST.MAC[15)=PR:
Using special mode, the CSI returns in the first five word slot:

16101 RAD50 for DT3

46173 +«RAD50 for LIS

76400 +RAD50 for T

50553 «RAD50 for MAC

00017 Octal value of size request

In the fourth slot (starting at an offset of 36 (octal) bytes into
.outspc), the CSI returns:

63320 +RAD50 for PR
0 No file name
0 Specified

0

Since this is an input file, only four words are returned.

Switches and their associated values are returned on the stack. See
Section 9.4.8.1,

Frrors:

Errors are the same as in general mode. However, since .LOOKUPs and
.ENTERs are not done, the error codes which are valid are:

Code FExplanation
0 Illegal command line
1 Illegal device
Example:

This example illustrates the use of the special mode of CSI. This
example could be a program to read a file which is not in RT-11 format
to a file under RT-1l.

9-37



Programmed Requests

aMCALL  ,oV2,49REGDEF

+MCALL ,CSISPC,,PRINT,, EXIT, ENTER,,CLOSE

STARTS ,CBISPC SOUTSPC,#DEXT,#CSTRNG JGET INPUT FROM A
FSTRING IN MEMORY

8cc 28
MOV $8YNERR,RD JOYNTAX ERROR
183 «PRINT TERROR MESSAGE
+EXIT
231 .EETER #LIST,#2,#0UTSPC,#64, JENTER FILE UNDER RTsi!
BC 38
MOY SENMEG, RO JENTER FAILED
BR 18
3 JBR RS, INPUT JROUTINE INPUT WILL USE
JTHE INFORMATION AY
J#0UTSPC+36 TO READ INPUY
JFROM THE NONeRT1{ DEVICE,
PINPUT I8 PROCESSED AND
IWRITTEN VIA ,WRITW REQUESTS
+CLOSE #0 JMAKE QUTPUY FILE PERMANENTY
JEXIT JAND EXIT PROGRAM
CSTRNG? ,ASCIZ "DY4IRYFIL,MACSDT21008,MACH
+EVEN
DEXTs s WORD e,e,2,0 INO DEFAULT EXTENSIONS
LIST: oBLKW S TLIST FOR EMY CALLS

SYNERR! ,ASCIZ "(C81 ERROR"

ENMSGI ,ABCIZ "ENTER FAJLED"
JEVEN

INPUTE RTS RS

OuTSPCs, JCSI LIST GOES HERE
LEND START

9,4.8.1 Passing Switch Information

In both general and special modes of the CSI, switches and their
associated values are returned on the stack. A CSI switch is a slash
(/) followed by any character. The CSI does not restrict the switch
to printing characters, although it is suggested that printing
characters be used wherever possible. The switch can be followed by
an optional value, which is indicated by a : or | separator. The :
separator is followed by either an octal number or by one to three
alphanumeric characters, the first of which must be alphabetic, which
are converted to Radix-50. The | separator is followed by a decimal
value. Switches can be associated with files with the CSI. For
example: '

*DK:F00/A,DT4 :FILE,0BJ/A:100

In this case, there are two A switches., The first is associated with
the input file DK:FOO. The second is associated with the input file
DT4:FILE.OBJ, and has a value of 100(8). The stack output of the CSI
is as follows:



Programmed Requests

Word # Value

1 N
(top of
stack)
2 Switch value

and file number

3 Switch value
or next switch

Number

Meaning

of | switches found in

command string. If N=0, no switches
were found.

Even byte = 7-bit ASCII switch value.
Bits 8=14 = Number (0-10) of the file
with which the switch is
associated.
Bit 15 = 1 if the switch had a
value.
= 0 if the switch had no
value,

If word 2 was less than 0, word 3 =

switch
greater

value. If word 2 was
than 0, this word is the

next switch value (if it exists).

For example, if the input to the CSI iss

*FILE/B:20,FIL2/E=DT3:INPUT/X:5Y:20

on return, the stack is:

Stack Pointer- 3
101530

20
101530

075250
505
100102

20

Three switches appeared.
Last switch=X; with file 3, has a

value,

Value of switch X=20
‘Next switch =X; with file 3, has a

value,

Next value of switch X=RAD50 code for

sYy.

Next switch=E; associated with file 1,
no value,

Switch=B; associated with file 0 and
has a value,

Value is 20.

As an extended example, assume the following string was input for the

CSI in general mode:

*FILE[S],LP:,SY:FILEZ[20]=PR:,DTl:INl/B,DTZ:INZ/M:7

Assume also that the default extension block is:

DEFEXT:

'MAC'
‘oprl'
'op2'
‘oP3!

The result of this CSI call would be:

s INPUT EXTENSION

$ FIRST OUTPUT EXTENSION
$SECOND OUTPUT EXTENSION
sTHIRD OUTPUT EXTENSION

1. A file named FILE.OPl is entered on channel 0 on device DK;

channel 1 418 open for out
file named FILE2.0P3 is

channel 2,

"9-39

put to the device LP; a 20-block
entered on the system device on



Programmed Requests

2. Channel 3 is open for input from paper tape; channel 4 |is
open for input from a file IN1.MAC on device DT1l; channel 5
is open for input from IN2,MAC on device DT2.

3. The stack contains switches and values as follows:

2
102515

7
2102

Explanation

2 switches found in string.

Second switch is M, associated with
Channel 5; has a numeric value.
Numeric value is 7.

Switch is B, assoclated with
Channel 4; has no numeric value.

1f the CSI were called in special mode (Section 9.4.8), the stack
would be the same as for the general mode call, and the descriptor

table would contain:

.OUTSPC: 15270
23364

17500

60137

10

46600

s « RAD50 'DK?

s « RAD50 'FIL’®

s « RAD50 ‘B

7 « RAD50 ‘orl’

;s LENGTH OF 8 BLOCKS

7 « RADS0 'Lp'

sNO NAME OR LENGTH SPECIFIED

3 « RAD50 'sy?

3 « RADS50 'FIL'

7 « RADS0 ‘E2°

3 « RAD50 'or3’

; LENGTH OF 20 (DECIMAL)
s « RADS50 'PR'

7 « RAD50 'DTL1"
3 « RADSO0 'IN1'
7 « RADS0 ' '
7 « RAD50 'MAC!
}.RADSO 'DT2'
3 « RAD50 YIN2'
3 « RAD50 ' '
3 « RAD50 *MAC'

(twelve more zero words
are returned)

Keyboard error messages which may occur from incorrect use of the CSI
when input is from the console keyboard include:

Message

?2ILL CMD?
?FIL NOT FND?

Meaning

Syntax error.
Input file was not found.

9-40



Programmed Requests

?DEV FUL? Output file will not fit.
?2ILL DEV? Device specified does not exist.

Notes:

l. In many cases, the user program does not need to process
switches in CSI calls. However, the user at the console may
inadvertently enter switches. In this case, it is wise for
the program to save the value of the stack pointer before the
call to the CSI, and restore it after the call. In this way,
no extraneous values will be left on the stack.

2. In the F/B System, calls to the CSI which require console
terminal input will always do an implicit .UNLOCK of the USR.
This should be kept in mind when using .LOCK calls.

.CSTAT

9.4.9 .CSTAT (F/B only)

This request furnishes the user with information about a channel. It
is supported only in the F/B environment; no information is returned
in the Single-Job Monitor,

Macro Call: ,CSTAT .area, .chan, .addr

where: .addr is the address of a 6-=word block which is to
contain the status

Request Format:

RO 3 .,area: | 27]|.chan
.addr

The 6 words passed back to the user are:

l. Channel status word (see Section 9.4.34)

2. Starting block number of file (0 if sequential-access device

or if channel was opened with a nonfile-structured .LOOKUP or
.ENTER)

3. Length of file (no information if nonfile-structured device

or if channel was opened with a nonfile-structured .LOOKUP or
.ENTER)

4. Highest block written since file was opened (no information if
nonfile-structured device)

5. Unit number of device with which this channel is associated

6. RAD50 of the device name with which the channel is associated

(this is a physical device name, unaffected by any user name
ASSIGNment in effect)

9-41 January 1976



Programmed Requests

The fourth word (highest block) is maintained by the .WRITE requests,
If data is being written on this channel, the highest relative block
number is kept in this word.

Errors:
Code Explanation

0 The channel is not open.
Example:

In this example, .CSTAT is used to determine the ,RADS50 representation
of the device with which the channel is associated.

.MC‘LL ..VZ..,.F[GDEF;.CSIGEN..C'TAY
.IvaO L)
+REGDEF

2MCALL  (PRINT, ,EXIY

871 «CSIGEN #DEVSDC,#DEFEXT JOPEN FILES
WCSTAT WAREA,#0Q,®ADDR JGEY THE 8YATUS
BCS NOCHAN JCHANNEL @ NOT OPEN
Moy #ADDR+1Q,RS JPOINT TO UNLIT »
MOV (RS)e, RO JUNIT # Y0 RO
ADD (PC)+, RO JMAKE IV RADSO
«RADSD /7 0/
ADD (RS), R0 JGET DEVICE NAME
MO: RO,DEVYNAM JOEVYNAM HAS RADS® DEVICE NAME
EXIT

AREAL WBLKW
ADOR?S BLKW
DEVNAMS ,WORD
DEFEXTt ,wORD 2,2,2,90
NOCHANI PRINT #M8G

JEMY ARG LIST
JAREA FOR CHANNEL STATUS
J8TQORAGE FOR DEVICE NAME

QS

JEXIT

M8G1 «ASCIZ /NO QUTPUT FILE/
«EVEN

DEVSDCs,
+END 8T

DELETE

9.4.10 .DELETE
The .DELETE request deletes a named file from an indicated device.

Macro Call: .DELETE .area, .chan, .dblk, .count

January 1976 9-42



Programmed Requests

where: .count is used by magtape/cassette only, (Refer to
Appendix H for more information concerning
the magtape and cassette handlers.)

Request Formats

RO & .area:|0 | .chan
+dblk
.count

Note:

The channel specified in the .DELETE request must not be in use when
the request is made, or an error will occur. The file is deleted from
the device, and an empty (UNUSED) entry of the same size is put .in its
place, A .DELETE issued to a nonfile-structured device is ignored.
+DELETE requires that the handler to be used be in memory at the time
the. request is made. When the ,DELETE is complete, the specified
channel is left inactive,

Errors:
Code Explanation
0 Channel is active
1 File was not found in the device directory
Example:

This example uses the special mode of CSI to delete files.
WMCALL  ,,V2,, REGDEP :

se Ve, :
+REGODEF
TMEALL +SRESET, ,C8I8PC, ,DELETE, ,PRINT, ,EXIT
START) +3RESET JMAKE SURE CHANNELS
1ARE FREE

»CSISPC #OUTSPC,#DEFEXT JGET COMMAND LINE
o JTERMINAL DIALOG WAS
' JOTIFILE
«DELETE #LIST,#0,#INSPE JUSE CHANNEL @ TO
JDELETE THE FILE
IWHICH I8 AT THE
JIFIRST INPUT 8LOT,

8ccC STAR?Y 10Ky LOOP AGAIN
+PRINT &#NODFILE INO SUCK FILE
BR START
NOFILED .Aigxz _/FILE NOT FOUND/
JEVEN
DEFEXTS ,RADSR /MAC/ 1 .MAC INPUT EXTENSION
«HWORD 2,0,0 INO OUTPUT DEFAULTS
LISTH BLKMW 2 : JEMT ARG LIST
OUTSPCE,
INSFCE , #36
BLKW 39,

+END STARTY

INSPC is the address of the first input slot in the CSI input table.

9-43



Programmed Requests

.DEVICE

9.,4.,11 .DEVICE (F/B Only)

This request allows the user to set up a list of addresses to be
loaded with specified values when a program is terminated. Upon an
.EXIT or CTRL C, this 1list is picked up by the system and the
appropriate addresses are set up with the corresponding values. This
function is primarily designed to allow user programs to load device
registers with necessary values. In particular, it is used to turn
off a device's interrupt enable bit when the program servicing the
device terminates.

Macro Call: .DEVICE ,area, .addr

where: .addr is the address of the 1list of masks and
words.

Request Format:

RO & .,area:|14|0
.addr

The list is composed of address/value pairs and should be terminated
by a 0 address. only one list can be active at a given time, If
multiple .DEVICE requests are given, the last list specified is the
one used.,

Note:

When the job is terminated for any reason, the list is scanned once.
At that point, the monitor disables the feature until another .DEVICE
call is executed. Thus, background programs which are re-enterable
should include .DEVICE as a part of the reenter code.

Errors:
None,
Example:

The following example shows how ,DEVICE is used to disable interrupts
from the AFCll (A-D converter sub-system).

.M:‘LL ..Va.,.p.REGDEF
eaVe.a,

+REGDEF

JMCALL  L,DEVICE,  EXIT

START: LDEVICE #LISTY
JEXIT
LISTS LBYTE ©,14 JEMT ARG L1IST

9-44



Programmed Requests

+WORD ATOD
ATODS {7es72 JADDRESS 18 172570
2 JJAM A B INYOD ITY
o JTHIS @ TERMINATES THE LIST,

2END STARY

.DSTATUS

9.4.12 ,DSTATUS
This request is used to obtain information about a particular device.

Macro Call: ,DSTATUS .cblk, .devnam

where: ,cblk is the 4~-word space used to store the status
information,
.devnam is the pointer to the RAD50 device name,

+DSTATUS looks for the device specified by .devnam and, if found,
returns four words of status starting at the address specified by
«cblk. The four words returned are:

l. Status Word

Bits 7-0: contain a number which identifies the device in
question, The values (octal) currently defined

are: 0 = RKO5 Disk

1l = TCll DECtape

2 = Reserved

3 = Line Printer

4 = Console Terminal
5,6 = Reserved

7 = PCll High-speed Reader
10 = PCll High-speed Punch
11l = Magtape (TM1l, TMAll)

12 = RF11 Disk

13 = TAll Cassette

14 = Card Reader (CR11l, CM11l)
15 = Reserved

16 = RJIS03/4 Fixed-head Disks
17 = Reserved

20 = TJUl6 Magtape

21 = RP02, RP03 Disk

22 = RX01l Disk

Bit 15: 1= Random-access device (disk, DECtape)
0= Sequential-access device (line printer, paper tape,
card reader, magtape, cassette, terminal)
Bit 14: 1= Read-only device (card reader, paper tape reader)
Bit 13: l= Write-only device (line printer, paper tape punch)
Bit 12: 1= Non RT-11 directory-structured device (magtape,
cassette)

9-45 January 1976



Programmed Requests

Bit 11: 1= Enter handler abort entry every time a job is aborted
0= Handler abort entry taken only if there is an active
queue element belonging to aborted job
Bit 10: 1= Handler accepts .SPFUN requests (e.g., MT, CT, DX)
0= .SPFUN requests are rejected as illegal

2, Handler size.
The size of the device handler, in bytes.
3. Entry point.

Non-zero implies the handler is now in memory; zero
implies it must be .FETCHed before it can be used.

4., Device size.

The size of the device (in 256-word blocks) £for block-
replaceable devices; =zero for sequential-access devices.
The device name may be a user-assigned name.

Refer to the RT-11 Software Support Manual for greater detail.
Errors:

Code Explanat%gg
0 Device not found in tables.
Example:

This example shows how to determine if a particular device handler is
in memory and, if it is not, how to .FETCH it there.

MCALL  ooeV@4sr oREGDEF

eVees

+REGDEF

MCALL JOSTATUS, ,PRINT, ,EXIT,,FETCH

STARTI ,DSTATUS #CORE,#wFPTR JIGET STYATUS OF DEVICE

BCC 18
o:RINT #ILLDEV JOEVICE NOT IN TABLES
JEXIT
193¢ T87 COREwd4 718 DEVICE RESIDENT?
BNE 28
JFETCH #YNDLR,#FPFTR INO, GET IT
8cc 29
+PRINT WFEFAIL JFETCH FAILED
JEXTTY
28 «PRINT #FECHOK
JEXIY
CORE} BLKW 4 JOSATUS GOES HERE

FPTRY «RADSQ /DYOQ/ JDEVICE NAME
JRADS® /FILE MAC/ PFILE NAME

FEFAILY ,ASCIZ /FETCH FAILED/

ILLOEVI ,AS8CIZ /ILLEGAL DEVICE/

«EVEN
FECHOKY LASCIZ /FETCH O,K,/
+EVEN
HNDLRs=, JHANDLER WILL GO HWERE

«END START
Januaxry 1976 9-46



Programmed Requests

.ENTER

9.4.13 LENTER

The .ENTER request allocates space on the specified device and creates
a tentative entry for the named file. The channel number specified is
associated with the file. (Note that if the program is overlaid,
channel 15 is used by the overlay handler and should not be modified.)

Macro Call: .ENTER .area, .chan, .dblk, .length, .count

where: .length is the file size specification. The file
length allocation is as follows:

0 - either 1/2 the largest empty entry or
the entire second largest empty entry,
whichever is largest. (A maximum size
for non-specific ENTERs may be patched
in the monitor.)

M - a file of M blocks. M may exceed the
maximum mentioned above.

-1 - the largest empty entry on the device.

.count file number for magtape/cassette (see
Appendix H); if this argument is blank, a
value of zero is assumed.

Request Format:

RO = ,area: (2 |.chan
.dblk

.length
.count

The file created with an ,ENTER is not a permanent file until the
+.CLOSE on that channel is given. Thus, the newly created file is not
available to .LOOKUP and the channel may not be used by SAVESTATUS
requests. However, it is possible to go back and read data which has
just been written into the file by referencing the appropriate block
number. When the .CLOSE to the channel is given, any already existing
permanent file of the same name on the same device is deleted and the
new file becomes permanent. Although space is allocated to a file
during the LENTER operation, the actual length of the file is
determined when .CLOSE is requested,

Each job may have up to 256 files open on the system at any time. If
required, all 256 may be opened for output with the .ENTER function.
+ENTER requires that the device handler be in memory when the request
is made. Thus, a .FETCH should normally be executed before a .ENTER

0-47 January 1976



Programmed Requests

can be done. On return, RO contains the size of the area actually
allocated for use.

Notes:

When using the 0 length feature of .ENTER, it must be kept in mind
that less than the largest empty space is allocated. This can have an
important effect in transferring files between devices (particularly
DECtape) which have a relatively small capacity. For example, to
transfer a 200-block file to a DECtape on which the largest available
empty space is 300 blocks, a 0 length transfer will not work. Since
the .ENTER allocates half the largest space, only 150 blocks are
really allocated and an output error will occur during the transfer.
If a specific length of 200 is requested, however, the transfer will
proceed without error.

Exrrors:
Code Efplanation
0 Channel is in use,
1 In a fixed length request, no space greater

than or equal to M was found, or in a
non-specific request the device or the
directory was found to be full.

Example:

.ENTER may be used to open a file on a specified device, and then
write data from memory into that file as follows:

eMCALL o oV24e4r REGDEF, ,ENTER, ,WRITW, ,CLOSE, ,PRINTY
«MCALL L SRESET, ,EXIT,,FETCH

eaVeqa

+REGDEF

STARTI SRESEY JMAKE SURE ALL CHANNELS

JARE CLOSED,

+FETCH #CORSPC,#FPRY JFETCH DEVICE HANDLER

BCS BADFEY ) .FETCH ERROR, PROBABLY
JILLEGAL DEVICE,

LENTER #AREA,#Q,sFPRT JOPEN A FILE ON THE DEVICE
)SPECIFIED, LENGTH @ WILL
JGIVE (/2 OF LARGESY EMPTY
JSPACE NOW AVAILABLE,

8CS BADENT JFAILED, CHANNEL PROBABLY BYSY

«WRITW #AREA,®Q,#BUFF,#END~BUFF/2,%0
JWRITE DATA FROM MEMORY, THE
JSIZE 15 » OF WORDS BETWEEN
JBUFF AND END, START AT BLOCK @,

BCS BADWRY IWRITE FAILURE,

«CLOSE w0 JCLOSE THE FILE

JEXIY JAND GO TO xEYBOARD MON]TOR,
FPRTS «RADS® /DK / IFILE WILL BE ON DK

«RADSO® /FILE EXT/ INAMED FILE,EXT
AREA} oBLKW 10 JEMT ARGUMENT LISY

BADFETY PRINT #FMSG

January 1976 9-~48



Programmed Requests

EXIT

BADENTI ,PRINT #EMSBG
JEXIT

BADWRTYI ,PRINT #HWMSG
JEXIT

FMS8GY +ASCIZ /BAD FETCH/
EMSGH +ASCIZ /BAD ENTER/
WMSG1 WASCIZ /WRITE ERKOR/

+EVEN
CORSPCH .BLKW 400 JLEAVE 400(8) WORDS
IPOR DEVICE MWANQLER,
BUFF3
+REPT “op PTHIS IS BUFFER TO BE WRITTEN OQUT
«WORD 0,1
+ENDR
END3

JEND  STARY

EXIT

9.4.14 LEXIT

The .EXIT request causes the user program to terminate. When used
from a background job under the F/B Monitor and when used under the
Single-Job Monitor, .EXIT causes KMON to run in the background area.
All outstanding mark time requests are cancelled. Any I/O requests
and completion routines pending for that job are allowed to complete.,
If part of the background job resides where KMON and USR are to be
read, the user job is written onto system device scratch blocks. KMON
and USR are then loaded and control goes to KMON in the background
area. If R0O=0 when the ,EXIT is done, an implicit INIT command is
executed when KMON is entered, disabling the subsequent use of
REENTER, START, or CLOSE.

+EXIT also resets any .CDFN and LQSET calls that were done and
executes an LUNLOCK if a (LOCK has been done. Thus, the ,CLOSE
command from the Keyboard Monitor does not operate for programs which
perform ,CDFN requests.,

In a F/B gystem, an ,EXIT from a completion routine acts as if a
double CTRL C has been typed, aborting all I/O in progress before
exiting. In general, LEXIT from a completion routine should be
avoided.

Macro Call: .EXIT

Exrors:

None,

9-49 January 1976



Programmed Requests

FETCH

9.4.15 LJFETCH

The .FETCH request loads device handlers into memory from the systemn
device.

Macro Call: .FETCH .coradd, .devnam

where: .coradd is the address where the device handler is to
be loaded.
.devnanm is the pointer to the RAD50 device name,

The storage address for the device handler is passed on the stack.
when the .FETCH is complete, RO points to the first available location
above the handler. If the handler is already in memory, RO keeps the
same value as was initially pushed onto the stack. If the argument on
the stack is less than 400(8), it is assumed that a handler .RELEAS is
being done. (.RELEAS does not dismiss a handler which was LOADED from
the KMON; an UNLOAD must be done.,) After a .RELEAS, a FETCH must be
issued in order to use the device again,

Several requests require a device handler to be in memory for
successful operation., These include:

.CLOSE « READC « READ

« LOOKUP «WRITC +WRITE
+ENTER « READW «SPFUN
« RENAME +WRITW +DELETE

Since foreground jobs must have handlers resident, a .FETCH from the
foreground will give a fatal error if the handler has not been
previously LOADed.

Errors:
Code Explanation
0 The device name specified does not exist, or
there is no handler for that device in the
system,
Example:

In the following example, the PR and PP handlers are fetched into
memory in preparation for their use by a program. The program sets
aside handler space from its free memory area.

9-50



Programmed Requests

«MEALL  ,oV@e0r +REGDEF, FETCH, ,PRINT, ,EXIT

'.VZOO
+REGDEF
START}
+FETCH FREE, #PRNAME JFETCH PR HANDLER
8Cs FERR JFETCH ERROR
MOV RO, R2
+FETCH R2,#PPNAME JFETCH PP WANDLER
JIMMEQIATELY FOLLOWING
JPR HANDLER, R® POINTS
170 THE TOP OF PR
IHANDLER ON RETURN
1FROM THAT cALL,
BCS FERR INO PP HANDLER
MOY RQ,FREE JUPDATE FREE MEMORY
JPOINTER TO POINT TO
INEwW BOTTOM OF FREE
JAREA(TOP OF HANDLERS),
«PRINT  #0K
JEXIT
0K W1ASCIZ /FETCHM O,K,/
+EVEN
FERR1 sPRINT #M3G JPRINT ERROR MESSAGE
WJEXTT JAND EXIY
HALTY
PRNAME! ,kADS@ U"pPR " JOEVICE NAMES
PPNAMEL ,RADSQ wpp
M8G1 oASCIZ MDEVYICE NOT FOUND" JERRQOR MESSAGE
+EVEN
FREED Y FPOINTER TO FREE MEMORY

o END STARTY

.GTIM

9.4.16 .GTIM

.GTIM allows user programs to access the current time of day. The
time is returned in two words, and is given in terms of clock ticks
past midnight.

Macro Call: .GTIM ,area, .addr

where: ,addr is a pointer to the two words of time
to be returned.

Request Format:

RO 2 ,area: 21] 0




Programmed Requests

The high-order time is returned in the first word, the low-order time
in the second word, User programs must make the conversion from clock
ticks to hours-minutes-seconds. The basic clock frequency (50 or 60
Hz) may be determined from the configuration word in the monitor (see
Section 9.2.6). Under a F/B Monitor, the time of day is automatically
reset after 24:00 when a .GTIM is done; under the Single-Job Monitor,
it is not. The month is not automatically updated under either
monitor.

The clock rate is initially set to 60-cycle. Consult the RT-11 System

Generation Manual if conversion to a 50-cycle rate is necessary.
Errors:

None.

Example:

JMCALL o oV24e0s +REGDEF, GTIM, (EXIT

Ve,
+REGDEF
STARTS
oGTIM 'LIST"T!ME
JEX]Y
TIME: +WORD 2,2 JLOW AND MI ORDER TIME
JRETURNED HERE,
LIST? JBLKYW 2 JARGUMENTS FOR THE EMT

+END START

GTJB

9.4.17 .GTJB

The .GTJB request passes certain Jjob parameters back to the user
program,

Macro Call: .GTJB .area, .addr

where: .addr is the address of an eight-word block into
which the parameters are passed. The values
returned are:

Word 1 - Job Number., O=Background,
2=Foreground
2 - High memory limit

3 - Low memory limit
4 - Beginning of I/O channel
gpace

5-8 = Reserved for future use

Request Format:

RO = ,area: 20[ 0]

January 1976 9-52




Programmed Requests

In the Single-Job Monitor, the job number is always 0 and the 1low
limit 0.

In the F/B Monitor, the job number can either be 0 or 2. If the job
number equals 0 (background job), word 2 equals 0 and word 4 describes
where the I/0 channel words begin., This is normally an address within
the Resident Monitor., When a .CDFN is executed, however, the start of
the I/O0 channel area changes to the user specified area.

Errors:

None.

Example:

Use .GTJB to determine if this program is executing as a foreground or
background job.

MCALL «osVR,,) REGDEF, .GTJB, ,PRINT, ,EXIT

eV,
«REGDEF
START:
«6GTJB #LIST,#JOBARG JR@ POINTS TO 18T WORD ON
JRETURN FROM CALL,
MOV #FM8G, R
T87 JOBARG JBACKGROUND?
BNE 13 INQ, PRINT FM8G
MOV #BMSG, R}
18 «PRINT R{
JEXIT

FM8G1I «ASCIZ /PROGRAM IN FOREGROUND/
BMS8G1 «ASCIZ /PROGRAM IN BACKGROUND/

+EVEN
LISTH BLKW e JARGUMENTS FOR THE EMT
JOBARGY ,BLKW 8, 1JOB PARAMETERS PASSED BACK HERE,

«END STARY

.HERR/SERR

9.4.18 ,HERR/.SERR

-HERR and .SERR are complementary requests used to govern monitor
behavior for serious error conditions. During program execution,
certain error conditions may arise which cause the executing program
to be aborted (for example, trying to pass I/0 to a device which has
no handler in memory, or trying to load a device handler over the
USR) . Normally, these errors cause program termination with one of the

9-53



Programmed Requests

?M=- errxor messages.
abort the program because of these errors;
program must be able to retain control and merely abort the
.SERR accomplishes this by inhibiting the
Instead, it causes an error return to
on return from that request, the C bit
indicating the error

has

generated the error.
monitor from aborting the job.
the offending EMT to be taken.
is set and byte 52 contains a negative value

condition which occurred.

.HERR turns off user error interception and allows the sy
job on fatal errors and generate an error message.

the

default case.)

Macro Calls:

Errors:

Following is a list of the errors which are returned if

+HERR

+SERR

recovery is in effect:

Traps to 4

inhibited.

Example:

This example cause
the user program.

message.

8Tt

Code

-1
-2
-3
-4

-5
-6
-7

-10

-11

and 10,

Explanation

called USR from completion routine.

No device handler; this operation needs one.
Error doing directory I/O.

FETCH error. Either an I/O error

occurred while reading the handler, or tried
load it over USR or RMON.

Error reading an overlaye.

No more room for files in the directory.
Illegal address (F/B only); tried to perform

monitor operation outside the job partition.
Illegal channel n er; n efr is greater

than actual number of channels which exist.
Illegal EMT; an illegal function code has
been decoded.

and floating point exception traps

These errors have their own recovery mechanism.
Section 9.4.42,)

«MCALL
MCALL
eV,

+REGODEF

+SERR

JFETCH
BCS
JENTER
BCS

esV@a40 REGDEF, <FETCH, (ENTER, ,HERR, , SERR
JEXIT, PRINT

JTURN ON SOFTWARE ERROR
JRETURNS

#HOLR,#PTR JGET A DEVICE HANDLER
FCHERR

SAREA, W1, #PTR  JOPEN A FILE ON CHANNEL 1
ENERR

However, in certain cases it is not feasible to
for example, a multi-user
user who

stem to abort
(.HERR is the

soft error

to

are not
(See

8 a normally fatal error to generate errors back to
The error returned is used to print an appropriate



Programmed Requests

INCW PERMIT.?M-ERRORS.

JWAS IT FATAL

INOsoo NO DEVICE BY THAY NAME

JTHIS WILL YURN POSITIVE
JADJUST BY ONE

IMAKE IT AN INDEX

JPUT MESSAGE ADDRESS INTO Ro
JAND PRINT IT,

PCAN'T QCCUR IN THIS PROGRAM
INO DEVICE HANDLER IN MEMDRY
JOIRECTORY 1/0 ERROR

IFETCH ERROR

JIMPOSSIBLE FOR THIS PROGRAM
INO ROOM IN DIRECTORY
JILLEGAL ADDRESS (F/B)
TILLEGAL CHANNEL

JILLEGAL EMT

JCAN?’T OCCUR IN THIS PROGRAM

INOT APPLICABLE TO THIS PROGRAM

TLEAVE 300 (OCYAL) FOR HMANDLER
JOEVICE AND FILE NAME,

JEMT AREA

HRESET

+MERR
JEXIT
FCHERRI MQVH oN32,RO
amMl FYLERR JYES
2PRINT #FMSG
JEXIY
ENERR3 MOvVe oRS2,RQ
BM] FTLERR
«PRINT #EMSBG
JEXITY
FTLERR! NEG RD
DEC RO
ASL RO
MOV TBL(RD), R0
«PRINT
«EXIY
TBLS My
M2
M3
M4
M5
Me
MY
MLO@
MLy
M1t
LFE] +ASCIZ /NO DEVICE MANDLER/
M3 «ASC1Z "DIRECYORY X/0 ERROR"
M43 «ASCIZ /ERROR DOING FETCHM/
M5
M6 +ASCIZ /NO ROOM IN DIRECTORY/
M7 +ASCIZ /ADDRESS CHECK ERROR/
MiOt oASCIZ /IILEGAL CHANNEL/
MiL «ABCIZ /ILLFGAL EMT/
FMS8GH «ABCIZ /FETCH PALILED/
EMSG! «ASCIZ /ENTER FAILED/
+EVEN
HDLR? oBLKKW 300
PTR1 «RADSO  /DTu4/
'RADSQ /EXAMPL/
+RADSE /MAC/
AREAS oBLKW 4
+END T
9.,4,19 LHRESET

This request performs the same function as .SRESET, after stopping all

I/0 transfers in progress for that job.

(.HRESET is not used to clear

9-55



Programmed Requests

a hard-error condition.) Note that in the single-job environment, a
hardware RESET instruction is used to terminate I/0, while in a F/B
environment, only the I/O associated with the 3job which issued the
+HRESET is affected. All other transfers continue.

Macro call: LHRESET

Errors:

None.

Example:

See the example for .SRESET (Section 9.4.40) for format.

.LOCK/.UNLOCK

9.4,20 LLOCK/.UNLOCK

+«LOCK

The .LOCK request is used to "lock" the USR in memory for a series of
operations. If all the conditions which cause swapping are satisfied,
the user program is written into scratch blocks and the USR is loaded.
Otherwise, the USR which is in memory is used, and no swapping occurs,
The USR is not released until an .UNLOCK request is given, (Note that
in a F/B System, calling the CSI may also perform an implicit
«UNLOCK.) A program which has many USR requests to make can .LOCK the
USR in memory, make all the requests, and then ,UNLOCK the USR; no
time is spent doing unnecessary swapping.

In a F/B environment, a .LOCK inhibits the other job from wusing the
USR. Thus, the USR should be locked only as long as necessary.

Macro Call: ,LOCK

Note that the .LOCK request reduces time spent in file handling by
eliminating the swapping of the USR in and out of memory. If the USR
is currently resident, .LOCK is ignored, After a LLOCK has been
executed, an .UNLOCK request must be executed to release the USR from
memory. The ,LOCK/.UNLOCK requests are complimentary and must be
matched. That is, if three .LOCK requests are issued, at least three
+UNLOCKs must be done, otherwise the USR will not be released. More
.UNLOCKs than .LOCKs may occur without error.

Notes:

1, It is vital that the ,LOCK call not come from within the area
into which the USR will be swapped. If this should occur,
the return from the USR request would not be to the user
program, but to the USR itself, since the LOCK function
inhibits the user program from being re-read.

January 1976 9-56



Programmed Requests

2. Once a .LOCK has been performed, it is not advisable for the
program to destroy the area the USR is in, even though no
further use of the USR is required. This causes
unpredictable results when an .UNLOCK is done.

3. If a foreground job performs a .LOCK request while the
background job owns the USR, foreground execution is
suspended until the USR is available. Thus, in this case, it
is possible for the background to lock out the foreground (see
the .TWAIT request).

Errors:

None.
Example:

See the example following .UNLOCK,
« UNLOCK

The .UNLOCK request releases the User Service Routine from memory if
it was placed there with a .LOCK request, If the .LOCK required a
swap, the ,UNLOCK loads the user program back into memory. If the USR
does not require swapping, the .UNLOCK acts as a no=-op.

Macro Call: .UNLOCK
Notes:

l. It is important that at least as many .UNLOCKS are given as
+LOCKs ., If more ,LOCK requests were done, the USR remains
locked in memory. It is not harmful to give more UNLOCKs
than are required; those that are extra are ignored.

2. The ,LOCK/.UNLOCK pairs should be used only when absolutely
necessary when running two jobs in the F/B system. When a
job .LOCKs the USR, the other job cannot get at it until it
is +«UNLOCKed., Thus, the USR should not be ,LOCKed
unnecessarily, as this may degrade performance in some cases.

3. In a F/B System, calling the CSI with input coming from the
console terminal performs an implicit .UNLOCK.

Exrors:
None.
Example:

This example shows the usage of ,LOCK, .UNLOCK, and their interaction
with the system,

."CALL ..VE..'.REGDEFo ILOCKl nUNLQCKl lLOOKUP
+MCALL L,8ETTOP, ,PRINT, EXIT

+REGDEF

STARTI

SYSPTR=S4
«SETTOP e#8YSPTR JTRY FOR ALL OF MEMOQRY
MOV RO, TOP IR@ HAS THE TOP

9-57 January 1976



Programmed Requests

oLOCK JBRING USR INTO MEMQRY
+LODKUP #LIST,#Q,#FILEY JLOOKUP A FILE ON CHANNEL ©
BCC 19 JON ERRQR, PRINT A
231 «PRINT #_ M8 JMESSAGE AND EXITY
JEXIT
181 MOV #LIST,RQ
INC (RO) JDO LOOKUP ON CHANNEL 1
MOV AFILE2,2(R0) INEW POINTER
LOOKUP JALL ARGS ARE FILLED IN
BCS 2$
LUNLOCK INOW RELEASE USR
JEXIT
LISTI oBLKW 3 )SPACE FOR ARGUMENTS

FILEYls LRADSOG /DK /
+RADSE /FILEL MaAC/

FILE2: ,RADSE /0K /
«RADSE /FILER MAC/

TOP1 «WORD "
LM8G1  ,AS8CIZ /LOQOKUP ERROR/
«EVEN

+END STARY

In the above example, .SETTOP tries to obtain as much memory as it
can, Most likely this will, in a background 3job, make the USR
non~resident (i.e., unless a SET USR NOSWAP command is done at the
keyboard)., Thus, if the USR were non-resident, swapping must take
place for each ,LOOKUP given., Using the .LOCK, the USR 1is brought
into memory and remains there until the ,UNLOCK is given.

The second .LOOKUP makes use of +the fact that the arguments have
already been set up at LIST. Thus, it is possible to increment the
channel number, put in a new file pointer and then give a simple
+LOOKUP, which does not cause any arguments to be moved into LIST.

.LOOKUP

9.4,21 .LOOKUP

The .LOOKUP request associates a specified channel with a device
and/or file, for the purpose of performing I/O operations. The
channel used is then "busy" until one of the following requests is
executed:

+CLOSE

«SAVESTATUS

+«SRESET

«HRESET

« PURGE

+«CSIGEN (if channel is in range 0-10 octal)

Note that if the program is overlaid, channel 15 is used by the
overlay handler and should not be modified.

January 1976 9-58



Programmed Requests

Macro Call: L,LOOKUP .,area, .chan, .dblk, .count

where: ,count is an argument which can optionally be used
for the cassette and magtape handlers., Refer
to Appendix H for detaills of this parameter.
If .count is blank, a value of zero is
assumed,

Request Format:

RO & ,areas | l|.chan
.dblk
.count

If the first word of the file name in .dblk is zero and the device is
a file-structured device, absolute block 0 of the device is designated
as the beginning of the "file", This technique allows I/O to any
physical block on the device. If a file name is specified for a
device which is not file-structured (i.e. PR:FILE.EXT), the name is
ignored.

The handler for the selected device must be in memory for a .LOOKUP,
On return from the .LOOKUP, RO contains the length (number of blocks)
of the file just looked up. If the length returned is 0, a nonfile-
structured .LOOKUP was done to the device.

Exrors:

Code Explanation

0 Channel already open.

1 File indicated was not found on the device.,
Example:

In the following example, the file "DATA.001" on device DT3 is opened
for input on channel 7.

.MC‘LL ..VE..O .R!GD!F' .'ETC"' .LOOKU’, .PRINTQ .ExIT

..v2..
«REGDEF

STARTS

ERRWDOnSe
+FETCH #HSPACE,#DT3N JGET DEVICE HANDLER
BCS FERR JOT3 IS NOT AVAILABLE
'bOOKUP SLIST,#7,#DTIN LO0OKUP THE FILE

JON CHANNEL 7

BCC LDONE IPILE WAS FOUND
TSTH OBERRWD JERROR, WHAT’S WRONG?
BNE NFD JFILE NOT FOUND
«PRINT #CAMSG JPRINT *CHANNEL ACTIVE?
JEXIT

NFD13 «PRINT #NFMSG JFILE NOT FOUND
EXIT

CAMSGI LASCIZ /CHANNEL ACYIVE/
9-59 January 1976



Programmed Requests

NFM8GI ,ASCIZ
DTMSGE ,LA8CIZ

+EVEN
FERR1 «PRINT

JEXIT
LDONED

EXIT

LISTs oBLKW
DT3INI «RADSO

«RADSD
+RADSO
«RADSQ
HSPACE
WRardoR
«END
.MRKT

9.4.22 'MMT

/rILE NOT FOUND/ JERRQR MESSAGES
/DT3 NOT AVAILABLE/

#OTM8G
JPROGRAM CAN NOW
JIBSUE READS AND
JWRITES YO FILE
JOATA,001 VIA
JCHANNEL 7

3

"pT3Y J0EVICE

YDATY IFILENAME

LY T IFILENAME

gy JEXTENSION

JRESERVED SPACE POR DT

JHANDLER

START

The .MRKT request schedules a completion routine to be entered after a
specified time interval (clock ticks past midnight) has elapsed.

Macro Call: +MRKT .area, .time, .crtn, .id

where: .time

.id

Request Format:

is the pointer to the two words containing
the time interval (high=order first;
low=order second).

is a number assigned by the user to identify
the particular request to the completion
routine and to any cancel mark time requests,
The number must not be within the range of
codes from 177400-177777; these are reserved
for system use. The number need not be
unique (i.e., several .MRKT requests may
specify +the same .id.) On entry to the
completion routine, the .id number is in RO,

RO & ,areas 22|Q_
. time

crtn

.id

January 1976

9-60



Programmed Requests

«MRKT requests require a queue element taken from the same list as the
I/0 queue elements., The element is in use until either the completion
routine is entered or a cancel mark time request is issued. The user
should allocate enough queue elements to handle at least as many mark
time requests as he expects to have pending simultaneously.

Errors:

Code Explanation

0 No queue element was available.
Example:

In this example, a mark time is set up to time out an I/0 transfer,
If the mark time expires before the transfer is done, a message is
printed. If the I/O transfer completes before the mark time, the mark
time 1is cancelled., (Note that the example assumes the I/O channel is
already open,)

oMCALL  ooV2,44)oREGDEF, ,READ, (WAIT, ,MRKY, ,CMKT

+MCALL ,LQBET,,PRINT, ,EXIT,,LOOKUP

l.vali
«REGDEF
ST sLOOKUP WAREA, #0,#FILE JOPEN A FILE
14 LKERR IFILE NOT FOUND
Mov ¥AREA,» (8P) JEMT LIST YD 8TACK
«GSET #QUEUE, »5 JALLOCATE 8 MORE ELEMENTS
«MRKT (SP) ), #INTRVL,#MRTN,#1 1SET TIMER GOING
ecs NOMRKT )IFAILED,
+«READ #ROLST JSTARY 1/0 TRANSPFER
8cs RDERR
JWAIT 0 TAND WAIT A WHILE,
JCMKT (8P), ¥4 JSEE IF MARK TIME IS
JOONE,
L1 ) NOTDUN JFAILED, THAT MEANS THAT
) THE MARK TIME ALREADY
JEXPIRED,
JEXIT
MRTN} «CMKT (BP), ¥t 10K, KILL THE TIMER,
JPRINT  wFAJIL JDON®T WORRY ABOUT AN
JERROR HERE,
RTS PC
LKERRS ,PRINT wLM
JEXIT
ROERRT ,PRINT #RDMSG
JEXIT
NOTOUNE ,PRINT WFAIL
EXIT
NOMRKT1 ,PRINT #NQOO
JERIY
NOQ +ASCIZ /NO QUEUE ELEMENTS AVAILABLE/
FAILS «ASCIZ /MARK TIME COMPLETED BEFORE YRANSFER/
LM +ASCIZ /LOOKUP ERROR/
ROMSGt ,L,ASCIZ /READ ERROR/
JEVEN
INTRVLE ,WORD 2,13, 1ALLOW 13 CLOCK

JTICKS FOR TYRANSFER,



Programmed Requests

QUEUES BLKW Sy JAREA FOR QUEUE ELEMENTS
AREA? sBLKHW 5 JA FEW WORDS FOR EMT LIST
FILED .RADSG /DK FILE T8T/

ROLSTI LBYTE JCHANNEL @
JBYTE 19 }A READ

BLOCKE L WORD @ 1BLOCK #
LWORD  BUFF JBUFFER
LWORD 256, 11 BLOCK

JNORD
BUFFI  ,BLkW 256,

o END 8T

MWAIT

9.4.23 LMWAIT

This request is similar to the (WAIT request, «MWAIT, however,
suspends execution until all messages sent by the other job have been
transmitted or received, It provides a means for ensuring that a
required message has been processed. It should be used primarily in
conjunction with the .RCVD or .SDAT modes of message handling, where
no action is taken when a message is completed.

Macro Call: JMWAIT
Exrrors:

None.

Examples:

This program requests a message, does some intermediate processing,
and then waits until the message is actually sent.

WMCALL  oeV2oor sREGDEF, ,MWALT, (RCVD, (EXIT,PRINT

.lval.
+REGDEF

WORDSw253,

STARTI
«RCVD SAREA,#RBUFF,#WORDS JGET MESSAGE,

JINTERMEDIATE PROCESS

MOV ¥RBUFF+2,R3
oMWALY JMAKE SURE WE HAVE IT,
cMPB (RE) e, n*A JFIRST CHARACTER AN A7
BNE BADMSG INO, INVALID MESSAGE
JEXIT

BADMAGT LPRINT #M3G
WEXIT



Programmed Requests

M8&G} WASCIZ /BAD MESSBAGE/
AREAS WBLKW 1
RBUFF1 o BLKW 256,

«EVEN

«END STARY

.PRINT

9’4.24 .PRINT

The .PRINT request causes output to be printed at the console
terminal. When a foreground 3job is running and a change occurs
in the job producing output, a B> or F> appears. Any text following
the message has been printed by the job indicated (foreground or
background) until another B> or F> is printed. The string to be
printed may be terminated with either a null (0) byte or a 200 byte.
If the null (ASCIZ) format is used, the output is automatically
followed by a <CR><LF>. If a 200 byte terminates the string, no
<CR><LF> is generated.

Macro Call: LPRINT ,addr
where: .addr is the address of the string to be printed.

Control returns to the user program after all characters have been
.placed in the output buffer.

The foreground job issues a message immediately using .PRINT no matter
what the state of the background job. Thus, for urgent messages,
+PRINT should be used (rather than .,TTYIN or ,TTYOUT).

Errors:
None.
Example:
sMEALL  ,4YReay REGDEF, ,PRINT, EXIT
l'VZII
+REGDEF
START:
o PRINT 482
oPRINT w334
EXTIT
841 2ASCIZ  /THMIS WILL MHAVE CRelF FOLLOWING/
s23 +ABCII /THIS WILL NOT MAVE CRelF/
«BYTE 200
JEVEN

+END STARY

9-63 July 1975



Programmed Requests

.PROTECT

9,4.25 PROTECT

The .PROTECT request is used by a job to obtain exclusive control of a
vector (two words) in the region 0-476, If it is successful, it
indicates that the locations are not currently in use by another job
or by the monitor, in which case the job may place an interrupt
address and priority into the protected locations and begin using the
associated device,

Macro Call: +PROTECT .area, .addr

where: ,addr is the address of the word pair to be
protected, .addr must be a multiple of
four, and must be less than 476 (octal).
The two words at .addr and .addr+2 will be

protected.
Request Format:
RO 3 ,areas |3110
.addr

Errors:

Code Explanation

0 Protect failure; locations already in use.

1 Address greater than 476 or not a multiple of 4.
Example:

This example shows the use of ,PROTECT to gain control of the UDCll
vectors.

MCALL . 4VReas +REGDEF, ,PROTECT, ,PRINT, EXIT

LY
+REGDEF
8Ti MoV WAREA,=(8P)
MoV #234,RS JUDC VECTOR ADDRESS
+PROTECT (8P),RS JPROTECTY 234,236
14 ] CRR JYOU CAN?T
MOV #UDCINT, (RS} JINITIALIZE THE VECTORS,
MOV #340, (RS) JAY LEVEL 7
JEXITY
ERR} +PRINY W#NOVEC
+EXTTY

AREAI sBLKNW ]
NOVECS LASCIZ /VECTORS ALREADY IN USE/

9-64



Programmed Requests

+EVEN
UDCINTI

.PURGE

9.4.26 LPURGE

The .PURGE request is used to de-activate a channel without performing
a JHRESET, .SRESET, .,SAVESTATUS, or .CLOSE request. It merely frees a
channel without taking any other action. If a tentative file has been
+.ENTERed on the channel, it will be discarded. Purging an inactive
channel acts as a no-op.

Macro Call: LPURGE ,chan

Errorss

None,

Example:

The following code is used to make certain that channels 0-7 are free:

sMCALL  (oVR4.) REGDEF, ,PURGE, EXIT

Vi,
+REGDEF
START)
CLR Ry JSTART WITH CHANNEL 0
i3 +PURGE R} IPURGE A CHANNEL
INC Ri JBUMP TO NEXT CHANNEL
cCMP Ry,»8, 1I8 IT AT CHANNEL & YET?
BLO 18 INO, KEEP GOING
WJEXIT

+END STARY

QSET

9.4.27 LQSET

All RT-1l1 I/O transfers are done through a centralized queue
management system. If I/O traffic is very heavy and not enough queue
elements are available, the program issuing the I/0O requests may be



Programmed Requests

suspended until a queue element becomes available. 1In a F/B systemn,
the other job runs while the first program waits for the element.

The .QSET request is used to make the RT=11 I/0 queue larger (i.e.,
add available entries to the gueue). A general rule to follow is that
each program should contain one more queue element than the total
number of I/O requests which will be active simultaneocusly. Timing
requests such as .TWAIT and .MRKT also cause elements to be used and
must be considered when allocating queue elements for a program, Note
that if synchronous I/O is done (i.e. .READW/,WRITW, etc.) and no
timing requests are done, no additional queue elements need be
allocated.

Macro Call: .QSET .addr, .gleng

where: .addr is the address at which the new elements are
to start.
.gqleng is the number of entries to be added. Each

queue entry is seven words long; hence the
space set aside for the queue should be
.qleng * 7 words.

Each time .QSET is called, a contiguous area of memory is divided into
seven-word segments and is added to the queue for that job. .QSET may
be called as many times as required. The queue set up by multiple
.QSET requests is a linked list. Thus, .QSET need not be called with
strictly contiguous arguments. The space used for the new elements is
allocated from the user's program space. Thus, care must be taken so
that the program in no way alters the elements once they are set up.
The JSRESET and .HRESET requests discard all user-defined queue
elements; therefore any .QSETs must be reissued.

Care should also be taken to allocate enough memory for the queue,
The elements in the queue are altered by the monitor; if enough space
is not allocated, destructive references will occur in an unexpected
area of memory.

Errors:
None.
Example:
eMCALL 44V2.,s REGDFF,  QSFT,,EXIT
le“'l
+REGDEF
START]
«QSET ¥QL, 85 1ADD S ELEMENTS TO THE QUEUE
JOTARTING AT Q1
+GSET #03,43 JAND 3 MORE AT @3,
EXTT
Q3 2BLKW T+5, JFIRST QUEUE AREA (3% DECIMAL WORDY)
Q31 «BLKW Te3, )SECOND QUEUE AREA (21 DECIMAL WORDS)

«END START

Note that Q1 and Q3 need not have been contiguous.

9-66



Programmed Requests

.RCTRLO

9.4.28 LRCTRLO

The .RCTRLO request ensures that the console terminal is able to
print, Since CTRL O (%0) struck while output is directed to the
console terminal inhibits the output from printing until either
another t0 is struck or until the program resets the ¢0 switch, a
program that has a message which must appear at the console can
override tO struck at the keyboard.

Macro Call: « RCTRLO

Errors:

None,

Examples

In this example, the user program first calls the CSI in general mode,
then processes the command. When finished, it returns to the CSI for
another command line. To make certain that the prompting "*" typed by
the CSI is not inhibited by a CTRL O in effect from the last

operation, terminal output is re-enabled via a .RCTRLO command prior
to the CSI call,

oMCALL  ,,VY2,,sREGDEF, ,RCTRLO, ,CSIGEN, ,EXIT

live"
«REGDE
STARYT LRCTRLO IMAKE SURE TT OUTPUT IS
JENABLED
+L8IGEN #DSPACE,#DEXT, #0 JCALL CS8SJIwIT WILL TYPE
AL
JPROCESS COMMAND
JMP STARY JGET NEXT COMMAND
DEXTS ] INO DEFAULT EXTENSIONS
2
9
"]
DSFACEY % ,¢400 JHANDLER SPACE

«END START



Programmed Requests

.RCVD/RCVDC/RCVDW

9.4.29 .RCVD/.RCVDC/.RCVDW (F/B Only)

There are three forms of the receive data request; these are used in
conjunction with the .SDAT (Send Data) requests to allow a general
data/message transfer system. .RCVD requests can be thought of as
.READ requests, where data transfer is not from a peripheral device
but from the other job in the system. Additional queue elements should
be allocated for buffered I/0O operations in .RCVD and .RCVDC requests
(see .QSET).

« RCVD

This request is used to receive data and continue execution, The
request is posted and the issuing job continues execution. At some
point when the job needs to have the transmitted message, an L MWAIT
should be executed, This causes the job to be suspended until the
message has been received.

Macro Call: .RCVD .area, .buff, .went

where: .buff is the address of the buffer to which the
message is to be sent.

-wecnt is the number of words to be transferred.

Request Format:

RO 2 .area: 2610
unused)
<buff
went

1

Word ¢ (the first word) of the message buffer will contain the number
of words transmitted whenever the .RCVD is complete. Thus, the space
allocated for the message should always be at least one word larger
than the actual message size expected.

The word count is a variable number, and as such, the SDAT/.RCVD
combination can be used to transmit a few words or entire buffers,
The .RCVD operation is only complete when a ,SDAT is issued from the
other job.

Programs using .RCVD/.SDAT must be carefully designed to either always
transmit/receive data in a fixed format or have the capability of
handling variable formats. The messages are all processed in FIFO
(first in-first out) order. Thus, the receiver must be certain it is
receiving the message it actually wants.

January 1976 9-68



Programmed Requests

Errors:
Code Explanation
0 No other job exists in the system.
Example:

An example follows the .RCVDW section.

« RCVDC

The .RCVDC request receives data and enters a completion routine when
the message is received. The .RCVDC request is posted and program
execution stays with the issuing job. When the other 3job sends a
message, the completion routine specified will be entered.

Macro Call: ,RCVDC .area, .buff, .wcnt, .crtn

where: L.buff is the address of the buffer to which the
message is to be sent.
.went is the number of words to be transmitted.
.crtn is the completion routine to be entered (see

Section 9.2.8).

As in the others, word 0 of the buffer contains the number of words
transmitted when the transfer is complete.

Request Format:

RO =2 area: |26 l 0
(unused)
.buff
.went
.crtn
Errors:
Code Explanation
0 No other job exists in the system.
Example:

An example follows the .RCVDW section.

+« RCVDW

«RCVDW is used to receive data and wait. A message request is posted
and the job issuing the request is suspended until the other job sends
a message to the issuing job. When the issuing job runs again, the
message has been received, and word 0 of the buffer indicates the
number of words which were transmitted.

9-69 January 1976



Programmed Requests

Macro Call: J.RCVDW .area, .buff, .went

where: Jbuff is the address of the buffer to which the
message is to be sent.

+WwCcnt is the number of words to be transmitted.

Request Format:

RO 3 .area: 26|0
(unused)
obuff
wcnt
0
Errors:
Code Ezglanation
0 No other job exists in the system.
Example:

In this example, the running job receives a message from the second
job and interprets it as the device and filename of a file to be
opened and used., In this case, the message was in RAD50 format, and
the receiving program did not use the transmitted length for any
purpose,

oMCALL . oV2,,REGDEF, ,RCVON, ,PURGE, ,LOOKUP, ,EXIT, (PRINT

raVe,,
+REGDEF
STARTS
MOV #AREA,RS JRSSEMT ARG, AREA
+RCVDW RS, #FILE,#4 JREWUEST MESSAGE AND wWAIT
BCS MERR 1 AN ERROR?
+PURGE =0 JCLEAR CHANNEL @
oLOOKUP RS, #2,8F1LE*2 1LOOKUP INDICATED FILE
BCS LKERR JERROR
+EXIT
AREA?S BLKW 10 JLEAVE SPACE FOR SAFETY
FILE: oBLKW 1 JACTUAL wWORD COUNY 18 HERE
sBLKW 4 JUEVIFILELEXT ARE HERE
MERR? «PRINT #MM3G
WEXIY
LKERRY LPRINY #LKMSG
EXIT

MMSG? 2ASLIZ /MESSAGE ERROR/
LKMSGE LASCIZ /LOOKUP ERROR/
«EVEN
+END START

The issuing job is suspended until the indicated data is transmitted.
Either of the other modes could have also been used to receive the
message.



Programmed Requests

.READ/READC/READW

9.4.30 LREAD/.READC/,READW

RT=1l provides three modes of I/0: ,READ/.WRITE, .READC/.WRITC, and
+« READW/ ,WRITW, Section 9.4.47 explains the output operations. The
input operations are described next.

Note that in the case of .READ and .READC, additional queue elements
should be allocated for buffered I/0 operations (see .QSET).

«READ

The .READ request transfers a specified number of words from the
specified channel to memory. Control returns to the user program
immediately after the .READ is initiated. No special action is taken
when the transfer is completed.

Macro Call: .READ ,area, .chan, .buff, .went, .blk

where: ,buff is the address of the buffer to receive the
data read.,
wcnt is the number of words to be read.
.blk is the block number to be read relative to

the start of the file, not block 0 of the
device. The monitor translates the block
supplied into an absolute device block
number. The user program normally updates
«blk before it is used again. If .blk=0, TT:
gives ~ prompt and LP: gives form feed.
(This is true for all .READ and WRITE
requests.,)

Request Format:

RO & .area:|1l0 | .chan
+bhlk
pbuff
went

ol
When the user program needs to access the data read on the specified
channel, a .WAIT request should be issued. This ensures that the data

has been read completely. If an error occurred during the transfer,
the ,WAIT request indicates the error.

9-71 January 1976



Programmed Re

Errors:

.Code

0
1
2

Example:

quests

Explanation

Attempt to read past end-of=file
Hard error occurred on channel
Channel is not open

Refer to the WRITE/.WRITC/.WRITW examples.,

« READC

The ,READC request transfers a specified number of words from the
indicated channel to memory. Control returns to the user program
immediately after the .READC is initiated. Execution of the user
program continues until the .READC is complete, then control passes
to the routine specified in the request. When an RTS PC is executed
in the completion routine, control returns to the user program,

Macro Call:

where:

Request Forma

.READC .area, .chan, .buff, .wcnt, .crtn, .blk

«buff

.wecnt

.crtn

.blk

t:

RO = .area:

is the address of the buffer to receive the
data read.

is the number of words to be read.

is the address of the user's completion
routine (refer to Section 9.2.8).

is the block number relative to the start of
the file, not block 0 of the device., The
monitor translates the block supplied into an
absolute device block number. The user
program normally updates .blk before it is
used again.

10 |,chan

«blk

buff

-went

address of completion routine

When entering a .READC completion function the following are true:

1. RO contains the channel status word for the operation. If
bit 0 of RO is set, a hardware error occurred during the
sfer., The data may not be reliable.

tran

2. Rl contains the octal channel number of the operation. This
is useful when the same completion function is to be used for
several different transfers,

January 1976

9-72



Programmed Requests

Erroxrs:
Code Explanation
0 Attempt to read past end-of=-file
1 Hard error occurred on channel
2 Channel is not open
Example:

Refer to the .WRITE/.WRITC/.WRITW examples.

« READW

The .READW request transfers a specified number of words from the
indicated channel to memory. Control returns to the user program when
the .READW is complete or if an error is detected.

Macro Call: .READW ,area, .chan, .buff, .went, .blk

where: . buff is the address of the buffer to receive the
data read.

went is the number of words to be read. The
number must be positive.

+blk is the block number relative to the start of
the file, not block 0 of the device. The
monitor translates the block supplied into an
absolute device block number, The user
program normally updates .blk before it is
used again,

Request Format:

RO ® ,area: |10 | .,chan
+blk
buff
wecnt
0

On return from this call, the C bit set indicates an error has
occurred. If no error occurred, the data is in memory at the
specified address. In an F/B system, the other job can be run while
the issuing job is waiting for the I/O to complete.

Note:

Upon return from any READ programmed request, RO will contain no
information if the read is from a sequential-access device gfor
example, magtape). If the read is from a random-access device (disk,

DECtape) RO will contain the actual number of words that will be read
(.READ or .READC) or have been read (.READW). This will be less than
the requested word count if an attempt is made to read past the end-
of-file, but a partial transfer is possible. In the case of a partial
transfer, the C bit is séet and error code 0 is returned. Therefore, a

9-73 January 1976




Programmed Requests

program should always use the returned would count as the number of
words available. For example, suppose a file is 5 blocks long (i.e.,
it has block numbers 0 to 4) and a request is issued to read 512 words,
starting at block 4. The request is shortened to 256 words; no error
is indicated. Also note that since the request will be shortened to
an exact number of blocks, a request for 256 words will either succeed
or fail, but cannot be shortened.

Errors:
Code Explanation
0 Attempt to read past end-of-file
1 Hard error occurred on channel
2 Channel is not open
Example:

Refer to the WRITE/.WRITC/.WRITW examples.

.RELEAS

9.4.31 .RELEAS

The .RELEAS request removes the handler for the specified device from
memory. The .RELEAS is ignored if the handler is:

l. Part of RMON (i.e., the system device),
2. Not currently resident, or
3. Resident because of a LOAD command to the Keyboard Monitor,

.RELEAS from the foreground is always ignored, since the foreground
can only use handlers which have been LOADed. .

Macro Call: J.RELEAS .devname

where: .devname is the pointer to the .RAD50 device name,
Errors:

Code Explanation

0 Handler name was illegal.

January 1976 9-74



Programmed Requests

Example:

In the following example, the DECtape handler (DT) 4is loaded into
memory, used, then released. If the system device is DECtape, the
handler is already resident, and .FETCH will return HSPACE in RO.

eMCALL  ,aV2,09 REGDEF, ,FETCH, ,RELEAS,  EX]T
Ve
+REGDEF

START: LFPETCH #HSPACE,#DTNAME 1LOAD DT MANDLER
BCe FERR INOT AVAILABLE

} USE HANDLER

+RELEAS #DTNAME JMARK DT NO LONGER IN
JMEMORY,
8Rr STARY
FERRS HALT 0T NOT AVAILABLE
DTNAMESY ,RADSO /0T / JNAME FOR DT HANDLER
HSPACE?® JBEGINNING OF WANDLER
JAREA

+END START

.RENAME

9,4.32 .RENAME

The ,RENAME request causes an immediate change of name of the file
specified. An error occurs if the channel specified is already
open.

Macro Call: .RENAME .area, .chan, .dblk

Request Format:

RO o .area: 4|.chan
.dblk

The .dblk argument consists of two consecutive .RAD50 device and file
specifications. For example:

+« RENAME #AREA, #7, #DBLK 3 USE CHANNEL 7
BCS RNMERR ;NOT FOUND

DBLK: RADS50 /DT>/
RAD50 /OLDFIL/
+RADS0 /MAC/
+RAD50 /DT3/
«RAD50 /NEWFIL/
.RADS50 /MAC/

9-75 January 1976



Programmed Requests

The first string represents the file to be renamed and the device it
is found on. The second represents the new file name. If a file with
the same name as the new file name specified already exists on the
indicated device, it is deleted. The second occurrence of the device
name DT3 is necessary for proper operation, and should not be omitted.
The specified channel is left inactive when the .RENAME is complete.
.RENAME requires that the handler to be used be resident at the time
the .RENAME request 1is made, If it is not, a monitor error occurs.
Note that .RENAME is legal only on files which are on disk or DECtape.
(.RENAMEs to other devices are ignored.)

Errors:
Code Explanation
0 Channel open
1 File not found
Example:

In the following example, the file DATA.,TMP on DT0 is renamed to
DATA,001:

MCALL oyY2,07REGDEF, ,FETCH, ,PRINT
MCALL JEXIT, ,RENAME

11Veas
+REGDEF

STARTE: FETCH WHBPACGE,#NAMBLK JGET WANDLER
BCS FERR 1SOME ERROR
JRENAME #AREA,#2,¥NAMBLK DO THE RENAME
8cS RNMERR ) ERROR
JEXIT

FERRI  ,PRINT #FM8G
JEXIT

RNMERRT PRINT #RNMSG
JEXIT

AREAD  BLKW S JROOM FOR ARGS,

NAMBLKY ,RADS@ /DTODATA THMP/ J0LD NAME
«RADS2 /DT@DATA ©@R1/ INEW NAME

FMS8G?t «ASCIZ /FETCHI/ JERROR MESSAGES
RNMSG: L ASCIZ /RENAME?Y/

+EVEN
HSPACES,

«END STARY

9-76



Programmed Requests

.REOPEN

9.4.33 .REOPEN

The .REOPEN request reassociates the specified channel with a file on
which a +SAVESTATUS was performed, The .SAVESTATUS/.REOPEN
combination is useful when a large number of files must be operated on
at one time. As many files as are needed can be opened with +«LOOKUP,
and their status preserved with ,SAVESTATUS, When data is required
from a file, a .REOPEN enables the program to read from the file., The
+REOPEN need not be done on the same channel as the original ,LOOKUP
and .SAVESTATUS.

Macro Call: .REOPEN ,area, ,chan, .cblk

wheres .cblk is the address of the five-word block where
the channel status information was stored.

Request Format:

RO & ,area: {6 | .chan

«cblk
Errors:
Code Explanation
0 The specified channel is in use. The .REOPEN has not
been done.
Example:

Refer to the example following the description of .SAVESTATUS.

-SAVESTATUS

9.4.34 .SAVESTATUS

The .SAVESTATUS request stores five words of channel status
information into a user-specified area of memory. These words contain

9~-77



Programmed Requests

all the information RT-11 requires to completely define a file. When
a .SAVESTATUS is done, the data words are placed in memory, and the
specified channel is again available for use. When the saved channel
data is required, the .REOPEN request is used.

.SAVESTATUS can only be used if a file has been opened with .LOOKUP.
If .ENTER was used, .SAVESTATUS is illegal and returns an error. Note
that .SAVESTATUS is legal only on files which are not on magtape oI
cassette,

Macro Call: .SAVESTATUS .area, .chan, .cblk
where: .cblk is the address of the user memory block (5
words) where the channel status information
is to be stored.

Request Format:

RO & ,areat |5 l.chan
«Cblk

The five words stored are the five words normally contained in the
channel area, as follows:

Word # Contents
1 Channel status word. The contents of the bits of
this word are:
Bit # Contents
0 1 - a hardware error occurred on this
channel.

1-5 Index into monitor tables. This describes
the physical device with which the channel is
associated.

6 1 - a .RENAME operation is in progress on the
channel,

7 1~ a .CLOSE operation must rewrite the

directory (i.e., set when a .ENTER is done).
8-12 Contains the directory segment number

(1-+37(8)) in which the current open file can
be found.

13 1 - An end-of-file was found on the channel.

14 Unused.

15 1 - This channel is currently in use (i.e., a
file is open on this channel).

2 starting block number of the file. Zero for
sequential-access devices.

3 Length of file (in 256-word blocks).

4 Data length of file; currently unused.

5 Even Byte: I/0 count. Count of how many I/0O

requests have been made on this channel. 0dd Byte:

January 1976 . 9-78



Programmed Requests

unit number of the device associated with the channel
(between 0 - 7).,

While the .SAVESTATUS/.REOPEN combination is very useful, care must be
observed when using it. In particular, the following cases should be
avoided:

l. If a .SAVESTATUS is performed and the same file is then
deleted before it is reopened, it becomes available as an
empty space which could be used by the (ENTER command. If
this sequence occurs, the contents of the file supposedly
saved will change.

2. Although the device handler for the required peripheral need
not be in memory for execution of a .REOPEN, if the handler
is not in memory when a .READ or .WRITE is executed, a fatal
error is generated.

Errors:
Code Explanation
1l The file was opened via .ENTER, or is a magtape or
cassette file, and a .SAVESTATUS is illegal.
Example:

One of the more common uses of (SAVESTATUS and L,REOPEN is to
consolidate all directory access motion and code at one place in the
program. All files necessary are opened and their status saved, then
they are re-opened one at a time as needed., USR swapping can be
minimized by locking in the USR, doing .LOOKUPs as needed, using
«SAVESTATUS to save the file data, and then .UNLOCKing the USR.

In the program segment below, three input files are specified in the
command string; these are then processed one at a time.

WMCALL  ,oV2,49¢REGDEF, ,CSIGEN, ,BAVESBTATUS, ,REOPEN
«MCALL LREAD, ,EX]Y

ooV2--
«REGDEF

START1 MOV ¥AREA, RS
+COIGEN #DSPACE,wDEXT JGET INPUT FILES

MOYv RO, BUFF )SAVE POINTER TO FREE CORE
«BAVESTATUS R5,#3,#BLOCKY JSAVE FIRSY INPUT FILE

BAVESTATUS RS, #d,wBLOCK2 }SAVE SECOND FILE
«SAVESTATUS RS5,#5,#BL0CK3 pSAVE THWIRD FILE

MOV #BLOCKY, R4
PROCESST ,REOPEN RS5,#0,R4 }REQPEN FILE ON
ICHANNEL @
«READ R5,#0,BUFF,COUNT,BLOCK JPROCESS FILE ON CHANNEL ?

OONE? ADD #12,Ra JPOINY TO NEXT SAVESTATUS BLOCK
Cmp R4, #BLOCK3 TLAST FILE PROCESSED?

9-~79



Programmed Requests

BLOS PROCESS INO = DO NEXY

JEXIT
BLOCKL1 WORD 2,0,0,0,0 JMEMORY BLOCKS FOR
BLOCK21 ,WORD 2,0,0,0,0 FSAVESTATUS INFORMATION
BLOCK3® ,WORD 9,0,0,0,0
AREAS o BLKW 10

BUFF1 «WORD 0
BLOCKE ,WORD @
COUNT:  (WORD 256,

DEXTI WORD ©2,0,0,0
DSPACES,
«END START

.SDAT/SDATC/SDATW

9.4.35 LSDAT/.SDATC/.SDATW

These requests are used in conjunction with the .RCVD/.,RCVDW/,RCVDC
calls to allow message transfers with RT-1ll. .SDAT transfers can be
considered similar to .WRITE requests in which data transfer is not
from a peripheral, but from one job to another. Additional I/O queue
elements should be allocated for buffered I/O operations in .SDAT and
.SDATC requests (see .QSET).

«SDAT

Macro Call: LSDAT .area, .buff, .went

where: .buff is the buffer address of the beginning of the
message to be transferred.

Wwcnt is the number of words to transfer.

Request Format:

RO & .,areas|25]| O
unused |
buff
wecnt

Erroxs:
Code Explanation

0 No other job exists.

January 1976 9-80



Programmed Requests
Example:

See the example following .SDATW.

«SDATC

Macro Call: .SDATC .area, .buff, .went, .crtn

where: L,buff is the buffer address of the beginning of the
message to be transferred.
.wcnt is the number of words to transfer,
.crtn is the address of the completion routine to

be entered when the message has been
transmitted (refer to Section 9.2.8).

Request Format:

RO ® .area:25[ 0
unused
+buff
went
.crtn

Errors:
Code Explanation
0 No other job exists.
Example:

See the example following .SDATW,.

«SDATW
Macro Call .SDATW .area, .buff, ,went

where: .buff is the buffer address of the beginning of the
message to be transferred

.wcnt is the number of words to transfer

Request Formats

RO = .,area: 25| 0

unused
<buff

went

0

9-81 January 1976



Programmed Requests

Errors:
Code Explanation
0 No other job exists.
Example:

In this example, the job first sends a message interrogating the other
job about the status of an operation, and then 1looks for an
acknowledgement from the job.

.MC‘LL ..VE.., .REGDE'I .SD‘T, .Rch' .MN‘IT' .PaINT' .EXIT

.lvali
+REGDEF
STARTY
MOV #AREA,RS JSET UP EMT BLOCK
«8DAT RS, #8BUFF,#MLGTH JASK HIM A QUESTION
BCS NOJOB INO OTHER JOB AROUND!
FJMISCELLANEOUS PROCESSING
«RCVD RS, #BUFF2,#20, JRECEIVE 20 DECIMAL WORDS
MWATT IWALIT FOR ACKNOWLEDGE,
MOV #BUFF2e2,RY JPDINT TO ACTUAL ANSWER,
CHPB (Ri)e,mey 118 FIRSY WORD Y FOR YES?
BNE PRNEG FNEGATIVE ACKNDWLEDGE
«PRINT  #POSACK
JEXIT
PRNEGE LPRINT ®NEGACK INEGATIVE QN QUR INQUIRY
8BUFFI  ,ASCII /IS THE REGUIRED PROCESS GOING?/
MLGTHS .= 8BUFF
BUFF21  ,WORD ? JACTUAL LENGTN I8 HWERE
«BLKW ee, ISPACE FOR 20, WORDS

NOJOBS L PRINT #NJMSG

JEXIT
NEGACKS ,ASCIZ /NEGATIVE ACKNOWLEDGE/
POSACKY ,ASCIZ /POSITIVE ACKNOWLEDGE/
NJM8GI LASCIZ /NO JOB/

«EVEN
AREAI BLKN 10,

+END START

SETTOP

9.4.36 'SETTOP

t that a new
The .SETTOP request allows the user program to reques d
address be specified as a program's upper limit. The monitor

9-82



Programmed Requests

determines whether this address is legal and whether or not a memory
swap 1s necessary when the USR is required. For instance, if the
program specified an upper limit below the start address of USR, no
swapping is necessary, as the USR is not overlaid., If ,SETTOP from
the background specifies a high limit greater than the address of the
USR and a SET USR NOSWAP command has not been given, a memory swap is
required. Section 9.2.5 gives details on determining where the USR is
in memory and how to optimize the .SETTOP.

Oon return from ,SETTOP, both RO and the word at location 50 (octal)
contain the highest memory address allocated for use, If the job
requested an address higher than the highest address which is 1legal
for the requesting job, it is adjusted down to that address.,

Macro Call: .SETTOP ,addr

where: .addr is the address of the word immediately
following the free area desired.

Notes:

1. A program should never do a .SETTOP and assume that its new
upper 1limit 4is the address it requested., It must always
examine the returned contents of RO or location 50 to
determine its actual high address.

2, In Version 1 of RT-11, .SETTOP did not return the high
address in RO, but only in word 50.

3. It is imperative that the value returned in RO or location 50
be used as the absolute upper limit, If this value is ever
exceeded, vital parts of the monitor may be destroyed, and
the system integrity will be violated.

Errors:
None.

Example:

Following is an example in two parts. The first indicates how a
small background job (i.e., one with free space between itself and the
USR) can be assured of reserving space up to but not including the USR.
This in effect gives the job all the space it can without causing the
USR to become non-resident.

The second part indicates how to always reserve the maximum amount of
space by making the USR non-resident.

I) «MCALL  ,eV244s REGDEF,  ,SETTOP, ,EXIT
eV,
+REGDEF
START)
RMON®S4 JPOINTER TO 8TART OF RESIDENTY
USRegeb JOFFSEY FROM RESIDENT TO POINTER

JWHERE USR WILL S8TARY,

9-83 July 1975



Programmed Requests

MOV SHURMON, R 1START OF RMON TO Ry

MOV UsR(RyY,RQ IPOINT TO LOWEST USR WORD

TST =(RQY IPOINT TO WIGHFST WORD NOT IN USH
«SETTOP PAND ASK FMR IT

MOV RO, HICORE RO CONTAINS THE HIGH ADDRESS

JTHAT WAS RETURNED,
1) J3ETTOP #e-2 JIF WE ASK FOR A VALUE GREATER
1 THAN START OF RESIDENT, WE
INILL GET BACK THE ABSOLUTELY
JHIGHEST USABLE ADDRESS,
MoV RO, HICORE JTHAT I8 QUR LIMIT NOW

JEXIT
HICORES WORD @
(END ~ START

If a SET USR NOSWAP command is executed, the USR cannot be made
non-resident. In this case, in both I & II above, RO would return a
value just below the USR,

Caution should be wused concerning technique I, above. If the
background program is so large that the USR is normally positioned
over part of it, the high 1limit value returned by the .SETTOP may
actually be lower than the original limit. The USR is then resident,
with a portion of the user program destroyed. The example in Section
9.2.5 shows how to include checks that will avoid this situation.

SFPA

9.4.37 LSFPA

«SFPA allows users with floating point hardware (FPP on 11/45 and FI3
on 11/40) to set trap addresses to be entered when a floatipg point
exception occurs. If no user trap address is specified and a floating
point (FP) exception occurs, a ?M=-FP TRAP occurs, and the job is
aborted.

Macro Call: .SFPA .,area, .addr

where: .addr is the address of the routine to be entered
when an exception occurs.

Request Format:

RO 2 .area: [30{0
.addr

Notes:

l. If the address argument is 0, user floating point routines
are disabled and the fatal ?M-FP TRAP error is produced.

2. In the F/B environment, an address value of 1 indicates that
the FP registers should be switched when a context switch
occurs, but no user traps are enabled. This allows both jobs
to use the FP unit. An address of 1 to the Single=Job
Monitor is equivalent to an address of 0.

July 1975 9-84



Programmed Requests

3. When the user routine is activated, it is necessary to
re~execute an .SFPA request, as the monitor inhibits user
traps when any one is serviced. It does this to inhibit any
possible infinite loop being set up by repeated FP
exceptions.,

4, If the 11/45 FPP is being used, the instruction STST =(SP) is
executed by the monitor before entering the user's trap
routine. Thus, the trap routine must pop the two status
words off the stack before doing an RTI. The program can
tell if FPP hardware is available by examining the
configuration word in the monitor (see Section 9.2.6).

Errors:
None.
Example:

This example sets up a user FP trap address.

“MEALL  ,,v2,,, ,REGDEF, ,SFPA, FXTT

ltvaii
+REGNEF
START
“SFPA HAREA, ¥FPTRAP
«EXIT
FPTRAPS
MOV RQ,=(8P) JR® USED BY ,SFPA
.SFpA #AREA, #FPTRAP
:o; (SP)+,RQ IRESTORE RO
T

ARFA?! oBLKW 10
+END START

SPFUN

9.4.,38 LSPFUN

This request is used principally with cassettes and magtape
handlers to do device-dependent functions, such as rewind and
backspace, to those devices. (It may also be used with diskette to
allow reading and writing of absolute sectors; specific information is
in Appendix H.)

Macro Call: .SPFUN .area, .chan, .code, .buff, .went, .blk, .crtn

where: .code is the numerical code of the function to be
performed

9-85 January 1976



Programmed Requests

.buff is the buffer address; this parameter must be
set to zero if no buffer is required.
.Ccrtn is the entry point of a completion routine.

If left blank, 0 is automatically inserted.

Request Format:

RO & ,area: 32|.chan
.Dhlk
buff
went
.code] 377
. crtn

All other arguments are the same as those defined for .READ/.WRITE
requests (Sections 9.4.30 and 9.4.47). They are only required when
doing a .WRITE with extended record gap to MT. If the .crtn argument
is left blank, the requested operation will complete before control
returns to the user program. .crtn=l is equivalent to executing a
+READ or L.WRITE in that the function is initiated and returns
immediately to the user program., A ,WAIT on the channel ensures that
the operation is completed. If .crtn=N, it is taken as a completion
routine address to be entered when the operation is complete.

The available functions and their codes are:

Function MT CT
Forward to last file 377
Forward to last block 376
Forward to next file 375
Forward to next block 374
Rewind to load point 373 373
Write file gap 372
Write EOF 377
Forward 1 record 376
Backspace 1 record 375
Write with extended

file gap 374
Offline 372

To use the .SPFUN request, the handler must be in memory and a channel
assocliated with a file via a .LOOKUP request.

Refer to Appendix H for details of MT and CT handlers.
Errors:

Errors are detected in the same way as for the .READ/.READC/,READW
requests. Refer to Section 9.4.30 for details.,

Example:

The following example rewinds a cassette and writes out a 256-word
buffer and then a file gap.

MCALL s aV2447 oREGDEF, ,FETCH, LOOKUP, (SPFUN, (WRITW
«MCALL LEXIY,,PRINT, WAIT,,CLOSE

esVe e

+REGDEF

START1
+FETCH #HOPC,#CT 1GET A HANDLER

July 1975 9-86



Programmed Requests

BCs FERR IFETCH ERROR
+LOOKUP #AREA,®4,8CT FLOOK IT UP ON CHANNEL 4
acs LKERR JLOOKUP ERRQR
oSPFUN HAREA, #d,#373,42 JREWIND SYNCHRONOUSLY
BCS 8PERR JAN ERROR QCCURRED,
MOV #3,RS JCOUNT
PBLOCK ©,
+WRITW WAREA, #4,%BUFF,#256,,BLK
8Cs WTERR

eSPFUN  #AREA, #4,%8372,40,,4) JASYNCHRONQUS FILF RAP
«PRINT #DONE

WWATTY ¥4 IWALT FOR DONE
«CLOSE w4 JCLOSE THE FILE
WEXIT

AREAD WBLKW 10

FERR) +PRINT BFMSG
JEXIT

LKERR: LPRINT #LKMSG
EXIT

SPERR: LPRINT #8PMS8G
JEXTY

WTERRE PRINT #WTMSG
JEX1Y

QONETD «ASCIZT /ALL DONE/

FM8GE oASCIZ /FETCHI/

LKMSGS ,ASCIZ /FILE?/

SPMSGY LASCIZ /SPECIAL FUNCTION ERRQR/

WTMSGS LASCIZ /WRITE ERROR/
+EVEN

CT: «RADSO /CT /
«WORD 0.2,0

BUFF1 BLKW 2%6,

BLK1I «WORD e

H8PCs,
+END STARY

.SPND/.RSUM

9.4.39 LSPND/.RSUM (F/B only)

The .SPND/.RSUM requests allow a job to control execution of its
mainstream code (that code which is not executing as a result of a
completion routine). .SPND suspends the mainstream and allows only
completion routines (for 1I/0 and mark time requests) to run. .RSUM
from one of the completion routines resumes the mainstream code.
These functions enable a program to wait for a particular I/0O or mark
time request by suspending the mainstream and having the selected
event's completion routine issue a .RSUM, This differs from the .WAIT
regquest, which suspends the mainstream until all I/O operations on a
specific channel have completed.

«SPND

Macro Calls .SPND

where: RO (1|0




Programmed Requests

« RSUM

Macro Call: LRSUM

where: RO =2 [2]0

Notes:

1.

2,

3.

5.

Errors:
None.

Example:

The monitor maintains a suspension counter for each job,
This counter is decremented by .SPND and incremented by
«RSUM, A job will actually be suspended only if this counter
is negative. Thus, if a .RSUM is issued before a .SPND, the
latter request will return immediately.

A program must issue an equal number of .SPNDs and .RSUMs,

A .RSUM request from the mainstream code increments the
suspension counter.

A .SPND request from a completion routine decrements the
suspension counter, but does not suspend the mainstream. If
a completion routine does a .SPND, the mainstream continues
until it also issues a .SPND, at which time it is suspended
and will require two .RSUMs to proceed.

Since a .TWAIT is simulated in the monitor using suspend and
resume, a .RSUM issued from a completion routine without a
matching .SPND may cause the mainstream to continue past a
timed wait -before the entire time interval has elapsed.

A .SPND or .RSUM, like most other programmed requests, may be
issued from a user-written interrupt routine if the . INTEN/
.SYNCH sequence is followed. All notes referring to .SPND/
.RSUM from a completion routine also apply to this case.

In this example, the program starts a number of read operations and
suspends itself until at least two of them are complete.

STARTI

eMCALL  ,oVR2,4rREGDEF, ,8PND, ,R8UM, ,READC, EXIT, LO0OKUP
eMCALL  (PRINT,  WALT

l'VZIO

+REGDEF

o LOOKUP WAREA,#2,#FILER
BCS 19
ebLOOKUP WAREA,#3,#F]LES
BCS {3
+LOOKUP WAREA,#4,#F1LE4
BcC 33

January 1976 9-88



Programmed Requests

i
est
st

CROUTNI

19
ERRORS
ROMSG¢

AREA1

WSVCTYRI
COUNTS
COUNTZ21
COUNT 3
BLOK1:
B.0K218
BLOK3S
FILEZ2S
FILE3S
FILE4:
DONEFL
ERRFLG?
BUFLS

ByFatl

BUF3:

«PRINT
«EXIT
WA8CI2
«EVEN

MOV
MoV
«READC
BCS
+READC
BCS
+READC
BCS
« 3PND

oWNAIT
CWATTY
oWALY
EXIT

ASL
INC

ROR
ADC
DeC
BNE
2 RSUM
RTS

+PRINY
«EXIT
248012
+EVEN
WBLKW
+WORD
JWORD
+WORD
«WORD
«WORD
«WORD
+WORD
+RADSQ
+RADSO
+RADSY
+WORD
A WORD
oBLKW
oBLKW
WBLKW

+END

”0es
/LOOKUP ERROR/

W2)RBVCTR JWAIT FOR 2 COMPLETIONS
SAREA, RS
RS, #2,#BUFY,COUNT1,#CROUTN,BLOK]
ERROR
R3,#3,8BUF2,COUNTR,#CROUTN,BLOKR
ERROR
R5,#4,#BUF3,COUNT3, #CROUTN,BLOK3
ERRQR
e
L]
#4
R1 JOOUBLE CHANNEL # FOR INDEXING
DONEFL(RY) JRYSCHANNEL THAY I8 DONE
18ET A FLAG SAYING 80,
R@ JANY ERRORS?
ERRFLG(RL) JIF CARRY S8ET, SET ERROR FLAG FOR CHANNEL
RSVCTR JARE WE THE SECOND TO FINISH?
18 INO
JYES, START UP
PC
SRDMSG

/READ ERROR/

10

0
256,
256|
256,
2

"]

(]

/DK TESTR TMP/
/DK TESTS TMP/
/0K TEST4 TMP/
2,2,

2,0,0

e%5e6,

256,

2d6,

STARY



Programmed Requests

SRESET

9.4.40

+«SRESET

The .SRESET (software reset) request performs the following functions:

1.

2.

3.

4.

5.

Dismisses any device handlers which were brought into memory
via a J.FETCH call. Handlers which were 1loaded via the
Keyboard Monitor LOAD ciommand remain resident, as does the
system device handler.

Purges any currently open files. Files opened for output
with ,ENTER will never be made permanent.

Reverts to wusing only 16 (decimal) I/O channels. Any
channels defined with .CDFN are discarded. A .CDFN must be
reissued to open more than 16 (decimal) channels after a
+SRESET is performed.

Resets the I/O queue to one element. A .QSET must be
reissued to allocate extra queue elements.

Clears completion queue of any completion routines.

Macro Call LSRESET

Errors:
None.

Example:

In the example below, .SRESET is used prior to calling the CSI to

ensure

that all handlers are removed from memory and the CSI is

started with a free handler area.

STARTS

DONE?

sMCALL ooV@,40 REGDEF, ,CSIGEN, ,3REBET, ,EXIT
llvali
+REGDEF

«CSIGEN #DSPACE,#DEXT,%2 JGET COMMAND S8TRING

MOV RQ,BUFFER JR® PQINTS YO FREE MEMORY

2« SRESEY JRELEASE HANDLERS, DELETE
JTENTATIVE FILES

B8R STARY JAND REPEAT PROGRAM,

9-90



Programmed Requests

DEXTS + WORD 2,0,0,0 INO DEFAULT EXTENSIONS
BUFFERY @
D8PACE®, JSTART QF HANDLER AREA,

+END STARY

XIf the .SRESET had not been performed prior to the second call of
.CSIGEN, it 1is possible that the second command string would load a
handler over one that the monitor thought was resident from the first
command line,

.TLOCK

9.4.,41 .TLOCK

.TLOCK is used in an F/B system to attempt to gain ownership of the
USR, It is similar to LLOCK in that if successful, the user job
returns with the USR in memory. However, if a job attempts to .LOCK
the USR while the other job is using it, the requesting job is
suspended until the USR is free, With .TLOCK, if the USR is not
available, control returns immediately with the C bit set to indicate
the .LOCK request failed.

Macro Call: .TLOCK

The .TLOCK request allows the job to continue running, with only one
sub-job affected. With a .LOCK request, all sub-jobs would be
automatically suspended, and the other job in the system would run.

Request Format:

RO: 9 area: EZEi]

Exrrors:
Code Explanation
0 USR is already in use by another job.
Example:

In the following example, the user program needs the USR for a sub-job
it is executing. If it fails to get the USR it suspends that sub-job
and runs another sub-job, This type of procedure is wuseful to
schedule several sub-jobs within a background or foreground program,

oMCALL  (oV2y4/, REGDEF, ,TLOCK, ,LOOKUP, ,UNLOCK, ,EXIT, ,PRINT
+REGDEF
START}



Programmed Requests

o TLOCK JGET THE USR
BCS SUSPND JFAILED, SUSPEND SUB=JOB
sLOOKUP BAREA, #4,#JINAM JLOOKUP A FILE
BCs LKERR
«UNLOCK JRELEASE USR
JEXIT
SUSPNDt JBR PC,8P8J08 $SUSPEND SUB~JOB
JOR PC,SCHED JAND SCHEDULE NEXT USER

AREA! BLKUW 10
JINAME  (RADBQ /DK TEBTY THMP/
LKERRY ,PRINT #LKMSG

WEXIT

LKMSGE LASCIZ /LOOKUP ERROR/
«EVEN

SP8JOBI RTS8 rc

SCHEDt RTS FC

«END BTART

.TRPSET

9.4.42 TRPSET

.TRPSET allows the user job to intercept traps to 4 and 10 instead of
having the job aborted with a ?M=-TRAP TO 4 or ?M=TRAP TO 10 message.
If .TRPSET is in effect when a trap occurs, the user-specified routine
is entered. The sense of the C bit on entry to the routine determines
which trap occurred: C bit clear indicates a trap to 4; set indicates
a trap to 10, The user routine should exit via an RTI instruction.

Macro Call: L,TRPSET ,area, .addr
where: ,addr is the address of the user's trap routine.
If an address of 0 is specified, the user's
trap interception is disabled.

Request Format:

RO » ,area: 3|0
.addr

Notes:

It is necessary to reissue a .TRPSET request whenever a trap occurs
and the user routine is entered. The monitor inhibits servicing user
traps prior to entering the first user trap routine. Thus, if a trap
should occur from within the user's trap routine, a ?M=-TRAP message is
generated., The last operation the user routine should perform before
an RTI 1is to reissue the .TRPSET request.

9-92



Programmed Requests

Errors:
None.
Example:s
The following example sets up a user trap routine and, when the trap
occurs, prints an appropriate error message,
oMCALL  ,aV2,49 REGDEF, ,TRPSET, ,EXIT, ,PRINT
l.vall
+REGDEF
START}
+TRPSEY ®AREA,#TRPLOC
MOV #101,R0 JSET TO PRODUCE A TRAP
787 (R2)» JTHIS WILL TRAP TO 4,
s WORD 67 JTHIS WILL TRAP TO 0,
EXITY
TRPLOCYT MOV R, = (SP) RO USFD BY EMTS
BCS 18 §C SET = TRAP TO 10
+PRINT #TRPY JTRAP T0 4
BR 28
181 «PRINT ®BTRPLO JTRAP T0 10
25t «TRPSEY WAREA,#TRPLOC JRESET TYRAP ADDRESS
MOV (8P)+,RQ IRFSTORE Ro
RTI
AREA} eBLKW 10
TRP4I ASCIZ /TRAP TO 4/
TRPI@: LASCIZ /TRAP TP 0/
+EVEN
+END STARY
9.4.43 .TTYIN/TTINR

These requests are used to transfer characters
terminal to the user program,

from the console

The character thus obtained appears

right=-justified (even byte) in RO,

9-93



Programmed Requests

The expansion of .TTYIN is:

EMT 340
BCS .-2

while that for .TTINR is:

EMT 340
If no characters or lines arxe available when an EMT 340 is executed,
return is made with the C bit set. The implication of these calls is
that ,TTYIN causes a tight 1loop waiting for a character/line to
appear, while the wuser can either wait or continue processing using
»TTINR,

Macro Calls: .TTYIN .char

«TTINR
where: «Char is the location where the character in RO is
stored. If not specified, the character is
left in RO.

If the carry bit is set when execution of the .TTINR request is
completed, it indicates that no character was available; the user has
not yet typed a valid line. Under the F/B Monitor, .TTINR does not
return the carxy bit set unless bit 6 of the Job Status Word was con
when the request was issued (see below).

There are two modes of doing console terminal input. This is governed
by bit 12 of the Job Status Word. If bit 12 = 0, normal I/O is
performed. In this mode, the following conditions apply:

1. The monitor echoes all characters typed; lower case
characters are converted to upper case.

2. CTRL U (tU) and RUBOUT perform line deletion and character
deletion, respectively.

3. A carriage return, line feed, CTRL 2, or CTRL C must bLke
struck before characters on the current line are available to
the program, When carriage return is typed, characters on
the 1line typed are passed one-by-one to the user program;
both carriage return and line feed are passed to the program.

4. ALTMODEs (octal codes 175 and 176) are converted to ESCAPES
(octal 33).

If bit 12 = 1, the console is in special mode. The effects are:

1. The monitor does not echo characters typed except for CTRL C
and CTRL O.

2. CTRL U and RUBOUT do not perform special functions.
3. Characters are immediately available to the program.
4, No ALTMODE conversion is done.

In special mode, the user program must echo the characters received.
However, CTRL C and CTRL O are acted on by the monitor in the usual

9-94



Programmed Requests

way. Bit 12 in the JSW must be set by the user program. This bit is
cleared when control returns to RT-1ll.

CTRL F and CTRL B are not affected by the setting of bit 12, The
monitor always acts on these characters.

CTRL S and CTRL Q are intercepted by the monitor (unless, under the
F/B monitor, the SET TTY NOPAGE command is issued).

Under the F/B Monitor, if a terminal input request is made and no
character is available, job execution is blocked until a character is
ready. This is true for both ,TTYIN and .TTINR, and for both normal
and special modes. If a program really requires execution to continue
and the carry bit to be returned, it must turn on bit 6 of the JSW
(location 44) before the .TTINR request., Bit 6 is cleared when a
program terminates.

Errors:
Code Explanation
0 No characters available in ring buffer.
Example:

Refer to the example following the description of ,TTYOUT/.TTOUTR.

JTYOUT/TTOUTR

9.4.44 ,TTYOUT/.TTOUTR

These requests cause a character to be transmitted £from RO to the
console terminal. The difference, as in the .TTYIN/.TTINR requests,
is that if there is no room for the character in the monitor's buffer,
the LTTYOUT request waits for room before proceeding, while the
.TTOUTR does not wait for room and the character in RO is not output.

Macro Calls: .TTYOUT .char
« TTOUTR

where: .char is the location containing the character to
be loaded in RO and printed. If not
specified, the character in RO is printed.
Upon return from the request, RO still
contains the character,

If the carry bit is set when execution of the ,TTOUTR request is
completed, it indicates that there is no room in the buffer and that
no character was output. Under the F/B Monitor, .TTOUTR normally does
not return the carry bit set. Instead, the job is blocked until room

9-95 January 1976



Programmed Requests

is available in the output buffer. If a job really requires execution
to continue and the carry bit to be returned, it must turn on bit 6 of
the Job Status Word (location 44) before issuing the request.

The .TTINR and .,TTOUTR requests have been supplied as a help to those
users who do not wish to suspend program execution until a console
operation is complete. With these modes of I/0, if a no-character or
no-room condition occurs, the user program can continue processing and
try the operation again at a later time,

Note:s

If a foreground job leaves bit 6 on in the JSW, any further foreground
+TTYIN or LTTYOUT requests will cause the system to lock out the
background. Note also that each partition has its own JSW, and
therefore can be in different terminal modes independently.

Errors:
Code Explanation
0 Output ring buffer full.
Example:

As an example of the various terminal requests, the following program
is coded in two ways. The program itself accepts a line from the
keyboard, then repeats it on the terminal.

The first example uses ,TTYIN and .TTYOUT, which are synchronous. The

monitor retains control until both requests are satisfied, hence there
is no time available for any other processing while waiting.

eMCALL  44V2,,s REGDEF, ,TTYIN,,TTYOUT

[} l’van [}
+REGDEF
START1I MQV #BUFFER,RY IPOINT R{ TO BUFFER
CLR Re JCLEAR CHARACTER COUNT
INLOOPI TTYIN (R4)e JREAD CHAR INTO BUFFER
INC R2 JBUMP COUNT
CMPB #12,RQ JWAS LAST CHARs_F?
BNE INLOOP INO=GET NEXTY
Mav SBUFFER, R} JYES=POINT RY YO BUFFER
OUTLOOPE ,TTYOUT (Ri)e FPRINT CHAR
DEC R2 IDECREASE COQUNY
BEQ 8TART JOONE IF COUNT = @
L1 QUTLOOP
BUFFERe,

+END STARTY

Rather than wait for the user to type something at INLOOP or wait for
the output buffer to have available space at OUTLOOP, the routine can
be recoded using .TTINR and ,TTOUTR as follows:

9-96



Programmed Requests

oMCALL . 4V2a4+sREGDEF,,TTYIN, TTYOUT
'.Va..

«REGDEF

eMCALL  JTTINR, ,TTOUTR, ,EXIT

START: MOV #BUFFER, R} JPOINT R1 TO BUFFER
CLR R2 JCLEAR CHARACTER COUNT
BR1S #i0Q,e844 IWE REALLY WANT CARRY SET
INLOORP: ,TTINR 1GET CHAR FROM TERMINAL
BCS NOCHAR JNONE AVAILABLE
CHRIN: MOVS R2, (R1)+ JPUT CHAR IN BUFFER
INC rR2 JINCREASE COUNT
cCMPR RO, #12 sWAS LAST CHAR s |F?
BNE INLOOP INO=GET NEXT
' MOV #BUFFER,R1 IYES=POINT RY TO BUFFER
OUTLOOP: MOVA (R1),RO JPUT CHAR IN RO
«TTOUTR JTYPE IT
BCS NOROOM INO ROOM IN QUTPUT BUFFER
CHROUT: DEC R2 JDECREASE COUNT
BEQ START JIDONE IF COUNT=R
INC R 1BUMP BUFFER PNINTER
BR OUTLOOP JAND TYPE NEXT
NOCHAR?:
«TTINR JPERIODIC CHECK FOR
JCHARACTER AVATLABILITY
BCC CHRIN 1G0T ONE

(code to be executed
while waiting)

BR NOCHAR
NORQOM?
MOvVB (R1),Ra IPERIODIC ATTEMPT TO TYPE
JCHARACTER
«TTOUTR
BCC CHROUT JSUCCESSFUL
(code to be executed
while waiting)
TYPEIT: BIC #100,8%44 JMUST CLEAR THIS BIT

1SO HANG WHILE
JWAITING FOR ROOM,

#«TTYOUT (R1) IPUT CHAR
BIS 2100, 0444 FRESTORE NO=WATIT
BR CHROUT

BUFFERS ,BLKW j00,
+END START
9-97 January 1976




Programmed Requests

Example:

For an example of ,WAIT used for I/0 synchronization, see the examples
in the next section,

An example of the use of .WAIT for error detection is its wuse in
conjunction with .CSIGEN to determine which file fields in the command
string have been specified. For example, a program such as MACRO
might wuse the following code to determine if a listing file is
desired.

aMCALL  ooV244/s REGDEF, ,WAIT, ,CSIGEN, ,EXIT

..vz..
,REGDEF
START:
«CBIGEN #DSPACE,#DEXT,#2 JPROCESS COMMAND STRING
N TSCEN'T JCHECK FOR FILE IN FIRST FIELD
8CS NOBINARY INO BINARY DESIRED
NOBINARYS
MNAIT W JCHECK FOR LISTING SPECIFICATION
B8CS NOLISTING INO LISTING DESIRED
NOLISTING1
JHAIT  #3 JCHECK FOR INPUY FILE OPEN
BCS ERROR INO INPUT FILE

ERRORSY LEXIY

DEXTS «RADSQ /MACY
+RADSO /s0BJ/
+RADSQ  /LS8T/
+WORD 2

DSPACES,

«END START

WRITE/WRITC/WRITW

9.4.47 JWRITE/.WRITC/.WRITW

Note that in the case of .WRITE and .WRITC, additional queue elements
should be allocated for buffered I/O operations (see .QSET).

«WRITE
The .WRITE request transfers a specified number of words from memory

to the specified channel. Control returns to the user program
immediately after the request is queued.

January 1976 9-100



Programmed Requests

Macro Call: .WRITE .area, .chan, .buff, .went, .blk

where: .buff is the address of the memory buffer to be
used for output.
.wcnt is the number of words to be written.
«blk is the number of the block to be written.
Request Format:
RO & .,area: [ll | .chan

.bl
.buff
went
1

Notes:

See the note following .WRITW,

Errors:
Code Explanation
0 Attempted to write past end-of-file,
1 Hardware error.
2 Channel was not opened.
Examplezs

Refer to the examples following .WRITW.

+WRITC

The .WRITC request transfers a specified number of words from memory
to a specified channel. Control returns to the user program
immediately after the request 1s queued., Execution of the user
program continues until the ,WRITC is complete, then control passes to
the routine specified in the request. When an RTS PC is encountered
in the routine, control returns to the user program.

Macro Call: LWRITC .area, .chan, .buff, .wecnt, .crtn, .blk

where: .buff is the address of the memory buffer to be
used for output,
.went is the number of words to be written.
.crtn is the address of the completion routine to

be entered (see Section 2.2.8).

.blk is the number relative to the start of the
file, not block 0 of the device. The monitor
translates the block  supplied into an
absolute device block number, The user
program normally updates .blk before it is
used again.

9-101 January 1976



Programmed Requests

Request Format:

RO 2 .,area:|ll |.chan
«blk
-buff
TwWent
.Ccren

When entering a .WRITC completion function the following are true:

1. RO contains the channel status word for the operation, If
bit 0 of R0 is set, a hardware error occurred during the
transfer. The data may not be reliable.

2, Rl contains the octal channel number of the operation. This

ig useful when the same completion function is to be used for
several different transfers,

Notes:

See the note following JWRITW.

Exrorss
Code Explanation
0 End-of=file on output. Tried to write outside 1limits
of fileo
1l Hardware error occurred.
2 Specified channel is not open.,
Example:

Refer to the examples following .WRITW,

+WRITW

The .WRITW request transfers a specified number of words from memory
to the specified channel, Control returns to the user program when
the .WRITW is complete.

Macro Call: WRITW ,area, chan, .buff, .went, .blk

where: .buff is the address of the buffer to be used for
output,
.wcnt is the number of words to be written. The

number must be positive.

«blk is the number of the block to be written.

9-102



Programmed Requests

Request Format:

RO % .area:|[1ll | .chan

buff
went

Note:

Upon return from any WRITE programmed request, RO will contain no

information if the write is to a sequential-access device (for example,
magtape). If the write is to a random-access device (disk, DECtape),

RO contains the number of words that will be written (.WRITE or .WRITC)

or have been written (.WRITW). If a request is made to write past the

end-of-file on a random-access device, the word count is shortened and

an error is returned. Note that the write will be done and a completion
routine, if specified, will be entered, unless the request cannot be

partially filled (shortened word count = 0). -

Errors:
Code Explanation
0 Attempted to write past EOF,
1 Hardware error,
2 Channel was not opened.
Examples:

The following routine illustrates the differences between the three
types of .READ/.WRITE requests and is coded in three ways, each using
a different mode of monitor I/O. The routine itself is a simple
program to duplicate a paper tape.

In the first example, .READW and .WRITW are used. The I/0 is
completely synchronous, with each request retaining control until the
buffer is filled (or emptied),

oMCALL  ,.V2,.) REGDEF, ,FETCH, ,READW, ,WRITW
+MCALL  ,ENTER, ,LOOKUP, ,PRINT, ,EXIT, ,CLOSE, WAIT

waVe,,
+REGODEF
ERRUD=Se
STARTT L FETCH #MSPACE,®PRNAME JGET PR HANDLER
8cs FERR TPR NOT AVAILABLE
MOV RO, R2 IR HAS NEXY FREE LOCATION
+FETCH R, sPPNAME JGEY PP HANDLER
BCS FERR INOT AVAILABLE
MOV #AREA,RS JEMT ARGUMENT AREA
CLR R4 IR4 18 QUTPUT CHANNEL} @
MOV #1,R3 IR3 18 INPUT CHANNEL )t
+ENTER RS,R4, ¥PPNAME JENTER THE FILE
BCS ENERR )SOME ERROR IN ENTER
«LOOKURP RS5,R3,#PRNAME TLOOKUP FILE ON CHWANNEL 1
BCS LKERR T1ERROR IN LOOKUP
CLR R TUSE Ry AS BLOCK NUMBER
LOOPS +READW RS,R3,#BUFF,#2%6,,R1 jREAD ONE BLOCK
8cs ROERR

JHRITH R5)R4, #BLUFF ,#256,,R} JWRITE THAY BLOCK

9-103 January 1976




Programmed Requests

BCS WTERR
INC R JBUMP BLOCK, NOTE# THIS IS
INOT NECESSARY FOR NON=FILE
{OEVICES IN GENERAL, IT 18
JUSED HERE AS AN EXAMPLE OF
1A GENERAL TECHNIGUE,
B8R LOOP IKEEP GOING
RDERRET TSTE ERRWD JERRQR, IS IT EOQF?
B8EQ 18 JYES
LPRINTY #RDMSG JND, HARD READ ERROR
JEXIT
181 .CLOSE R3 JCLOSE INPUT AND QUTPUT
.CLOSE R4
ZEXITY JAND EXIT,
WTERRE LPRINT #WTMSG
JEXIT
PRNAMEY ,RADS@ /PR / JNOTE THAT PR NEEDS NO FILE NAME
«WORD ? JFILE NAME NEED ONLY BE @,
PPNAMES ,RADSQ /FP /
. WORD 2
FERR1 JPRINY #FNSG JERROR ACTIONS GO HWERE, IT IS
EXIT JGENERALLY UNDESIRABLE TO
ENERRI FRINT #EMSG JEXECUTE A WALT OR RESET
JEXITY JINSTRUCTION ON ERROR,
LKERRE LPRINT #LMSG
LJEXIT

FMS8G1 LJASCIZ /NO DEVICET/
EMSG1 JASCIZ /ENTRY ERROKZ/
LMEGS AS8C1Z /LOOKUP ERROR?/
ROMSG) ,ASCIZ /KEAD ERRORZ/
WTMSGT LASCIZ /WRITE ERROR?/
+EVEN
AREAY BLKW 10
BUFF1 2BLKW 256,
HSPACES,
+END START

The same routine can be coded using .READ and .WRITE as follows, The
WAIT request is used to determine if the buffer is full or empty
prior to its use.

MCALL weV24as JREGDEF, ,FETCH, ,READ, ,WRITE
+MCALL .ENTER..LUOKUP..PRINTo.EXIT;.CLOSE;.WAIT

!lve.l
JREGDEF
ERRWDsS2
STARTSs LFETCH W#nBPACE,#PRNAME JGET PR MANDLER
B8CS FERR JPR NOT AVAILABRLE
MOV RQ, k2 JRO MAS NEXT FREE LOCATION
ZFETCm Rg,#PPNAME 1GET PP HANDLER
8Cs FERR INOT AVAILABLE
MOV ®AREA, RS JEMT ARGUMENT AREA
CLR R¢ JR4 IS OUTPUT CHANNEL) @
MOV #1yR3 JR3 IS INPUT CHANNEL 11

JENTER RS,R4,¥PPNAME JENTER THE FILE

9-104



Programmed Requests

LOOP:

RDERR}

I10ERR?
PRNAME?
PPNAME 3}
FERRS
ENERR?S
LKERR?
FM8Gs
EM8GS
LMSGI
I0MSGY
WTMEG S
AREA

BUFFS
HSPACEs,

«READ and

LOOP:

BCS
«LODKUP
8Ccs
CLR
+READ
BCs
JWALT
BCS
«WRITE
BCS
INC

BR
TST8
BNE
+CLOSE
+CLOSE
JEXIT
EXIT
+RADSE
+WORD
«RADSQ
+NORD
PRINT
JEXITY
«PRINTY
JEXTT
WPRINT
JEXIT
WASCIZ
WASCIZ
WASCIZ
2A8C12
ASCYZ
+EVEN
oBLKW
BLKW

+END

«WRITE

READ
WAIT
READ
USE
WAIT
READ
USE
BR

ENERR

R5,R3, ¥PRNAME

LKERR
R1

1SOME ERRQR IN ENTER
JLOOKUP FILE ON CHANNEL |
FTERROR IN LOOKUF

JUSE R1 A8 BLOCK NUMBER

R5,R3, #BUFF,#256,,R]1 JREAD A BUFFER

ROERR
R3
IDERR

IwALT FOR BUFFEK
fERROR MERE IS HARD ERROR

RS)R4,¥BUFF,#256,,R]1 JWRITE TTHE BUFFER

I0ERR
R
LOOP
ERRWD
JOERR
R3

Ré

#I0MSG
/PR ¢
4

/PP /
e

KFMSG6
#EMSG

#LM8G

/NQ DEVICE?/
/ENTRY ERROR?/

11/0 ERROR

TKEEP GOING

TERROR, I8 1T EDF?

INO, HARD ERRQR

ICLOSE INPUY AND QUTPUT

1AND EXIT,
INO, HARD READ ERROR

INOTE THAT PR NEEDS NO PILE NAME
JFILE NAME NEED ONLY BE 0,

JERROK ACTIONS GO HERE, IV I8
IGENERALLY UNDESTIRABLE TO
JEXECUTE A HALT OR RESET
FINSTRUCTION ON ERROR,

/LOOKUP ERROR?/

"I/0 ERROREM
/WRITE ERROR?/

10
2%6,

START

are also often used for double-buffered 1I/0, The
basic double-buffering algorithm for input is:

BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
LOOP

NHENHNDH

Explanation

Fill BUFFER 1

Wait for BUFFER 1 to fill

Start filling BUFFER 2

Process BUFFER 1 while BUFFER 2 fills
Wait for BUFFER 2 to fill

Start filling BUFFER 1

Process BUFFER 2 while BUFFER 1 fills

9-105



Programmed Requests

Correspondingly, the basic double-buffering algorithm for output is:

Explanation
FILL BUFFER 1l Prepare BUFFER 1 for output
1.OOP: WRITE BUFFER 1 Start emptying BUFFER 1

FILL BUFFER 2 Fill BUFFER 2 while BUFFER 1
empties

WAIT BUFFER 1 Wait for BUFFER 1 to empty

WRITE BUFFER 2 Start emptying BUFFER 2

FILL BUFFER 1 Fill BUFFER 1l while BUFFER 2
empties

WAIT BUFFER 2 Wait for BUFFER 2 to empty

BR LOOP

The previous example program can be coded using completion routines
via .READC and .WRITC as follows. Once the initial read is performed,
the remainder of the I/O is performed by the completion routines.

AMCALL o V@4,sJRERDFF, ,FETCH, ,RFANC, WRITE
,MCALL .ENTER..LGﬂKUP,.PRTNT,.E¥IT,.C|0!!..NATT

Va2,
.REGDEF
ERRBYTeS2
STARTT LFETEH #HSPALE,#PPNAMF JGFT PR HWANDLER
BcS FLNK 1PR NOT AVAILARLF
MoV RO,R2 IR HAS NEYT FREF LORATINN
"FETCH R2,#PPNAME JGFT PP HANDLER
FLNK? necs FERR INAT AVATLABLE
MoV HAREA,RS TEMT ARGUMENT AREA
eLr R&4 IR IS OYTPUT CHANNEL) @
MOV #y,RY JRT TS INPIIT CHANNFL 1
WENTFR RS, RO, WPPNAMF JENTFR THE FILF
RCS ENERR 1SAMF ERROR TN ENTYFR
LLOOKYP RS, RY,#PRNAME PLOOKUP FILE ON CHMANNEL
scs LKPRR tERROR IN LOOKUP .
CLR RY JUSE R1 AS BLOCK NUMRER
LOOP? CLR nrLG fCLEAR DONF/FRRQOR FLAG
<REANC RS ,RY, #BUFF,#2%6,, #RDCOMP, Ry JREAD ONE BLOCK
RCS EQF INN ERROR WILL HAPPEN HERE
151 8T nFi'G 1DNNE FLAG SFT?
BEQ 18 INA, WAIT FOR TT TN RE SFT,
AMI TOFRR PYFS, RUT HARD ERROR occunngo
FQF: «CLOSE R3 ICLOSE INPUT AND OUTPUT FHANNELS
«CLOSE R4
JEXIT 1ALL DONE
JENARL 1 8B
RDCOMPY ROR RO )IF AIT O SET
ncs RWFRRA 1AN ERROR NCCURRFD,
JHRITC #AREA,#0,#RUFF,#256,, #WRCOMP,BLKN JWRITE THAT RLOCK
BCC 28 JERROR HERF 1§ HARNWARF
RWFRRY MOV #e1,NFLG IFLAG THE FRROR
281 TS PC
WRCOMP1 ROR RO
BECS RWFRR IJHARPWARF FPRROR
INC RLKN 1RIIMP RLOCK NUMBFR,
"READC W#AREA,#1,#RUFF,#256,,#RDCOMP, BLKN
acC s JINOA ERRQOR
TSTH FRABYT VENF?

January 1976 9-106



Programmed Requests

ANE RWFRR INM, HARP ERROR
tNE NFI G 18AY WEERE DNNF
3151 at: PC
SAR F
égnﬁ.L hgv #FMSE, RO 1ERROR ACTYONS GO HWERE, TT IS
AR TYerT 'GFNERALLY UNDFSIRABLE TO
ENFRR} MOV #EMSE,RQ PEXECUTE A HALY AR RFSFT
AR TYRTY PINSTRUCTINAN ON FRROR,
TOFRRY MQV $1OMSG,RM
RR TYPIT
LKERRT MpV #LM86,RQ
TYPIT: LPRINT
JEXIT
«NLIST BFX

FMSGH oASCIZ /NP DEVICEY/
EMSG 1 LASCYZ /ENTRY ERROR?/
LMSG? «ASCIZ /LNQKUP FRRORY/
YoMS®t:  LASCTZ "1/0 ERRNAR2"

LLIST REY

<EVEN

NFLGS WORD @

PRNAMED TRADSD  /PB / INOTE THAT PR NEFDS NO FTLE NAME
LJWORD 0 'FTLE NAME NEED ONLY BF o,

PPNAMEL (RADSBQ /PP /
JWORD 0

RLKNYI  (WORD n $BLOCK NLIMRER

AREA} WBLKW 10
RUFF 1 W BLKW 256k,
HSPACES,

-END STARY

The following example incorporates the .LOOKUP, LREADW, and .CLOSE
requests. The program opens the file RT1l.MAC which is on the system

device, SY:, for input on channel 0. The first block is read and the
file is then closed.

.MCALL .szl.ljREGDEF!'CLOSE'ILOOKUP
MCALL ,PRINT, ,EXIT, ,READW, ,FETCH

.'Va..
"REGOEF

STARTT MOV #LIST, RS JEMT ARGUMENY LIST POINTER
CLR R& JBLOCK NUMBER
CLR R3 JCHANNEL #
JFETCH W®CORADD,#FPTR  JFETCH DEVICE HANOLER
BCC 28
MOV SFETMSG, RO JFETCH ERROR

151 JPRINT JPRINT ERROR MESSAGE
EXIY

281 *LOOKUP RS,R3,#FPTR JLOOKLP FILE ON CHANNEL @
BCC 33
MOV ALKMSG, RO JPRINT FAILURE MESBAGE
8R 15

381 (READW RS,R3, #BUFF,#256,,R6 JREA ONE BLOCK
Bce 43
MOV 4HDMSG, RO JREAD ERRQR
B8R L5

4st .CLOSE R3 JCLOBE THE CHANNEL
TEXIY

LIST:  .BLKW & JLIST FOR EMT CALLS

FPTRL +RADS® /SY RT1y MAC/ JRADSY OF FIEL NAME,DEVICE
FETM8GE: ,A8CIZ /FETCH FAILED/ JASCII MESSAGES
LKM3GE LASCIZ /LOOKUP FAILED/

9-107




Programmed Requests

ROMSGS LASC1

+EVEN

CORADDS ,BLKW epen

BUFFs=,

+END STAR?T

/READ FAILED/
JSPACE FOR LARGEST HANDLERS

9.5 CONVERTING VERSION 1 MACRO CALLS TO VERSION 2

As mentioned in the introduction of this chapter, RT-1l1 Version 2

supports a slightly modified format for

Version 1. This section details the conversion process
Version 1 format to Version 2.

9.5.1 Macro Calls Requiring No Conversion

Version 1 macro calls which need no conversion are:

+CSIGN
«CSISPC
.DATE
+DSTATUS
+EXIT
+FETCH
+HRESET
« LOCK

« PRINT
«QSET

+«RCTLO

«RELEAS
«SETTOP¥*
+«SRESET
«TTINR**
« TTOUTR
+TTYIN

« TTYOUT
« UNLOCK

*provided location 50 is examined for the maximum value.

**BExcept in F/B System.

9,5.2 Macro Calls Which May Be Converted

The following Version 1 macro calls may be converted:

+CLOSE
+DELETE
+ENTER
« LOOKUP
«READ

« RENAME

+« REOPEN
+«SAVESTATUS
+WAIT
+WRITE

The general format of the V1 macro is:

.PRGREQ .chan,

In this form, .chan is an integer between 0 and 17
is not a general assembler argument.
into the EMT instruction itself.

.argl .arg2,...argn

pushed either into RO or on the stack.

The V2 equivalent of the above call is:

« PRGREQ

.chan, .argl,....argn

9-108

system macro calls than

from the

{inclusive), and
The channel number is assembled
The arguments argl-argn are always



Programmed Requests

In the V2 call, the .chan argument can be any legal assembler
argument; it need not be in the range 0 to 17 (octal) , but should be
in the range 0-377 (octal). .area points to a memory list where the
arguments argl...argn will go.

As an example, consider a .READ request in both forms:

Vl1: «READ 5, #BUFF,#256, ,BLOCK
V2: +READ #AREA, #5, #BUFF, #256, ,BLOCK
[ 4
L]
AREA: «WORD 0 7CHANNEL/FUNCTION CODE HERE
«WORD 0 sBLOCK NUMBER HERE
«WORD 0 sBUFFER ADDRESS HERE
«WORD 0 sWORD COUNT HERE
+WORD 0 ;A 1 GOES HERE,

Thus, the difference in the calls is that in Version 2 the channel
number becomes a legal assembler argument and the .area argument has
been added.

Following is a complete list of the conversions necessary for each of
the EMT calls, Both the Version 1 and Version 2 formats are given.
Note that parameters inside [] are optional parameters. Refer to the
appropriate section in this chapter for more details of each request,

Version Programmed Request
V1: «DELETE .chan,.dblk
V2: «DELETE .area,.chan,.dblk, [.count]
V1 «LOOKUP .chan,.dblk
v2: +LOOKUP ,area,.chan,.dblk, [.count]
Vl: «ENTER .chan,.dblk,[.length]
vV2: -ENTER ,area,.chan,.dblk, [.length], [.count]
V1: «RENAME ,chan,.dblk
v2: «RENAME ,area,.chan,.dblk
V1 «SAVESTAT .chan,.cblk
v2: «SAVESTAT .area,.chan,.cblk
Vl1: «RFOPEN .chan,.cblk
V2: .REOPEN .area,.chan,.cblk
Vl: +CLOSE ,chan
V2 +CLOSE .chan
V1: «READ/.READW .chan, .buff,.went,.blk
V2. +READ/.READW .area,.chan,.buff,.went,.blk
V1: «READC ,chan,.buff,,went,.cxtn,.blk
V2: -READC .area,.chan,.buff,.went,.crtn,.blk
V1: «WRITE/.WRITW ,chan,.buff,.went,.blk
V2. +WRITE/.WRITW ,area,.chan,.buff,.went,.blk

9-109



Programmed Requests

Vl:
V2

vVl
V2

JWRITC .chan,.buff,.went,.crtn,.blk
.WRITC .area,.chan,.buff,.wcnt,.crtn,.blk

.WAIT .chan
+.WAIT .chan

Important features to keep in mind for Version 2 calls are:

1,

2,

3,

Version 2 calls require the .area argument, which points to
the area where the other arguments will be.

Enough memory space must be allocated to hold all the
required arguments.

.chan must be any legal assembler argument, not Jjust an
integer between 0-17 (octal).

Blank fields are permitted in the Version 2 calls. Any field

not specified (left blank) is 1left alone in the argument.
block.

9-110



CHAPTER 10

EXPAND UTILITY PROGRAM

EXPAND is an RT-1ll system program which processes the macro references
in a macro assembly language source file., EXPAND accepts a subset of
the complete macro language and, using the system library file
SYSMAC. 8K, produces an output file in which all legal macro references
are expanded into macro-free source code, EXPAND is normally used
with ASEMBL, the RT-1ll assembler designed for minimum memory
configurations (refer to Chapter 11).

10.1 LANGUAGE

EXPAND simply copies its input files to its output file unless it
encounters any of the following directives (see Chapter 5 for more
information about these directives):

l. .MCALL Directs EXPAND to search the file
SY:SYSMAC.SML to find the macro names listed
in the  MCALL directive. If the macro names
are found, EXPAND stores their definitions in
its internal tables.

2, .MACRO Directs EXPAND to copy a macro definition
from the user's input file into the internal
tables.

3. .name If .,name is the name of a macro defined in

either a (MCALL or .MACRO directive, then
.name is expanded according to the definition
stored for it in the EXPAND internal tables.

4. LENDM If encountered while storing a macro
definition, the LENDM directive terminates

the definition. It is not recognized outside
macro definitions,

10.2 RESTRICTIONS

Unlike the full macro assembler (MACRO), EXPAND only expands macros
that observe the following restrictions:

10-1



EXPAND Utility Program

1.

The following directives may not be used:

« ERROR «NARG
«IF DIF «NCHR
+IF IDN +«NTYPE

« IRP « PRINT
« IRPC «REPT
+MEXIT

Macros cannot be nested. Recursive macros that call
themselves directly or indirectly are illegal and cause an
error message.

Macros cannot be redefined. Once a name has been used for a
macro name, it cannot be used again in the program for a
macro or symbol name.

Macro names must begin with a dot (.). If the dot is missing,
an error message is printed.

Dummy argument names must begin with a dot (.). Such names
cannot be used as dummy argument names in the macro but can
be used for other purposes outside of the macro.

The backslash operator is not available.

Automatically created symbols are not available.

No more than 30 arguments may be used in any MACRO directive.

10.3 CALLING AND USING EXPAND

To run EXPAND, type:

R EXPAND

in response to the dot printed by the Keyboard Monitor. EXPAND

responds

with an asterisk indicating that it is ready to accept a

command string. A command string must be of the following form:

*ofile=ifilel,ifile2,...,ifileé6

ifile2 through ifile6 are optional. Each file specification follows
the general RT-11 command string syntax (dev:filnam.ext). The default
value for each file specification is noted below:

I/0 File Dev Ext
ofile DK PAL
ifilel,ee., device used MAC
ifileé6 for last source
file specified
or DK

Type CTRL C to halt EXPAND and return control to the mcnitor. To
restart EXPAND, type R EXPAND or the REENTER command in response to
the monitor's dot.

10-2



EXPAND Utility Program

EXPAND copies sequentially the specified input files to the specified
output file wuntil a macro directive is encountered. EXPAND then
changes the macro directive to a comment by inserting a semicolon so
that it will not be seen later by the assembler (usually ASEMBL).

If the directive is ,MCALL, EXPAND searches the system library file
(SYSMAC.8K) for the requested macro definitions. The requested
definitions are then included in the user's program in the order in
which they are found in the library.

For the MACRO directive, EXPAND reads each 1line following the
directive up to the next .ENDM directive, Each line is stored in the
internal definition table and then changed to a comment in the output
file so that it is not processed later by the assembler. Also, any
occurrence of a macro argument name within the definition is flagged
internally so that it can be replaced by the real argument value
whenever the macro is later referenced.

For macro references, EXPAND locates the stored macro definition in
its internal tables, binds the actual argument values to the argument
names, and changes the macro reference to a comment line. EXPAND then
begins copying the stored definition to the output file. Whenever a
macro argument name is encountered in the definition, it is replaced
by the corresponding actual argument value.,

Examples:
The following are examples of input and corresponding EXPAND output.

INPUT OUTPUT

! RTegy MACRO EXPAND VM2wQ2

R1®%Y Ri®X1Y
apuye spExe
PCuYY PCeXxY

JMACRO ,CALL ,SUBR
JSR PC, ,SURR

ENDM : .
.MCALL .LOﬂKUPo.PElDo..V?..

«MACRD ,CALL ,SUBR

JSR PC, ,SURR

+ENDM

+MCALL LONKUP, ,READs,oV2,.
1.MACRO ,,V2,,

JeeoVEsnt

1. ENDM ‘

T MACRD LLOOKUP ,AREA, ,CHAN, ,DFVRLK, ,SPF
’.TF D' ..tVl
1.,1F NB ,CHAN
'

- e -

MoV LCHAN, %0
1 ,ENDC
' EMY *ne22+ AREL»
1. 1FF
1,1IF NR ,ARES
[ MOV JAREA,%0
! MOVe #1,100)
1 . ENNC
1.IF NR ,CHAN
) MOVB SCHAN, (@)
1. ENDC

10-3




EXPAND Utility Program

STACK1
ARFAL
BUFR1!
INBLKS
START)
At

B

!'vzﬂl

LCSECT MAIN
.GLOBL 8ART
LBLKW 100
JBLKW 10
LBLKW 1027
JBLKW 8

MOV #8TACK,SP
MOV Ri,=(8P)
LCALL SQRT

«LOOKYP #INBLK,Q

1,IFF
1. TF NA
'

'

1 ENDC
1,1IF NA
'

1. ENPC
1.1F NA
'

1 FNDC
7.TF NR
'

1 ENRC
1,TF NA

'
?JENPC
!
!
1. ENRC
1 FNPM
)
eseVPEi

STACK?
AREA1
RUFR!S
INBLKS
STARTY
Al

By

!

.IF DF
«IF NB
«ENDC

+ IFF
WIF NB

10-4

«OEVALK
MoV .DEVBLK,2,(2)
«SPF i
MOV «SPF, U, (M)
CLR 4,(0)
EMT ®osTH
«READ <AREA, ,CHAN, ,BUFF, ,WCNT, ,BLK
..on
+WENT
MOV JWENT, X0
MOV #{,=0(86,)
MOV .B“FF,'('b.’
MOV sCHAN, m» (6,9
FMT T0«200+ ,AREA>
«AREA
MOV LAREA, X0
MOVB ‘8.01 (0)
«CHAN
Mova +CHAN, (0)
.BLK ]
MOV «BLKs2,(?)
<BUFF
MOV JBUFF,4,(0Y
«WCNT
MOV JWENT, 6, (0"
MOV #1,8,(7)
EMY 03758
IIV2..
«CSECT MAIN
LGLORL SQRY
+BLKW 100
.BLKW 10
«BLKW 100
«BLKW 8
MOV #8TACK,SP
«CALL SQ@RT
JSR PC,80RT
+LUOOKUP #INBLK,Q
vaeVl
Q
MOV n,xe
EMT Fne2B+#INBLK>
#INBLK



EXPAND Utility Program

CLR R}

1B8LLOCK NUMRER

+READ #AREA,#Q,¥BUPFR,#256,,R!

HALY
«END START

+ENDE
«IF NB

ENDE
«1F NB

+ENDC
«IF NB

JIFF

ENDE
(ENDEC
IF DF
JIF NB

+ENDE

JIFF
1P NB

 LJENDE

+IF NB

LENDE
+IF NB

+ENDC
+IF NB

+ENDE
+IF NB
«ENDC

+ENDC

10-5

#INBLK, X0
#1,1(0)

0,2

12, (M)

14, (0)
4,c0)
¥ne7%

’BLOCK NUMBER

+READ #AREAL,#0,pRUFR,#256,,R!

MOV
Mov8
e
MovB
Mov
MOV
eLe
EMY
CLR Ry
...vl
#256,
MOV
MOV
MOV
MOV
MY
#AREA
MOV
MOVA
L 14
MOV
R1
MOV
#BUFR
MOV
#256,
MOV
MOV
EMY
HALT
«END START

#2%6,,%0
‘1l'(6;)

‘0."6.)
*N<20Q+HARFAD

#AREA, %D
#8,,1 ()

#2, (?)

Ri,2.(9)

#BUFR, 4, (D)

#2%6,,56,(0)

*1,8,(0)
0379




EXPAND Utility Program

10.4 EXPAND ERROR MESSAGES

The following messages are caused by fatal errors detected by EXPAND.
They print on the console terminal and cause EXPAND to restart:

Message Explanation

?BAD SWITCH? An unrecognized command string
switch was specified.

?INPUT ERROR? Hardware error in reading an input
file.

?2INSUFFICIENT CORE? Not enough memory to store macro
definitions.,

?MISSING END IN MACRO? End of input was encountered while
storing a macro definition;
probably missing an .ENDM.,

?NO INPUT FILE? There must be at least one input
file.

?0UTPUT DEVICE FULL? No room to continue writing output;
try to compress the device with
PIP.

?WRONG NUMBER OF OUTPUT FILES? There must be exactly one output
file.

The following errors are non-~fatal but indicate that something is
wrong in the input file(s). These errors appear in the output file as
a line in the following form: ’

?*** ERROR *** message

After each run of EXPAND, the total number of non-fatal errors is
printed on the console terminal.

Message Explanation
BAD MACRO ARG The macro argument is not formatted
correctly.
LINE TOO LONG A line has become longer than 132
characters.
MACRO ALREADY DEFINED A macro was defined more than once.
MACRO(S) NOT FOUND Macros listed in an «MCALL

statement were not found in
SYSMAC.8K (make sure SYSMAC.8K is
present on system),

MISSING COMMA IN MACRO ARG Found spaces or tabs within a macro
argument when a comma was expected;
try using brackets around the arqu-
ments, e.g., <arg with spaces>.

January 1976 10-6



EXPAND Utility Program

MISSING DOT

NAME DOESN'T MATCH

NESTED MACROS

NO NAME

SYNTAX

TOO MANY ARGS

A macro name or argument name does
not begin with a dot.

Optional name given in « ENDM
directive does not match name given
in corresponding .MACRO directive.

A macro is being defined or invoked
within another macro.

A macro definition has no name.

A macro directive is not
constructed correctly.

A macro directive has more than 30
arguments,

10-7






CHAPTER 11

ASEMBL, THE 8K ASSEMBLER

ASEMBL is designed for use on an RT-1l system with minimum memory
space (or larger systems where system table space is critical) and is
a subset of the RT-11 MACRO assembler described in Chapter 5. ASEMBL
has the same features as MACRO with the following exceptions:

1. MACRO directives (.MACRO, .MCALL, .ENDM, ,IRP, etc.) are not
recognized

2. DATE is not printed in listings

3. Wide line-printer output is not available

4. There is no lower-case mode

5. There is no enable/disable punch directive

6. There are no floating point directives

7. There are no local symbols or local symbol blocks
8. CREF is not available

Many of the macro features are supported by the EXPAND program (as
described in Chapter 10).

11.1 CALLING AND USING ASEMBL

ASEMBL is loaded in response to the dot printed by the Keyboard
Monitor with the RT-1ll monitor R Command as follows:

R ASEMBL
followed by the RETURN key. ASEMBL responds with an asterisk (*) and
waits for specification of the output and input files in the standard
RT-11 format as follows:

*object,listing=sourcel,...,sourceé6

11-1



ASEMBL, the 8K Assembler

where:
object is a binary object file output by ASEMBL.

listing is the assembly 1listing file containing the
assembly listing and symbol table.

sourcel,...,sSourceb
are the ASCII source files containing the ASEMBL

source program(s). A maximum of six source files
is allowed.

A null specification in any of the file fields signifies that the
associated input or output file is not desired. ASEMBL file
specifications follow the standard RT-11 convention (dev:filnam.ext).
The default value for each file specification is noted below:

I/0 File Dev Ext
object DK +OBJ
listing device used .LST

for object output
sourcel,cee, device used for +PAL

sourcen last source
file specified
or DK

Type CTRL C to halt ASEMBL and return control to the monitor, To

restart ASEMBL, type R ASEMBL or the REENTER command in response to
the monitor's dot.

Table 1l-1 lists the RT-11 macro directives which are not available in
ASEMBL.

Table 11-1
Directives not Available in ASEMBL
Directive Explanation
«MACRO Macros cannot be defined in ASEMBL.
« ENDM
«MEXIT
« MCALL
«NCHR The number of characters in an argument cannot be

obtained with a macro.

«NARG The number of arguments in a macro cannot be
obtained with a macro.

\ (backslash) Symbols used as macro arguments cannot be passed
as a numeric string.

(continued on next page)




ASEMBL, the 8K Assembler

Table 11-1 (Cont.)

Directives not Available in ASEMBL

Directive Explanation

+«ERROR Messages cannot be flagged with a P error code
output as part of the assembly listing. Comment
lines can be used to replace .ERROR.

«IF IDN } Strings cannot be compared.

+IF DIF

«IRP ) Indefinite repeat blocks cannot be created.

« IRPC

.NTYPE A macro cannot be modified based on the addressing
mode of an argument,

« PRINT Messages cannot be output as part of the assembly
listing. Comment lines can be used to replace
«PRINT.

« REPT A block of code cannot be duplicated a number of
times in-line with other source code using a
directive,

.LIST ME

+NLIST ME

.LIST MEB

.NLIST MEB These directives have no effect,

LIST MD

«NLIST MD

+LIST MC

+NLIST MC

+LIST TTM } Terminal mode is standard and cannot be changed.

+NLIST TTM :

.ENABL LC } All lower case ASCII input is converted to

+DSABL LC upper case,

.ENABL LSB ) Local symbols and local symbol blocks are not

.DSABL LSB available in ASEMBL,

«ENABLE PNC } Binary output is always enabled.

«DSABL PNC

.ENABL FPT Floating point directives are not available.

«DSABL FPT

+FLT2

+FLT4

Example:

This example uses the output produced by the EXPAND program as
The assembly listing follows.

to ASEMBL,

input

11-3




ASEMBL,
oMAIN,

O PN ARE AN~

e@gopt
0%0p6
pepagY

the 8K Assembler
RT=14{ MACRNA V8M2={iQ

PAGE 1§

1 BTeiy MACRO EXPAND VOReQ2

RieX!
Spaxé
PCaX?

wENDM

1 4MACRO eeV2e,
?eoeVEmy
?.PNDM

WMACRO ,CALL ,SUPRR
JSR PC,,SURR

sMCALL (LOOKUP, ,READ,.4V2,,

1, MACRD LOOKUP ,AREA, ,CHAN, ,DFVABLK, SPF

.

1LTF OF L,V
1,7F NB ,CHAN
!

1 .FNDC
1

1,1FF
1.YF NR
]

’

1 .FNDEC
'

1., FNNC
1.7F NB
)

! FNPC
?.TF NB
)

1. YFP

'
1,FNDC
!
1.PNRC
) JFNDM
’ MACRD
1.7F DF
1,7F NA
]

1, FNDPC

CAREA

WCHAN
LOFVRLK

L SPF

LREAD
eeaVl
LWENT

9, YFF

1.TF NB LAREA

) FNPE

1,7F NR CHAN
1, FNDE
1.,7F NR ,BLK

?.PNDC

MOV

EMY

MOV
MOVB

MOVE

MOV

MOV
eLR

EMT

«CHAN, %D

*o«2Pe ,AREA>

JAREA, %0
#1,1(02)

CCHAN, (D)

LOFVBLK,2,(00)

«SPF, U (M)
4,c@)

o™

LAREA, ,CHAN, ,BUFF,  WENT, ,BLK

MOV

MOV
MOV
MOV
EMY

MOV
MOVB

MOVB

Mov

11-4

«WENT, %D
‘1'-(bn)
.B“F"-(“’

.cHAN.'(‘.’
“0<270+ ,AREA>

oAREA, %0
8,,1(07)

LCHAN, (@)Y

WBLK,2.(M)



ASEMBL,

oMA

99
{00

101
102
103
104
10%
106
107

IN,

eeomo
Qnana
oR220
an420
LT ]
0n436
an44
en44Q

o0Mg4uy

LT

Bry%e

L TY-

P4e66

2470

RY={1 MACRA V8O2ein

1.,7F NB
'
1.ENDC
1,TF NB
!
1,FNDC
!

'
1.ENDC
) .PNDM

]
@1 ,,.v2e1
200000

STACK?S

ARFAL

BUFR?

INRLK Y
012726 STARY
2Rpn0nr
010146 A1

By
024767
a%pep0g

'

IF DF

«IF NB

+ENDE

JIFF
JIF NB
212700
LIYELY
112760
00001
090001
LENDE
JIF NB
116710
0000
LENDE
JIF NB

JENDE
IF NB

o IFF
205060
00pmQ4

<ENDC
104378

«ENDE
25001

«IF DF
«IF N8

the 8K Assembler

PAGE 1+
“BUFF
MOV
YWENT
MOV
MOV
EMT
;cvaoc

LCSECT MAIN
+GLOBL SORY
pBLKW 100
#BLKW 10
WBLKW 100
JBLKW &

MOV #8TACK,SP

MOV R{,=(8P)
«CALL 8QRT
ISR PC,S8ORT

oLOOKUP #INBLK,Q

BUFF,4,(0)
WWENT, 6, (0

#1,8,(0)
078

2,%0

02N #INBLK>

¥INBLK,x?

w4t

2,02

12, (M)

sl ()

4,2

Fax7s

1BLOCK NUMBRER

#READ #AREA,¥0,N¥BUFR, #2356, ,R1

'..V1
@
MOV
EMT
#INBLK
MoV
MOVB
[}
MOVB
MoV
MOV
CLR
EMT
eLR RY
IOIV1
LELL

11

]
wu




ASEMBL, the 8K Assembler

+MAIN, RT®{{ MACRA V8N2e«i0 PAGE 1+

108 ‘ MOV #2%6,,%0

189 (ENDC

110 MOV #1,906,)

1114 MOV #BUFR,=(6,)

112 MoV #2,=(6,)

113 . FMT *0e2Pp+#AREA>

114 o IFF

115 «IP NB #ARFA

116 P42 212709 MOV #AREA, YD
pvE200°

117 Mg76 112760 MOVB #8,,1(M
00010
00p00!

11A JENDE

119 «IF NB #0

120 nsmy 112740 MOVSB #0, ()
ovpeaen

121 LENDC

122 .IF NB R! ‘

12% 2510 Q10160 MOV R{,2.(M
pvenE2

124 LJENDE

12% +IF NB #RUFR

126 0S14 212760 MOV #BUFR, 4, (0)
enp220°
22QMmpd

127 JENDE

128 JIF NB #2%6,

129 0522 @l2767 MOV #2%6,,6,(0)
0@p4Qn
PARAA6

130 JENDE

131 NS3p 212760 MOV #1,8,(0)
pBRAR !
pepoyn

132 05%6 104378 EMY *ox7%

133 LENDC

134 0S4 P0QMQ0 HALT

138 Q0R43z2’* +END STARTY

«MAIN, RT=11 MACRO V802wid PAGE 1¢
SYMBOL TABLE

A 220436R 202 ARFA GROZ0QR po2 A LYY L 002
BUFR noeg2eR M2 INBLK PRA420R a2 PC =X000007
R Xne0p01 sp aX0Q0Q06 gQ!T ® anknvn G
STACK Po0QRA0QR omB2 STARY NeAL32R pe2 ,..V2 = 003p0%
« ABS, Dn0p0QOQ 1] ]
n00000 1K}
MAIN nEA%4e (]}

FRRORS DETECTED: ©
FREE CORFI §19088, WORDS

JLPISTEST PAL

11-6



11.2 ASEMBL ERROR MESSAGES

The system error messages output for ASEMBL are abbreviated as
follows:

Abbreviation Explanation
?BSW? The switch specified was not recognized by the
program,
?CORE? There are too many symbols in the program being

assembled, Try dividing program into separately
assembled subprograms,

?NIF? No input file was specified and there must be at
least one input file.

?0DF? No room to continue writing output; try to
compress device with PIP.

2TMO? Too many output files were specified,

11-7






CHAPTER 12

BATCH

12.1 INTRODUCTION TO RT-11 BATCH

RT-11 BATCH is a complete job control language that allows RT-11 to
operate unattended. RT-11 BATCH processing 1is ideally suited to
frequently run production jobs, large and long running programs, and
programs that require little or no interaction with the user. Using
BATCH, the user can prepare his job on any RT-11 input device and
leave it for the operator to start and run.

RT-11 BATCH provides the ability to:

® Execute an RT-11 BATCH stream from any legal RT-11 input
device.

® Output a log file to any legal RT-11 output device (except
magtape or cassette).

® Execute the BATCH stream either with the Single-Job Monitor or
in the background with a Foreground/Background Monitor.

® Generate and support system independent BATCH language jobs.
® Execute RT-11 monitor commands from the BATCH stream.

RT-11 BATCH consists of two main sections: the BATCH compiler and the
BATCH run-time handler. The BATCH compiler reads the batch input
stream created by the user, translates it into a format suitable for
the RT-11 BATCH run-time handler, and stores it in a file. The BATCH
run-time handler takes the file generated by the compiler and executes
it in conjunction with the RT-11 monitor. As each command in the
batch stream is executed, the command, along with any terminal output
generated by executing the command, is output to the BATCH log device.

12.1.1 Hardware Requirements to Run BATCH

RT-11 BATCH can be run on any Single-Job system configured with at
least 12K words of memory. A minimum system of 16K words of memory is
required to run BATCH in a Foreground/Background environment. A 1line
printer, although optional, is highly desirable as the log device.

12-1



BATCH

12.1.2 sSoftware Requirements to Run BATCH

BATCH uses certain RT-11 system programs to perform its operations.
For example, the $BASIC command runs BASIC.SAV. The user must ensure
that the following RT-11 programs are on the system device, with
exactly the following names, before running BATCH.

BASIC.SAV (BASIC users only)
BA.SYS

BATCH.SAV

CREF.SAV (MACRO users only)
FORLIB.OBJ (FORTRAN users only)
FORTRA.SAV (FORTRAN users only)
LINK.SAV

MACRO.SAV (MACRO users only)
PIP.SAV

12.2 BATCH CONTROL STATEMENT FORMAT

Input to RT-11 BATCH is either a file generated using the RT-11 Editor
and input from any legal RT-11 input device, or punched cards input
from the card reader. In both cases, the input consists of BATCH
control statements. A BATCH control statement consists of three
fields, separated from one another with spaces: command fields,
specification fields, and comment fields. The control statement has
the form:

$command/switch specification/switch lcomment
Each control statement requires a specific combination of command and

specification fields and switches (see Section 12.4). Control
statements may not be longer than 80 characters, excluding multiple

spaces, tabs, and comments. A line continuation character (-) may be
used to indicate that the control statement is continued on the next
line (see Table 12-4). Even if the line continuation character is

used, the maximum control statement length is still 80 characters.

The following example of a $FORTRAN command illustrates the various
fields in a control statement.

S$FORTRAN/LIST/RUN, PROGA/LIBRARY PROGB/EXE, [RUN FORTRAN,
| I |

command/switches spec fields/switches comment field

12.2.1 Command Fields

The command field in a BATCH control statement indicates the operation
to be performed. It consists of a command name and certain command
field switches. The command field is indicated by a $ in the first
character position and 1is terminated by a space, tab, blank, or
carriage return.

12.2.1.1 cCommand Names -- The command name must appear first in a
BATCH control statement. All BATCH command names have a dollar sign
($) in the first position of the command, e.g., $JOB. No intervening

12-2



BATCH

spaces are allowed in the command name. BATCH recognizes only two
forms of a command name: the full name and an abbreviation consisting
of $ and the first three characters of the command name. For example,
the SFORTRAN command may be entered as:

S$FORTRAN
or
$FOR
but cannot be entered as:
$FORT
or

SFORTR

12.2.1.2 Command Field Switches -- Switches that appear in a command
field are command qualifiers and their functions apply to the entire
control statement. All switch names must begin with a slash (/) that
immediately follows the command name. Table 12-1 describes the
command field switches that are 1legal in BATCH and indicates the
commands on which they can be used. Those switch characters that
appear in braces are optional. These switches will be mentioned again
in the sections pertaining to the commands with which they can be
used.

All /NO switches are the defaults, except the /WAIT switch in the
$SMOUNT and $DISMOUNT commands and the /OBJECT switch in the SLINK
command.

Table 12-1
Command Field Switches
Switch Function
/BAN{NER} Print header of job on the log file. This switch is
allowed only on the $JOB command.
/NOBAN {NER } Do not print a job header.
/CRE{F} Produce a cross reference listing during compilation.

This switch is allowed only on the $MACRO command.
/NOCRE{F} Do not create a cross reference listing.

/DEL{ETE} Delete input files after the operation is complete.
This switch is allowed on the $COPY and SPRINT
commands.

/NODEL {ETE } Do not delete input files after operation is complete.

(continued on next page)




BATCH

Table 12-1 (cont.)
Command Field Switches

Switch

Function

/DOL{LARS}

/NODOL {LARS }

/LIB{RARY}

/NOLIB{RARY}

/LIS{T}

/NOLIS{T}

/MAP

/NOMAP

/OBJ{ECT}

/NOOBJ {ECT}

/RT11

/NORTI11

The data following this command may have a $ in the
first character position of a line. This switch is
allowed on the SCREATE, $DATA, SFORTRAN, and $MACRO
commands. Reading of the data is terminated by one of
the following BATCH commands:

$JOB
$SEQUENCE
SEOD
SEOJ

or by a physical end-of-file on the BATCH input stream.

Following data may not have a $ in the first character
position; a $ in the first character position
signifies a BATCH control command.

Include the default 1library in the 1link operation.
This switch is allowed on the S$SLINK and $MACRO
commands.

Do not include the default 1library in the link
operation.

Produce a temporary listing file (see Section 12.2.5)
on the 1listing device (LST:) or write data images on
the log device (LOG:). This switch is allowed on the
SBASIC, SCREATE, SDATA, SFORTRAN, $JOB, and $MACRO
commands. When used on the $JOB command, /LIST sends
data lines in the job stream to the log device (LOG:).

Do not produce a temporary listing file.

Produce a temporary linkage map on the 1listing device
(LST:). This switch is allowed on the $FORTRAN, SLINK,
and $MACRO commands.

Do not create a MAP file.

Produce a temporary object file as output of
compilation or assembly (see Section 12.2.5). This
switch is allowed on the $FORTRAN, SLINK, and $MACRO
commands. When used on SLINK, this switch means that
temporary files are to be included in the link
operation.

Do not produce object file as output of compilation,
or, on SLINK, do not include temporary files in the
link operation.

Set BATCH to operate in RT-11 mode (see Section 12.5).
This switch is allowed only on the $JOB command.

Do not set BATCH to operate in RT-11 mode.

(continued on next page)

12-4




BATCH

Table 12-1 (cont.)
Command Field Switches

Switch Function

/RUN Link (if necessary) and execute programs compiled since
the last "link-and-go" operation or start of job. This
switch is allowed on the S$BASIC, SFORTRAN, SLINK, and
$MACRO commands.

/NORUN Do not execute or link and execute the program after
performing the specified command.

/TIM{E} Write the time of day to the log file when commands are
executed. This switch is allowed only on the $JOB
command .

/NOTIM{E} Do not write time of day to log file.

/UNI{QUE} Check for unique spelling of switches and keynames (see

Section 12.4.13). This switch is allowed only on the
$JOB command.

/NOUNI{QUE} Do not check for unique spelling.

/WAIL{T} Pause to wait for operator action. This switch is
allowed on the $DISMOUNT, SMESSAGE, and S$MOUNT
commands.

/NOWAI{T} Do not pause for operator action.

/WRI{TE} Indicate that the operator is to WRITE-ENABLE a
specified device or volume. This switch is allowed

only on the $MOUNT command.

/NOWRI{TE} Indicate that no writes are allowed or that the
specified volume is read-only; the operator is
informed and must WRITE-LOCK the appropriate device.

12.2.2 Specification Fields

Specification fields immediately follow command fields in a BATCH
control statement and are used to name the devices and files involved
in the command. These fields are separated from the command field,
and from each other, by blanks or spaces.

If a specification field contains more than one file to be used in the
same operation, the + operator is used between these files. For
example, to assemble files Fl and F2 to produce an object file F3 and
a temporary listing file, type:

$MACRO/LIST F1+4F2/SOURCE F3/0BJECT

If a command is to be repeated for more than one field specification,
the "," operator is used between these files. For example, the
following command assembles Fl to produce F2, a temporary listing
file, and a map file F3. It then assembles F4 and F5 to produce Fé6
and a temporary listing file.

$MACRO/LIST F1/SOURCE F2/0OBJECT F3/MAP,F4+F5/SOURCE~-
F6/0OBJECT

12-5




BATCH

Note that the command field switches apply to the entire line, but the
specification field switches apply only to the field they follow.

Depending on the command being used, specification fields may contain
a device specification, file specification, or an arbitrary ASCII
string. Any of these three may be followed by an appropriate
specification field switch (see Table 12-3).

12.2.2.1 Physical Device Names -- Each device 1in an RT-11 BATCH
specification field 1is referenced by means of a standard 2- or
3-character device name. Table 2-2 in Chapter 2 lists each name and
its related device. If no unit number is specified for devices which
have more than one unit, unit 0 is assumed.

In addition to the permanent names shown in Table 2-2, devices can be
assigned logical device names. A logical device name takes precedence
over a physical name and thus provides device independence. With this
feature, a program that is coded to use a specific device does not
need to be rewritten if the device is unavailable. For example, DK:
is normally assigned to the system device, but that name can be
assigned to DECtape unit 0 with an RT-11 monitor ASSIGN command.

Certain logical names must be assigned prior to running any BATCH job
since BATCH uses them as default devices. These devices are:

LOG: BATCH log device (cannot be magtape or cassette)
LST: default for listing files generated by BATCH stream

The following are not legal device names in RT-11; if wused, the
operator must assign them as logical names with the ASSIGN command.
These names are included here because they c¢an be wused 1in BATCH
streams written for other DIGITAL systems.

DF: Fixed-head disk (RF).

LL: Line printer with upper and lower case
characters.

M7: 7-track magtape.
M9: 9-track magtape.
PS: Public storage (DK: as assigned by RT-11).

Refer to Sections 2.7.2.4 and 12.7.1 for instructions on assigning
logical names to devices.

12.2.2.2 File Specifications -- Files are referenced symbolically in
a BATCH control statement by a name of up to six alphanumeric
characters followed, optionally, by a period and an extension of three
alphanumeric characters. The extension to a file name generally
indicates the format of a file. 1In most cases, it is a good practice
to conform to the standard file name extensions for RT-11 BATCH. If
an extension is not specified for an output file, BATCH and most other
RT-11 system programs assign appropriate default extensions. If an
extension for an input file is not specified, the system searches for
that file name with a default extension. Table 12-2 lists the
standard extensions used in RT-11 BATCH.

12-6



BATCH

Table 12-2
File Name Extensions
Extension Meaning
.BAS BASIC source file (BASIC input).
.BAT BATCH command file.
.CTL BATCH control file generated by the BATCH
compiler.
.CTIT BATCH temporary file generated by the BATCH
compiler.
.DAT BASIC or FORTRAN data file.
.DIR Directory listing file.
.FOR FORTRAN IV source file (FORTRAN input).
.LST Listing file.
. LOG BATCH log file.
. MAC MACRO or EXPAND source file (MACRO, EXPAND, SRCCOM
input) .
.MAP Linkage map output from S$SLINK operation.
.0OBJ Object file, output from compilation or assembly.
. S0U Temporary source file.
. SAV $RUNable file or program image output from SLINK.
12.2.2,3 wild Card Construction -- The wild card construction means

that the file name or extension in certain BATCH control statements
(i.e., $COPY, $CREATE, S$DELETE, $DIRECTORY, $PRINT) may be replaced
totally with an asterisk (*). The asterisk is used as a wild card to
designate the entire file name or extension. See Chapter 4, Section
4.1.1, for a complete description of the wild card construction.

12.2.2.4 Specification Field Switches -- Specification field switches
follow file specifications in a BATCH control statement and designate
how the file will be used. These switches apply only to the field in
which they appear. Switch names begin with a slash. The
specification field switches legal in RT-11 BATCH are listed in Table
12-3. Optional characters in the switch names are shown in braces.

12-7



BATCH

Table 12-3
Specification Field Switches
Switch Function
/BAS{IC} BASIC source file.

/EXE{CUTABLE} | Indicates the runnable program image file to be created;
as the result of a link operation.

/FOR{TRAN} FORTRAN source file.

/INP{UT} Input file; default if no switches are specified.

/LIB{RARY} Library file to be included in link operation (prior to
default library).

/LIS{T} Listing file.

/LOG{ICAL} Indicates that the device is a logical device name;
used in $DISMOUNT and S$MOUNT commands.

/MAC{RO} MACRO or EXPAND source file.

/MAP Linker map file.

/OBJ{ECT} Object file (output of assembly or compilation).

/OUT{PUT} Output file.

/PHY{SICAL} Indicates physical device name.

/SOU{RCE} Indicates source file.

/VID Volume identification.

12.2.3 Comment Fields

Comment fields, used to document a BATCH stream, are identified by an
exclamation point (!) appearing anywhere except the first character
position in the control statement. Any character following the ! and
preceding the carriage return/line feed combination is treated as a
comment and is ignored by the BATCH processor. For example, the
following command:

SRUN PIP !DELETE FILES ON DK:
runs the RT-11 system program PIP; the comment is ignored.
Comments can also be included as separate comment lines by typing a §
in character position 1, followed immediately by the ! operator and

the comment, e.g.,

SIDELETE FILES ON DK:

12.2.4 BATCH Character Set
The RT-11 BATCH character set is 1limited to the 64 upper-case

characters (i.e., ASCII 40 through 137). The current ASCII set is
assumed (i.e., character 137 is underscore and not left arrow, and

12-8




BATCH

character 136 is circumflex, not up-arrow). No control characters

other than tab, carriage return, and line feed are supported by the
BATCH job control language.

Table 12-4 details the way in which BATCH normally interprets certain
characters. Character interpretations are different when RT-11 mode
is used (see Section 12.5).

Table 12-4
Character Interpretation
Character Interpretation
blank/space Specification field delimiter. Separates arguments in

control statements. Any string of consecutive spaces
and tabs (except in quoted strings) is considered a
blank and is equivalent to a single space.

o=

Comment delimiter. All characters after the
exclamation point are ignored by the input routine, up
to the carriage return/line feed.

" Used to pass a text string containing delimiting
characters where the normal precedence rules would
create the wrong action, e.g., to include a space in a
volume identification (/VID).

$ BATCH control statement recognition character. A
dollar sign ($) 1in the first character position of a
BATCH input stream line indicates that the 1line is a
control statement.

. Delimiter for file extension (type).

- Indicates line continuation if the character after the
hyphen is one of the following:

@ a carriage return/line feed

e any number of spaces followed by a carriage
return/line feed

® a comment delimiter (!)

® spaces followed by a comment delimiter (!)

If any other character follows the hyphen, the hyphen
is assumed to be a minus sign indicating a negative
value in a switch.

/ Start of a switch name. Must be followed immediately
by an alphanumeric string.

0-9 Numeric string components.

: Immediately follows a device name. Also can be used to

separate a switch name from its value or to separate a
switch wvalue from 1its subvalue (: can be used
interchangeably with = for this).

A-Z Alphabetic string components.

(continued on next page)

12-9




BATCH

Table 12-4 (cont.)
Character Interpretation

Character Interpretation

= Separates switch name from value.

\ Illegal character except when preceding a directive
to the BATCH run-time handler from the operator.
(To include \ in an RT-11 mode command, use \\ .)

+ Delimiter separating multiple files in a single
specification field. Also used to indicate a positive
value in switches.

’ The comma (,) is used to separate sets of arguments for
which the command is to be repeated.

* The * is used as a wild card in utility command file
specifications.

CR/LF Carriage return/line feed. Indicates end-of-line (or
end of logical record) for records in the BATCH input
stream.

12.2.5 Temporary Files

When field specifications are not included in a BATCH command line,
BATCH sometimes generates temporary files. For example, a $FORTRAN
command which is followed in the BATCH stream by the FORTRAN source
program could be entered as:

SFORTRAN/RUN/OBJECT/LIST
FORTRAN source program
$EOD

This command generates a temporary source file from the source
statements that follow, a temporary object file, a temporary listing
file, and a temporary save image file.

BATCH sends temporary files to the default device (DK:) or the listing
device (LST:) according to their nature. If the device is
file-structured, BATCH assigns file names and extensions as follows:

nnnmmm.LST for temporary listing files (sent to LST:)
nnnmmm.MAP for temporary map files (sent to LST:)
nnnppp.OBJ for temporary object files (sent to DK:}
nnnppp.SAV for temporary save image files (sent to DK:)
nnnppp.SO0U for temporary source files (sent to DK:)

where:
nnn is the last three digits of the sequence number

assigned to the Jjob by the S$SEQUENCE command (see
Section 12.4.22). Thus, a seguence number of 12345
produces a file name beginning 345. If no S$SSEQUENCE
command is used, nnn is set to 000.

January 1976 12-10




BATCH

mmm

pppP

is the mth listing (or map) file since the BATCH
run~time handler (BA.SYS) was loaded. The first such
file, listing or map, 1is 000. Each time a new
temporary file 1is generated, the file name is
incremented by 1. Thus, the second 1listing file
produced under job sequence number 12345 is
345001.LST, and the first map file produced is
345000.MAP.

is the pth object, save image, or source file in the
current BATCH run. The first such file (object, save
image, or source) is 000. Each time a new temporary
file is generated, the file name is incremented by 1.
These file names are reset to 000 every time that
BATCH is run and after every SLINK, $MACRO, or
$FORTRAN command that uses the temporaries.

12.3 General Rules and Conventions

The following general rules and conventions are associated with RT-11
BATCH processing.

A dollar sign ($) is always in the first character position
of a command line.

Each job must have a $JOB and $EOJ command (or card).

Command -and switch names can be spelled out entirely or the
first three characters of the command and required characters
of the switch can be specified.

Wild card construction (*) can be specified only for the
utility commands: $COPY, S$CREATE, S$SDELETE, S$DIRECTORY, and
SPRINT.

Comments can be included at the end of command lines or in a
separate comment line, When comments are included in a
command line, they must follow the command and be preceded by
an exclamation mark.

Only 80 characters per control statement (card record) are
allowed, excluding multiple spaces, tabs, and comments.

When file specifications are omitted from BATCH commands and
data 1is supplied 1in the BATCH stream, the system creates a
temporary file with a default name (see Section 12.2.5).

The RT-11 monitor type-ahead feature is restricted to BATCH
handler directives (see Section 12.7.3) to be inserted into a
BATCH program. No other terminal input (except to the
foreground) can be entered while a BATCH stream is executing.

12-11



BATCH

12.4 BATCH COMMANDS

BATCH commands are placed in the input stream to indicate to the
system which functions to perform in the job. All BATCH commands have
a dollar sign ($) in the first character position of the command,
e.g., $JOB. Intervening spaces are not allowed in command names. The
command name must always start in the first character position of the
line (card column 1).

BATCH commands are presented in alphabetical order in this chapter for
case oOf reference. However, a user who is unfamiliar with BATCH may
prefer to read the commands in a functional order as detailed in Table
12-5. The characters shown in braces are optional.

Table 12-5
BATCH Commands
Command Section Function
$SEQ{UENCE} 12.4.22 Assigns an arbitrary identification number
to a job.

$JOB 12.4.13 Indicates the start of a job.

SEOQJ 12.4.11 Indicates the end of a job.

$MOU{NT} 12.4.18 Signals the operator to mount a vclume on a

device and optionally assigns a logical
device name.

$DIS{MOUNT} 12.4.9 Signals the operator to dismount a_ volume
from a device and deassigns a logical device
name.

SFOR{TRAN} 12.4.12 Compiles a FORTRAN source program.

$BAS{IC} 12.4.1 Compiles a BASIC source program.

‘$MAC{RO} 12.4.16 Assembles a MACRO source program.

$LIB{RARY} 12.4.14 Specifies libraries that are to be used in
linkage operations.

SLIN{K} 12.4.15 Links modules for execution.

SRUN 12.4.21 Causes a program to execute.

$CAL{L} 12.4.2 Transfers control to another BATCH file,

executes that BATCH file, and returns to the
calling BATCH stream.

$SCHA{IN} 12.4.3 Pasces control to another BATCH file.
SDAT{A} 12.4.6 Indicates the start of data.

$EOD 12.4.10 Indicates the end of data.

$MES{SAGE} 12.4.17 Issues a message to the operator.

(continued on next page)

12-12




BATCH

Table 12-5 (cont.)
BATCH Commands

Command Section Function

scop{y} 12.4.4 Copies files.

$CRE{ATE} 12.4.5 Creates new files from data included in
BATCH stream.

$SDEL{ETE} 12.4.7 Deletes files.

$DIR{ECTORY} | 12.4.8 Provides a directory of the specified
device.

$PRI{NT} 12.4.19 Prints files.

SRT1{1} 12.4.20 Specifies that the following lines are RT-11

mode commands.

$BASIC

12.4.1 S$BASIC Command

The $BASIC command calls RT-11 Single-User BASIC to execute a BASIC
source program. The $BASIC command has the following format:

SBASIC{/switch} {dev:filnam.ext/sw} {!comments}

where:
/switch indicates the switches that can be appended to the
$BASIC command. The switches are as follows:
/RUN indicates that the source program is to
be executed.
/NORUN indicates that the program is to be

compiled only; error messages are sent
to the log file.

/LIST writes data images that are contained in
the job stream to the log file (LOG:).
/NOLIST writes data images to the log file only

if $JOB/LIST was specified.

dev:filnam.ext
indicates the name of the source file and the device
on which it resides. 1If dev: 1is omitted, DK: 1is
assumed. If ext is omitted, the extension .BAS is
assumed. If this specification is omitted, the

12-13




BATCH

source statements must immediately follow the $BASIC
command in the input stream.

The source program included after a $BASIC statement
can be terminated either by a $EOD command or by any
other BATCH command that starts with a $ in the first
position.

/sw indicates the switches that may follow the source
file name. Any file name with no switch appended is
assumed to be the name of a source file. This switch
can have one of the following values or can be

omitted.

/BASIC indicates that the file name specified
is a BASIC source program.

/SOURCE performs the same function as /BASIC.

/INPUT performs the same function as /BASIC.

The $BASIC command can be followed by the source program, by legal
BASIC commands such as RUN, and by data. The following two BATCH
streams, for example, produce the same results.

$SERSIC $EASICARUN
18 INFUT A 18 INFUT A
28 FRINT A 28 FRINT A
18 END 36 END

RUN $DATHA

123 123

$EOU $EOD

$CALL

12.4.2 SCALL Command

The S$CALL command transfers control to another BATCH control file,
temporarily suspending execution of the current control file. The
CALLed file is executed until $EOJ is reached or until the job aborts;
control then returns to the statement following the $CALL in the
originating BATCH control file. Calls can be nested up to 31 1levels.

The log file for the CALLed BATCH file is included in the log file for
the originating BATCH program.
The format of the $CALL command is :

$CALL dev:filnam.ext {!comments}

No switches are allowed in the S$CALL command. $JOB command switches
are saved across a $CALL but do not apply to the called BATCH file.

12-14



BATCH

If .CTL is specified as the file extension, a precompiled BATCH
control file 1is assumed. If no .ext is specified, .BAT is assumed,
and the called BATCH stream is compiled before execution.

Please note that if the program called generates temporary files,
those files may supersede currently existing temporary files if the
two jobs have the same sequence number. For example, consider the
following two BATCH streams:

SFORZOBI A FFEORAOBS A

$FORAOBI R FCALL C

FLINK/RUN FFORASOBT B
FLINKARUN

The called BATCH file (C.BAT) contains the following:

FJOE
FFORSOBI AL
FFORSOBS BA
FLINE/RUN
FEOJ

The temporary object files generated by C.BAT would change the
behavior of the above two BATCH statement sequences since the first
temporary file created by C.BAT (000000.0BJ) would supercede the
temporary file produced by the first S$SFORTRAN command (000000.0BJ) .
This could be prevented by giving the BATCH job C.BAT a unique
sequence number (see Section 12.4.,22).

$ CHAIN

12.4.3 $CHAIN Command

The $CHAIN command transfers control to a named BATCH control file but
does not return to the input stream which executed the $CHAIN command.
The format of the S$SCHAIN command is:

SCHAIN dev:filnam.ext {!comments}
No switches are allowed in the $CHAIN command. If .CTL is specified
as the file extension, a precompiled BATCH control file is assumed.
If no .ext is specified, .BAT is assumed, and the chained BATCH stream
is compiled before execution.

An $EOJ command should always follow the $CHAIN command in the BATCH
stream.

12-15



BATCH

NOTE

The values of BATCH run-time variables
remain constant across a $CALL, S$CHAIN,
or return from call. See Section
12.5.2.2 for a description of these
variables.

The $CHAIN command is useful for transferring control to programs that
need only be run once at the end of a BATCH stream. For example, the
following BATCH program (PRINT.BAT) could be used to print and then
delete all temporary listing files generated during the current BATCH
job.

$.JOB 'PRINT ALL LIST FILES
$FRINT/DELETE *. LST
3EOJ

PRINT.BAT can then be run with the $CHAIN command, e.g.,

$JOEB

$MACRO/RUNSLIST FILEL, FILEZ: FILES
$CHARIN PRINT

FEOJ )

$COPY

12.4.4 S$COPY Command

The $COPY command copies files in image mode from one device to
another, The wild card construction (see Section 12.2.2.3) can be
used in the input and output file specifications. More than one input
file can be concatenated to form one output file so long as the output
specification does not contain a wild card. The $COPY command has the
following format.

$CcoPY{/switch} dev:filnam.ext/OUTPUT dev:filnaml.ext{/INPUT}-
{!comments}

where:
/switch indicates switches that can be appended to the $COFY
command.
/DELETE indicates that input files are to be
deleted after the copy operation.
/NODELETE indicates that input files are not to be

deleted after the copy operation.

12-16



BATCH

dev: indicates the device containing the files to be
copied for the input portion of the command or the
device to which the files are to be copied for the
output portion of the command. If dev: 1is not
specified, DK: is assumed.

filnam indicates the name to be assigned to the output file;
a wild card may be used instead of an explicit file
name. Additional output files can be specified if
they are separated from each other with commas.

ext indicates the file extension and must be specified.
For input files, a wild card can be used instead of
an explicit extension. For output files, wild cards
can be used so long as no concatenation is specified.

/OUTPUT is appended to a file specification to indicate that
it is for the output file.

filnaml specifies the name of the input file. Wild cards can
be used instead of an explicit file name. Additional
input files can be specified if they are separated
from each other with commas. Files are copied to the
output file in the order specified.

/INPUT is appended to the 1input file specifier(s). The
system assumes input if no switch is used.

The following are examples of the $COPY command:
$COPY + BREASQUTFUT T % BEAS

The above command copies all files with the extension .BAS from the
DECtape on unit 1 to the default storage device DK.

$COPY FILEZ FORAOUTFPUT FILE®R FOR+FILEL FOR

The above command merges the input files FILEO.FOR and FILEL.FOR to
form one file called FILE2.FOR and stores FILE2.FOR on device DK.

SCOFY FILEZ FOR+FILEZ FORAOQUTFUT FILE® FOR+FILEL. FOR

The above command copies FILEO.FOR to DK: as FILE2.FOR and FILEl.FOR
as FILE3.FOR.

FCOPY . /00T DY@ w FOR, 3TL %  /0UT LTR;#

The above command copies all files with the extension .FOR from DTO:
to DK: and all files on DTO: to DT1:.

12-17



BATCH

$CREATE

12.4.5 S$SCREATE Command

The $CREATE command generates a file consisting of data records from
follows the $CREATE command in the input stream. An error
occurs if the data does not immediately follow the SCREATE command. A
$DATA command must not precede the data records.

data that

The data associated with SCREATE can be followed by a $EOD command to

signify the

end of data or any other BATCH control statement can be

used to indicate end of data and initiate a new function. The $SCREATE
command has the following format:

SCREATE {/switch} dev:filnam.ext {!comments}

where:

/switch

dev:

filnam

ext

indicates switches that can be appended to the
SCREATE command.

/DOLLARS indicates that the data following this
command may have a $ in the first
character position of a line.

/NODOLLARS indicates that a $ may not be in the
first character position of a line.

JLIST writes data image lines to log file.
/NOLIST does not write data image lines to log
file. If $JOB/LIST was specified, this

switch is ignored.

device on which the file is to reside; DK: if not
specified.

indicates the name to be assigned to the file. The
file name must be specified.

indicates the file extension. If extension is
omitted, filnam must be followed by a period.

The following is an example of the $CREATE command:

$CRERTESLIST FROG. FOR

SEOD

FORTRAN source file

The data records following the S$CREATE command become a new file

(PROG.FOR)

on

the default device (DK:) and a listing is generated on

logical device LOG:.

12-18



BATCH

$DATA

12.4.6 S$DATA Command

The $DATA command is used to include data records in the input stream.
No file name is associated with the data; the data is transferred to
the appropriate program as though input from the console terminal.
For example, the $RUN command for a particular program can be followed
by a $DATA command and the data records to be processed by the
program. The data records must be valid data for the program that is
to use them.

The $DATA command has the following format:
$DATA{/switch} {!comments}
Four switches can be used with the $DATA command.

/DOLLARS indicates that the data following this command may
have a $ in the first character position of a line.

/NODOLLARS indicates that a $ may not be in the first character
position of a line.

/LIST writes data image lines to the log file.

/NOLIST does not write data images to the 1log file. If
$JOB/LIST was specified, this switch is ignored.

An S$EOD command normally follows the last data record. However, any
other BATCH command may also signal the end of the data so long as
$DATA/DOLLARS is not specified (see Table 12-1).

The following example shows data being entered into a BASIC program
(TEST1.BAS) .

SERSIC/RUN TESTI. BRS
SDRTH

A8, FH, 185, 148

188, 210, 528, 874

FEQOD

12-19



BATCH

$DELETE

12.4.7 S$DELETE Command

The S$DELETE command is used to delete files from the specified device.
This command has the form:

SDELETE dev:filnaml.ext{,dev:filnam2.ext,...,dev:filnamn.ext}-
{!comments}

where filnaml through filnamn are the names of the files to be
deleted. The file name and extension are required. Wild cards can be
used in the file name and extension positions.

The following example deletes all files named TEST1l on the default
device (DK:).

FOELETE TEST1. #

The following example deletes all files with .FOR extensions on DT1:
then deletes all files with .MAC extensions on DK:.

SDELETE DTL:#, FOR. =, MAC

$ DIRECTORY

12.4.8 S$DIRECTORY Command

The $DIRECTORY command outputs a directory of the specified device to
a listing file. 1If no listing file is specified, the listing goes to
the BATCH log file. Wild cards can be wused 1in the specification
fields. This command has the form:

SDIRECTORY {dev:filnam.ext/LIST} {dev:filnam.ext}{/INPUT}-
{1comments}

12-20



BATCH

where:
J/LIST indicates name of directory listing file.
/INPUT indicates input files to be included in directory

(default) .
The following are examples of the $DIRECTORY command:
FOIRECTORY
The above command outputs a directory of the device DK: to the BATCH
log file.
FOIRECTORY FOR. DIRSLIST # FOR

The above command creates a directory file (FOR.DIR) on the device
DK:. The directory contains the names, lengths, and dates of creation
of all FORTRAN source files on the device DK:.

$DISMOUNT

12.4.9 S$DISMOUNT Command

The $DISMOUNT command removes the logical device name assigned by a
SMOUNT command. When $DISMOUNT is encountered during the execution of
a job, the entire $DISMOUNT command line is printed on the console
terminal to inform the operator of the specific device to unload.
This command has the form:

$DISMOUNT{/switch} 1dn:{/LOGICAL} {!comments}

where:
/switch indicates the switches that can be appended to the
$DISMOUNT command.
/WAIT indicates that the job is to pause until
the operator enters a response. If

neither /WAIT nor /NOWAIT is specified,
/WAIT is assumed. BATCH rings a bell at
the terminal, prints the physical device
name to be dismounted and a ?, and waits
for a response. (Input to the BATCH
handler can be entered, see Section
12.7.3.)

/NOWAIT does not pause for operator response.
BATCH prints the physical device name to
be dismounted.

12-21



BATCH

ldn: is the logical device name to be deassigned from the
physical device.

/LOGICAL identifies the device specification as a logical
device name.

The following example instructs the operator to dismount the physical
device with the 1logical device name OUT and removes the logical
assignment of device OUT. In,this case, OUT is DTO. The operator
dismounts DT0 and types a carriage return.

FOISMOUNTAMAIT OUT:ALOGICAL
LTe?

$EOD

12.4.10 S$SEOD Command

The S$EOD command indicates the end of data record or the end of a
source program in the job stream. The format of this command is:

$EOD {!comments}

The $EOD command can signal the end of data associated with any of the
following commands:

$BASIC
SCREATE
SDATA
SFORTRAN
$MACRO

The $EOD command in the following example indicates the end of a
source program that is to be compiled, linked, and executed.

FFORTREANARUN

source program

SEOD

12-22



BATCH

$EOJ

12.4.11 SEOJ Command

The $EOJ command indicates the end of a job. This command must be the
last statement in every BATCH job. The command has the following
format:

$EOJ {!comments}

If a $JOB command, a $SEQUENCE command, or a physical end-of-file is
encountered in the input stream before $EQOJ, the error message NO $EOJ
appears in the log file.

$FORTRAN

12.4.12 S$FORTRAN Command

The S$FORTRAN command calls the FORTRAN compiler to compile a source
program. Optionally, this command can provide printed listings or
list files and may produce a linkage map in the listing. The $FORTRAN
command has the following format:

SFORTRAN{/switch} {dev:filnaml.ext/sw} {dev:filnam2.ext/OBJECT }-
{dev:filnam3.ext/LIST} {dev:filnamé.ext/EXECUTE }-
{dev:filnam5.ext/MAP} {dev:filnam6.ext/LIBRARY} {!comments}

where:

/switch indicates the switches that can be appended to the
SFORTRAN command. The switches are as follows:

/RUN indicates that the source program is to
be compiled, 1linked with the default
library (initially FORLIB.OBJ, may be
reset with the S$LIBRARY command), and
executed.

12-23



BATCH

/NORUN indicates that the program is to be
compiled only.

/OBJECT indicates that a temporary object file
is to be produced.

/NOOBJECT indicates that a temporary object file
is not to be produced.

/LIST indicates that a 1list file 1is to be
produced on the listing device (LST:).

/NOLIST indicates that a list file is not to be
produced.

/MAP produces a linkage map on the 1listing
device (LST:).

/NOMAP does not create MAP file.

/DOLLARS indicates that the data following this

command may have a $ in the first
character position of a line.

/NODOLLARS indicates that a $ may not be in the
first character position of a line.

dev:filnaml.ext

indicates the device, file name, and extension of the
FORTRAN source file. If filnaml is not specified,
the SFORTRAN source statements must immediately
follow the SFORTRAN command in the input stream;
BATCH generates a 'temporary source file that 1is
deleted after it is compiled (see Section 12.2.5).

The source program included after a SFORTRAN
statement can be terminated either by a $EOD command
or by any other BATCH command SO long as
SFORTRAN/DOLLARS 1is not specified (see Table 12-1).

A BATCH command is one that starts with a $ in the
first position.

can have one of the following values or can be
omitted:

/FORTRAN indicates that the file name specified
is a FORTRAN source program. Any file
name with no switch appended is assumed
to be the name of a source file.

/SOURCE performs the same function as /FORTRAN.

/INPUT performs the same function as /FORTRAN.

dev:filnam2.ext/OBJECT

indicates the device, file name, and extension of the
object file produced by compilation. The object file
remains on the specified device after the job
finishes. The object file specification, if
included, must be followed by the /OBJECT switch.

If the object file specification is omitted but
SFORTRAN/OBJECT is specified, a temporary object file
is created, included in any SLINK operations that
follow it in the Jjob, and deleted after the link
operation,

dev:filnam3.ext/LIST

indicates the name to be assigned to the 1list file
created by the compiler. The 1list file is not
printed automatically if LST: is assigned to a

12-24



BATCH

file-structured device, but it can be listed using
the S$PRINT command. The list file specification must
be followed by the /LIST switch.

dev:filnam4.ext/EXECUTE
indicates the name to be assigned to a save image
file. The save 1image file specification must be
followed by the /EXECUTE switch. If this field is
not included, BATCH generates a temporary save image
file (see Section 12.2.5) and then deletes the
temporary file.

dev:filnam5.ext/MAP
indicates the name to be assigned to the linkage map
file created by the Linker. The map specification
must be followed by the /MAP switch.

dev:filnam6.ext/LIBRARY
indicates that the specified file is to be included
in the link procedure as a library before FORLIB.OBJ.
The file must be a library file (produced by RT-11
LIBR). The library specification must be followed by
the /LIBRARY switch.

The following are examples of S$SFORTRAN commands:
FFORTRANASREUN FROGR. FOR

The above command calls FORTRAN to compile a source program hamed
PROGA.FOR. The program is compiled and executed.

SFORTRANSNOOETALIST
source program
SEOD

The above command sequence compiles the FORTRAN program but does not
produce an object file. A temporary listing file is created on LST:.

$J0B

12.4.13 $JOB Command

The $JOB command indicates the beginning of a job. Each job must have
its own SJOB command. This command has the following format:

SJOB{/switch}{/switch2}{/switchn} {!comments}

12-25



BATCH

The switches allowed in the $JOB command are:

/BANNER print header (a repetition of the $JOB command) on
the log file.

/NOBANNER do not print job header.

/LIST write data image lines that are contained in the job
stream to the log file.

/NOLIST write data image lines to the log file only when a
/LIST switch exists on a $BASIC, $CREATE, or S$DATA
command that has data lines following it.

/RT11 if no $ appears in column 1 when one is expected,
assume that the line or card is an RT-11 mode command
(see Section 12.5).

/NORT11 do not process RT-11 mode commands.

/TIME write the time of day to the log file when command
lines are executed (see NOTE on following page).

/NOTIME do not write time of day.

/UNIQUE check for unique spelling of switches and keynames.

When this sgwitch is used, commands and switches may
be abbreviated to the least number of characters that
still make their names unique. For example, the
/DOLLARS switch can be abbreviated to /DO since no
other switches begin with the characters DO.

/NOUNIQUE check only for normal switch and keyname spellings.

Each job must be ended with a $EOJ command if it is to be run. If an
input stream consists of more +than one job, BATCH automatically
terminates one Jjob when the $JOB command for the next Jjob is
encountered. A job terminated with another $JOB command will never be
run; an error message (NO $EC0J) will appear in the log.

The following $JOB command specifies that the time of day be written
to the 1log file before each BATCH command beginning with a $ is

executed and that unique abbreviations of BATCH commands and switches
be accepted.

FJOEBSTIMEAUNIRUE

January 1976 12-26



BATCH

NOTE

If the /TIME switch is used on the $JOB
command, the $DATA command cannot be
used. For example, this job will not
run properly:

FJOEST IME
LA

N RO

The /TIME switch uses the KMON TIME com-

mand to print the current time on the log

for each BATCH command, including $DATA,
causing an abort of the program that was

to use the data. To avoid the problem,
use RT-11 mode:

FJORSTIME
T
O PROG

12-26.1

January 1976




This page intentionally blank.



BATCH

SLIBRARY

12.4.14 SLIBRARY Command

The $LIBRARY command allows the user to specify a 1list of 1library
files that will be included in FORTRAN links or with other linkage
operations that specify the /LIBRARY switch. By default, the list of
libraries contains only FORLIB.OBJ, the RT-11 FORTRAN library. This

command has the form:
SLIBRARY mylib {!comments}
or
SLIBRARY mylib+FORLIB {!comments}
where:
FORLIB is the RT-11 FORTRAN library and mylib is a  user library.
Libraries are 1linked 1in order ~of their appearance in the S$LIBRARY

command.

The following example shows two user libraries (LIB1.0BJ and LIB2.0BJ)
to be included in FORTRAN links before FORLIB,OBJ.

SLIBRARY LIBL. CEJ+LIEBEZ. OBJHFORLIE. QBJ

$LINK

12.4.15 SLINK Command

The SLINK command is used to produce save 1image files from object
files. This command 1links the specified files (if any) with all
temporary object files created since the last 1link or "link-and-go"
operation (if any).

12-27



BATCH

Temporary object files are those created as a result of a $FORTRAN or
$MACRO command in which object files were neither specifically named
by using the /OBJECT switch nor suppressed by using the /NOOBJECT
switch. Permanent object files are created by using the /OBJECT
switch on a $FORTRAN or $MACRO file descriptor.

Files are linked in the following order:

1. First, temporary files are linked in the order in which they
were compiled.

2. Then, permanent files are linked in the order in which they
are specified in the S$LINK command.

3. If a library is specified in the $LINK command, it is linked
next, providing that unresolved references remain.

4. If $LINK/LIBRARY is specified, the default library list is
searched ‘and linked.

The format for this command is:

$LINK{/switch} {filnaml.ext/OBJECT} {filnam2.ext/LIBRARY }-
{filnam3.ext/MAP} {filnam4.ext/EXECUTE} {!comments}

where:

/switch indicates the switches that can be appended to the
SLINK command. The switches are as follows:

/LIBRARY indicates that the FORTRAN library
(FORLIB.OBJ) and any default libraries
specified in the $LIBRARY command are to
be included in this $LINK operation.
This switch is normally used when the
files being 1linked do not include any
temporary FORTRAN object files or when
SFORTRAN was specified without the /RUN
or /MAP switch but the default library
list is to be searched for unresolved
references.

/NOLIBRARY Indicates that the default libraries are
not to be included.

/MAP produces a temporary load map on the
listing device (LST:).

/NOMAP indicates that a map file is not to be
Qroduced. ' '

/OBJECT indicates that temporary object files

are to be included in the link. 1If
neither /OBJECT nor /NOOBJECT is
specified, SLINK/OBJECT is assumed.

/NOOBJECT indicates that temporary files are not
to be included in the link.
/RUN indicates that the save image files

associated with this SLINK command are
to be executed when the link is
complete.
/NORUN indicates that program linking only is
' to occur.

12-28



BATCH

filnaml.ext/OBJECT
indicates the name of the object file to be 1linked.
If /OBJECT 1is not specified, it is assumed as the
default.

filnam2.ext/LIBRARY
indicates that the specified file is to be included
in the 1link procedure as a library. The file
specified must be a library file (produced by RT-11
LIBR).

filnam3.ext/MAP
indicates the load map file to be created as a result
of the $LINK command.

filnamé4.ext/EXECUTE
indicates the save image file to be created as a
result of the $LINK command.
The following are examples of the $LINK command:

FLINKASRUN

The above command links all temporary object files created since the
last SLINK command or the last $FORTRAN/OBJ or S$MACRO/OBJ command.

FLINKSHAP PROGL. OBJHPROGZ. OBJ FPREOGAH. SAVAERE
The above command links the temporary files and the object files

PROG1.0BJ and PROG2.0BJ to form a save image file named PROGA.SAV. It
also creates and outputs a temporary map file.

$MACRO

12.4.16 SMACRO Command

The S$MACRO command calls the MACRO assembler to assemble a source
program and, optionally, to provide printed listings or list files.
MACRO listing directives, if any, must be specified in the source
program to enable their wuse, as they cannot be entered at BATCH
command level.

The $MACRO command has the following format:
$SMACRO{/switch} {filnaml.ext/sw} {filnam2.ext/OBJECT}-
{filnam3.ext/LIST} {filnam4.ext/MAP} {filnam5. ext/LIBRARY}—
{filnam6.ext/EXECUTE} {!comments}

where:

12-29



BATCH

/switch

filnaml.ext

/sw

indicates the switches that can be appended to the
SMACRO command. The switches are as follows:

/RUN indicates that the source program is to
be assembled, linked, and run.

/NORUN indicates that the source program is to
be assembled only.

/OBJECT indicates that a temporary object file
is to be produced.

/NOOBJECT indicates that a temporary object file
is not to be produced.

/LIST indicates that a listing file is to be
produced on the listing device (LST:).

/NOLIST indicates that a list file is not to be
produced.

/CREF specifies that a cross reference listing
is to be produced during assembly.

/NOCREF indicates that a cross reference listing
is not to be produced during assembly.

/MAP produces a linkage map as part of the
listing file on LST:.

/NOMAP does not create MAP file.

/DOLLARS indicates that the data following this

command may have a §$ in the first
character position of a line.

/NODOLLARS indicates that a $ may not be in the
first character position of a line.

/LIBRARY indicates that the default library is to
be included in the link operation.

/NOLIBRARY indicates that the default 1library is
not to be included in the 1link
operation.

indicates the name of the source file in the format
dev:i:filnam.ext. If filnaml is not specified, the
SMACRO source statements must immediately follow the
SMACRO command in the input stream.

The source program included after a $MACRO statement:
can be terminated either by a $EOD command or by any
other BATCH command so long as $MACRO/DOLLARS is not
specified. A BATCH command is one that starts with a
$ in the first position.

can have one of the following values or <can be
omitted:

/MACRO indicates that the file name specified
is a MACRO source program. Any file
name with no switch appended is assumed
to be the name of a source file.

/SOURCE performs the same function as /MACRO.

/INPUT performs the same function as /MACRO.

filnam2.ext/OBJECT

indicates the name (in the format dev:filnam.ext) ¢to
be assigned to the object file produced by
compilation.

The object file remains on the specified device after
the job finishes. The object file specification, if
included, must be followed by the /OBJECT switch.

12-30



BATCH

The £

creat

12.4.
The $

If the object file specification is omitted but
SMACRO/OBJECT is specified, a temporary object file
is created, included in any S$LINK operations that
follow the SMACRO command in the job, and deleted
after the link operation (see Section 12.2.5).

filnam3.ext/LIST
indicates the name to be assigned to the 1list file
created by the assembler. The 1list file is not
printed automatically if LST: is assigned to a
file-structured device, but can be listed using the
SPRINT command. The list file specification must be
followed by the /LIST switch.

filnamd4.ext/MAP
indicates the file to which the storage map is to be
output.

filnam5.ext/LIBRARY
‘indicates that the specified file is to be included
in the link procedure as a library. The library file
specification must be followed by the /LIBRARY
switch.

filenam6.ext/EXECUTE
indicates the name to be assigned to a save image
file. The save image file specification must be
followed by the /EXECUTE switch. If this field is
not included, BATCH generates a temporary save image
file (see Section 12.2.5), runs it, and then deletes
the temporary file.

ollowing $MACRO command assembles a program named PROGO.MAC and
es a temporary object file and a temporary listing file.

FMACROALISTASOBJECT FPROGE. MALC

$MESSAGE

17 S$MESSAGE Command

MESSAGE command is used to issue a message to the operator at the

console terminal. It provides a means for the job to communicate with
the operator. The S$SMESSAGE command has the form:

SMESSAGE{/switch} message {!comments}

where:

12-31



BATCH

/switch indicates the switches that can be appended to the
SMESSAGE command. These switches are:

/WAIT indicates that the job is to pause until
the operator types a carriage return to
continue or enters commands to the BATCH

handler followed by a carriage return
(see Section 12.7.3).

/NOWAIT do not pause for operator response.

message is a string of characters that must £fit on one
console line. The message is printed on the console.

For example, if the following message is included in the input stream:
FMESSAGEAMAIT MOUNT SCERTCH TARFE ON MTE

The message:
MOUNT SCRATCH TRFE ON MTE

appears on the console terminal and a bell sounds. The operator

mounts the tape and types carriage return to allow further processing
of the job. (See Section 12.7.3 for operator interaction with BATCH.)
1

$MOUNT

12.4.18 S$SMOUNT Command

The $MOUNT command assigns a logical device name and other
characteristics to a physical device. When S$MOUNT is encountered
during the execution of a job, the entire $MOUNT command 1line is
printed on the console terminal to notify the operator of the volume
to be used.

The $MOUNT command has the form:

$SMOUNT{/switch} dev:{/PHYSICAL}{/VID=x} {1ldn:/LOGICAL} {!comments}

where:

/switch indicates the switches that can be appended to the
S$SMOUNT command. The switches are:

/WAIT indicates that the job is to pause until
the operator enters a response, If
neither /WAIT nor /NOWAIT is specified,

12-32



BATCH

/WAIT 1is assumed. BATCH rings a bell,
prints a ?, and waits for a response.
(The response. can be input to the BATCH
handler; see Section 12.7.3.

/NOWAIT does not pause for operator response.
/WRITE tells the operator to WRITE-ENABLE the
volume.
/NOWRITE tells the operator to WRITE-PROTECT the
volume.
dev is required and specifies the physical device name

and an optional unit number followed by a colon,
e.g., DTl:. If dev 1is specified without a unit
number, the operator can enter one in response to the
? printed by the $MOUNT command. If the operator is
to supply a unit number, do not use the /NOWAIT
switch because it will assume unit O.

/PHYSICAL identifies the device specification as a physical
unit specification. If neither /PHYSICAL nor
/LOGICAL is specified, /PHYSICAL is assumed.

/VID=x provides volume identification. The volume identifi-
/VID="x" cation is the name physically attached to the volume.
It is included to help the operator 1locate the

volume. This switch may appear only on the physical
device file specification. If x contains spaces, it

must be input as "x"

ldn:/LOGICAL
is required to identify the logical device name, if
any, to be assigned to the device. The logical
device name specification must be followed by the
/LOGICAL switch.

The following are examples of the $MOUNT command:

FMOUNTAURITAMRITE DT /WID=BATEL 2. LOGICAL
This command instructs the operator to select a DECtape unit and mount
DECtape volume BATOl on that wunit, WRITE-ENABLED. It informs the

operator by printing:

SHOUNTAURITAMRITE OT:/WID=BATEL 2:/LOGICAL
71

The operator selects a unit, mounts DECtape volume BATO1,
WRITE-ENABLED, and responds to the ? by typing the unit number (e.q.,
1) followed by a carriage return. BATCH assigns logical device name 2
to the physical device (e.g., DT1l:) and proceeds.
If no unit number response is necessary, e.9.,

FHOUNTSHWAITAMRITE LTL1: &/ LOGICAL

the operator responds with a carriage return after mounting the
DECtape and WRITE-ENABLING the device.

12-33



BATCH

$PRINT

12.4.19 SPRINT Command

The S$PRINT command is used to print the contents of the specified
files on the listing device (LST:). This command has the form:

SPRINT{/switch} dev:filnam.ext{/INPUT}{,dev:filnam2.ext,...,dev:-
filnamn.ext} {!comments}

where:
/switch indicates the switches that can be appended to the
SPRINT command. The switches are:
/DELETE indicates that input files are to be
deleted after printing.
/NODELETE indicates that input files are not to be
deleted after printing.
dev: is the device containing the files to be printed; if

dev: 1is not specified, DK: 1is assumed.

filnaml.ext-

filnamn.ext indicate names of the files to be printed. wild
cards can be used for the file name or extension.

/INPUT indicates that the file is an input file; /INPUT is
assumed if it is not entered.

The following command prints a listing of files with extension .MAC
that are stored on default device DK:.

F$FRINT *. MAC

The following example creates listing files for the programs A and B,
prints the listing files, and then deletes them.

FMACRO A MAC ASLIST

F$MACRO B. MAC EBALIST
$FRINTADELETE A. LST, B LET

12-34



BATCH

$RTII

12.4.20 S$RT11 Command

The $RT11 command allows the BATCH job to communicate directly with
the RT-11 system. This command puts BATCH in RT-11 mode, i.e., until
a line beginning with §$ is encountered, all data images are
interpreted as commands to the RT-11 monitor, RT-11l system programs,
or to the BATCH run-time system. The $RT1l command has the form:

$RT11 {!comments}

See Section 12.5 for a complete description of the RT-11 mode.

$ RUN

12.4.21 $RUN Command

The $RUN command requests execution of a program for which a save
image file (.SAV) was previously created. It can also be used to run

RT-11 system programs.
The SRUN command has the form:
SRUN dev:filnam.ext {!comments}

where filnam.ext is the name of the program (system or user) to be
executed. If no extension is specified, .SAV 1s assumed.

For example, the user can run PIP to print a directory listing.

SRUN FIF
$DATA
LP =Dk L
$EOD

12-35



BATCH

$SEQUENCE

12.4.22 S$SEQUENCE Command

The S$SEQUENCE command is an optional command. If used, it must
immediately precede a $JOB command. The $SEGUENCE command assigns a
job an arbitrary identification number. The last three characters of
a sequence number are assigned by BATCH as the first three characters
of a temporary listing or object file (see Section 12.2.5). If a
sequence number is less than three characters long, it is padded with
zeroes on the left.

The form of this command is:
$SEQUENCE id {!comments}

where id is an unsigned decimal number indicating the identification
number of a job.

The following are examples of the $SEQUENCE command:

FSEQUENCE X PSEQUENCE NUMEER 15 @&z
$JOE
FSEGUENCE 186 'SEQUENCE NUMEER IS 188
$JOE

12.4.23 Example BATCH Stream

The following example BATCH stream creates a MACRO program, assembles
and links that program, and runs the save image file. It then deletes
the object, save image, and source files created and prints a
directory of DK: showing the files created by the BATCH stream.

$JOE
FMESSAGE THIS IS AN EXAMPLE EBATCH STREAM
$MESSAGE NOW CREATE A MARZREO FROGRAM
$CREATEALIST EXAMPL, MARC
. TITLE EXARMFL FOR EATCH
cMCALL . REGODEF, .. %&, ... FRINT, . EXIT
. REGDEF
LoVe..
STARRT: L FRINT H#MESSAG
CEXIT
MESSAGE: .ASCIZ SEXAMPLE MACRO PROGRAM FOR BATCHS
. END STRRT

July 1975 12-36



BATCH

$EOD

$MACRO EXAMPL ERAMPLAOBJECT EXAMPLALIST 'ASSEMELE
FLINK EXAMPL EXAMPLA/EXKECUTE PAND LINK
$PRINTZDELETE ExAMPL. LST

$MESSAGE FUN THE MRCROD FPROGRAM

FRUN EXAMEL  'AND ENECUTE

$DELETE EXAMFL. OBJ+EXAMFPL. SAY+ESAMFL. MAC
$MESSAGE FEINT A DIRECTORY

$DIRECTORY DK EXAMPL. +

$MESSAGE END OF THE EXARMFLE BRTCH STREAAM
$EOQJ

To run this batch stream, the user types the following at the console.
Messages are printed by BATCH.

. LORD EA.LF
RSSIGN LFP:LOG
RASSIGN LFPCLET
. R BARTLCH
*EXAMFL
THIS 1S AN EXAMFLE EATCH STREAM
NOW CRERTE A MACRO FROGREAM
RUN THE MACROD FROGRAM
FRINT A DIRECTORY
ENL OF THE EXAMFLE ERTCH STREANM

END BRTCH

The above example BATCH stream produces the following log file on the
line printer.

3JOB

AME3ZSAGE THIS IS AN EXAMRLE RBATCH STREAM
EMESSARE NQW CKREATE A MACRQ PROGRAM
SCREATE/ZLIST EXAMPL . MAC

LTITLE EXAMPL FOR BATCH
fMCALL  GREGNEF, . ,V244s o PRINT, (EXIT

2REGDEF
eeV2ae
START: LPRINT #MESSAG
WEXIT
MESSAGE: LAS8C1Z JEYAMPLE MACR() PROGRAM FOR BATCH/
. END START
2
REOD
FMACRD EXAMPL EXAMPL/QBJECT EXAMPL/LIST JASSEMBLE

*ERKORS DETECTEDS &
FREE CNRE: {4764, 4ORDSB

*
S INK EXAMPL FXAMPL/FXFCUTE PAND LINK

BRRINT/OELETE FxAMPL L L8T
FHMESSAnE RUN THE MANRND PROGRAM

BRI ExXAMPY PAND BEXECUTE

12-37



BATCH

EXAMPLE MACRO PROGRAM FOR RATCH

SOFLETE EXAMPL,OBJ+EXAMPL ,SAV+EXAMPL (MAC

$MESSAGE
$DIRECTORY
GeMAY=T5

EXAMP ,BAT
EXAMPL ,CTL

PRINT A DIRECTORY

DKEEXAMPL , %

2 2B=APR=75
3 9mHAY=T5

2 FILES, S BLOCKS
1436 FREE BLOCKS

BMESSAGE

SEQJ

12.5 RT-11 MODE

END OF THE EXAMPLE BATCH STREAM

RT-11 mode provides the capability to enter commands to the RT-11

monitor or to

system programs and to create BATCH programs. RT-11

mode may be entered with either the $JOB/RT11 command or the $RTI11
command . If entered with the $JOB/RT11 command, RT1ll mode remains in
effect until the next $JOB command is encountered in the BATCH stream.
If entered with the $RT11l command, RT-11 mode is in effect until a §
is encountered in the first position of the command line.

The characters
position of a

$, *, and tab or space appearing in the first
line (or card column 1) are interpreted as control

characters and indicate the following:

space/tab

command to the RT-11 monitor, e.g.,
.k FIF

data line; any line not intended to go to the RT-11
monitor or to the BATCH run-time handler, e.g., a
command to the RT-11 PIP program:

«FILEL. DRTAD

NOTE
The * is not passed as data to the program.

Comment lines (!) cannot appear on data lines
as they would be considered as data.

BATCH command. Causes exit from RT-11 mode if RT-11

mode was entered with the S$RT11 command. For
example:

$RTi4 VERTER RT-11 MODLE

CRORIRE

wDTEFILES. DRTAD
$DIRECTORY DTG 'LERYE RT-ii BODE

separator to indicate line directed to BATCH run-time

handler. This separator is indicated by a -] in the
following descriptions.

12-38



BATCH

12.5.1 Running RT-11 System Programs

The most common use of RT-11 mode is to send commands to the RT-11
monitor and to system programs. For example, the following commands
can be inserted in the BATCH stream to run PIP and save backup copies
of files on DECtape.

$RT11
LR OPIR
#0OTL o, k=, FORSH

The user must anticipate and include 1in the BATCH input stream
responses that are required by the <called program, e.g., the Y
response to PIP's ARE YOU SURE? query.

BATCH standard commands cannot be mixed with RT-11 mode data 1lines
(i.e., lines beginning with an asterisk). For example, the proper way
to do a S$MOUNT within a sequence of RT-11 mode data commands is:

$IOE/RTLL

B HACRO

wA1=f1

wRE=AZ

FMOUNT DTE: FHYSICAL

MACRD

=BT :B1
TiE2

12.5.2 Creating RT-11 Mode BATCH Programs

RT-11 mode may be used by advanced system programmers to create BATCH
programs. These BATCH programs consist of standard RT-11 mode
commands (monitor commands, data lines for input to system programs,
etc.) plus special RT-11 mode commands. These special commands are
interpreted by the BATCH run-time handler to allow dynamic
calculations and conditional execution of the RT-11 mode standard
commands. The following facilities allow the wuser to <create BATCH
programs and to dynamically control the execution of these programs at
run-time.

A. Labels
B. Variable modification
1) equating a variable to a constant or character (LET
statement)
2) incrementing the value of a variable by 1
3) reading a value into a variable
4) conditional transfers on comparison of variable wvalues
with numeric or character values (IF and GOTO statements)
C. Commands to control terminal I/O
D. Other Control Characters
E. Comments

12.5.2.1 Labels -- Labels in RT-11 mode are user-defined symbols that
provide a symbolic means of referring to a specific location within a
BATCH program. If present, a label must begin in the first character
position, must be wunique within the first six characters, and must
terminate with a <colon (:) and a carriage return/line feed
combination.

12-39 July 1975



BATCH

12.5.2.2 Variables -- A variable in RT-11 mode is a symbol
representing a value that can change during program execution. The 26
variables permitted in a BATCH program have the names A-Z; each
variable requires one byte of physical storage. The user may assign
values to variables in a LET statement. These values may then be
tested by an IF statement to control the direction of program
execution.

Variables may be assigned values with a LET statement of the following
form:

-4LET x="¢

where x is a variable name A-%2 and "¢ indicates the ASCII value of a
character. For example:

-|LET A="0

indicates that the value of variable A is equal to the 7-bit ASCII
value of the character 0 (60).

The LET statement can also specify an octal value in the form:
-|LET A=n

where n is an 8-bit signed octal value in the range 0 to 377;
positive numbers range from 0 to 177 and negative numbers from 200 to
377 (=200 to -1).

Variables may be wused to introduce control characters, such as
ALTMODE, into a BATCH stream. For example, wherever ‘'A' appears in
the following BATCH stream, BATCH substitutes the contents of variable
A (the code for an ALTMODE):

3JOBART11
LET A=3Z
'A IS AN ALTMOLE
R EDIT
#EBFILE. MARC A" "R’
'EDIT FILE TO CHANGE THE YERSION NUMEER TO 2
*GYERSION="R"DIZ2 R "A"
#ER7A RS
$EQJ
The value of a variable can be incremented by 1 by placing a percent
sign (%) before the variable. For example:

- 3A

indicates that the unsigned contents of variable A are to be increased
by 1.

Conditional transfers of control according to the value of a variable
are indicated with an IF statement. The IF statement has the form:

—-+|IF (x-"c) labell, label2, label3
or

- IF (x-n) labell, label2, label3

where x is the variable to be tested, "c is the ASCII wvalue to be

July 1975 12-40



BATCH

compared with the contents of the variable, or n is an octal value in
the range 0 to 377, and labell, label2, and label3 are the names of
labels included in the BATCH stream.

When BATCH evaluates the expression (x-"c) or (x-n), the BATCH
run—-time handler transfers control to:

e labell if the value of the expression is less than zero.
® label2 if the value of the expression is equal to zero.
e label3 if the value of the expression is greater than zero.

If one of the labels is omitted, and the condition is met for the
omitted label, control transfers to the 1line following the IF
statement.

NOTE

Since this comparison is a signed byte
comparison, 377 is considered to be -1.

The characters + and - allow the user to control where BATCH begins
searching for labell, label2, and label3. If the label is preceded by
a minus sign (-), the label search starts just after the $JOB command.
If a plus sign (+) or no sign precedes the label, the label search
starts after the IF statement. For example, the following statement:

~IF (B-"9) -LOOP, LOOP1,

transfers program control to the label LOOP following the $JOB command
if the contents of variable B are less than the ASCII value of § or to
the label LOOP1 following the IF statement if B is equal to ASCII 9.
If the contents of variable B are greater than the ASCII value of 9,
program control goes to the next BATCH statement in sequence.

The GOTO statement unconditionally transfers program control to a
label specified as the argument of the statement. This statement may
be one of the following three forms:

-] GOTO label transfers control to the first occurrence of label
that appears after this GOTO statement in the
BATCH stream.

-+ GOTO +label  same as GOTO label.

—| GOTO -label transfers control to the first occurrence of label
that appears after the $JOB command.

If the label is not found, transfer goes to S$SEOJ.

The following GOTO statement transfers control unconditionally to the
next label LOOP if such a label appears in the BATCH stream following
the GOTO statement.

-/ GOTO LOOP

12-41



BATCH

NOTE

If a label cannot be found, e.g., a
minus sign was intended but omitted, the
BATCH handler searches until the end of
the CTL file 1is reached and ends the
job.

12.5.2.3 Terminal I/0 Control -- Commands may be issued directly to
the BATCH run—-time handler to control console terminal input/output to
the log file. 1If none of the following commands is entered, TTYOUT is
assumed.

—-| NOTTY do not write terminal input/output to the log file.
Comments to the log will still be logged.
—| TTYIN write only terminal input to the log file.
- TTYIO write terminal input and output to the log file.
4|TTYOUT write only terminal output to the log file (default).
12.5.2.4 Other Control Characters =- Other control characters allowed

in an RT-11 mode command that begins with a period (.) or an asterisk
(*) indicate the following:

"text' command to BATCH run-time handler, where text can be
one of the following:

CTY accept input from the console terminal;
notify the operator that action is
required by ringing a bell and printing

a ?.

FF output current log buffer.

NL insert a new line (line feed) 1in the
BATCH stream.

X insert contents of variable where x is

an alphanumeric variable A-Z, indicates
that the contents of the variable are to
be inserted as an ASCII character at
this place in the command string.

"message"” direct the message to the console
terminal.

Example 1:

The following commands allow the operator to enter the name of a MACRO
program to be assembled. The BATCH stream contains:

$JOESRT1L

. R MRLCRO

*""ENTER MACRO COMMAND STRING" " CTY”
$EO0J

The operator receives the following message at the terminal; he types
a response, followed by <carriage return, and BATCH processing
continues.

July 1975 : 12-42



BATCH
ENTER MACRO COMMAND STRINGYFILE.FILE=FILE

Example 2:

The user may want to run the same BATCH file on several systems with
different configurations and would want to assign a device
dynamically. The following RT-11 mode command allows the wuser to
request that the listing device name be entered by the operator.

. ASSIGN “"PLEASE TYFE LST DEVICE NAME" CTY LET

The operator receives the message and responds with the device to be
used as the listing device (DT2:).

FLEARSE TYFE LST LEVICE NAMETLTEZ:

12.5.2.5 Comments -- Comments can be included in RT-11 mode as
separate comment statements. This is accomplished by typing a
separator followed by a ! and the comment, e.qg.,

-4!OPERATOR ACTION IS REQUESTED IN THIS JOB. BE PREPARED.

12.5.3 RT-11 Mode Examples
The following are examples of BATCH programs using the RT-11 mode.
Example 1:

This BATCH program assembles, lists, and maps 10 programs with only 12
BATCH commands.

#JOBARTLL "HESEMELE, LIST. HMAFP FPROGE TO PROGEH
TTYI10
"MEITE TERMINAL I/0 TO THE LOG FILE
LET N="0@
'STRART AT FROGH
LOOF
R MACRO
#PROG N, LOG:AC=PROG"N"“N:TTH
. BEOLINK

*, LOG:=FPROG N
“N
PINCREMENT WARIAREBLE N
IFCN-"Q0-L0O0F, -LOOF, ENC
PTEST FOR END

END:

FEOJ

Example 2:
The following program allows the user to0 set up a master control
stream to run several BATCH jobs with one call to BATCH. First the

user sets up a BATCH job (INIT.BAT) that will S$CHAIN to the master
control stream:

12-43 July 1975



BATCH

FJOBARTLA

LET I="@

PINITIARLIZE INDER
FCHAIN MASTER "GO TO MASTER
SEOJ

The following is the master control stream (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>