PDP-11
COBOL User’s Guide

Order No. AA-1757C-TC

(

April 1977

This document describes how to use Version 3 of the
PDP-11 COBOL compiler. It is a companion guide to
the PDP-11 COBOL Language Reference Manual,

PDP-11
COBOL User’s Guid_e

Order No. AA-1757C-TC

SUPERSESSION/UPDATE INFORMATION: This document supersedes the document of the

same name, Order No. DEC-11-LCUGA-B-D,
published January 1976.

OPERATING SYSTEM AND VERSION: RSX-11M V03
RSTS/E V06B
IAS V02

SOFTWARE VERSION: COBOL-11 V03

To order additional copies of this document, contact the Software Distribution Center,
Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing: July 1974
Revised: January 1976
April 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1974, 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

7/781

CONTENTS

Page
FOREWORD Xv
ACKNOWLEDGMENT xvii
CHAPTER 1 INTRODUCTION 1-1
1.1 THE COBOL SOURCE PROGRAM 1-5
1.1.1 The Identification Division 1-5
1.1.2 The Environment Division 1-5
1.1.3 The Data Division 1-5
1.1.4 The Procedure Division 1-6
1.2 THE COBOL UTILITY PROGRAMS 1-7
1.2.1 COBRG 1-7
1.2.2 REFORMAT 1-7
1.2.3 MERGE 1-7
CHAPTER 2 USING THE PDP-11 COBOL SYSTEM 2-1
2.1 CHOOSING A REFERENCE FORMAT 2-1
2.1.1 Conventional Reference Format 2-2
2.1.1.1 Sequence Numbers 2-4
2.1.1.2 Continuation/Comment Indicator Area 2-4
2.1.1.3 Area A 2-4
2.1.1.4 Area B 2-4
2.1.1.5 Identification Field 2-4
2.1.1.6 Continuation of Lines 2-4
2.1.1.7 Blank Lines 2-5
2.1.1.8 Comment Lines 2-5
2.1.1.9 Short Lines and Tab Characters 2-5
2.1.2 Terminal Reference Format 2-6
2.2 CHOOSING AN INPUT MEDIUM 2-7
2.3 CREATING A SOURCE FILE 2-7
2.4 USING THE LIBRARY FACILITY (COPY) 2-8
2.4.1 Creating a COBOL Library File 2-9
2.4.2 The COPY Statement 2-9
2.4.3 The COPY REPLACING Statement 2-12
2.4.3.1 Examples, COPY REPLACING 2-13
2.4.4 The Source Listing 2-15
2.4.4.1 Before the COPY Statement 2-15
2.4.4.2 After the COPY Statement 2-16
2.4.5 Common Errors in Using the Library
Facility 2-16
2.5 USING THE COBOL COMPILER 2-17
2.5.1 Invoking the PDP-11 COBOL Compiler 2-17
2.5.2 COBOL Command Line 2-18
2.5.3 Compiler Switches 2-21
2.5.4 Examples of the COBOL Command Line 2-34
2.5.5 Error Message Summary 2-35
2.5.6 Common Entry Errors, COBOL Command String 2-35

iii

CONTENTS (Cont.)

Page
2.6 USING THE MERGE UTILITY 2-36
2.6.1 Invoking the Merge Utility 2-36
2.6.2 Merge Utility Error Messages 2-38
2.7 USING THE TASK BUILDER 2-40
2.7.1 Task Building COBOL Programs Using Direct
Input 2-41
2.7.2 Task Building and COBOL Program Size 2-42
2.8 EXECUTING A COBOL TASK 2-43
2.8.1 COBOL Switch Setting 2-43
CHAPTER 3 NON-NUMERIC CHARACTER HANDLING 3-1
3.1 INTRODUCTION 3-1
3.2 DATA ORGANIZATION 3-2
3.2.1 Group Items 3=-2
3.2.2 Elementary Items 3-2
3.3 SPECIAL CHARACTERS 3-3
3.4 TESTING NON-NUMERIC FIELDS 3-4
3.4.1 Relation Tests 3-4
3.4.1.1 Classes of Data 3-5
3.4.1.2 The Comparison Operation 3-6
3.4.2 Class Tests 3-6
3.5 DATA MOVEMENT 3-7
3.6 THE MOVE STATEMENT 3-8
3.6.1 Group Moves 3-8
3.6.2 Elementary Moves 3-8
3.6.2.1 Edited Moves 3-10
3.6.2.2 Justified Moves 3-10
3.6.3 Multiple Receiving Fields 3-11
3.6.4 Subscripted Moves 3-11
3.6.5 Common Errors, MOVE Statement 3-12
3.6.6 Format 2, MOVE CORRESPONDING 3-12
3.7 THE STRING STATEMENT 3-13
3.7.1 Multiple Sending Fields 3-13
3.7.2 The POINTER Phrase 3-14
3.7.3 The DELIMITED BY Phrase 3-15
3.7.4 The OVERFLOW Phrase 3-17
3.7.5 Subscripted Fields in STRING Statements 3-18
3.7.6 Common Errors, STRING Statement 3-20
3.8 THE UNSTRING STATEMENT 3-21
3.8.1 Multiple Receiving Fields 3-21
3.8.2 The DELIMITED BY Phrase 3-23
3.8.2.1 Multiple Delimiters 3-27
3.8.3 The COUNT Phrase 3-28
3.8.4 The DELIMITER Phrase 3-29
3.8.5 The POINTER Phrase 3-30
3.8.6 The TALLYING Phrase 3-32
3.8.7 The OVERFLOW Phrase 3-33
3.8.8 Subscripted Fields in UNSTRING Statements 3-34
3.8.9 Common Errors, UNSTRING Statement 3-36
3.9 THE INSPECT STATEMENT 3-36
3.9.1 The BEFORE/AFTER Phrase 3-37
3.9.2 Implicit Redefinition 3-38
3.9.3 The INSPECT Operation 3-40
3.9.3.1 Setting the Scanner 3-41
3.9.3.2 Active/Inactive Arguments 3-41
3.9.3.3 Finding an Argument Match 3-42

iv

CONTENTS (Cont.)

Page
3.9.4 Subscripted Fields in INSPECT Statements 3-43
3.9.5 The TALLYING Phrase 3-43
3.9.5.1 The Tally Counter 3-44
3.9.5.2 The Tally Argument 3-44
3.9.5.3 The Tally Argument List 3-45
3.9.5.4 Interference in Tally Argument Lists 3-47
3.9.6 The REPLACING Phrase 3-51
3.9.6.1 The Search Argument 3-51
3.9.6.2 The Replacement Value 3-52
3.9.6.3 The Replacement Argument 3-52
3.9.6.4 The Replacement Argument List 3-53
3.9.6.5 Interference in Replacement Argument
Lists 3-54
3.9.7 Common Errors, INSPECT Statement 3-55
CHAPTER 4 NUMERIC CHARACTER HANDLING 4-1
4.1 INTRODUCTION 4-1
4.2 USAGES, DISPLAY/COMP 4-1
4.2.1 Sign Conventions 4-2
4.2.2 Illegal Values in Numeric Fields 4-3
4.3 TESTING NUMERIC FIELDS 4-6
4.3.1 Relation Tests 4-6
4,3.2 Sign Tests 4-6
4.3.3 Class Tests 4-7
4.4 THE MOVE STATEMENT 4-8
4.4.1 Group Moves 4-8
4.4.2 Elementary Numeric Moves 4-8
4.4.3 Elementary Numeric Edited Moves 4-10
4.4.4 Common Errors, Numeric MOVE Statements 4-12
4.5 THE ARITHMETIC STATEMENTS 4-12
4.5.1 Intermediate Results 4-12
4.5.2 The ROUNDED Phrase 4-13
4.5.3 The SIZE ERROR Phrase : 4-14
4,5.4 The GIVING Phrase 4-15
4.5.5 Multiple Operands in ADD and SUBTRACT :
Statements 4-15
4.5.6 The ADD Statement 4-16
4.5.7 The SUBTRACT Statement 4-16
4.5.8 The MULTIPLY Statement 4-17
4.5.9 The DIVIDE Statement 4-17
4.5.10 The COMPUTE Statement 4-18
4.5.11 Common Errors, Arithmetic Statements 4-18
4.6 ARITHMETIC EXPRESSION PROCESSING 4-19
4.6.1 Motivation for Intermediate Results 4-19
4.6.2 Intermediate Results for Arithmetic
Expressions 4-22
4.6.3 Example of Intermediate Result Fields 4-26
CHAPTER 5 TABLE HANDLING 5-1
5.1 INTRODUCTION 5-1
5.2 DEFINING TABLES 5-1
5.2.1 The OCCURS Phrase - Format 1 5-2
5.2.2 The OCCURS Phrase - Format 2 5-2
5.3 MAPPING TABLE ELEMENTS 5-3
5.3.1 Initializing Tables 5-7

CHAPTER"

CONTENTS (Cont.)

SUBSCRIPTING AND INDEXING
Subscripting with Literals
Operations Performed by the Software
Subscripting with Data-Names
Operations Performed by the OTS
Subscripting with Indexes
Operations Performed by the OTS
Relative Indexing
Index Data Items
The SET Statement
Referencing a Variable Length Table
Element at OTS Time
Referencing a Dynamic Group at OTS Time
The SEARCH Verb
The SEARCH Verb - Format 1
The SEARCH Verb - Format 2

P N NN N G NNEN
. *
HHRMRF ROOJOU N WN -

. . .
b
¢« o e »
WP o

FILE HANDLING

SEQUENTIAL FILE ORGANIZATION
Record Size
RECORD CONTAINS Clause
SAME RECORD AREA Clause
Print-Controlled Records
Record Blocking
Buffering
1 Buffer Size
2 I-0 Buffer Areas
3
4

WWNNDNNDDNDNDNODNODNDDNONNMNDNONNDNMNNFERFREFRFRFRPFRFRFEFRFREFEFFEFFEFFEERMBERE

NNNNNNOOON OO WN

Buffer Space

Sharing Buffer Space Among Files
Sequential I/0 Statements

.1 Opening Sequential Files

.2 Reading Sequential Files

.3 Rewriting Records into Sequential Files
.4

.5

e o e o o s o o e

Writing Sequential Files
Closing Sequential Files
RELATIVE FILE ORGANIZATION
Record Size
RECORD CONTAINS Clause
SAME RECORD AREA Clause
Record Blocking
Buffering
Buffer Size
I/0 Buffer Areas
Buffer Space
Sharing Buffer Space Among Files
Relative I/O Statements
Access Modes
Opening Relative Files
Reading Relative Files
Rewriting Records into a Relative File
Writing Records in a Relative File
Deleting Records from a Relative File
Specifying the Next Record to be Read
Closing Relative Files
INDEXED FILE ORGANIZATION
Record Size

e e s e e s e e o @

¢ e & o o

[aoanoaoanoaoaaaoaanuUuTUTLIuTl b WN -

e« o o & o s o o e s

e o o o o o o o
« o o o o &

e o o o e o e o o« o o o

oUW S wh -

(o)W e o2 e We) W) We W e e W e W) e) We) We W o) W W) W e W o W o) W) W e N e W) W o W) N e) W) Ne) We) N W R W) N) R) (<)} (S, O, C, 9] oottt n

vi

Page

5-9

5-9

5-10
5-11
5-11
5-12
5-12
5-13
5-14
5-14

5-15
5-15
5-16

awn
1

e

g0

o)}
|
[

|
HHRWOWWVWEOOWOJIONANU B LW

[l

|
N

e e e e e e XX
1]

=

wwN

CONTENTS (Cont.)

6.3.2 RECORD CONTAINS Clause
6.3.3 SAME RECORD AREA Clause
6.3.4 Record Blocking
6.3.5 Buffering
6.3.5.1 Buffer Size
6.3.5.2 I/0 Buffer Areas
6.3.5.3 Buffer Space
6.3.5.4 Sharing Buffer Space Among Files
6.3.6 Indexed 1I/0 Statements
6.3.6.1 Access Mode
6.3.6.2 Opening Indexed Files
6.3.6.3 Reading Indexed Files
6.3.6.4 Rewriting Records into an Indexed File
6.3.6.5 Deleting Records from an Indexed File
6.3.6.6 Specifying the Next Record to be READ
6.3.6.7 Closing Indexed Files
6.4 DEVICES
6.4.1 Disk
6.4.2 Magnetic Tape
6.4.3 Card Reader and Line Printer
6.5 FILES AND FILENAMES
6.5.1 Using Explicit Filenames (VALUE OF ID
Clause)
6.5.1.1 Switches
6.5.2 Device Assignment by ASSIGN Clause
6.5.3 Files and Logical Units
6.6 OPTIMIZATION
6.6.1 Speed Optimization
6.6.2 Space Optimization
6.7 COMMUNICATING WITH THE PROGRAM
6.7.1 Using the ACCEPT Statement
6.7.2 Using the DISPLAY Statement
6.8 FILE COMPATIBILITY WITH OTHER PROGRAMMING
LANGUAGES
6.8.1 Writing Files For Other Programming
Languages
6.8.2 Reading Files Written in Other
- Programming Languages
6.8.3 Data File Transportability
6.9 PROCESSING I/O ERRORS - USE STATEMENT
CHAPTER 7 GOOD PROGRAMMING PRACTICES
7.1 FORMATTING THE SOURCE PROGRAM
7.2 USE OF PUNCTUATION
7.3 USE OF THE ALTER STATEMENT
7.4 USE OF THE PERFORM STATEMENT
7.5 USE OF LEVEL 88 CONDITION-NAMES
7.6 USE OF QUALIFIED REFERENCES
7.6.1 Qualified Data References
7.6.2 Guideline 1 (Data Item Definition)
7.6.3 Guideline 2 (Reference Format)
7.6.4 Guideline 3 (Unique Referability)
7.6.5 Qualified Procedure References
7.6.6

Qualification and Compiler Performance

vii

~
[

HHEHWOOMNNUI &M

NNNNNNNNNNg

CHAPTER

CHAPTER

CHAPTER

CHAPTER

.

* & o 8 & 9
o s o & s 8 o s e
Voo dwh -

)

wN = NOAONOA ANV WWWWWWWWWwwWwN R

CO CO 0O 00 OO0 00 00O CO 00 00 00 00 00 00 00 0O 00 00 0O 00 00 00 00 00 OO O o]
. L] L] . . . L[] L]

NNNNHRHRERHRRERERRRRRP R R R R e

O WYY (Vo]
e o o o o

.

’-J

W

10

10.1
10.1.1

10.1.2
10.2
10.3
10.4

11

11.1
11.2
11.3
11.4
11.4.1

CONTENTS (Cont.)

PDP-11 COBOL UTILITY PROGRAMS

COBRG (COBOL REPORT GENERATOR)
Introduction
COBRG Sample Problem
COBRG Specification Lines
NAME Specification
INPUT Specifications
OUTPUT Specification
HEADER Specifications
BREAK Specification
ACCUMULATOR Specification
TOTAL Specification
EMIT Specification
LIST Specification
Output from COBRG
COBRG Command String
Default Assumptions
COBRG Sample Program
Specification Lines
Listing File
Source Program
Input File
Printed Report
COBRG Error Messages
REFORMAT
Introduction
REFORMAT Command String
REFORMAT Error Messages

SEGMENTATION

USING THE PDP-11 COBOL SEGMENTATION FACILITY
Programming Considerations

SEGMENTATION AND THE PDP-11 COBOL COMPILER

SEGMENTATION USING THE /OV SWITCH

USING THE /CSEG:nnnn SWITCH

INTER-PROGRAM COMMUNICATIONS

COBOL MAIN PROGRAMS VS SUBPROGRAMS
Calling a COBOL Subprogram from a COBOL
Program
Returning from a COBOL Subprogram

UNIQUENESS OF PSECT NAMES

COBOL OTS - ERROR CHECKING

INCLUDING A NON-COBOL OBJECT MODULE IN A

TASK

HAND-TAILORING ODL FILES

STANDARD ODL FILE

ODL FILE HEADER

ODL FILE BODY

COMPILER-GENERATED ODL FOR COBOL PSECTS
ODL Generated for Overlays Containing
Only One PSECT

viii

Page

©
!
o

HWOOJUI & WWN R

CHAPTER

APPENDIX
APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

11.4.2

11.4.3
11.5
11.6
11.6.1
11.7
11.7.1

11.7.2
12
12.1
12.2
12.3
12.4
12.4.1
A

B

oMl o] o] o (@]
’_l

.
N =

=
L] .

NOVBWNRE HE R
.
wn

o

= W

] FHEEHEEE
NOUM W

o e e B B B I B

.
.

N R

"l:l

CONTENTS (Cont.)

ODL Generated for Overlays Containing
More Than One PSECT
ODL Generated for All Overlayable PSECTS
MERGING STANDARD ODL FILES
INCLUDING NON-COBOL PROGRAMS IN A TASK
Creating a Standard COBOL ODL File
REARRANGING A COMPILER~GENERATED ODL FILE
Modifying the Compiler~Generated ODL
File
Specifying Task Builder Options

ERROR MESSAGES

COMPILER SYSTEM ERRORS
DIAGNOSTIC ERROR MESSAGES
RUNTIME FILE I/0 ERROR PROCEDURES
RUN-TIME ERROR MESSAGES
OTS Auxiliary Error Message Information

THE COBOL FORMATS
LOGICAL UNIT NUMBER (LUN) ASSIGNMENTS

PDP-11 COBOL COMPILER IMPLEMENTATION
LIMITATIONS

COMPILER GENERATED PSECTS
PSECT NAMING CONVENTIONS
SORTING FILES IN A COBOL PROGRAM

CALL STATEMENTS REQUIRED
Initializing the SORT - CALL RSORT
Passing ‘a Record to the Sort - CALL
RELES
Merging the Scratch Files - CALL MERGE
Requesting an OUTPUT Record - CALL
RETRN .
Terminating the Sort - CALL END

SETTING UP THE KEY

WORK AREA SIZE .

TYPICAL USAGE SEQUENCE

LINKING SORT ROUTINES WITH A COBOL PROGRAM

COMPARISON WITH ANS COBOL SORT VERB

ERROR CODES

COBOL TERMINAL HANDLING SERVICES ON RSTS/E

GENERAL SERVICES
Open a Logical Unit for Terminal I/O
Close a Terminal Logical Unit
Assigning a Terminal :
Deassigning a Terminal
Write to a Specific Terminal
Read from a Specific Terminal
READ Unsolicited from Any Terminal
Assigned

ERROR CODES DURING MULTI-TERMINAL HANDLING

ix

Page

11-3
11-3
11-5
11-5
11-5
11-6

11-6
11-8

12-1

12-1
12-1
12-4
12-6
12-6

A-1

H U 9 Q
[[T |
N

Lo I | tdtdtdmtdt;:lmm HE =

[}
WWNNHEPE ~ NEadWwwwwN NN =P

Lo B e B B |
URUUSURL

F-3

F-4
F-5

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

h)NlowJth
SWNHNH

l})t\)
S« B]

2-22

W W W W W W W W W w
RPRWOONOU® WN

CONTENTS (Cont.)

Page

COMPILER SYSTEM ERRORS G-1
DIAGNOSTIC ERROR MESSAGES H-1
RECORD MANAGEMENT SERVICES ERROR CODES I-1
OBJECT TIME SYSTEM ERROR MESSAGES J-1
Index~1

FIGURES

Building a COBOL Task Image

Sample COBOL Procedural Coding

COBOL Programming Form

Merging a Library File

Merging a Library File Area B

Using the COPY Statement in a Data
Description

Using the COPY Statement in a Procedural
Statement

Placing the Library Text Before the COPY
Statement

Placing the Library Text After the COPY
Statement

Sample COBOL Command Sequence

Sample Source Program Listing
File~to-Relative-LUN Assignment Table
Sample Data Map

Sample Procedure-Name Map

Sample Segmentation Map

Sample of Compiler-Generated PSECT Map
Sample Map of Referenced OTS Routines
Sample Data PSECT MAP

Sample Map of External Subprogram References
MAP

Sample Compilation Error Count Listing
Sample Compiler-Generated ODL File Listing
Sample Output Using OBJ Switch

Merged vs. Abbreviated ODL File

Sample ODL File Merge Dialogue

Field Sizes

Redefining Special Characters

ASCII Code Chart

Relation Condition

The Meanings of the Relational Operators
Class Condition, General Format

Data Movement with Editing Symbols

Data Movement with No Editing
Subscripted MOVE Statements

Sample STRING Statement

Concatenation with the STRING Statement
Literals as Sending Fields

Indexed Sending Fields

Sample POINTER Phrase

Delimiting with the Word SIZE

SPACE as a Delimiter

FIGURE

FIGURES (Cont.)

Repeating the DELIMITED BY Phrase
Delimiting with More Than One Space
Character

The ON OVERFLOW Phrase

Various STRING Statements Illustrating the
Overflow Condition

STRING Statement with Pointer
Subscripting with the Pointer
Subscripting the Delimiter

Sample UNSTRING Statement

Multiple Receiving Fields

Delimiting with a Space Character
Delimiting with Multiple Receiving Fields
Delimiting with an Identifier

Multiple Delimiters

The COUNT Phrase

The DELIMITER Phrase

The POINTER Phrase

Examining the Next Character By Using the
Pointer Data Item as a Subscript
Examining the Next Character By Placing
It Into a l-Character Field

The TALLYING Phrase

The POINTER and TALLYING Phrases Used
Together

Subscripting the COUNT Phrase With the
TALLYING Data Item

Using the OVERFLOW Phrase

Sequence of Subscript Evaluation
Erroneously Repeating the Word INTO
Sample INSPECT...TALLYING Statement
Sample INSPECT...REPLACING Statement
Sample INSPECT...BEFORE Statement
Matching the Delimiter Characters to the
Characters in a Field

Sample INSPECT Statement

Sample REPLACING Argument

Sample AFTER Delimiter Phrase

Where Arguments Become Active in a Field
Sample Subscripted Argument :
Format of the Tally Argument

CHARACTERS Form of the Tally Argument
Results of Counting with the LEADING
Condition

Argument List Adding Into One Tally Counter
Argument List Adding Into Separate Tally
Counters

Argument List (with Delimiters) Adding Into
Separate Tally Counters

Results of the Scan in Figure 3-55

Two Tallying Arguments that Do Not Interfere

with Each Other

Two Tallying Arguments that Do Interfere
with Each Other

Two Tallying Arguments that, Because of
Their Positioning, Only Partially Interfere
with Each Other

xi

FIGURE

|

1
B WN =

~ o wn

(8]
|
(o]

FIGURES (Cont.)

An Attempt to Tally the Character B with
Two Arguments

Tallying Asterisk Groupings

Placing the LEADING Condition in the
Argument List

Reversing the Argument List in Figure 3-62
An Argument List that Counts Words in a
Statement

Counting Leading Tab or Space Characters
Counting the Remaining Characters with the
CHARACTERS Argument

Format of the Search Argument

Format of the Replacement Value

' The Replacement Argument

Replacement Argument List that is Active
Over the Entire Field

Replacement Argument List that "Swaps"
Ones for Zeroes and Zeroes for Ones
Replacement Argument List that Becomes
Inactive with the Occurrence of a Space
Character

Argument List with Three Arguments That
Become Inactive with the Occurrence of a
Space

Truncation Caused by Decimal Point Align-
ment

Zero Filling Caused by Decimal Point Align-~
ment

Numeric Editing

Rounding Truncated Decimal Point Positions
Rounding Truncated Decimal Scaling Positions
Explicit Programmer-Defined Temporary Work
Area

Arithmetic Statement Intermediate Result
Field Attributes Determined from Composite
of Operands

Arithmetic Expression Intermediate Result
Field Attributes Determined by Implementor-
Defined Rules

Procedure to Determine I(IR(x)) and D(IR(x))
for an Arithmetic Expression Result Field
IR

Truncation Criterion and I(IR(x)) and
D(IR(x)) Computation

Example of Intermediate Results

Defining a Table

Mapping a Table into Memory

Synchronized COMP Item in a Table

Adding a Field without Altering the Table
Size

Adding One Byte which Adds Two Bytes to
the Element Length

Forcing an 0dd Address By Adding a l-Byte
FILLER Item to the Head of the Table

The Effect of a SYNCHRONIZED RIGHT Clause
Instead of a FILLER Item as shown in
Figure 5-6

Initializing Tables

xii

3-54

3-54

FIGURE

TABLE

5-9

5-10
5-11
5-12
5-13

5-14
5-15
5-16
5-17
5-18
5-19

WWWWNNNONDND [\
L}
BWNHOUTLSWN [

w
| !
()} w

w
i

FIGURES (Cont.)

Initializing Mixed Usage Fields
Initializing Alphanumeric Fields

Literal Subscripting

Subscripting a Multi-Dimensional Table
Subscripting Rules for a Multi-Dimensional
Table

_Subscripting with Data-Names

Index~-Name Item

Subscripting With Index-Name Items
Relative Indexing

Index Data Item

Legal Data Movement with the SET Statement
Example of Using SEARCH to Search a Table
Placement of End-of-File Mark

Placement of the End-of-Volume Label and
End-of-~File Mark in a Multi-Volume File
Single Key Indexed File Organization
Multi-Key Indexed File Organization
Assigning Logical Names to the Card

Reader and Line Printer

Assigning the Card Reader and Line Printer
to Files

Unqualified Data Item Reference

Qualified Data Item Reference

General Format of a Qualified Data
Reference .
General Format of a Qualified Procedure
Reference

Segmentation Using the /0OV Switch

Using the /CSEG:nnnn Switch

Sample LINKAGE SECTION and USING Phrase
Argument Address List

Merged ODL File Listing

Modified ODL File

Overlay Description Map Before and After
Modification.

Sample Listing of Program Used in Example-1l
Sample Listing of Program Used in Example-2

TABLES

Successful and Unsuccessful Replacing
Matches

Operating System Prompt/Compiler Name
PDP-11 COBOL Compiler Default File Types
COBOL Compiler Switches

/SYM:n Switch Values

Merge Error Messages

Legal Non-Numeric Elementary Moves

Results of the Preceding Sample Statements
Results of the Preceding Sample Statements
Values Moved Into the Receiving Fields
Based on the Value in the Sending Field
Handling a Sending Field that is Too
Short

Results of Delimiting with an Asterisk

xiii

10-2
10-6
11-7
11-8

11-9
12-8
12-10

TABLES (Cont.)

Page
TABLE 3-7 Results of Delimiting Multiple Receiving
Fields 3-25
3-8 Results of Delimiting with Two Asterisks 3-25
3-9 Results of Delimiting with ALL Asterisks 3-26
3-10 Results of Delimiting with ALL Double
Asterisks) 3-26
3-11 Results of the Multiple Delimiters Shown
: in Figure 3-29 3-28
3-12 Original, Altered, and Restored Values
Resulting from Implicit Redefinition -39
4-1 The Resulting ASCII Character From a Sign

and Digit Sharing the Same Byte
Conversion Values

The Sign Tests

COBOL File Types

I/0 Statements

Sequential OPEN Modes

|
i

O\O\O\O\Ol\c\rbvboh w
HHEOYNDNDIUTW

4-2
4-3
6-1
6-2
6-3
6-4 Bucket Sizes for Possible Record Lengths -16
6-5 Relative OPEN Modes -19
6-6 Bucket Size for Possible Record Lengths -28
6-7 Indexed OPEN Modes 6-32
6-8 Device Codes 6-37
6-9 Comparison of PDP-11 Disk Devices 6-38
6~10 File Specifier Switches 6-43
6-11 Form Control Characters 6-50
12-1 Sequential I/0 File Status Key Values

(ASCII) 12-5
12-2 Relative and Indexed I/0 File Status Key

Values (ASCII) 12-6
D-1 SKK PSECT Name Suffixes D-2
D-2 PSECT Name Suffixes D-3
I-1 RMS System Standard Error Codes I-1
J-1 COBOL Object Time System Error Messages J-1

xXiv

FOREWORD

The PDP-11 COBOL User's Guide is intended primarily for reference use.
It is a companion guide to the PDP~11 COBOL Language Reference Manual.
Because it is not a tutorial guide for beginning programmers, you
should have a working knowledge of the COBOL language.

This guide describes the COBOL file structures, data formats, some of
the features of the PDP-11 COBOL Version 3 compiler, error messages
generated by the compiler and run-time systems, I/O devices available
with the system, some hints on good programming practices, some
techniques for debugging source programs, and a description of the
PDP-11 COBOL utility programs COBRG and REFORMAT.

Those wishing to 1learn the COBOL language are referred to the
following tutorial manuals:

Farina, Mario V., COBOL Simplified,
New Jersey, Prentice Hall, Inc., 1968.

McCameron, Fritz A., COBOL Logic and Programming,
Homewood, Illinois, Richard D. Irwin, Inc., 1970

McCracken, Daniel D. and Garbassi, Umberto,
A Guide to COBOL Programming, Second Edition,
New York, John Wiley and Sons, Inc., 1970

NOTE

These publication dates are the latest
available. They will all probably be
revised to reflect ANS~-74 standards.

The PDP-11 COBOL compiler accepts COBOL language elements that are a
true subset of ANS-74 COBOL. The PDP-11 COBOL Reference Manual and
the PDP-11 COBOL Reference Card both wuse shading to indicate
extensions to the standard. This guide gives all extensions with
explanations of the extension without shading. Appendix A of this

guide (COBOL Formats), however, does use shading to indicate
extensions.

Xv

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection therewith. .

The authors and copyright holders of the copyrighted material wused
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Chairman of the CODASYL Programming Language
Committee, P.0. Box 124, Monroeville, Pa. 15146.

xvii

CHAPTER 1

INTRODUCTION

Before a program can be run on a computer, it must be translated from
the form that a person can understand (near-English) into a form that
a computer can understand (machine language). This translation is
performed by COBOL compiler systems. Because each manufacturer's
system has its own unique machine language, each system has its own
COBOL compiler. The COBOL compiler for the PDP-1ll system is the
PDP-11 COBOL compiler.

The PDP-11 COBOL compiler translates ANS-74 COBOL source programs into
relocatable object modules. The compiler runs under the supervision
of the following PDP-11 operating systems and conforms to all the
conventions and restrictions of the system in control.

® RSTS/E

. RSX-11M

o IAS
The compiler itself requires disk storage space for its work file
system and temporary files. (The work file system requires a minimum
of 128 blocks to a maximum of 512 blocks. The temporary file and
object program file requirements grow in proportion to the size of the
source program.)
To run a COBOL program, you follow a five-step process:

. Prepare a source program

. Compile a source program

) Merge or prepare an overlay description file (optional)

] Task-build object modules into an executable task

° Execute the task
The PDP-11 COBOL compiler accepts COBOL source statements from source
input files. This means that you must manually enter your source
statements onto an acceptable medium prior to the compilation process
(Ssection 2.1, Choosing a Reference Format; and Section 2.2 Choosing
an Input Medium).

Once you have decided upon an input medium and format for your source
input files and have created them, you compile the source program.

The PDP-11 COBOL compiler reads source statements from the source

input file, translates them into object code modules consisting of
program sections (PSECTs), and produces the following files:

1-1

INTRODUCTION

° Listing (LST)
e Object (OBJ)
® Overlay Description Language (ODL)

The listing file (LST) contains a listing of the source statements in
the order in which they were compiled, any diagnostic error messages,
and any optional special format 1listings, e.g., cross-reference
listings and data and procedure maps. You obtain special format
listings by appending an appropriate switch to the COBOL command 1line
at compile-time, (see Section 2.5.3, Compiler Switches).

The object file (OBJ) contains a collection of program sections called
PSECTs which are not executable. They must be 1linked 1into an
executable task image by an operating system task called Task Builder.
The ability to compile COBOL subprograms to produce linkable object
files independently, enables you to create modular programs.

The Overlay Description Language (ODL) file contains directives that
describe the overlay structure of the object module generated from the
COBOL source program. ODL directives are generated into the ODL file
for each overlayable object module program section.

The ODL file generated by the compiler is not a complete ODL file.
You must either hand-tailor command information into it, build your
own specialized version, or specify the compiler-generated ODL
file ‘as input to the Merge Utility to complete the file (see Section
2.6, Using the Merge Utility; Chapter 11, Hand-Tailoring ODL Files).

The compiler can compile only one source program or subprogram per
command string execution. Therefore, a program which consists of a
main program plus one or more subprograms requires multiple executions
of the compiler. Each compilation generates a separate listing, ODL,
and object file. The ODL files, in this instance, must be merged
together into a single ODL file to be submitted as input to the Task
Builder.

To accomplish this, you use the Merge Utility, which performs the
following functions:

1. merges the ODL statements from one or more ODL files into a
single ODL, file

2. analyzes the 1I/0 requirements for the entire task and
provides directives to include only those I/0 routines
required

3. inserts the missing but required ODL directives not provided
by the compiler

Whether you have a large segmented program, a main program plus
subroutines, or a small stand-alone program, the ODL files generated
by the compiler require merging or modification. You are advised to
use the Merge Utility to perform this merging/modification, although
you can hand-tailor your own ODL file.

INTRODUCTION

NOTE

Do not attempt to hand-tailor your own
ODL file unless you have in-depth
knowledge of your operating system and
PDP-11 COBOL. The following references
will provide you with the information
required to hand-tailor ODL files:

® Your system Task Builder Manual

® Standard ODL file Format
Chapter 12 of this manual

e COBOL Segmentation
Chapter 10 of this manual

e Code PSECT Naming Conventions
Appendix D of this manual

® Interprogram Communications
Chapter 11 of this manual

When you have a single ODL file that contains all of the required
overlay descriptqr language, you can execute the Task Builder.

Task Builder provides you with a facility for 1linking separately
compiled object modules into an executable task image. You can,
depending on your knowledge of your operating system and PDP-11 COBOL,
link object modules created by another programming language into your
COBOL task image. Task Builder also allows you to take full advantage
of the COBOL system library to selectively link into your COBOL task
only those runtime support routines actually needed to run your task.

The Task Builder, using the ODL file as a guide, provides the facility
to build 1large amounts of code into a task by careful use of code
segments that overlay each other. Careful use of segmentation or
calls to subprograms within your COBOL source program will allow you
to compile and execute large and complex COBOL programs. If vyou add
some functionality to an existing COBOL program and find that, after
task-building, the resulting task will not fit in memory, you have an
alternative other than reprogramming: you can segment the program or
make subprograms out of some of the existing procedures, replacing
these procedures with CALL statements to the newly created
subprograms. When the source program has been compiled, the ODL file
merged, and task-building accomplished, the task 1is ready to be
executed (Section 2.8, Executing a COBOL Task).

Figure 1-1 shows the process of preparing a COBOL program for
execution:

INTRODUCTION

SOURCE
PROGRAM

OBJECT COMPILER »| LISTING
MODULE (CBL)
ODLFILE)

Y

opL q
MERGE q
UTILITY ODL FILES

ODL FILE
‘
OBJECT .
TASK MODULES
»| BUILDER

(TKB) q

TASK
IMAGE

Figure 1-1 Building A COBOL Task Image

INTRODUCTION

1.1 THE COBOL SOURCE PROGRAM

A COBOL source program consists of four major divisions, which must
appear in the following order: i

1. IDENTIFICATION DIVISION.
2. ENVIRONMENT DIVISION.

3. DATA DIVISION.

4. PROCEDURE DIVISION.

Each of the COBOL divisions is further divided into sections that may
be divided into paragraphs. Paragraphs contain COBOL sentences.
Sentences contain COBOL statements. The following subsections (1.1.1
through 1.1.4) individually discuss each division and 1its major
sections.

1.1.1 The Identification Division

The Identification Division identifies the COBOL program and contains
such optional documentary information as the name of the programmer,
the name of the installation, and the date the program was written and
last compiled.

1.1.2 The Environment Division

The Environment Division identifies the hardware configuration of the
system that 1is compiling the program (SOURCE-COMPUTER) and the
hardware configuration of the system that is running the program
(OBJECT-COMPUTER) . The division 1is divided into the following two
major sections:

° Configuration Section -- This section is required and
contains the names of the source and object computers and any
mnemonic names that are to be assigned to devices.

] Input-Output Section -- This section is optional and contains
descriptions of all the external files being manipulated by
the program. The section is required if there are external
files.

1.1.3 The Data Division

The Data Division contains complete descriptions of all data to be
processed by the program. In this division, the programmer must
assign a data-name to and describe every data item referred to in the
Procedure Division.

The Data Division is composed of three optional major sections:

. File Section -- Contains the descriptions of all input and
output files and their records.

° Working-Storage Section -- Contains the descriptions of
temporary records and data items.

INTRODUCTION

° Linkage Section -- Describes the data that is available to a
called program and is referenced 1in both the calling and
called program.

1.1.4 The Procedure Division

The Procedure Division contains the program's procedural statements.
Within this division, the program specifies manipulation of the data
items described in the Data Division.

The Procedure Division may begin with the DECLARATIVES, which contain
USE procedure declarative sections for processing I/0 errors (Section
12.3). :

The programmer may divide the Procedure Division into sections and
paragraphs that each perform a function.

The Procedure Division makes COBOL's advantages (excellent
documentation and programming simplicity) most apparent. Figure 1-2
(sample Procedure Division coding) illustrates the documentation
capabilities of COBOL programs:

PROCEDURE DIVISION.
BEGIN.
OPEN INPUT TRANSACTION-FILE.
OPEN OUTPUT MASTER-FILE.
READ-A-RECORD.
READ TRANSACTION-FILE NEXT RECORD
AT END GO TO CLOSE-ROUTINE.
READ MASTER-FILE NEXT RECORD
AT END GO TO CLOSE-ROUTINE.
PROCESS~A-RECORD.
IF TRANS-ACCT-NUMBER IS GREATER THAN MAST-ACCT-NUMBER
GO TO READ-MAS-RECORD.
IF TRANS—ACCT-NUMBER IS LESS THAN MAST-ACCT-NUMBER

GO TO ERROR-ROUTINE.

Figure 1-2 Sample COBOL Procedural Coding

INTRODUCTION

1.2 THE COBOL UTILITY PROGRAMS
PDP-11 COBOL offers three utility programs:
° COBRG -- Produces report-generating COBOL programs.

) REFORMAT -- Converts PDP-11 terminal format COBOL programs
into conventional format ANSI COBOL programs.

) MERGE -- Merges ODL file(s) created by one or more COBOL
compilations into a single ODL file to be submitted
as input to the Task Builder.

The following subsections (1.2.1, 1.2.2, and 1.2.3) describe these
utility programs. Chapter 8 in this manual discusses the use of COBRG
and REFORMAT in detail. The SORT utility is discussed in the PDP-11
SORT Reference Manual.

1.2.1 COBRG

COBRG generates a report-writing source program ready for compilation.
The -user specifies certain parameters, and COBRG builds a COBOL
program that produces a tailored report when it is compiled,
task-built, and run.

1.2.2 REFORMAT

PDP-11 COBOL accepts source programs that were coded using either the
ANSI 80-column card reference format or the shorter, terminal-oriented
PDP-11 reference format. The REFORMAT utility program reads source
programs that were coded in the PDP-11 terminal format and converts
them to 80-column ANSI-compatible source programs (Section 2.1,
Choosing A Reference Format, discusses the two reference formats).

1.2.3 MERGE

The Merge Utility program merges ODL files generated by COBOL
compilations into a single ODL file. This file is submitted as input
to the Task Builder. It describes the overlay structure of the
resulting task image.

CHAPTER 2

USING THE PDP-11 COBOL SYSTEM

This chapter discusses the following topics:

] Choosing a reference format

° Choosing an input medium

® Creating a source input file

° Using the library facility (COPY statement)

) Using the COBOL compiler

° Using the MERGE Utility

e - Using the Task Builder

° Executing a COBOL task
The order of topic presentation is designed to give you a step-by-step
approach to preparing a COBOL program for execution. The chapter
provides an in-depth description of each step in the process and

lists, where applicable, alternate methods for achieving the same
goal.

2.1 CHOOSING A REFERENCE FORMAT

PDP-11 COBOL provides two formats for coding your source programs,
conventional and terminal. Both formats are described in terms of
character positions in a line on an input medium.

NOTE

The rules for spacing given in this
discussion of reference formats take
precedence over all other rules for
spacing.

The conventional format is based on the traditional COBOL format as
applied to an 80-column punched card. The terminal format is a DEC
specified format and allows a source line to be shortened through the
use of horizontal tabs and carriage returns. The terminal format is
very convenient for use with a text editor and an on-line computer
terminal.

USING THE PDP-11 COBOL SYSTEM

NOTE

The PDP-11 COBOL compiler assumes the
terminal format as a default when
compiling, but is capable of compiling
either format (Section 2.5.3, the /CVF
Switch).

A reformatting program (REFORMAT) reformats terminal format programs
into conventional format for ease in transporting source programs to
other COBOL compilers. The REFORMAT program is described in Chapter
8.

2.1.1 Conventional Reference Format

The conventional reference format is based on the traditional COBOL
format as applied to an 80-column punched card. If you choose this
format, you will probably code your source program on a standard COBOL -
coding form (Figure 2-1 COBOL Programming Form).

COBOL PROGRAMMING FORM

PAGE OF.

PROGRAMMER 73 80

PROGRAM NAME IDENT[l |

PAGE SERIAL g START DIVISION, SECTION, PARAGRAPH OR FILE DESCRIPTION HERE
{*———— START OPERAND OR CONTINUATION LINE HERE

11 2] 3]4fj6]|6]7]8[9]|10{11[12{13[14]|16[{16[17({18]|19{20]21/22)|23[24|25/26]/27|28{29 |3031{32|33|34}35{36|37|3830{40(41]42]43{44]45|46/47|48)|49/50|51|52{63|54]55(56(57 {58/59|60[61[62(63 |64 |65|66(67|68]|60]|70({71}72

Figure 2-1 COBOL Programming Form

WALSAS 10900 TT1-dad IHL ONISN

USING THE PDP-11 COBOL SYSTEM

2.1.1.1 Sequence Numbers - Character positions 1 through 6 of the
standard format are reserved for source line sequence numbers. This
sequence number field serves only to assist you in 1locating and
editing source 1lines within a source file or listing. Sequence
numbers are ignored by the compiler.

2.1.1.2 Continuation/Comment Indicator Area - Character position 7
can be used to direct the compiler to process the source line as
specified by the character in this column. Your options are:

Option Results
blank () Default - The source line is treated normally.
hyphen (-) Continuation line - The compiler processes this

line as a continuation of the previous source line
(see Section 2.1.1.6, Continuation of Lines).

asterisk (*) Comment line - The compiler transfers the contents
of this 1line, as is, to the source listing. No
syntax checking is performed on this 1line (see
Section 2.1.1.8, Comment Lines).

slash (/) Comment line - The compiler treats the 1line as
though it were a comment line except it advances
the source listing to the top of the next page
before printing the contents of the line.

2.1.1.3 Area A - Character positions 8 through 11 constitute Area A
of the conventional format. This area is reserved for the beginning
of division headings, section-names, paragraph-names,
level-indicators, and certain level-numbers.

2.1.1.4 BArea B - Character positions 12 through 72 constitute Area B
of the conventional format. This area is reserved for all other COBOL
text.

2.1.1.5 Identification Field - Character position 73 through 80
constitute the identification field. This field is for documentation
purposes only and has no effect on compilation.

2.1.1.6 Continuation of Lines - Any sentence or entry that requires
more than one line must be continued in Area B of the next line.

When you break a word or numeric literal from one line to the next,
you must place a hyphen (-) in character position 7 of the
continuation line. The first nonblank character that you enter in
Area B will become the next character of the word or numeric literal
being continued.

When you break an alphanumeric literal from one line to the next, you
must place a hyphen in character position 7 of the continuation line,
and you must also precede the first character of the continuation
literal with a quotation mark. The literal may begin anywhere within
area B of the continuation line. Consider the following example:

2-4

USING THE PDP-11 COBOL SYSTEM

000008 WORKING-STORAGE SECTION.
001010 01 CONTINUATION-NUMERIC.

001020 02 NUMERIC-LITERAL PIC 9(18) VALUE IS 12345678912345
001030- 6789.

001040 01 CONTINUATION-ALPHANUMERIC.

001050 02 ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCDEFGHIJKLM
001060- "NOPGRSTUVWXYZ".

001070 PROCEDURE DIVISION.
001080 CONTINUATION-SENTENCE.

001090 IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL
001100 GO TO END-PROGRAM

001110 ELSE GO TO CONTINUATION-SENTENCE.

001120 END-PROGRAM.

001130 STOP RUN.

Source lines 001010 through 001030 show how a numeric literal can be
continued onto another line. Source lines 001040 through 001060 show
how an alphanumeric 1literal can be continued onto another 1line.
Source 1lines 001090 through 001110 show how a sentence can be
continued onto successive lines.

2.1.1.7 Blank Lines - A blank 1line is one that is blank from
character position 7 through 72. A blank line can not immediately
precede a continuation 1line. Otherwise, a blank 1line can appear
anywhere in the source program.

2.1.1.8 Comment Lines - A comment line is any line with an asterisk
(*) in character position 7. A comment line can not precede the
Identification Division header. Otherwise, a comment line may appear
anywhere in a source program.

A comment line may be composed of any of the characters from the full
COBOL character set. Comments can begin in Area A or B of the source
line. Each comment line is reproduced on the source 1listing, but
serves as documentation only. Successive comment lines are allowed,
but each must contain an asterisk in character position 7.

NOTE

If a slash character (/) is used instead
of an asterisk (*), the results are the
same except the source listing is
advanced to the top of the next page
before the comment entry is printed.

2.1.1.9 Short Lines and Tab Characters - Conventional format source
lines may be shortened if a medium other than punched cards is used.
This is accomplished by terminating the line by a carriage return or
by inserting tab characters within the 1line to replace space
characters, or a combination of both.

The compiler treats a carriage return character as a redefinition of
character position 72. When a tab character is encountered, the
compiler generates the required number of space characters consistent
with the tab character's position on the line. Tab stops are set,
within the compiler, at character positions 7, 8, 12, 20, 28, 36, 44,
52, 60, 68, and 73. Consider the following example:

USING THE PDP-11 COBOL SYSTEM

NOTE

=
a
il

carriage return character

TAB tab character

Shortened conventional source line:
000130 01 FILE-A. (e
000140 02 DATA-FIELD-A. RET
000150 03 DESCRIPTION-A PIC X(20).
000160 03 bESCRIPTION-B PIC X (20).
000170 03 DESCRIPTION-C PIC X(20).
Source line as interpreted by the compiler:

00015 000130 01 FILE-A.

00016 000140 02 DATA-FIELD-A.

00017 000150 03 DESCRIPTION-A PIC X(20).
00018 000160 03 DESCRIPTION-B PIC X(20).
00019 000170 03 DESCRIPTION-C PIC X(20).

2.1.2 Terminal Reference Format

Terminal reference format is the PDP-11 COBOL default format. It
makes your life easier by providing you with a format which is easy to
use with a computer terminal. Terminal format is shorter and less
space consuming than its conventional counterpart. The sequence
number and identification fields are eliminated and the indicator
field is the first character position within Area A.

Tab characters can be used to position source entries within a line,
and a 1line ends at the first occurrence of a carriage return
character.

The terminal reference format for a 'source 1line is represented as
follows:

Character Position Contents
1 through 4 Area A

5 through 65 Area B
NOTE

Continuation line (-), comment line (%),
and skip to top of page (/) indicator
characters, when used, must be placed in
character position 1.

USING THE PDP-11 COBOL SYSTEM

Area A and Area B, for the terminal format, contain the same kinds of
source entries as their conventional format counterparts (see Sections
2.1.1.3, Area A and 2.1.1.4, Area B).

As with the conventional format, tab characters, when encountered by
the compiler, generate a number of spaces commensurate with the tab

character's position on the line. Tab stops are set to character
positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

2.2 CHOOSING AN INPUT MEDIUM
The input medium you select is dependent on the devices you have at
your disposal. The PDP-11 COBOL compiler accepts source input from
any of the following devices:

° Card Reader

° Magnetic Tape

° DECtape

° Disk

® Terminal

2.3 CREATING A SOURCE FILE
Using text editors under PDP-11 operating systems generally makes
program preparation, modification, and storage from a console terminal
simpler than using punched cards.
NOTE
RSTS/E users:
See the following manuals,

e RSTS-11 System User's Guide

e PDP-11 EDIT Text Editor

RSX-11M users:

See- the RSX-11D Utility Program
Procedures Manual.

IAS users:

See the IAS Editing Utilities Reference
Manual.

When creating source programs at the terminal, use the appropriate
text editor to create source files on disk, DECtape, or magtape. When
entering them under other PDP-11 operating systems that do not support
COBOL, write them on DECtape or magtape first and use the Filex (FLX)
utility program to read them into the operating system (DOS DECtape
and ANSI magtape are common media among PDP-11l operating systems).

2-7

USING THE PDP-11 COBOL SYSTEM

The following suggestion makes editing a source program from a
terminal even more convenient:

Use the terminal reference format (Section 2.1.2). The
terminal format is designed for wuse at a terminal and
eliminates the conventional COBOL fields in columns 1-6 and
73-80. It allows the line to be further shortened by use of
the horizontal tab character to vertically align similar
statements or phrases, and by the use of the carriage return
to terminate the line. A typical conventional format 1line
can often be reduced to less than 40 characters in terminal
format with no loss in source text readability.

2.4 USING THE LIBRARY FACILITY (COPY)

The PDP-11 COBOL library facility provides you with a means of copying
COBOL source language text from a library of source material into a
COBOL program during compilation. One COPY statement can place large
amounts of library source text into a source program, thereby saving
repetitious coding. The compiler treats the copied material as though
it were part of the program being compiled. The copied material,
however, does not physically alter the source program file in any way.

The COBOL library facility provides two important benefits:
1. Standardization of File and Coding Conventions

A typical data file is processed by more than one progranm,
and each processing program must describe the characteristics
of that file (file-name, blocking factor, field names, etc.).
Often the programs are written by one programmer, then
maintained and updated by another programmer, who has to try
to understand a program that was written by someone else.
Since this situation arises at most sites, it 1is good
practice to design a standardized file description (keeping
in mind the programs that process that file) and place it in
the 1library. Then a COPY statement in each processing
program can merge it into the program at compile-time.

This technique applies as well to any procedure that is used
in many different applications. For example, the library
could contain a standardized routine that converts calendar
dates to Julian dates to be merged into each source program
that uses this function.

2. Time Savings for Initial Coding and Updating

Defining and coding file and record descriptions 1is a
time-consuming chore. If the descriptions exist in the
library, a single COPY statement will save the time required
to code those entries into programs using them.

Changing a file format 1is another time-consuming chore.
Typically, when a file format changes, you must change and
recompile all the programs that use that file. If the file
description is in a 1library file, the programmer has to
change only the 1library file. The source programs, of
course, still have to be recompiled but require no individual
coding changes.

Putting commonly used Procedure Division procedures in a
library file yields the same time-saving benefits.

2-8

USING THE PDP-11 COBOL SYSTEM

2.4.1 Creating a COBOL Library File

Each line of a COBOL library file must be in a form such that, when it
is merged into the source program, it forms a syntactically correct
COBOL clause, phrase, or sentence. It can meet this condition either
by being syntactically correct itself, or by becoming so when it is
merged with the source program.

The library text must conform to the rules for the COBOL reference
format (Library Module in the PDP-11 COBOL Reference Manual). You may
write it in either the conventional (with page-line numbers) or the
terminal (without page-line numbers) format. However, the library
file and the source programs it is merged into must be in the same
format. (A conventional format library file cannot be merged properly
into a terminal format source program and vice-versa.)

When writing text for library files in the terminal format, place at
least four space characters or a tab character before any entry that
normally begins in Area B of the COBOL source program. Left justify,
without space characters, entries that normally begin in Area A or at
character position 0.

Since each library file contains all the source language text to be
merged into a source program by one COPY statement, the COPY statement
text-name must refer to the library file-name.

To create the library file, either punch it into cards and use PIP to
put it on DECtape or disk or enter it directly onto one of these media
via a terminal. The operating system provides a text editor for
accomplishing this function. There is no method for updating COBOL
library files on magtape. The available media for these files are
DECtape and disk storage.

2.4.2 The COPY Statement

The COPY statement is a compile-time function that merges a COBOL
library file into a COBOL source program.

The statement must begin with the word COPY and end with a period.
The compiler logically replaces the COPY statement (including the
period) with the library file named by the statement. However, both
the COPY statement and the library text material appear in the source
listing (Section 2.4.4, The Source Listing). The statement may appear
anywhere in a source program that a COBOL word is allowed. The
simplest form of the statement is:

COPY text-name.
Text-name must specify either a file-name or a alphanumeric 1literal.
If a file-name 1is specified, the compiler assumes standard file
specification defaults and copies the text from the latest version of
that file into the source program.
The format for the full file specification is:

device: [UIC] file-name.file-type;version—number

USING THE PDP-11 COBOL SYSTEM

The specification defaults are:

device: -- the standard system device or the
device specified in the batch JCL

[user—identification] -- the UIC that you are logged in under

file-name -- (no default)

.file-type -- .LIB

;version-number -- the latest version. Note: RSTS/E

) does not support the version number

feature.

For example, the following text-name entry copies a library file named
BILBOS.LIB from the system disk to the source program:

COPY BILBOS.
This text-name entry causes the compiler to search the system disk for
a file named BILBOS.LIB. This search takes place in the user's
directory only.
If a alphanumeric literal is entered, it may specify the full file
specification for that file. For example, the following entry copies
the library file BILBOS.LIB from DKl into the source program:

COPY "DK1:BILBOS.LIB".

This text-name entry causes the software to search DK1 for the file
named BILBOS.LIB.

Only four situations require the use of the alphanumeric 1literal
option to indicate the full file specification for the COPY statement:

1. when the library has a file type other than .LIB

2. when there is more than one device containing a library file

3. when the RSX-11M -or IAS library (not RSTS/E) contains more
than one version of the file and you want to copy a version

other than the latest

4. when the library file is in another directory

2-10

USING THE PDP-11 COBOL SYSTEM

The following examples use only the file-name option:

COBOL SOURCE PROGRAM RESULTING SOURCE PROGRAM
IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE. PROGRAM-ID SAMPLE.

COPY BILEOS. AUTHOR. BILBO BAGINS.
ENVIRONMENT DIVISION. DATE-COMPILED. TODAY.
... SECURITY. NONE.

ENVIRONMENT DIVISION.

LIBRARY FILE (BILBOS.LIB)

AUTHOR. BILBO BAGINS.
DATE~-COMPILED. TODAY.

SECURITY. NONE.

Figure 2-2 Merging a Library File

The library file in Figqgure 2-3 is formatted (four spaces before each
entry) so that when it is merged into the source program, each entry
begins in Area B. If the four spaces are not there, the text is moved
into Area A and syntax errors result (Area A is reserved for division
headers, paragraph headers, etc.).

COBOL SOURCE PROGRAM RESULTING SOURCE PROGRAM
PROCEDURE DIVISION. PROCEDURE DIVISION.
BEGIN. COPY STARTUP. BEGIN.

READ-PROCEDURE. OPEN INPUT FILE-A.
READ FILE-A. ... OPEN OUTPUT FILE-B.

MOVE ZERO TO

LIBRARY FILE (STARTUP.LIB) ACCUMULATORS .

SET INDEX-1 TO 1.
OPEN INPUT FILE-A. READ-PROCEDURE.
OPEN OUTPUT FILE-B. READ FILE-A. ...
MOVE ZERO TO
ACCUMULATORS.

SET INDEX-1 TO 1.

Figure 2-3 Merging a Library File Area B

2-11

USING THE PDP-11 COBOL SYSTEM

Since the COPY statement may appear anywhere in a source program that
a COBOL word 1is allowed, it can be used in various ways to solve a
particular programming problem. For example, if a library file named
DRACULA contains the single entry BLOOD-RATE, the entry could be used
in the Data Division as follows:

SOURCE COPY STATEMENT RESULTING SOURCE STATEMENT

02 COPY DRACULA. PIC 99V99. 02 BLOOD-RATE PIC 99V99.

Figure 2-4 Using the COPY Statement in a Data Description

The entry could be used in the Procedure Division as follows:

SOURCE COPY STATEMENT RESULTING SOURCE STATEMENT
MULTIPLY 40 BY COPY DRACULA. MULTIPLY 40 BY BLOOD-RATE
GIVING PLASMA. GIVING PLASMA.

Figure 2-5 Using the COPY Statement in a Procedural Statement

The periods terminating the COPY statements in both these examples are
replaced by the text file. No periods appear in the resulting source
program unless they are in the text file (if a source statement needs
a period, the text file must have a period at the required place).

NOTE

The preceding two examples are not
recommended uses of the COPY statement.
This chapter includes them only to
illustrate the mechanics of the PDP-11
COBOL library facility.

2.4.3 The COPY REPLACING Statement

Sometimes it may be necessary to tailor library text material for use
in a particular program, for example, if a data description in the
library text has level numbers incremented by 1 -- 01, 02, etc. and
you want them incremented by four -- 01, 05, etc. The COPY statement
can replace, during the copying process, all occurrences of a dgiven
literal or word with an alternate literal or word. A sample COPY
REPLACING statement is:

COPY WALDEN REPLACING 02 BY 05.

This sample statement causes the compiler to scan the library £file
WALDEN searching for 02. Wherever it finds a 02, it replaces it with
a 05. A match occurs only if the compiler finds a 02 (not just a 0 or
just a 2). The REPLACING character string, which may be a literal or
a word, must compare equally, character for character, with the entire
character string in the library text. The following table shows some
successful (YES) and unsuccessful (NO) matches:

USING THE PDP-11 COBOL SYSTEM

Table 2-1
Successful and Unsuccessful Replacing Matches

GIVEN LITERAL »

OR WORD LIBRARY TEXT MATCH?
"ABC" “"ABCD" NO
HRLY-RATE HRLY-RATE YES
1 1 YES
ll2'l 2 No
n 15" lllsn NO
ll012ll "12“ b‘O
012 12 NO
SUBTRACT SUBTRACT YES
"o12" "g12" YES

2.4.3.1 Examples, COPY REPLACING - The following examples of the COPY
REPLACING statement all refer to the library file named NEWSBOY:

NEWSBOY (library filename)
01 A.
02 B PIC 99.
02 C PIC 99 VALUE 2.
02 D PIC X(5) VALUE "ABCDE".
02 E PIC 99V99 VALUE 3.75.
02 F PIC 99 VALUE 02.
Example 1
COPY NEWSBOY REPLACING B BY X. ‘
This statement merges the entire file named NEWSBOY into the source
program and changes data-name B to X. It does not change the
character B in the character string of data-name D because it is part
of a nonmatching character string. This statement causes the compiler
to merge the following text into the source program:
01 a.
02 X PIC 99.
02 C PIC 99 VALUE 2.

02 D PIC X(5) VALUE "ABCDE".

2-13

USING THE PDP-11 COBOL SYSTEM

Example 2
COPY NEWSBOY REPLACING 2 BY 6.

This statement merges the entire file named NEWSBOY into the source
program and changes the 2 in the entry for data-name C to a 6. It
does not change the 02 in the literal entry for data-name F nor any of
the 02 1level numbers because they contain a nonmatching character 0.
This statement causes the compiler to merge the following text into
the source program:

01 a.
02 B PIC 99.
02 C PIC 99 VALUE 6.
02 D PIC X(5) VALUE "ABCDE".
02 E PIC 99V99 VALUE 3.75.

02 F PIC 99 VALUE 02.
Example 3
COPY NEWSBOY REPLACING 02 BY 63.
This statement merges the entire file named NEWSBOY into the source
program and changes not only the 02 literal entry in data-name F, but
also all of the 02 level numbers to 63. Since level number 63 is
illegal, this causes the <compiler to produce syntax errors. The
replacing process is not sensitive to the syntax of the text. The
string of characters in the library may be literals, level-numbers,
data-names, etc.; if they match the REPLACING string, character for
character, the compiler replaces them. Consider the results of this
statement:

01 A.

63 B PIC 99.

63 C PIC 99 VALUE 2.

63 F PIC 99 VALUE 63.
Example 4

COPY NEWSBOY REPLACING B BY X,
"ABCDE" BY "HIJKL",
3.75 BY 4.23.

This statement shows how a single COPY statement can replace more than

one literal or word. It causes the compiler to merge the following
text into the source program:

2-14

USING THE PDP-11 COBOL SYSTEM

01 A.
02 X PIC 99.
02 C PIC 99 VALUE 2.
02 D PIC X(5) VALUE "HIJKL".
02 E PIC 99V99 VALUE 4.23.

02 F PIC 99 VALUE 02.

2,4.4 The Source Listing

Depending on how the COPY statement is written, the PDP-11 COBOL
compiler 1lists 1library text material either before or after the COPY
statement (Figure 2-6).

2.4.4.1 Before the COPY Statement - If other source material
(including spaces) follows the COPY statement on the same source line,
the compiler lists the library text before the COPY statement (see
Figure 2-6).

SOURCE LINE SOURCE LISTING

COPY CHANGES. ADD A TO B. text-line-1
text—-line-2
text-line-3

COPY CHANGES. ADD A TO B.

Figure 2-6 Placing the Library Text Before the COPY Statement

The compiler does not print a source line until it has scanned the
entire 1line. Therefore, in Figure 2-6 (CHANGES), the compiler takes
the following steps, in order:

1. scans the COPY statement

2. recognizes that the COPY statement is followed by more
information on the same line

3. prints the library text
4. scans the rest of the line
5. prints the entire source line
This results in a somewhat confusing listing and should be avoided.

When the library text follows the COPY statement, a much more readable
listing is produced.

USING THE PDP-11 COBOL SYSTEM

2.4.4.2 After the COPY Statement - If the COPY statement terminates
the source 1line, the compiler merges the library text after the COPY
statement. Consider Figure 2-7:

SOURCE LINE SOURCE LISTING

COPY CHANGES. COPY CHANGES.

ADD A TO B. text-line-1

text-line-2
text-line-3

ADD A TO B.

Figure 2-7 Placing the Library Text After the COPY Statement

In this case, the compiler takes the following steps, in order:

1.

2.

2.4.5

scans the COPY statement
prints the COPY statement
prints the library text

prints the next sequential statement

Common Errors in Using the Library Facility

Common errors to avoid when using the library facility are:

Failing to follow the rules for COBOL reference format when
creating the library file

Writing the library file in one format (conventional or
terminal) and the source program in the other

Forgetting to terminate the COPY statement with a period

Using data-names in the library file that also appear in the
source program, thus causing duplicate names

Writing the library text so that when it is merged into the
source program, it becomes syntactically incorrect

Merging the wrong 1library £file, either because multiple
versions exist or because of misspelling

Writing other source material on the same line following the
COPY statement, thus causing confusion in the source program
listing

Forgetting that numeric literals (such as 02, 77, etc.) used
in the REPLACING option replace level-numbers, picture
descriptions, and paragraph or section names, when they find
matches.

USING THE PDP-11 COBOL SYSTEM

° Forgetting that a period must appear in the text file if it

is to appear in the source program (the period that
terminates the COPY statement is replaced by the text).

2.5 USING THE COBOL COMPILER
The compilation process begins by invoking the PDP-11 COBOL compiler
and giving it a command line to process.
NOTE
The compiler is invoked in response to

an operating system prompting message or
code (Table 2-2).

2.5.1 1Invoking the PDP-11 COBOL Compiler
The compiler can be invoked in either of two ways:

1. Enter the compiler name followed by a carriage return to
allow multiple executions of the compiler

or

2. Enter the compiler name followed by a COBOL command line and
a carriage return, to execute the compiler only once

Table 2-2 depicts the system prompting message and compiler name for
each of the supported operating systems:

Table 2-2
Operating System Prompt/Compiler Name
Operating System Prompt Compiler Name
RSX-11M > CBL
IAS PDS> COBOL
RSTS/E READY COBOL

For example:

If you are running on a RSTS/E operating system, and you want to
execute the compiler for a number of consecutive compilations, enter
the following command in response to the system READY prompt:

COBOL

When the compiler is ready to process command lines, it issues the
following prompt:

CBL>

USING THE PDP-11 COBOL SYSTEM
Enter the COBOL command line for the first compilation to be performed
as follows:
CBL> command-line

When the compilation is completed, the compiler reissues the CBL>
prompt; you can now enter another command line.

To terminate the compiler, enter a CNTRL Z as follows:
CBL>" %

To execute the compiler only once, enter the following command in
response to the system READY prompt:

COBOL command-line

When the compilation is completed, the operating system issues the
READY prompt.

2.5.2 COBOL Command Line
The COBOL command line has the following format:

Object-file, Listing-file = Source-file

or
@Command-file
where:

Object-file is the file specification for the file that
is to contain the compiler-generated object
file.

Listing-file is the file specification for the file that
is to contain the compiler—-generated listing
file.

Source-file is the file specification for the file that
contains the COBOL source program to be
compiled.

Command-file is the file specification for the file that

contains the COBOL command 1line(s) to be
processed. Up to two 1levels of indirect
command files are permitted.

Each file specification identifies a file to be used as an output or
input file by the compiler.

NOTE

File specifications for IAS differ 1in
syntax from RSX-11lM and RSTS/E. Refer
to the User's Guide manuals for your
particular operating system for specific
syntax rules. For the purposes of this
discussion, RSTS/E syntax is used.

USING THE PDP-11 COBOL SYSTEM

Each file specification has the following syntactical format:
dev: [account] filename. typ/sw.../sw
where:

dev: = The unit on which the volume containing the
desired file is mounted, e.g., DKO:. The name
consists of two ASCII characters followed by an
optional 1- or 2-digit octal (decimal for RSTS/E)
unit number and a colon. The default wvalue is
SY:, the system disk.

[account] = The account number under which the file is stored.
In RSTS/E, this number 1is referred to as the
project-programmer number (PPN). In RSX-11M and
IAS, it is referred to as the user identification
code (UIC). The default value 1is the account
under which the system program is running.

file-name = The name of the file. A file-name can contain up
to six alphanumeric characters.

.typ = A file type (or extension) can contain up to three
alphanumeric characters. System programs default
the file type to an appropriate standard type,
(e.g., CBL). '

/sw = One or more ASCII characters, preceded by a slash,
specifying a switch option (see Section 2.5.3 for
a complete description of the PDP-11 COBOL
Compiler Switches).

A command line in the syntax appropriate for your operating system is
used to specify output and input files to the compiler. A maximum of
two output files (object and listing) and one input (source) can be
specified. The generation of either of the output files can be
inhibited by omitting its file specification from the command line.
Default file types are assigned to the compiler-generated output
files. Table 2-3 shows the default file types expected or generated
by the compiler.

Table 2-3
PDP-11 COBOL Compiler Default File Types
File Default Type Compiler Usage
Object OBJ Output
Listing LST Output
Source CBL Input
Command CMD Input
Overlay Description Language ODL . Output

USING THE PDP-11 COBOL SYSTEM

Figure 2-8 contains samples of how the PDP-11 COBOL compiler is
invoked and executed on each of the supported operating systems.
RSX-11M > CBL

CBL> OBJECT,LIST=SOURCE

CBL>"Z

RSTS/E READY
COBOL
CBL> OBJECT,LIST=SOURCE

CBL>"Z

IAS PDS> COBOL
CBL> OBJECT:0BJECT/LIST:LIST SOURCE

CBL>"Z

Figure 2-8 Sample COBOL Command Sequence

Each command line in Figure 2-8 directs the compiler to perform the
following:

1. Compile the source program contained on source
file SOURCE .CBL

2. Produce a compilation listing on file LIST.LST
3. Store the relocatable object modules on file OBJECT.OBJ

4. Generate an overlay description language file on
file OBJECT .ODL

NOTE

An ODL file 1is generated whenever an
object file is generated except when it
is explicitly suppressed via the /-ODL
switch. The file specification of the
ODL file is the same as the file
specification of the object file except
that the extension for the ODL file is
.ODL.

Either of the output files can be omitted by omitting its file
specification from the command line. For example:
CBL> OBJECT=SOURCE RET

produces OBJECT.OBJ and OBJECT.ODL on the system device but no listing
file is produced;

CBL> ,LIST=SOURCE

produces a listing file (LIST.LST) but no object module or overlay
description language output files.

2-20

USING THE PDP-11 COBOL SYSTEM

NOTE

In IAS, if an object file-name 1is not
given, the default is to use the input
file-name with the extension .0OBJ. If a
listing file-name is not given, the
listing file is automatically printed on
the system line printer. The generated
list file is automatically deleted after
printing.

2.5.3 Compiler Switches

The PDP-11 COBOL compiler provides a series of compile-time switches.
You may tailor your compilation 1listing and assign particular
characteristics to the generated object modules via these switches.
Table 2-4 provides a list of the. compiler switches and their meanings:

Table 2-4
COBOL Compiler Switches

Switch Meaning

/ACC:n Produce an object program only if the source
program contains diagnostics with severities
equal to or less than n. The range of n must be

0<n<2,

Where:
0 = Informational diagnostics
1 = warning diagnostics
2 = Fatal diagnostics

The default is /ACC:1.

/CREF Include a cross-reference listing as part of the
listing file output. When /CREF is specified,
data~names, procedure-names, and source line
numbers are sorted into ascending order and
appended to the end of the compilation 1listing.
The symbol # is used to indicate the line in
which the referenced name is defined.

NOTE

The use of /CREF significantly slows
down the compilation of large programs.

/CSEG:nnnn Allows you to specify the maximum size
procedural code PSECT to be produced by the
compiler where nnnn is the maximum size
procedural code PSECT, in decimal bytes. The
minimum value of nnnn is 100.

USING THE PDP-11 COBOL SYSTEM

Table 2-4 (Cont.)
COBOL Compiler Switches

Switch Meaning

/CVF Indicates to the compiler that the source
program is in conventional format (i.e.,
80—character images with Area A beginning in
character position 8).

/ERR:n Suppress the printing of diagnostics with a
severity number 1less than n. The range of n
must be 0<n<2.

Where:

0 = Informational diagnostics

1 = Warning diagnostics

2 = Fatal diagnostics
The switch cannot suppress severity 2 (fatal)
diagnostics. (An entry of 2 suppresses the
printing of all severity numbers that are less
than 2.) The default is /ERR:O0.

/HELP Display on the user terminal information about
how to use the compiler switches.

/KER:kk Instruct the compiler to generate PSECT names
using the two-character kernel specified by kk
to make them unique to this compilation, where
kk is a two character string that may contain
the numbers 0 through 9 and the 1letters A
through 2.

NOTE
The sample program listed in Figure 2-9
was compiled using the /KER:kk switch.
See Figure 2-12 which contains the
Procedure Map generated for this
program. Notice that the PSECTs
generated all contain the two character
kernel XX.
/MAP Produce the following special map listings:
e Data Division (Figure 2-11)
® Procedure Map (Figure 2-12)
® External Subprograms Referenced (Figure
2-17)
® Data and Control PSECTs (Figures 2-14
and 2-16) .
® OTS Routines Referenced (Figure 2-15)
® Segmentation Map (Figure 2-13)
/NL Instruct the compiler not to 1list the source

statements copied from a library file. The
resultant source listing contains only the COPY
statement.

USING THE PDP-11 COBOL SYSTEM

Table 2-4 (Cont.)
COBOL Compiler Switches

Switch

Meaning

/OBJ

Print the object location in which the code for
each verb of the program is located. The
information is listed on the line preceeding the
source statement it describes (Figure 2-13).

/ODL

Instruct the Compiler to generate an ODL file
(default condition). To override the default
condition, enter /-ODL.

/ov

Instruct the compiler to make all procedural
PSECTs (segments) overlayable. Therefore, the
root or main program will contain no procedural
statements.

/PFM:nn

Allows you to define the maximum number of
nested PERFORM statements in the program being
compiled. 1If specified, the compiler generates
a nested PERFORM stack equal in depth to the
decimal number specified by nn. The default
nested perform size is 10. It is to your
advantage to use this switch to adjust the
nested PERFORM stack size to the exact number
required. This assures maximum utilization of
memory in that only the exact amount of PERFORM
stack space is generated.

/PLT

Directs the COBOL compiler to automatically pool
literals to minimize the memory required to
store them (default condition). Pooling of
literals, however, slows down compiler execution
speed. To bypass literal pooling for increased
compiler speed, enter /-PLT.

/RO

Directs the compiler to generate read-only
PSECTs for the Procedure Division object
modules. The default status is read/write.

/SYM:n

Allows you to obtain more symbol table space for
the compilation, where "n" (an integer in the
range of 1 through 4) specifies the space
required for the maximum number of data-names
and procedure-names allowed in the compilation.
See Table 2-5 for the correspondence between the
integer specified by n, and the number of
data-names and procedure-names assigned.

USING THE PDP-11 COBOL SYSTEM

Table 2-5
/SYM:n Switch Values
n Maximum Data-Names Maximum Procedure-Names
1 761 761 (default)
2 1021 1021
3 1531 1531
4 2039 2039

The following Figures 2-9 through 2-20 show and describe sample output
produced by the COBOL compiler:

COBOL 3.00 SRC:MAP.CBL;O0 05-JAN-77 16:05:40 PAGE 001

CMD:MAP ,MAP/MAP=MAP/KER: XX
IDENT: 005160

00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. MAP.

00003 *

00004 * EXERCISE COMPILER MAP PROCESSORS.
00005 *

00006 ENVIRONMENT DIVISION.
00007 CONFIGURATION SECTION.
00008 SOURCE-COMPUTER. PDP-11.
00009 OBJECT-COMPUTER. PDP-11.
00010

00011 DATA DIVISION.

00012 WORKING-STORAGE SECTION.
00013 77 DEC PIC 9(4).

00014 77 BIN PIC 9(4) USAGE COMP.
00015 77 CHR PIC X(4).

00016 LINKAGE SECTION.

00017 77 L1 PIC X.

00018 77 L2 PIC X.

00019 77 L3 PIC X.

00020 77 L4 PIC X.

00021 PROCEDURE DIVISION USING L1 L3 .
00022 S0 SECTION.

00023 PO.

00024 STOP RUN.

00025 Pl.

00026 DISPLAY L3.

00027 DISPLAY "ABC".

00028 S1 SECTION.

00029 P2.

00030 MOVE DEC TO DEC.

00031 MOVE DEC TO BIN.

00032 MOVE BIN TO BIN.

00033 MOVE BIN TO DEC.

00034 MOVE CHR TO CHR.

00035 MOVE ALL SPACES TO CHR.
00036 MOVE DEC TO CHR.

Figure 2-9 Sample Source Program Listing

2-24

USING THE PDP-11 COBOL SYSTEM

00037
00038
00039
00040
00041
00042
00043

I 00043
00044
I 00044

00045
00046
00047
00048

COBOL

00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065

ADD DEC TO DEC.
ADD DEC TO DEC ROUNDED.

SUBTRACT DEC
SUBTRACT DEC
SUBTRACT BIN
SUBTRACT BIN
MULTIPLY BIN

0371 POSSIBLE HIGH
MULTIPLY

0371 POSSIBLE HIGH

FROM DEC.
FROM DEC ROUNDED.
FROM BIN.
FROM BIN ROUNDED.
BY BIN GIVING BIN.

ORDER RECEIVING FIELD TRUNCATION.

DEC BY DEC GIVING DEC.

ORDER RECEIVING

DIVIDE BIN BY BIN GIVING
DIVIDE DEC BY DEC GIVING
DIVIDE DEC BY DEC GIVING
-DIVIDE BIN BY BIN GIVING

3.00 SRC:MAP.CBL;O0

P4.
IIA“

“ABII .
“ABC ” .
"ABCOOO " .
"ABCOO1".
"ABCOO2",
"ABCOO3".
"ABC0O04".
"ABCOO5".
"ABC006".
"ABCOO7".
"ABCOO8",
"ABC0O09".

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"ABCOl0"
"ABCO11"
"ABCOl12"

05-JAN-77

FIELD TRUNCATION.

BIN.
DEC.
DEC ROUNDED.
BIN ROUNDED.

16:05:40 PAGE

002

Figure 2-9 (Cont.) Sample Source

Program Listing

USING THE PDP-11 COBOL SYSTEM

COBOL 3.00 SRC:ALLORG.CBL;O0 01-MAR-77 16:00:33 PAGE 003

FILE-TO-LUN ASSIGNMENT TABLE

NAME SOURCE RELATIVE
LINE LUN
SQ-FS1 00019 00001.
IX-FS1 00025 00002.
RL-FS1 00033 00003.
where:
NAME is a file-name that appears in the SELECT clause
. in the Input-Output Section. The file names
appear in the order in which they occur in the
Input-Output Section.
SOURCE LINE is the 1line on which the File Definition
appears.
RELATIVE LUN is the relative 1logical wunit number (LUN)

assigned, beginning with 1.

Figure 2-10 File-to-Relative-LUN Assignment Table

USING THE PDP-11 COBOL SYSTEM

COBOL 3.00 SRC:MAP.CBL;0 05-JAN-77 16:05:40 PAGE 003
DATA MAP
LEVEL NAME SOURCE DDIV DIR USAGE CLASS OCC LEN
LINE LOCN LOC
01 DEC 00013 000224 000000 DSP NUM 00 0004
01 BIN 00014 000230 000006 CMP NUM 00 0002
01 CHR 00015 000232 000014 DSP AN 00 0004
L 01 LS-ALPHA-DATA 00036 000000 ***x**xx DSP AN 00 0066
L 05 LAl 00037 000000 000000 DSP AN 00 0006
L 05 LA2 00038 000006 000006 DSP AN 00 0008
L 05 LA3 00039 000016 000014 DSP AN 00 0010
L 05 LA4 00040 000030 000022 DSP AN 00 0012
L 05 LAS 00041 000044 000030 DSP AN 00 0014
L 05 LA6 00042 000062 000036 DSP AN 00 0016
L 01 LS-NUM-DISP-DATA 00043 000000 ****xxx DSP AN 00 0021
L 05 LNl 00044 000000 000044 DSP NUM 00 0004
L 05 LN2 00045 000004 000052 DSP NUM 00 0005
L 05 LN3 00046 000011 000060 DSP NUM 00 0005
L 05 LN4 00047 000016 000066 DSP NUM 00 0002
L 05 LN5 00048 000020 000074 DSP NUM 00 0002
L 05 LN6 00049 000022 000102 DSP NUM 00 0003
L 01 LS~-COMP-DATA 00050 000000 #****xx*x DSP AN 00 0020
L 05 LC1 00051 000000 000110 CMP NUM 00 0002
L 02 LC2 00052 000002 000116 CMP NUM 00 0002
L 05 LC3 00053 000004 000124 CMP NUM 00 0004
L 05 LC4 00054 000010 000132 CMP 'NUM 00 0004
L 05 LCS 00055 000014 000140 CMP NUM 00 0004
L 05 LCé6 00056 000020 000146 CMP NUM 00 0004
COLUMN CONTENTS
L Data-item is defined in linkage section
LEVEL Level number of data-item
NAME Data-item name
SOURCE Source line number where data-item is defined
LINE
DDIV Octal byte offset of data-item in data storage
LOCN PSECT (program section).
NOTE: 1. For Linkage Section items, this
offset is always relative to the
01 entry.
2. For non-Linkage Section items,
this offset 1is relative to data
PSECT $KKDAT (KK=kernel).
Figure 2-11 Sample Data Map

USING THE PDP-11 COBOL SYSTEM

COLUMN

DIR
LOC

USAGE

CLASS

occC

LEN

CONTENTS

Octal byte offset of data-item's directory
directory PSECT.

NOTE :

One of the
DSP -
CMP -
NDX -
One of the
ALPHA

NUM -

1. For Linkage Section items,

in a

this

offset 1is relative to data PSECT

SKKARG (KK=kernel).

2, For non-Linkage Section

items,

this offset is relative to data

PSECT S$KKDDD (KK=kernel).

3. If data-item is not referenced, no
directory is allocated and *****%*

appears.

following abbreviations:
Display

Computational

Index

following abbreviations:
- Alphabetic

Numeric

AN - Alphanumeric

ANEDIT - Alphanumeric edited

NMEDIT - Numeric edited

The number
data-item.

of subscripts associated with

this

The length in bytes of data-item.

Figure 2-11 (Cont.) Sample Data Map

USING THE PDP-11 COBOL SYSTEM

COBOL 3.00 SRC:MAP.CBL;O 05-JAN-77 16:05:40 PAGE 004

PROCEDURE NAME MAP

NAME SOURCE PSECT OFFSET SEG SECT PARA
LINE
SO 00022 $XX001 000024 00 S
PO 00023 $Xx001 000024 00 P
Pl 00025 $XX001 000036 QO P
sl 00028 $XX002 000024 00 S
P2 00029 $XX002 000024 0O P
P4 00049 $XX002 000312 00 P
Column Contents
NAME Procedure-name
SOURCE Source line number where procedure appears
LINE
PSECT Executable code PSECT name (program section)
which contains the procedure ,
OFFSET Octal byte offset of procedure in its executable
code PSECT
SEG The segment-number of the section containing the
procedure
SECT If the procedure is a section, an S will appear

in this column

PARA If the procedure is a péragraph, a P will appear
in this column

Figure 2-12 Sample Procedure-Name Map

USING THE PDP-11 COBOL SYSTEM

COBOL 3.00 SRC:MAP.CBL;O 05-JAN-77 16:05:40 PAGE 005

SEGMENTATION MAP

SECTION NAME SEGMENT NO. NAME SIZE
S0 00 $XX001 000116 00039
sl 00 $XX002 000532 00173
Column Contents
SECTION NAME The section-name.
SEGMENT NO. The segment-number assigned to the section.
NAME The name of the executable procedural PSECT

(program section) generated for this section.
If the executable code generated for a section
exceeds the code segment 1limit (see /CSEG
switch), more than one procedural PSECT is
generated for the section. If this happens, the
multiple PSECT names will appear in a vertical
column. '

SIZE The size of the procedural psect, octal bytes
followed by decimal words.

Figure 2-13 Sample Segmentation Map

COBOL 3.00 SRC:MAP.CBL;O0 05-JAN-77 16:05:40 PAGE 006

COMPILER GENERATED PSECTS
NAME SIZE

SXXENT 000036 00015
$XX003 000046 00019

Column Contents

NAME The name of the compiler—-generated psect.

SIZE The size of the PSECT: octal bytes followed by decimal
words.

NOTE: This map lists those executable PSECTs (program sections) that
are generated by the compiler. These PSECTs are not the result of
anything in the Procedure Division, but are generated to provide for
runtime execution initialization.

Figure 2-14 Sample of Compiler-Generated PSECT Map

USING THE PDP-11 COBOL SYSTEM

COBOL 3.00 SRC:MAP.CBL;O0 05-JAN-77 16:05:40 PAGE 007

REFERENCED OTS ROUTINES

S$XMBB $XMDD $XMDB $XMBD $XMCC S$XMAL $XADDD $XADDR
$XSUBD $XSUBR $XMULB $XSUBB $XSBBR $XMULB $XDIVB $XDIVR
$XEDIS $XGO $XENDP $XSTPR $XABRT $XCALL SXEXIT $XSUBK
SXINIT

Contents

This map contains the names of all COBOL OTS (Object Time System)
routines that are referenced by the code generated by the compiler.

Figure 2-15 Sample Map of Referenced OTS Routines

COBOL 3.00 SRC:MAP;CBL;O 05-JAN-77 16:05:40 PAGE 008

DATA PSECT MAP
NAME SIZE

SXXDAT 000236 00079
$XXDDD 000022 00009
$XXPDT 000014 00006
$XXARG 000006 00003
SXXWRK 000102 00033
SXXLIT 000006 00003
SXXLTD 000014 00006
$XXLST 000002 00001
SXXPFM 000214 00070
$XXSDT 000040 00016
SXXADT 000000 00000
$XXUSE 000030 00012
$CBIOT 000126 00043
SCBFAl 000000 00000
$CBXAl 000000 00000
$XXIOB 000000 00000
$CBIF1 000000 00000
$CBIR1 000000 00000
SCBKD1 000000 00000
$CBBD1 000000 00000
$CBKB1 000000 00000
SCBFD1 000000 00000
SCBSWT 000002 00001

Column Contents

NAME The name of the data PSECT generated by the compiler.
SIZE The size of the data PSECT, in octal bytes, followed by

decimal words.

NOTE: This map lists the data (nonexecutable) PSECTs generated by the
compiler. See Appendix D for a description of the Data PSECTs
generated for each compilation.

Figure 2-16 Sample Data PSECT MAP

2-31

USING THE PDP-11 COBOL SYSTEM

COBOL 3.00

SRC:MAP.CBL;0

05-JAN-77 16:05:40 PAGE 009

EXTERNAL SUBPROGRAM REFERENCES

A AB

ABC

ABC009 ABCO010 ABCO11

ABCO000 ABCO001 ABC002 ABC003
ABCO012

ABCO004

Contents

This map contains the names of all external subprograms referenced by
CALL statements in the COBOL source program.

Figure 2-17 Sample Map

of External Subprogram References MA

P

COBOL 3.00 SRC:MAP.CBL;O 05-JAN-77 16:05:40 PAGE 010
SEVERITY ERROR COUNT
I 9
W 4
F 2
Column Contents
SEVERITY Contains the error severity code. The following

ERROR COUNT

list contains the possible severity codes:

I

W

F

"

Contains

Information
Warning
Fatal

the number of errors encountered.

NOTE: This listing is generated for every COBOL compilation.

Figure 2-18 Sample Compilation Error Count Listing

USING THE PDP-11 COBOL SYSTEM

COBOL

3.00 SRC:MAP.CBL;O 05-JAN-77 16:05:40 PAGE 011

COMPILER GENERATED ODL FILE

; COBOL STANDARD ODL FILE GENERATED ON: 05-JAN-77 16:05:40
; COBOBJ=MAP.OBJ

; COBKER=XX
.NAME XX$050,GBL
.PSECT $XX003,GBL,I,RW,CON
XX050$8: .FCTR *XX$050-$XX003
XXOVRS$: .FCTR XX0508
NOTE
his listing is generated whenever an
object file is generated.
Figure 2-19 Sample Compiler-Generated ODL File Listing
00110 MOVE REPETITIONS (POWER) TO REPS.
PERFORM : 001 000104
00111 PERFORM TEST1 REPS TIMES.
MOVE :+ 001 000122
00112 MOVE TESTDELTA (TESTNUMBER) TO BASETIME (POWER) PEOPLE
DISPLAY : 001 000160
00113 DISPLAY "10**" POWER " REPETITIONS TOOK "
00114 PEOPLETIME " HUNDREDTHS OF SECONDS.".
ADD : 001 000206
00115 ADD 1 TO POWER.
IF :+ 001 000220
GO : 001 000254
00116 IF POWER NOT > POWERLIMIT GO TO I5.
GO : 001 000264
00117 GO TO I10.

For each COBOL verb, a line of the following format appears in the
listing, preceding the source line that contains the verb:

VE
where:

1.

RB:

PPP AAAAAA

VERB is the verb name

PPP is
object

AAAAAA
object

the decimal number of the code PSECT containing the
code generated for the verb.

is the octal byte offset within the PSECT at which the
code is generated.

Figure 2-20 Sample Output Using OBJ Switch

2-33

USING THE PDP-11 COBOL SYSTEM

2.5.4 Examples of the COBOL Command Line
Example 1
CBL> BILBO,BILBO=BILBO

This command line instructs the compiler to compile source program
BILBO.CBL and write the compilation listing to a file named BILBO.LST.
It produces an object file named BILBO.OBJ, and an overlay description
language file named BILBO.ODL. The source program BILBO.CBL exists on
the system device and is expected to be in terminal format. All
output files exist or will be created on the system device.

Example 2

CBL> DK1:BILBO.OBJ,LP:=DT0:BILBO/CVF/MAP
This command line instructs the compiler to compile source program
BILBO.CBL. The compiler expects the source program to reside on
DECtape 0 and be in conventional format. This command 1line also
instructs the compiler to generate a compiler 1listing and the
following map listings on the system line printer:

o Data

° Procedure

° External Subprogram Reference

) Segmentation

° Data and Code PSECT

° OTS Routines
An overlay description language (ODL) file named BILBO.ODL and an
object module (OBJ) file named BILBO.OBJ are to be created or replaced
on disk device DKl:. ‘
Example 3

CBL> BILBO,BILBO=BILBO/KE:BB
This command line instructs the compiler to compile source program
BILBO.CBL which resides in terminal format on the system device. The
output listing is to be spooled to a file named BILBO.LST. An object
file (BILBO.OBJ) and an overlay description language file (BILBO.ODL)
are to be generated and stored on the system device. The PSECT names
generated by the compiler for the object modules all begin with the
characters $BB.
Example 4

CBL> BILBO.OBJ/KE:BB,BILBO.LST/MAP=BILBO.CBL/CVF
This command line instructs the compiler to compile program BILBO.CBL,
which, 1is coded 1in conventional format and resides on the system
device. A listing file (BILBO.LST), created on the system device,
contains the following maps:

o Data

® Procedure

USING THE PDP-11 COBOL SYSTEM

° External Subprogram Reference

° Segmentation

° Data and Code PSECT

° OTS Routines
An object file (BILBO.OBJ) and an overlay descriptioh language file
(BILBO.ODL) are generated and stored on the system device. The PSECT

names generated during this execution of the compiler begin with the
characters $BB.

2.5.5 Error Message Summary

If any errors were detected during compilation, the compiler generates
an error message summary and prints it on the user terminal. This
summary contains the number of errors encountered. The error message
summary has the following format:

CBL —-—- NNNNN ERROR(S), NNNNN FATAL

Where:

NNNNN is the number of errors encountered.

NOTE

If fatal errors are encountered, no
object file is generated, unless
specifically requested via the /ACC
switch. (See Section 2.5.3, Compiler
Switches).

2.5.6 Common Entry Errors, COBOL Command String
Common errors to avoid when entering the COBOL command string are:

° omitting the /CVF switch for programs that are in the
conventional format, and causing a system error

) leaving the colon off the LP: specification, causing the
listing to be spooled to a file named LP.LST

° turning ON switches that contradict the file specification
parameters, e.g., entering the command string
BILBO=BILBO/MAP, which does not request a listing file, vyet
does request a Data Division map

° omitting version numbers from one or more of the file
specifications, causing the system to create a new version or
to compile the wrong version (IAS or RSX-11M).

USING THE PDP-11 COBOL SYSTEM

2.6 USING THE MERGE UTILITY

To convert the ODL file generated by the compiler into a complete ODL
file, or to merge ODL files from more than one compilation into a
single ODL file, you use the Merge Utility.

2.6.1 1Invoking the Merge Utility
To invoke the Merge Utility, type MRG in response to a system prompt
(Section 2.5, Using the COBOL Compiler). When the Merge Utility is
loaded and ready to accept input specifications, it issues the
following message:

PLEASE ENTER FILE SPECIFICATION FOR OUTPUT FILE

Enter the file specification for the file that is to receive the
merged ODL file. For example:

PLEASE ENTER THE FILE SPECIFICATION FOR OUTPUT FILE

BILBO.ODL

When the output file specification is received, Merge issues another
prompt:

DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?

PLEASE ANSWER A (ABBREVIATED) OR M (MERGED)
If you enter M, the Merge Utility generates a file that 1is a
concatenation of all the input ODL files. 1If you enter an A, an ODL

file containing indirect command file specifications for each input
ODL file is generated.

Input ODL Files Merged ODL Abbreviated ODL
BILBOl.ODL BILBO1l.0DL @BILBOl.ODL
. . @BILBO2.0DL
BILQOZ.ODL @BILBO3.0ODL
BILBO2.0DL . Merge supplied
: BILBO3.0ODL ODL statements
BILBO3.ODL Merge supplied
: ODL statements

Figure 2-21 Merged vs. Abbreviated ODL File

For example, the following results in the generation of an abbreviated
file:

DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?

PLEASE ANSWER A (ABBREVIATED) OR M (MERGED) A

Following the A or M specification, Merge make the following request:
DO YOU WANT TO OVERLAY I/0 SUPPORT ROUTINES?

PLEASE ANSWER Y(ES) OR N(O)

USING THE PDP-11 COBOL SYSTEM

Simply enter Y for yes and N for no, followed by a carriage return.

Merge now requests that you enter the file specification for the first
or only ODL file to be merged. The following message is issued:

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE

Enter the input ODL file specification in response to this message as
follows:

file-specification
For example:

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE

BILBO1.0ODL
When Merge has completed processing this input file, it requests you
to enter the device and directory under which the associated object
file is stored. The following message is issued:

OBJECT PROGRAM REFERENCED IN ODL FILE IS:

object-filename.ext
PLEASE ENTER OBJECT FILE DEVICE AND PPN IN
THE FORMAT: DEV:[PROJECT,PROGRAMMER]

Enter the device code and PPN if different from the system default
assignment. Otherwise, enter a carriage return only, e.g.:

OBJECT PROGRAM REFERENCED IN ODL FILE IS:

BILBO1l.0OBJ

PLEASE ENTER OBJECT FILE DEVICE AND PPN IN

THE FORMAT: DEV:[PROJECT,PROGRAMMER]

The processing of the input ODL file is complete. Merge now issues
the following message:

ANY MORE INPUT ODL FILES?
PLEASE ANSWER Y (ES) OR N(O)

Enter Y for yes and N for no followed by a carriage return. If Y is
entered, Merge reissues the PLEASE ENTER FILE SPECIFICATION FOR INPUT
ODL FILE message, and the merging procedure 1is repeated. If N is

entered, the output file is completed, and the following message is
issued:

ODL MERGE IS COMPLETE
MERGED ODL FILE IS file-specification

USING THE PDP-11 COBOL SYSTEM

Figure 2-22 shows a sample ODL file merge dialogue.

RUN MRG

PLEASE ENTER FILE SPECIFICATION FOR OUTPUT FILE

DIVA.ODL

DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?

PLEASE ANSWER A (BBREVIATED) OR M(ERGED) M

DO YOU WANT TO OVERLAY I/O SUPPORT ROUTINES?

PLEASE ANSWER Y(ES) OR N(O) N

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE

DIVBUG.ODL

OBJECT PROGRAM REFERENCED IN ODL FILE IS:

DIVBUG.OBJ

PLEASE ENTER OBJECT FILE DEVICE AND UIC IN THE FORMAT:

DEV: [GROUP ,MEMBER]

RET

ANY MORE INPUT ODL FILES?

PLEASE ANSWER Y(ES) OR N(O) N

ODL FILE MERGE COMPLETE

MERGED ODL FILE IS: DIVA.ODL

CBL -- 15: STOP RUN

Figure 2-22 Sample ODL File Merge Dialogue

2.6.2 Merge Utility Error Messages
Whenever the Merge Utility encounters an error in processing, it

issues an error message to the user terminal. These error messages
are listed in Table 2-6.

2-38

USING THE PDP-11 COBOL SYSTEM

Table 2-6
Merge Error Messages

BAD FORMAT PPN: [p,p]

Description The PPN you specified does not conform to system
standard syntax.

User Action Respecify the PPN using the correct syntax.

THIS ODL FILE CONTAINS A ;COBMAIN LINE
A ;COBMAIN LINE HAS ALREADY OCCURRED
THIS ODL FILE IS IGNORED

Description A ;COBMAIN line in an ODL file identifies the
object program as a main program. This message
is telling you that Merge has already processed
an ODL file that contained a ;COBMAIN line.
Since a task image can only contain one main
program, this ODL file is ignored.

MULTIPLE ;COBKER HEADER LINE DETECTED
THIS ODL FILE IS IGNORED

Description A ;COBKER line is an ODL file specifies the 2
character kernel used to identify PSECTs for the
object file corresponding to this ODL file.
Only one ;COBKER line per ODL file is allowed.
This ODL file is ignored.

'"MULTIPLE ;COBOBJ HEADER LINE DETECTED
THIS ODL FILE IS IGNORED

Description A ;COBOBJ line in an ODL file identifies tue
object file for which the ODL file was
generated. Only one such object file
specification is allowed in a compiler-generated
ODL file. This ODL file is ignored.

NOT STANDARD COBOL ODL FILE
FILE IS IGNORED

Description The ODL file contains nonstandard ODL lines.
See Chapter 11 for ODL file format.

OPEN UNSUCCESSFUL
Description One of the following conditions exists:

1. The device is not on line

2. The device is not mounted

3. The hardware has failed

4. The file does not exist

5. The user is not allowed access to the file

User Action 1. Determine which condition exists
2. Rectify the condition
3. Reenter the command

2-39

USING THE PDP-11 COBOL SYSTEM

Table 2-6 (Cont.)
Merge Error Messages

READ ERROR =-- MUST ABORT

Description An unrecoverable read error occurred when the
Merge Utility attempted to read the input ODL
file. The input and output ODL files are
closed, and the Merge Utility terminates.

One of the following conditions exists:

The device is not on line
The device is not mounted
The hardware has failed
The volume is full

> W N
Y

1. Determine which condition exists
2., Rectify the condition
3. Reenter the command

User Action

2.7 USING THE TASK BUILDER
The Task Builder (TKB) is a system program that 1links relocatable
object modules to create a task image. 1Invoke the Task Builder by
specifying TKB in response to an RSX-11lM or RSTS/E operating system
prompt, or by specifying LINK in response to an IAS operating system
prompt. For example, you invoke TKB on a RSTS/E system as follows:
READY
TKB (1)
When invoked, the Task Builder issues the following prompt:
TKB>
You can now enter the TKB command line using the following format.
task file, map file = ODL file/MP

where:

task file is the file specification for the task image file to be
generated.

map file 1is optional; if specified, it is the specification for
the file that is to receive the memory map listing.

ODL file 1is the file specification for an Overlay Description
Language file.

/MP is a switch which identifies the preceding file
specification as an ODL file.

When TKB receives the command string, it issues the following message:

ENTER OPTIONS:

USING THE PDP-11 COBOL SYSTEM

The RSTS/E user enters HISEG=RMS1ll followed by a carriage return in
response to this prompt. The IAS or RSX-11lM user enters / followed by
a carriage return unless other options are to be entered first. When
appropriate, the UNITS and ASG options should be entered here. (See
Section 6.5.3, Files and Logical Units.)
TKB then issues the following prompt:

TKB>
Enter // in response to this prompt.

Consider the following example of running TKB on a RSTS/E operating
system:

TKB
TKB>DIVBUR,DIVBUG=DIVA/MP

ENTER OPTIONS:

TKB>HISEG=RMS11
TKB>//

2.7.1 Task Building COBOL Programs Using Direct Input

If your task does not contain calls to subprograms or segmentation and
is composed of only a few object modules, you may want to bypass the
Merge Utility process and enter a dialogue with TKB. The format of
the command line is:

task,map=objectl,object2,...,[1,1]1COBLIB/LB, [1,1]RMSLIB/LB

Where:

task is the file specification for the task image file
to be generated.

map (optional) is the file specification for the file
to receive the memory map listing.

object is one or more object file specifications for the
file(s) containing the object modules to be
task-built.

[1,1]COBLIB is the exact file specification for the COBOL
library file. This file contains the COBOL object
time system.

[1,1]1RMSLIB is the exact file specification for the RMS-11
library file. This file contains the RMS I/0
routines.

/LB is the Task Builder switch that describes the file

as being a library file.

TKB is invoked and the options following the ENTER OPTIONS prompt are
specified in the same manner as specified in Section 2.7.

USING THE PDP-11 COBOL SYSTEM

The following dialogue shows TKB commands to task-build using object
module(s) and libraries.

TKB (wr)
TKB>DIVBUG,DIVBUG=DIVBUG,SUBA, [1,1]COBLIB/LB, [1,1]RMSLIB/LB
TKB>/

ENTER OPTIONS:

TKB>HISEG=RMS11
TKB>//

2.7.2 Task Building and COBOL Program Size

The size of a COBOL object module created form a COBOL source file
depends on the amount of memory required for the following elements:

1. data-items in the Working-Storage Section
2. number of files in the File Section
3. amount of code generated for the Procedure Division

4. number and length of all wunique numeric and non-numeric
literals used in the Procedure Division

5. total size of all runtime modules needed to support the
executing program (includes such code as arithmetic support,
I/0 support, segmentation support, etc.)

6. push-down stack space required to support the executable code
7. directories for all referenced data-items and literals

The maximum size of a program task on the PDP-11 is 64K bytes. On
systems that support PDP-11 COBOL, the maximum task is 56K bytes,
where the remaining 8K bytes are reserved for sharable file system
code to support I1/0. A COBOL program, therefore, cannot occupy more
than 56K bytes of memory.

Some programs may exceed the allowable storage byte 1limit. ‘In this
case, TKB issues a diagnostic and does not build your task. You may
take either of two corrective measures:

1. create program overlays by wusing the COBOL segmentation
facility (Chapter 9, Segmentation)

2. Dbreak up your program into a main program and one Or more
subprograms (Chapter 10, Interprogram Communication).

2-42

USING THE PDP-11 COBOL SYSTEM

2.8 EXECUTING A COBOL TASK

Once a task image has been built, you execute it by entering the
following command in response to a system prompt:

RUN filespec

where: filespec is the task image file specification.

2.8.1 COBOL Switch Setting
If you specified SWITCH ON or OFF in the SPECIAL-NAMES paragraph of
your source program, at execution time the OTS will issue the
following message to your terminal:

SPECIFY "ON" SWITCHES...
Enter a response in the following format:

N1l,N2,N3,...,NK

where

N1l,N2,N3,...,NK are decimal numbers in the range 1 thru 16 that
specify the switch you want turned on.

For example:
SPECIFY "ON" SWITCHES ...
1,9,16

This example causes switches 1, 9, and 16 to be set on.

If you enter an asterisk (*) in response to the switch message, all
switches are set on.

CHAPTER 3

NON-NUMERIC CHARACTER HANDLING

3.1 INTRODUCTION

COBOL programs hold their data in fields whose sizes are described in
their source programs. These fields are thus "fixed" during
compilation to remain the same size throughout the 1lifespan of the
resulting object program.

The data descriptions of the fields in a COBOL program describe them
as belonging to any of three data classes -- alphanumeric, alphabetic,
or numeric class. Numeric class data items contain only numeric
values, alphabetic <c¢lass only A-Z and space, but alphanumeric class
data items may contain values that are all alphabetic, all numeric, or
a mixture of -alphabetic bytes, numeric bytes, or, in fact, any
character from the ASCII character set.

Further, these three classes are subdivided into five categories:
alphabetic, numeric, numeric edited, alphanumeric edited, and
alphanumeric. Every elementary item except for an 1index data item
belongs to one of the classes and further to one of the categories.
The class of a group item is treated at object time as alphanumeric
regardless of the classes of subordinate elementary items.

For alphabetic and numeric (data items) class and category are
synonymous.

An alphabetic field is a field declared to contain only alphabetic
(A-Z and space) characters.

An alphanumeric class field that is declared to contain any ASCII
character is called an alphanumeric category field.

If the data description of an alphanumeric class field specifies that
certain editing operations will be performed on any value that is
moved into it, that field is called an alphanumeric or numeric edited
category field.

When reading the following sections of this chapter, this distinction
between the class or category of a data item and the actual value that
the item contains should always be kept in mind.

Sometimes the text refers to alphabetic, alphanumeric, and
alphanumeric edited data items as nop-numeric data items. This is to
distinguish them from items that are specifically described as numeric
items.

Regardless of the class of an item, it is usually possible to store a
value in the 1item, at object time, that 1is "illegal”. Thus,
non-numeric ASCII characters can be placed into a field described as
.numeric class, and an alphabetic <class field may be loaded with
non-alphabetic characters.

3-1

NON-NUMERIC CHARACTER HANDLING

To increase readability, the following sections occasionally omit the
word "class" when describing an item; however, the reader should
regard the descriptive word, numeric, alphabetic, or alphanumeric, as
referring to the <class of an item unless it applies specifically to
the value in the item.

This chapter discusses non-numeric class data and the non-arithmetic,
non-input-output operations that manipulate this type of data.

3.2 DATA ORGANIZATION

Usually, the data areas in a COBOL program are organized into group
items with subordinate elementary items. A group item is a data item
that is followed by one or more data items (elementary items) with
higher valued level numbers. An elementary item has no higher valued
subordinate level number.

All of the data areas used by COBOL programs (except for certain
registers and switches) must be described in the Data Division of the
source program. The compiler allocates memory space for these fields
and fixes them in size at compilation time.

The following sub-sections (3.2.1 and 3.2.2) discuss, on a general
level, how the compiler handles group and elementary data items.

3.2.1 Group Items

The size of a group item is the total size of the data area occupied
by its subordinate elementary 1items. The compiler considers group
items to be alphanumeric DISPLAY items. Thus, the software
manipulates group items as if they had been described as PIC X()
items, and ignores the structure of the data contained within them.

3.2.2 Elementary Items

The size of an elementary item 1is determined by the number of
allowable symbols it contains that represent character positions. For
example, consider the following fields:

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Figure 3-1
Field Sizes

Both fields consume seven bytes of memory; however, FIELD-1 contains
seven alphanumeric bytes while FIELD-2 contains decimal digits and an
operational sign. Although certain verbs handle these two classes of
data differently, the data, in either case, occupies seven bytes of
PDP-11 memory. COBOL operations on such fields are independent of the
mapping of the field into PDP-11 memory words (l16-bit words that hold
two 8-bit bytes). Thus, a field may begin in the left or right-hand
byte of a word with no effect on the function of any operations that
may refer to that field.

NON-NUMERIC CHARACTER HANDLING

In effect, the compiler sees memory as a continuous array of bytes,
not words. This becomes particularly important when declaring a table
with the OCCURS clause (see Chapter 5, Table Handling).

Records (a 01 level entry and all of its subordinate entries) and data
items that have a level number of 77 and all literal values given in
the Procedure Division automatically begin on even byte addresses.

I/0 verbs require that records be aligned on word boundaries because
the PDP-11 COBOL file system reads and writes integral numbers of
words.

Non-input-output verbs do not require alignment of the data. However,
when two fields are aligned identically, the processing verb can
- sometimes increase its efficiency by processing them a word at a time
rather that a byte at a time.

In all cases, automatic word alignment of literals, records, and/or 77
items increase the opportunity for more efficient processing.

3.3 SPECIAL CHARACTERS

COBOL allows the user to manipulate any of the 128 characters of the
ASCII character set as alphanumeric data even though many of the
characters are control characters, which usually control input/output
devices. Generally, alphanumeric data manipulations are performed in
a manner that attaches no "meaning" to an 8-bit byte. Thus, the user
can move and compare these control characters in the same manner as
alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters,
certain control characters cannot appear in non-numeric literals since
the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input
key for many of the special characters, thus making it difficult to
place them into non-numeric literals.

Special characters may be placed into data fields of the object
program by placing the binary value of the special character into a
numeric COMP field and redefining that field as alphanumeric DISPLAY.
Consider the following example of redefinition. (Keep in mind that
the even byte of a word corresponds to the low-order bits of a binary
word.)

01 LF-COMP PIC 999 COMP VALUE 10.
01 LF REDEFINES LF-COMP PIC X.
01 HT-COMP PIC 999 COMP VALUE 9.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 999 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

Figure 3-2
Redefining Special Characters

The sample coding in Fiqure 3-2 introduces each character as a 1l-word
COMP item with a decimal value, then redefines it as a single byte.
(The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically
sized fields.)

NON-NUMERIC CHARACTER HANDLING

The following ASCII code chart may be used to determine the decimal
value for any ASCII character. To use the chart, find the desired
character; then add its row and column values together to determine
the decimal integer to be supplied as a VALUE for the computational
item.

Column
Value
a 000 | 008 | 016 | 024 | 032 | 040 | 048 | 056 | 064 072 | 080 | 088 | 096 | 104 | 112 | 120
ow
Value
0 NUL BS DLE | CAN | space (0 8 @ H P X grave h p x
1 SOH | HT | DC1 | EM !) 1 9 A 1 Q Y a i q y
2 STX LF | DC2-| suB " * 2 : B J R z b i r z
3 ETX | VvT | DC3 | ESC # + 3 ; C K S [c k s {
4 EOT | FF | DC4 | FS $, 4 < D L T AN d 1 t |
5 ENQ | CR [NAK | @GS % 5 = E M U 1 e m u }
6 ACK | sO | SYN| Rs & . 6 > F N v (%) f n v | (80
7 BEL St ETB | US | apos / 7 ? G o w (=) g o w DEL
Figure 3-3

ASCII Code Chart

3.4 TESTING NON-NUMERIC FIELDS

3.4.1 Relation Tests

An IF statement that contains a relation condition (greater-than,
less-than, equal-to, etc.) can compare the value in a non-numeric data
item with another value and use the result to alter the flow of
control in the program.

An IF statement with a relation condition compares two operands,
either of which may be an identifier or a literal, except that both
cannot be literals. If the relation exists between the two operands,
the relation condition has a truth value of true. ‘

Figure 3-4 illustrates the general format of a relation condition.
(The relational characters _">," "<," and "=," although required, are
not underlined to avoid confusion with other symbols such as
greater-than-or-equal-to.)

IS [NOT] GREATER THAN

identifier-1 %g {%g%% %E%%LngN identifier-2
literal-1 IS [NOT] ;Q——— literal-2
arithmetic-expression-1 IS [NOT] < arithmetic-expression-2
IS [NOT] =
Figure 3-4

Relation Condition

NON-NUMERIC CHARACTER HANDLING

When coding a relational operator, leave a space before and after each
reserved word. When the reserved word NOT is present, the software
considers it and the next key word or relational character to be one
relational operator that defines the comparison. Figure 3-5 shows the
meanings of the relational operators.

OPERATOR MEANING
IS [NOT] GREATER THAN The first operand is greater than
IS [NOT] > (or not greater than) the second operand.
IS [NOT] LESS THAN The first opefand is less than
IS [NOT] < (or not less than) the second operand.
IS [NOT] EQUAL TO The first operand is equal to
IS [NOT] = (or not equal to) the second operand.
Figure 3-5

The Meanings of the Relational Operators

3.4.1.1 Classes of Data - COBOL allows comparison of both numeric
class operands and non-numeric class operands; however, it handles
each class of data slightly differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but requires that all other
comparisons (including comparisons of any group items) be between
operands with the same usage. It compares numeric class operands with
respect to their algebraic values and non-numeric (or a numeric and a
non-numeric) class operands with respect to a specified collating
sequence.

If only one of the operands is numeric, it must be an integer data
item or an integer literal and it must be DISPLAY usage; further, the
manner in which the software handles numeric operands depends on the
non-numeric operand. Consider the following two types of non-numeric
operands:

1. If the non-numeric operand 1is an elementary item or a
literal, the software treats the numeric operand as if it had
been moved into an alphanumeric data item (which is the same
size as the numeric operand) and then compared. This causes
any operational sign, whether carried as a separate character
or as an overpunch, to be stripped from the numeric item;
thus, it appears to be an unsigned quantity. 1In addition, if
the picture-string of the numeric item contains trailing P
characters indicating that there are assumed integer
positions that are not actually present, these are filled
with zero digits during the operation of stripping any sign
that is present. Thus, an item with a picture-string of
59999PPP is moved to a temporary location where it is
described with a picture-string of 9999999. 1If its value is
4323 (-4321), the value in the temporary location will be
4321000. The numeric digits, stored as ASCII bytes, take
part in the comparison.

2. If the non-numeric operand is a rou item, the software
treats the numeric operand as 1f it had been moved into a
group item (which is the same size as the numeric operand)
and then compared. This 1is equivalent to a "group move".
The software ignores the description of the numeric field
(except for length) and, therefore, includes any operational
sign, whether carried as a separate character or as an

3-5

NON-NUMERIC CHARACTER HANDLING

overpunch, in its length. (Overpunched characters are never
ASCII numeric digits, but characters in the range of from A
through R, {, or }.) Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeroes are not
supplied for P characters in the picture-string.

The compiler will not accept a comparison between a non-integer
numeric operand and a non-numeric operand, and any attempt to compare
these two items will cause a diagnostic message at compile time.

3.4.1.2 The Comparison Operation - If the two operands are
acceptable, the software compares them byte for byte starting at their
left-hand end. It proceeds from 1left to right, comparing the
characters in corresponding character positions until it either
encounters a pair of unequal characters or reaches the right-hand end
of the longer operand.

If the software encounters a pair of unequal characters, it considers
their relative position in the collating sequence. The operand with
the character that is positioned higher in the collating sequence is
the greater operand.

If the operands have different lengths, the comparison proceeds ' as
though the shorter operand were extended on the right by sufficient
ASCII spaces (040) to make them both the same length.

If all of the pairs of characters compare equally, the operands are
equal.

3.4.2 Class Tests

An IF statement that contains a «c¢lass condition (NUMERIC or
ALPHABETIC) can test the wvalue in a non-numeric data item (USAGE
DISPLAY only) to determine if it contains numeric or alphabetic data
and use the result to alter the flow of control in the program.

Figure 3-6 illustrates the general format of a class condition. If
the data item consists entirely of the ASCII characters 0123456789
with or without the operational sign, the <c¢lass condition would
determine that it is NUMERIC. 1If the item consists entirely of the
ASCII characters A through Z and space, the class condition would
determine that it is ALPHABETIC.

NUMERIC
identifier IS [NOT]
ALPHABETIC

Figure 3-6
Class Condition, General Format

NON-NUMERIC CHARACTER HANDLING

When the reserved word, NOT, is present, the software considers it and
the next key word as one class condition that defines the class test
to be executed; for example, NOT NUMERIC is a truth test for
determining if an operand contains at least one non-numeric byte.

If the item being tested was described as a numeric data item, it may
only be tested as NUMERIC or NOT NUMERIC. (For further information on
using class conditions with numeric items, see Chapter 4.) The NUMERIC
test cannot examine an item that was described either as alphabetic or
as a group item containing elementary items whose data descriptions
indicate the presence of operational signs. '

3.5 DATA MOVEMENT

COBOL provides three statements (MOVE, STRING, and UNSTRING) that
perform most of the data movement operations required by
business-oriented programs. The MOVE statement simply moves data from
one field to another. The STRING statement concatenates a series of
sending fields into a single receiving field. The UNSTRING statement
disperses a single sending field into multiple receiving fields. Each
has its uses and its limitations, This section discusses data
movement situations which take advantage of the versatility of these
statements.

The MOVE statement handles the majority of data movement operations on
character strings. However, the MOVE statement has limitations in its
ability to handle multiple fields; for example, it cannot, by itself,
concatenate a series of sending fields into a single receiving field
or disperse a single sending field into several receiving fields.

Two MOVE statements will, however, bring the contents of two fields
together into a third (receiving) field if the receiving field has
been "subdivided" with subordinate elementary items that match the two
sending fields in size. 1If other fields are to be concatenated into
the third field and they differ in size from the first two £fields,
then the receiving field will require additional subdivisions (through
redefinition).

Another method of concatenation with the MOVE statement is to
subdivide the receiving field into single character fields, creating a
"table" of a single character field that occurs as many times as there
are characters 1in the receiving field, and execute a data movement
loop which moves each sending field, a character at a time, using a
subscript that moves continuously across the receiving field.

Two MOVE statements can also be used to disperse the contents of one
sending field to several receiving fields. The first MOVE statement
can move the left-most end of the sending field to a receiving field;
then the second MOVE statement can move the right-most end of the
-sending field to another receiving field. (The second receiving field
must first be described with the JUSTIFIED clause.) Characters from
the middle of the sending field cannot easily be moved to any
receiving field without extensive redefinitions of the sending field
or a character-by-character movement loop (as with concatenation).

The concatenation and dispersion limitations of the MOVE statement are
handled gquite easily by the STRING and UNSTRING statements. The
following sections (3.6, 3.7, and 3.8) discuss these three statements
in detail.

NON-NUMERIC CHARACTER HANDLING

3.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following illustration shows the two formats of the MOVE statement.

Format 1
MOVE FIELDl1 TO FIELD2
Format 2

MOVE CORRESPONDING FIELDl1 TO FIELD2

NOTE

Format 2 is discussed in Section 3.6.6.

FIELDl1 is the name of the sending field and FIELD2 is the name of the
receiving field. The statement causes the software to move the
contents of FIELDl into FIELD2. The two fields need not be the same
size, class, or usage; and they may be either group or elementary
items. If the two fields are not the same length, the software will
align them on one end or the other -- and will truncate or pad (with
spaces) the other end. The movement of group items and non-numeric
elementary items is discussed below.

A point to remember when using the MOVE statement is that it will
alter the contents of every character position in the receiving field.

3.6.1 Group Moves

If either the sending or receiving field is a group item, the software
considers the move to be a group move. It treats both the sending and
receiving fields in a group move as if they . were alphanumeric class
fields. If the sending field is a group item and the receiving field
is an elementary item, the software 1ignores the receiving field
description (except for the size description, in bytes, and any
JUSTIFIED clause); therefore, the software conducts no conversion or
editing on the receiving field.

3.6.2 Elementary Moves

" If both fields of a MOVE statement are elementary items, their data

description clauses control their data movement. (If the receiving
field was described as numeric or numeric edited, the rules for
numeric moves —-— see Chapter 4, Numeric Character Handling -- control

the data movement.)

The following table shows the legal (and illegal) non-numeric
elementary moves.

NON-NUMERIC CHARACTER HANDLING

Table 3-1
Legal Non~-Numeric Elementary Moves

SENDING FIELD CATEGORY RECEIVING FIELD CATEGORY
ALPHABETIC ALPHANUMERIC
ALPHANUMERIC EDITED

ALPHABETIC Legal Legal
ALPHANUMERIC Legal Legal
ALPHANUMERIC EDITED Legal Legal
NUMERIC INTEGER

(DISPLAY ONLY) Illegal Legal
NUMERIC EDITED Illegal Legal

In all of the legal moves shown above, the software treats the sending
field as though it had been described as PIC X(). If the sending
field description contains a JUSTIFIED clause, the clause will have no
effect on the move. If the sending field picture-string contains
editing characters, the software uses them only to determine the
field's size.

Numeric class data must be in DISPLAY (byte) format and must be an
integer.

If the description of the numeric data item indicates the presence of
an operational sign (either as a character or an overpunch) or if
there are P characters in the picture-string of the numeric data item,
the software first moves the item to a temporary location. During
this move, it removes the sign and fills out any P character positions
with 2zero digits. It then uses the temporary value (which may be
shorter than the original if a separate sign were removed, or longer
if P character positions were filled in with zeroes) as the sending
field as if it had been described as PIC X(), that 1is, as 1if its
category were alphanumeric.

If the sending item is an unsigned numeric <class field with no P
characters in its picture-string, the software does not move the item
to a temporary location.

A numeric integer data item sending field has no effect on the
justification of the receiving field. If the numeric sending field is
shorter than the receiving field, the software fills the receiving
field with spaces.

In legal, non-numeric elementary moves, the receiving field actually
controls the movement of data. All of the following items, in the
receiving field, affect the move: (1) the size, (2) the presence of
editing characters in. its description, and (3) the presence of the
JUSTIFIED RIGHT clause in its description. The JUSTIFIED clause and
editing characters are mutually exclusive; therefore, the two classes
are discussed separately below.

When a field that contains no editing characters or JUSTIFIED clause
in its description 1is wused as the receiving field of a non-numeric
elementary MOVE statement, the statement moves the characters by
starting at the 1left-hand end of the fields and scanning across,
character-by-character to the right. If the sending item is shorter

3-9

NON-NUMERIC CHARACTER HANDLING

than the receiviné item, the software fills the remaining character
positions with spaces.

3.6.2.1 Edited Moves - Alphabetic or alphanumeric fields may contain
editing characters. Consider the following insertion editing
characters. Alphabetic fields will accept only the B character;
however, alphanumeric fields will accept all three characters.

B -- blank insertion position
0 -- zero insertion position
/ —— slash insertion position.

When a field that contains an insertion editing character in its
picture-string 1is wused as the receiving field of a non-numeric
elementary MOVE statement, each receiving character position that
corresponds to an editing character receives the insertion byte value.
Figure 3-7 illustrates the use of such symbols with the statement,
MOVE FIELD1 TO FIELD2. (Assume that FIELD1l was described as PIC
X(7).)

FIELD2
FIELD]1 PICTURE-STRING CONTENTS AFTER MOVE
070476 XX/99/XX 07/04/76
04JUL76 99BAAABY99 04 JUL 76
2351212 XXXBXXXX/XX/ 235 1212/ /
123456 0XBOXBOXBOX 01 02 03 04

Figure 3-7
Data Movement with Editing Symbols

Data movement always begins at the left end of the sending field, and
moves only to the byte positions described as A, 9, or X in the
receiving field picture-string. When the sending field is exhausted,
the software supplies space characters to fill any remaining character
positions (not insertion positions) in the receiving field. If the
receiving field becomes exhausted before the last character is moved
from the sending field, the software ignores the remaining sending
field characters.

3.6.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the data
description of the receiving field causes the software to reverse its
usual data movement conventions. (It starts with the right-hand
characters of both fields and proceeds from right to left.) If the
sending field is shorter than the receiving field, the software fills
the remaining 1left-hand character positions with spaces. Figure 3-8
illustrates various data description situations for the statement,
MOVE FIELDl TO FIELD2, with no editing.

NON-NUMERIC CHARACTER HANDLING

FIELD1 FIELD2
PICTURE-STRING CONTENTS PICTURE-STRING CONTENTS AFTER

(AND JUST CLAUSE) MOVE

XX AB

XXXXX ABC

XXX ABC XX JusT BC
XXXXX JUST ABC

Figure 3-8

Data Movement with No Editing

3.6.3 Multiple Receiving Fields

If a MOVE statement is written with more than one receiving field, it
moves the same sending field value to each of the receiving fields.
It has essentially the same effect as a series of separate MOVE
statements that all have the same sending field. (For information on
subscripted fields, see section 3.6.4.)

The receiving fields need have no relationship to each other. The
software checks the legality of each one independently, and performs
an independent move operation on each one.

Multiple receiving fields on MOVE statements provide a convenient way
to set many fields equal to the same value, such as during
initialization code at the beginning of a section of processing. For
example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.
MOVE ZEROES TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Any field of a MOVE statement may be subscripted and the referenced
field may also be used to subscript another name in the same
statement.

When more than one receiving field is named in the same MOVE
statement, the order in which the software evaluates the subscripts
affects the results of the move. Consider the following two
situations:

Situation 1 MOVE FIELD1 (FIELD2) TO FIELD2 FIELD3.

Situation 2 MOVE FIELDl1 TO FIELD2 FIELD3(FIELD2).

Figure 3-9
Subscripted MOVE Statements

3-11

NON-NUMERIC CHARACTER HANDLING

In situation 1, the software evaluates FIELD1(FIELD2) only once,
before it moves any data to the receiving fields. 1In effect it is as
if the statement were replaced with the following statements:

MOVE FIELD1 (FIELD2) TO TEMP.
MOVE TEMP TO FIELDZ2.
MOVE TEMP TO FIELD3.

In situation 2, the software evaluates FIELD3(FIELD2) immediately
before moving the data into it (but after moving the data from FIELDl
to FIELD2). Thus, it uses the newly stored value of FIELD2 as the
subscript value. In effect, it is as if the statement were replaced
with the following statements:

MOVE FIELDl1 TO FIELD2.

MOVE FIELD1l TO FIELD3(FIELD2).

3.6.5 Common Errors, MOVE Statement

A most important thing to remember when writing MOVE statements is
that the compiler considers any MOVE statement that contains a group
item to be a group move. It is easy to forget this fact when moving a
group item to an elementary item, and the elementary item contains
editing characters, or a numeric integer. These attributes of the
receiving field (which would determine the action of an elementary
move) have no effect on the action of a group move.

3.6.6 Format 2 - MOVE CORRESPONDING

Format 2 of the MOVE statement allows the programmer to move multiple
elementary items from one group item to another, by using a single
MOVE statement. When the corresponding phrase is used, selected
elementary items in the sending field are moved to those elementary

items in the receiving field whose data-names are identical. For
example:
01 A-GROUP 01 B-GROUP
02 FIELD1 02 FIELD2
03 A PIC x 03 A PIC x
03 B PIC 9 03 C PIC xx
03 C PIC xx 03 E PIC xXXx
03 D PIC 99

03 E PIC xxXx
MOVE CORRESPONDING A-GROUP TO B-GROUP
OR

MOVE CORRESPONDING FIELDl1 TO FIELD2

3-12

NON-NUMERIC CHARACTER HANDLING
The above examples are equivalent to the following series of MOVE
statements:
MOVE A OF FIELD1l TO A OF FIELD2
MOVE C OF FIELD1 TO C OF FIELD 2

MOVE E OF FIELDl TO E OF FIELD2

3.7 THE STRING STATEMENT

The STRING statement concatenates the contents of two or more sending
fields into a single field.

The statement has many forms; the simplest 1is equivalent, in
function, to a non-numeric MOVE statement. Consider the following
illustration; if the two fields are the same size, or if the sending
field (FIELD1) 1is larger, the statement is equivalent to the
statement, MOVE FIELD]1l TO FIELD2.

STRING1 FIELD1l DELIMITED BY SIZE INTO FIELD2.

Figure 3-10
Sample STRING Statement

If the sending field is shorter than the receiving field, an important
difference between the STRING and MOVE statements emerges: the
software does not fill the receiving field with spaces. Thus, the
STRING statement may leave some portion of the receiving field
unchanged.

Additionally, the receiving field must be an elementary alphanumeric
field with no JUSTIFIED clause or editing characters in its
description. Thus, the data movement of the STRING statement always
fills the receiving field from left-to-right with no editing
insertions.

3.7.1 Multiple Sending Fields

An important characteristic of the STRING statement is its ability to
concatenate a series of sending fields into one receiving field.
Consider the following example of the STRING statement:

STRING FIELDl1A FIELD1B FIELD1C DELIMITED BY SIZE
INTO FIELD2.

Figure 3-11
Concatenation with the STRING Statement

In this sample STRING statement, FIELD1A, FIELD1B, and FIELDIC are all
sending fields. The software moves them to the receiving field
(FIELD2) in the order in which they appear in the statement, from left
to right, resulting in the concatenation of their values.

3-13

NON-NUMERIC CHARACTER HANDLING

If FIELD2 is not large enough to hold all three items, the operation
stops when it is full. If this occurs while moving one of the sending
fields, the software ignores the remaining characters of that field
and any other sending fields not yet processed. For example, if
FIELD2 became full while receiving FIELD1B, the software would ignore
the rest of FIELD1B and all of FIELDIC.

If the sending fields do not fill the receiving field, the operation
stops with the movement of the last character of the last sending item
(FIELD1C in Figure 3-11). The software does not alter the contents
nor space-fill the remaining character positions of the receiving
field.

The sending fields may be non-numeric 1literals and figurative
constants (except for ALL 1literal). For example, the following
statement sets up an address label with the literal period and space
between the STATE and ZIP fields:

STRING CITY SPACE STATE ". " ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-12
Literals as Sending Fields

Sending fields may also be subscripted. For example, the following
statement uses subscripts to concatenate the elements of a table
(A-TABLE) into a single field (A-FOUR). (I, of course, must be a
subscript or an index-name.)

STRING A-TABLE(I) A-TABLE(I+l1) A-TABLE(I+2) A-TABLE(I+3)
DELIMITED BY SIZE INTO A-FOUR.

Figure 3-13
Indexed Sending Fields

3.7.2 The POINTER Phrase

Although the STRING statement normally starts at the left-hand end of
the receiving field, with the POINTER phrase it is possible to start
it scanning at another point within the field. (The scanning,
however, remains left-to-right.)

MOVE 5 TO P.
STRING FIELD1A FIELD1B DELIMITED BY SIZE
INTO FIELD2 WITH POINTER P.

Figure 3-14
Sample POINTER Phrase

When the POINTER phrase is used, the value of P determines the
starting character position in the receiving field. 1In Figure 3-14,
the 5 in P causes the software to move the first character of FIELD1A
into character position 5 of FIELD2 (the left-most character position
of the receiving field is character position 1) and leave positions 1
through 4 unchanged.

NON-NUMERIC CHARACTER HANDLING

When the STRING operation is complete, the software leaves P pointing
to one character position beyond the last character replaced in the
receiving field. 1If FIELD1A and FIELD1B in Figure 3-14 are both four
characters 1long, P will contain a value of 13 (5+4+4) when the
operation is complete (assuming that FIELD2 is at least 12 characters
long). '

3.7.3 The DELIMITED BY Phrase

Although the sending fields of the STRING statement are fixed in size
at compile time, they frequently contain variable-length items that
are padded with spaces. For example, a 20-character city field may
contain only the word MAYNARD and 13 spaces. A valuable feature of
the STRING statement is that it may be used to move only the useful
data from the 1left-hand end of the sending field. The DELIMITED BY
phrase, written with a data-name or literal, instead of the word SIZE,
performs this operation. (The delimiter may be a literal, a data
item, a figurative constant, or the word SIZE. It may not be ALL
literal since ALL literal has an indefinite length. When the phrase
contains the word SIZE, the software moves each sending field, in
total, until it either exhausts the sending field, or fills the
receiving field.)

Consider the following example:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-15
Delimiting with the Word SIZE

If CITY is a 20-character field, the result of the STRING operation
shown in Figure 3-15 might look like the following:

AYER MA. 01432

4‘______16 spaces

A far more attractive printout can be produced by having the STRING
operation produce the following:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter
on the sending field; thus,

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE

INTO ADDRESS-LINE WITH POINTER P.

Figure 3-16
SPACE as a Delimiter

3-15

NON-NUMERIC CHARACTER HANDLING

This sample coding uses the pointer's characteristic of pointing to
one character position beyond the 1last character replaced in the
receiving field to enable the second STRING statement to begin at a
position one character past where the first STRING statement stopped.
(The first STRING statement moves data characters until it encounters
a space character -- a match of the delimiter SPACE. The second
STRING statement adds the 1literal, the 2-character STATE field,
another literal, and the 5-character ZIP field.)

The delimiter can be varied for each field within a single STRING
statement by repeating the DELIMITED BY phrase after the sending field
names to which it applies. Thus, the following shorter statement has
the same effect as the preceding example. (Placing the operands on
separate source lines, as shown in this example, has no effect on the
operation of the statement, but improves program readability and
simplifies debugging.)

STRING CITY DELIMITED BY SPACE
[1] R L] STATE " . [1]
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

Figure 3-17
Repeating the DELIMITED BY Phrase

The sample STRING statement in Figure 3-17 cannot handle 2-word city
names, such as New York, since the software would consider the space
between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (non-numeric literal), can
solve this problem. Only when a sequence of characters matches the
delimiter will the movement stop for that data item. With a 2-byte
delimiter, the same statement can be rewritten in a simpler form:

STRING CITY ", " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

: Figure 3-18
Delimiting with More Than One Space Character

Since only the CITY field may contain two consecutive spaces (the
entire STATE field is only two bytes long), the delimiter's search of
the other fields will always be unsuccessful and the effect 1is the
same as moving the full field (delimiting by SIZE).

Data movement under control of a data-name or literal 1is generally
slower in execution speed than movement delimited by SIZE.

The example in Figure 3-18 illustrates a frequent source of error in
the use of STRING statements to concatenate fields. The remainder of
the receiving field is not space-filled as with a MOVE statement. If
ADDRESS-LINE 1is to be printed on a mailing label, for example, the
STRING statement should be preceded by the statement, MOVE SPACES TO
ADDRESS-LINE. This guarantees a space fill to the right of the
concatenated result. Alternatively, the last field concatenated by
the STRING statement can be a field previously set to SPACES. (This
sending field must be moved under control of a delimiter other than
SPACE, of course.)

NON-NUMERIC CHARACTER HANDLING

3.7.4 The OVERELOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation and the pointer value is either known or the POINTER phrase
is not used, the programmer can tell, by simple addition, if the
receiving field is large enough to hold the sending fields. However,
if the DELIMITED BY phrase contains a literal or an identifier, or 1if
the pointer value is not predictable, it may be difficult to tell
whether the size of the receiving field is adequate, and an overflow
may occur.

Overflow occurs when the receiving field is full and the software is
either about to move a character from a sending field or is
considering a new sending field. Overflow may also occur if, during
the initialization of the statement, the pointer contains a value that
is either less than 1 or greater than the 1length o0f the receiving
field. In this case, the software moves no data to the receiving
field and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELD1A FIELD1B DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO PN57.

Figure 3-19
The ON OVERFLOW Phrase

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial wvalue in pointer PNTR from the overflow caused by a receiving
field that is too short. Only a separate test, preceding the STRING
statement, can distinguish between the two.

The following examples illustrate the overflow condition:

DATA DIVISION.

01 FIELD1A PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.

PROCEDURE DIVISION.

. STRING FIELDlA QUOTE DELIMITED BY SIZE INTO FIELD2.
STRING FIELDl1A FIELD1A DELIMITED BY SIZE INTO FIELD2.
STRING FIELD1A FIELD1A DELIMITED BY "C" INTO FIELD2.
STRING FIELD1A FIELD1A FIELD1A FIELDI1A

DELIMITED BY "B" INTO FIELD2.
. STRING FIELD1A FIELD1A "C" DELIMITED BY "C"
INTO FIELD2.
. MOVE 2 TO P.
STRING FIELD1A "AC" DELIMITED BY "C"

INTO FIELD2 WITH POINTER P.

[(%4} W=
e s

Figure 3-20
Various STRING Statements
Illustrating the Overflow Condition

3-17

NON-NUMERIC CHARACTER HANDLING
The results of executing the numbered statements follow:

Table 3-2
Results of the
Preceding Sample Statements

Value of FIELD2 after

the STRING operation Overflow?
1. ABC" NO

2. ABCA ’ YES

3. ABAB NO

4. AAAA NO

5. ABAB YES

6. AABA NO

3.7.5 Subscripted Fields in STRING Statements

All data-names used in the STRING statement may be subscripted, and
the pointer value may be used as a subscript.

Since the pointer value might be used as a subscript on one or more of
the fields in the statement, it is important to understand the order
in which the software evaluates the subscripts and exactly when ‘it
updates the pointer. (The use of the pointer as a subscript is not
specified by ANS-74 COBOL. Before using it, read the note at the end
of this subsection.)

The software updates the pointer after it moves the last character out
of each sending field. Consider the following sample coding:

MOVE 1 TO P.

STRING "ABC"
SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-21
STRING Statement with Pointer

During the movement of "ABC" into the receiving field (R), the pointer
value remains at 1. After the move, the software increases the
pointer value by 3 (the size of the sending field literal "ABC") and
it takes on the value 4. The software then moves the figurative
constant SPACE and increases the pointer value by 1 and it takes on
the wvalue 5. "DEF" is then moved and, on completion of the move, the
software increases the pointer to its final value for this operation,
8.

3-18

NON-NUMERIC CHARACTER HANDLING

Now, consider the updating characteristics of the pointer when applied
to subscripting:

MOVE 1 TO P.
STRING CHAR(P)
CHAR (P)
CHAR(P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-22
Subscripting with the Pointer

If CHAR is a l-character field in a table, the pointer increases by
one after each field has been moved and the software will move them
into R as if they had been subscripted as CHAR(l), CHAR(2), CHAR(3),
and CHAR(4). If CHAR is a 2-character field, the pointer increases by
two after each field has been moved and the fields will move into R as
if they had been subscripted as CHAR(1), CHAR(3), CHAR(5), and
CHAR(7) .

Thus, the software evaluates the subscript of a sending item once,
immediately before it considers the item as a sending item.

The software evaluates the subscript of a receiving item only once, at
the start of the STRING operation. Therefore, if the pointer is used
as a subscript on the receiving field, changes occurring to the
pointer during the execution of the STRING statement will not alter
the choice of which receiving string is altered.

Even the delimiter field can be subscripted, and it too can be
subscripted with the pointer. The software re-evaluates the delimiter
subscript once for each sending field, immediately before it compares
the delimiter to the field. Thus, by subscripting it with the pointer
value, the delimiter can be changed for each sending field. This has
the peculiar effect of choosing the next sending field's delimiter
based on the position, in the receiving field, into which its first
character will fall. For example, consider the following sample
coding:

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

MOVE 1 TO P.

STRING "ABC"
" ABC "
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Figure 3-23
Subscripting the Delimiter

The following table shows the value that will arrive in the

field
shown

NON-NUMERIC CHARACTER HANDLING

receiving

(R) from the three "ABC" literals if DTABLE contains the values

in the left-hand column:

Table 3-3
Results of the
Preceding Sample Statements

3.7.6

DTABLE Value R Value
ABCDEFG (Unchanged)
BCDEFGH AABABC
CDEFGHI ABABCABC
ccccecececce ABABAB

NOTE

The rules in this section, concerning
subscripts in the STRING statement, are
rules that are not specified by 1974
American National Standard COBOL.
Dependence on these rules, particularly
those involving the use of the pointer
field as a subscript, may produce
programs that will not perform the same
way on other COBOL compilers.

If the pointer field is not used as a
subscript on any of the fields in the
statement, the point at which the
software evaluates the subscripts is
immaterial to the execution of the
statement. Thus, by avoiding the use of
the pointer as a subscript, uniform
results can be expected from all COBOL
compilers that adhere to 1974 ANS COBOL.

Common Errors, STRING Statement

The most common errors made when writing STRING statements are:

using the word "TO" instead of "INTO"
forgetting to write "DELIMITED BY SIZE";
forgetting to initialize the pointer;
initializing the pointer to 0 instead of 1;

forgetting to provide for space f£ill of the receiving
when it is desirable.

field

NON-NUMERIC CHARACTER HANDLING

3.8 THE UNSTRING STATEMENT

The UNSTRING statement disperses the contents of a single sending
field into multiple receiving fields.

The statement has many forms; the simplest is equivalent in function
to a non-numeric MOVE statement. Consider the following illustration;
the sample statement is equivalent to MOVE FIELD1 TO FIELD2,
regardless of the relative sizes of the two fields.

UNSTRING FIELD1 INTO FIELD2.

Figure 3-24
Sample UNSTRING Statement

The sending field (FIELDl) may be either a group item or an
alphanumeric, or alphanumeric edited elementary item. The receiving
field (FIELD2) may be alphabetic, alphanumeric, or numeric, but it
cannot specify any type of editing.

If the receiving field is numeric, it must be DISPLAY usage. The
picture-string of a numeric receiving field may contain any of the
legal numeric description characters except for P and, of course, the
editing characters. The UNSTRING statement moves the sending field to
numeric receiving fields as if the sending field had been described as
an unsigned integer; further, it automatically truncates or zero
fills as required.

If the receiving field is not numeric, the software follows the rules
for elementary non-numeric MOVE statements. It left-justifies the
data in the receiving field, truncating or space-filling as required.
(If the data-description of the receiving field contains a JUSTIFIED
clause, the software right-justifies the data, truncating or
space-filling to the left as required.)

3.8.1 Multiple Receiving Fields

An important characteristic of the UNSTRING statement is its ability
to disperse one sending field into several receiving fields. Consider
the following example of the UNSTRING statement written with multiple
receiving fields:

UNSTRING FIELD1 INTO
FIELD2A FIELD2B FIELD2C.

Figure 3-25
Multiple Receiving Fields

In this sample statement, FIELDl1l is the sending field. The software
performs the UNSTRING operation by scanning across FIELDl from left to
right. When the number of characters scanned is equal to the number
of characters in the receiving field, the software moves the scanned
characters into the receiving field and begins scanning the next group
of characters for the next receiving field.

3-21

NON-NUMERIC CHARACTER HANDLING

Assume that each of the receiving fields in the preceding illustration
(FIELD2A, FIELD2B, and FIELD2C) is five characters long, and that
FIELDl is 15 characters long. The size of FIELD2A determines the
number of characters for the first move. The software scans across
FIELDl1l until the number of characters scanned equals the size of
FIELD2A (5). It then moves those first five characters to FIELD2A,
and sets the scanner to the next (sixth) character position in FIELDl.
The size of FIELD2B determines the size of the next move. The
software begins this move by scanning across FIELDl from character
position six, until the number of scanned characters equals the size
of FIELD2B (5). 1It then moves the sixth through the tenth characters
to FIELD2B, and sets the scanner to the next (eleventh) character
position in FIELDl. FIELD2C determines the size of the last move (for
this example) and causes characters 11 through 15 of FIELDl to be
moved into FIELD2C, thus terminating this UNSTRING operation.

Each data movement acts as an individual MOVE statement, the sending
field of which is an alphanumeric field equal in size to the receiving
field. If the receiving field is numeric, the move operation will
convert the data to the numeric form. For example, consider what
would happen if the fields under discussion had the data descriptions
and were manipulating the values shown in the following table:

Table 3-4
Values Moved Into the Receiving Fields
Based on the Value in the Sending Field

FIELD1 FIELD2A FIELD2B FIELD2C

PIC X(15). PIC X(5) PIC S9(5) PIC S999V99
VALUE IS: LEADING SEPARATE

ABCDE1234512345 ABCDE +12345 3450
XXXXxX0000100123 XXXXX +00001 1230

FIELD2A is an alphanumeric field and, therefore, the software simply
conducts an elementary non-numeric move with the first five
characters.

FIELD2B, however, has a leading separate sign that is not included in
its size. Thus, the software moves only five numeric characters and
generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to
the right of it, plus an overpunched sign on the low-order digit. The
sending field should supply five numeric digits; but, since the
sending field 1is alphanumeric, the software treats it as an unsigned
integer; it truncates the two high-order digits and supplies two zero
digits for the decimal positions. Further, it supplies a positive
overpunch sign, making the low-order digit a +0 (or the ASCII
character, {). (There is no simple way to have UNSTRING recognize a
sign character or a decimal point in the sending field.)

If the sending field is shorter than the sum of the sizes of the
receiving fields, the software ignores the remaining receiving fields.
If it reaches the end of the sending field before it reaches the end
of one of *he receiving fields, the software moves the scanned
characters into that receiving field. It left-justifies and fills the
remaining character positions with spaces for alphanumeric data, or
decimal point aligns and zero fills the remaining character positions

3-22

NON-NUMERIC CHARACTER HANDLING

for numeric data. Consider the following examples of a sending field
that is too short. (The statement is UNSTRING FIELDl1 INTO FIELD2A
FIELD2B. FIELD2A 1is a 3-character alphanumeric field, and receives
the first three characters of FIELDl (ABC) in every operation.
FIELD2B, however, runs out of characters every time before filling.
Since FIELD2A always contains the characters ABC, it is not shown.)

Table 3-5
Handling a Sending Field that is Too Short

FIELD1l FIELD2B FIELD2B
PIC X(6) PICTURE IS: Value after UNSTRING Operation
VALUE IS:
ABCDEF XXXXX DEF

599999 0024F
ABC246 S9v999 600

S9999 +0246

LEADING SEPARATE

3.8.2 The DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter,
rather than by the size of the receiving field. The DELIMITED BY
phrase supplies the delimiter characters.

UNSTRING delimiters are quite flexible; they can be 1literals,
figurative constants (including ALL literal), or identifiers
(identifiers may even be subscripted data-names). This sub-section-
discusses the use of these three types of delimiters. Subsequent
sections cover multiple delimiters, the COUNT phrase, and the
DELIMITER phrase. Subscripting delimiters is discussed at the end of
this section under Subscripted Fields in UNSTRING Statements.

Consider the following sample UNSTRING statement; it wuses the
figurative constant, SPACE, as a delimiter:

UNSTRING FIELDl DELIMITED BY SPACE INTO FIELD2.

‘Figure 3-26
Delimiting with a Space Character

In this example, the software scans the sending field (FIELD1),
searching for a space character. 1If it encounters a space, it moves
all of the scanned (non-space) characters that precede that space to
the receiving field (FIELD2). If it finds no space character, it
moves the entire sending field. When it has determined the size of
the sending field, the software moves the contents of that field
following the rules for the MOVE Statement, truncating or zero filling
as required.

The following table shows the results of an UNSTRING operation that
delimits with a 1literal asterisk (UNSTRING FIELDl1 DELIMITED BY "*"
INTO FIELD2).

NON-NUMERIC CHARACTER HANDLING

Table 3-6
Results of Delimiting with an Asterisk
FIELD1 FIELD2 . FIELD2
PIC X (6) PICTURE IS: VALUE AFTER
VALUE IS: UNSTRING
XXX ABC
ABCDEF X(7)) ABCDEF
XXX JUSTIFIED DEF
*kkkkx XXX AAA
*ABCDE XXX AAA
A***kk XXX JUSTIFIED AAA
246%%* 59999 024F
12345%* S9999 SEPARATE 2345+
TRAILING
2468%* © 8999V9 SEPARATE +4680
LEADING
246% 9999 0000

If the delimiter matches the first character in the sending field, the
software considers the size of the sending field to be zero. The
movement operation still takes place, however, and fills the receiving
field with spaces or zeroes depending on its class.

A delimiter may also be applied to an UNSTRING statement that has
multiple receiving fields:

UNSTRING FIELDl1 DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

Figure 3-27
Delimiting with Multiple Receiving Fields

The sample instruction in Figure 3-27 causes the software to scan
FIELD1 searching for a character that matches the delimiter. If it
finds a match, it moves the scanned characters to FIELD2A and sets the
scanner to the next character position to the right of the character
that matched. It then resumes scanning FIELD1l for a character that
matches the delimiter. If it finds a match, it moves all of the
characters that lie between the <character that first matched the
delimiter and the character that matched on the second scan, and sets
the scanner to the next character position to the right of the
character that matched. (The DELIMITED BY phrase could handle
additional receiving fields in the same manner as it handled FIELD2B.)

The following table shows the results of an UNSTRING operation that
applies a delimiter to multiple receiving fields (UNSTRING FIELD1
DELIMITED BY "*" INTO FIELD2A FIELD2B).

NON-NUMERIC CHARACTER HANDLING

Table 3-7
Results of Delimiting
Multiple Receiving Fields

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
ABC*DEF* ABC DEF
ABCDE*FG ABC FGA
A*Bhxkkk*x AAA BAA
*AB*CD** AAA ABA
**ABCDEF AAA AAA
A*BCDEFG AAN BCD
ABC**DEF ABC AAA
A******B AAA AAA

The last two examples illustrate the limitations of a single character
delimiter. - Accordingly, the delimiter may be longer than one
character and it may be preceded by the word ALL.

The following table shows the results of an UNSTRING operation that
uses a 2-character delimiter (UNSTRING FIELDl1 DELIMITED BY "**" INTO
FIELD2A FIELD2B):

Table 3-8
Results of Delimiting
with Two Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC XXX PIC XXX
JUSTIFIED

ABC**DEF ABC DEF
A*B*C*D* A*B AAA
AB***C*D ABA C*D
AB**C*D* ABA *p*
AB**CD** ABA , ACD
AB***CD* ABA CD*
AB*****Cp ABA AAA

NON-NUMERIC CHARACTER HANDLING

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the
action of the UNSTRING statement remains essentially the same as with
one delimiter wuntil the scanning operation finds a match. At this
point, the software scans farther, looking for additional consecutive
strings of characters that also match the delimiter item. It
considers the "ALL delimiter" to be one, two, three, or more adjacent
repetitions of the delimiter item.

The following table illustrates the results of an UNSTRING operation
that wuses an ALL delimiter (UNSTRING FIELDl DELIMITED BY ALL "*" INTO
FIELD2A FIELD2B).

Table 3-9
Results of Delimiting
with ALL Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B

VALUE 1IS: PIC XXX PIC XXX

JUSTIFIED

ABC*DEF¥* ABC DEF

ABC**DEF ABC - DEF

A*kkkkkp AAA AAF

A*F***** AAA AAF

A*CDEFG AAA EFG

The next table illustrates the results of an UNSTRING operation that
combines ALL with a 2-character delimiter (UNSTRING FIELDl1 DELIMITED
BY ALL "**" INTO FIELD2A FIELD2B).

Table 3-10
Results of Delimiting with
ALL Double Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) PIC XXX PIC XXX
VALUE IS: JUSTIFIED
ABC**DEF ABC : DEF
AB**DE** ABA ADE
A***D*** AAA A*D
Axxkkkkk . AAA AA*

3-26

NON-NUMERIC CHARACTER HANDLING

In addition to unchangeable delimiters, such as literals and
figurative constants, delimiters may be designated by identifiers.
Identifiers (which may even be subscripted data-names) permit variable
delimiting. Consider the following sample statement:

UNSTRING FIELD1l DELIMITED BY DEL1
INTO FIELD2A FIELD2B.

Figure 3-28
Delimiting with an Identifier

The data-name, DELl, must be alphanumeric. It may be a group or
elementary item, and it may be edited. (Since the delimiter is not a
receiving field, any editing characters will not effect its use, other
than contributing to the size of the item.)

If the delimiter contains a subscript, the subscript may be varied as
a side effect of the UNSTRING operation. The evaluation of subscripts
is discussed later in this section.

3.8.2.1 Multiple Delimiters - The UNSTRING statement has the ability
to scan a sending field, searching for a match from a list of
delimiters. This list may contain ALL delimiters and delimiters of
various sizes. The only requirement of the list is that delimiters
must be connected by the word OR.

The following sample statement separates a sending field into three
receiving fields. The sending field consists of three strings
separated by the following: (1) any number of spaces, or (2) a comma
followed by a single space, or (3) a single comma, or (4) a tab
character, or (5) a carriage return character. (The ", " must precede
the "," in the list if it is ever to be recognized.)

UNSTRING FIELD1 DELIMITED BY
ALL SPACE OR

" ’ L1} OR
" R n OR
TAB OR
CR

INTO FIELD2A FIELD2B FIELD2C.

Figure 3-29
Multiple Delimiters

The following table illustrates the potential of this statement. The
tab (represented by the letter t) and carriage return (represented by
the letter r) characters represent single character fields containing
the ASCII horizontal tab and carriage return characters.

3-27

NON-NUMERIC CHARACTER HANDLING

Table 3-11
Results of the Multiple Delimiters
Shown in Figure 3-29

FIELD1 FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A,0,Cr AAA 0000 CAA
At456,AE AAA 0456 EAA
AAAA 3AAA9 AAA 0003 9AA
AttBr v AAA 0000 BAA
a,,C AAA 0000 CAA
ABCD,A4321,2 ABC 4321 ZAA
t--tab character, r--carriage return character

3.8.3 The COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and
stores the length in a user-supplied data area.

The length of a delimited sending field may vary widely (from zero to
the full length of the field) and some programs may require knowledge
of this length. For example, if it exceeds the size of the receiving
field (which is fixed 1in size) some data may be truncated and the
program's logic may require this information.

To use the phrase, simply follow the réceiving field name with the
words COUNT IN and an identifier. Consider the following sample
statement:

UNSTRING FIELDl1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

Figure 3-30
The COUNT Phrase

In this sample statement, the software will count the number of
characters between the left-hand end of FIELD1l and the first asterisk
in FIELDl and place that value into COUNT2A; thus, COUNT2A contains
the size of the first sending string. The software does not include
the delimiter in the count (as it is not a part of the string).

The software then counts the number of characters in the second
sending field and places that value into COUNT2B.

The phrase should be used only where needed; in this example the
length of the string moved to FIELD2C is not needed, so no COUNT
phrase follows it.

NON-NUMERIC CHARACTER HANDLING

If the receiving field is shorter than the value placed in the count
field, the software truncates the sending string. (If the number of
integer positions in a numeric field is smaller than the value placed
into the count field, high-order numeric digits have been lost.)

If the software finds a delimiter match on the first character it
examines, it places a zero in the count field.

The count field must be described as a numeric integer, either COMP or
DISPLAY usage, with no editing symbols nor the character P in its
picture-string. The software moves the count value into the count
field according to the rules for an elementary numeric MOVE statement

The COUNT phrase may be used only in conjunction with the DELIMITED BY
phrase.

3.8.4 The DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that
delimited the sending field to be stored in a user-supplied data area.
This phrase is most useful when: (1) the statement contains a
delimiter 1list, (2) any one of the items in the list might have
delimited the field, and (3) program logic flow depends on which one
found a match. 1In fact, the DELIMITER and COUNT phrases could be used
together and program logic flow could depend on both the size of the
sending string and the delimiter character that terminated it.

To use the DELIMITER phrase, simply follow the receiving field name
with the words DELIMITER IN and an identifier. (The software places
the delimiter character in the area named by the identifier.) Consider
the following sample UNSTRING statement:

UNSTRING FIELDl DELIMITED BY "," OR TAB OR
ALL SPACE OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

Figure 3-31
The DELIMITER Phrase

After moving the first sending string to FIELD2A, the software takes
the character (or characters) that delimited that string and places it
in DELIMA. DELIMA, then, contains a comma, or a tab, or a carriage
return, or any number of spaces. Since the delimiter string is moved
under- the rules of the elementary non-numeric MOVE statement, the
software truncates or space fills with left or right justification
(depending on its data description).

The software then moves the second sending string to FIELD2B and
places its delimiting character into DELIMB.

When a sending string is delimited by the end of the sending field
(rather than a match on a delimiter) the delimiter string is of zero
length. This causes the DELIMITER item to be space filled. The
phrase should be used only where needed; in this example, the
character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

NON-NUMERIC CHARACTER HANDLING

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It may contain editing characters and it may even
be a group item.

When the DELIMITER and COUNT phrases are used together, they must
appear in the correct order (DELIMITER phrase preceding the COUNT
phrase). Both of the data items named in these phrases may be
subscripted or indexed. If they are subscripted, the subscript may be
varied as a side effect of the UNSTRING operation. (The evaluation of
subscripts is discussed in section 3.8.8.)

3.8.5 The POINTER Phrase

Although the UNSTRING statement normally starts at the 1left-hand end
of the sending field, the POINTER phrase permits the user to select a
character position in the sending field for the software to begin
scanning. (The scanning, however, remains left-to-right.)

When a sending field is to be dispersed into multiple receiving
fields, it often happens that the choice of delimiters, the size of
subsequent receiving fields, etc. depend on the value in the first
sending string or the character that delimited that string. Thus, the
program may need to move the first field, hold its place in the
sending field, and examine the results of the operation to determine
how to handle the sending items that follow. This is done by using an
UNSTRING statement with a POINTER phrase that fills only the first
receiving field. When the first string has been moved to a receiving
item, the software updates the pointer data item with a new position
(one character beyond the delimiter that caused the interruption) to
begin the next scanning operation. The program may then examine the
new position, the receiving field, the delimiter value, the sending
string size, and resume the scanning operation by executing another
UNSTRING statement with the same sending field and pointer data item.
Thus, the UNSTRING statement can move one sending string at a time,
with the form of each move being dependent on the context of the
preceding string of data.

The POINTER phrase must follow the last receiving item in the
statement. Consider the following two UNSTRING statements with their
accompanying POINTER phrases and tests:

MOVE 1 TO P.
UNSTRING FIELDl1 DELIMITED BY
":" OR TAB OR CR OR ALL SPACE
INTO FIELD2A
DELIMITER IN DELIMA
COUNT IN LSIZEA
WITH POINTER PNTR. ,
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"
IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

. ee

UNSTRING FIELDl1 DELIMITED BY ... WITH POINTER PNTR.

Figure 3-32
The POINTER Phrase

3-30

NON-NUMERIC CHARACTER HANDLING

PNTR contains the current position of the scanner 1in the sending
field. The second UNSTRING statement uses PNTR to begin scanning the
additional sending strings in FIELD1.

Since the software considers the left-most character to be character
position one, the value returned by PNTR may be used to examine the
next character. To do this, simply use PNTR as a subscript on the
sending field (providing that the sending field is also described as a
table of characters). For example, consider the following sample
coding:

01 FIELDI.
02 FIELD1-CHAR OCCURS 40 TIMES.

LTINS

UNSTRING FIELD1
WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" ...

Figure 3-33
Examining the Next Character
By Using the Pointer Data
Item as a Subscript

Another way to examine the next character of the sending field is to
use the UNSTRING statement to move it to a l-character receiving
field. Consider the following sample coding:

UNSTRING FIELD1

WITH POINTER PNTR.
UNSTRING FIELDl1 INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHAR1l = "X" ...

Figure 3-34
Examining the Next Character
By Placing It Into a l-Character Field

The program must decrement PNTR in order for this case to work 1like
the one illustrated in Figure 3-33, since the second UNSTRING
statement will increment the pointer value by 1.

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The software will terminate the UNSTRING
operation if the initial value of the pointer 1is 1less than one or
greater than the length of the sending field. (A pointer value that
is less than one or greater than the length of the sending field
causes an overflow condition. Overflow conditions are discussed in
section 3.8.7.)

The POINTER and TALLYING phrases may be used together in the same

UNSTRING statement; but, when both are used, the POINTER phrase must
precede the TALLYING phrase.

3-31

NON-NUMERIC CHARACTER HANDLING

3.8.6 The TALLYING Phrase

The TALLYING phrase counts the number of receiving fields that
received data from the sending field.

When an UNSTRING statement contains several receiving fields, the
possibility exists that there may not always be as many sending
strings as there are receiving fields. The TALLYING phrase provides a
convenient method for keeping a count of how many fields were acted
upon.

MOVE 0 TO RCOUNT.
UNSTRING FIELD1 DELIMITED BY "," OR ALL SPACE
INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Figure 3-35
The TALLYING Phrase

If the software has moved only three sending strings when it reaches
the end of FIELDl, it adds 3 to RCOUNT. The first three fields
(FIELD2A, FIELD2B, and FIELD2C) contain data from the operation, and
the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents
plus the number of sending strings acted upon by the UNSTRING command
just executed. Thus, the programmer may want to initialize the tally
count before each use.

When used in the same statement with a POINTER phrase, the TALLYING
phrase must follow the POINTER phrase and both phrases must follow all
of the field names, the DELIMITER and COUNT phrases. The data items
for both phrases must contain numeric integers, that is, be without
editing characters or the letter P in their picture-strings; both
data items may be either COMP or DISPLAY usage. They may be signed or
unsigned and, if they are DISPLAY usage, they may contain any desired
sign option.

The data items for both phrases may be subscripted or indexed, or they
may be wused as subscripts on other fields in the statement. (The
evaluation of subscripts is discussed in section 3.8.8.) A convenient
use of the TALLYING phrase data item is as a subscript of a receiving
field. Consider the following sample coding, which causes program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field.

MOVE 1 TO PNTR, TLY.
PAR1. ©UNSTRING FIELD1 DELIMITED BY "," OR CR
INTO FIELD2(TLY)
DELIMITER IN DEL2
WITH POINTER PNTR
TALLYING IN TLY.
IF DEL2 = "," GO TO PAR1.

Figure 3-36
The POINTER and TALLYING Phrases
Used Together

NON-NUMERIC CHARACTER HANDLING

This sample coding causes program control to loop through the UNSTRING
statement, using the pointer, PNTR, to scan across FIELDl with
successive executions. Each comma isolates a sending string until
control reaches either a carriage return character or the end of
FIELDl. 1If it reaches the end of the field without encountering a
carriage return character, the software places a space into the
delimiter field, DEL2, and control falls through the IF statement and
out of the loop.

Since the TALLYING data item, TLY, is increased by 1 after each data
movement, it serves as a subscript on the receiving field. 1In effect
this causes the software to unpack the value in FIELDl into an array
of fixed-size fields. Further, an array of COUNT data items can be
supplied and loaded by the UNSTRING/TALLYING statement by adding the
following phrase to the coding in Figure 3-36:

COUNT IN C(TLY)

Figure 3-37
Subscripting the COUNT Phrase
With the TALLYING Data Item

The TALLYING data item, in the above example, is one greater than the
number of receiving fields acted upon by the UNSTRING operation. This
is because the data item must be initialized to a wvalue of one in
order to be used as a subscript for the first receiving item.

3.8.7 The OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and provides an
imperative statement to be executed when it detects the condition. An
overflow condition exists when either of the following two situations
occurs: '

1. The UNSTRING statement is about to be executed and its
pointer data item contains a value of 1less than one or
greater than the size of the sending field. When it detects
this situation, the software executes the OVERFLOW phrase
before it moves any data. Thus, the values of all of the
receiving fields remain unchanged.

2. The UNSTRING statement has filled all of the receiving fields
and data still remains in the sending field that has not been
matched as a delimiter or included in a sending string. When
it detects this situation, the software executes the OVERFLOW
phrase after it has executed the UNSTRING statement. Thus,
the values of all of the receiving fields are updated, but
some data has not been moved.

If the UNSTRING operation causes the scanner to move off the end of
the sending field (thus exhausting it), the software will not execute
the OVERFLOW phrase.

Consider the following set of instructions, which cause program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field. The TALLYING data item is a subscript indexing the
receiving field. (Compare this loop with the one in Figure 3-36,
which accomplishes the same thing.)

3-33

NON-NUMERIC CHARACTER HANDLING

MOVE 1 TO TLY PNTR.
PARl. UNSTRING FIELD1 DELIMITED BY "," OR CR
INTO FIELD2(TLY)
WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARl.

Figure 3-38
Using the OVERFLOW Phrase

NOTE

The overflow condition also occurs if
the value of a pointer data item lies
outside the sending field at the start
of execution of the UNSTRING statement.
(The pointer value must not be less than
1, nor dgreater than the length of the
sending field.) This type of overflow is
not distinguishable from the overflow
condition described at the start of this
section, except that this condition
causes the UNSTRING statement to
terminate before any data movement takes
place. Then, the values of all
receiving fields remain unchanged.

3.8.8 Subscripted Fields in UNSTRING Statements

Since the flexibility of the UNSTRING statement 1is enhanced by
subscripting and indexing and particularly by subscripting with other
fields within the statement (such as subscripting the receiving field
with the TALLYING data item as discussed above), it is important to
understand how often and exactly when the software evaluates these
subscripts and indexes. This sub-section discusses the frequency and
times of subscript evaluation.

The software evaluates subscripts and indexes on the following items
only once, at the initiation of the UNSTRING statement; thus, any
change in subscript values during the execution of the statement has
no effect on these fields:

1. Sending field,

2. POINTER data item,

3. TALLYING data item.
The software evaluates subscripts and indexes on the following items
immediately before it moves data into the item. It moves the data to
these items in the order in which they are 1listed 1in the statement
(which is the same order as below):

1. Receiving field,

2. DELIMITER data item,

3. COUNT data item.

3-34

NON-NUMERIC CHARACTER HANDLING

The software evaluates any subscripts and indexes on the data-names in
the DELIMITED BY phrase (delimiters) immediately before it scans each
sending string looking for a delimiter match. Thus, it re-evaluates
these data-names once for each receiving field in the statement.
If any of the following items are used as subscripts on any receiving
fields, the programmer must be aware of the point at which these items
are updated:

) POINTER data-item,

° TALLYING data-item,

° COUNT data-item,

] Another receiving field.

Figure 3-39 illustrates, with a flow chart, the sequence of evaluation
operations:

START

=
~
w
u EVALUATE IF STORE
EVALUATE P A, g DELIMITER POINTER SCANNER IN
LL a RECEIVING PHRASE POINTER
DELIMITER REPETITIVE w FIELD PHRASE POINTER,
SUBSCRIPTS MATCHES é SUBSCRIPT
@ E
[+
= STORE IF
SCAN s ADD 170
s DELIMITER
SENDING UPDATE 2 DTRING IN RRNe TALLYING
FIELD FOR SCANNER 8 RECEIVING DATA ITEM
a PRESENT
DELIMITER by FIELD

EVALUATE ([evaLoate

[
& COUNT SENDING
R | pr YES
DEn;';\MrlcT: ? EtElEEIvYDNG a FIELD FIELD EXHAUSTED
? SUBSCRIPT T SUBSCRIPT N
&
<
o
X
a.
MOVE SENDING '2 STORE COUNT
ALL STRING TO 2 VALUE IN MORE
g RECEIVING
DELINTER FIELD . COUNT FIELD RECEIVING
? w
=\ FIELDS
?

Sequence of Subscript Evaluation

Figure 3-39

3-35

NON-NUMERIC CHARACTER HANDLING

NOTE

The rules in this section concerning the
exact point at which the software
evaluates the identifiers in the
DELIMITED BY phrase and the point at
which it wupdates the POINTER and
TALLYING data items, are rules that are
specified by 1974 American National
Standard COBOL, as opposed to the STRING
statement where these are not so
specified.

3.8.9 Common Errors, UNSTRING Statement
The most common errors made when writing UNSTRING statements are:
. Leaving the OR connector out of a delimiter list;

° Misspelling or interchanging the words, DELIMITED and
DELIMITER;

° Writing the DELIMITER and COUNT phrases in the wrong order
when both are present (DELIMITER must precede COUNT);

e Leaving out the word INTO or writing it as TO;

° Repeating the word INTO where it is not needed; thus:

UNSTRING FIELDl DELIMITED BY SPACE OR TAB
INTO FIELDZ2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

Figure 3-40
Erroneocusly Repeating the Word INTO

° Writing the POINTER and TALLYING phrases in the wrong order
(POINTER must precede TALLYING).

3.9 THE INSPECT STATEMENT

The INSPECT statement examines the character positions in a field and
counts or replaces certain characters (or groups of characters) in
that field.

Like the STRING and UNSTRING operations, INSPECT operations scan
across the field from 1left to right; further, 1like those two
statements, the INSPECT statement features a phrase which allows it to
begin or terminate the scanning operation with a delimiter match.
(Thus, the operation can begin within the field instead of at the
left-hand end, or it may begin at the left-hand end and terminate
within the field.)

The TALLYING operation (which counts certain characters in the field)
and the REPLACING operation (which replaces certain characters in the
field) are quite versatile and may be applied to all of the characters
in the delimited area of the field being inspected, or they may be
applied only to those characters that match a given character string

3-36

NON-NUMERIC CHARACTER HANDLING

under stated conditions. Consider the following sample statements,
which both cause a scan of the complete field:

INSPECT FIELD1 TALLYING TLY FOR ALL "B".

Figure 3-41
Sample INSPECT...TALLYING Statement

This statement scans FIELD1 looking for the character B. Each time it
finds a B, it increments TLY by 1.

INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

Figure 3-42
Sample INSPECT...REPLACING Statement

This statement scans FIELD1l looking for space characters. Wherever it
finds a space character, it replaces it with zero.

One INSPECT statement can contain both a TALLYING phrase and a
REPLACING phrase. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements and, in fact,
the software compiles such a statement into two distinct INSPECT
statements. (To simplify debugging, therefore, it 1is best to
initially write the two phrases in separate INSPECT statements.)

3.9.1 The BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and (possibly) restricts
the area of the field being inspected.

The following sample statement would count only the zeroes that
precede the percent sign (%) in FIELD1.

INSPECT FIELD1l TALLYING TLY
FOR ALL ZEROES BEFORE "%".

Figure 3-43
Sample INSPECT...BEFORE Statement

The delimiter (the percent sign in the preceding sample statement) can
be a single character, a string of characters, or any figurative
constant. Further, it can be either an identifier or a literal.

° If the delimiter is an identifier, it must be an elementary
data item of DISPLAY usage. It may be alphabetic,
alphanumeric, or numeric, and, it may contain editing
characters. The compiler always treats the item as if it had
been described as an alphanumeric string. (It does this by
implicit redefinition of the item, as described in Section
3.9.2.)

® If the delimiter is a literal, it must be non-numeric.

3-37

NON-NUMERIC CHARACTER HANDLING

The software repeatedly compares the delimiter characters against an
equal number of characters in the field being inspected. 1If none of
the characters matches the delimiter, or if insufficient characters
remain in the field for a full comparison (at the right-hand end), the
software considers the comparison to be unequal.

The examples of the INSPECT statement in Figure 3-44, illustrate the
way the delimiter <character finds a match in the field being
inspected. (The portion of the field the statement ignores as a
result of the BEFORE/AFTER phrase delimiters is crossed out with a
slash, and the portion it inspects is underlined.)

INSTRUCTION FIELD1 VALUE
INSPECT FIELDl...BEFORE "E". ABCDEV@HY
INSPECT FIELDl...AFTER "E". KBZPEFGHI
INSPECT FIELDl...BEFORE "K". ABCDEFGHI
INSPECT FIELDl...AFTER "K". A A 64
INSPECT FIELDl...BEFORE "AB". XBCPEYIHY
INSPECT FIELDl...AFTER "AB". XPCDEFGHI
INSPECT FIELDl...BEFORE "HI". ABCDEFGHY
INSPECT FIELDl...AFTER "HI". HBTVEVEHY
INSPECT FIELDl...BEFORE "IA". ABCDEFGHI
INSPECT FIELDl...AFTER "IA". KBIPRYGRY
The ellipsis represents the position of the TALLYING or REPLACING
phrase.

Figure 3-44
Matching the Delimiter Characters
to the Characters in a Field

The software scans the field for a delimiter match before it scans for
the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection.
The importance of the separate scan is discussed further in Section
3.9.3.

3.9.2 Implicit Redefinition

The software requires that certain fields referred to by the INSPECT
statement be alphanumeric fields. If one of these fields was
described as another data class, the compiler redefines that field so
the INSPECT statement can handle it as a simple alphanumeric string.
This implicit redefinition is conducted as follows:

] If the field was described as alphabetic, alphanumeric
edited, or unsigned numeric, the compiler simply redefines it
as alphanumeric. This is a compile-time operation; no data
movement occurs at object-time.

° If the field was described as signed numeric, the compiler
first removes the sign and then redefines the field as
alphanumeric. 1If the sign 1is a separate character, the
compiler ignores that character, essentially shortening the

3-38

NON-NUMERIC CHARACTER HANDLING

field, and that character does not participate in the
implicit redefinition. If the sign is an "overpunch" on the
leading or trailing digit, the compiler actually removes the
sign value and leaves the character with only the numeric
value that was stored in it. The compiler alters the digit
position containing the sign before beginning the INSPECT
operation and restores it to its former value after the
operation. If the sign's digit position does not contain a
valid ASCII signed numeric digit, the action of the
redefinition causes the value to change. Table 3-12 shows
these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage
position. All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does
not affect implicit redefinition.

Table 3-12
Original, Altered, and Restored Values Resulting
from Implicit Redefinition

ORIGINAL VALUE ALTERED VALUE RESTORED VALUE
} (173) 0 (60) } (173)
A (101) 1 (61) A (101)
B (102) 2 (62) B (102)
C (103) 3 (63) C (103)
D (104) 4 (64) D (104)
E (105) 5 (65) E (105)
F (106) 6 (66) F (106)
G (107) 7 (67) G (107)
H (110) 8 (70) H (110)
I (111) 9 (71) I (111)
{ (175) 0 (60) { (175)
J (112) 1 (61) J (112)
K (113) 2 (62) K (113)
L (114) 3 (63) L (114)
M (115) 4 (64) M (115)
N (116) 5 (65) N (116)
0o (117) 6 (66) 0o (117)
P (120) 7 (67) P (120)
Q0 (121) 8 (70) Q (121)
R (122) 9 (71) R (122)
0 (60) 0 (60) } (173)
1 (61) 1 (6l) A (101)
2 (62) 2 (62) B (102)
3 (63) 3 (63) C (103)
4 (64) 4 (64) D (104)
5 (65) 5 (65) E (105)
6 (66) 6 (66) F (106)
7 (67) 7 (67) G (107)
8 (70) 8 (70) H (110)
9 (71) 9 (71) I (111)
All other values 0 (60) } (173)

NON-NUMERIC CHARACTER HANDLING

3.9.3 The INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the
INSPECT statement has only one method for inspecting the characters in
the field. This section describes this method.

However, before discussing how the inspection operation is conducted,
let's analyze the INSPECT statement itself:

INSPECT FIELD1 TALLYING TLY FOR ALL "B" BEFORE "A".
The field being The argument
inspected
The operation The delimiter
phrase phrase
Figure 3-45

Sample INSPECT Statement

The format of the INSPECT statement requires that a field be named
which is to be inspected (FIELD1 above); the field name must be
followed by an operation phrase (TALLYING TLY above); and, that
phrase must be followed by one or more identifiers or literals ("B"
above). These identifiers or literals comprise the "arguments" (items
to be compared to the field being inspected). More than one argument
makes up the "argument list". .

e TALLYING Arguments

Each argument in an argument 1list can have other fields
associated with it. Thus, each argument that is used in a
TALLYING operation must have a tally counter (TLY above)
associated with it. The software increments the tally
counter each time it matches the argument with a character or
group of characters in the field being inspected.

) REPLACING Arguments

INSPECT FIELD1 REPLACING ALL "Q" BY "§".

replacing argument

Figure 3-46
Sample REPLACING Argument

Each argument in an argument list that is used in a REPLACING
operation must have a replacement item ($ above) associated
with it. The software uses the replacement item to replace
each string of characters in the field that matches the
argument.

Each argument in an argument list (that is used with either a TALLYING
or REPLACING operation) may have a delimiter field (BEFORE/AFTER
phrase) associated with it. If the delimiter field is not present,
the software applies the argument to the entire field. If the
delimiter field is present, the software applies the argument only to
that portion of the field specified by the BEFORE/AFTER phrase.

NON-NUMERIC CHARACTER HANDLING

3.9.3.1 Setting the Scanner - The INSPECT operation begins by setting
the scanner to the leftmost character position of the field being
inspected. It remains on this character until an argument has been
matched with a character (or characters) or until all arguments have
failed to find a match at that position.

3.9.3.2 Active/Inactive Arguments - When an argument has =~ a
BEFORE/AFTER phrase associated with it, that argqument has a delimiter
and may not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it
starts the INSPECT operation in an inactive state. The delimiter of
the AFTER phrase must find a match before the argument can participate
in the comparison. When the delimiter finds a match, the software
retains the character position beyond the matched character string;
then, when the scanner reaches or passes this position, the argument
becomes active.

INSPECT FIELDl1 TALLYING TLY
FOR ALL "B" AFTER "X".

Figure 3-47
Sample AFTER Delimiter Phrase

If FIELDl in Figure 3-47 has a value of "ABABXZBA", the argument B
remains inactive until the scanner finds a match for the delimiter X.
Thus, argument B remains inactive while the software scans character
positions 1 through 5. At character position 5, the delimiter X finds
a match, and since the character position beyond the matched delimiter
character 1is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a
successful match at character position 7 and this causes TLY to be
incremented by 1.

The examples in Fiqgure 3-48 illustrate other situations where the
arguments and/or the delimiters are longer than one character.
(Consider the sample statement to be an INSPECT...TALLYING statement
that 1is scanning FIELDl, tallying in TLY, and 1looking €£for the
arguments and delimiters in the left-hand column. Assume that TLY is
initialized to 0.)

NON-NUMERIC CHARACTER HANDLING

ARGUMENT AND FIELD1l ARGUMENT CONTENTS OF
DELIMITER . VALUE ACTIVE AT TLY AFTER SCAN
POSITION
BXBXXXXBB 6 2
"B" AFTER "XX" XXXXXXXX 3 0
BXBXBBBBXX never 0
BXBXXBXXB 6 2
"X" AFTER "XX" XXXXXXXX 3 6
BBBBBBXX never 0
BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3
BBBBBBXB never 0
XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1
XXBXXXXBX 4 1
Figure 3-48

Where Arguments Become Active in a Field

When an argument has an associated BEFORE delimiter, the
inactive/active states reverse roles: the argument is in an active
state when the scanning begins, and becomes inactive at the character
position that matches the delimiter. Additionally, regardless of the
presence of the BEFORE delimiter, an argument becomes inactive when
the scanner approaches the right-hand end of the field and the
remaining characters are fewer in number than the characters in the
argument. (In such a case, the argument cannot possibly find a match
in the field so it becomes inactive.)

Since the BEFORE/AFTER delimiters are found on a separate scan of the
field, the software recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters
can be used as arquments and delimiters in the same phrase.

3.9.3.3 Finding an Argument Match - The software selects arguments
from the argument list in the order in which they appear in the list.
If the first one it selects is an active argument and the conditions
stated in the INSPECT statement allow a comparison, the software
compares it to the character at the position of the scanner. If the
active argument does not £find a match, the software takes the next
active argument from the list and compares that to the same character.
If none of the active arguments finds a match, the scanner moves one
position to the right and begins the inspection operation again with
the first active argument in the 1list. The inspection operation
terminates at the right-hand end of the field.

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described 1later 1in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

NON-NUMERIC CHARACTER HANDLING

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELDl1 TALLYING TLY
FOR ALL X(TLY).

Figure 3-49
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins 1inspecting the field; hence, it will
evaluate X(TLY) as X(1l). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT...REPLACING
statement.

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings wunder certain stated
conditions. It keeps the count in a user—-designated field called,
here, a tally counter.

NON-NUMERIC CHARACTER HANDLING

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition wunder which that string should be

compared to the delimited string being inspected. The following
figure shows the format of the tally argument:
{ALL } {identifier}
LEADING literal
CHARACTERS
Figure 3-50

Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-51
CHARACTERS Form of the Tally Argument

The ALL and LEADING forms of the tally argument specify a particular
character string, which may be represented by either a literal or an
identifier. The tally argument character string may be any 1length;
however, each character of the argument must match a character in the
delimited string before the software considers the argument matched.

. ® A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as " ", or "0", etc., with the
same effect.

° An identifier must be an elementary item of DISPLAY usage.
It may be any data class. However, if it is other than
alphanumeric, the software performs an implicit redefinition
of the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed earlier in
Section 3.9.1.)

NON-NUMERIC CHARACTER HANDLING

The words ALL and LEADING supply conditions that further delimit the
inspection operation.

) The word ALL specifies that every match that the search
argument finds 1in the delimited character string be counted
in the tally counter. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The ALL literal meaning of ALL "," is a string
of consecutive commas, as many as the context of the
statement requires.) ALL "," used as a tally argument means,
"count each comma without regard to adjacent characters.”

° The word LEADING specifies that only adjacent matches of the
TALLY argument at the left-hand end of the delimited
character string be counted. At the first failure to match
the tally argument, the software terminates counting and
causes the argument to become inactive. Consider the
examples in Figure 3-52. (The sample statement is an
INSPECT...TALLYING statement, scanning FIELDl, tallying in
TLY, and 1looking for ' the arguments and delimiters in the
left-hand column. Assume that the program initializes TLY to

0.)
ARGUMENT AND FIELD1 CONTENTS OF TLY
DELIMITER VALUE AFTER SCAN
F***O**F 2
F**QF** 0
LEADING "*" AFTER "O0".
F**F*x*(0
0***[.** 3
F**O**F*** 1
F**FO***FF** 1
LEADING "**" AFTER "0".
F**pQ**x*x*pk* 2
FXkpx*(* 0
Figure 3-52

Results of Counting with the
LEADING Condition

3.9.5.3 The Tally Argument List - One INSPECT...TALLYING statement
can contain more than one tally argument, and each argument can have a
separate BEFORE/AFTER phrase and tally counter associated with it.
These tally arguments with their associated tally counters and
BEFORE/AFTER phrases form an argument list. The manner in which this
list is processed affects the action of any given tally argument.

The following sample statements show INSPECT statements with argument
lists. The text following each one tells how that list will be
processed.

INSPECT FIELD1 TALLYING T FOR
ALL " "

Figure 3-53
Argument List Adding Into
One Tally Counter

3-45

NON-NUMERIC CHARACTER HANDLING

These three tally arguments have the same tally counter, T, and are
active over the entire field being inspected. Thus, this statement
adds the total number of commas, periods, and semicolons in FIELDl1 to
the initial value of T.

INSPECT FIELD1 TALLYING
Tl FOR ALL ","
T2 FOR ALL "."
T3 FOR ALL ";".

Figure 3-54
Argument List Adding Into
Separate Tally Counters

Each tally argument in this statement has its own tally counter, and
is active over the entire field being inspected. Thus, the action of
this statement is to add the total number of commas in FIELDl1 to the
initial wvalue of T1l, the total number of periods to the initial value
of T2, and the number of semicolons to T3.

INSPECT FIELD1 TALLYING
Tl FOR ALL "," AFTER "A"
T2 FOR ALL "." BEFORE "B"
T3 FOR ALL ";".

Figure 3-55
Argument List (with Delimiters) Adding
into Separate Tally Counters

Each tally argument in this statement has its own tally counter; the
first two arguments have delimiter phrases, and the last one is active
over the entire field being inspected. Thus, the first argument is
initially inactive and becomes active only after the scanner
encounters an A; the second argument begins the scan in the active
state but becomes inactive after a B has been encountered; and the
third argument is active during the entire scan of FIELDl.

Figure 3-56 shows various values of FIELDl and the contents of the
three tally counters after the scan. Assume that the counters are
initialized to 0 before the INSPECT statement.

CONTENTS OF TALLY COUNTERS AFTER SCAN

FIELD1

VALUE T1) T2 T3
A.C;D.E,F 1 2 1
A.B.C.D 0 1 0
A,B,C,D 3 0 0
A;B;C;D 0 0 3
*,B,C,D 0 0 0

Figure 3-56

Results of the Scan in Figure 3-55

The BEFORE/AFTER phrase applies only to the argument that precedes it,
and delimits the field for that argument only. Each BEFORE/AFTER
phrase causes a separate scan of the field to determine the limits of
the field for its corresponding argument.

3-46

NON-NUMERIC CHARACTER HANDLING

3.9.5.4 Interference in Tally Argument Lists - When several tally
arguments contain one or more identical characters that are active at
the same time, they may interfere with each other (i.e., when one of
the arguments finds a match, the scanner is stepped past the matching
character (s) which prevents those character(s) from being considered
for any other match).

The example in Figure 3-57 illustrates two identical tally arguments
that do not interfere with each other since they are not active at the
same time. (The first A in FIELDl causes the first argument to become
inactive and the second argument to become active.)

MOVE 0 TO T1 T2.

INSPECT FIELDl TALLYING
Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

Figure 3-57
Two Tallying Arguments that
Do Not Interfere with Each Other

The two identical tally arguments in Figure 3-58 will interfere with
each other since both are active at the same time. (For any given
position of the scanner, the arguments are applied to FIELDl1l in the
order in which they appear in the statement. When one of them finds a
match, the scanner moves to the next position and ignores the
remaining arguments in the argument list.) Each comma in FIELDl causes
Tl to be incremented by 1 and the second argument to be ignored.
Thus, Tl will always contain an accurate count of all of the commas in
FIELD1l, and T2 will always be unchanged.

INSPECT FIELD1 TALLYING
Tl FOR ALL ","
T2 FOR ALL "," AFTER "A".

Figure 3-58
Two Tallying Arguments that
Do Interfere with Each Other

The following statement achieves the same results as the statement in
Figure 3-57,. The first argument does not become active until the
scanner encounters an A, The second argument tallies all commas that
precede the A. After the A, the first argument counts all commas and
causes the second argument to be ignored. Thus, Tl contains the
number of commas that precede the first A and T2 contains the number
of commas that follow the first A. This statement works well as
written, but could be more confusing to debug than the one in Figure
3-57.

INSPECT FIELD1 TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ",".

Figure 3-59
Two Tallying Arguments that,
Because of their Positioning,
Only Partially Interfere with
Each Other

NON-NUMERIC CHARACTER HANDLING

The preceding three examples show that one INSPECT statement cannot
count any character more than once. Thus, when using the same
character in more than one argument of an argument list, consider the
nature of the interference and choose. the order of the arguments very
carefully. The solution to the problem may require two or more
INSPECT statements. Consider the following problem:

INSPECT FIELD1 TALLYING
T1 FOR ALL "AB"
T2 FOR ALL "BC".

Figure 3-60
An Attempt to Tally the Character B
with Two Arguments

If FIELDl1 contains "ABCABC", after the scan Tl will be incremented by
a 2 and T2 will be unaltered. The successful matching of the argument
includes each B in the field. Each match resets the scanner to the
character position to the right of the B, and causes the second
argument to never be successfully matched. Reversing the order of the
arguments has no effect, the results remain the same. Only separate
INSPECT statements can develop the desired counts.

Sometimes the programmer can use the interference characteristics of
the INSPECT statement to good advantage. Consider the following
sample argument list:

MOVE 0 TO T4 T3 T2 Tl.

INSPECT FIELD1 TALLYING
T4 FOR ALL "**#**"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*",

Figure 3-61
Tallying Asterisk Groupings

The argument list in Figure 3-61 counts all of the asterisks in FIELDI
but in four different tally counters. T4 counts the number of times
that four asterisks occur together; T3 counts the number of times
three asterisks appear together; T2 counts double asterisks; and Tl
counts singles.

If FIELD1l contains a string of more than four consecutive asterisks,
the argument 1list breaks the string into groups of four, and counts
them in T4. It then counts the less-than-four remainder in T3, T2, or
Tl.

Reversing the order of the arguments in this list causes Tl to count
all of the asterisks and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an arqument in the argument
list, that argument becomes inactive as soon as it fails to be matched
in the field being inspected. Therefore, when two arguments in an
argument 1list contain one or more identical characters and one of the
arguments has a LEADING condition, the argument with the LEADING
condition should appear first. Consider the following sample
statement:

NON-NUMERIC CHARACTER HANDLING

MOVE 0 TO Tl1 T2.

INSPECT FIELD]1 TALLYING
Tl FOR LEADING "*"
T2 FOR ALL "*",

Figure 3-62
Placing the LEADING Condition
in the Argument List

The placement of the LEADING condition in this sample statement causes
Tl to count only leading asterisks in FIELDl; the occurrence of any
other character -stops this counting and causes the first tally
argument to become inactive. T2 keeps a count of any remaining
asterisks in FIELD1.

Reversing the order of the arguments in this statement results in an
argument list that can never increment T1.

INSPECT FIELD1 TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*",

Figure 3-63
Reversing the Argument
List in Figure 3-62

If the first character in FIELDl is not an asterisk, neither argument
can match it and the second argument becomes inactive. If the first
character in FIELDl1l is an asterisk, the first argument matches and
causes the second argument to be ignored. The first non-asterisk
character in FIELDl will fail to match the first argument and the
second argument will become inactive. (The second argument becomes
inactive because it has not found a match in all of the preceding
characters.)

An argument with both a LEADING condition and a BEFORE phrase can
sometimes sucessfully "delimit" the field being inspected:

MOVE 0 TO T1 T2.
INSPECT FIELD]1 TALLYING
T1 FOR LEADING SPACES

T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE ".".

IF T2 > 0 ADD 1 TO T2.

Figure 3-64
An Argument List that Counts
Words in a Statement

The statements in Figure 3-64 count the number of "words" in the
English statement in FIELDl. (This assumes that no more than three
spaces separate the words in the sentence and that the sentence ends
with a period.) When FIELD1l has been scanned, T2 contains the number
of gaps between the words. Since a count of the gaps renders a number
that 1is one less than the number of words, the conditional statement
adds one to the count.

NON-NUMERIC CHARACTER HANDLING

The first argument removes any leading spaces, counting them in a
different tally counter. This shortens FIELD1 by preventing the
application of the second through the fourth arguments until the
scanner finds a non-space character. The BEFORE phrase on each of the
other arguments causes them to become inactive when the scanner
reaches the period at the end of the sentence. Thus, the BEFORE
phrases "shorten" FIELDl by making the second through the fourth
arguments inactive before the scanner reaches the right-hand end of
FIELDl. If the sentence in FIELD1l is indented with tab characters
instead of spaces, a second LEADING argument can count the tab
characters. The following sample statement illustrates this
technique: :

INSPECT FIELD1l TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " " etc.

Figure 3-65
Counting Leading Tab or Space Characters

When an argument list contains a CHARACTERS argument, it should be the
last argument in the 1list. Since the CHARACTERS argument always
matches the field, it prevents the application of any of the following
arguments in the list. However, as the last argument in an argument
list, it can count the remaining characters in the £field being
inspected. Consider the following illustration.

MOVE 0 TO Tl T2 T3 T4 T5.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","

TS5 FOR CHARACTERS BEFORE ",".

Figure 3-66
Counting the Remaining Characters
With the CHARACTERS Argument

If FIELD1l is known to contain a number in the form frequently used to
input data, it may contain a plus or minus sign, and a decimal point;
further, the number may possibly be preceded by spaces and terminated
by a comma. If this statement were compiled and executed, it would
deliver the following results:

T1 would contain the number of leading spaces,

T2 would contain the number of periods,

T3 would contain the number of plus signs,

T4 would contain the number of minus signs,

T5 would contain the number of remaining characters (assumed to
be numeric), and

the sum of Tl through T5 (plus 1) gives the character position
occupied by the terminating comma.

NON-NUMERIC CHARACTER HANDLING

3.9.6 The REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters 1in the
designated field.

The REPLACING phrase names a search argument consisting of a character
string of one or more characters and a condition under which the
string may be applied to the field being inspected. Associated with
the search argument is the replacement value, which must be the same
length as the search argument. Each time the search argument finds a
match in the field being inspected, under the condition stated, the
replacement value replaces the matched characters.

A BEFORE/AFTER phrase may be used to delimit the area of the field
being inspected. A search argument applies only to the delimited area
of the field.

3.9.6.1 The Search Argument - The search argument of the REPLACING
phrase names a character string and a condition under which the
character string should be compared to the delimited string being
inspected. Figure 3-67 shows the format of the search argument:

ALL
identifier
LEADING
‘ literal
FIRST
CHARACTERS
Figure 3-67

Format of the Search Argument

The CHARACTERS form of the search argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the search argument.
Thus, the replacement value replaces each character in the delimited
string. (The replacement value, in this case, must be one character
long.) :

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which may be represented by a literal or
an identifier. The search argument character string may be any
length. However, each character of the argument must match a
character in the delimited string before the software considers the
argument matched.

° A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as " ", "0", etc. with the same
effect. Since a figurative constant represents a single
character, the replacement value must be one character long.

° An identifier must represent an elementary item of DISPLAY

usage. It may be any class. However, if it is other than
alphabetic, the software performs an implicit redefinition of
the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed 1in Section
3.9.1.)

3-51

NON-NUMERIC CHARACTER HANDLING

The words ALL, LEADING, and FIRST supply conditions which £further
delimit the inspection operation:

) The word ALL specifies that each match that the search
argument finds in the delimited string is to be replaced by
the replacement value. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The figurative constant meaning of ALL "," is
a string of consecutive commas, as many as the context of the
statement requires.) ALL "," as a search argument of the
REPLACING phrase means, "replace each comma without regard to
adjacent characters."

° The word LEADING specifies that only adjacent matches of the
search argument at the 1left-hand end of the delimited
character string be replaced. At the first failure to match
the search argument, the software terminates the replacement
operation and causes the argument to become inactive.

° The word FIRST specifies that only the 1leftmost character
string that matches the search argument is to be replaced.
After the replacement operation, the search argument
containing this condition becomes inactive.

3.9.6.2 The Replacement Value - Whenever the search argument finds a
match in the field being inspected, the matched characters are
replaced by the replacement value. The word BY followed by an
identifier or literal specifies the replacement value.

identifier
BY

literal

Figure 3-68
Format of the Replacement Value

The replacement value must always be the same size as its associated
search argument.

If the replacement value is a literal character string, it must be
either a non-numeric literal or a figurative constant (other than ALL
literal). A figurative constant represents as many characters as the
length that the search argument requires.

If the replacement value is an identifier, it must be an elementary
item of DISPLAY usage. It may be any class. However, if it is other
than alphanumeric, the software conducts an implicit redefinition of
the item. (This redefinition is the same as the BEFORE/AFTER
redefinition discussed in Section 3.9.1.)

3.9.6.3 The Replacement Argument - The replacement argument consists
of the search argument (with its condition and character string), the
replacement value, and an optional BEFORE/AFTER phrase.

NON-NUMERIC CHARACTER HANDLING

ALL ";" BY SPACE BEFORE "."

Seatch/////” ////' “\\\\\\\BEFORE/AFTER

argument phrase (optional)
replacement
value

Figure 3-69
The Replacement Argument

3.9.6.4 The Replacement Argument List - One INSPECT...REPLACING
statement can contain more than one replacement argument. Several
replacement arguments form an argument list, and the manner in which
the 1list 1is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement
arqgument lists. The text following each one tells how that list will
be processed.

INSPECT FIELDl1 REPLACING
ALL "," BY SPACE
ALL "." BY SPACE
ALL ";" BY SPACE.

Figure 3-70
Replacement Argument List that is
Active Over the Entire Field

These three replacement arguments all have the same replacement value,
SPACE, and are active over the entire field being inspected.

Thus, this statement replaces all commas, periods, and semicolons with
space characters; and leaves all other characters unchanged.

INSPECT FIELDl REPLACING
ALL lloll BY "1"
ALL "1" BY "0".

Figure 3-71
Replacement Argument List that
"Swaps" Ones for Zeroes and Zeroes for Ones

Each of these two replacement arguments has its own replacement value,
and is active over the entire field being inspected. This statement
exchanges zeros for ones and ones for zeroes, and 1leaves all other
characters unchanged.

NOTE

When a search argument finds a match in
the field being inspected, the software
replaces that character string and scans
to the next position beyond the replaced
characters. It ignores the remaining
arguments and applies the first argument
in the list to the character string in

3-53

NON-NUMERIC CHARACTER HANDLING

the new position. Thus, it never
inspects the new value that was supplied
by the replacement operation. Because
of this, the search arguments may have
the same values as the replacement
arguments with no chance of
interference.

INSPECT FIELDl1 REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE.

Figure 3-72
Replacement Argument List that
Becomes Inactive with the
Occurrence of a Space Character

This sample statement is identical to the statement in Figure 3-71,
except that, here, the first occurrence of a space character in FIELDl
causes both arguments to become inactive.

INSPECT FIELD1 REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

Figure 3-73
Argument List with Three Arguments
That Become Inactive with the
Occurrence of a Space

Just as in the argument list in Figure 3-72, the first space character
causes all of these replacement arguments to become inactive. This
argument 1list exchanges zeroes for ones, ones for =zeroes, and
asterisks for all other characters that are in the delimited area.

If the BEFORE phrase is removed from the third argument, that argument
will remain active across all of FIELDl. Within the area delimited by
the first space character, the third argument replaces all characters
except ones and zeroes with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELD1 for the
first two arguments and any zeroes and ones) with asterisks.

3.9.6.5 Interference in Replacement Argument Lists - When several
search arguments that are active at the same time contain one or more
identical characters, they may interfere with each other, and
consequently have an effect on the replacement operation. This
interference of one search argument with the matching of other search
arguments 1is similar to the interference that occurs between tally
arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the software scans for delimiter
matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of

any replacement value, since the scanner does not inspect the replaced
characters again during execution of the INSPECT statement.

3-54

NON-NUMERIC CHARACTER HANDLING

Interference between search arguments, therefore, depends on the order
of the arguments, the values of the arguments, and the active-inactive
status of the arguments. (The discussion in Section 3.9.5.4
Interference in Tally Argument Lists, applies, generally, to
replacement arguments as well.)

The following rules will help minimize interference in replacement
argument lists:

1. Place search arguments with LEADING or FIRST conditions at
the start of the list;

2. Place several arguments with the CHARACTERS condition at the
end of the list; '

3. Consider, very carefully, the order of appearance of any

search arguments that contain one or more identical
characters.

3.9.7 Common Errors, INSPECT Statement
The most common errors made when writing INSPECT statements are:
° Leaving the FOR out of an INSPECT...TALLYING statement.

° Using the word "WITH" instead of "BY" in the REPLACING
phrase.

° Failing to initialize the tally counter.
° Omitting the word "ALL" e.g.:

INSPECT FIELD1l TALLYING TLY FOR SPACES.

CHAPTER 4

NUMERIC CHARACTER HANDLING

4.1 INTRODUCTION

This chapter discusses numeric class data and the COBOL operations
that may be performed on numeric class data. It is assumed that the
reader has read Chapter 3, and understands the concept of COBOL data
classes.

4.2 USAGES, DISPLAY/COMP

The USAGE of a numeric class item specifies the form in which that
item's data 1is held in memory. COBOL has two basic formats for data
storage, DISPLAY and COMPUTATIONAL (DISPLAY, DISPLAY-6, and DISPLAY-7
are all equivalent):

® ANS-74 COBOL standards prescribe DISPLAY usage to be a string
of characters or bytes in decimal radix, with an assumed
decimal point location and various sign conventions.

e The same standards prescribe COMPUTATIONAL (COMP) usage to be
a real number with the same range of values as a DISPLAY usage
number. However, with COMP usage, the compiler implementor
has the liberty of specifying the form in which that number is
held in memory.

PDP-11 COBOL stores COMP usage fields as binary numbers in one, two,
three or four words with an assumed decimal scaling position.
Consider the following field description:

01 GEMINI PIC 99V99 COMP.

If this field contains the value 12.34, PDP-11 COBOL stores it as a
l-word binary number. The word contains the integer value 1234 and
another location contains the scaling factor. 1In this example, the
scaling factor records the fact that this integer has two decimal
fractional positions associated with it. Thus, the COBOL OTS knows
that the stored binary integer is 100 times larger than the programmer
intends it to be.

I1f the compiler encounters the following statement:

ADD 1 TO GEMINI.
it generates instructions to add a 1 to the 1234 in GEMINI. The OTS,
however, scales the 1literal 1 up by two decimal places and adds the
resultant literal, 100, to the number in GEMINI. Thus, after the ADD

operation, GEMINI contains the new value 1334 (which is actually 13.34
with the stored decimal scaling position).

4-1

NUMERIC CHARACTER HANDLING

Thus, the PDP-11 COBOL compiler and OTS manipulate the data in both
DISPLAY and COMP usage items in much the same way. Both usages have
exactly the same accuracy and precision, and can be freely mixed in a
program. If a DISPLAY usage number and a COMP usage number are both
involved in the same arithmetic statement, the OTS converts them to a
common radix, with no 1loss of information. It also converts the
result (if necessary), before storing it, with no loss of
significance.

The only effect of specifying the COMP usage is that it reduces the
space required for most numbers and speeds up the execution of
arithmetic statements.

4.2.1 Sign Conventions

DISPLAY or COMP usage numeric items may be signed or unsigned.
Unsigned numbers may contain values that range from zero to the
largest positive value allowed by their declared precision. Negative
values are not allowed. All PDP-11 COBOL arithmetic operations yield
signed results. When the OTS must store such a result, whether
positive or negative, in an unsigned data item, it stores only the
absolute value of the result. Thus, unsigned items always contain
zero or positive values.

This guide does not recommend unsigned numbers for general use. They
are wusually a source of programming errors, and are handled less
efficiently than signed quantities by the OTS.

Signed quantities always contain a numeric value and an operational
sign. The OTS stores the sign with the numeric value in a variety of
ways depending on the usage of the item and the presence of the SIGN
clause.

NOTE

If numeric data is read into a field
described using the picture character S,
then that data must include an
operational sign of the appropriate
format to pass the NUMERIC test.

PDP-11 COBOL always stores signed COMP items in two's complement
binary form. Thus, the high-order bit indicates the sign of the item.

PDP-11 COBOL always stores signed DISPLAY items as a sequence of byte
positions containing numeric ASCII characters. It may include the
sign in the high-order byte, the low-order byte, or as a separate,
extra, byte on either the high-order or low-order end of the item.

When the OTS stores the sign as part of a byte that also contains a
numeric digit, the sign causes a value change in that byte and, hence,
changes the value of the numeric digit. Table 4-1 shows the actual
ASCII character that results when a numeric value and a sign share the
same byte.

NUMERIC CHARACTER HANDLING

Table 4-1
The Resulting ASCII Character From a
Sign and Digit Sharing the Same Byte

DIGIT VALUE

SIGN

byte containing a +0 stores as an octal 173, which prihts as either
{ or a [depending on the printing device.

p >

A byte containing a -0 stores as an octal 175, which prints as either
a } or a] depending on the printing device.

When the OTS stores the sign as a separate distinct character, the
actual ASCII character that it stores is the graphic plus sign (octal
053) or the graphic minus sign (octal 055).

4.2.2 1Illegal Values in Numeric Fields

All PDP-11 COBOL arithmetic operations store 1legal values in their
result fields. However, it is possible, by reading invalid data or
through redefinition and group moves, to store data in numeric fields
that do not obey the descriptions of those fields. (For example, it
is possible to place signed values into unsigned fields, and to place
non-numeric or improperly signed data into signed numeric DISPLAY
fields.) PDP~11 COBOL handles this data in the following manner.

NOTE

The following four compiler techniques
are not specified by ANS-74 COBOL
standards. Dependence on them may yield
programs that are not compiler
independent.

1. When a quantity described as unsigned enters into an
arithmetic operation, the OTS treats it as a signed quantity.
If it contains no sign, the OTS either considers the sign to
be positive, or ignores the sign if the value of the field is
zero. If the field does contain a legally constructed sign,
the OTS interprets the sign as if the item had been described
as a signed quantity.

Thus the OTS treats a negative value in an unsigned COMP item
as a negative value. Likewise a negative sign, stored as J
through R, in the rightmost digit of an unsigned DISPLAY
item, causes the 0TS to treat that value as a negative value.

When an arithmetic operation or 1legal elementary MOVE
statement places its result in an unsigned item, that item
receives the absolute value only (no sign information is
encoded in the result).

4-3

NUMERIC CHARACTER HANDLING

For example the following coding results in an unsigned value
of 15 in field B:

.

02 A PIC S99 VALUE IS 5
02 C PIC XX VALUE IS "2 ".
02 B REDEFINES C PIC 99.

.

ADD A TO B.

However, given the same original values in A and B, the
following statement would result in a value of -15 in field
A. (Field B remains at -20.)

ADD B TO A.

When a signed quantity enters into an arithmetic operation,
the OTS interprets the sign as follows:

) If the item is COMP usage, the OTS takes the value as a
two's complement number;

° If the item is DISPLAY usage and the sign is encoded
within the leading or trailing digit position, the OTS
takes the sign as positive if that position contains
either a { (octal 173) or any ASCII byte that collates
less than J. Thus, the OTS considers a space, 0 through
9, and A through I, to be positive. Further, it
considers any ASCII character that collates equal-to or
higher-than J (except { --octal 173) to be negative.
(The OTS conducts this sign determination separately from
the numeric value determination for the same byte.)

VALUE SIGN DETERMINATION
000a +0001
000J -0001

° If the item is DISPLAY usage and the sign is encoded as a
separate leading or trailing byte, the OTS takes the sign
as negative only if that byte contains the ASCII
character - (octal 055). The OTS considers that all
other ASCII characters 1in the separate sign position
indicate a positive field.

A COMP usage item may receive a value that is larger than the
specified range. For example, the OTS stores a field
described as PIC S9999 COMP as a 16-bit binary number. The
declared range is four decimal digits, but the field has the
capability of storing any value from -32,768 to +32,767
(decimal). The OTS stores the results of an arithmetic
operation on such a field as a value modulo the declared
decimal range. Thus, any value that exceeds 9,999 stores a
modulo 10,000 value. (The binary value of 10,000 stores as a
zero.)

NUMERIC CHARACTER HANDLING

When a COMP usage field enters an arithmetic operation,
however, the OTS uses the full binary number as the binary
value of the field. Thus, a value stored in a COMP field by
a group move may cause the field to contain a value that
exceeds the declared range. Arithmetic operations will use
that value as found.

4. A DISPLAY usage item may contain a value in which some or all
of the numeric digit positions contain illegal values.

When a DISPLAY usage numeric item enters an arithmetic
operation, the OTS converts each character to a binary value
either before or during the operation. This conversion maps
certain ASCII characters into the numeric values 0 through 9,
and all other ASCII characters into the numeric wvalue 0.
Table 4-2 shows these conversion values:

Table 4-2
Conversion Values
ASCII CHARACTERS BINARY VALUES
A J 1 0001 (1)
B K 2 0010 (2)
C L 3 0011 (3)
D M 4 0100 (4)
E N 5 0101 (5)
F o 6 0110 (6)
G P 7 0111 (7)
H (o] 8 1000 (8)
I R 9 1001 (9)
ALL OTHERS 0000 (0)

All arithmetic operations (including the numeric elementary MOVE)
deliver the ASCII characters 1 through 9 and 0 into all digit
positions of a numeric DISPLAY field. A digit position that also
contains a sign value receives a correctly coded sign value as shown
in Table 4-1.

NUMERIC CHARACTER HANDLING

4.3 TESTING NUMERIC FIELDS

COBOL provides the following three kinds of tests for evaluating
numeric fields:

1. Relation tests, that compare the field's contents to another
numeric value;

2. Sign tests, that examine the field's sign to see if it is
positive or negative; and,

3. Class tests, that inspect the field's digit positions for
legal numeric values.

The following sub-sections explain these tests in detail.

4.3.1 Relation Tests

A relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following
statement compares FIELDl to FIELD2 and determines if the numeric
value of FIELDl is greater than the numeric value of FIELD2. If so,
the relation condition isitrue and program control takes the True path
of the statement.

IF FIELD1l > FIELD2 ...

Either field in a relation test may be a numeric 1literal or the
figurative constant, ZERO. (The numeric literals 0, 00, 0.0, or ZERO
are all equivalent, both in meaning and in execution speed.)

The sizes of the fields in a numeric relation test do not have to be
the same (this includes the sizes of numeric literals). The
comparison operation aligns both fields on their assumed decimal
positions (through actual scaling operations in temporary locations or
by accessing the individual digits) and supplies leading or trailing
(as required) zeroes to either or both fields.

The comparison operation always compares the signs of non-zero fields
and considers positive fields to be greater than negative fields.
However, since it does not compare them, positive zeroes and negative
zeroes are equal. (A negative zero could arrive in a field through
redefinition of the field or a MOVE to a group item.) Further, the
operation considers unsigned numeric fields to be positive.

The form of representation of the number (COMP or DISPLAY usage) and
the various methods of storing DISPLAY usade signs have no effect on
numeric relation tests.

For comparison purposes, the operation converts any illegal characters
stored in DISPLAY usage fields to zeroes. It does not, however, alter
the actual values in those fields. :

4.3.2 8Sign Tests

The sign test compares a numeric quantity to zero and determines if it
is greater (positive), 1less (negative), or equal (zero). Both the
relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELD1l > 0 ...

NUMERIC CHARACTER HANDLING

Now consider the following sign test:

IF FIELD1 POSITIVE ...
Both of these tests accomplish the same thing and would always arrive
at the same result. The sign test, however, shortens the statement
and shows, at a glance, that it is testing the sign.

Table 4-3 shows the sign tests and their equivalent relation tests as
applied to FIELDI.

Table 4-3
The Sign Tests
SIGN TEST EQUIVALENT RELATION TEST
IF FIELD1 POSITIVE ... ' IF FIELD1l > 0 ...
IF FIELD1 NOT POSITIVE ... IF FIELD1 NOT > 0
IF FIELD1 NEGATIVE ... IF FIELDl < 0 ...
IF FIELD1 NOT NEGATIVE ... IF FIELD1 NOT < 0 ...
IF FIELD1 ZERO ... IF FIELDl = 0 ...
IF FIELD1 NOT ZERO ... IF FIELDl NOT = 0 ...

Sign tests have no execution speed advantage over relation tests. The
compiler actually substitutes the equivalent relation test for every
correctly written sign test. (Sections 4.2.1 and 4.2.2 discuss the
acceptable sign values and the treatment of illegal sign values.)

4.3.3 Class Tests

The class test interrogates a numeric field to determine if it
contains numeric or alphabetic data, and uses the result to alter the
flow of control in a program. For example, the following statement
determines if FIELDl contains numeric data. If so, the test condition
is true and program control takes the true path of the statement.

IF FIELDl IS NUMERIC ...

When reading in newly prepared data, it is often desirable to check
certain fields for valid values. Relation tests and sign tests can
only determine if the field's contents are within a certain range, and
these tests both treat illegal characters in DISPLAY usage items as
zeroes. Thus, some data preparation errors could pass both of these
tests.

The NUMERIC class test checks numeric (or alphanumeric) DISPLAY usage
fields for valid numeric digits.

If the field being tested contains a sign (whether carried as an
overpunch or as a separate character), the test checks it for a valid
sign value. If the character position carrying the sign contains an
illegal sign value, the NUMERIC class test rejects the item and
program control takes the false path of the 1IF statement. If the
character position contains a valid sign and all digit positions in
the field contain valid numeric digits, the NUMERIC class test passes
the item and program control takes the true path of the IF statement.

4-7

NUMERIC CHARACTER HANDLING

The ALPHABETIC class test checks alphabetic (or alphanumeric) fields
for valid alphabetic characters and the space character. If all of
the character positions of the field contain ASCII characters (A-%Z or
space), the item passes the ALPHABETIC class test and causes program
control to take the true path of the 1IF statement. (For further
information concerning the ALPHABETIC class . test, see Chapter 3,
Section 3.3.2.)

4.4 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following sample MOVE statement moves the contents of FIELDl into
FIELD2.

MOVE FIELD1 TO FIELD2.

Section 3.5 discusses the basic MOVE statement. This section
considers MOVE statements as applied to numeric fields. These MOVE
statements can be grouped into the following three categories:

1. Group moves,
2. Elementary moves with numeric receiving fields, and
3. Elementary moves with numeric edited receiving fields.

The following three sub-sections (4.4.1, 4.4.2, and 4.4.3) discuss
each of these categories separately.

4.4.1 Gioup Moves

The software considers a move to be a group move if either the sending
field or the receiving field is a group item. It treats both fields
in a group move as alphanumeric class fields and performs the move as
an alphanumeric to alphanumeric elementary move.

If either field in a group move is a numeric elementary item, the OTS
treats the storage area occupied by that item as a field of
alphanumeric bytes; thus, it ignores the USAGE, sign, and decimal
point location characteristics of the numeric item.

Only the item's allocated size, in bytes, affects the move operation.
The OTS considers a separate sign character to be part of the item and
moves it with the numeric digit positions.

4.4.2 Elementary Numeric Moves

If both fields of a MOVE statement are elementary items and the
receiving field is numeric, the OTS considers the move to be an
elementary numeric move. (The sending field may be either numeric or
alphanumeric.) The numeric receiving field may be either DISPLAY or
COMP usage. The elementary numeric move converts the data format of
the sending field to the data format of the receiving field.

NUMERIC CHARACTER HANDLING

An alphanumeric sending field may be either an elementary data item or
any alphanumeric 1literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, HIGH-VALUE, or ALL "literal". The elementary
numeric move acceépts the figurative constant ZERO and considers it to
be equivalent to the numeric literal 0. It treats alphanumeric
sending fields as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending field to
the data format of the receiving field and aligns the sending field's
decimal point on that of the receiving field. It then moves the
sending field digits to their corresponding receiving field digits.

If the sending field has more digit positions than the receiving
field, the decimal point alignment operation truncates the sending
field, with the resultant 1loss of digits. The end truncated
(high-order or 1low-order) depends upon the number of sending field
digit positions that find matches on each side of the receiving
field's decimal point. If the receiving field has fewer digit
positions on both sides of the decimal point, the operation truncates
both ends of the sending field. Thus, if a field described as PIC
999v999 is moved to a field described as PIC 99V99, it loses one
digit from the 1left end and one from the right end. Figure 4-1
illustrates this alignment operation (the carat (.) indicates the
stored decimal scaling position):

01 GANDALF PIC 99V99.

MOVE 123.321 TO GANDALF.

Before execution 00.00

After execution 23.32

Figure 4-1
Truncation Caused By Decimal Point Alignment

If the sending field has fewer digit positions than the receiving
field, the move operation supplies =zeroes for all unfilled digit
positions. Figure 4-2 illustrates this alignment (the carat (.)
indicates the stored decimal scaling position):

01 RIVENDELL PIC 999V99.

MOVE 1 TO RIVENDELL.

Before execution 000~00

After execution 001,00

Figure 4-2
Zero Filling Caused By Decimal Point Alignment

The following statement produces the same results:

MOVE 001.00 TO RIVENDELL.

4-9

NUMERIC CHARACTER HANDLING

Consider the following two MOVE statements and their resultant
truncating and zero-filling effects:

STATEMENT RIVENDELL AFTER EXECUTION
MOVE 00100 TO RIVENDELL 100 00
MOVE "00100" TO RIVENDELL ’ 100 00

Literals with leading or trailing zeroes have no significant advantage
in space or execution speed with PDP-11 COBOL, and the zeroes are
often lost by decimal point alignment.

The MOVE statement's receiving field dictates how - the sign will be
moved. A signed DISPLAY usage receiving field causes the sign to be
moved as a separate quantity. An unsigned DISPLAY usage receiving
field causes no sign movement. A COMP usage receiving field, whether
signed or unsigned, causes the sign to be moved; however, if the
receiving field is unsigned, the OTS sets its value to absolute.

4.4.3 Elementary Numeric Edited Moves

The PDP-11 COBOL object time system considers an elementary numeric
move to a receiving field of the numeric edited category to be an
elementary numeric edited move. The sending field of an elementary
numeric edited move may be either numeric or alphanumeric and, if
numeric, it can be either DISPLAY usage or COMP usage. The OTS treats
alphanumeric sending fields in numeric edited moves as unsigned
DISPLAY usage integers.

" The OTS considers the receiving field to be numeric edited category if
it is described with a BLANK WHEN ZERO clause, or a combination of the
following symbols: :

B Space insertion position;

P Decimal scaling position;

A Location of assumed decimal point;

Z Leading numeric character position to be replaced by a space

if the position contains a zero;

0 Zero insertion position;

9 Position contains a numeric character;

/ Slash insertion position;

’ Comma insertion position;

. Decimal point insertion position;

* Leading numeric character position to be replaced by an

asterisk if the position contains a zero;
+ Positive editing sign control symbol;
- Negative editing sign control symbol;

CR Credit editing sign control symbol;

NUMERIC CHARACTER HANDLING

DB Debit editing sign control symbol;

cs Currency symbol ($) insertion position.
A numeric edited field may contain 9, V, and P, but combinations of
those symbols without an editing character do not make the field

numeric edited.

The numeric edited move operation first converts the sending field to
DISPLAY usage and aligns both fields on their decimal point locations,
truncating or padding (with =zeroes) the sending field wuntil it
contains the same number of digit positions on both sides of the
decimal point as the receiving field. It then moves the resulting
digit values to°* the receiving field digit positions following the
COBOL editing rules.

The COBOL editing rules allow the numeric edited move .- operation to
perform any of the following editing functions:

® Suppress leading zeroes with either spaces or asterisks;

@ Float a currency sign and a plus or minus sign through
suppressed zeroes, inserting the sign at either end of the
field;

® Insert zeroes and spaces;

® Insert commas and a decimal point.

Figure 4-3 illustrates several of these functions with the statement,
MOVE FRODO TO RIVENDELL. (Assume that FRODO is described as
S9999v99.)
RIVENDELL
FRODO PICTURE STRING CONTENTS AFTER MOVE
0023.00 2%22%.99 A A23.00
0085.90 ++++.99 A -85.96
1234.00 2,22%2.99 1,234.00
0012.34 $,$8%.99 A $12.34
0000.34 $,5$9.99 A A$0.34
1234.00 $$,888.99 $1,234.00
0012.34 $$9,999.99 $0,012,.34
0012.34 $$88,8$88.99 AAAA $12.34
0000~00 $$8,$88.58 AAAAAAAAAA
0012.3M ++++.99 -12.34
0012.34 $kkx _*kx _99 $**1,234.00
001234 $kkx *kk _99 Sk*kk%x]1D 34

Figure 4-3
Numeric Editing

The currency symbol (§) and the editing sign control symbols (+ -) are

the only floating
more occurrences of

symbols.
the symbol.

To float them, enter a string of two or

NUMERIC CHARACTER HANDLING

4.4.4 Common Errors, Numeric MOVE Statements
The most common errors made when writing numeric MOVE statements are:

e Placing an incorrect number of replacement characters in a
numeric edited item. :

® Moving non-numeric data into numeric fields with group moves.

® Trying to float the $§ or + insertion characters past the
decimal point to force zero values to appear as .00 instead of
spaces. (Use $$.99 or ++.99.)

e Forgetting that the $§ or + insertion characters require an
additional position on the 1leftmost end that cannot be
replaced by a digit (unlike the * insertion character which
can be completely replaced).

4.5 THE ARITHMETIC STATEMENTS

The COBOL arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPUTE allow COBOL programs to perform simple arithmetic operations
on numeric data.

This section covers the use of the COBOL arithmetic statements. The
first five sub-sections (4.5.1 through 4.5.5) discuss the common
features of the statements and the last five (4.5.6 through 4.5.10)
discuss the individual arithmetic statements themselves.

4.5.1 Intermediate Results

Most forms of the arithmetic statements perform their operations in
temporary work locations, then move the results to the receiving
fields, aligning the decimal points and truncating or zero filling the
resultant values.

This temporary work field, called the intermediate result field, has a
maximum size of 18 numeric digits. The actual size of the
intermediate result field varies for each statement, and is determined
at compile time based on the sizes of the operands used by the
statement.

When the compiler determines that the size of the intermediate result
field exceeds 18 digits, it truncates the excess high-order digits.
Thus, a program that requests a multiplication operation between the
following two fields,

PIC 9(18) and PIC V99.

(which would otherwise cause the compiler to set up a 20-digit
intermediate result field -- 9(18)V99) actually causes the following
intermediate result field

PIC 9(16)V99.

PDP-11 COBOL truncates high-order digits or low-order digits to the
right of the decimal point, based on the assumption that most large
data declarations are larger than ever need be, so zeroes occupy most
of their high-order digit positions. Numeric data may be declared as
PIC 9(12) or PIC 9(15) but the values that are placed in these fields
will probably not exceed nine digits of range (1 billion) in most
applications.

NUMERIC CHARACTER HANDLING

When using large numbers (or numbers with many decimal places) that
are close to 18 digits long, examine all of the arithmetic operations
that manipulate those numbers to determine if truncation will occur.

If truncation is a possibility, reduce the size of the number by
dividing it by a power of 10 prior to the arithmetic operation. (This
scaling down operation causes the low-order end to 1lose digits, but
these are probably 1less critical.) Then, after the arithmetic
operation, multiply the result by the same power of 10.

To save the low-order digits in such an operation, move the field to a
temporary location before the scaling DIVIDE, perform separate,
identical arithmetic operations on both the original and the temporary
fields, then, after the scaling MULTIPLY, combine their results.

4.5.2 The ROUNDED Phrase

Rounding—-off is an important tool with most arithmetic operations.
The ROUNDED phrase causes the OTS to round-off the results of COBOL
arithmetic operations.

The phrase may be wused on any COBOL arithmetic statement.
Rounding—-off takes place only when the ROUNDED phrase requests it, and
then only if the intermediate result has more low-order digits than
the result field.

PDP-11 COBOL rounds-off by adding a 5 to the leftmost truncated digit
of the absolute value of the intermediate result before it stores that
result.

Consider the following illustration and assume an intermediate result
of 54321.2468:

Coding:

01 BILBO PIC S9(5)V9999.
01 FRODO PIC S9(5)V99.

ADD BILBO TO FRODO ROUNDED.

Intermediate result field:

PIC 59(6)V9999.

The ROUNDED operation:

Truncated
digits

Intermediate result field: 054321.24 (68

“LEFT-MOST

ROUNDED : (ADD) .00 |50 truncated
FRODO's ROUNDED result: 054321.25 |18 digit
Figure 4-4

Rounding Truncated Decimal Point Positions

The following ROUNDING example rounds-off to the decimal scaling
position (P). Assume an intermediate result of 24680. (Section 4.5.4
discusses the GIVING phrase in numeric operations.)

4-13

NUMERIC CHARACTER HANDLING

Coding:

01 GANDALF PIC 9999.
01 SARUMAN PIC 9999PP.

MULTIPLY GANDALF BY 10

GIVING SARUMAN ROUNDED.

Intermediate result field:

PIC 999999.

The ROUNDED operation:

Truncated

Intermediate result field: 0246 |80. digits

ROUNDED (ADD) 50.

SARUMAN's ROUNDED result: 0247 |30.

Figure 4-5
Rounding Truncated Decimal Scaling Positions

4.5.3 The SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order non-zero digits
in the results of COBOL arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in
a size error, the OTS truncates the high-order digits and stores the
result without notifying the user. When the execution of a statement
with a SIZE ERROR phrase results in a size error, the OTS discards the
entire result (it does not alter the receiving fields in any way) and
executes the SIZE-ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the OTS
rounds the result before it checks for a size error.

The phrase cannot be used on numeric MOVE statements. Thus, if a
program moves a numeric quantity to a smaller numeric field, it may
inadvertently lose high-order digits. For example, consider the
following MOVE of a field to a smaller field:

01 BIGFOOT PIC 9(8)V99.

01 LITTLEFOOT PIC 9(4)V99.

MOVE BIGFOOT TO LITTLEFOOT.
This MOVE operation always loses four of BIGFOOT's high-order digits.

Either of the following two statements could determine whether these
digits are zero or non-zero, and could be tailored to any size field:

4-14

NUMERIC CHARACTER HANDLING

1. IF BIGFOOT NOT > 9999.99
MOVE BIGFOOT TO LITTLEFOOT
ELSE ...

2. ADD ZERO TO BIGFOOT GIVING LITTLEFOOT
ON SIZE ERROR ...

Both of these alternatives allow the MOVE operation to occur only if
BIGFOOT loses no significant digits. If the value in BIGFOOT is too
large, both alternatives avoid altering LITTLEFOOT and take the
alternative execution path.

4.5.4 The GIVING Phrase

The GIVING phrase moves the intermediate result field of an arithmetic
operation to a receiving field. (The phrase acts exactly like a MOVE
statement with the intermediate result serving as a sending field and
the data item following the word GIVING (in the statement) serving as
a receiving field.)

The phrase may be used on the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements.

If the data item following the word GIVING is a numeric edited field,
the OTS performs the editing the same way it does for MOVE statements.

4.5.5 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements may contain a string of more than
one operand preceding the word TO, FROM, or GIVING.

Multiple operands in either of these statements cause the OTS to add
the string of operands together and use the intermediate result of
that operation as a single operand to be added to or subtracted from,
the receiving field.

The following three equivalent coding groups illustrate how the
software executes the multiple operand statements:

1. Statement: ADD ABCDTOETFG H.

Equivalent coding: ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP,
ADD TEMP, E, GIVING E.
ADD TEMP, F GIVING F.
ADD TEMP, G GIVING G.
ADD TEMP, H GIVING H.

2., Statement: SUBTRACT A, B, C, FROM D.
Equivalent coding: ADD A, B, GIVING TEMP.
ADD TEMP, C GIVING TEMP.
SUBTRACT TEMP FROM D GIVING D.
3. Statement: ADD A B C D GIVING E.
Equivalent coding: ADD A B GIVING TEMP.

ADD TEMP C GIVING TEMP.
ADD TEMP D GIVING E.

4-15

NUMERIC CHARACTER HANDLING
(Just as with all COBOL statements, any commas in these statements are
optional.)

Only statement 3 may have a numeric edited receiving field, since it
is the only statement containing a GIVING phrase.

4.5.6 The ADD Statement

The ADD statement adds two or more operands together and stores the
result.

The statement may contain multiple operands (with the exception of
Format 3) and the ROUNDED and SIZE ERROR phrases. It may be written
in one of the following formats:

Format 1. ADD FIELDl ...TO FIELD2 FIELD3
Format 2. ADD FIELDl FIELD2 ...GIVING FIELD3 FIELD4
Format 3. ADD CORRESPONDING FIELD1 TO FIELD2.

In Format 1, the receiving fields (FIELD2, FIELD3) are one of the
addends. These must not be in the numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are not one of the
addends. They may either be numeric or numeric edited. When using
this format, omit the word TO.

In Format 3, the receiving field (FIELD2) is one of the addends. Both
FIELD1 and FIELD2 must be group items. The corresponding elements of
FIELDl are added to the corresponding elements of FIELD2.

4.5.7 The SUBTRACT Statement

The SUBTRACT statement subtracts one, or the sum of two or more,
operands from another operand and stores the result.

The statement may contain multiple operands (with the exception of
Format 3) and the ROUNDED and SIZE ERROR phrases. It may be written
in one of the following formats:

Format 1. SUBTRACT FIELDl ... FROM FIELD2 FIELD3
Format 2. SUBTRACT FIELDl1 ... FROM FIELD2

GIVING FIELD3 FIELD4
Format 3. SUBTRACT CORRESPONDING FIELDl1 FROM FIELD2.

In Format 1, the receiving fields (FIELD2, FIELD3) are both the
subtrahend and the difference (the result). These must not be in the
numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are used only to
store the result. They may be either numeric or numeric edited.

In Format 3, the receiving field (FIELD2) is both the subtrahend and

the difference (results). Both FIELDl and FIELD2 must be group items.
The corresponding elements of FIELD2.

4-16

NUMERIC CHARACTER HANDLING

4.5.8 The MULTIPLY Statement

The MULTIPLY statement multiplies one operand by another and stores
the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. It may be written in either of
the following formats: ’

Format 1. MULTIPLY FIELDl BY FIELD2, FIELD3
Format 2. MULTIPLY FIELDl BY FIELD2 GIVING FIELD3, FIELD4

In Format 1, the receiving fields (FIELD2, FIELD3) are also the
multipliers. These must not be in the numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are neither
multiplier nor multiplicand. These may be either numeric or numeric
edited.

COBOL's "near English" format could cause a problem with the MULTIPLY
statement, since it 1is common to speak of multiplying a number
(multiplicand) by another number (multiplier) and to think of the
result as a new value for the multiplicand; thus:

MULTIPLY EARNINGS BY 0.24.
“Multiplier
Multiplicand

This statement is incorrect since the OTS stores the result in the
multiplier field, and this multiplier is a literal. The compiler
could diagnose this error, but would not diagnose it if the multiplier
were a data item. Consider this multiplier written as a data item:

MULTIPLY EARNINGS BY TAX-RATE.
The compiler would not diagnose this statement's error, and would
store the result of the operation in TAX-RATE. A good practice when
using MULTIPLY statements is to always write them in Format 2. This
ensures that the result is properly stored. The following two
statements safely capture their results:

MULTIPLY EARNINGS BY 0.24 GIVING EARNINGS.
or

MULTIPLY EARNINGS BY TAX-RATE GIVING EARNINGS.

4.5.9 The DIVIDE Statement

The DIVIDE statement divides one operand into another and stores the
result.

The statement may contain the ROUNDED and SIZE ERROR phrases. With
the exception of Formats 4 and 5, it may not contain multiple
receiving operands. It may be written in any of the following
formats:

NUMERIC CHARACTER HANDLING

Format 1. DIVIDE FIELD1l INTO FIELD2 FIELD3

Format 2. DIVIDE FIELDl INTO FIELD2 GIVING FIELD3 FIELD4 ...
Format 3. DIVIDE FIELD2 BY FIELD1l GIVING FIELD3 FIELD4
Format 4. DIVIDE FIELDl1l INTO FIELD2 GIVING FIELD3 REMAINDER
- FIELD4.

Format 5. g%gig? FIELD1 BY FIELD2 GIVING FIELD3 REMAINDER

In Format 1, the receiving fields (FIELD2, FIELD3) are also the
dividends. These must not be in the numeric edited category.

In Formats 2 and 3, the receiving fields (FIELD3, FIELD4 ...) are
neither dividends nor divisor. These may be either numeric or numeric
edited.

In Formats 4 and 5, the receiving field (FIELD3) is neither a dividend

nor a divisor. FIELD4 is the remainder. The receiving field and the
remainder may be either numeric or numeric edited.

4.5.10 The COMPUTE Statement

The COMPUTE statement computes the value of an arithmetic expression
and stores the value in the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. The COMPUTE statement has the
following format:

COMPUTE FIELDl1 FIELD2 ... = arithmetic-expression.

The receiving fields (FIELDl1l, FIELD2) may be either numeric or numeric
edited.

4.5.11 Common Errors, Arithmetic Statements
The most common errors made when using arithmetic statements are:

° Using an alphanumeric class field in an arithmetic statement.
The MOVE statement allows data movement between alphanumeric
class fields and certain numeric class fields, but arithmetic
statements require that all fields be numeric.

° Writing the ADD or SUBTRACT statements without the GIVING
phrase, but attempting to put the result into a numeric
edited field.

® Writing a Format 2 ADD statement with the word TO; For
example:

ADD A TO B GIVING C.
° Subtracting a 1 from a numeric counter that was described as

an unsigned quantity, and testing for a value of less than
zero.

4-18

NUMERIC CHARACTER HANDLING

° Forgetting that the MULTIPLY statement, without the GIVING
phrase, stores the result back into the second operand
(multiplier). ‘

. Performing a series of calculations in such a way as to
generate an intermediate result that is larger than 18 digits
when the final result will be fewer digits. (The programmer
should be careful to intersperse divisions with
multiplications or to drop non-significant digits that result
from multiplying large numbers (or numbers with many decimal
places).

) Performing an operation on a field that contains a value
greater than the precision of its data description. This can
happen only if the field was disarranged by a group move or
redefinition.

° Forgetting that, in an arithmetic statment containing
multiple receiving fields, the ROUNDED phrase must be
specified for each receiving field that is to be rounded.

° Forgetting that, in an arithmetic statement containing
multiple receiving fields, the ON SIZE ERROR phrase, if
specified, applies to all receiving fields. Only those
receiving operands for which a size error condition is raised
are left unaltered. The ON SIZE ERROR imperative statement
is executed after all the receiving fields are processed by
the OTS.

4.6 ARITHMETIC EXPRESSION PROCESSING

4.6.1 Motivation for Intermediate Results

COBOL provides language facilities for manipulating user-defined data
arithmetically. In particular, the language provides the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the facilities of
arithmetic expressions using the +, -, *, /, and ** operators. 1In
simple terms, a given arithmetic functionality may be expressed in one
of several ways. For example, consider a COBOL application in which
the total yearly sales of a salesman are to be computed as the sum of
the four individual sales quarters. Figure 4-6 illustrates one method
of expressing a solution to this problem in COBOL:

NUMERIC CHARACTER HANDLING

MOVE 0 TO TEMP.

ADD 1ST-SALES TO TEMP.
ADD 2ND-SALES TO TEMP.
ADD 3RD-SALES TO TEMP.

ADD 4TH-SALES TO TEMP GIVING TOTAL-SALES.

Figure 4-6 Explicit Programmer-Defined Temporary Work Area

In figure 4-6, the COBOL programmer chooses to use a series of single
ADD statements to develop the final value for TOTAL-SALES. 1In the
process of computing TOTAL-SALES, a COBOL data-name, called TEMP, is
used to develop the partial sums (i.e., intermediate results). The
important point here is that the programmer explicitly defines and
declares the temporary work area TEMP in the data division of the
COBOL program. That is, the attributes (i.e., class, USAGE, number of
integer and decimal places to be maintained) are specified explicitly
by the COBOL programmer.

Figure 4-7 below illustrates another way of expressing a solution to
the problem:

ADD 1ST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

Figure 4-7
Arithmetic Statement Intermediate Result Field Attributes
Determined from Composite of Operands

NUMERIC CHARACTER HANDLING

In this example, the programmer chooses to compute TOTAL-SALES with a
single ADD statement. Analogous to the previous example, an
intermediate result field is. required to develop the partial sums of
the four quarterly sales quantities. 1In Figures 4-6, the programmer
is cognizant of this requirement, but chose to define the intermediate
result area TEMP explicitly in the data division of his COBOL program.
However, for the example in Figure 4-7, the software defines the
intermediate result field in a manner transparent to the COBOL source
program. That is, the software allocates storage for and assigns
various attributes to this "transparent" intermediate result field
according to a well-defined set of rules defined by the COBOL language
specification. In particular, the attributes of
number-of-integer-places, number-of-decimal-places, and USAGE assigned
by the software to the intermediate result field are a function of the
composite of source operands in the ADD statement. (The reader should
read the PDP-11 COBOL Reference Manual for details concerning the
composite of operands for the arithmetic statements.) The important
point here is that the ANS-74 COBOL language standard prescribes rules
for determining the attributes of intermediate result fields €for the
arithmetic statements and the associated language processor (e.g.,
PDP-11 COBOL compiler) must implement those rules.

As a final example, consider the following solution to our problem:

COMPUTE TOTAL-SALES = 1ST-SALES + 2ND-SALES + 3RD-SALES
+ 4TH-SALES.

Figure 4-8
Arithmetic Expression Intermediate Result Field
Attributes Determined by Implementor-Defined Rules

In Figure 4-8, the programmer solves the problem by using a single
COMPUTE statement with an embedded arithmetic expression. Again, an
intermediate result field is required and, as in Figure 4-7, is
defined by the software. However, in defining the attributes of
intermediate result fields for COBOL arithmetic expressions, the
ANS-74 COBOL language standard 1is not as helpful to the user as it
could be. In fact, the COBOL language standard gives almost complete
freedom to the implementor in defining the attributes of the
arithmetic expression intermediate result fields. The only rules
imposed by the ANS-74 COBOL language specifications are:

1. Arithmetic operations are to be combined without restrictions
on the composite of operands and/or receiving fields.

2. EBach implementor will indicate techniques wused in handling
arithmetic expressions.

NUMERIC CHARACTER HANDLING

Thus, the user can and should expect differences between various
implementations of ANS-74 COBOL. The purpose of the remainder of this
section is to specify the conceptual algorithms used by the software
to compute the attributes for the arithmetic expression intermediate
result field; i.e., the number-of-integer-places and
number-of-decimal-places to be maintained (for a given intermediate
result field) as a function of a particular arithmetic operator and
its associated operands.

4.6.2 Intermediate Results for Arithmetic Expressions

In the compile-time and object-time processing of arithmetic
expressions, the software maintains a maximum precision of 18 decimal
digits for .intermediate result fields. One of the major compile-time
functions in processing an arithmetic expression operator x is to
determine the following attributes for the associated object-time
intermediate result field IR(x):

1. USAGE type,
2. number of integer places, I(IR(x)), to be maintained, and
3. number of decimal places, D(IR(x)), to be maintained.

All arithmetic expression intermediate result fields are treated as
signed data. The software must determine the USAGE type for an
intermediate result in order to determine the form of its internal
representation; the number of integer places and decimal places are
determined to know how much object-time storage is required for the
intermediate result.

With the exception of the exponentiation operator (**), all infix
arithmetic operators vyield an intermediate result field whose USAGE
type is determined as a function of the USAGE types of its two source
operands. That 1is, if both source operands are DISPLAY, the USAGE
type for the intermediate result field is also DISPLAY. If one of the
operands associated with an infix operator has a USAGE IS
COMPUTATIONAL declaration, the USAGE type of the intermediate result
field is also COMPUTATIONAL (i.e., the intermediate result is
represented as COMPUTATIONAL data at object-time). The USAGE type of
an intermediate result for the exponentiation operator is. the same
USAGE type as its first operand. Moreover, the only unary operator
which requires an intermediate result field 1is the unary negate
operator. In this case, the USAGE type of its intermediate result is
the same as its singular operand. The wunary plus operator is
essentially a "no-op" operator and, thus, is ignored at compile-time
and has no impact at object-time.

The process of determining the final number of integer places I(IR(x))
and the final number of decimal places D(IR(x)) to be maintained for
an intermediate result field 1IR(x) resulting from an arithmetic
expression operator x is conceptually the five step procedure outlined
in Figure 4-9 below. 1In computing the final values for I(IR(x)) and
D(IR(x)), remember that these values are subject to the following
criterion:

1<= I(IR(x)) + D(IR(x)) <= 18.

That is, a maximum precision of 18 decimal digits is maintained for an
intermediate result field.

NUMERIC CHARACTER HANDLING

a, If IMAX > I(x) then redefine I (x)

b. If DMAX > D(x) then redefine D(x)

step 4,

1. Record the largest number of integer places, IMAX, declared
for any source operand in an entire COBOL expression.

2. Record the largest number of decimal places, DMAX, declared
for any source operand in an entire COBOL expression.

3. Compute the number of integer places, I(x), and number of
decimal places, D(x), for an arithmetic expression operator x
as a function of the operands associated with operator x.

4., Using IMAX, DMAX, I{(x), and D(x) computed above, apply the
following criterion and redefinition:

IMAX.

DMAX.

5. Using the (possible redefined) values of I(x) and D(x) from
apply truncation criterion to determine the final
values I(IR(x)) and D(IR(x).

Figure 4-9 Procedure to Determine I(IR(X)) and D(IR(x))
for an Arithmetic Expression Result Field IR

Before pursuing the procedure outlined in Figure 4-9 in more depth,
notational conventions are adopted to facilitate the
subsequent discussion:

the following

IR(x)

OP1 (x)
OP2 (x)

- I(OP1(x)
D (OP1 (x))
I(OPZ(x))
D(OP2(x))

IMAX

DMAX

I(x)

a COBOL expression operator from the set
+I—I*I/I**' and unary -.

Intermediate result field obtained from the
execution of an arithmetic operation x.

First operand in arithmetic operation x.
Second operand in arithmetic operation x.

Number of integer places declared for OP1l in
arithmetic operation x.

Number of decimal places declared for OPl in
arithmetic operation x.

Number of integer places declared for OP2 in
arithmetic operation x.

Number of decimal places declared for OP2 in
arithmetic operation x.

Maximum of number of integer places for any source
operand (except for exponents) in a COBOL
expression.

Maximum number of decimal places for any source
operand (except for exponents) in a COBOL
expression.

Number of integer places for an arithmetic
expression operator x computed as a function of
the operator's source operands.

>
]

23

NUMERIC CHARACTER HANDLING

D(x) - Number of decimal places for an arithmetic
expression operator x computed as a function of
the operator's source operand(s).

I(IR(x)) - Final number of integer places to be maintained
for an intermediate result IR obtained by the
execution of operator x.

D(IR(x)) - Final number of decimal places to be maintained
for an intermediate result IR obtained by the
execution of operator x.

To determine the values for IMAX and DMAX (i.e., steps 1 and 2, Figure
4-9), the compile-time software inspects the operands of arithmetic
operators and all data-name references which are compared to an
arithmetic expression in relation conditions. In the process of
inspecting the operands of arithmetic expressions, the software
ignores OP2 of the exponentiate (**) operator. Moreover, since the
software essentially "forgets"” the presence of an unary plus operator,
its singular operand has no role in the determination of IMAX and
DMAX. Having determined the values of IMAX and DMAX, the software
then iteratively applies steps 3 through 5 of the procedure to each
arithmetic operator in an arithmetic expression. The algorithms for
computing I(x) and D(x) are summarized below:

u_n)

Unary Negate (x

I(unary -) I(OP1 (unary -))

D(unary -) D (OP1 (unary -))

Addition (x = "+")

I(+) = MAX(I(OP1(+)), I(OP2(+))) + 1

D(+) = MAX(D(OP1(+)), D(OP2(+)))
Subtraction (x = "-")

I(-) = MAX(I(OP1(+)), I(OP1(-))) + 1

D(-) = MAX(D(OPl(-)), D(OP1l(-)))
Multiplication (x = "*")

I(*) = I(OP1(*)) + I(OP2(*))

D(*) = D(OP1(*)) + D(OP2(*))
Division (x = "/")

(/)

D(/)

I(OP1(/)) + D(OP2(/))

[}

MAX(D(OP1(/)), D(OP2(/))) + 1

NUMERIC CHARACTER HANDLING

Exponentiation (x = "**")

Case 1: OP2(**) is a data-name exponent:

I(**) I(OP1(**)) * F(I(OP2(**)))

where: I(OP2(**)) | F(I(OP2(**)))

OOR 1 9
> 1 18
D(**) = DMAX

Case 2: OP2(**) is a numeric integer literal exponent

I(**) = I(OPL(**)) * OP2(**)

D(**)

D(OP1(**)) * OP2(*¥*)

With the values of I(x), D(x) IMAX, and DMAX known, the software
applies step 4 of Figure 4-9 to possibly redefine the values of I (x)
and D(x) in light of the known values of IMAX and DMAX. The purpose
of step 4 is to ensure that the object-time software will maintain
sufficient precision for intermediate field IR resulting from an
arithmetic operation in the context in which that arithmetic operation
occurs. Finally, step 5 applies the truncation criterion specified in
Figure 4-9 to determine the final values of I(IR(x)) and D(IR(x)).

I(x) + D(x) | D(x) I(x) + DMAX Compiler Action

_____ <18 ___ Any Any I(IR(x)) = I(x)
=18 W Value Value D(IR(x)) = D(X)

< DMAX Any I(IR(x) = 18 - D(x) [High order trunc]
= DMAX Value D(IR(x)) = D(x)
>18 >DMAX <18 I(IR(x) = I(x)

=18 D(IR(x)) = 18 - I(x)[low order trunc]

>18 I(IR(x)) = 18 - DMAX [high order trunc]

D(IR(x)) = DMAX[Low order trunc]
Figure 4-10

Truncation Criterion and I(IR(x))and D(IR(x)) Computation

NUMERIC CHARACTER HANDLING

4.6.3 Example of Intermediate Result Fields

Figure 4-11 illustrates the application of the conceptual algorithms
for computing the attributes of intermediate result fields.

01 A PIC 999v99 USAGE IS DISPLAY.

01 B PIC 99Vv9 USAGE IS COMPUTATIONAL.
01 C PIC 99v999 USAGE IS DISPLAY.

IFA+ 2 * B =C GO TO TAG-1.

Figure 4-11
Example of Intermediate Results

The IF statement given in Figure 4-11 contains a relation condition
which specifies the comparison of an arithmetic expression to a
data-name. The arithmetic expression "A + 2 * B" gives rise to the
creation of the following intermediate result fields:

IR' (*)
IR" (+)

2 *B
A + IR'(+)

where the "primes" indicate the order in which the intermediate result
fields are created. The major problem here is to determine the USAGE
types of IR' and IR", respectively, and to determine the values of
I(IR'(*)), D(IR'(*)), I(IR''(+)), and D(IR''(+)).

To begin the development of solution, we observe that the USAGE of
IR'(*) is COMPUTATIONAL since OP2(*) = B has a COMPUTATIONAL USAGE.
Then, it follows that the USAGE of 1IR"(+) 1is COMPUTATIONAL since
OP2(+) = IR'(*) has a COMPUTATIONAL USAGE type. Now, before applying
the five step procedure in Figure 4-9, the following conditions are
obtained from the declarations of A,B,C, and the specification of the
IF statement in Figure 4-11: ‘

I(OP1(*)) =1 and D(OP1(*)) = 0 for OPl(*) =2,
I(OP2(*)) = 2 and D(OP2(*)) = 1 for OP2(*) = B,
I(OP1(+)) = 3 and D(OP1(+) = 2 for OPl(+) =1,

I(C) = 2 and C(C) = 3 for the C dataname reference.

4-26

NUMERIC CHARACTER HANDLING

It should be noted, that since OP2(+) = "2 * B" is not a data name or
literal reference, OP2(+) does not enter into the specification of the
initial conditions, and therefore into the computation of the values
for IMAX and DMAX. Further, we note the values of I(C) and D(C) for
the dataname C reference since the relation condition involves the
comparison of an arithmetic expression to a data name reference. The
values of I(C) and D(C) are needed for the subsequent calculation of
IMAX and DMAX for the COBOL expression "A + 2 * B = C",

Given these initial conditions, now apply step 1 and 2 of Figure 4-3
to calculate the values of IMAX and DMAX:

IMAX = MAX(I(OP1(+)), I(OP1l(*)), I(OP2(*)), I(C))
IMAX = MAX(3,1,2,2)

IMAX = 3

DMAX = MAX(D(OP1(+)), D(OP1(*)), D(OP2(*)), D(C))
DMAX = MAX(2,0,1,3)

DMAX = 3

Therefore, from the application of steps 1 and 2, IMAX = 3 and DMAX =
3 for the COBOL expression "A + 2 * B = C". Next, iteratively apply
steps 3-5 to each arithmetic expression operator (in the order in
which the expression is evaluated at run time) to determine the wvalues
of I(IR'(*)), D(IR'"(*)), I(IR"'(+)), and D(IR'"'(+)). Thus, applying
step 3 to OPl(*) and OP2(*), we determine the following values for
I(*) and D(*):

I(*) I(OP1(*)) + I(OP2(*))

I(*) =1 + 2

I(*) =3
D(*) = D(OP1(*)) + D(OP2(*))
D(*) =0+ 1
D(*) =1
With I(*) = 3 and D(*) = 1 determined from step 3, now apply step 4 to

discover that I(*) = 3 and D(*) is redefined to 3 since DMAX > D(*) =
1. Thus, step 4 yields the following values:

I(*) =3
D(*) = 3
Finally, apply step 5 to the values of I(*) and D(*) to yield

I(IR'(*)) 3

D(IR'(*)) 3
since
I(*) + D(*) < 18.
Thus, the object-time software will maintain three integer places and
E?ree decimal places for IR'(*) resulting from the evaluation of "2 *

4-27

NUMERIC CHARACTER HANDLING

We wish to apply steps 3-5 to OPl(+) and OP2(+) to determine the
values for I(IR''(+)) and D(IR''(+)). Note that, since OP2(+) =
IR'(*), we have the following values for I(OP2(+)) and D(OP2(+)):

I(OP2(+)) = I(IR'(*))
I(OP2(+)) = 3
D(OP2(+)) = D(IR'(¥*))
D(OP2(+)) = 3.

With I(+) = 4 and D(+) = 3 determined from step 3 of Figure 4-9, now
apply step 4 to find that I(+) = 4 and D(+) = 3 remain unchanged since
IMAX < I(+) and DMAX = D(+). Finally, apply step 5 to the values of
I(+) and D(+) to yield:

4

I(IR''(4))

D(IR''(+)) 3
since
I(+) + D(+) < 18.
Hence, the object-time software will maintain four integer places and

three decimal places for IR''(+) resulting from the evaluation of "A +
2 *B=2C".

CHAPTER 5

TABLE HANDLING

5.1 INTRODUCTION

With COBOL, as with any other language, any data item to which the

program refers must be uniquely identified. This unique
identification of data items is usually accomplished by assigning a
unique name to each item. However, in many applications this is

tedious and inconvenient; often programs require too many names for
items that have different names but contain the same type of
information. Tables provide a simple solution to this problem.
PDP-11 COBOL includes full table handling capabilities as outlined for
standard COBOL in the 1974 ANSI Standards.

A table is a repetition of one item (element) in memory. This
repetition is accomplished by the use of the OCCURS clause in the data
description entry. The literal value in the OCCURS clause causes the
software to duplicate the data description entry as many times as
indicated by that value, thus creating a matrix or table.

The elements may be initialized with the VALUE clause or with a
procedural instruction. They may contain synchronized or
unsynchronized data. They may be accessed only with subscripted
procedural instructions. A subscript is a parenthesized integer or
data name (with an integer value). The integer value represents the
desired occurrence of the element.

This chapter discusses how to set up tables and access them accurately
and efficiently. It attempts to cover any problems that may be
encountered while handling tables. Read it through carefully before
setting up tables with PDP-11 COBOL. Section 6 of the PDP-11 COBOL
Reference Manual for the PDP-11 contains reference information on the
individual table handling instructions (OCCURS, USAGE IS INDEX, SET,
and SEARCH).

5.2 DEFINING TABLES

To define a table with PDP-11 COBOL, simply complete a standard data
description for one element of the table and follow it with an OCCURS
clause. The OCCURS clause contains an integer which dictates the
number of times that element will be repeated in memory, thus creating
a table.

5-1

TABLE HANDLING

The OCCURS phrase has two formats:
Format 1

OCCURS integer-2 TIMES

[{ASCENDING

KEY IS data—-name-2 [, data-name-3] ...] cee
DESCENDING

[INDEXED BY index-name-1l [, index-name-2] ...]

Format 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

} KEY IS data-name-2 [, data-name=-3] ...] .o

ASCENDING
DESCENDING

[INDEXED BY index~-name-1 [, index-name-2] ...]

In either format, the system generates a buffer 1large enough to
accommodate integer-2 occurrences of the data description. Therefore,
the amount of storage allocated in either case is equal to the amount
of storage required to repeat the data entry integer-2 times.

The software will automatically map the elements into memory. When
mapping a table into memory, the software follows the rules for
mapping which depend on whether the element contains synchronized
items or not. 1If they do not contain synchronized items, the software
maps them into adjacent memory locations and the size of the table can
be easily calculated by multiplying the size of the element times the
number of occurrences (5X10 for the table illustrated in Figure 5-1,
or 50 bytes of memory).

01 A-TABLE
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Figure 5-1
Defining a Table

5.2.1 The OCCURS Phrase - Format 1

When Format 1 is used, a fixed length table is generated, whose length
(number of occurrences) is equal to the value specified by integer-2.
This format is useful for storing large amounts of frequently used
reference data whose size never changes. Tax tables, used in payroll
deduction programs, are an excellent example of where a Format 1
(fixed length) table might be used.

5.2.2 The OCCURS Phrase - Format 2

Format 2 is used to generate variable length tables. When wused, a
table whose 1length (number of occurrences) is equal to the value
specified by data-name-1 is generated.

TABLE HANDLING

NOTE

Data-name-l must always be a positive
integer whose value 1is equal to or
greater than integer-1 but not greater
than integer-2.

Unlike format 1 tables, the number of occurrences of data items in
format 2 tables can be dynamically expanded or reduced to satisfy user
needs.

By generating a variable length table, the user is, in effect, saying;
"build me a table that can contain at least integer-1 occurrences, but
no more than integer-2 occurrences, and set its number of occurrences
equal to the value specified by data-name-1".

Data-name-l1 always reflects the number of occurrences available for
user access. To expand the size (number of occurrences available for
use) of a table, the user need only increase the value of data-name-1
accordingly.

Likewise, reducing the value in data-name-1 will reduce the number of
occurrences available for user access.

5.3 MAPPING TABLE ELEMENTS

As mentioned in Section 5.2, when the software detects an OCCURS
clause in an unsynchronized item, it maps the table elements into
adjacent locations in memory. Consider the following data description
of a simple table and the way it is mapped into memory:

Table Description: 01 A-TABLE.
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Memory Map:

words I(IX|{IIT|IV]|V]VI|VII|VIII| IX | X e
bytes [PPl ipid | IR -
S <\ ~~" ~ " - ~~"
A-GROUP A-GROUP A-GROUP A-GROUP .o
Figure 5-2

Mapping a Table into Memory

The data description in Figure 5-2 causes the software to set wup ten
items of five bytes each (elements) and place them in adjacent
ascending memory locations for a total of 50 character positions, thus
creating a table. Since the length of each A-GROUP element is odd
(5), the memory addresses of each subsequent element will alternate
between odd and even locations.

.The SYNCHRONIZED clause causes the software to add a £fill byte to
items that contain an odd number of bytes, thereby making the number
of bytes in that item even. This - ensures that each subsequent
occurrence of the element will not alternate between odd and even
addresses, but will map the same (odd or even) as the first repetition
of that element. '

TABLE HANDLING

If the data description of A-GROUP contained a SYNCHRONIZED clause,
the software would map it quite differently. If A-GROUP were
synchronized, it would expand its length to three words. The item
will, by default, be synchronized to the left occupying the first five
characters of the three words. The software supplies a padding
character to fill out the third word. This padding character is not a
part of the A-GROUP element and table instructions referring to
A-TABLE will not detect the presence or absence of the character.

The padding character does, however, affect the overall length of the
group item and, hence, the table. Without the SYNCHRONIZED clause,
A-TABLE required only 50 character positions; now, with the clause,
it requires 60 character positions. (This length includes the last
padding character —— following the tenth element in the table.)

Although the SYNCHRONIZED clause has 1little value when used with
alphanumeric fields, an understanding of the concept is essential
before attempting to use COMP and INDEX data items in tables. The
software automatically synchronizes all COMP and INDEX usage data
items, and will most probably alter the size of any table (often
drastically) that contains these data types. Consider the following
illustration of a synchronized data item being mapped by the software:

Table Description: 01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X. 1--ITEM1
05 ITEM2 PIC S999 COMP. 2--ITEM2
S—--SLACK
BYTE
Memory Map:
words I II III| IV \' VI VII | VIII oo
bytes IVE 212 1T 8212 118 212 1] 22
~ " 7N ~ o N
A-GROUP A-GROUP A-GROUP A-GROUP e
Figure 5-3

Synchronized COMP Item in a Table

Since the software synchronizes the ITEM2 fields (COMP), these fields
each occupy a single word in memory; thus, a slack byte follows each
occurrence of ITEM1. Each repetition of A-GROUP consumes four bytes
of memory -- one byte for ITEM1l, one byte for the slack byte, and two
bytes for ITEM2. A-TABLE, then, requires 80 bytes of memory (20
elements of four bytes each).

Now, consider the effect of adding a l-byte field to A-TABLE. If we
place the field between ITEM1 and ITEM2, it will take the space
formerly occupied by the slack byte. This has the effect of adding a
data byte but leaving the size of the table unchanged. Consider the
following illustration:

TABLE HANDLING

Table Description: 01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM3 PIC X.
05 ITEM2 PIC S999 COMP.

1--ITEM1
Memory Map: 2--ITEM2
3--ITEM3
words I II IIT | IV \Y% VI |...
bytes 13 72]2] 173 2[2]J1]312[2...
. ~ - ~

A-GROUP A-GROUP A-GROUP

Figure 5-4
Adding a Field without Altering the Table Size

If, however, we place the 1l-byte field after ITEM2, it has the effect
of adding its own length plus another slack byte. Now, each element
requires six full bytes and the complete table consumes 120 bytes of
memory (6X20)! This is due to the fact that the first repetition of
ITEM1 falls on an even byte and, in order to keep the mapping of each
A-GROUP element the same, the software allocates each successive
repetition of ITEMl to an even byte address. Thus, it assigns ITEM3
to the even byte of the third word and adds a slack byte to guarantee

that the next element begins on an even byte. Consider the following
illustration:

Table Description: 01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:
Odd or Even EOEOEOEOEOEOEOEOEDO s
words I II|III IV V |VI |VII|VIII IX .o
bytes 1742121351 e42 23150212 BVE] .. .
A-GROUP A-GROUP A-GROUP
Figure 5-5

Adding One Byte which Adds Two Bytes
to the Element Length

NOTE

The illustrations in this section show
each byte with an even address (E) as
the leftmost byte, and each byte:with an
odd address (0) as the rightmost byte.
(The two bytes, odd and even, are
reversed in actual memory.)

TABLE HANDLING

If, however, we use a FILLER byte to force the first allocation of
ITEM1 to occur on an odd byte, A-GROUP again requires only four bytes
and no slack bytes. Figure 5-6 illustrates this. Since the FILLER
item occupies the even byte of the first word, ITEM1 falls on an odd
byte. The software requires that each repetition of ITEM1 must be an
even number of bytes in 1length in order to guarantee that the
synchronized item(s) will map onto word boundaries. No slack Dbytes
are needed and A-GROUP elements are again only four bytes long, and

A-TABLE requires only 81 bytes. :

Table Description: 01 A-TABLE.

03 FILLER PIC X.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:

odd or even EOQO EO EO EO EO EO EO -

words I [11 [I11] 1V v Jvi Jvii] ...
bytes FIL [212 |31 [2[213]112[213] [.-..

FILLER A-GROUP A-GROUP A-GROUP

© Figure 5-6 .
Forcing an 0dd Address By Adding a l1-Byte FILLER
Item to the Head of the Table

If we try to force ITEM1 onto an odd byte with a SYNCHRONIZED RIGHT
clause, the software maps ITEM1l into the odd byte, but prohibits all
repetitions of the element from using the even byte. Thus, the first
repetition of A-GROUP has a slack byte at its beginning and, so that
the next element can begin (with a slack byte) at an even address,
another slack byte (odd) following ITEM3. This expands the element
length to six bytes and the table length to 120 bytes.

Table Description: 01 A-TABLE.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM]1 PIC X SYNCHRONIZED RIGHT.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:

Odd or Even EO EO EO EO EO EO EO EO EO ...
words I Y11 |I11]1IV Vv | vI |vIr| viii]ix [...
bytes T 22 [3EWBAT | 212 [3B T 212 13A .-
. AL N J
A-GROUP A-GROUP A-GROUP ...
Figure 5-7

The Effect of a SYNCHRONIZED RIGHT Clause Instead
of a FILLER Item as shown in Figure 5-6

5-6

TABLE HANDLING

To determine how the software will map a given table, apply the
following two rules:

1. The software maps all items in the first repetition of a
table element into memory words as with any item properly
defined with a data description, obeying any implicit or
explicit synchronization requirements.

2. If the first repetition contains any elementary items with
implicit or explicit synchronization, the software maps each
successive repetition of the element into memory words in the
same way as the first repetition. It does this by adding one
slack byte, if necessary, to make the size of the element
even.

5.3.1 Initializing Tables

If a table contains only DISPLAY items, it can be set to any desired
initial wvalue (initialized). To initialize a table, simply specify a
VALUE phrase on the record level preceding the item containing the
OCCURS clause. The sample data definitions, below, will set up
initialized tables:

Table Description: 01 A-TABLE VALUE IS "JANFEBMARAPRMAY
- JUNJULAUGSEPOCTNOVDEC".
03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

Memory Map:

words I JI1 J11IfIv [v JvI JvizfviziJix | x [x1I [x1I
byte contents|JJAIN][F{E[BIMTAIRIAIP]RIM]A]Y]T [ulNlglu]L]alulG

MONTH—GROUP”;::i:::::>/—’ :: MONTH-GROUP

MONTH-GROUP MONTH-GROUP
MONTH-GROUP MONTH~-GROUP
MONTH-GROUP MONTH-GROUP

Figure 5-8
Initializing Tables

Often a table is too long to initialize with a single literal, or it
contains items that cannot be initialized (numeric, alphanumeric, or
COMP). These items can be individually initialized by redefining the
group level preceding the 1level that contains the OCCURS clause.
Consider the following sample table descriptions:

TABLE HANDLING

Table Description: 01 A-RECORD-ALT.
05 FILLER PIC XX VALUE "AX".
05 FILLER PIC 99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC 99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S99 COMP.

Memory Map: Binary i//Binary 2
words I |ITI§ III|IV .o
byte contents at AlX1] | [BX ...

. . . . t- ti
initialization me A-GROUP A-GROUP

Figure 5-9
Initializing Mixed Usage Fields

In the preceding example, the slack bytes in the alphanumeric fields
(ITEM1) are being initialized to X.

Table Description: 01 A-RECORD-ALT.
03 FILLER PIC X(30) VALUE 1IS
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC™".
03 FILLER PIC X(30) VALUE IS

"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF" .
(etc.)

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEM1 PIX X(10) OCCURS 26 TIMES.

Memory Map:

word I JIT [11IJIiv [v Jvi Jviz[viir[ix | x Ix1I
byte AJA[ATA]AlA|A]Aa[AlA|B[BIB|B|B|B |BIBI{B]B}CIC
contents at ~— <\ ~

initialization ITEM1 ITEM1 ...
time

Figure 5-10
Initializing Alphanumeric Fields

In the preceding example, each FILLER item initializes three 10-byte
table elements.

When redefining or initializing table elements, allow space for any
slack bytes that may be added due to synchronization (implicit or
explicit). The slack bytes do not have to be initialized; however,
they may be and, if initialized to an uncommon value, they may even
serve as a debugging aid for situations such as a statement referring

to the record 1level above the OCCURS clause or another record
redefining that level.

TABLE HANDLING

Sometimes the length and format of table items are such that they
would best be initialized by statements in the Procedure Division.
This initialization coding could be executed once and then overlaid
(due to the automatic segmentation feature) if the entire Procedure
Division is too large to be held in memory at one time.

Once the OCCURS clauses have established the necessary tables, the
program must be able to access the elements of those tables
individually. Subscripting and indexing are the two methods provided
by COBOL for accessing individual elements.

5.4 SUBSCRIPTING AND INDEXING

To refer to a particular element within a table, simply follow the
name of the desired element with a parenthesized subscript or index.
A subscript is an integer or a data-name that has an integer value;
the integer value represents the desired occurrence of the element --
an integer value of 3, for example, refers to the third occurrence of
the element. An index is a data-name that has been named in an
INDEXED BY phrase in the OCCURS clause.

5.4.1 Subscripting with Literals

A literal subscript is simply a parenthesized integer whose value
represents the occurrence number of the desired element. 1In figure
5-11, the literal subscript in the MOVE instruction (2) causes the
software to move the contents of the second element of the table,
A-TABLE, to I-RECORD.

01 A-TABLE.
Table Description 03 A-GROUP PIC X(5)
OCCURS 10 TIMES.

Procedural Instruction MOVE A-GROUP(2) TO I-RECORD.

Figure 5-11
Literal Subscripting

If the table has more than one level (or dimension), follow the name
of the desired item with a list of subscripts, one for each OCCURS
clause to which the item is subordinate. The first subscript in the
list applies to the first OCCURS clause to which the item is
subordinate. (This is the most encompassing level -- A-GROUP in the
following example.) The second subscript in the list applies to the
next most encompassing level, and the last subscript applies to the
lowest 1level OCCURS clause being accessed (or the desired occurrence
number of the item named in the procedural instruction -- ITEM5 in the
following example).

Consider Figure 5-12; the subscripts (2,11,3) in the MOVE instruction
cause the software to move the third repetition of ITEM5 in the
eleventh repetition of ITEM3 in the second repetition of A-GROUP to
I-FIELDS. (For illustration simplicity, I-FIELD5 is not defined.)
(ITEM5(1,1,1) would refer to the first occurrence of ITEM5 in the
table and ITEM5(5,20,4) would refer to the last occurrence of ITEM5.)

TABLE HANDLING

Table Description 05 ITEM2 PIC 99 COMP OCCURS 20

01 A-TABLE.
03 A-GROUP OCCURS 5 TIMES.
05 ITEM1 PIC X.

TIMES.
05 ITEM3 OCCURS 20 TIMES.
07 ITEM4 PIC X.
07 ITEM5 PIC XX OCCURS 4 TIMES.

Procedural Instruction MOVE ITEM5(2, 11, 3) TO I-FIELDS5.

Figure 5-12
Subscripting a Multi-Dimensional Table

NOTE
Since ITEM5 is not subordinate to ITEM2,

an occurrence number for ITEM2 is not
permitted in the subscript list.

Figure 5-13 summarizes the subscripting rules for each of the above
items and shows the size of each field in bytes.

NAME NUMBER OF SUBSCRIPTS SIZE
OF REQUIRED TO REFER TO OF
FIELD THE NAMED FIELD FIELD
A-TABLE) NONE 1110
A-GROUP ONE 222
ITEM1 ONE 1*
ITEM2 TWO 2
ITEM3 TWO 9
ITEM4 TWO 1
ITEMS THREE 2

* Plus a slack byte

Figure 5-13
Subscripting Rules for a
Multi-Dimensional Table

5.4.2 Operations Performed by the Software

Wwhen a literal subscript is used to refer to an item in a table, the

software

performs the following steps to determine the exact address

of the item:

1.

2.

The compiler converts the literal to a l-word binary value.

The compiler range checks the subscript value (the value must

not be less than 1 nor greater than the number of repetitions
specified by the OCCURS <clause) and prints a diagnostic
message if the value is out of range.

The compiler decrements the value of the subscript by 1 and
multiplies it by the size of the item that contains the
OCCURS clause corresponding to this subscript, thus forming
an index value; it then stores this value, plus the literal
subscript, in the object program.

5-10

TABLE HANDLING

4. At object execution time for a fixed length table, the run
time system adds the index value (from 3 above) to a base
address, thus determining the address of the desired item.
For a variable 1length table reference, the procedure for
fixed length tables is preceded by the procedure described in
Section 5.4.6.

5.4.3 Subscripting with Data-Names

As discussed earlier in this section, subscripts may also be specified
using data-names instead of literals. To use a data-name as a
subscript, simply define it as a numeric integer (COMP or DISPLAY).
It may be signed, but the sign must be positive at the time it is used
as a subscript. .

The sample subscripts in figure 5-14 refer to the same element
accessed in Figure 5-12, (2, 11, 3).

Data Descriptions 01 KEY1l PIC 99 USAGE DISPLAY.
of Subscript data-names 01 KEY2 PIC 99 USAGE COMP.
01 KEY3 PIC S99.

MOVE 2 TO KEY1l.
MOVE 11 TO KEY2.
MOVE 3 TO KEY3.
Procedural Instructions GO TO TABLERTN.
TABLERTN.
MOVE ITEMS5 (KEYl KEY2 KEY3) TO
I-FIELDS.

Figure 5-14
Subscripting with Data-Names

5.4.4 Operations Performed by the OTS

When a data-name subscript is used to refer to an item in a table, the
0TS performs the following steps at object execution time:

1. If the data-name's data type is DISPLAY, the software
converts it to a l-word binary value.

2. For fixed length tables, the software range checks the
subscript value (the value must not be less than 1 nor
greater than the number of repetitions specified by the
OCCURS <clause) and terminates the object program (with a
diagnostic message) if it is out of range. For variable
length tables, the procedure described in Section 5.4.6 is
followed.

3. The software decrements the value of the subscript by 1 and
multiplies it by the size of the item that contains the
OCCURS clause corresponding to this subscript, thus forming
an index value.

4. The software adds the index value (from 3 above) to a base
address, thus determining the address of the desired item.

TABLE HANDLING

5.4.5 Subscripting with Indexes

The same rules apply for the specification of indexes as apply to
subscripts except that the index must be named in the INDEXED BY
phrase of the OCCURS clause.

An index-name item (an item named in the INDEXED BY phrase of the
OCCURS clause) has the ability to hold an index value. (The index
value is the product formed in step 3 of the operations performed by
the software for 1literal or data-name subscripts —-- the relative
location, within the table, of the desired item.)

The compiler allocates a 2-part data item for each name that follows
an INDEXED BY phrase. These index-name items cannot be accessed as
normal data items; they cannot be moved about, redefined, written to
a file, etc. However, the SET verb can change their values and
relation tests can examine their values. One part of the 2-part
index-name item contains a subscript value and the other part contains
an index value. Consider the following illustration:

INDEX PART —»
SUBSCRIPT PART —»

Figure 5-15
Index-Name Item

Whenever a SET statement places a new value in the subscript part, the
software performs an index value computation and stores the result in
the index part. Only the subscript part of the item acts as a sending
or receiving field. The index part is never altered by any other
operation and is never moved to another item. It is used only when
the index-name 1is wused as an index referring to a table item. The
sample MOVE statement in Figure 5-16 would move the contents of the
third repetition of A-GROUP to I-FIELD. (For illustration simplicity,
once again, I-FIELD is not defined.)

01 A-TABLE.
Table Description 03 A-GROUP OCCURS 5 TIMES
INDEXED BY IND-NAME.

Procedural Instructions SET IND-NAME TO 3.
MOVE A-GROUP (IND-NAME) TO I-FIELD.

Figure 5-16
Subscripting With Index-name Items

5.4.6 Operations Performed by the OTS

The 0TS performs the following steps when it executes the SET
statement:

1. The OTS converts the contents of the sending field of the SET
statement to a l-word binary value.

2. The OTS range checks the value (the value must not be 1less
than 1 nor greater than the number of repetitions specified
in the OCCURS clause) and terminates the object program with
a diagnostic message if it is out of range.

TABLE HANDLING

3. The OTS decrements the value by 1 and multiplies it by the
size of the item that contains the OCCURS clause, thus
forming an index value.

For fixed length tables, once the SET statement has been executed and
the software has encountered the index-name item as an index, it only
has to add the index value (from 3 above) to a base address to
determine the address of the desired item. Since this is the only
action performed, the execution speed of a procedural statement with
an indexed data-name is equivalent to a reference with a literal
subscript.

For a variable length table, when the index-name is encountered as an
index, the procedure described in Section 5.4.6 is invoked before
following the fixed length table logic. However, the SET statement
itself is not impacted by the fixed/variable characteristic of the
associated table.

PDP-11 COBOL initializes the value of all index-name items to a
subscript value of 1 (index value of 0), hence an attempt to use an
index-name item as an index before it has been the receiving field of
a SET verb will not result in an out-of-range termination.

NOTE

Initialization of index-name items is an
extension to the ANSI COBOL standards.
Users concerned with writing COBOL
programs that adhere to standard COBOL
should not rely on this feature.

5.4.7 Relative Indexing

To perform relative indexing, when referring to a table item, simply
follow the index-name with a plus or minus sign and an integer
literal. Relative indexing, albeit easy to wuse, causes additional
overhead to be generated each time a table item is referenced in this
fashion. At compile time, the compiler has to compute the index value
corresponding to the specified literal; and transfer this index value
to the object file. At object run time, the index wvalue for the
literal is added to (+) or subtracted from (-) the index value of the
index-name. The resulting index value 1is stored in a temporary
location. The OTS adds this temporary index value to the base address
of the table to determine the address of the desired table item. At
this point, a range check is performed on the temporary index value to
insure that the resulting index is within the permissible range for
the table.

For fixed length tables, this index manipulation 1is relatively
straightforward. The size of the table is known at compilation time,
and this size is passed along to the OTS in the object file. A simple
compare against this fixed value is all that is required to determine
if a given index value is within the permissable range for the table.

For a variable length table, however, the process 1is more involved.
The current number of occurrences (data-name-1) for the table must be
determined and range checked; the index value corresponding to the
current number of occurrences must be calculated; then the temporary
index value must be range checked using the current number of
occurrence's index value.

TABLE HANDLING

The object time overhead required for the relative indexing of
variable length tables is significantly greater than that required for
fixed length tables. In either case, the index portion of the
index-name is not altered. If any of the range checks reveals an
illegal (out of range) value, execution 1is terminated with an
apropriate error message.

The sample MOVE instruction in Figure 5-17 moves the fourth repetition
of A-GROUP to I-FIELD if IND-NAME has not been altered with a SET
verb.

MOVE A-GROUP (IND-NAME + 3) TO I-FIELD.

Figure 5-17
Relative Indexing

The actual operation of accessing a table element is shorter at run
time since the compiler has calculated the index value of the literal
at compile time and has stored it in the object program ready for use.
Relative indexing, therefore, involves two additions and a range check
during object execution. It leaves the index-name item unaltered.

5.4.8 1Index Data Items

Often a program will require that the value of an index-name item be
stored outside of that item. It is for this purpose that PDP-11 COBOL
provides the index data item.

Index data items are 1-word binary integers with implicit
synchronization. (The 1-word size corresponds to the subscript part
of the index-name item.) They must be declared with a USAGE IS INDEX
phrase and they may be modified (explicitly) only by the SET
statement.

Subscript Part— — | [

Figure 5-18
Index Data Item

Since index data items are considered to contain only the subscript
part of an index-name item, when a SET statement "moves" an index-name
item to an index data item, only the subscript part is moved.
Likewise, when a SET statement "moves" an index data item to an
index-name item, a new index value is computed by the software. This
is done to guarantee that an index-name item will always contain a
good index value.

The only advantage gained by using index data items over numeric, COMP
items 1is that the data description is shorter, easier to write, and
more self-documenting. Further, the restrictions placed on access to
index items may be useful in debugging the program.

5.4.9 The SET Statement

The SET statement alters the value of index-name items and copies
their value into other items. When used without the UP BY/DOWN BY
clause, it functions like a MOVE statement. Figure 5-19 illustrates
the legal data movements that the SET statement can perform.

5-14

TABLE HANDLING

INDEX-NAME ITEM

NUMERIC LITERAL (INDEX PART) INDEX DATA ITEM

NUMERIC DATA NAME INDEX~NAME ITEM
(COMP_OR DISPLAY) — (INDEX PART) |

I | (SUBSCRIPT PART)

Figure 5-19
Legal Data Movement with the SET Statement

The SET statement may be used with the UP BY/DOWN BY clause to alter
the value of an index-name item arithmetically. The numeric literal
is added to (UP BY) or subtracted from (DOWN BY) the subscript part,
and the index part 1is recalculated by the software after the
appropriate range check against the number of repetitions for the
table. The SET statement is not affected by whether the table is
fixed or variable length.

5.4.10 Referencing a Variable Length Table Element at OTS Time

At OTS time, when a procedural reference involves an element in a
variable length table, the following procedure is used:

1. Determine the number of occurrences in the table (the value
contained in data-name-1l), and verify its legality.

(integer-1 <= data-name-1 <= integer-2)
2. Verify that the subscript is within the legal range.
(subscript <= data-name-1)

If any of the above checks fails, execution is terminated with an
appropriate error message.

5.4.11 Referencing a Dynamic Group at OTS Time

A dynamic group is defined as a group item that contains a subordinate
item that is a variable length table. At OTS time, when a dynamic
group is referenced, the following procedures are followed:

1. The number of occurrences of the subordinate variable length
table is determined, and checked for 1legality; i.e.,
integer-1<=data-name-1<=integer-2. If this check fails,
execution terminates and the appropriate error message is
issued.

2., The size of the dynamic group is calculated. The number of
occurrences of the variable 1length table (data-name-1l) is
multiplied by the size of one table entry. The resulting
number is then added to the fixed size of the dynamic group.

TABLE HANDLING

NOTE

The fixed size of a dynamic group is the
size of the group wup to but not
including the variable length table.

5.4.12 The SEARCH Verb

The SEARCH verb has two formats: Format 1, which performs a
sequential search of the specified table beginning with the current
index setting; and Format 2 which performs a selective (binary)
search of the specified table, beginning with the middle of the table.

Both formats allow the programmer to specify imperative statements
within the SEARCH verb. At OTS time, an imperative statement
contained within a search verb is executed only when one of the exit
paths (success or failure) is taken.

The failure path is defined either explicitly by the AT END statement,
in which case the imperative statement which follows it is executed;
or by default, in which case control is passed to the next procedural
sentence. In either case (success or failure), after an imperative
statement is executed, control 1is passed to the next procedural
sentence.

5.4.13 The SEARCH Verb - Format 1

Format 1 directs the OTS to search the indicated table sequentially.
The OCCURS <clause for the table being searched must contain the
INDEXED by phrase. Unless otherwise specified in the SEARCH
statement, the first index is the controlling index for the table
search. The search begins with the current index setting, and
progresses through the table, augmenting the index by one as each
occurrence is interrogated. 1If any of the specified conditions is
true (success), the associated imperative statement is executed; the
search exits; and the index remains at the current setting.

If the possible number of occurrences for the table 1is exhausted
before any of the specified conditions are met, the specified failure
exit path is taken. That 1is, either the AT END exit path (if
specified) 1is taken, or control 1is passed to the next procedural
sentence.

Figure 5-20 contains an example of using the SEARCH verb to search a
table in a serially.

Associated with Format 1 is the optional VARYING phrase. This phrase
can be specified by using any of the following methods:

1. default - phrase omitted
2. VARYING index-name-n
3. VARYING identifier-2

4, VARYING index—-name-2

TABLE HANDLING

NOTE

The following is true regardless of which of the
above methods is used.

a. An index name associated with the table is methodically
augmented by one, by the OTS, for each cycle of the
serial search. This controlling index, when compared to
.the allowable number of occurrences for the table,
dictates the permissible range of search c¢ycles at OTS
time. When an exit occurs (success or failure), this
index remains at the current setting.

b. The OTS will not initialize the index when the search
begins. It 1is the programmers responsibility to insure
that the initial index setting is the appropriate one.
The OTS will begin processing the table with the setting
it finds when the search is initiated.

When method 1 is used, the first index name (index-name-1) associated
with the table is used as the controlling index. Only this index is
set to consecutive values by the OTS serial search processor. See
Figure 5-20, Example 2, for an example of using method 1.

When method 2 is used, index-name-n is any index that 1is associated
with the table being searched. It becomes the controlling index for
the table. It alone is set to consecutive values by the OTS search
processor. See Figure 5-20, Example 3, for an example of using method
2.

When method 3 is used, identifier-2 is augmented by one each time the
first index (controlling index) for the table is augmented by one.
Identifier-2 is not a substitute index. It merely allows the
programmer to maintain an additional pointer to elements within a
table. See Figure 5-20, Example 4, for an example of method 3.

When method 4 is used, index-name-2 is an 1index that 1is associated
with a table other than the one being searched. Each time the
controlling index (lst index for the table) of the searched table is
augmented, index-name-2 is also augmented. See Figure 5-20, Example
5.

5.4.14 The SEARCH Verb - Format 2

Format 2 is used to direct the OTS to search the indicated table
selectively. The selective (binary) search is predicated upon the
ASCENDING/DESCENDING KEY attributes of the table being searched.
Therefore, an ASCENDING and/or DESCENDING KEY(s) must be specified in
the OCCURS clause that defines the table, to inform the OTS that the
keys are stored within the table in ascending or descending order.

The INDEXED BY phrase must also be specified. When the binary search
is executed, the OTS uses the first or only index associated with the
table as the controlling index for the search.

TABLE HANDLING

The selective (binary) search is implemented in the OTS as follows:

1.

The OTS examines the range of permissible values for the
index of the table being searched; selects the median value;
and assigns this median value to the index.

The OTS then proceeds to process the sequence of simple tests
for equality, beginning with the first, with the index set to
the median value.

If all of the tests for -equality are true (success), the
search is terminated; the associated imperative statement is
executed; the search exits; and the index retains its
current value.

If any of the tests for equality 1is false, the following
results occur.

a. The OTS determines if all of the possible occurrences for
the table have been tested. If the table has been
exhausted, the imperative statement which accompanies the
AT END statement (if specified) is executed. 1In either
case, control is passed to the next procedural statement.

b. The OTS will now determine which half of the table is to
be eliminated from further consideration. This
determination is predicated on whether the key being
tested is in ascending or descending order, and whether
the test failed because of a greater than or 1less than
comparison. For example, if the key values being tested
are stored in ascending order, and the median table
element being tested is greater than the value being
tested for equality, the OTS will assume that all key
elements following the one tested are also greater than
the value being tested for equality. Therefore, the
lower half of the table, those items which follow the
current index setting, are no longer in contention.

c. Once the direction of search is determined, half of the
table is eliminated from further consideration. A new
range of permissible index values is computed from the
remaining half of the table.

d. Processing begins all over again from step 1.

See Figure 5-20, Example 6, for an example of searching a table wusing
Format 2 of the SEARCH verb.

TABLE HANDLING

FED«TAX=TABLES,
22 ALLOWANCE=DATA,

a2

Qe

23

FILLER PIC X(7@) VALUE
"gaaiu4e
"g202880
"2304320
"3405760
"9507200
"a6Q8640
"a710082
"e811520
"2912960
"1@14400",

ALLOWANCE=TABLE REDEFINES ALLOWANCE=DATA,

a3

FED=ALLOWANCES OCCURS 1@ TIMES
ASCENDING KEY IS ALLOWANCE=NUMBER
INDEXED BY INDei,

A4 ALLOWANCE=NUMBER PIC XX,

24 ALLOWANCE PIC 996V99,

SINGLES=DEDUCTION=DATA,

a3

FILLER PIC X(112) VALUE
"0250006700020016

"36700115000672209

"1150018300163223

"1830024080319621

"2400027900439326

"2799034620540730

"3460099999741736",

SINGLES=DEDUCTION=TABLE REDEFINES SINGLES=DEDUCTION=DATA,

a3

SINGLES=TABLE OCCURS 7 TIMES
ASCENDING KEY I8 S~MINeRANGE S=MAX®=RANGE
INDEXED BY IND=2, TEMP=INDEX,

04 S=MINeRANGE PIC 999V99,
@4 SeMAX=RANGE PIC 999Ve9,
24 S=TAX PIC 99V99,
24 SePERCENT PIC V99,
P2 MARRIED<DEDUCTION=DATA,
®3 FILLER PIC X(119) VALUE
"048002096000000017
"09600173000081620
"17300264000235617
"2640034600039032S
"34600433000595328
"43300500007838932
"50000999991053336",
22 MARRIED=DEDUCTION=TABLE REDEFINES MARRIEDeDEDUCTION=DATA,
@3 MARRIED=TABLE OCCURS 7 TIMES
ASCENDING KEY I8 M=MINeRANGE M=MAX=RANGE
INDEXED BY IND=@, IND=3,
24 MeMIN=RANGE PIC 999Vv99,
24 M=MAXeRANGE PIC 999vg9,
B4 MeTAX PIC 999v99,
24 MePERCENT PIC V99,
TEMP=INDEX USAGE INDEX,

Figure 5-20
Example of Using SEARCH
To Search a Table

TABLE HANDLING

Example 1

SINGLE,
IF TAXABLE=INCOME < 2499
GO TO END=FED~COMP,
SET IND=2 TO |,
SEARCH SINGLES=TABLE VARYING IND=2 AT END
GO TO TABLE=2=ERROR
WHEN TAXABLE=INCOME 3 S=MIN=RANGE(IND=2)
MOVE SeTAX(INDw2) TOD FED=TAX=DEDUCTION OF
QUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX=RANGE(IND=2)
SUBYRACT S=MIN=RANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY S~PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FED=TAX=DEDUCTION OF
QUTPUT=MASTER,

Example 2

SINGLE,
IF TAXABLE=INCOME < 82499
GO TO END=FED=COMP,
SET IND=2 TO i,
SEARCH SINGLES=TABLE VARYING IND=2 AT END
GO TO TABLE=2=ERROR
WHEN TAXABLEw=INCOME % S=MIN=RANGE(IND=2)
MOVE S«TAX(IND=2) TO FED=TAX=DEDUCTION OF
OUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLEwINCOME ¢ SeMAX=RANGE(IND=2)
SUBTRACT S=MIN=RANGE (IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY $=PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FEDeTAX=DEDUCTION OF
OUTPUT=MASTER,

Example 3

MARRIED,
IF TAXABLE=INCOME <« 24799
MOVE ZEROS TO FED«TAX=DEDUCTION OF OQUTPUT=MASTER,
GO TO ENDeFEDeCOMP,
SET IND=3 TO 1§,
SEARCH MARRIED=TABLE VARYING INDe3
AT END GO TO TABLE=3=ERROR
WHEN TAXABLEwINCOME = M=MIN=RANGE(IND=3)
MOVE M=TAX(IND=3) TO FEDeTAX=DEDUCTION OF OUTPUTeMASTER,
GO TO STORE=FED=TAX,
WHEN TAXABLE=INCOME ¢ M=MAX«RANGE({IND=3)
MOVE MeTAX(INDw3) TO FED«TAX=DEDUCTION OF OUTPUT=MASTER,
SUBTRACT MwMIN«RANGE(INDw3) FROM TAXABLE=INCOME ROUNDED,
MULTIPLY TAXABLE=INCOME BY MePERCENT(IND=3) ROUNDED,
ADD TAXABLE=INCOME TO FED«TAX=DEDUCTION
OF CUTPUT-MASTER ROUNDED,
GO TO STORE~FED=TAX,

Figure 5-20 (Cont.)
Example of Using SEARCH
To Search a Table

TABLE HANDLING

Example 4

SINGLE,
IF TAXABLE=INCOME < 22499
GO TO END=FEDeCOMP,
SET IND=2 TO {,
SEARCH SINGLES=TABLE VARYING TEMPeINDEX AT END
GO 7O TABLE=2=ERROR
WHEN TAXABLE=INCOME 3 S=MINeRANGE(IND=2)
MOVE S=TAX{IND=2) TOQ FED=TAX=DEDUCTION OF
QUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME < S»MAX=wRANGE(INDe2)
SUBTRACT S=MIN=RANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY SePERCENT(INDw2) ROUNDED
ADD TAXABLE=INCOME TQO FED=TAX=DEDUCTION OF
OUTPUT=MASTER,

Example 5

SINGLE,
IF TAXABLE=INCOME < Q2499
GO TO END=FED=COMP,
SET IND=2 70 i,
SEARCH SINGLES=TABLE VARYING IND=9 AT END
GO TO TABLE=2<ERROR
WHEN TAXABLE=INCOME = S=MINeRANGE(IND=2)
MOVE S=TAX(IND=2) TC FED=TAX=DEDUCTION OF
OUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME < 8=MAX=RANGE(IND=2)
SUBTRACT SeMIN=RANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY S=PERCENT(IND=2) ROQUNDED
ADD TAXABLE=INCOME TO FED=TAXDEDUCTION OF
OUTPUT=MASTER,

Example 6

FED=DEDUCT=COMPUTATION,
SET IND=y{ TO {,
SEARCH ALL FED«ALLOWANCES AT END GO TO TABLE=1=ERROR
WHEN ALLOWANCE«NUMBER(IND={) = NR=DEPENDENTS OF
QUTPUT=MASTER,
SUBTRACT ALLOWANCE(INDe=1) FROM GROSS=WAGE OF QUTPUT=MASTER
GIVING TAXABLE=INCOME ROQUNDED,
IF MARRITAL=STATUS OF OQUTPUT=MASTER = "M"
GO TO MARRIED,

Figure 5-20 (Cont.)
Example of Using SEARCH
To Search a Table

CHAPTER 6

FILE HANDLING

PDP-11 COBOL provides three ways to arrange the records in its files
(file organization): sequential, relative, and indexed. The
ORGANIZATION in the Environment Division clause specifies the file
organization for COBOL files.

NOTE

Indexed file organization is available
only to users with RMS-11K software.

PDP-11 COBOL provides three ways to process the records in its files
(file access): sequential, random, and dynamic. The ACCESS MODE
clause specifies the file access mode for each file used by COBOL
programs. The following chart shows the three file organizations and
the file access methods that apply to each of them:

FILE ORGANIZATION FILE ACCESS
SEQUENTIAL SEQUENTIAL
SEQUENTIAL
RELATIVE RANDOM
DYNAMIC
SEQUENTIAL
INDEXED RANDOM
DYNAMIC

Once a program creates a file, all other programs that access it must
describe it with the same file organization. For example, it is not
possible to create a sequential file in one program and read it as a
relative file with another program. However, programs can use
different access methods to process records in the same file as 1long
as the organization of the file supports the access method.

FILE HANDLING

The following table compares the different file organizations with
their file manipulation capabilities.
Table 6-1
COBOL File Types
Access File Type (Organization)

Capabilities Sequential Relative Indexed

Sequential Yes Yes Yes

Random No Yes Yes

Record

Replacement Limited Yes Yes

Record

Addition (at end of file) Yes Yes Yes

Record

Insertion No Limited Yes

Record

Deletion No Yes Yes
COBOL I1I/0 statements allow COBOL programs to communicate with the

system devices. These statements differ for sequential, relative, and
indexed file organizations. Therefore, the COBOL I/0 statements are
discussed separately by file organization. Section 6.1 discusses
sequential organization, Section 6.2 discusses relative organization,
and Section 6.3 discusses indexed organization. All file processing

is performed by the COBOL object time system (OTS), regardless of
organization.
Table 6-2 shows which statements apply to each file organization
methods:
Table 6-2
I/0 Statements
Sequential I/0 Statements Relative and Indexed I/0 Statements
CLOSE CLOSE
OPEN DELETE
READ OPEN
REWRITE READ
WRITE REWRITE
START
WRITE

FILE HANDLING

6.1 SEQUENTIAL FILE ORGANIZATION

Sequential file organization arranges the records in a file serially;
each record (except the first) has another record preceding it and
each record (except the last) has another record following it. The
records remain in the order in which they were written. Thus, COBOL
statements cannot delete records from the file, insert new records
between existing records, or alter the order of the existing records
in any way. However, they can replace existing records (providing the
length of the replacement record is identical to the original) and add
new records onto the end of the file.

The opening operation for reading, writing, or updating sequential
files must begin with the first record in the file and proceed by the
prescribed order through the file. For example, to read a particular
record in the file, say the 15th record, the program must open the
file and successfully execute 14 READ statements before the 15th
execution can read the desired record. The program can read all of
the remaining records (from record 16 on), but it cannot read any
record prior to record 16 without opening the file again and beginning
with record 1.

Sequential files always contain an end-of-file mark that designates
the end of the file. COBOL statements can write over the end-of-file
mark and, thus, extend the length of a file. (The software inserts
another end-of-file mark after the last record written.) Since the
end-of-file mark indicates the end of wuseful data, PDP-11 COBOL
provides no method for reading beyond the end-of-file mark; even
though the amount of space reserved for the file exceeds the amount
actually used. See Figure 6-1.

; REC | REC | REC | REC | REC | REC //////////////////////////////%

N]
End-of-File Mark-————J/' Unused Portion of Medium
Reserved for File

Figure 6-1 Placement of End-of-File Mark

Occasionally a file with sequential organization is so large that it
requires more than one volume (such as a multi-reel magnetic tape
file). An end-of-volume label marks the end of recorded information
on each volume and signals the file system to switch to a new volume.
On multi-volume files, the end-of-file mark appears once, at the end
of the last record on the last volume. See Figure 6-2.

NOTE

RSTS/E does not support multi-volume
files.

FILE HANDLING

End-of-Volume
VOL. 1 § REC | REC | REC ¢ $ REC | REC | REC | |& Label

End-of-Volume
VOL. 2 § REC | REC | REC $¢{ REC | REC | REC | |* Label

voL. 3 ¢ ReC | ReC [ReC ¢¢ ReC | W77k

End-of-File Mark

Figure 6-2 Placement of the End-of-Volume Label and
End-of-File Mark in a Multi-Volume File

6.1.1 Record Size

If there is only one record description for a file or if there are
more than one that describe the same length record, that file contains
fixed-length records. If the data descriptions for a sequential file
consist of more than one record description, which describe several
different-sized records, that file contains variable-length records.

When a program creates a sequential file with variable-length records,
the software places a count field in front of each record it writes
into the file. This count field contains the number of character
positions in the record. When a COBOL statement requests the record,
the software releases a record whose length is that specified by the
count field. The OTS creates and uses the count field automatically.
COBOL statements cannot access it during input operations, and the 01
level record description entries must not describe it.

§7 REC REC REC REC REC E
[A
Count fields

6.1.2 RECORD CONTAINS Clause

The RECORD CONTAINS clause, when specified without the "integer-1 TO"
option, is for documentation purposes only. The compiler determines
record size from the data descriptions. When the "integer-1 TO"
option 1is specified, it forces the compiler to generate a variable
length record file, even if the data descriptions describe fixed
length records.

Conversely, if the data descriptions for a sequential file describe
variable-length records, the software sets up variable sized records
automatically and ignores this clause.

Even though the software ignores the values in the "integer-1 TO..."
phrase, the clause may be wused in any program to document record
sizes.

FILE HANDLING

6.1.3 SAME RECORD AREA Clause

The file system reserves a record processing area in memory for each
file. This area 1is the current record area. The system fixes the
location of the current record area when it opens the file. It also
reserves a byte preceding and following each current record area for
possible print-control characters. The current record area always
begins on an even byte boundary. Two or more files may share a
current record area if a SAME RECORD AREA clause contains their
file-names. This clause causes the system to begin the current record
area of each file listed at a common location. (Thus, current record
areas that share space are aligned on their leftmost bytes.) The
records do not have to be the same size and the current record areas
need not have the same maximum size. The following sample statement
would cause FILEA and FILEB to share the same current record area:

I1-O-CONTROL.

SAME RECORD AREA FOR FILEA FILEB

Since the system places a file's current record area in a separate
location from its buffers, each READ, WRITE, and REWRITE operation
causes a record to move between the buffers and the current record
area. When a program reads a record from a file, modifies it, and
writes it into another file, a SAME RECORD AREA clause, containing
both file-names, can save an entire move of the record. The following
illustration shows these record movements:

WITHOUT SHARING A CURRENT RECORD AREA
) READ WRITE
| C T T 1
FILEA ,éy FILEB
Buffer 5 Buffer
FILEA FILEB
Current Current
Record Record
Area Area
SHARING A CURRENT RECORD AREA
READ WRITE
FILEA %A $0q$ FILEB |
Buffer N Buffer
FILEA & FILEB
Current Record Area

Record Movement Caused by
Reading, Processing, and Writing
Records in Two Files

6-5

FILE HANDLING

6.1.4 Print-Controlled Records

If a sequential file is described in a LINAGE IS clause, an APPLY
PRINT-CONTROIL clause, or is referenced in a WRITE statement with the
ADVANCING clause specified, and the file is not going directly to a
printing device (is going to be spooled), the software designates the
file as a print-controlled file. Print-controlled files contain form
advancing information with each record. Explicit forms control bytes
are placed directly into the file. Therefore, any COBOL program
trying to process a print-controlled file may have unpredictable
results.

6.1.5 Record Blocking

The manner in which the file system blocks the records of sequential
files depends on the device to which the file is assigned and the
presence and format of the BLOCK CONTAINS clause.

COBOL programs can assign sequential files to disk which requires
fixed-length wvirtual blocks, and to magnetic tape, which allows
variable-length blocks.

The BLOCK CONTAINS clause of a COBOL program refers to a logical block
size. For magnetic tape, the logical block size and virtual block
size are the same. For disk, however, the logical block size is equal
to one or more virtual blocks. (A virtual block on disk is 512
bytes).

For files assigned to disk, the OTS packs records together
{(end-to-end) wuntil a logical block is filled. The logical block is
written to disk, and any portion of the previously processed record
that did not fit into the logical block is put into the next logical
block. This process is called record spanning in that it allows
records to span virtual block boundaries.

Record spanning is prohibited for files assigned to magnetic tape.
For these files, only complete records (fixed or variable length) are
placed end-to-end in a logical block. The OTS writes the 1logical
block out to the file when it determines that the block is full to the
extent that the next record will not fit into it.

There are three ways to specify block size in a COBOL program; by
default; by wusing the BLOCK CONTAINS integer RECORDS clause; or by
using the BLOCK CONTAINS integer CHARACTERS clause. The default
philosophy is to make the logical block size as small as possible;
thus minimizing the memory buffer space required. By using the BLOCK
CONTAINS (integer RECORDS or integer CHARACTERS) clause, you can
increase the memory buffer space required. Increasing the buffer
space, allows for faster I/O by decreasing the number of I/0
operations required to process a file. Use the BLOCK CONTAINS clause
only if you can afford the price of additional memory buffer space for
the ability to process your files faster. The following paragraphs
further define the three blocking methods:

Default

By default, the logical block size is made equal to the record
size (add four bytes for variable length records on magnetic tape
or two bytes for variable length records on disk). For disk
files, the 1logical block size is rounded up to the next even
multiple of 512 bytes to make the logical block size an integral
number of virtual blocks. For example:

6-6

FILE HANDLING

If the maximum record size for a disk file is 510 bytes, and the
file contains variable 1length records, then the logical block
size is 1024 bytes. (510 plus 4 for variable length records is
514, and 514 rounded up to the next even multiple of 512 is
1024.)

BLOCK CONTAINS integer RECORDS

If this clause is used, the logical block size is equal to the
record size (plus four bytes for variable length records on
magnetic tape or two bytes for variable length records on disk)
times the number of records per block. For disk files, the
logical block size is rounded up to the next even multiple of 512
bytes to make the block size an integral number of virtual
blocks. For example:

If the record size for a fixed-length disk file is 100 bytes and
the clause BLOCK CONTAINS 10 RECORDS is specified, the logical
block size is 1024 bytes. (100 times 10 is 1000, and 1000
rounded up to the next even multiple of 512 is 1024).

BLOCK CONTAINS integer CHARACTERS

If this clause is used, the logical block size is equal to the
number of characters given in the clause. If the specified
number of characters is less than the actual record size (plus
four bytes for variable-length records on magnetic tape or two
bytes for variable length records on disk) the compiler generates
a block size that is equal to the actual record size. For disk
files, the specified number of characters must equal an even
multiple of 512, If the number you specify is not correct, the
OTS will round the logical block size it finds to the next even
multiple of 512 bytes.

When a program assigns a file to magnetic tape, all programs that
access the file must describe it the same way that the creating
program described it in order to guarantee an accurate allocation of
buffers.

Note: The previous discussion has used the following format:
: RECORDS
BLOCK CONTAINS integer
CHARACTERS
If the following format is used:
, , RECORDS
BLOCK CONTAINS [integer-1 TO]integer-2
CHARACTERS

the compiler ignores integer-1l, and integer-2 is used as the integer.

6.1.6 Buffering

When the system performs an input operation, it reads a block from the
medium into the buffer, and moves a record from the buffer to the
current record area. Each subsequent read operation moves a record
from the buffer to the current record area. When it has exhausted the
buffer (has read an entire block), the system reads another block into
the buffer.

FILE HANDLING

wWhen performing an output operation, each write operation moves a
record from the file's current record area into the file's buffer.
Each subsequent write operation moves a record from the current record
area into the buffer. The system writes the block to the medium when
it has filled the buffer.

The following subsections discuss the size of the buffers, the number
of buffers, and the sharing of buffers.

6.1.6.1 Buffer Size - Buffer size depends on the size of the largest
record in the file and on the blocking factor. For files with
sequential organization, the buffer size will be at least 512 bytes.

6.1.6.2 I-0 Buffer Areas - The RESERVE clause in the Environment
Division specifies the number of I-0 buffer areas to be allocated for
each file. Each I-0 area represents the space for one logical block.
A minimum of one and a maximum of two are permitted for sequential
files. One is the default. Since two I-O areas do not increase the
speed of access and take additional memory space, it is recommended
that this clause not be used.

6.1.6.3 Buffer Space — To calculate the total amount of buffer space
required for each sequential file, the following algorithm may be
used:

Buffer space = record size + (logical blocksize * no. of areas)
+ 234

In addition there are 76 bytes of buffer space that are shared among
all files.

6.1.6.4 Sharing Buffer Space Among Files - The SAME AREA clause
provides a simple method of sharing buffer space among several files.
Two or more files may share the same buffers if the SAME AREA clause
contains their file-names and only one of them is open at any time
during program execution. Further, since only one file is open at a
time, the files will also share the same current record area. The
size of the current record area is set to the size of the largest
record description specified in the group.

If only one of these files is open at a time, the following sample
statement causes them all to share the same buffer and current record
area.

I/0-CONTROL.

SAME AREA FOR FILEA FILEB FILEC.

FILE HANDLING

6.1.7 Sequential I/O Statements

PDP-11 COBOL provides the following I/0 statements for sequential
files:

e CLOSE
® OPEN
® READ
® REWRITE
® WRITE

Before a COBOL program can access a file, it must open the file;
then, when the program is finished with the file, it must close the
file.

A COBOL program may open a sequential file in one of four modes,
INPUT, OUTPUT, I-O (input/output), or EXTEND. In INPUT mode, records
may be read from the file; in OUTPUT mode the file 1is created and
records can only be written to it; in I-O mode, records can be read
from the file and updated; in EXTEND mode, records may be added onto
the end of the file. Table 6-3 shows which statements apply to the
four different OPEN modes of sequential files. (The table does not
include the OPEN and CLOSE statements since they apply to all modes.)

Table 6-3

Sequential OPEN Modes
Open Mode
Statement Input Output Input-Output Extend
READ X X
REWRITE X
WRITE X ’ X

6.1.7.1 Opening Sequential Files - The OPEN statement makes a file
available for processing by a COBOL program. A program must execute
an OPEN statement for a file before it executes any other 1I/0
statement for that file. Consider the following sample OPEN
statement. It opens the file named THOREAU for input/output. The
program containing this statement could, after executing it, READ,
REWRITE, and CLOSE THOREAU. :

6-9

FILE HANDLING

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT THOREAU
ASSIGN TO "DKl:".

DATA DIVISION.
FILE SECTION.
FD THOREAU

PROCEDURE DIVISION.

OPEN I-0O THOREAU.

The OPEN statement must refer to the file by the file-name appearing
in both the SELECT clause in the Environment Division and the FD
paragraph in the Data Division.

When the OTS executes an OPEN statement, it performs the following
actions for the file named in the statement:

If the file is already open, the OTS generates an error
message and performs the USE procedure section (if
specified). (Section 6.9 discusses USE procedures and
Section 12.3 discusses error messages.)

When opening an existing file, the attributes (i.e., record
length, block size, etc.) of the file are used for accessing
the file. Those specified in the program are ignored. Be
sure that the attributes specified in the COBOL program agree
with the actual attributes of the file.

If the SELECT clause of the File-Control paragraph declares
the file OPTIONAL, the OTS displays the following message:

"FILE nnn ... OPTIONAL FILE MOUNTED? Y OR N?"
(nnn represents the file-name.)

If the file is available for processing, type a Y. If not,
type an N. If the file is not available (N), the OTS
disables all I/0 processing on the file except READ and
CLOSE; a later READ statement causes program control to take
the AT END imperative path.

If a SAME AREA clause contains the name of the file and none
of the other files named in the clause is open, the OTS
allocates buffer space for the file.

When the file has passed all of the preceding checks and is
ready for opening, the OTS instructs the Record Management
Services to open the file., If the Record Management Services
fails to open the file, the OTS reports an error condition
and performs any applicable USE procedure (if present).

FILE HANDLING

) If the program is creating the file (OPEN OUTPUT) and the
file description specifies LINAGE or APPLY PRINT-CONTROL, the
OTS initializes the LINAGE counters.

° Finally, depending on which statements apply to the open
mode, the OTS enables or disables all of the program's I/O
statements that refer to the file (see Table 6-3). For
example, if the OPEN mode is 1INPUT, it enables all READ
statements for that file and disables all REWRITE and WRITE
statements for that file.

Since the EXTEND mode simply allows the WRITE statement to add records
onto the end of the file, files opened in this mode must already exist
on disk or tape (only the last file on magnetic tape can be extended).
If the file does not exist, the OPEN statement fails and the OTS
issues an error message.

6.1.7.2 Reading Sequential Files - The READ statement makes the next
logical record of an open sequential file available to the program.
If the preceding I/0 operation was an OPEN, it makes the first record
of the file available to the program.

Consider the following example. If the last I/0 operation on the file
named THOREAU was an OPEN, this statement would provide the program
with the first record in the file THOREAU. Every time the statement
is executed, it provides the program with the next sequential record
in THOREAU. Program control transfers to the paragraph named LIBRARY
when an end-of-file mark is encountered during the READ.

BEGIN. OPEN THOREAU.
LOOP. READ THOREAU AT END GO TO LIBRARY.

GO TO LOOP.

If the file contains variable-length records, the program must
determine the length of the record just read. No such information is
supplied to the user program.

NOTE

RSTS/E processes records from unit
record devices as variable length
records. This means that records read
in from a card reader or paper tape
reader will have trailing blanks
deleted. For example, reading blank
records will not change the user record
area. To avoid problems, move blanks
into the record area before each read.

If the file is open in the I-O mode, the successful execution of a
READ statement enables any following REWRITE of the record just read.
(For further information on the REWRITE statement, see the next
subsection -- 6.1.7.3.)

6-11

FILE HANDLING

If the file has more than one record description, the records
automatically share the same current record area. The OTS does not
clear this area before it executes the READ statement (no blank
filling, etc.). Therefore, if the record read by the latest READ
statement does not fill the entire current record area, the area not
overlaid by the incoming record remains unchanged. For example, if
the file's record area contains ten 3's, and a READ operation moves in
a 6-character record containing all 1's, the current record area then
contains six 1l's followed by four 3's. Consider the following
example: '

Current Record Area with all 3's 3333333333

Next Record in the File 111111
Current Record Area after READ 1111113333

6.1.7.3 Rewriting Records into Sequential Files - The REWRITE
statement places the record just read from an input-output file back
into its file on disk or magnetic tape. (The WRITE statement cannot
access I-0 files.) The following sample statement writes the record,
REC1l, back into its file. (RECl, of course, must be a record in the
file read by the preceding READ for that file.)

REWRITE REC1

Before the REWRITE statement can refer to a record, the program
containing the statement must meet the following conditions:

° The file containing the record must be open in the I-0 mode;

° The last I/0 operation on the file containing the record must
have been a successful READ;

° The record length of the record to be rewritten must be the
same as the record last read from the file.

6.1.7.4 Writing Sequential Files — The WRITE statement releases a
logical record to an output file, thereby creating an entirely new
record in the file.

The following sample WRITE statement releases the record PRINT-LINE to
the device assigned to that record's file, then skips three lines.
When it reaches the end of a page (as specified by the LINAGE clause),
it causes program control to transfer to the subroutine, HEADER-RTN.
WRITE PRINT-LINE BEFORE ADVANCING 3 LINES
AT EOP GO TO HEADER-RTN.

Note that this produces two blank lines following every line printed.
The WRITE statement releases records to files that are open in either
the output or extend mode. The following text discusses the two modes
separately.

° OUTPUT Mode - The WRITE statement can create the following
two kinds of files in the OUTPUT mode:

6-12

FILE HANDLING

1. Print-files - A print-file produces a 1listing on a
printing device. The LINAGE clause, the APPLY
PRINT-CONTROL clause, or a WRITE statement with the
ADVANCING option included, designates a file as a
print-file. One or more records containing
carriage—control characters are written to perform line
spacing. The WRITE statement does not have to release
print-files directly to a printing device, but may also
release them to a storage medium such as disk for
printing at a later time.

2, Storage files - A storage file remains on disk or tape
for future reference. All files that are not print-files
are storage files. A sample storage file WRITE statement
follows; this statement writes a record named WALDEN
into a file:

WRITE WALDEN

° EXTEND Mode - A WRITE to a storage file opened in the EXTEND
mode simply adds new records logically in sequence after the
last record in the file. As the statement extends the file,
the Record Management Services automatically handles requests
for additional storage space. (Print—-files on disk should
only be opened for EXTEND if they are being opened as a
print-file.)

6.1.7.5 Closing Sequential Files - The CLOSE statement terminates
processing on the file referred to in the statement. The following
sample CLOSE statement terminates processing on the file named
THOREAU :

CLOSE THOREAU

When the CLOSE statement closes a file, no other I/0 operation can
access that file until another OPEN statement opens the file.

If the statement specifies the LOCK option, the program cannot open
the file again in this run. The CLOSE statement with the LOCK clause
is shown below:

CLOSE THOREAU WITH LOCK

The lock option has no effect on the physical device containing the
file.

If a SAME AREA clause contains the name of the file just closed, the
program may open one of the other files named in the clause.

6.2 RELATIVE FILE ORGANIZATION

Relative file organization arranges the records of the file into
numbered record positions. It assigns each record position a number
that identifies that position relative to the beginning of the file
(the first record position in the file has record number 1, the second
has record number 2, etc.).

6-13

FILE HANDLING

Record Positions in a Relative File

When a program executes a random DELETE, REWRITE, READ or WRITE
operation on a relative file, the value in the relative key is used to
select records from these numbered record positions in the same way
that a subscript selects an item in a table.

Thus, while sequential and relative files both arrange their record
positions in a serial order, COBOL statements can address the record
positions of a relative file by their position numbers, and successive
accesses do not have to proceed through the file in a prescribed,
serial, order.

Another significant feature of relative file organization is that each
record position does not have to contain a valid record. Although
each position actually occupies one record space, a byte preceding the
record on the storage medium indicates whether or not that space
contains a valid record. Thus, a file may have fewer records than it
has record positions, and the indicated empty record positions may be
anywhere in the file.

The numerical order of the record positions remains the same during
all operations on a relative file; however, the accessing statements
can move a record from one position to another, delete a record from a
position, or insert new records into empty positions.

6.2.1 Record Size

A relative file may contain either fixed-length or variable-length
records. (Fixed-length records have one or more record descriptions
that describe the same size record. Variable-length records have more
than one record description that describe several different sized
records.) However, the COBOL compiler allocates a record area on the
I/0 device, equal to the 1largest record described plus one. This
extra byte is an existence byte. It indicates whether the record area
contains a valid record. For variable length records in a relative
file, the software adds a two byte count field. On a write operation
the actual record is written out to the I/O device not the maximum
length record. The length of this record is placed in the two byte
count field. On a read operation this two byte count field is used to
determine the length of the record to be read in.

6.2.2 RECORD CONTAINS Clause

The RECORD CONTAINS clause, when specified without the "integer-1 TO"
option, is for documentation purposes only. The compiler determines
record size from the data descriptions. When the "integer-1 TO"
option is specified, it forces the compiler to generate a variable
length record file, even if the data descriptions describe fixed
length records.

Conversely, if the data descriptions for a sequential file describe
variable—-length records, the software sets up variable sized records
automatically and ignores this clause.

Even though the software ignores the values in the "integer-1 TO..."
phrase, the <c¢lause may be wused in any program to document record
sizes.

6-14

FILE HANDLING

6.2.3 SAME RECORD AREA Clause

The SAME RECORD AREA clause is identical for all file organizations.
See Section 6.1.3.

6.2.4 Record Blocking

The size of a file is expressed as an integral number of wvirtual
blocks. Virtual blocks are physical storage structures. That is,
each virtual block within a file is a unit of data whose size depends
on the physical medium on which the file resides.

Relative files may reside only on disk. The size of virtual blocks
within files on disk devices is always 512 bytes.

Relative files use a logical storage structure known as a logical
block or bucket. A bucket consists of from 1 to 32 virtual blocks.

This distinction should be made clear. A virtual block is a physical
entity which is fixed in size and cannot be changed. A bucket,
however, is a logical entity. Its size 1is directly under vyour
control. Records may span virtual block boundaries. They may never
span bucket boundaries.

Increasing the bucket size increases the speed of sequential
processing of a file because fewer I/0 operations are needed to access
the smaller number of buckets in the £file. On the other hand, a
larger bucket size means that more memory space is taken up by the I/0
buffers. Increasing the bucket size may not increase the speed of
random processing of a relative file.

There are three ways that the bucket size may be specified in a COBOL
program; by default, by using the construct BLOCK CONTAINS integer
RECORDS, or by using the construct BLOCK CONTAINS integer CHARACTERS.

The default is to make the bucket size as small as possible, to
minimize the memory buffer space required. By wusing the BLOCK
CONTAINS integer (RECORDS of integer CHARACTERS) clause, you can
increase the memory buffer space required. 1Increasing the buffer
space allows for faster I/0 by decreasing the number of operations
required to access a file. The following paragraphs further define
the three blocking methods:

Default
The default philosophy is to make the bucket size as small as
possible to minimize the memory buffer space required. The
algorithms for calculating the bucket size follow:

Bnum= ((l1+Rlen)/512)+1 Fixed length record

Bnum= ((3+Rmax)/512)+1 Variable length record

Where:
Bnum is the number of wvirtual blocks per bucket,
ranging from 1 to 9.
Rlen is the fixed record length (in bytes).
Rmax is the maximum record length (in bytes) if the

record length is variable.

6-15

FILE HANDLING

The number 1 is for the existence byte. The number 3 is for the
existence byte plus 2 bytes for the record length.

Table 6-4 gives the bucket size for possible record lengths.

Table 6-4
Bucket Sizes for Possible Record Lengths
Bnum Rlen Rmax
1 1-511 1-509
2 512-1023 510-1021
3 1024-1535 1022-1533
4 1536~2047 1534-2045
5 2048-2559 2046~-2557
6 2560-3071 2558-3069
7 3072-3583 3070-3581
8 3584-4095 3582-4093
9 4094-4095

BLOCK CONTAINS Rnum RECORDS
If the BLOCK CONTAINS Rnum RECORDS clause is used, where Rnum is
an 1integer, then the following algorithms are used to calculate
the bucket size.

Bnum= (((Rlen+l)*Rnum)/512)+1 Fixed length record

or

Bnum= (((Rmax+3)*Rnum)/512)+1 Variable length record

Where:
Bnum is the number of virtual blocks per bucket,
ranging from 1 to 32,
Rlen is the fixed record length (in bytes).
Rmax is the maximum record length (in. bytes) if the
record length is variable.
Rnum is the number of records per bucket as given in

the BLOCK CONTAINS clause.

BLOCK CONTAINS Cnum CHARACTERS

If the BLOCK CONTAINS Cnum CHARACTERS clause is used, where Cnum
is an integer, then Cnum is subject to the following constraints.
(1) Cnum Rlen+l for fixed length records
or
Cnum Rmax+3 for variable length records

(2) Cnum mod 512 = 0

6-16

FILE HANDLING

Based on CNUM, the bucket size is calculated as follows:

Bnum=Cnum/512

where:
Cnum is the number of characters per bucket as given in
-the BLOCK CONTAINS clause.
Rlen is the fixed record length (in bytes).
Rmax is the maximum record length (in bytes) 1if the
record length is variable.
Bnum is the number of virtual blocks per bucket,

ranging from 1 to 32.

Violation of constraint (1) causes a warning error and the
default method is used to calculate the bucket size. Constraint
(2) means that Cnum should be a multiple of 512. If not, a
warning - error is given and Cnum is increased to the next even
multiple of 512,

The bucket size must be the same when the file is created and
each time the file is accessed. Therefore, the BLOCK CONTAINS
clause must never change for a particular file.

Note: The previous discussion has used the following format:

RECORDS
BLOCK CONTAINS integer

CHARACTERS

If the following format is used:

RECORDS
BLOCK CONTAINS [integer-1 TO]integer-2
CHARACTERS

the compiler ignores integer-1, and integer-2 is wused as the
integer.

6.2.5 Buffering

When the system performs a sequential or random input operation, it
reads a bucket from the medium into the buffer, and moves a record
from the buffer to the current record area. Any subsequent sequential
read operations move a record from the buffer to the current record
area. When it has exhausted the buffer (has read an entire bucket),
the system reads another bucket into the buffer.

When performing a random read operation, the appropriate bucket is
read into a file's buffer. The record is then moved from the buffer
to the current record area.

When performing a sequential output operation, each write operation
moves a record from the file's current record area into the file's
buffer. Each subsequent sequential write operation moves a record
from the current record area into the buffer. The system writes the
bucket to the medium when it has filled the buffer.

6-17

FILE HANDLING

When performing a random output operation, the appropriate bucket is
read and the record is moved from the file's current record area into
the appropriate position in the file's buffer. The system writes the
bucket back out to the medium before reading any additional blocks.

The following subsections discuss the size of the buffers, the number
of buffers, and the sharing of buffers.

6.2.5.1 Buffer Size - Buffer size depends on the size of the largest
record in the file and on the blocking factor. For relative files,
buffer size must be some multiple of 256 words (512 bytes).

6.2.5.2 1I/0 Buffer Areas - The RESERVE clause in the Environment
Division specifies the number of I/0 buffer areas to be allocated for
each file where an area represents the space for one bucket. A
minimum of one and a maximum of two I/0 areas are permitted for
relative files. One is the default. It is recommended that this
clause not be used, because two I/0 areas do not increase the speed of
access and take up additional space.

6.2.5.3 Buffer Space - To calculate the total amount of buffer space
in bytes required for each Relative file, the following algorithm may
be used:

Buffer space = record size + bucket size + 266

In addition, there are 76 bytes of buffer space that are shared among
all files.

6.2.5.4 Sharing Buffer Space Among Files - The SAME AREA clause
provides a simple method of sharing buffer space among several files.
This clause is identical for all file organizations. See Section
6.1.6.4.

6.2.6 Relative I/0 Statements

The COBOL I/0O statements, CLOSE, DELETE, OPEN, READ, WRITE, REWRITE,
and START can refer to relative files.

A COBOL program may open a relative file in one of three modes, INPUT,
OUTPUT, or I-O, and access an open relative file in one of three ways,
sequentially, randomly, or dynamically. In INPUT mode, records may be
read from the file; in OUTPUT mode, the file is created and records
may be written to the file; in I-O mode, records may be read from the
file, updated on the file, deleted from the file, or written to the
file. The following table shows which statements and access methods
apply to the three different OPEN modes of relative files.

6-18

FILE HANDLING

Table 6-5
Relative OPEN Modes
FILE ACCESS OPEN MODE
MODE STATEMENT INPUT OUTPUT I-0
DELETE X
. READ X X
Sequential REWRITE X
START X X
WRITE X
DELETE X
READ X X
Random REWRITE X
START
WRITE X X
DELETE X
READ X X
Dynamic READ NEXT X X
REWRITE X
START X X
WRITE X X
NOTE

The term, current record pointer, used
in the following sections, refers to a
location in the operating system used to
determine the record number of the next
available record in a file.

6.2.6.1 Access Modes - The ACCESS MODE clause in the File-Control
paragraph dictates which of the three access modes may be used on that
file.

When the ACCESS MODE clause specifies SEQUENTIAL, the I/0O statements
must refer to the records in the file sequentially, starting (after
opening) with the first record and stepping through with each
reference to the end of the file. The I/O statements ignore record
positions that do not contain valid records.

When the ACCESS MODE clause specifies RANDOM, the I/0 statements refer
to the records in the file by record position. Thus, the statements
may refer to record positions that do not contain valid records. The
program must specify the desired record position number by placing a
value in the file's relative key. If an I/0 statement refers to a
record position with the relative key, and that record position does
not exist (either because the position does not contain a record or
because it is beyond the end of the file), the INVALID KEY imperative
statement may be executed depending on the particular I/0 statement
used. (The INVALID KEY imperative statement is explained with each of
the relative I/0 statements in this section.)

FILE HANDLING

When the ACCESS MODE clause specifies DYNAMIC, the I/0 statements may
" refer to the records in the file either sequentially or randomly. The
OTS determines which access method to use from the OPEN mode (INPUT,
OUTPUT, or 1I-0) and the form of the I/0 statement. For example, if
the statement READ ...INVALID KEY is to access an open input file
dynamically, the OTS uses the relative key for random access; if the
statement READ NEXT ... is to access an open input file dynamically,
the OTS sequentially accesses the next existing record.

The following sections (6.2.5.2 through 6.2.5.8) on using the 1I/0
statements themselves contain additional information about access
modes.

6.2.6.2 Opening Relative Files - The OPEN statement for a relative
file makes an INPUT, OUTPUT, or I-O mode file available so the COBOL
program can access the records in the file sequentially, randomly, or
dynamically.

The OPEN statement sets the current record pointer for the file- to
zero,

For example, the following sample OPEN statement opens the file named
ARTICHOKE for input, and sets ARTICHOKE's current record pointer to
zero. The program containing this statement could, after executing
the statement, access ARTICHOKE with READ and START statements in the
sequential access mode, READ statements in the random access mode, or
READ, READ NEXT, and START statements in the dynamic access mode.

OPEN INPUT ARTICHOKE.

When the OTS executes an OPEN statement, it performs the following
actions for the file named in the statement:

° If the file is already open, the OTS generates an error
message and performs the USE procedure section (if
specified). (Section 6.9 discusses USE procedures and
Section 12,3 discusses error messages.)

) When opening an existing file, the attributes (i.e., record
length, block size, etc.) of the file are used for accessing
the file. Those specified in the program are ignored. Be
sure that the attributes specified in the COBOL program agree
with the actual attributes of the file.

° If a SAME AREA clause contains the name of the file and none
of the other files named in the clause is open, the OTS
allocates buffers space for the file.

° When the file has passed all of the preceding checks and is
ready for opening, the OTS instructs the Record Management
Services to open the file. If the Record Management Services
fails to open the file, the OTS reports an error condition
and performs any applicable USE procedure (if present).

° Finally, depending on which statements apply to the open
mode, the OTS enables or disables all of the program's I/0
statements that refer to the file (see Table 6-5). For
example, if the OPEN mode is INPUT, it enables all READ and
START statements for that file and disables all REWRITE,
DELETE and WRITE statements for that file.

FILE HANDLING

If the file is being accessed randomly or dynamically, the program
must maintain a correct value in the relative key. If the file is
being accessed sequentially, the OTS ignores the value of the relative
key, but updates it to contain the position number of the record being
accessed.

6.2.6.3 Reading Relative Files - When applied to a file being
accessed sequentially, the READ statement makes the next logical
record of an open file available to the program.

When applied to a file being accessed randomly, the READ statement
selects a specified record from an open file and makes it available to
the program. The value of the relative key for the £file identifies
the specific record.

When applied to a file being accessed dynamically, the READ statement
has two formats so that it can either select the next logical record
(sequentially) or select a specified record (randomly) and make it
available to the program. The READ NEXT statement takes the number in
the current record pointer and finds the next present record. The
following sample READ statement reads the file named ARTICHOKE
sequentially and, when it exhausts the file, causes program control to
transfer to the subroutine named FILEOUT:

READ ARTICHOKE NEXT RECORD
AT END GO TO FILEOUT.

For further information concerning the mechanics of the READ NEXT
statement, see Section 6.2.5.7, Specifying the Next Record to be Read.

The READ with key takes the value in the relative key, moves it to the
current record pointer, and reads the record being pointed to. The
following READ (with key) statement reads the file named ARTICHOKE
randomly, selecting records through the value in the file's relative
key. If the relative key supplies a value that does not contain a
valid record, the statement causes program control to transfer to the
subroutine named NO-REC.

READ ARTICHOKE RECORD
INVALID KEY GO TO NO-REC.

If the file has more than one record description, the records
automatically share the same current record area. The OTS does not
clear this area before it executes the READ statement (no blank
filling, etc.). Therefore, if the record read by the latest READ
statement does not fill the entire current record area, the area not
overlaid by the incoming record remains unchanged. For example, if
the file's record area contains ten 3's, and a READ operation moves in
a 6-character record containing all 1's, the current record area then
contains six 1's followed by four 3's. Consider the following
example:

Current Record Area with all 3's 3333333333

Next Record in the File 111111

Current record Area after READ 1111113333

FILE HANDLING

6.2.6.4 Rewriting Records into a Relative File - The REWRITE
statement places a record back into its file on disk or magnetic tape.
The following sample statement writes the record, BREAKERS, back into
its file.

REWRITE BREAKERS.

If the file is open in the sequential access mode, the statement
rewrites the record just successfully read. 1If the file is open in
either the random or dynamic access mode, the statement rewrites the
record to the record position specified by the relative key.

6.2.6.5 Writing Records in a Relative File - The WRITE statement
releases a logical record to a file. The following sample WRITE
statement releases the record BREAKERS to the device assigned to that
record’'s file. If the record already exists, program control
transfers to the subroutine, WRITE-ERR.

WRITE BREAKERS
INVALID KEY GO TO WRITE-ERR.

The WRITE statement releases records to files that are open in either
the OUTPUT or I/0 mode. The following text discusses the two modes
separately:

o OUTPUT Mode - The WRITE statement's only function with output
files 1is to place entirely new records into the file. If
more space is required for new record positions, the Record
Management Services automatically extends the file size,
regardless of the access mode being employed.

° I/0 Mode - The statement's function with input-output files
~is to place records in record positions that already exist
and are empty. The length of the records must not exceed the
maximum length record specified for the file when it was
created.

The relative WRITE statement creates only storage files since
print-files are sequential files. The following SAMPLE statement
writes a record named BREAKERS into its file:

WRITE BREAKERS.

6.2.6.6 Deleting Records from a Relative File - The DELETE statement
logically removes an existing record from a relative file. After a
DELETE statement has successfully removed a record from a file, that
record can no longer be accessed.

If the file is open in the sequential access mode, the statement
removes the record just successfully read. For example, the following
sample statement removes the record just read from the £file named
ARTICHOKE:

DELETE ARTICHOKE RECORD.

6-22

FILE HANDLING

If the file is open in either the random or dynamic access mode, the
statement removes the record from the record position specified by the
relative key. For example, the following sample statement deletes the
record specified by the relative key from the file named ARTICHOKE;
if the relative key supplies a value that does not contain a valid
record, the statement transfers control to the subroutine named
NO-REC.

DELETE ARTICHOKE RECORD
INVALID KEY GO TO NO-REC.

6.2.6.7 Specifying the Next Record to be Read - The START statement
specifies which record in a file will be the next one to be referenced
sequentially.

A READ NEXT statement should follow the START statement since the READ
NEXT statement reads the next record from the one being pointed to by
the current record pointer.

If the data area, SOMETHING, in the following example contains a 30
and position 33 in the file contains the next present record, the
START statement sets the current record pointer to one 1less than 33
(32). The READ NEXT statement would then £find the next present
record, which we know is 33.

WORKING-STORAGE SECTION.
77 SOMETHING PIC S99 VALUE 30.
77 ARTKEY PIC 99.

RD-SET. MOVE SOMETHING TO ARTKEY.
START ARTICHOKE
KEY IS GREATER THAN ARTKEY
INVALID KEY GO TO NEWKEY.

INl. ~ READ ARTICHOKE NEXT RECORD
AT END GO TO FILEOUT.

The value of the RELATIVE KEY data item specified in the statement
(ARTKEY in the preceding example) together with the conditional phrase
specified in the statement (IS GREATER THAN in the preceding example)
determines which record in the file will be accessed by the READ NEXT
statement.

The START statement uses the value in the RELATIVE KEY data item to
set the current record pointer. If record positions 30 and 33 contain
valid records and ARTKEY contains 30, the START statement would set
the current record pointer and RELATIVE KEY data item as follows:

1. If the conditional phrase specifies KEY IS GREATER THAN
ARTKEY, the statement sets the current record pointer to 32.

2, If the conditional phrase specifies KEY IS EQUAL TO ARTKEY or
NOT LESS THAN ARTKEY, the statement sets the current record
pointer to 29.

The READ NEXT statement takes the number in the current record pointer
and finds the next present record from that number. (If the pointer
contains a 30 and the next present record is in position 33, it finds
record number 33). The READ NEXT statement gets that record and
places its record position number (33) into the current record p01nter
and the relative key.

6-23

FILE HANDLING

A subsequent READ NEXT takes the number in the current record pointer,
which is now 33 in our example, and finds the next present record. It
fetches that record and places its record position number in the
current record pointer and relative key.

6.2.6.8 Closing Relative Files - The CLOSE statement terminates
processing on the file referred to in the statement. The following
sample CLOSE statement terminates processing on the file named
ARTICHOKE:

CLOSE ARTICHOKE.

When the statement closes a file, no other I/0 operation can access
that file until another OPEN statement opens the file.

If the statement specifies the LOCK option, the program cannot open
the file again in that run.

If a SAME AREA clause contains the name of the file just closed, the
program may open one of the other files named in the clause.

6.3 INDEXED FILE ORGANIZATION

WARNING

Indexed file organization is available
only to users having RMS-11K software.

Unlike the physical ordering of records in a sequential file or the
relative positioning of records in a relative file, the location of
records in the indexed file organization is transparent to your
program. The presence of keys in the records of the file governs the
placement of records in an indexed file.

A key is a character string present in every record of an indexed
file. The 1location and length of this character string is identical
in all records. When creating an indexed file, you decide which
character string in the file's records is to be a key. By selecting
such a character string, the contents (i.e., key value) of that string
in any particular record written to the file can be used by a program
to identify that record for subsequent retrieval.

You must define at least one key for an indexed file. This mandatory
key 1is the primary key of the file. Optionally, you can define up to
255 additional keys (i.e., alternate Kkeys). Each alternate key
represents an additional character string in records of the file. The
key value in any one of these additional strings can also be used as a
means of identifying the record for retrieval.

As programs write records into an indexed file, the values contained
in the primary and alternate keys are used to locate the record in the
file. From the values in keys within records a tree-structured table
known as an index is built. An index consists of a series of entries.
Each entry contains a key value copied from a record that a program
wrote into the file. With each key value is a pointer to the location
in the file of the record from which the value was copied. A separate
index is built and maintained for each key you define for the file.
Each index is stored in the file. Thus, every indexed file contains

6-24

FILE HANDLING

at least one index, the primary key index. When you define alternate
keys, an additional index is built and maintained for each alternate
key. Figure 6-3 shows the general structure of an indexed file that
has been defined with only a single key. Figure 6-4 depicts an
indexed file defined with two keys, a primary key and one alternate
key.

KEY DEFINITION

PRIMARY INDEX (Employee Name)

T 1]
i 1
ABLE ELMAV | 24379 + + | JONES :
1

MAIN ST 19724 R SMITH IHOLTRD : 35888

- DATA RECORDS j

Figure 6-3 Single Key Indexed File Organization

6-25

9Z-9

KEY DEFINITIONS

PRIMARY INDEX ALTERNATE INDEX
(Employee Name) (Badge Number)
21000 45591
S i : s . .
ABLE JONES | M{L}J}RIZH NOLAN LR 11733 |eee]| 19724 oo ee el 24379 |eee | 45591 .
& \ =
\ _ -7 e
//\/__ —_
- -—7"”\
- = \
—— - - - \
e _ - - \\
e —_— P
i | i
|
ABLE = ELM AV 24379 LI JONES [MAIN ST : 19724 LA SMITH HOLT RD 11733
i ! ! ,
\— DATA RECORDS — J/

Figure 6-4 Multi-key Indexed File Organization

ONITANYH dTId

FILE HANDLING

6.3.1 Record Size

A relative file may contain either fixed-length. or variable-length
records, (Fixed-length records have one or more record descriptions
that describe the same size record. Variable-length records have more
than one record description that describe several different sized
records.) For variable length records in an indexed file, the software
adds a two byte count field. On a write operation the actual record
is written out to the I/O device not the maximum length record. The
length of this record is placed in the two byte count field. On a
read operation this two byte count field is used to determine the
length of the record to be read in.

6.3.2 RECORD CONTAINS Clause

The RECORD CONTAINS clause, when specified without the "integer-1 TO"
option, 1is for documentation purposes only. The compiler determines
record size from the data descriptions. When the "integer-1 TO"
option 1is specified, it forces the compiler to generate a variable
length record file, even 1if the data descriptions describe fixed
length records.

Conversely, if the data descriptions for a sequential file describe
variable-length records, the software sets up variable sized records
automatically and ignores this clause.

Even though the software ignores the values in the "integer-1l TO..."
phrase, the <clause may be wused in any program to document record
sizes.

6.3.3 SAME RECORD AREA Clause

The SAME RECORD AREA clause is identical for all file organizations.
See Section 6.1.3.

6.3.4 Record Blocking

The size of a file is expressed as an integral number of virtual
blocks. Virtual blocks are physical storage structures. That is,
each virtual block within a file is a unit of data whose size depends
‘on the physical medium on which the file resides.

Indexed files may reside only on disk. The size of virtual blocks
within files on disk devices is always 512 bytes.

Indexed files, like relative files, use a 1logical storage structure
known as a 1logical block or bucket. A bucket consists of 1 to 32
virtual blocks. The user may specify the number of virtual blocks
contained within each bucket by using the BLOCK CONTAINS clause. This
distinction should be made clear. A virtual block 1is a physical
entity which is fixed in size and cannot be changed by the user. A
bucket is a logical entity and its size 1is directly under user
control. Records may span virtual block boundaries. They may never
span bucket boundaries.

6

27

FILE HANDLING

Increasing the bucket size increases the speed of processing of a file
because fewer 1I/0 operations are needed to access the smaller number
of buckets in the file. On the other hand, a larger bucket size means
that more memory space is taken up by the I/0 buffers.

There are three ways that the bucket size may be specified by the user
in a COBOL program: by default, by using the construct BLOCK CONTAINS
integer RECORDS, or by using the construct BLOCK CONTAINS integer
CHARACTERS.

The default is to make the bucket size as small as possible to
minimize the memory buffer space required. By using the BLOCK
CONTAINS (integer RECORD or integer CHARACTERS) clause, you can
increase the memory buffer space required. Increasing the buffer
space allows faster I/O by decreasing the number- of operations to
process a file, The following paragraphs further define the three
blocking methods:

Default
The default philosophy is to make the bucket size as small as
possible to minimize the memory buffer space required. The
algorithms for calculating the bucket size follow:
Bnum= ((22+Rlen)/512)+1 Fixed length record

or

Bnum= ((24+Rmax)/512)+1 Variable length record

* where:
Bnum is the number of virtual blocks per bucket, ranging
from 1 to 9.
Rlen is the fixed record length (in bytes).
Rmax is the maximum record length (in bytes) if the record

length is variable.

The number 22 comes from a bucket overhead of 15 bytes and a
fixed length record header of 7 bytes; 24 comes from a bucket
overhead of 15 bytes and a variable length record header of 9
bytes.

Table 6-6 gives the bucket size for possible record lengths.

Table 6-6
Bucket Size for Possible Record Lengths
‘Bnum Rlen Rmax

1 1-490 1-488
2 490-1002 489-1000
3 1003-1514 1001-1512
4 1515-2026 1513-2024
5 2027-2538 2025-2536
6 2539-3050 2537-3048
7 3051~-3562 3049-3560
8 3563-4074 3561-4072
9 4075-4095 4073-4095

FILE HANDLING

BLOCK CONTAINS Rnum RECORDS

If the BLOCK CONTAINS num RECORDS clause is used, where num is an
then the following algorithms are used to calculate the
bucket size.

integer,

Bnum= ((15+(Rlen+7)*Rnum)/512)+1 Fixed length record

or

Bnum= ((15+(Rlen+9) *Rnum)/512)+1 Variable length record

where:

Bnum

Rlen

Rmax

Rnum

is the
from 1

is the

is the
length

is the

number of virtual blocks per bucket, ranging
to 32.

fixed record length (in bytes).

maximum record length (in bytes) if the record
is variable.

number of records per bucket as given in the

BLOCK CONTAINS clause.

The number 15 is bucket overhead, 7 is the fixed 1length record
header and 9 is the variable length record header.

BLOCK CONTAINS Cnum CHARACTERS

If the BLOCK CONTAINS Cnum CHARACTERS clause is used, where Cnum
is an integer, then Cnum is subject to the following constraints.

(1)

(2)

Based on Cnum,

Cnum Rlen+l for fixed length records

or

Cnum Rmax+3 for variable length records

Cnum mod 512=0

the bucket size is calculated as follows:

Bnum=Cnum/512

where:

Cnum

Rlen

Rmax

Bnum

is the

number of characters per bucket as given in the

BLOCK CONTAINS clause.

is the

is the
length

is the
from 1

fixed record length (in bytes).

maximum record length (in bytes) if the record
is variable.

number of virtual blocks per bucket, ranging
to 32.

FILE HANDLING

Violation of constraint (1) causes a fatal error and the default
method is used to calculate the bucket size. Constraint (2)
means that Cnum should be a multiple of 512. If not, a warning
error is given and Cnum is increased to the next even multiple of
512.

The bucket size must be the same when the file is created and
each time the file is accessed. Therefore, the BLOCK CONTAINS
clause must never change for a particular file.

Note: The previous discussion has used the following format:

RECORDS
BLOCK CONTAINS integer

CHARACTERS

If the following format is used:

RECORDS
BLOCK CONTAINS [integer-1 TO]integer-2
CHARACTERS

the compiler ignores integer-1, and integer-2 is used as the integer.

6.3.5 Buffering

When the system performs a sequential or random input operation, one
or more index buckets are read into the buffer area until the bucket
containing the specified record is located. The bucket containing the
record 1is then read into the buffer area. Any subsequent sequential
read operations will use the current index buffer to locate and read
subsequent records in the current or other record buckets. When it
has exhausted the current index buffer (has read all the records
identified in the bucket), the system reads the next index bucket into
the buffer area.

When performing a sequential or random output operation, the system
moves a record from the files current record area into the files
buffer. Each subsequent write operation moves a record from the
current record area into the buffer. The system writes the bucket to
the medium when it has filled the buffer. Every output operation also
causes the appropriate index bucket to be read into the buffer area,
the indexes for each of the keys to be added to the appropriate
buckets, and the buckets to be rewritten to the storage medium.

6.3.5.1 Buffer Size - Buffer size depends on the size of the largest
record in the file and on the blocking factor. For indexed files,
buffer size must be some multiple of 256 words (512 bytes).

6.3.5.2 I/0 Buffer Areas - The RESERVE <c¢lause in the Environment
Division specifies the number of I/0 buffer areas to be allocated for
each file. Each I/0 area represents the space for one bucket. A
minimum of two is required for an Indexed file (this is the default).
Three areas will increase the speed of random access. Four areas will
increase the speed of random access if the file is being accessed on
two different keys. For each additional key, an additional area will
increase the speed of access. Therefore, to speed up random access

6-30

FILE HANDLING

time, the optimum number of buffer areas is equal to the number of
keys by which the file is being accessed plus two. Of course, each
area means that more memory space is being taken up.

6.3.5.3 Buffer Space - To calculate the total amount of buffer space
required for each Indexed file, the following algorithm may be used:

Buffer Space = record size+((bucket size+20)*no. of areas)
+(48*no. of keys in file)+((MAXKSIZ*2+MAXNKEY+3)/4%4)
+272
where:
MAXKSIZ is the maximum key size in the program.

MAXNKEY is the maximum number of record keys for any file in
the program.

Note that in the division, the result is truncated to the next lowest
integer.

In addition to the above, there are 76 bytes of buffer space that are
shared among all files and 44 times MAXNKEY bytes of buffer space that
are shared among all indexed files.

6.3.5.4 . Sharing Buffer Space Among Files - The SAME AREA clause
provides a simple method of sharing buffer space among several files.
This clause is identical for all file organizations and 1is described
in Section 6.1.6.4.

6.3.6 Indexed I/0 Statements

The COBOL I/O statements, CLOSE, DELETE, OPEN, READ, WRITE, REWRITE,
and START can refer to indexed files.

A COBOL program may open an indexed file in one of three modes, INPUT,
OUTPUT, or I-0, and access an open indexed file in one of three ways,
sequentially, randomly, or dynamically. In INPUT mode, records may be
read from the file; in OUTPUT mode, the file is created and records
may be written to the file; in I-O mode, records may be read from the
file, updated on the file, deleted from the file, or written to the
file. The following table shows which statements and access methods
apply to the three different OPEN modes of indexed files.

FILE HANDLING

Table 6-7
Indexed OPEN Modes
File Access Open Mode
Mode Statement Input Output I-0
DELETE X
READ X X
Sequential REWRITE X
START X X
WRITE X
DELETE X
READ X X
Random REWRITE X
START
WRITE X X
DELETE X
READ X X
Dynamic READ NEXT X X
REWRITE X
START X X
WRITE X X
NOTE

The term, current record pointer, used
in the following sections, refers to a
location in the operating system used to
store the record number of available
record in a file.

6.3.6.1 Access Mode - The ACCESS MODE clause in the File-Control
paragraph indicates which of the three access modes may be used on
that file. When the ACCESS MODE clause specifies SEQUENTIAL, the 1I/0
statements must refer to the records in the file sequentially,
starting (after opening) with the first record and stepping through
with each reference to the end of the file.

When the ACCESS MODE clause specifies RANDOM, the I/0 statements refer
to the records in the file by the value of the key or keys. Usually
the prime key is used unless a specific alternate key is designated.
If an 1I/0 statement refers to a record with a key, and that record
does not exist, the INVALID KEY imparative statement may be executed
depending on the particular I/0 statement used. (The INVALID KEY
imperative statement is explained with each of the indexed 1I/0
statements in this section.)

When the ACCESS MODE clause specifies DYNAMIC, the I/O statements may
refer to the records in the file either sequentially or randomly. The
OTS determines which access method to use from the OPEN mode (INPUT,
OUTPUT, or 1I-0) and the form of the I/O statement. For example, if
the statement READ ...INVALID KEY is to access an open input file
dynamically, the OTS uses the designated key for random access. If
the statement READ NEXT ... is to access an open input file
dynamically, the OTS sequentially accesses the next existing record.

6-32

FILE HANDLING

The following sections (6.3.6.2 through 6.3.6.8) on using the I/0
statements themselves contain additional information about access
modes.

6.3.6.2 Opening Indexed Files - The OPEN statement for an indexed
file makes an INPUT, OUTPUT, or I-O mode file available so the COBOL
program can access the records in the file sequentially, randomly, or
dynamically. Consider the following example:

Example

The following sample OPEN statement opens the file named ARTICHOKE for
input, and sets ARTICHOKE's current record pointer to the first record
in the file. The program containing this statement could, after
executing the statement, access ARTICHOKE with READ and START
statements in the sequential access mode, READ statements in the
random access mode, or READ, READ NEXT, and START statements in the
dynamic access mode.

OPEN INPUT ARTICHOKE.

When the OTS executes an OPEN statement, it performs the following
actions for the file named in the statement:

) If the file is already open, the OTS denerates an error
message and performs the USE procedure section (if
specified). (Section 6.9 discusses USE procedures and
Section 12.3 discusses error messages.)

° When opening an existing file, the attributes (i.e., record
length, block size, etc.) of the file are used for accessing
the file. Those specified in the program are ignored. Be
sure that the attributes specified in the COBOL program agree
with the actual attributes of the file.

° If a SAME AREA clause contains the name of the file and none
of the other files named in the clause is open, the OTS
allocates buffer space for the file.

) When the file has passed all of the preceding checks and is
ready for opening, the OTS instructs the Record Management
Services to open the file. If the Record Management Services
fails to open the file, the OTS reports an error condition
and performs any applicable USE procedure (if present).

° Finally, depending on which statements apply to the open
mode, the OTS enables or disables all of the program's I/0
statements that refer to the file (see Table 6-7). For
example, if the OPEN mode is INPUT, it enables all READ and
START statements for that file and disables all REWRITE,
DELETE and WRITE statements for that file.

The OPEN statement sets the current record pointer for the file to the
first existing record in the file as established by the prime record
key. If the file is being accessed randomly or dynamically, the
program should maintain correct values in the prime and aternate key
fields.

6-33

FILE HANDLING

6.3.6.3 Reading Indexed Files - When applied to a file being
accessed sequentially, the READ statement makes the next logical
record-of an open file available to the program. The information made
available is based on positioning by the OPEN, START, or last READ
operation.

When applied to a file being accessed randomly, the READ statement
selects a specified record from an open file and makes it available to
the program. The value of the specified key (prime key, if the no key
is specified) identifies the record.

When applied to a file being accessed dynamically, the READ statement
has two formats so that it can either select the next logical record
(sequentially) or select a specified record (randomly) and make it
available to the program. The READ NEXT statement takes the number in
the current pointer and finds the next present record. The £following
sample READ statement reads the file named ARTICHOKE sequentially and,
when it exhausts the file, causes program control to transfer to the
subroutine named FILEOUT:

READ ARTICHOKE NEXT RECORD
AT END GO TO FILEOUT.

For more information concerning the mechanics of the READ NEXT
statement see Section 6.3.6.6, Specifying the Next Record To Be Read.

The READ with key takes the value in the specified key, moves it to
the current record pointer, and reads the record being pointed to.
The following READ (with key) statement reads the file named ARTICHOKE
randomly, selecting records through the value in the file's primary
key. If the designated key supplies a value that is not identified
with a valid record, the statement causes program control to transfer
to the subroutine named NO-REC.

READ ARTICHOKE RECORD
INVALID KEY GO TO NO-REC.

Note: a random read repositions the current record pointer and thus
effects further sequential reads.

If the file has more than one record description, the records
automatically share the same current record area. The OTS does not
clear this area before it executes the READ statement (no blank
filling, etc.). Therefore, if the record read by the latest READ
statement does not fill the entire current record area, the area not
overlaid by the incoming record remains unchanged. For example, if
the file's record area contains ten 3's, and a READ operation moves in
a 6-character record containing all 1l's, the current record area then
contains six 1l's followed by four 3's, Consider the following
example:

Current Record Area with all 3's I 3333333333]
Next Record in the File 111111
Current Record Area after READ l 1111113333]

6.3.6.4 Rewriting Records into an Indexed File - The REWRITE
statement releases a logical record to an output or input-output file.
In all of the access modes, the record is positioned based on the
prime Kkey, any alternate keys are also processed properly, including

6-34

FILE HANDLING

duplicate keys. If more space is required for new record positions,
the Record Management Services automatically extends the file size,
regardless of the access mode being employed.

If the file is open in sequential access mode and the records are not
written in ascending order of the prime key values, an INVALID KEY
condition exists. 1In any access mode an attempt to write an existing
record having the same prime key value or an alternate key value where
duplicates are not allowed, results in an INVALID KEY condition.

The following sample WRITE statement releases the record BREAKERS to
the indexed file. If the record already exists, program control
transfers to WRITE-ERR.

WRITE BREAKERS
INVALID KEY GO TO WRITE-ERR.

The indexed WRITE statement creates only storage files because
print-files are sequential files.

6.3.6.5 Deleting Records from an Indexed File - The DELETE statment
logically removes an existing record from a file. After a DELETE
statement has successfully removed a record from a file, that record
can no longer be accessed.

If the file is open in the sequential access mode, the statement
removes the record just successfully read. For example, the following
sample statement removes the record just read from the file named
ARTICHOKE:

DELETE ARTICHOKE RECORD.

If the file is open in either the random or dynamic access mode, the
statement removes the record from the record specified by the prime
key. For example, the following sample statment deletes the record
specified by the prime key £from the file named ARTICHOKE. If the
prime key supplies a value that does not contain a valid record, the
statement transfers control to NO-REC.

DELETE ARTICHOKE RECORD
INVALID KEY GO TO NO-REC.

6.3.6.6 Specifying the Next Record to be READ - The START statement
specifies which record will be the next record to be referenced
sequentially in a file opened for INPUT or I-0 processing. The START
statement updates the current record pointer for future sequential
READs,

Suppose we have the following START statement:

START FILE-A KEY IS EQUAL TO SUB-KEY-A.
SUB-KEY-A must be alphanumeric. 1In addition, SUB-KEY-A must be a
record key or alternate record key or subordinate to a record key or
alternate record key whose leftmost character position corresponded to

its own leftmost character position. For example, if the following
fields were defined in the record:

6-35

FILE HANDLING

02 KEY-A.
03 SUB-KEY-A.
04 SUB-KEY-Al PIC XXX.
04 SUB-KEY-A2 PIC XX.
03 SUB-KEY-B PIC XXX.

and if KEY-A was a record key or alternate record key, then the
following would be legal START statements:

START FILE-A KEY IS EQUAL TO KEY-A.
START FILE-A KEY IS EQUAL TO SUB-KEY-A.
START FILE-A KEY IS EQUAL TO SUB-KEY-Al.
The following START statements are illegal.
START FILE-A KEY IS EQUAL TO SUB-KEY-A2.
START FILE~A KEY IS EQUAL TO SUB-KEY-B.

The leftmost character positions of SUB-KEY-A2 and SUB-KEY-B do not
correspond to the leftmost character position of KEY-A.

The relational operator IS EQUAL TO (or IS =) means that the current
record pointer is set to point to the record associated with the first
key equal to SUB-KEY-A. If SUB-KEY-A is shorter than the record key
or alternate record key, then the record keys or alternate record keys
in the file are truncated on the right to the same length as SUB-KEY-A
for the purposes of the comparison.
If the following START statement is used:

START FILE-A KEY IS GREATER THAN SUB-KEY-A.

or

START FILE-A KEY IS > SUB-KEY-A.
then the current record pointer 1is set to point to the record
associated with the first key that is greater than SUB-KEY-A. Thus,
if the file had records with the following keys:

Record # 743 629 015 891 233 371
KEY-A ABCDDZZX ABCDEABC ABCDEXYZ ABCDEZZZ ABCDGAAA ABCDGZZX

and SUB-KEY-A contained ABCDE, then the current record pointer would
be set to point to record number 233.

If the following START statement is used:
START FILE-A KEY IS NOT LESS THAN SUB-KEY-A.
or
START FILE-A KEY IS NOT < SUB-KEY-A.
then the current record pointer 1is set to point to the record

associated with the first key that is greater than or equal to
SUB-KEY-A. In the previous example that would be record number 629.

6-36

FILE HANDLING

If there is no record that satisfies the comparison, the invalid key
exit is taken. 1In our example the following statement:

START FILE-A KEY IS EQUAL TO SUB-KEY-A.
would take the invalid key exit if SUB-KEY-A contained ABCDF.

If the comparison is satisfied and the current record pointer is set,
then subsequent READs would update the current record pointer using
KEY-A as the key of reference.

If the key phrase is not specified, then the default key is the prime
record key and the default comparison is IS EQUAL TO.

6.3.6.7 Closing Indexed Files - The CLOSE statement terminates
processing on the file referred to in the statement. The following
sample CLOSE statement terminates processing on the file named
ARTICHOKE:

CLOSE ARTICHOKE.

When the statement closes a file, no other I/0 operation can access
that file wuntil another OPEN statement opens the file. 1If the
statement specifies the LOCK option, the program cannot open the file
again in that run. If a SAME AREA clause contains the name of the
file just closed, the program may open one of the other files named in
the clause.

6.4 DEVICES

The PDP-11 COBOL object time system supports any devices supported by
the Record Management Services. Table 6-8 contains a partial list of
these devices:

Table 6-8
Device Codes
Device Device Code

Card Reader CR
Disk (RKO3/RKO05) DK
Disk (RF11/RS1l) DF
Disk (RS03/RS04) DS*
Disk (RP11/RP02/RP03) DP
Disk (RJP04) DB
Line Printer LP
Magnetic Tape (TUl0/TS03) MT
Magnetic Tape (TU16/TU45) MM

*The DS device code applies to non-RSTS/E only.
6-37

FILE HANDLING

Some devices are better suited to certain uses than others, For
example, since PDP-11 COBOL 1is a disk-oriented system, the disk
provides COBOL files with the best performance and reliability. On
the other hand, COBOL files on magnetic tape are limited to sequential
organization.

The following subsections discuss the devices that are available and
how to use them to best advantage.

6.4.1 Disk

The primary means for storage and processing of PDP-11 COBOL files is
a disk. Several disk units are supported, including RKO5, RF1l1l,
RP11/RP03, RP0O4 and RS04. Each device has its own file handling
characteristics, and differs with respect to capacity, speed, and
portability. The following table compares these characteristics. The
values, low, mod (moderate), and high, describe the relative
characteristics of the devices in the table. The efficiency
characteristic commbines the values of capacity, speed, and
portability for that unit into a single value.

Table 6-9
Comparison of PDP-11 Disk Devices

Device RKO5 RF11 RP11/RP03/RP04 RS04*
CAPACITY LOW/MOD LOW VERY HIGH LOW
(4800 (1024 (80,000 (2048
BLOCKS) BLOCKS) BLOCKS) BLOCKS)
(RP04 160,000
BLOCKS)
~ SPEED MOD HIGH HIGH HIGH
PORTABILITY | HIGH (EASY) NONE HIGH (BULKY) NONE
EFFICIENCY HIGH MOD HIGH MOD

The characteristics of the devices 1in the table suggest suitable
applications. Consider the following examples:

® The portable, moderate capacity RK0O5 is ideal for storage of
COBOL source and object files as well as small data files;

® The fast, low capacity RF1ll is ideal for scratch files requiring
either random or sequential access;

® The high-capacity RP11/RP03/RP04 is excellent for large files
requiring high volume access in either the random or sequential
modes. Further, its portability makes it ideal for master file
storage on multiple systems.

*RSTS/E supports the RS04 only as a swapping device. It cannot be
used for user files.

6-38

FILE HANDLING

6.4.2 Magnetic Tape

All PDP-11 operating systems support magnetic tape files; all COBOL
operations concerned with magnetic tape are fully supported by the
compiler, including the MULTIPLE-FILE TAPE clause and the CLOSE REEL
[WITH NO REWIND] clause. (RSTS/E does not support multi-reel files.)

6.4.3 Card Reader and Line Printer

COBOL programs can use both the card reader and the 1line printer as
I/0 devices.

If these devices have been assigned logical names in the Special-Names
paragraph of the Environment Division, the ACCEPT and DISPLAY
statements can access them. For example, consider the following
coding:

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
CARD-READER IS CARDS
LINE-PRINTER IS LOG.

PROCEDURE DIVISION.
ACCEPT INREC FROM CARDS.

DISPLAY PRINTREC UPON LOG.

Figure 6-5 Assigning Logical Names to the
Card Reader and Line Printer

If filenames have been assigned to these devices in the SELECT clause
of the File-Control paragraph, the READ and WRITE statements can
access them for I/0 files. For example, consider the following
coding:

FILE HANDLING.

FILE-CONTROL.
SELECT INFILE ASSIGN TO "CR:".
SELECT OUTFILE ASSIGN TO "LP:".

FD OUTFILE
DATA RECORD IS OUTREC.

PROCEDURE DIVISION.
READ INFILE.

WRITE OUTREC.

Figure 6-6 Assigning the Card Reader and
Line Printer to Files

6.5 FILES AND FILENAMES

The OTS and the operating system use the device codes described in
Section 6.4 to communicate with the devices. Further, the COBOL OTS
uses the operating system's file specification and interfaces for all
file manipulation with file storage devices (disk and magtape). The
VALUE OF ID clause (discussed in the following subsection) in the FD
entry describes the file specification to the OTS. The format for the
full file specification follows:

dev:[uic] filename.typ;version/switches

where:

dev: - device code

[uic] - user's identification code or the code of the user
for whom the file was created - the user directory
ID. (The brackets [] are required.)

filename - an alphanumeric field containing up to nine
characters that identifies the file (RSTS/E allows a
length of from one to six characters).

typ - an alphanumeric field containing up to three
characters that qualify the filename.

version - a numeric field containing up to five octal digits
that give the version number of the £file. By
specifying version numbers, the user can maintain
several versions of the same file on a directory
device. (Not available with RSTS/E.)

switches - identifies certain actions for the operating system

to perform for the file. (Subsection 6.5.1.1
discusses these switches.)

6-40

FILE HANDLING

These entries default as follows:

dev: - the device code of the disk containing the operating
system.
fuic] - the user identification code of the wuser currently

using the system.

filename - null
typ . = null
version - the version number defaults differently for IAS and

RSX-11M input and output files.

e input files - the highest numbered version of the
file (thus selecting the latest version);

® output files - one greater than that of the
highest numbered version of the file (thus
creating the latest version).

switches - null

For example, the following sample file specification causes the file
system to process version 3 of a file on disk named ARIES. The user
has an identification code of 140,222.

DK:[140,222]ARIES;3

The following sample RSTS/E file specification causes the file system
to process a file on disk named ARIES. The user has an identification
code of 140,222. Note that RSTS/E does not support the version number
feature.

DK:[140,222] ARIES.

6.5.1 Using Explicit Filenames (VALUE OF ID Clause)

The VALUE OF ID clause, in the FD entry, describes the file
specification to the COBOL OTS. The VALUE OF ID clause is optional;
however, the system requires it whenever the program refers to an
explicit file unless a sufficient file description is provided in the
ASSIGN clause. The clause accepts either a 1literal entry or an
identifier entry. Consider the following sample literal form of the
clause:

VALUE OF ID IS "DK:[140,222]ARIES;3"
Elements of the file specification appearing in the VALUE OF ID clause
supersede their counterparts specified in the ASSIGN clause for the
file. (Subsection 6.5.2 discusses the ASSIGN clause.)

When written in the literal form, the literal may be a complete file
specification or a part of a file specification.

When written in the identifier form, the value of the identifier may
be a complete or partial file specification. :

The identifier form of this clause is especially useful when different

runs of a program process different files. If a program must process
different files in the same way on different runs, an ACCEPT statement

6-41

FILE HANDLING
in the Procedure Division can request a file specification from the
user at the user's console or from a batch input stream.

The following example illustrates how a COBOL program could request a
file specification from an interactive terminal:

DATA DIVISION.

FD FILEIN
VALUE OF ID IS INFILE.

WORKING-STORAGE SECTION.
77 INFILE PIC X(20).
PROCEDURE DIVISION.

DISPLAY "TYPE IN INPUT FILE SPEC".
ACCEPT INFILE.

OPEN INPUT FILEIN.

This sample coding causes the following interaction between the
program and the user (the message printed by the program is
underlined):

TYPE IN INPUT FILE SPEC
DK1 :THOREAU RET

Following this interaction, the sample OPEN statement will open (for
input) the file, THOREAU on DKl.

6.5.1.1 Switches - There are four optional switches which may qualify
the file specification. These switches modify the processing
performed by the COBOL OTS when it opens the file,

Table 6-10 contains a list of the file switches and their meanings to
the OTS.

6-42

FILE HANDLING

Table 6-10
File Specifier Switches

SWITCH

MEANING

/CL:n

Allocate disk space in clusters of n virtual blocks
whenever the file needs additional storage space during
output operations. (n may be any number from 1 to 256
in powers of 2.) If the number 1is followed by a
decimal point, the software considers the number to be
decimal; if it does not have a decimal point, it is
considered to be octal).

This switch would be used only when very 1large files
are to be created and the output device can hold the
entire file (i.e., an RP03 disk). The effect of this
switch 1is to make file accessing faster when the file
is being processed sequentially.

/CO:n

(Not supported by RSTS/E) allocate a contiguous file of
n disk blocks to the file when it is opened. This
switch ensures that n blocks are available for the file
prior to actual processing. (When many users are
sharing the same disk, you can wuse this switch to
ensure that your entire file will fit on the disk.) It
applies only to output files being created. (If n
applies to an RK type disk, the maximum value of n is
4000 (decimal). If a decimal point follows the number,
the system considers it to be decimal; otherwise,
octal.)

/SH

This file is shared for output or I/O mode, available
for writing or altering by other tasks (or jobs)
running concurrently with the COBOL progranm. The /SH
switch must not be specified for sequential files. For
all other files, the following rules apply.

e The /SH switch should be used consistently among
concurrently executing tasks. That is, if the /SH is
specified for one task sharing the file, all tasks
sharing the file should have it specified, and
vice-versa.

e If a file is being opened for OUTPUT or I/0 with the
/SH switch specified, all other tasks currently using
the file must also have the /SH switch specified.

o If a file is being opened for input without the /SH
switch set, no other task can be using the file for
output or I/0.

e If a file is being opened for INPUT and no /SH switch
is specified, all other tasks currently using the
file should not have the /SH switch specified.

If access is denied when the file is opened because of
one of the above reasons, a file status code of 91 is
stored in the FILE-STATUS data-item associated with the
file if one is specified.

/AL:n

Same as the /CO:n switch with the following exception.
The /CO:n specifies that all blocks be contigquous, and
the /AL:n switch specifies that all blocks need not be
contiguous. -

6-43

FILE HANDLING

6.5.2 Device Assignment by ASSIGN Clause

If the VALUE OF ID clause does not specify a complete file
specification, the ASSIGN clause in the File-Control paragraph can
assign a defalt to those components not specified. The ASSIGN clause
must be written as part of the SELECT statement as shown below:

SELECT THOREAU ASSIGN TO "DK1l:"

This example assigns a default device code "DK1l:" for the location of
the file THOREAU. Another device code specification in the VALUE OF
ID clause could override it later in the source program.

6.5.3 Files and Logical Units

Each file in an executable task must have a unique Logical Unit Number
(LUN) assigned to it. The COBOL compiler can only generate a relative
LUN assignment for each file in a COBOL program, because there may be
multiple COBOL programs in a task. (See Figure 2-10 which contains a
sample file-to-relative-LUN assignment table.) Actual LUN assignments
are made by the COBOL Object Time System (OTS) at task execution time.
The number of LUNs needed by a task is equal to 1+n, where n is the
total number of individual files included in each program comprising
the task. For example, if a task consists of three programs, each
program requiring three files, then the number of LUNs required is 10.
(The first LUN is reserved for ACCEPT/DISPLAY and message
processing.) If more than six LUNs are required for an executable
task, the UNITS option must be specified at task-build time, because
the Task Builder default is 6.

Each LUN must have a physical device associated with it before the
associated file can be opened. You can assign a physical device to
the file by specifying the VALUE OF ID or ASSIGN clause in your COBOL
program, or you can specify the ASG option at task-build time.

NOTE

The default LUN assignments generated by
the Task Builder do not always equate to
the system device.

(Refer to the Task Builder Manual for your particular operating system
for more information concerning task builder options.)

As previously stated, each COBOL program receives relative LUN
assignments for its files by the compiler. At task-execution time,
the OTS converts these relative LUN assignments to actual assignments
according to the following rules:

1. If the task consists of only one COBOL program, the OTS adds
1 to each of the relative LUN assignments yielding the actual
assignments. Therefore, a file receiving a relative LUN
assignment of 2 by the compiler would receive an actual LUN
assignment of 3 at execution time.

2. If the task consists of more than one COBOL program having
files assigned to it, simply adding 1 to the relative LUN
assignments would obviously yield duplicate actual LUN
assignments. The OTS, in the case of multiple program tasks,
utilizes the relative assignment +1 formula for the first

6-44

FILE HANDLING

program in the task. For each subsequent program, it takes
the highest actual LUN assignment for the previous program
and adds 1 to it to arrive at the first LUN assignment. It
then applies the +1 formula to this first LUN assignment to
arrive at each subsequent assignment for the program.
Consider the following example:

Example

A task consists of three programs (PROGA, PROGB, and PROGC).
Each program has three files with relative LUN assignments of
1, 2, and 3. At execution time, assuming that the programs
were presented to the Task Builder or Merge Utility in the
order PROGA, PROGB, and PROGC, the OTS would assign actual
LUNs as follows:

Program LUN assignment

1 (reserved for ACCEPT/DISPLAY and messagde

processing)

PROGA

2 1st. File

3 2nd. File

4 3rd. File
PROGB

5 1st. File

6 2nd. File

7 3rd. File
PROGC

8 1lst. File

9 2nd. File

10 3rd. File

6.6 OPTIMIZATION
At times a user may wish to optimize his program with regards to space
or time. Often, there is a trade-off between the two. The default

philosophy of the COBOL compiler has been to optimize space
allocation. A discussion of the two types of optimization follows.

6.6.1 Speed Optimization

The following COBOL clauses and phrases may be wused to increase
execution speed.

6-45

FILE HANDLING

SAME RECORD AREA Phrase

Default - No Same Record Area

Optimal - Use SAME RECORD AREA phrase

Effect - May save compute time. If records
are being copied from one file to
another and if both files share the
same Record Area, then no move
statement 1is needed to move the
records from one record area to the
other.

Use more space? - No, uses less space

Other potential drawbacks - Records from both files will not be
available simultaneously (unless one
is moved so it can be saved), because
one record will wipe out the other.

BLOCK CONTAINS Clause

Default - Bucket or logical block consists of
smallest number of virtual blocks.

Optimal - Make bucket or logical block as large
as possible.

Effect - Speeds sequential access by reducing
amount of I/0 to disk.

Use more space? - Yes

Other potential drawbacks - None

For indexed files, the following clauses and phrases may be used to
further increase execution speed.

RESERVE Clause -

Default - 2 AREAS

Optimal - Make the number of areas equal to the
number of keys of access + 2.

Effect - Speeds up random access.

Use more space? - Yes

Other potential drawbacks - None

WITH DUPLICATES Phrase -

Default

Duplicates not allowed

Optimal Allow duplicates by using this phrase

6-46

FILE

Effect

Use more space?

Other potential drawbacks

6.6.2 Space Optimization
The default philosophy is to
following COBOL clauses and
space requirements.
SAME RECORD AREA

Default

Optimal

Effect

Slows execution time

Other potential drawbacks

SAME AREA
Default

Optimal

Effect

Slows execution time

Other potential drawbacks

HANDLING

Speeds up WRITE and REWRITE time. If
this phrase 1is not used, then the
program must check each alternate
record Kkey on a write or rewrite, to
check that it doesn't already exist
on the file.

No

Duplicate keys are allowed and this
may not be wanted. For example, if
the social security number is a key,
duplicate social security numbers may
be illegal.

optimize space usage. However, the

phrases may be used to further reduce

No Same Record Area

Use SAME RECORD AREA phrase for as
many files as possible.

Instead of having a record area for
each file, all the files use the same
record area.

No

Records from both files will not be
available simultaneously (unless one
is moved 1in order to save it),
because one record will wipe out the
other.

No Same Area

Use SAME AREA phrase for as many
files as possible.

The buffer areas for all the files in
the SAME AREA phrase are shared.
Saves much more space than SAME
RECORD AREA.

No
Not more than one of the files listed

in the SAME AREA phrase may be open
at any time.

FILE HANDLING

6.7 COMMUNICATING WITH THE PROGRAM

The ACCEPT and DISPLAY statements allow low-volume, terminal-oriented
interaction between a COBOL program and the user of the program.

While these statements are primarily intended for use with keyboard
devices, PDP-11 COBOL allows the ACCEPT statement to accept cards from
a card reader, and the DISPLAY statement to display data on a 1line
printer. The following two Sections (6.7.1 and 6.7.2) discuss these
capabilities in greater detail.

6.7.1 Using the ACCEPT Statement

The ACCEPT statement makes small amounts of data available to the
specified data item. .

Consider the following example; it causes data to be transferred from
the device identified by the mnemonic-name, OPERATOR, to the area
represented by the identifier, COMM-AREA.

ACCEPT COMM-AREA FROM OPERATOR.

OPERATOR must be a mnemonic-name specified for a device in the
Special-Names paragraph (in this example, possibly the console). The
area represented by the identifier COMM-AREA receives the data
requested without any editing.

The ACCEPT statement causes the transfer of a stream of bytes from the
device specified in the FROM phrase, if it is present (OPERATOR in the
previous example). If the FROM phrase is not present, the data is
transferred from the user's console.

Enough bytes are transferred to fill the identifier's area. The size
of COMM-AREA in this example dictates the number of bytes being
transferred.

If the device contains more data than there are bytes in COMM-AREA,
the data is truncated.

] If the length of the identifier exceeds 80 bytes, the OTS
performs one or more additional transfers of data until it
either fills the identifier or transfers less than 80 bytes.

. If the length of the identifier is less than or equal to 80
bytes and the length of the data is less than the identifier
on a teletype or cards, the OTS pads the identifier with
blank characters.

The ACCEPT statement has a second format that allows it to retrieve
the current DAY, DATE, or TIME from the system and store it in the
specified identifier. (DAY, DATE, and TIME are reserved words that
the user does not define. The user must define identifiers into which
to accept the values in DAY, DATE, or TIME.) The following sample
statement places the current date in the identifier, GREENWICH:

ACCEPT GREENWICH FROM DATE.

FILE HANDLING

DAY and DATE are treated as equivalent. A facility for specifying the
day of the year is currently not provided. The date, however, is
provided as follows (YY is the year; MM is the month; DD 1is the
day) :

DATE -- YYMMDD

If the date were July 4, 1976, the systems would provide GREENWICH
with the number 760704.

The systems provide the time as follows (HH is the hour; MM is the
minutes; SS is the seconds; CC is the hundredths of a second):

TIME -- HHMMSSCC

If the time were 20 seconds after 5:15 PM, the systems (which have a
24-hour clock) would provide the numbers 17152000. (Since the PDP-1l1
clock has no hundredths of a second capability, the systems place
zeroes in the last two positions.)

The identifier receives the data according to the rules for the MOVE
statement. Chapters 3 and 4 discuss the MOVE statement as applied to
non-numeric fields (Chapter 3) and numeric fields (Chapter 4).

6.7.2 Using the DISPLAY Statement

The DISPLAY statement transfers small amounts of data £from he
specified data item or literal to the specified device.

Consider the following example; it causes the transfer of data from
the area represented by the identifier, COMM-AREA, to the device with
the mnemonic-name, OPERATOR:

DISPLAY COMM-AREA UPON OPERATOR.

OPERATOR must be a mnemonic-name specified for a device 1in the
Special-Names paragraph (possibly the console in this example). The
area represented by the identifier, COMM-AREA, contains the data being
transferred.

The DISPLAY statement causes the transfer of a stream of bytes to the
device specified in the UPON phrase if it is present (OPERATOR in the
preceding example). If the UPON phrase 1is not present, the OTS
transfers the data to the user's console.

All of the bytes in all of the identifiers or literals in the DISPLAY
statement are transferred first. The size of COMM-AREA, in this
example, dictates the number of bytes being transferred.

The system does not convert COMP items from binary to ASCII; it
simply transfers them as they exist in storage.

If a single DISPLAY statement must transfer large amounts of data,
that data must contain appropriate vertical and horizontal form
control characters. If the data being transferred does not contain
form control characters and the length of the data stream exceeds the
device's single line capacity, the excess characters will all print in
the last position (overprinting each other).

Table'! 6-11 contains several of the terminal form control characters:

6-49

FILE HANDLING

Table 6-11
Form Control Characters
Octal Control

Code Character Function
007 BEL (CTRL G) Bell ringer
011 HT (CTRL I) Horizontal tab
012 LF (CTRL J) Line feed or line space (new line)
013 VT (CTRL K) Vertical tab
014 FF (CTRL L) Form feed to head of form
015 CR (CTRL M) Carriage return

When it has transferred all of the data from all of the items listed
in the statement, a carriage return and 1linefeed character are
automatically appended onto the data. The WITH NO ADVANCING phrase
suppresses this appending operation.

NOTE

The WITH NO ADVANCING phrase 1is an
extension to the ANS-~74 standard.

6.8 FILE COMPATIBILITY WITH OTHER PROGRAMMING LANGUAGES

All files generated by other programming languages are compatible with
COBOL provided that they were generated using Record Management
Services. Files generated by other file systems must conform to
Record Management Services formats.

6.8.1 Writing Files For Other Programming Languages

PDP-11 COBOL writes files that can be read only by languages using the
Record Management Services system interface for user program I/O.
When creating a file that is to be read by a language, that does not
use the Record Management Services interface (i.e., BASIC-PLUS),
adhere to the following restrictions:

° Ensure that the file has sequential file organization.

° Ensure that the file is not a COBOL print-file (no LINAGE or
APPLY PRINT-CONTROL clauses are applicable to the file).
Printer control is handled differently by each PDP-11
programming language.

° Do not use the ADVANCING option in WRITE statements when
creating the file.

The file may contain fixed-length or variable-length records, and the
records should only contain only printable ASCII character data.

FILE HANDLING

6.8.2 Reading Files Written in Other Programming Languages

PDP-11 COBOL reads files that were written only by languages using the
Record Management Services system interface for user program I/O.
Before reading a file that was written by another language that does
not use the Record Management Services interface, be certain that the
file meets the following restrictions:

°® Ensure that the file is an ASCII file.

° Ensure that the file does not have a <carriage control
attribute (the FORTRAN carriage control file attribute must
not be set).

FORTRAN meets these restrictions when it writes ASCII (not binary)
data with formatted WRITE statements. However, the user must disable
the carriage control attributes in the OPEN statement for the file.

CALL OPEN (UNIT=n, CARRIAGE CONTROL="NONE"

WRITE (n,100) list
FORMAT (.....)

BASIC+2 is capable of reading and writing all Record Management
Services files. Therefore, files written by BASIC+2 programs are
compatible with COBOL.

BASIC-PLUS meets all of these restrictions when it writes a formatted
ASCII (sometimes called sequential) file as described in the
BASIC-PLUS Language Manual. PDP-11 COBOL cannot read BASIC-PLUS
Virtual Array files.

6.8.3 Data File Transportability

The user who wishes to transport data files from one language
processor to another or from one system to another (RSX-11M to RSTS/E
or vice versa) should be careful to write such files using the Record
Management Services. Record Management Services is the only file
interface used by PDP-11 COBOL.

Non-printable ASCII characters are subject to misinterpretation by the
different language processors and operating system utilities. 1If, for
example, COBOL were to write records which contained COMPUTATIONAL
(binary) data items, the values these items could contain would be
written in the file in the same binary format as represented in the
computer. Such binary values may 1look 1like non-printable ASCII
characters such as CR, LF, CTRL/Z, escape, which could cause system
utilities to perform in an unpredictable manner while processing the
records.

Other ways that non-printable ASCII characters can get into a file
are:

1. having data definitions that contain the USAGE IS INDEX
clause;

2. moving HIGH-VALUES or LOW-VALUES;

3. moving any redefinition of a COMP or USAGE IS INDEX field;

6-51

FILE HANDLING

4, reading a data file that contains non-printable ASCII
characters;

5. having multiple record definitions of varying sizes and
filling a shorter record area then writing a longer one.
(The excess characters, not filled, may be non-printing.)

This list is not complete. There are many other ways for non-printing
ASCII characters to find their ways into printable ASCII files.

6.9 PROCESSING I/O ERRORS - USE STATEMENT

The USE statement provides COBOL programs with a way to process I/0
errors. It allows the program to specify possible recovery steps
following the I/0 handling procedures performed by the software.

When a COBOL program contains a USE procedure and an I/0 error occurs,
the OTS and Record Management Services execute their standard I/0
error handling procedures and then transfer control to the procedure
following the USE ' statement. (For further information concerning
run-time I/O errors, see section 12.3.)

Consider the following sample coding. When either THOREAU or
ARTICHOKE causes an I/0 error, the OTS executes its standard I/0 error
procedures and then transfers control to the paragraph (or paragraphs)
that follow the USE statement.

PROCEDURE DIVISION.
DECLARATIVES.
REPAIR SECTION,.
USE AFTER STANDARD ERROR PROCEDURE
ON THOREAU ARTICHOKE.
DISPLAY-ERROR.
IF ...

The paragraphs following the USE statement may contain any valid COBOL
statement, except for the following:

1. Those statements that refer to a procedure outside of the
DECLARATIVES. (Any attempt to transfer control out of the
DECLARATIVES causes the OTS to abort the program.)

2. Those statements that would cause the USE procedure being
executed to be invoked again. (Recursive USE procedures
cause the OTS to abort the program.)

USE procedures are executed in the same manner PERFORM ranges
in Procedure Division coding. Therefore, paragraphs with the
USE procedure section should follow all rules specified for
paragraphs within PERFORM ranges. For further information on
PERFORM ranges, see Use of the PERFORM Statement in Chapter 7
of this guide.)

If a status key is declared for the file in error, all status
information is made available for processing in the USE
procedure.

CHAPTER 7

GOOD PROGRAMMING PRACTICES

7.1 FORMATTING THE SOURCE PROGRAM

Since most COBOL programs are usually 1long, the programmer needs
techniques that will help him to simplify and improve the readability
of his COBOL programs. The guidelines in this chapter, if followed,
will help produce source programs that are easy to read and maintain.

Before considering these guidelines, consider the reference formats
that are available with PDP-11 COBOL:

1. the Conventional (ANS) format, and
2. the Terminal format.

Although the Conventional format produces ANS compatible programs, it
also produces source printouts that are somewhat more cluttered than
those produced by the Terminal format. These guidelines, therefore,
recommend the use of Terminal format and all of the following
suggestions and examples assume the use of that format. Besides the
obvious advantage of an uncluttered printout, the Terminal format has
other programming advantages:

1. it requires less storage area;
2, it requires no line numbers;
3. 1its statements may be aligned with tab characters.

Further, whenever required, the REFORMAT utility program will convert
Terminal format programs to the Conventional format. (The REFORMAT
utility program is discussed in Chapter 11).

The following suggestions should help to further simplify even the
most complicated source programs.

1. Begin division, section, and paragraph names in c¢olumn 1.
Although these names may start anywhere in Area A, aligning
them in column 1 produces a much more readable listing. When
required, place the * and - in column 1. (Column 1 then
becomes column 0.)

2. 1Insert a blank line, or one or more comment lines (describing
the purpose of the file) before each SELECT statement in the
FILE-CONTROL paragraph. Place the phrases of the SELECT
statement on separate lines and begin each of them in column
5 (use the tab character to skip over Area A). Consider the
following illustration of a typical SELECT statement:

GOOD PROGRAMMING PRACTICES

AREA A AREA B

1 ... 5.

SELECT MASTER-FILE
ASSIGN TO "DK1l:"
ORGANIZATION IS RELATIVE
ACCESS IS SEQUENTIAL.

Place the phrases of the file description statement on
separate lines and begin each of them in column 5. (Use the
tab to skip over Area A.) Consider the following illustration
of a typical file description entry:

AREA A AREA B
1. .. 5. ... 0.
FD MASTER-FILE

LABEL RECORDS ARE STANDARD
VALUE OF ID IS MASTER-FILE-NAME
DATA RECORD IS MASTER-RECORD.

In both the File and Working-Storage sections, begin all 01
level items in column 1.

Indent, by four columns, all subordinate items with
higher-valued 1level numbers. (For example, if the item that
is subordinate to a 0l-level record description is 05, begin
the record description level number in column 1 and the 05
level number in column 5.) Use the tab character for the
first indentation, a tab and four spaces for the second, two
tabs for the third, etc. When indented in this manner, the
listing will show, clearly and neatly, the hierarchical
relationships of all of the data names in the program as well
as their level number values.

Increment level numbers by 5; then later, if it becomes
necessary to insert additional group items, they may be
inserted without having to change the level numbers of all
items that are subordinate to that group.

If desired, write the level numbers as single digits (such as
1l instead of 01).

Use level number 01 instead of 77 in the Working-Storage
Section. (77, as a level number has the same meaning as 01,
and 77 may eventually be omitted from the COBOL standard.)

Since all elementary items, except for index data items,
require PICTURE clauses, these clauses fill a good part of
the source program listing. However, the PICTURE clause
itself may be simplified to enhance the listing's readability
as follows:

a. wuse PIC as an abbreviation for PICTURE,
b. omit the noiseword IS, and

c. align the PIC clauses on successive lines. (Use the tab
character to align the clauses.)

Put all paragraph name declarations in the Procedure Division
on lines separate from the statements in the paragraph. This
not only makes the program more readable, it also makes
modification of the first statement in the paragraph easier.

7-2

GOOD PROGRAMMING PRACTICES

Follow all imperative statements with a period, making them
l-statement sentences. Place only one statement on a line.
In addition to making the lines shorter and more readable,
this will prove quite helpful when debugging the program.
For example, if the program contains a coding error, it will
be on one 1line and therefore -easier to modify without
affecting the other portions of the sentence; further, the
diagnostic messages will refer to the correct line and their
meanings will be clearer.

Since left—-aligned statements in any program enhance the
readability of that program, develop the habit of starting
all COBOL sentences in column 5. (Use the tab character to
skip over Area A.) Some statements, however, should be
further indented, as explained in the following paragraphs.

If the true path of a conditional statement contains another
conditional statement or more than one imperative statement,
place all statements in the true path on 1lines immediately
following the conditional statement and indent them to show
their dependence upon that statement. Consider the following
illustration of an IF statement and its true path:

IF COMPUTED-TAX > TAX-LIMIT
SUBTRACT TAX-LIMIT FROM COMPUTED-TAX GIVING EXCESS~TAX

MOVE TAX-LIMIT TO COMPUTED-TAX

ADD EXCESS-TAX TO TOTAL-EXCESS-TAX.

If the statement has an ELSE (or false) path, align the word
ELSE under the preceding IF and indent all statements that
are dependent on the ELSE statement. Thus:

IF condition
true path statement
true path statement
ELSE
false path statement
false path statement.

Be sure to place the period after the last statement only!

Another good method for simplifying conditionals is to write
only a single imperative statement in the true or |[false path.
If the path requires more statements, place them in a
separate paragraph and either PERFORM the paragraph from the
path or GO to it., This technique avoids the possibility of
inadvertently placing a period at the end of a statement

within the path, thereby terminating it prematurely.

When writing a GO TO ... DEPENDING statement, place each
procedure name on a separate line and indent them all.
Consider the readability of the following sample statement:

GO TO P35
P40
P45
P60
P65
DEPENDING ON P-SWITCH.

GOOD PROGRAMMING PRACTICES

8. When grouping statements into paragraphs and sections, use
the following organizational ideas:

Group together logical units of processing into a section.
Select a section name that reflects the type of processing
being conducted within that section (such as TAX-COMPUTATION
SECTION, PRINT-LINE-FORMATTER SECTION, etc.). Follow the
section name with sufficient comment lines to explain the
processing that is carried out by the statements within that
section.

Make paragraph names as short and simple as possible. A
numbered abbreviation of the section name often suffices.
Thus the paragraph names in the TAX-COMPUTATION section might
be TC10, TC20, TC30, etc. Use paragraph names sparingly,
placing. them only where the true and false paths of
conditional statements require branch points for GO TO
statements. If the temptation arises to give a paragraph a
longer name in an attempt to reflect the type of processing
in that paragraph, use comment lines instead. (Comment lines
usually convey more information, more clearly.)

When using simple numbered paragraph names, assign increasing
numeric characters to sequential paragraphs. If the numeric
portion of the names increases by 5 or 10, new ones may be
inserted later without disturbing the sequence of the names.

Do not use the PERFORM verb in the form, PERFORM a THRU b.
If the paragraphs a thru b must be performed, place them in a
section by themselves and PERFORM the section, thus avoiding
the use of the THRU option.

Place single paragraphs that are to be performed into
sections and use the section name as the object of PERFORM
verbs. Then, if future design changes introduce complicated
conditional 1logic into the paragraph, requiring additional
paragraph names, the PERFORM statements need not be altered.

The preceding guidelines divide the Procedure Division into
modular blocks of coding. If these guidelines are used, the
following additional techniques may be applied.

a. Restrict entry to all sections through the first
statement of the section by use of a GO TO, a PERFORM, or
a "fall through"” from the preceding section;

b. Ensure that all GO TO statements refer to only section
names or paragraph names that are internal to the section
containing the GO TO statement.

7.2 USE OF PUNCTUATION

Avoid using the COBOL punctuation characters, comma and semicolon.
They 1lend 1little to the readability of programs that have their
statements neatly aligned, as discussed earlier in this chapter.
Further, it is quite easy to misuse these characters, which can cause
serious errors for many compilers. (Other compilers either ignore
incorrect punctuation characters or flag them with warning messages.)
At best, even when used correctly and in the proper places, they have
no effect on the meaning of the program.

GOOD PROGRAMMING PRACTICES

7.3 USE OF THE ALTER STATEMENT

Avoid using the ALTER statement to change the flow of control in a
program. It is impossible to test the setting of an alterable GO
statement except by executing it. Also, unless explicit comments
accompany an alterable GO statement, it is difficult to tell whether
or not it is referenced by ALTER statements or what the possible
destinations might be. All of this makes debugging programs that
contain these statements quite difficult. There are two other
techniques that may be used in their place:

1. If control branches one of two ways (i.e., a binary switch),
write the switch as a conditional variable. Consider the
following sample coding:

01 P-SWITCH PIC S9 COMP VALUE 0.
88 NO-PRINT VALUE 1.

MOVE 1 TO P-SWITCH

IF NO-PRINT GO TO P40.

P40.
MOVE 0 TO P-SWITCH.

2. If control branches more than two ways, use MOVE statements
to place integers into a data item, and a GO TO ...
DEPENDING ... statement to test the data item and branch
accordingly. Consider the following sample coding:

01 P-SWITCH PIC S9999 COMP VALUE 0.

.

MOVE 1 TO P-SWITCH

MOVE 3 TO P-SWITCH.

GO TO
PART-TIME
PIECE-WORK
HOURLY
SALARIED-WEEKLY
SALARIED-OTHER
DEPENDING ON P-SWITCH.
* FALL THROUGH IS A BUG
DISPLAY "?17".
STOP RUN.

7.4 USE OF THE PERFORM STATEMENT

The general rules for the PERFORM statement are augmented with the
following rules:

GOOD PROGRAMMING PRACTICES

The endpoint of a section and the endpoint of the 1last
paragraph in the same section are two distinct points. This
means that it 1is possible to execute a PERFORM of the

section,

then while that PERFORM is still active,

to execute

a PERFORM of the last paragraph.

On the start of a PERFORM, if
PERFORM is the end point of
OTS aborts the task and issues

At the end of any procedure, a

procedure being ended is the
range. If so, the most recent
not, the

against the end point of all
If the
currently active
aborts the

end point of the procedure is the
PERFORM range,
task because

the end point of the new
an already active PERFORM, the
an error message.

check is made to see 1if the
end of the most recent PERFORM
PERFORM range is exited. If

end point of the most recent procedure is checked

active PERFORMs.
end point of any
the OTS issues an error
the perform ranges are

currently

message and
not being exited in
were entered.

the reverse of the order in which they

NOTE
The OTS error messages are discussed in
Section 12.4, Run-time Error Messages.

7.5 USE OF LEVEL 88 CONDITION-NAMES

Condition-names provide a convenient method for testing a value or
range of values in a field. The use of condition-names makes programs
easier to maintain, because it ensures a uniform method of testing
fields and helps to reduce recoding when the specifications of the
program change.

The following example illustrates the use of condition-names and shows
the advantages inherent in their use.

Suppose the records of a file each describe a student in an
educational institution (or an employee in a corporation). Some of
the records contain categories of information which are not present in
other records. A "code" field, which contains a digit or letter,
indicates the presence (or type) of some categories; while a special
value in the information itself (such as a numeric value being zero,
negative, or maximum) indicates the presence of other categories. The

processing of such a record may vary considerably depending on these
indicator fields. The fields may require interrogation at various
points in the program, and the interrogation may require more than a

simple relation test.

Consider a "code" field that holds one of seven values, coded as a
mnemonic character. For example, S5,1,2,3,4,G,P might be seven values
that indicate student categories of Special, 1lst year, 2nd year, 3rd
year, 4th year, Graduate, and Postgraduate. The field is described as
follows:

05 STUDENT-CATEGORY PIC X.

7-6

GOOD PROGRAMMING PRACTICES

Program logic requires certain processing for enrolled undergraduates,
different processing for special students, and still different
processing for all students except enrolled undergraduates. Without
the aid of condition-names, statements might be written as follows to
resolve this problem:

IF STUDENT-CATEGORY = "S" ...

IF STUDENT-CATEGORY NOT LESS THAN "1"
IF STUDENT-CATEGORY NOT GREATER THAN "4" ...

IF STUDENT-CATEGORY EQUAL TO "G" NEXT SENTENCE
ELSE IF STUDENT-CATEGORY EQUAL TO "P"
NEXT SENTENCE ELSE GO TO ...

However, if various level 88 entries follow the STUDENT-CATEGORY
description, as shown below, condition-names can simplify this coding.

05 STUDENT-CATEGORY PIC X.
88 UNDERGRADUATE VALUE "1" THRU "4".
88 SPECIAL-STUDENT VALUE "S".
88 GRAD-STUDENT VALUE "G" "P".
88 SENIOR VALUE "4".
88 NON-DEGREE-STUDENT VALUE "S" "P".

Now, the following procedural statements can solve the problem:

IF SPECIAL-STUDENT ...
IF UNDERGRADUATE ...
IF GRAD-STUDENT ...

Procedural statements with condition-names are much easier to read and
debug than those containing the complete test. For example, the
procedural statements, IF UNDERGRADUATE ..., and IF STUDENT-CATEGORY
NOT LESS THAN "1" IF STUDENT-CATEGORY NOT GREATER THAN "4" both
accomplish the same thing, but the first statement is simpler and less
confusing.

In addition, the statement, IF NOT UNDERGRADUATE ... can test the
category of not being an undergraduate, which is equivalent to any one
of the following statements:

IF NOT (STUDENT-CATEGORY NOT < "1" AND
STUDENT-CATEGORY NOT > "4") ...

or

IF STUDENT-CATEGORY < "1" OR
STUDENT-CATEGORY > "4" ...

or

IF STUDENT-CATEGORY < "1" NEXT SENTENCE
ELSE IF STUDENT-CATEGORY > "4" NEXT SENTENCE
ELSE GO TO ...

Statements such as these are tedious to write and a frequent source of
coding errors. Further, if a change creates a new student category,
the recoding takes more time and is even more error prone. A careful
and controlled use of condition-names forces a higher degree of
programming control and checkout. If the program logic does require
the modification of the STUDENT-CATEGORY field, it can even be named
FILLER thus removing the opportunity to shortcut the use of
condition-names.

7-1

GOOD PROGRAMMING PRACTICES

To apply condition-names, follow the description of the item to be
tested with a 1level 88 entry. The item being tested, known as the
conditional variable (STUDENT-CATEGORY in the preceding
illustrations), may be either DISPLAY or COMPUTATIONAL usage, but not
INDEX usage; it may also be a group item.

The compiler stores all of the values supplied by the level 88 entries
in the object program exactly as written. (They are pooled with all
of the literals from the Procedure Division.) A value supplied by a
level 88 entry for a conditional variable of COMPUTATIONAL usage is
stored in binary format to save conversion at object time. The
compiler stores all other values as byte strings with the proper
attributes. It does not make the level 88 entries equal to their
conditional-variables in size. This means that it neither truncates
nor pads (with spaces) non-numeric literals. Further, it neither
truncates nor pads (with zeros) numeric literals, but stores them as
written or, if converted to binary, in the minimum size COMP item that
will hold the converted value. It stores signs as trailing
overpunches on numeric DISPLAY literals, and removes and remembers
decimal points.

Do not enter level 88 items under group items that have subordinate
entries containing any of the following clauses: SYNCHRONIZED,
JUSTIFIED, COMPUTATIONAL, INDEX.

7.6 USE OF QUALIFIED REFERENCES

7.6.1 Qualified Data References

The COBOL language provides facilities to define and reference
user-defined data items. Data items are programmer-defined variables
declared in the Data Division of a COBOL program. Such variables
include, among others, file record descriptions and internal working
areas. These data items are processed by procedural statements such
as the WRITE, MOVE, and ADD statements. Procedural operations on
these data are facilitated through references to the data items by
name. For example, to update a variable, YTD-GROSS-PAY, by a weekly
gross pay amount WEEKLY-GROSS, write the program fragment shown in
Figure |7-1.

WORKING-STORAGE SECTION.
01 YTD-GROSS-PAY PIC 9(5)V99.
01 WEEKLY-GROSS PIC 999V99.

ADD WEEKLY-GROSS TO YTD-GROSS—PAY.

Figure 7-~1
Unqualified Data Item Reference

In this example, YTD-GROSS-PAY and WEEKLY-GROSS are defined in the
Working Storage Section of the Data Division as COBOL variables with a
level number of 01. The variable representing the "year-to-date gross

7-8

GOOD PROGRAMMING PRACTICES

pay (YTD-GROSS-PAY)" is computed by incrementing its present value by
the "weekly gross pay (WEEKLY-GROSS)" amount through reference to the
appropriate data items in the ADD statement. References are made to
the data items by the singular, unqualified names of YTD-GROSS-PAY and
WEEKLY-GROSS. Since YTD-GROSS-PAY and WEEKLY-GROSS are defined with
level numbers of 01 in the Working Storage Section, these variables
must be unique in their spelling and, hence, can only be referenced by
the spelling of each data item's name without any COBOL qualification.

The example in Figure 7-1 1is artificial because the data item
representing the "year-to-date gross pay" is defined as a level 1
variable in the Working Storage Section. More realistically,
YTD-GROSS-PAY is defined as a field within an employee payroll record
residing on an external master payroll file. The process of updating
the "year-to-date gross pay" by a "weekly gross pay" amount is shown
more appropriately in Figure 7-2.

FILE SECTION.
FD MASTER-IN
LABEL RECORD IS STANDARD
VALUE OF ID IS "MASTER.PAY".
01 PAY-RECORD.
03 NAME PIC X(30).
03 EMPLOYEE-NO PIC 9(9).
03 YTD-GROSS-PAY PIC 9(5)V99.

FD MASTER-OUT
LABEL RECORD IS STANDARD
VALUE OF ID IS "MASTER.PAY".
01 PAY-RECORD.
03 NAME PIC X(30).
03 EMPLOYEE-NO PIC 9(9).
03 YTD-GROSS-PAY PIC 9(5)V99.

WORKING-STORAGE SECTION.
01 WEEKLY-GROSS PIC 999Vv99,

PROCEDURE DIVISION.

INIT.
OPEN INPUT MASTER-IN.
OPEN OUTPUT MASTER-OUT.

ADD WEEKLY-GROSS, YTD-GROSS-PAY OF MASTER~-IN
GIVING YTD-GROSS-PAY OF MASTER-OUT.

Figure 7-2
Qualified Data Item Reference

7-9

GOOD PROGRAMMING PRACTICES

In this example, YTD-GROSS-PAY is defined as a field in both the input
and output record descriptions. There are two separate data items
whose spellings are identical.

To reference each data item, it is necessary to qualify the name of
each data item with sufficient information to constitute a unique
reference. Thus, to reference the "year-to-date gross pay" amount in
the output record, we write "YTD-GROSS-PAY OF MASTER-OUT" where such a
reference is called a qualified reference. The filename MASTER-OUT is
functioning as a qualifier in the reference. The reserved word "OF"
is the qgualification connector and may be used interchangeabely with
the reserved word "IN" in this context. Another way of referencing
the same data item is to write "YTD-GROSS-PAY OF PAY-RECORD 1IN
MASTER-OUT". This reference is called a completely qualified
reference because all possible qualifiers are specified in the
reference. A reference of the form "YTD-GROSS-PAY" or "YTD-GROSS-PAY
OF PAY-RECORD" is illegal since it does not uniquely identify which of
the two data items 1is desired. Such a reference 1is termed an
ambiguous reference.

In the area of data item definition and referencing, COBOL is wunlike
other languages such as FORTRAN and ALGOL 60. While FORTRAN requires
each data item to have a unique name (i.e., no two data items may have
a name of identical spelling), COBOL relaxes this requirement to the
extent that each data item must be uniquely referable. That is, two
or more data items may have their names spelled identically, but there
must exist a way to reference each distinct data item. Thus, there is
a distinction between a data item and its name. Central to
understanding this distinction is understanding the concept of unique
referability.

The functionalities of data item definition and referencing may be
understood by stating three guidelines which relate the concepts of
data item definition, reference format, and unique referability.

7.6.2 Guideline 1 (Data Item Definition)

Each data item has a name. Each name is immediately preceded by an
associated positive integer <called its level number. A name either
refers to an elementary item or else it is the name of a group of one
or more items whose names follow. 1In the latter case, each item in
the group must have the same level number, which must be greater than
the level number of the group item.

7.6.3 Guideline 2 (Reference Format)

Data-name qualification is performed by following a data-name or
condition-name by one or more phrases of a qualifier preceded by IN or
OF. 1IN and OF are logically equivalent. The general format of a
qualified reference to an elementary item or group of items named
"name-0" is given in Figure 7-3.

name—-0 OF name-1l...0F name-m

Figure 7-3
General Format of a Qualified Data Reference

7-10

GOOD PROGRAMMING PRACTICES

where m >= 0 and where, for 0 <= j < m, name-j is the name of some
item contained directly or indirectly within a group item named
"name-j+1". A reference of the form given in Figure 7-3 is called a
(partially) qualified reference with name-1,name-2,...,name-m being
called qualifiers. Such a reference is termed a completely qualified
reference if "name-j+1" is the father of name-j for 0 <= j <= m-1.

In the hierarchy of qualification, names associated with an FD
indicator are the most significant, then the names associated with
level-number 01, then names associated with 1level-number 02,...,49.
The most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names, unsubscripted
data-names, and condition variables may be made unique by
qualification. The name of a condition variable can be used as a
qualifier for any of its condition-names. Enough qualification must
be mentioned to make the reference unique; however, it may not be
necessary to mention all 1levels of the hierarchy as the example in
Figure 7-2 demonstrates.

7.6.4 Guideline 3 (Unique Referability)

If more than one data item is defined with the same name "name-0",
there must be a way to refer to eadch use of the name by using
qualification. That is, each definition of "name-0" must be uniquely
referable. A data item is uniquely referable if the complete set of
qualifiers for the data item are not identical to any partial
(including complete) set of qualifiers for another data item.

7.6.5 Qualified Procedure References

The facility of qualification may be applied to procedure references.
A procedure name 1is either a paragraph or section name. By
definition, a paragraph name is unique only within a section
containing the paragraph while, on the other hand, section names must
be unigue within a COBOL program. The general format of a qualified
procedure reference is shown in Figure 7-4.

paragraph-name OF section—name

Figure 7-4
General Format of a Qualified Procedure Reference

A paragraph name may be qualified by its containing section name; a
section name may never be qualified in a procedure reference. When a
paragraph name is referenced without an explicit section name
qualifier, the paragraph name is implicitly gqualified by the
appropriate section name.

If a paragraph name is wunique within a COBOL program it is not
necessary to qualify the paragraph name in the procedure reference.
Finally, if a paragraph name is not unique within a COBOL program, the
paragraph name must be qualified in a procedure reference when the
reference is made outside of the section which contains the paragraph.

7-11

GOOD PROGRAMMING PRACTICES

7.6.6 Qualification and Compiler Performance

Qualification is a powerful language facility for the development of
COBOL programs. Used wisely, it increases the readability of COBOL
programs. However, the user pays a price for wutilization of this
facility in terms of a slower compilation rate (i.e., COBOL source
lines per unit of time).

Qualification requires a tree-structured symbol table at compile-time.
The time required for building and looking up on a tree-structured
symbol table is considerably longer than for a non-tree-structured
symbol table. This translates into a general degradation of compiler
performance. If qualification is not employed in a program compiled
by the PDP-11 COBOL compiler, compilation speed is not affected.
However, when qualification is used, the compilation rate slows down
due to the additional system overhead.

In general, if there are deeper levels of qualification, there will be
a slower compilation. This is especially so at the end of the Data
Division text where duplicate data-name declarations are detected by
the compiler. Object-time performance is not affected by usage of the
qualification facility.

CHAPTER 8

PDP-11 COBOL UTILITY PROGRAMS
8.1 COBRG (COBOL REPORT GENERATOR)

8.1.1 1Introduction

The COBRG program provides a simple mechanism for producing printed
reports from data files. And, although it may be tempting to design
and write personally tailored report generating algorithms, it is
usually easier and faster to use this utility program.

Most personally tailored programs that produce printed reports adhere
to the following pattern:

1. The program reads an input file that has been sorted on any
number of keys;

2, It prints the contents of <certain fields from each input
record on a printed report (usually the fields are in
designated columns with a heading on each page to 1label the
columns) ;

3. It keeps running totals in accumulators to be printed on the
report (and zeroed for new summations) whenever designated
fields change values, thus developing and printing subtotals
at the end of each section or subsection of the report;

4, Finally, at the end of the input file, it prints cumulative
totals for the entire report.

An analysis of typical report generating programs would show that they
contain several of the following elements:

® Description of the page headings;
® Description of the input and output files;

o Set of rules for moving information from the input records to
the detail print lines;

e Set of rules for adding values into accumulators;
e Set of rules for monitoring the sort keys for value changes;

® Set of rules for constructing and printing the accumulator
values.

The COBRG utility program features input specification 1lines which
provide all of the preceding elements. COBRG uses these specification

8-1

PDP-11 COBOL UTILITY PROGRAMS

lines to produce a tailored COBOL source program. This program, when
compiled and executed, generates the actual report. The following
list contains a brief description of the input specification 1lines
along with the information each provides:

® NAME Specification -- provides the program name and the
description of the input and output files;

e INPUT Specification -- provides a description of the records
in the input file;

® OUTPUT Specification -- provides a description of the records
in the output file (detail lines and total messages);

® HEADER Specification -- provides a description of the page
headers;

® BREAK Specification -- provides monitoring information for all

control break fields;

® ACCUMULATOR Specification -- provides information on all
fields to be added and sets up accumulators to contain the
sums;

e TOTAL Specification -- provides information on accumulators

that are to be moved directly to control footing print lines;

e EMIT Specification -- provides textual information for
explaining the totals on control footing lines;

® LIST Specification -- provides detail 1line 1listing (output)
information.

Subsequent sections of this chapter describe, in detail, these
specification 1lines. For illustration purposes, sample entries for
preparing a sample report accompany the rules for forming the lines.
A description of the sample problem follows.

8.1.2 COBRG Sample Problem

The input file contains sales information. Each record within this
file contains the customer's name and location, along with the sales
to that customer for a given period. A previous sort run has sorted
the file on three 1location keys; a CITY key, a STATE key, and a
REGIONAL Kkey.

Management requires a report which lists all of their customers, shows
the sales to those customers, and provides subtotals for each city,
for each state, and for each region.

The input file contains 80-character records organized as follows:

01 INPUT-RECORD.

05 CUSTOMER~NAME PIC X(20).

05 CUSTOMER-ADDRESS PIC X(20).

05 CITY PIC X (10).

05 STATE PIC XX.

05 zIP PIC X(5).

05 REGION PIC X.

05 SALES PIC S9(10)Vv99.
05 OTHER-DATA PIC X(10).

PDP-11 COBOL UTILITY PROGRAMS

The preceding sort run sorted the file on REGION as the major sort
key, STATE as the secondary sort key, and CITY as the minor sort Kkey.
Thus, for example, if Region 1 is New England, Connecticut will
probably be first (CT), and the cities of Bridgeport, Hartford, and
Waterbury, if present, will appear 1in that order. (Section 9.1.6.4
shows the first 50 records of the file.)

8.1.3 COBRG Specification Lines

Before COBRG can produce a report-generating COBOL source program, it
requires a file containing one or more sets of the specification lines
discussed earlier. These specification lines describe the report or
reports to be produced by the compiled source program. The user must
ensure that they are filled out completely and accurately, as
indicated in this and following sections.

Use a comma to separate each parameter in a specification 1line from
the next and a carriage return to terminate each complete
specification line.

Although the COBRG program requires most of the parameters 1in a
specification 1line, some of them may be omitted. (This chapter
denotes those that may be omitted and explains the circumstances for
omission.) To omit a parameter from the middle of the line, enter a
comma in its place. This comma, following the separator comma of the
preceding parameter, notifies the software that a parameter is
missing. If the omission occurs at the end of the line, simply enter
the usual carriage return (the software requires no additional
missing-parameter indicator at the end of a line).

The first parameter of every line identifies the type of specification
line and should be placed in column 1. The comma following this
parameter is optional.

Since COBRG generates COBOL source language programs containing
COBRG-generated data and procedure names, avoid using names that
conflict with the generated names. Consider them as an extension of
the COBOL reserved word list.

The following generated names, in addition to the standard PDP-11
COBOL reserved words, cannot be used as data-names in the COBRG
specification of the input and output files.

ACCUMULATOR~-x-n LEVEL-x-BREAK PRINT-LINE
BEGIN LEVEL-n-SW PRINT-CH-n
FINISH L-PRINT PRINT-DETAIL
HEADER OUTPUT-LINE PRINT-n
HEADER-PAGE PAGE-COUNT READ-IN
IN-FILE PL-EXIT RESET-LEVEL-Xx
LEVEL-x-ACS PL-HDR ' SAVE-nn
NOTE
n may be any number from 0-9; x may be
any number from 0-9 or F.

8.1.3.1 NAME Specification - This specification 1line must be the
first specification in the input sequence. It provides the name of
the COBOL source program and describes the input file and the output
file (the report). In fact, the NAME specification supplies

8-3

PDP-11 COBOL UTILITY PROGRAMS

parameters for setting up the IDENTIFICATION, ENVIRONMENT, and DATA
DIVISIONS of the COBOL source program. It must contain the following
entries:

Parameter 1 -- Specification identification. Enter the 1letter N to
identify this line as the NAME specification.

Parameter 2 -- Program hame. Enter a wunique name, up to nine
characters long, to identify the COBOL source program.

Parameter 3 -- Input blocking factor (optional). Enter the blocking
factor for the input data file. If this parameter is
omitted or zero, the software assumes that the file is
not blocked.

Parameter 4 -- Input file specification. Enter the complete file
specification for the input file, with delimiting
quotes.

Parameter 5 —— Output file specification. Enter the complete file
specification for the output file, with delimiting
quotes.

Parameter 6 —- Author (optional). Enter your name (up to 20

characters long). This parameter may be omitted.

The following entries would satisfactorily complete the NAME
specification line for the sample program:

N,COBRGTEST, ,"SALES","LP:",F.X.DOE

Parameter} 1/‘ 2/ 3/ 4/ f

5 6
Numbers

8.1.3.2 INPUT Specifications — The NAME specification line has
already described the input file; now all of the records in the file
must be described. The INPUT specification lines provide the software
with the names and descriptions of the records and fields of the input
file.

These specifications are simply individual lines of a complete COBOL
record description; however, each line begins with an I in character
position one.

Parameter 1 -- Specification identification. Enter the letter I to
identify this line as an INPUT specification.

Parameter 2 -- Data description. Enter one 1line of a COBOL data
description, including the level-number, data-name, and
PICTURE clause. If the record description already
exists in a library file, enter the word COPY, followed
by the name of the library file.

Since the software requires several INPUT specification 1lines to
complete one record description, the record description (0l-level)
must be presented to the software first, with the field descriptions
following in the same order as they appear in the record; however,
the software requires only the names of those fields that are to be
used in the report. All others may be described as FILLER items.

8-4

PDP-11 COBOL UTILITY PROGRAMS

The following INPUT specifications would satisfactorily complete the
record description for the input file of the sample program:

101 INPUT-RECORD.

I 05 COMPANY PIC X(20).
I 05 FILLER PIC X(20).
I 05 CITY PIC X(10).
I 05 STATE PIC XX.

I 05 FILLER PIC X(5).
I 05 REGION PIC X.

I 05 SALES PIC S59(10)Vv99.
I 05 FILLER PIC X(10).
A v
1 2

If the input file for the sample program already existed in a 1library
file (named SALESR.LIB) which contained the actual complete record
description, the following INPUT specification would satisfactorily
complete the record description:

ICOPY SALESR.

7

1 2
COBRG removes the I and places each line in the File Section of the
COBOL source program under the FD entry for the input file. Hence all

rules for the formation of data descriptions in the File Section
apply. (In particular, VALUE clauses are not allowed.)

COBRG does not check the contents of the INPUT specifications for
correct COBOL syntax, therefore, any coding errors will not be
discovered until the COBOL compiler compiles the source program.

If horizontal tab characters are included in I specifications, a
warning diagnostic (probably harmless) will be issued upon subsequent
compilation of the generated program.

8.1.3.3 OUTPUT Specification - The NAME specification line has
already described the output file; now the detail lines of the report
must be described. The OUTPUT specification 1lines provide the
software with descriptions of the records and fields of the output
file (the detail lines), and the control footing messages.

Like the INPUT specifications, the OUTPUT specifications are simply
individual 1lines of a complete COBOL record description, describing a
detail line of the output file; except that each line begins with an
O in character position one and the record description appears in the
WORKING-STORAGE Section instead of in the FILE Section. Further, the
COBRG program will not accept a 0l-level record description entry.
(COBRG supplies a standard 0l-level and name -- 01 OUTPUT-LINE.)

Parameter 1 -- Specification identification. Enter the letter O to
identify this line as an OUTPUT specification.

Parameter 2 -- Data description. Enter one 1line of a COBOL data
description, including the level-number, data-name, and
PICTURE clause. Do not enter a 0l-level record-name
for the first OUTPUT specification (COBRG provides a
standard one, as discussed above).

If the record area 1is to be redefined, enter any
level-number higher than 01 (ensuring, of course, that

8-5

PDP-1]1 COBOL UTILITY PROGRAMS

it is lower than the level-number of the fields in the
record). Then, use the same level-number for the
redefined record. Consider the entries below for the
sample program: Level 03 defines the records and 05
defines the fields. COBRG will subordinate both record
areas to 01 OUTPUT-LINE.

If the record description already exists in a 1library
file, enter the word COPY, followed by the name of the
library file.

Since the software requires several OUTPUT specification 1lines to
complete one detail line, any record-name entry must be presented to
COBRG first, with the field descriptions following in the same order
as they are to appear on the report. Use FILLER items to separate the
various fields. (All FILLER 1items will be space filled on the
report.) The following OUTPUT specification entries would
satisfactorily complete the description of one detail 1line of the
report for the sample program, as well as a message line for the
control footing totals. The message line, which must be described on
an EMIT specification, redefines the detail record area. (EMIT
specifications are discussed later in this chapter.)

003 DETAIL-LINE.

0] 05 PRINT-COMPANY PIC X(20).
o) 05 FILLER PIC XX.

(0] 05 PRINT-CITY PIC X(10).
0] 05 FILLER PIC XX.

0] 05 PRINT-STATE PIC XX.

o 05 FILLER PIC XX.

0 05 PRINT-SALES PIC Z2,2%2%2,22%2,22Z2.%2Z-.
003 CFLINE REDEFINES DETAIL-LINE.

o 05 MESS1 PIC X(20).
0] 05 ACCOUNT PIC 727Z77Z%Z.
0] 05 MESS2 PIC X(13).
] 05 FILLER PIC X(22).
A

1 2

If a library file (named, for example, PRTLIN.LIB) already existed
which contained these entries, the following OUTPUT specification
would satisfactorily complete the record description:

QCOPY PRTLIN.
1 2

COBRG strips off the O and places each 1line in the WORKING-STORAGE
Section of the COBOL source program under the 0l-level entry for the
output record. Hence, all rules for the formation of data
descriptions in the WORKING-STORAGE Section apply.

COBRG does not check the contents of the OUTPUT specifications for
correct COBOL syntax, therefore, any coding errors will not be
discovered until the COBOL compiler compiles the source program.

If OUTPUT Specifications contain horizontal tab characters, a warning

diagnostic (probably harmless) will be issued upon subsequent
compilation of the generated program.

8-6

PDP-11 COBOL UTILITY PROGRAMS

8.1.3.4 HEADER Specifications - The HEADER specification lines
provide COBRG with descriptions of the page headings.

COBRG assumes that the report is to be printed on standard printer
forms, and allows 66 lines per page. It prints on only 60 of the
lines and leaves three blank lines at the top and three blank lines at
the bottom of each page. The first printing line (line 4) may be used
as a header line and a number of blank 1lines may be designated to
follow the header line. The remainder of the printing area is called
the body of the page and is devoted to printing detail lines and lines
that contain totals.

The first HEADER specification supplies header data for columns 1
through 60, and the second HEADER specification (if required) supplies
header data for columns 61 through 132.

Parameter 1 -- Specification identification. Enter the letter H to
identify this line as the HEADER specification.

Parameter 2 -- Page number field size. Enter the size of the field
that will contain the page number in the heading line.

Parameter 3 -- Page number location. Enter the number of the starting
column for the page number in the heading line.

Parameter 4 -- Blank lines. Enter the number of 1lines to be 1left
blank after printing the heading line; an entry of 0
indicates no blank lines.

Parameter 5 -- Skip channel (not yet implemented). Enter the number
(0-8) of the printer channel to which a skip is to be
made after printing the heading line; an entry of 0
indicates no skipping. At present, COBRG treats a
non-zero entry as a 1 (top-of-page skip).

Parameter 6 —-- Header data. Enter the data to be placed in columns 1
through 60 at the top of each page of the report. Do
not include commas within the header. COBRG will not
accept imbedded commas since it considers them to be
parameter separators.

Parameter 7 -- Page number reset (optional). Enter the break priority
number at which the page number is to be reset to 1
(break levels are discussed under BREAK Specification
in the next section). The page number is always 1 on
the first page. If the page number is not to be reset,
this parameter can be omitted.

If the information to be printed on the header 1line exceeds 60
columns, a second HEADER specification may be completed to supply up
to 72 columns of additional header information. Since the information
supplied by parameters 2, 3, 4, 5, and 7 has already been presented by
the first HEADER specification, +the second one requires only the
identification and header data parameters:

Parameter 1 -- Specification identification. Enter the letter H to
identify this line as a HEADER specification.

Parameter 2 -- Header data. Enter the data to be placed in columns 61
through 132 of the header line. Do not include commas
within the header.

Consider the report to be produced by the sample program. Each detail
line requires 60 columns and contains the customer-name, a line

8-7

PDP-11 COBOL UTILITY PROGRAMS

number, and the sales to that customer. The first detail 1line after
any subtotal 1line also contains the city and state for the detail
lines that follow.

Section 8.1.6.5 provides an example of the desired output format. The
HEADER specification, which 1is the second line of input to COBRG in
the sample program, contains a description of the header line and some
of the spacing information.

The following HEADER specification entries would satisfactorily
complete the description of the report header for the sample program.

H,3,58,3,0, COMPANY>——<CITY>—<STATE>———<SALES>—<PG.

\ Kl space
15 spaces

6 spaces
1 23 45 10 spaces

NOTE

The spacing between the words, in
parameter 6, aligns the header with the
detail lines, thus forming columns.

8.1.3.5 BREAK Specification - This specification 1line provides the
information that COBRG requires to monitor the control break fields.
Its parameters identify the fields and the 1levels of those fields
within the control break hierarchy; further, its parameters provide
the information for any required printer manipulation for control
footing.

COBRG considers the entire report as a hierarchy of 1levels, The
lowest 1level 1is the control field that is expected to change most
often. (The lowest level control field wusually corresponds to the
minor sort key.) In the sample program, the lowest level control field
is the CITY field.

As input records are read and detail 1lines are printed, the COBOL
program supplied by COBRG monitors the control field associated with
each level in the report's hierarchy of control fields. When it
detects a change in value in a control field (a control break has
occurred), it prints a control footing. Control footings contain
totals and 1literal values with spacing requirements (to make them
stand out from the detail lines) that may differ from those of the
detail 1lines. Control footings, therefore, usually require separate
descriptions which are supp11ed by Parameters 3 through 6 of this
specification.

COBRG accepts up to 25 BREAK specifications completed as discussed
below:

Parameter 1 -- Specification identification. Enter the letter B to
identify this line as the BREAK specification.

Parameter 2 ~-- Break level. Enter a digit from 0 to 9 or F (for
final). The number 0 has the lowest priority and the
number 9 has the highest priority. More than one field
can have the same priority number, in which case a
break of the same level occurs whenever any of those
fields change value.

8-8

PDP-11 COBOL UTILITY PROGRAMS

Parameter 3 -- Blank lines, before printing. Enter a number from 0 to
9 that represents blank lines to space before printing
the control footing; an entry of 0 indicates no
spacing. ’

Parameter 4 -- Skip channel, before printing (not yet implemented).
Enter a number from 0 to 8 that represents the printer
control channel to which a skip is to be made before
printing the control footing; an entry of 0 indicates
no skipping. At present, COBRG treats a non-zero entry
as a 1 (top-of-page skip).

Parameter 5 -- Blank lines, after printing. Enter a number from 0 to
8 that represents the number of blank lines to space
after printing the control footing; an entry of 0
indicates no blank lines.

Parameter 6 -- Skip channel, after printing (not yet implemented).
Enter a number from 0 to 8 that represents the printer
control channel to which a skip is to be made after
printing the control footing; an entry of 0 indicates
no skipping. At present, COBRG treats a non-zero entry
as a 1 (top-of-page skip).

Parameter 7 -- Field size. Enter the number of characters or digits
in the break field.

=]
|
|

Parameter Field name. Enter the name of the break field. The
field must be named in (and spelled the same as) the
input record description. The following example
contains the BREAK specification for the sample

programs

The COBOL program supplied by COBRG looks for a break on every level
from high to low in every input record and when it detects a break, it
"forces" breaks to occur at all lower levels, regardless of whether or
not it detected breaks at those levels. Therefore, in the sample
program (which has the data file arranged so that the 1last input
record for FALMOUTH, MA is followed immediately by the record for
FALMOUTH, ME), it would detect a break at the state 1level (level 1)
between the last FALMOUTH, MA record and the first FALMOUTH, ME record
and force a break to occur at the city level (level 0).

8.1.3.6 ACCUMULATOR Specification - While the object program produced
by COBRG 1is reading input records and printing detail lines, it can
also add values from the input record into accumulators and print the
totals on control footing 1lines when control breaks occur. This
specification line provides the information that COBRG requires to set
up these accumulators. In addition to describing the accumulator
(name and size), its parameters also specify the name of the field to
be added into the accumulator and, optionally, the name of the field
in the detail line print record into which the accumulator is to be
moved for detail listing.

PDP-11 COBOL UTILITY PROGRAMS
COBRG accepts up to 10 ACCUMULATOR specification lines completed as
discussed below:

Parameter 1 -- Specification identification. Enter the 1letter A to
identify this line as the ACCUMULATOR specification.

Parameter 2 -- Accumulator number. Enter a unique digit that
specifies the accumulator and that can be used to refer
to it. Any number from 0-9 may be entered.

Parameter 3 -- Accumulator size. Enter a number that specifies the
size of the accumulator in digits.

Parameter 4 -- Decimal positions. Enter a number that specifies the
number of decimal places in the accumulator.

Parameter 5 -- Input field. Enter the name of the field in the input
record that is to be accumulated; the name may be up
to 24 characters long.

Parameter 6 —-- Output field (optional). Enter the name of the field
in the printer record into which the accumulator is to
be moved for 1listing on detail 1lines. if the

accumulator is not to be listed on detail lines, omit
this parameter.

When determining the accumulator size, ensure that enough integer and
decimal positions are reserved. COBRG always provides a signed field
for accumulators.

The input field that is to be added to the accumulator (Parameter 5),
although usually a field in the input record, does not have to be in
the input record at all, but may, in fact, be a 1literal (without
commas) or even a field in the output record. If this field is to
appear on a detail line, it must be named in a LIST specification.

The following ACCUMULATOR specifications will set up the accumulators
required by the sample program (two are required):

A,0,14,2,SALES

A,1,5,0,1,LINENO
1/2/3////

4 56

In the sample problem entries above, accumulator 0 contains a
summation of the SALES field from the input records and accumulator 1
contains a count of the detail lines within the 1lowest 1level (the
program uses this accumulator to number the detail lines); the
literal 1, in Parameter 5, is the quantity added to this accumulator
for each detail line in the field named LINENO. (Accumulator 0 is not
printed on the detail lines.)

Accumulators are numeric fields in the COBOL source program produced
by COBRG. By moving them to fields described on the OUTPUT
specifications, they can be printed on the report. Further, by using
the OUTPUT specification to describe a numeric edit picture, they may
be edited with any legal COBOL numeric editing mask.

Each accumulator number requested on this specification line actually
causes the software to set up a family of accumulators, one for every
defined break level.

PDP-11 COBOL UTILITY PROGRAMS

At the beginning of execution of the object program, the software
initializes all accumulators to =zero values and begins adding the
requested fields or literals into the lowest level. Whenever a break
occurs on any level, the software adds the contents of the accumulator
at the lowest level in the family to the next level accumulator and
zeros the lower; this accumulator is then added to the next higher
level accumulator and zeroed, and so on up to the level of the break.
At the 1level of each break, the software moves the contents of the
accumulator at that level to its associated control footing 1line,
prints the control footing line, adds the contents of that accumulator
to the next higher level (or F-level if the break occurred on the
highest requested level), and zeros the accumulator. This summing and
zeroing of 1levels upward through the family is called "rolling
forward" and is the technique employed by COBRG to acquire cumulative
totals.,

The TOTAL specification 1line (discussed in the next sub-section)
coordinates the accumulators and break levels, and specifies which
accumulators to roll forward and print on which break levels. of
course, all break 1levels and accumulators coordinated by the TOTAL
specification line must have been defined on the BREAK and ACCUMULATOR
specification lines respectively.

8.1.3.7 TOTAL Specification - This specification line provides the
information that COBRG requires to move the accumulated totals to the
control footing lines and print them. It supplies COBRG with the
number of the accumulator to be printed, the name of the output field
into which that accumulator is to be moved, and a list of the control
break levels which will cause that accumulator to be rolled forward,
moved, and printed.

COBRG accepts up to 50 TOTAL specification 1lines completed as
discussed below:

Parameter 1 -- Specification identification. Enter the 1letter T to
identify this line as the TOTAL specification.

Parameter 2 -- Accumulator number. Enter the number of the
accumulator that 1is to be moved into an output field
and printed.

Parameter 3 -- Output field. Enter the name of the output field into
which the accumulator is to be moved. The name may
contain up to 24 characters.

Parameter 4 -- Break numbers. Enter the break numbers (0-9,F) which
will cause the accumulator (identified in parameter 2
above) to be printed; do not separate these numbers
with commas. An entry of F signifies the final break
at the end of input data.

The sample program requires control footings at the CITY, STATE, and
REGION 1levels; as well as a final (national) level at the end of the
report. In the control footing caused by the CITY (lowest) level, the
program must print the total sales for each city. In the control
footing caused by the STATE (second) level, the program must print the
total sales for each state, which is actually the sum of that state's
CITY totals. Likewise, it must print REGIONAL (the sum of the states
within the region), and final (the sum of all the regions) totals.

PDP-11 COBOL UTILITY PROGRAMS

The following TOTAL specification entries will complete the
description of the totals required by the sample program.

T,0,PRINT-SALES,012F

T,1,ACCOUNT,2F

e
123 4

(Accumulator 0, in the sample problem, prints in all control footings
and will appear beneath the SALES column.)

Consider what happens when the first break occurs at the STATE level
in the sample program. Accumulator 0 contains a summation of the
SALES field from all of the detail records that have been accessed up
to the record that caused the break. The break at the STATE level
forces a break to occur on the CITY level (all 1lower 1levels). Thus
the program produces a control footing for the CITY level followed by
a control footing for the STATE level. Step—-by-step, the software
takes the following actions when it detects the STATE level break.

l. It prepares and prints the control footing for control level
0 (CITY).

2. It rolls forward the 1level 0 accumulator by adding the
contents of that accumulator to the level 1 accumulator and
zeroing the level 0 accumulator.

3. It prepares and prints the control footing for control level
1 (STATE) which is the level of the break.

4, It rolls forward the 1level 1 accumulator by adding the
contents of that accumulator to the 1level 2 (REGION)
accumulator and zeroing the level 1 accumulator.

5. It then returns to printing detail lines.

Thus, the program has printed the total of SALES (accumulator 0) for
the CITY 1level, added them to the STATE level, printed them for the
STATE level, and added them to the REGION level. The accumulators for
the CITY and STATE levels contain zeroes and the REGION level contains
the total sales thus far. When the REGION level breaks, the software
will add the sum for the last state in the region to the accumulator
for the region level, print that sum in a control footing for the
region, add the sales for that region to the final level accumulator
(F), and zero the region level accumulator.

The control footing lines for all of these totals will probably
require additional textual information to explain the totals being
printed. The following specification line provides this information.

8.1.3.8 EMIT Specification ~ This specification 1line provides any
textual information required by the control footing totals. It
contains the break level and the message to be displayed, as well as
the name of the field into which the message is to be moved.

COBRG accepts up to 50 EMIT specification lines completed as discussed
below:

Parameter 1 -- Specification identification. Enter the letter E to
identify this line as the EMIT specification.

PDP-11 COBOL UTILITY PROGRAMS

Parameter 2 -- Break number. Enter the break priority number which
will cause this message to print with its total line.

Parameter 3 -- Message. Enter the message to be placed on the total
1line. If the information is an alphanumeric literal,
enclose it within quotation marks. If the information
is either a numeric 1literal or a data-name, do not
enclose it within quotation marks. COBRG will accept a
message length of up to 24 characters including the
guotation marks; it will not, however, accept imbedded
commas since it considers commas to be parameter
separators.

Parameter 4 -- Output field. Enter the name of the output field into
which this message is to be moved. (This field must
have been defined on an OUTPUT specification.)

The following EMIT specification lines will satisfactorily meet the
requirements of the total lines in the sample problem:

E,0,"CITY SALES",MESS2
E,1,"STATE SALES",MESS2
E,2,"TOTAL SALES =",MESS2
E,F,"TOTAL SALES =",MESS2

123 4

8.1.3.9 LIST Specification - This specification determines what will
be 1listed on each detail 1line. It may be thought of as a MOVE
statement, and is, in fact, turned into a MOVE statement by the COBRG
program. The LIST specification refers to a sending field and a
receiving field, which both appear in the source program produced by
COBRG as operands in the MOVE statement.

The sending field may be a literal (numeric or alphanumeric) or a
field in the input record, and the receiving field must be a field
that has been described in an OUTPUT specification (it may be a group
item).

The LIST specification contains a control break level field (parameter
2), and if this field contains a break level number from 0 to 9, the
field described in parameter 3 will be moved to the field described in
parameter 4 and printed only on the first detail line printed after a
break on that level. This feature suppresses the printing of columns
that would normally contain the same, repetitive information.

COBRG accepts up to 50 LIST specification lines completed as discussed
below:

Parameter 1 —-- Specification identification. Enter the 1letter L to
identify this line as the LIST specification.

Parameter 2 -- Control break level. Enter a control break 1level
number or the letter A. If this parameter contains a
break level number (0-9), it will cause the item named
in parameter 3 (below) to print only after the total
lines caused by a break at this level. If this
parameter contains an A, the program will print this
item on every detail 1line.

Parameter 3 -- Sending field. Enter the name of the input item to be
listed. This item may be a literal.

8-13

PDP-11 COBOL UTILITY PROGRAMS

Parameter 4 —-- Receiving field. Enter the name of the output field
into which the item in parameter 3 (above) is to be
moved for listing.

In the sample program, the software is to print the CITY and STATE
fields only after either of them breaks, but it is to detail list the
COMPANY and SALES fields. The following LIST specifications will
accomplish the requirements of the sample problem:

L,A,COMPANY, PRINT-COMPANY
A,SALES,PRINT-SALES
0,CITY,PRINT-CITY
0,STATE, PRINT-STATE

;A
23

1
4
14

L
L
L
1
1 4

8.1.4 Output from COBRG

The output from COBRG consists of one or more COBOL source programs
and a listing file. The name of each COBOL source program is the
program name entered in parameter 2 of the NAME specification 1line;
however, COBRG adds an extension of .CBL to each of these names. The
listing file contains a list of input specifications for all of the
programs that were generated, and any errors that were detected.
(COBRG's error messages are discussed later in this chapter.)

8.1.5 COBRG Command String

To operate COBRG, simply run the program and, in response to the
prompting message, enter a command string of the following form
(listfile.ext is the name and extension of the 1listing file, and
infile.ext 1is the name and extension of the input file containing the
specifications for one or more programs):

CRG>listfil.ext=infile.ext

8.1.5.1 Default Assumptions - If the name of the 1listing file Iis
omitted, COBRG assigns the name of the input file to the listing file.
If the extension of the listing file is omitted, COBRG assigns .LST as
the extension.

The name of the input file must be entered; COBRG has no default
assumptions for the input file name. If the extension of the input
file is omitted, COBRG assigns .CRG as the extension,

All version numbers are default. Version numbers may not appear in
the command string. Device specifications may not appear in the
command string. To assign devices, assign the appropriate LUN at
task-build time by using the ASG option. See Section 6.5.3, Files and
Logical Units.

For example, to produce a COBOL source program and a listing file from
an input file named COBTST.CRG, enter either of the following two
command strings (they are semantically equivalent).

CRG CRG
CRG>COBTST.LST=COBTST . CRG CRG>=COBTST

8-14

PDP-11 COBOL UTILITY PROGRAMS

Do not enter the names of the COBOL source programs being produced by
COBRG. They are not a part of the command string; COBRG places them
on the device associated with the appropriate LUN with user-assigned
names and extensions of .CBL.

8.1.6 COBRG Sample Program

The following sample program produces a COBOL source program that
lists all of the customers for a marine hardware supply house. 1It
shows the sales to those customers and provides subtotals for each
city, for each state, and for each region. (The problem is discussed
in detail earlier in this chapter.)

8.1.6.1 Specification Lines - The following input specification lines
will produce the desired source program:

N,COBRGTEST, , "SALES.DAT", "SALES.LST",F.X. DOE

H,3,58,3,0,COMPANY CITY STATE SALES PG.
I01 INPUT-RECORD.

I 02 COMPANY PIC X (20).

I 02 FILLER PIC X (20).

I 02 CITY PIC X(10).

I 02 STATE PIC XX.

I 02 FILLER PIC X(5).

I 02 REGION PIC X.

I 02 SALES PIC S9(10)V99.

I 02 FILLER PIC X(10).

o) 03 DETAIL-LINE.

(o) 05 PRINT-COMPANY PIC X(20).
(o) 05 FILLER PIC XX.

(0] 05 PRINT-CITY PIC X(10).
0 05 FILLER PIC XX.

0] 05 PRINT-STATE PIC XX.

(o) 05 FILLER PIC XX.

0] 05 PRINT-SALES PIC 2,227,227 ,222.22-.
0 05 LINENO PIC Z(5).
(0 03 CFLINE REDEFINES DETAIL-LINE.

0 05 MESS1 PIC X(20).
0] 05 ACCOUNT PIC Z(5).
o) 05 MESS2 PIC X(13).
(o) 05 FILLER PIC X (22).
B,0,1,0,0,0,10,CITY

B,1,1,0,0,0,2,STATE

B,2,1,0,0,0,1,REGION

B,F,1,0,0,0

A,0,14,2,SALES

A,1,5,0,1,LINENO

T,0,PRINT-SALES,012F

T,1,ACCOUNT, 2F

E,O," CITY SALES =" ,MESS2

E,1,"STATE SALES =",MESS2

E,2,"REGIONAL ACCOUNTS =",MESS1

E,2,"; SALES =",MESS2
E,F,"NATIONAL ACCOUNTS =",MESS1
E,F,"; SALES =",MESS2

L,A,COMPANY,PRINT-COMPANY
L,A,SALES,PRINT-SALES
L,0,CITY,PRINT-CITY
L,0,STATE,PRINT-STATE

PDP-11 COBOL UTILITY PROGRAMS

8.1.6.2 Listing File - When the preceding specification lines have
been entered, COBRG produces a listing file containing the following
and names it COBTST.LST.

NAME BLOCKING INPUT FILE SPEC OUTPUT FILE SPEC DATE AUTHOR

N COBRGTEST o] "SALES .DAT" "SALES.LST" 08/15/74 F. X. DOF

PAGE HEADER
SIZE LOC CONTROL RESET PAGE HEADING

H 3 058 30 COMPANY CITY STATE SALES PG.
PRINTER-CONTROL BREAK
LEVEL BEFORE AFTER SIZE NAME
B 0 10 00 010 CITY
B 1 10 00 002 STATE
B 2 10 00 001 REGION
B F 10 00
ACCUMULATOR
SIZE POINT INPUT NAME LISTING NAME
A 0 14 02 SALES
A 1 05 00 1 LINENO
AC NUMBER WHEN OUTPUT NAME
T 0 012F PRINT-SALES
T 1 2F ACCOUNT
BREAK INPUT NAME OUTPUT NAME
E 0 " CITY SALES =" MESS2
E 1 "STATE SALES =" MESS2
E 2 "REGIONAL ACCOUNTS =" MESS1
E 2 "3 SALES =" MESS2
E F "NATIONAL ACCOUNTS =" MESS1
E F "; SALES =" MESS2

[l ol ol

coyP

INPUT NAME

COMPANY
SALES
CITY
STATE

PDP-11 COBOL UTILITY PROGRAMS

OUTPUT NAME

PRINT-COMPANY
PRINT-SALES
PRINT-CITY
PRINT-STATE

8.1.6.3 Source Program - In addition to the listing file, COBRG also
produces the following source program and names it COBRGTEST.CBL.

IDENTIFICATION DIVISION.
PROGRAM-ID.
AUTHOR.
DATE-WRITTEN. 05/01/74.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

F.X.DOE

FILE-CONTROL.
SELECT IN-FILE
SELECT L-PRINT

"DATA DIVISION.
FILE. SECTION.

FD

01

FD

01

/
WORKING-STORAGE SECTION.

717

77
717
717

- 117
717
77

IN-FILE
LABEL RECORDS ARE STANDARD

VALUE OF ID IS

INPUT-RECORD.
02 COMPANY
02 FILLER

02 CITY

02 STATE

02 FILLER
02 REGION

02 SALES

02 FILLER
L-PRINT

LINAGE IS 60 LINES

LINES AT TOP 3

LINES AT BOTTOM 3

COBRGTEST.

ASSIGN TO "SALES.DAT".
ASSIGN TO "SALES.LST".

"SALES.DAT".

PIC X(20).
PIC X(20).
PIC X(10).
PIC XX.

PIC X(5).

PIC X

PIC S9(10)V99.
PIC X(10).

LABEL RECORDS ARE STANDARD
VALUE OF ID IS "SALES.LST".

PRINT-LINE DISPLAY-7.

02

FILLER

02 HEADER-PAGE
02 FILLER

PAGE-COUNT

SAVE-01
SAVE-02
SAVE-03

LEVEL-0-SW
LEVEL-1-SW
LEVEL-2-SW

PIC

PIC
PIC
PIC

PIC
PIC
PIC

PIC X(57).
PIC 229.
PIC X(72).

S9(3) COMP.

X(10).
XX.
X.

01

01

01

01

01

01

PDP-11 COBOL UTILITY PROGRAMS

OUTPUT-LINE DISPLAY-7.
03 DETAIL-LINE.

05 PRINT-COMPANY PIC X(20).

05 FILLER PIC XX.

05 PRINT-CITY PIC X(10).

05 FILLER PIC XX,

05 PRINT-STATE PIC XX.

05 FILLER PIC XX,

05 PRINT-SALES PIC Z,22%2,222,222.2%2~.

05 LINENO PIC Z(5).
03 CFLINE REDEFINES DETAIL-LINE.

05 MESS1 PIC X(20).

05 ACCOUNT PIC Z(5).

05 MESS2 PIC X(13).

05 FILLER PIC X(22).

LEVEL-0-ACS COMP.
02 ACCUMULATOR-0-0 PIC
02 ACCUMULATOR-0-1 PIC

LEVEL-1-ACS COMP.
02 ACCUMULATOR-1-0 PIC
02 ACCUMULATOR-1-1 PIC

LEVEL-2-ACS COMP.
02 ACCUMULATOR-2-0 PIC
02 ACCUMULATOR-2-1 PIC

LEVEL-F-ACS COMP.
02 ACCUMULATOR-F-0 PIC

02 ACCUMULATOR~F-1 PIC

HEADER.

02 FILLER PIC
VALUE "COMPANY

02 FILLER PIC
VALUE " STATE

02 FILLER PIC
VALUE "

02 FILLER PIC
VALUE "

VALUE "

/
PROCEDURE DIVISION.

BEGIN.
OPEN INPUT IN-FILE.

OPEN OUTPUT L-PRINT.
MOVE SPACES TO OUTPUT-LINE.

MOVE ZERO TO PAGE-COUNT,.
PERFORM PL-HDR THRU PL-EXIT.

READ IN-FILE AT END

DISPLAY

GO TO RESET-LEVEL-F.

READ-IN.
READ IN-FILE AT END GO TO LEVEL-0-BREAK.

S9(12)v9(2).
59(5).

S9(12)v9(2).
S9(5).

59(12)Vv9e(2).
S9(5).

59(12)v9(2).
89(5) .

X (30)

CITY ".

X (30)

SALES PG. ".

X(36)

X(36)

"? EMPTY INPUT FILE" STOP RUN.

8-18

PDP-11 COBOL UTILITY PROGRAMS

IF SAVE-03 NOT = REGION
MOVE 1 TO LEVEL-2-SW
GO TO LEVEL-0-BREAK

GO TO LEVEL-0-BREAK.
IF SAVE-02 NOT = STATE
MOVE 1 TO LEVEL-1-SW
GO TO LEVEL-0-BREAK.
IF SAVE-01 NOT = CITY
MOVE 1 TO LEVEL-0-SW
GO TO LEVEL-0-BREAK.

PRINT-DETAIL.

ADD SALES TO ACCUMULATOR-0-0.
ADD 1 TO ACCUMULATOR-0-1.
MOVE COMPANY TO PRINT-COMPANY.
MOVE SALES TO PRINT-SALES.

MOVE ACCUMULATOR-0-1 TO LINENO.

MOVE OUTPUT-LINE TO PRINT-LINE.
PERFORM PRINT-1 THRU PL-EXIT.
MOVE SPACES TO OUTPUT-LINE.

GO TO READ-IN.

/

LEVEL-0-BREAK.
MOVE SPACES TO PRINT-LINE.
PERFORM PRINT-1 THRU PL-EXIT.

MOVE ACCUMULATOR-0-0 TO PRINT-SALES.
MOVE " CITY SALES =" TO MESS2.
MOVE OUTPUT-LINE TO PRINT-LINE.
PERFORM PRINT-1 THRU PL-EXIT.

MOVE SPACES TO OUTPUT-LINE.

ADD ACCUMULATOR-0-0 TO ACCUMULATOR-1-0.
ADD ACCUMULATOR-0-1 TO ACCUMULATOR-1-1.

IF LEVEL-0-SW = 1 GO TO RESET~LEVEL-O0.

LEVEL-1-BREAK.
MOVE SPACES TO PRINT-LINE.
PERFORM PRINT-1 THRU PL-EXIT.

MOVE ACCUMULATOR-1-0 TO PRINT-SALES.
MOVE "STATE SALES =" TO MESS2.
MOVE OUTPUT-LINE TO PRINT-LINE.
PERFORM PRINT-1 THUR PL-EXIT,.

MOVE SPACES TO OUTPUT-LINE.

ADD ACCUMULATOR-1-0 TO ACCUMULATOR-2-0.
ADD ACCUMULATOR-1-1 TO ACCUMULATOR-2-1.

IF LEVEL-1-SW = 1 GO TO RESET-LEVEL-1.
LEVEL-2-BREAK.

MOVE SPACES TO PRINT-LINE.
PERFORM PRINT-1 THRU PL-EXIT.

8-19

PDP-11 COBOL UTILITY PROGRAMS

MOVE ACCUMULATOR-2-0 TO PRINT-SALES.
MOVE ACCUMULATOR-2-1 TO ACCOUNT.

MOVE "REGIONAL ACCOUNTS =" TO MESS1.
MOVE "; SALES =" TO MESS2.
MOVE OUTPUT-LINE TO PRINT-LINE.

PERFORM PRINT-1 THRU PL-EXIT.

MOVE SPACES TO OUTPUT-LINE.

ADD ACCUMULATOR-2-0 TO ACCUMULATOR-F-0.
ADD ACCUMULATOR-2-1 TO ACCUMULATOR-F-1.

IF LEVEL-2-SW = 1 GO TO RESET-LEVEL-2.

LEVEL-F-BREAK.
MOVE SPACES TO PRINT-LINE.
PERFORM PRINT-1 THUR PL-EXIT.

MOVE ACCUMULATOR-F-0 TO PRINT-SALES.
MOVE ACCUMULATOR-F-1 TO ACCOUNT.

MOVE "NATIONAL ACCOUNTS =" TO MESS1.
MOVE "; SALES =" TO MESS2,
MOVE OUTPUT-LINE TO PRINT-LINE.
PERFORM PRINT-1 THRU PL-EXIT.

MOVE SPACES TO OUTPUT-LINE.

GO TO FINISH.

/
RESET-LEVEL-F.
MOVE LOW-VALUES TO LEVEL-F-ACS.

RESET-LEVEL-2.
MOVE LOW-VALUES TO LEVEL-2-ACS.
MOVE REGION TO SAVE-03.
MOVE ZERO TO LEVEL-2-SW.

RESET-LEVEL-1.
MOVE LOW-VALUES TO LEVEL-1-ACS.
MOVE STATE TO SAVE-02.
MOVE ZERO TO LEVEL-1-SW.

RESET-LEVEL-0.
MOVE LOW-VALUES TO LEVEL-0-ACS.

MOVE CITY TO SAVE-01.
MOVE CITY TO PRINT-CITY.
MOVE STATE TO PRINT-STATE.

MOVE ZERO TO LEVEL-0-SW.
GO TO PRINT-DETAIL.

/
PRINT-1.
WRITE PRINT-LINE BEFORE 1 LINES
AT EOP GO TO PL-HDR.
GO TO PL-EXIT.
PRINT-3.
WRITE PRINT-LINE BEFORE 3 LINES
AT EOP GO TO PL-HDR.
GO TO PL-EXIT.
PL-HDR.
MOVE SPACES TO PRINT-LINE,
PRINT-CH-1.

WRITE PRINT-LINE BEFORE PAGE.

8-20

PDP-11 COBOL UTILITY PROGRAMS

MOVE HEADER TO PRINT-LINE.

ADD 1 TO PAGE-COUNT. ,
MOVE PAGE-COUNT TO HEADER-PAGE.
WRITE PRINT-LINE BEFORE 3 LINES.

PL-EXIT. EXIT.

FINISH.

CLOSE IN-FILE.
CLOSE L-PRINT.

STOP RUN.

8.1.6.4

listing file

and

source program.

Input File - COBRG's job is finished when it has produced the
The

source program must now be

compiled, task-built, and executed with the following input file:

WIDGET BOATS
TURNBUCKLE MARINE
ANCHOR BOATS
CHAIN REPAIR
BLOCK MARINA
WINDY BOAT SALES
WINDWARD SAILS
HARBOR MARINA

13217 ATLANTIC AVE
477 MAIN ST

991 SEAWARD RD

94 WATER ST

9473 ATLANTIC AVE
. 741 FRONT ST

21 OCEANSIDE

137 FRONT ST

SNUG HARBOR MARINE 14 HIDDEN COVE RD

BLUE WATER SAILS
CABIN OUTFITTERS

BOX 973
4973 ATLANTIC AV

SAFE HARBOR MARINA 788 ATLANTIC AV
HIDDEN COVE MARINA HIDDEN COVE RD
SPINNAKER SPECIALTY 24 SEAWARD LANE

CUDDY BOAT SALES
HARBOR MARINE

244 HARBOR RD
T WHARF

WIDGET SALES & SERV.17MAIN ST

HARBOR RIGGING
HARBOR BOAT SALES
OCEAN SAILS

OCEAN HARDWARE

49 FRONT ST
49 FRONT ST
51 FRONT ST
LAND'S END

TURNBUCKLE HARDWARE HARBOR LANE

ANCHOR SALES

95 ATLANTIC ST

SALT WATER HARDWARE 14 BAY RD

SAFE ANCHORAGE
HARBOR RIGGING
OUT-BOUND MARINE
HARBOR TACKLE
OCEAN BOATS
DOCKSIDE REPAIR
MARINE HARDWARE
HARBOR ROPE WORKS
WIDGET HARDWARE
SNUG COVE TACKLE
OCEAN SAILMAKERS
WIDGET BOAT HAUL
HARBOR BOAT SALES
GALLEY HARDWARE
RACING RIGGING
BOAT BUILDERS
INLAND BOAT SALES
SNUG COVE BOATS

LEEWARD LANE

73 HARBOR RD

721 ATLANTIC AVE
24 EAST MAIN ST
196 BAY RD

MAIN WHARF

94 FRONT ST
BACKWATER LANE
14 MAIN ST

SNUG COVE RD
NEWELL LANE

317 RIVER ST

245 RIVER ST

724 RIVER ST EXTEN.
BOX 427

425 TIDE FLAT RD
137 LAKE ST

21 BAY ST

EASTERN LAKE MARINA 91 HARBOR RD

GREAT LAKE BOATS
HARBOR SLS & SERV

1321 HARBOR RD
FRONT ST

BRIDGEPORTCT066041000002201942
BRIDGEPORTCT066041000001196700
BRIDGEPORTCT066041000000812559
BRIDGEPORTCT066041000000487300
BRIDGEPORTCT066041000000023173
NEW HAVEN CT065131000001278811
NEW LONDONCT063201000000734612
NEW LONDONCT063201000004669400
NEW LONDONCT063201000000445227
NEW LONDONCT063201000001350000
BOSTON MA021011000003151991
BOSTON MA021031000001246774
BOSTON MA021031000000962588
BOSTON MA021021000001837300
BOSTON MA021041000002173100
BOSTON MA021011000001228800

FALMOUTH
FALMOUTH
FALMOUTH
FALMOUTH
FALMOUTH
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND
PORTLAND

MA025401000004184651
MA025401000000929451
ME041051000000895200
ME041051000000300054
ME041051000001981800
ME(041011000002726629
ME041011000002726629
ME041011000004617257
ME041011000000173000
ME041011000000138917
ME041011000001464773
ME041011000002529524
ME041011000004255300
ME041011000001310171
ME(041011000000981922
ME041011000000076700

PORTSMOUTHNH038011000000822599
PORTSMOUTHNHO038011000002137313
PORTSMOUTHNH038011000004713129
PORTSMOUTHNH038011000001248837
PORTSMOUTHNH038011000007654644
PORTSMOUTHNH038011000000369475
PORTSMOUTHNH038011000003595200
PORTSMOUTHNH038011000000400022
MONTPELIERVT056021000000101999
MONTPELIERVT056021000000106748

BUFFALO NY142222000000402575
BUFFALO NY142252000000347300
BUFFALO NY142252000000233194

PDP-11 COBOL UTILITY PROGRAMS

8.1.6.5 Printed Report - As it reads the preceding input file, the

task image containing COBRGTEST.OBJ produces the following report:

COMPANY

WIDGET BOATS
TURNBUCKLE MARINE
ANCHOR BOATS
CHAIN REPAIR
BLOCK MARINE

WINDY BOAT SALES

WINDWARD SAILS
HARBOR MARINA
SNUG HARBOR MARINE
BLUE WATER SAILS

CABIN OUTFITTERS
SAFE HARBOR MARINA
HIDDEN COVE MARINA
SPINNAKER SPECIALTY
CUDDY BOAT SALES
HARBOR MARINE

WIDGET SALES & SERV.
HARBOR RIGGING

HARBOR BOAT SALES
OCEAN SAILS
OCEAN HARDWARE

TURNBUCKLE HARDWARE
ANCHOR SALES

SALT WATER HARDWARE
SAFE ANCHORAGE
HARBOR RIGGING
OUT-BOUND MARINE
HARBOR TACKLE
OCEAN BOATS
DOCKSIDE REPAIR
MARINE HARDWARE
HARBOR ROPE WORKS

WIDGET HARDWARE

SNUG COVE TACKLE
OCEAN SAILMAKERS
WIDGET BOAT HAUL

CITY

BRIDGEPOR

CITY
NEW HAVEN

CITY
NEW LONDO

CITY

STATE
BOSTON

CITY
FALMOUTH
CITY

STATE
FALMOUTH

CITY
PORTLAND

CITY

STATE

STATE

T CT

SALES
cr

SALES
N CT

‘SALES

SALES
MA

SALES
MA
SALES

SALES
ME

SALES
ME

SALES

SALES

PORTSMOUTH NH

SALES PG.

22,019.42
11,867.00
8,125.54
4,873.00
231.73

47,216.74
12,788.11

12,788.11
7,346.12
86,694.00
4,452.27
13,500.00

71,992.39

131,987.24
31,519.91
12,467.74

9,625.88
18,373.00
21,731.00
12,288.00

106,005.53
41,846.51
9,294.51

51,141.02

157,146.55
8,952.00
3,000.54

19,818.00

31,770.54
27,266.29
27,266.29
46,172.57
1,730.00
1,389.17
14,647.73
25,295.24
42,553.00
13,101.71
9,819.22
767.00

210,008.22

241,778.76
8,225.99
21,373.13
47,131.29
12,488.37

1

[G WN -

S wWN -

AU WN -

wnN -

[y
HFOWVWONOU B WN R

W N

COMPANY

HARBOR BOAT SALES
GALLEY HARDWARE
RACING RIGGING
BOAT BUILDERS

INLAND BOAT SALES
SNUG COVE BOATS

REGIONAL ACCOUNTS =
EASTERN LAKE MARINA
GREAT LAKE BOATS
HARBOR SLS & SERV

REGIONAL ACCOUNTS

NATIONAL ACCOUNTS

PDP-11 COBOL UTILITY PROGRAMS

CITY

76,546 .44
3,694.75
35,952.00
4,000.22

CITY SALES
STATE SALES
MONTPELIER VT
1,067.48

CITY SALES
STATE SALES
42; SALES
BUFFALO NY
3,473.00
2,331.94

CITY SALES
STATE SALES
SALES

SALES

8.1.7 COBRG Error Messages

If any of the specification lines contain errors, or if the number

one type

the listing file will contain the following error messages

STATE

SALES PG. 2

O~y

= 209,412.19
= 209,412.19

1,019.99 1
2

= 2,087.47
= 2,087.47

= 742,422,211

4,025.75 1
2
3

= 9,830.69
= 9,830.69
= 9,830.69
= 752,252.90

of

of specification lines exceeds COBRG's limit for that type,

and COBRG

will not produce the COBOL program specified.

Before issuing an error message, COBRG assumes
appearing
however,

character
imbedded blanks;

in a numeric

non-numeric
It ignores

that any
parameter is a zero.

if a numeric parameter contains all blanks,
COBRG assumes the blanks to be zeroes.

SPECIFICATION LINE

MESSAGE

EXPLANATION

(ALL)

IMPROPER INPUT
CARD

Parameter 1 (specification iden-
tification) of a specification
line does not contain one of the
following characters:
N, I, O, H, B, A, T, E, L.
(COBRG accepts 1 in place
and 0 in place of 0.)

of 1

ACCUMULATOR

DUPLICATE AC

Parameter 2 (accumulator number)
contains a number that has
already been specified.

IMPROPER AC
SIZE

Parameter 3 (accumulator size)
does not contain a number from 1
to 18.

8-23

PDP-11 COBOL UTILITY PROGRAMS

SPECIFICATION LINE

MESSAGE

EXPLANATION

IMPROPER POINT
LOCATION

Parameter 4 (decimal positions)
contains a number that places
the decimal point outside of the
accumulator.

NO INPUT NAME

Parameter 5 (input field) does
not contain an entry, leaving
the accumulator with no input.

BREAK

BOTH SPACE
AND SKIP

Both parameter 3 (blank 1lines,
before printing) and parameter 4
(skip channel, before printing)
contain entries, or both
parameter 5 (blank lines after
printing) and parameter 6 (skip
channel, after printing) contain
entries. (COBRG will not accept
both a space and a skip before
printing, or both a skip and a
space after printing.)

IMPROPER FIELD
SIZE

Parameter 7 (field size) con-

tains a zero.

IMPROPER LEVEL

(break
entry other

level)
than

Parameter 2
contains an
0-9, or F.

IMPROPER SPACE
OR SKIP

Either parameter 3 (blank 1lines,
before printing) does not
contain a number from 0-9; or
parameter 4 (skip channel,
before printing), parameter 5
(blank lines, after printing),
or parameter 6 (skip channel,
after printing) does not contain
a number from 0-8. COBRG looks
for the first non-blank
character in the parameter and
assumes non-numeric characters
to be zeroes.)

TOO MANY BREAKS

COBRG found more than 25 BREAK

specification cards.

EMIT

IMPROPER BREAK
NUMBER

Parameter 2 (break number) con-
tains a number other than 0-9 or
F.

NO INPUT NAME Parameter 3 (message) does not
contain an entry.
NO OUTPUT NAME Parameter 4 (output field) does

not contain an entry.

TOO MANY EMIT
CARDS

COBRG found more than 50 EMIT
specification lines.

UNDEFINED BREAK
NUMBER

Parameter 2 (break number) con-
tains a break level number that
has not been defined on a BREAK
specification line.

PDP-11 COBOL UTILITY PROGRAMS

SPECIFICATION LINE

MESSAGE

EXPLANATION

HEADER IMPROPER BREAK Parameter 7 (page number reset)
FOR RESET contains an F. The page counter
cannot be reset on an F (final)
break level (the report is
completed with that break).

IMPROPER HEADER Parameter 5 (skip channel) con-

SKIPPING tains a 9.

NO PAGE SIZE Parameter 2 (page number field
size) contains no entry;
however, parameter 3 (page
number location) does contain an
entry (indicating that a page
number field is required by the
program) .

NON-EXISTENT Parameter 7 (page number reset)

BREAK FOR RESET contains a break 1level number
that has not been defined on a
BREAK specification line.

PAGE LOC TOO Parameter 3 (page number loca-

FAR RIGHT tion) contains a column number
that places it so far to the
right of the page that it runs
off the right side (past column
132).

SAME BREAK Parameter 7 (page number reset)

NOTED TWICE contains more than one entry of
the same break level.

TOO MANY HEADER COBRG found more than two HEADER

CARDS cards.

INPUT MORE THAN 1 COBRG found some other specifi-

BATCH OF I CARDS cation line separating the INPUT
specification lines. (All INPUT
specification 1lines must be
consecutive, as must all OUTPUT
specification lines.)

** %700 MANY The sum of all of the INPUT and
RECORD CARDS*** OUTPUT specification lines
exceeds 997.

LIST TOO MANY LIST COBRG found more

CARDS

than 50 LIST
specification lines. :

IMPROPER BREAK
NUMBER

break
other

Parameter 2 (control
level) contains an entry
than 0-9 or A.

NO INPUT NAME

Parameter 3 (sending field) does
not contain an entry.

NO OUTPUT NAME

Parameter 4 (receiving field)

does not contain an entry.

PDP~11 COBOL UTILITY PROGRAMS

SPECIFICATION LINE MESSAGE EXPLANATION
UNDEFINED Parameter 2 (control break
BREAK LEVEL level) contains a break level

number that has not been defined
on a BREAK specification line.

NAME NO PROG-ID Parameter 2 (program name) is
missing.
NO INPUT Parameter 4 (input file specifi-
FILE SPEC cation) is missing.
NO OUTPUT Parameter 5 (output file speci-
FILE SPEC fication) is missing.
OUTPUT MORE THAN 1 COBRG found some other specifi-
BATCH OF O CARDS cation line separating the
OUTPUT specification lines.

(All OUTPUT specification 1lines
must be consecutive, as must all
INPUT specification lines.)

*%**700 MANY The sum of all of the OUTPUT and
RECORD CARDS*** INPUT specification lines
exceeds 997.

TOTAL DUPLICATE BREAKS Parameter 4 (break numbers)
contains the same break level
number twice.

IMPROPER BREAK Parameter 4 (break numbers)
contains an entry other than 0-9
or F

NON-EXISTENT AC Parameter 2 (accumulator number)

contains an accumulator number
that has not been set up with an
ACCUMULATOR specification line.

NO BREAKS Parameter 4 (break numbers) does
SPECIFIED not contain an entry.
NO OUTPUT NAME Parameter 3 (output field) does

not contain an entry.

8.2 REFORMAT

8.2.1 1Introduction

COBOL, as implemented on the PDP-11l, accepts source programs that were
coded using either the conventional 80-column card reference format or
the shorter, terminal-oriented PDP-~11 terminal format. The REFORMAT
utility program reads source programs that were coded in the terminal
format and converts them to 80-column conventional format source
programs.

PDP-11 COBOL UTILITY PROGRAMS

Consider the two formats (Section 2.1, Choosing a Reference Format,
discusses both formats in greater detail):

® The terminal format is designed for ease of use with context
editors controlled from an on-line console keyboard and is
compatible for use with the PDP-11l system. It eliminates the
line-number and identification fields. It allows horizontal
tab characters and short lines.

® The conventional format produces source programs that are
compatible with the reference format of other COBOL compilers
throughout the industry.

REFORMAT lets you write source programs in the Terminal format; then,
if compatibility is ever required for any of those programs, it
provides a simple method for conversion to the Conventional format.

REFORMAT uses the following steps to expand each 1line of Terminal
format coding to the 80-character Conventional format coding:

® It generates a 6-character line number of 000010, places that
number in the first six character positions of the line, and
increases it by 000010 for each subsequent line;

e It places any continuation or comment symbols (-,*, or /) into
character position 7;

® It places the coding from the Terminal format 1line into
character positions 8-72, thereby creating a 1line of
Conventional format coding;

e It replaces any horizontal tabs with the appropriate number of
space characters to simulate tab stops at character positions
5,13,21,29,37,45,53,61, and 66 of the Terminal format line:

e It moves spaces into any character positions left between the
last character of coding and character position 73;

e It places either identification characters (if they were
supplied at program initialization) or spaces into character
positions 73-80;

e It right justifies (against margin R) the first 1line of a
continued non-numeric literal, thus guaranteeing that the
literal will remain the same length as it was in the default
format;

e It right justifies (against margin R) the first part of any
COBOL word that is split over two lines;

@ It creates a line containing a slash (/) in position 7 and

space characters in positions 8 through 72 for every form-feed
character that it encounters.

8.2.2 REFORMAT Command String
Since REFORMAT is written in COBOL, it runs as a COBOL object program,
It has no logical switches. To run it, simply type in the following

sequence of responses (prompting messages typed by REFORMAT are
underlined) :

RFM

8-27

PDP-11 COBOL UTILITY PROGRAMS

This causes REFORMAT to begin execution. REFORMAT immediately
requests the file specifications for the two files (input and output)
to be processed. In response to its prompting messages, type in the
file specifications for your two files.

RFM-INPUT FILE SPEC:
RFM-QUTPUT FILE SPEC:

When the system has successfully opened both files, REFORMAT types the
following request for an identification entry in columns 73 through
80. If you desire an identification entry, type in from one to eight
characters. REFORMAT places these characters, 1left justified, in
columns 73 through 80 of each output line. If no entry is required,
type a carriage return.

RFM-COLS 73 TO 80:

Following this response, REFORMAT reads the input file and writes it
as 80-character records, in Conventional reference format.

When it has processed the last record in the file, REFORMAT displays
the following messages; the first indicating the number (nnnnn) of
output records produced and the second requesting another input file.

RFM-nnnnn LINES PROCESSED.
RFM-INPUT FILE SPEC:

If there is another file to be reformatted, follow the same sequence
with the specifications for the next file. If not, type Control Z to
terminate execution.

8.2.3 REFORMAT Error Messages

If any of the responses to the prompting messages contain detectable
errors, REFORMAT displays the following messages indicating the
problem.

RFM-ERROR IN OPENING INPUT FILE
RFM-TRY AGAIN
RFM-INPUT FILE SPEC:

The system could not open the input file. Either the file is not
present on the device specified (the default device is SY:) or the
file name is typed incorrectly. The usual I/0 error messages precede
this message.

To continue processing that file, examine the input file spec and type
in a corrected version. To process another file, type in a new input
file specification. To terminate execution, type Control 2.

RFM-ERROR IN OPENING OUTPUT FILE
RFM-TRY AGAIN
RFM-OUTPUT FILE SPEC:

The system could not open the output file. An incorrectly typed file
specification usually causes this error. (The default device is SY:.)
The usual I/0 error messages precede this message.

PDP-11 COBOL UTILITY PROGRAMS
To continue, examine the output file specification and type 1in a
corrected version. To terminate execution, type Control Z.

RFM-INPUT FILE IS EMPTY
RFM-INPUT FILE SPEC:

The system successfully opened the input file, but the first READ
statement encountered the AT END condition.

To continue, type in a new input file specification for another file.
To terminate execution, type Control 2.

RFM-ERROR IN READING INPUT FILE
RFM-INPUT FILE SPEC:

The first attempt to read the input file was unsuccessful. This error
is wusually caused by an input record length exceeding 86 characters.
(Although terminal format records should not exceed 66 characters in
length, REFORMAT provides a record area of 86 characters and ignores
the right-most 20 characters.)

To continue, type in a new input file specification for another file.
To terminate execution, type Control Z.

RFM-ERROR IN READING INPUT FILE
RFM-REFORMATTING ABORTED
RFM-nnnnn LINES PROCESSED
RFM-INPUT FILE SPEC:

While reading input records (other than the first record), REFORMAT
was unsuccessful in an attempt to read a record. It terminates
execution and closes both files.

To process another file, type in a new input file specification and
continue with the prompting message sequence. To terminate execution,
type Control Z.

RFM-ERROR IN WRITING OUTPUT FILE
RFM-REFORMATTING ABORTED
RFM—-nnnnn LINES PROCESSED
RFM-INPUT FILE SPEC:

REFORMAT was unsuccessful in an attempt to write an output record. It
terminates execution and closes both files.

To process another file, type in a new input file specification and
continue with the prompting message sequence. To terminate execution,
type Control Z.

CHAPTER 9

SEGMENTATION

PDP-11 COBOL allows you to break the Procedure Division up into
overlayable and non-overlayable program segments to optimize memory
utilization. An overlayable program segment can be overlayed by any
other overlayable segment, A non-overlayable program segment,
however, can never be overlayed.

NOTE

The object code generated for the
Identification Division through the Data
Division is non-overlayable.

9.1 USING THE PDP-11 COBOL SEGMENTATION FACILITY

The PDP-11 COBOL Segmentation Facility allows you to specify your own
segmentation requirements. To effect segmentation, you must define a
segment limit by specifying the SEGMENT-LIMIT IS clause 1in the
Environment Division of your source program. The value you specify in
this clause is used by the compiler as a basis for determining whether
a program segment 1is overlayable or non-overlayable. A segment
consists of one or more COBOL sections, Each COBOL section should be
composed of a series of closely related operations designed to
collectively perform a particular function. To designate a section as
belonging to an overlayable or non-overlayable segment, assign a
segment number to it using the following format:

Section-name SECTION segment-number.
Where:

Section~name Is a user-defined COBOL word that names the
section

Segment-number Is an integer ranging from 0 to 49.

If you specify a segment-number whose value is 1less than the value
specified in the SEGMENT-LIMIT IS clause, you have defined the section
as being non-overlayable. A segment-number whose value 1is greater
than or equal to the value specified in the SEGMENT-LIMIT IS clause
defines the segment as being overlayable.

SEGMENTATION

9.1.1 Programming Considerations

The most frequently used sections of your program should be made
non-overlayable, Assign segment-numbers that are less than the value
specified in the SEGMENT-LIMIT IS clause to these sections.
Infrequently used sections should be made overlayable. Assign
segment-numbers that are greater than or equal to the value specified
in the SEGMENT-LIMIT IS <clause to these sections. Sections that
communicate with each other should be assigned to the same segment.
Assign the same segment-number to these sections. Sections having
identical segment-numbers are assigned to the same segment.

9.2 SEGMENTATION AND THE PDP-11 COBOL COMPILER

The previous sections told you how to effect segmentation. This
section tells you what segmentation means in terms of code generation.
The PDP-11 COBOL compiler breaks up the object code it generates into
program sections called PSECTs. One or more PSECTs are generated for
each program SECTION. The maximum size PSECT generated is 2000
decimal words. However, this maximum size can be altered by
specifying the /CSEG:nnnn switch in the compiler command line.
(PSECTs are described in Appendix D: The /CSEG:nnnn Switch is
described in Section 9.4, and Section 2.5.3).

Also generated, are Overlay Description Language (ODL) directives that
group together all PSECTs that belong in the same overlay. These ODL
directives are placed in an ODL file to be used as input to the Task
Builder. The Task Builder uses the ODL file to generate a task image
containing the correct combination of overlayable/non-overlayable
PSECTs.

If the source program is written without explicit segmentation, all of
the generated PSECTs are concatenated into one non-overlayable
program. If the source program does contain explicit segmentation,
ODL directives are created to group PSECTs together into the correct
combination of overlayable and non-overlayable program segments.

9.3 SEGMENTATION USING THE /OV SWITCH

The /OV switch, when appended to the compiler command line, directs
the compiler to produce ODL directives that make all of the procedural
PSECTs overlayable. Therefore, the amount of memory required to store
the program is equal to that required to contain the root
(non-overlayable portion) and the largest PSECT. (See Figure 9-1,
Segmentation Using The /OV Switch; and Section 2.5.3, Compiler
Switches).

The /OV switch is particularly useful for quickly segmenting programs
that were written without explicit segmentation or for overriding
explicit segmentation.

SEGMENTATION

available
memory
Data
and
Control
PSECTs
\ .
S1SECTION ~e————— program too big
S2 SECTION
> procedural PSECTs
S3 SECTION
S4 SECTION
J
available generated code using /OV switch
memory
Data S1SECTION S2 SECTION S3 SECTION S4 SECTION
and
Control
PSECTs
A\ J

~

procedural PSECTs

Figure 9-1 Segmentation Using the /OV Switch

9.4 USING THE /CSEG:nnnn SWITCH

The PDP-11 COBOL compiler generates a PSECT for each COBOL section.
If the code generated for a particular section exceeds the default
maximum size for a PSECT (4000 decimal bytes), more than one PSECT is
generated. PDP-11 COBOL provides a switch (/CSEG:nnn) that allows you
to control the size of PSECTs generated by the compiler. (See Section
5.2.3 Compiler Switches).

If, for example, you compile a program that produces a PSECT that is
too large to be task built, you can recompile the program using the
/CSEG:nnn switch to reduce the size of the PSECTs denerated. See
Figure 9-2 for an example of using the /CSEG:nnnn switch.

SEGMENTATION

Command Line (Without /CSEG:nnnn switch specified)

CBL> CBLMRG,CBLMRG/MAP=CBLMRG(rer)

SEGMENTATION MAP

SECTION NAME SEGMENT NO. NAME SIZE
OUTPUT-ODL-USE 00 $Cs001 000172 00061
INPUT-ODL-USE 00 CS002 000172 00061

* MAIN-CONTROL 00 C003 003336 00879
PROCESS-INPUT-ODL 00 CS004 001130 00300
HDR-CHECK 00 CSS005 000322 00105

* One large PSECT is generated

Command Line (With the /CSEG:nnnn switch specified)

CBL> CBLMRG,CBLMRG/MAP/CSEG:1000=CBLMRG(®r)

SEGMENTATION MAP

SECTION NAME SEGMENT NO. NAME SIZE
OUTPUT-ODL-USE 00 CSS001 000172 00061
INPUT-ODL-USE 00 Cs002 000172 00061

* MAIN-CONTROL 00 CS003 001744 00498
00 C004 001426 00395

PROCESS-INPUT-ODL 00 C005 001130 00300
HDR-CHECK 00 C006 000322 00105

* Two PSECTs are generated

Figure 9-2 Using the /CSEG:nnnn Switch

CHAPTER 10

INTER-PROGRAM COMMUNICATIONS

Inter-program communications is the passing of control and optional
data from one program within a task to another. PDP-11 COBOL provides
you with the ability to Task-build separately compiled COBOL programs
into a single task 1image. During task execution, these separately
compiled programs can communicate with each other via the COBOL CALL
statement.

A task can consist of a stand-alone program or a main program and one
or more subprograms. A stand-alone program is one that does not call
subprograms and cannot itself be called. A COBOL main program is one
that calls subprograms but can never be called in return. A COBOL
subprogram, however, is always called by another program, either the
main program or a subprogram. Inter-program communications deals only
with main programs and subprograms.

Developing a program as a main program and a set of subprograms offers
a number of advantages:

1. Large monolithic programs are no longer required. These
large programs can be replaced by a controlling main program
and a set of subprograms, where each subprogram is designed
to perform a well-defined function.

2. Small subprograms can be developed independently by several
members of a programming staff.

3. Small subprograms can be tested more easily than large
programs.

4. Small subprograms can be modified and recompiled faster than
large programs.

5. General purpose subprograms can be developed and used in more
than one programming application.

10.1 COBOL MAIN PROGRAMS VS SUBPROGRAMS

A COBOL main program is one that calls other programs (subprograms)
but cannot be called in return. A COBOL main program contains at
least one CALL statement. A COBOL subprogram is one that is called by
another program, either the main program or another subprogram. The
main program is automatically activated at task execution time. A
subprogram, however, is activated only when called by another program.

The COBOL compiler differentiates between a main program and a

subprogram by the presence or absence of a USING phrase in the
Procedure Division header of the program being compiled. The USING

10-1

INTER-PROGRAM COMMUNICATIONS

phrase is used only in COBOL subprograms. It defines the program as
being a subprogram and optionally identifies the data expected from
the calling program. The Procedure Division header has the following
format:

PROCEDURE DIVISION [USING [data-name-1 , data-name-2]...].

A subprogram, that does not process data (arguments) passed to it by a
calling program, has only the word USING appended to the Procedure
Division header. For example:

PROCEDURE DIVISION USING.

A subprogram that processes passed data, has a USING phrase with one
or more data-names specified. If a data-name(s) is specified, the
program must also contain a Linkage Section in the Data Division. The
Linkage Section describes the size and type of data being passed.
(See Figure 10-1, Sample LINKAGE SECTION and USING phrase).

LINKAGE SECTION.

* SUBPROGRAM-DATA.

01 1ST-PARAMETER PIC X(5).
01 2ND-PARAMETER PIC X(5).
01 3RD-PARAMETER PIC X(5).

PROCEDURE DIVISION USING 2ND-PARAMETER, 3RD-PARAMETER.

NOTES

1. All of the data—-names appearing in the using phrase must also
appear in the LINKAGE SECTION.

2. Not all of the data-names in the LINKAGE SECTION need appear
in the USING phrase.

3. A LINKAGE SECTION can appear in a subprogram even if the
USING phrase does not contain a data-name. However, if any
of the data-items contained in the LINKAGE SECTION are
referenced in procedures, the compiler will issue a fatal
diagnostic.

Figure 10-1 Sample LINKAGE SECTION and USING Phrase

10.1.1 Calling a COBOL Subprogram from a COBOL Program

To call a subprogram from a COBOL program, a CALL statement having the
following format must be used:

CALL literal [USING data-name-1 [, data-name-2]...].

10-2

INTER-PROGRAM COMMUNICATIONS

Where:
literal is the name that appears in the PROGRAM-ID entry
of the called program.
data-name-1 identify those data-items in the calling program

through that can be referred to by the called program.
data-name-n

10.1.2 Returning from a COBOL Subprogram

In addition to the required USING phrase and optional LINKAGE SECTION,
a subprogram should contain at least one EXIT PROGRAM statement. The
EXIT PROGRAM statement identifies the subprogram return point. That
is, the point in the subprogram at which control is returned to the
calling program. If the EXIT PROGRAM statement is missing, the COBOL
compiler will generate one after the last statement in the program.

NOTE

More than one EXIT PROGRAM statement 1is
allowed in a subprogram.

10.2 UNIQUENESS OF PSECT NAMES

The names of all PSECTs within a task must be unique. When a task is
composed of more than one COBOL program, you must insure that the
PSECTs generated by the COBOL compiler for each program are unique.
(See Section D.1, PSECT Naming Conventions). :

10.3 COBOL OTS - ERROR CHECKING

At task execution, the COBOL OTS performs a check to insure that the
number of arguments passed to a called COBOL subprogram is the same as
the number expected. That is, the subprogram Procedure Division USING
phrase must contain the same number of data-names as the USING phrase
in the calling programs CALL statement. If the number of data-names
in each USING phrase are not equal, the OTS issues a diagnostic error
message and aborts the task. No checks are made to insure that the
passed arguments are the same size as the expected arguments. It is
your responsibility to insure that these sizes are compatible.

Recursive calls to COBOL subprograms are not allowed. If a COBOL
subprogram contains a CALL statement that directly or indirectly
causes a subprogram to be re-entered before it has exited from its
original entry, the OTS will issue a diagnostic error message and
abort the task.

10-3

INTER-PROGRAM COMMUNICATIONS

10.4 INCLUDING A NON-COBOL OBJECT MODULE IN A TASK

Non-COBOL object modules can be combined with COBOL object modules at
task-build time to produce a single task image. However, you are
advised to use the same language to write programs that perform 1I/0
operations. This note of caution is very important, because, the
PDP-11 programming languages do not share a common OTS. The following
is a 1list of the PDP-11 programming languages that can be used in
conjunction with COBOL:

IAS and RXS-11M RSTS/E
FORTRAN IV MACRO
FORTRAN IV+ BASIC+2
BASIC+2
MACRO

To activate a COBOL subprogram, a non-COBOL calling program must
contain the equivalent of a COBOL CALL statement. If data is being
passed to the COBOL subprogram, program register R5 must be set to the
address of an argument list. The argument list must contain pointers
to the data being passed. (See Figure 10-2, Argument List Format).

A non-COBOL subprogram, to be activated by a COBOL program, must
contain the equivalent of the COBOL PROGRAM-ID statement and the COBOL
EXIT PROGRAM statement (See Example 1 below). If data is being
passed, the non-COBOL subprogram can access that data via program
register RS5.

The following sections provide an example of how non-COBOL programs
can be written for inclusion in a COBOL task image. The MACRO
programming language is used for the purposes of this example.

Example 1 - (Calling MACRO Programs from COBOL)
The format for calling any program from COBOL is:

CALL literal [USING data-name-1l[, data-name-2]...]
when a MACRO prodgram is being called, 1literal contains the global
entry point specified in the MACRO program. If the COBOL program
contains:

CALL "BILBO" USING BOFFIN, BOMBUR, BOFUR.

The MACRO program must contain:

.GLOBL BILBO
;entry point - equivalent to PROGRAM-ID
BILBO:

RTS PC ;return point - equivalent to EXIT PROGRAM
If there are any arguments to be passed to the called program (BOFFIN,

BOMBUR, and BOFUR in this example), these arguments can be accessed
via program register R5.

10-4

INTER-PROGRAM COMMUNICATIONS

Example 2 - (Calling COBOL Programs from MACRO)

When the calling program is a MACRO program, control is passed to the

called program with the following instruction:

JSR PC,subprogram-name

Where: Subprogram-name is the first six characters of the COBOL

PROGRAM-ID.
If the MACRO program contains:

.GLOBL FRODO

MOV #ARGLST,R5 ;point R5 to argument list

JSR PC,FRODO ;s subprogram call statement

The COBOL subprogram will contain:

PROGRAM-ID. FRODO

LINKAGE SECTION,

* FRODO-ARGUMENTS.

01 BOFFIN PIC X(5).
0l BOMBUR PIC X(5).
01 BOFUR PIC X(5).

.
.

PROCEDURE DIVISION USING BOFFIN,BOMBUR.

EXIT PROGRAM.
The MACRO program, in this example, has set

argument list expected by the COBOL program.
R5 to access the passed arguaents.

10-5

R5 to point to the
The COBOL OTS will use

INTER-PROGRAM COMMUNICATIONS

ARGUMENT ADDRESS LIST

of arguments R5 must be set

Word 1 unused inlist(n-1) to point here
Word 2 address of argument #1
Word 3 address of argument #2

~o ¢ ~o

.

~ . q./

Word n address of argument #n - 1

Figure 10-2 Argument Address List

10-6

CHAPTER 11

HAND-TAILORING ODL FILES

This chapter is provided as a guide to those of you who are faced with
the problem of having to generate ODL files that are compatible with
either the Merge Utility or the Task Builder. The most common reason
for having to hand tailor an ODL file occurs when non—-COBOL programs
are being merged into a COBOL task image. The information presented
here is predicated on the assumption that vyou have read and are
familiar with the Task Builder Reference Manual that pertains to your
operating system. The following sections describe the standard ODL
file as it pertains to PDP-11 COBOL.

11.1 STANDARD ODL FILE

The standard ODL file generated by the PDP-11 COBOL compiler consists
of a header and a body. The header contains information that is
required to merge one or more ODL files., The body contains ODL
directives that describe the object program.

11.2 ODL FILE HEADER

The ODL file header consists of a sequence of comment lines. Two are
required in every ODL file, others are supplied as needed. The
required comment lines are:

; COBOBJ=XXXXXX.0BJ
; COBKER=KK

Where:
XXXXXX.0BJ is the name of the object module being described
KK is the kernel that was used to generate the PSECT

names for the COBOL program.
The following comment lines are supplied as needed:

; COBMAIN This comment line is supplied if the program being
described 1is a main program. The absence of this
line means that the ODL file was generated for a
COBOL subprogram.

;RMSSEQ=CIOOXY This comment line is specified if the program
requires RMS-11] I/O support. One or more lines
may be supplied. X and Y represent integer codes
that respectively specify the file organization
and operational support required for that

11-1

HAND-TAILORING ODL FILES

organization. File organization is specified by
the following codes:

CODE ORGANIZATION

1 sequential
2 relative
3 indexed

The values allowed for the operational support
code are meaningful only to future versions of
PDP-11 COBOL and the Merge Utility. Therefore,
they are not defined here.

11.3 ODL FILE BODY

The ODL file body describes the overlay structure of the COBOL
program. The body contains the following ODL directive types:

1. .PSECT defines the name of the code PSECT and makes it
known to the Task Builder.

2. .NAME defines the name to be assigned to the overlay
segment by the Task Builder.

3. L.FCTR describes the contents of the segments.

4. .ROOT defines the root.

5. L.END informs the Task Builder that the end of the ODL

file has been reached.
6. j;comments contains comment entries.

The .ROOT and .END directives are not supplied by the COBOL compiler.
They are inserted into the ODL file generated by the Merge Utility.
If you are generating a stand alone ODL file, these directives must be
supplied by you. If the ODL file you are generating is to be used as
input to the Merge Utility, leave these directives out.

Within a compiler—generated ODL file, the directives .PSECT, .NAME,
and .FCTR are generated around the PSECT kernel. 1If the PSECT name
kernel for a given program is KK, the format of the names generated in
the ODL file is:

Entity Format of Name
.PSECT SKKMMM
.NAME KK$MMM
.FCTR KKMMMS$

Each .PSECT defined in the ODL file begins with a $§ followed by the
two character kernel (SKK). Each .NAME directive begins with the two
character kernel followed by $ (KK$). Finally, each .FCTR directive
begins with the two-character kernel and ends with a $ (KKMMMS).

11-2

HAND-TAILORING ODL FILES

11.4 COMPILER-GENERATED ODL FOR COBOL PSECTS

The following sections discuss the ODL " directives generated for
different types of overlay requirements. The characters NNN when used
in examples refer to the three character suffix generated by the
compiler for each PSECT. The characters KK refer to the kernel
characters that make the PSECT unique to a particular compilation.

11.4.1 ODL Generated for Overlays Containing Only One PSECT

For overlays containing only one PSECT, the following 1lines are
generated:

.PSECT $KKNNN,GBL,RW,CON, I
.NAME KK$NNN,GBL
KKNNNS$.FCTR *KKSNNN-SKKNNN

11.4.2 ODL Generated for Overlays Containing More Than One PSECT
For each overlay that contaihs more than one PSECT, a .PSECT directive
is generated for each PSECT in the overlay. These .PSECT directives
are followed by a .NAME and .FCTR directive. Consider the following
example.
Example
Two PSECTs, $AA001 and $AA002, are to be placed in the same overlay.
The segment-number assigned to the PSECTs is 20. The following ODL
directives are generated:

;DEFINE PSECT $AA001

.PSECT $AA001,GBL,RW,CON,I

;DEFINE PSECT $AA002

.PSECT $AA002,GBL,RW,CON,I

;DEFINE THE OVERLAY NAME

.NAME AAS020,GBL

;DEFINE OVERLAY CONTENTS

AA020S: .FCTR *AA$020-SAA001-$AA002

11.4.3 ODL Generated for All Overlayable PSECTS

All .FCTR directives that describe the overlayable PSECTs must be
collapsed into one final .FCTR directive. This directive describes
the entire overlayable portion of the object code. The name
associated with this .FCTR directive is derived from the two-character
kernel assigned to the PSECTs. If the kernel is KK, then the name of
the .FCTR directive that describes the entire overlayable part of the
object code is KKOVRS.

11-3

HAND-TAILORING ODL FILES
The following example shows how the KKOVR$ factor is developed
various overlay configurations:
Example 1: All Code Psects Overlay One Another

.PSECT $AA001,GBL,RW,CON,I

.NAME AAS$001,GBL

AA0O01: .FCTR *AAS001-SAAQO1
.PSECT $aA002,GBL,RW,CON, I
.NAME AAS002,GBL

AAQ02S$: .FCTR *AAS002-SAA002
.PSECT $AA003,GBL,RW,CON, I
.NAME AAS003,GBL

AAQ003S: .FCTR *AAS$003-SAA003
.PSECT $AA004,GBL,RW,CON, I
.NAME AAS004,GBL

AA004S: .FCTR *AAS004-SAA004
.PSECT $AA005,GBL,RW,CON, I
.NAME AAS$005,GBL

AA005$: .FCTR *AAS005-SAA005

;IN THIS EXAMPLE, ALL PSECTS OVERLAY
:ONE ANOTHER.
AAOVRS: .FCTR (AA001$,AA002$,AA003$,AA0045 ,AR004$,AR0058)

Example 2 Two Code Psects Are in the Same Overlay

.PSECT $AA001,GBL,RW,CON, I

.PSECT $AA002,GBL,RW,CON, I
.NAME AAS001,GBL

AAQ01S: .FCTR *AAS001-SAA001-$AA002
.PSECT $AAQ003,GBL,RW,CON,I
.NAME AA$003,GBL

AA003S: .FCTR *AAS$S003-SAA003
.PSECT $AA004,GBL,RW,CON, I
.NAME AAS004,GBL

AAQ04S: .FCTR *AAS$S004-SAA004
.PSECT $AA005,GBL,RW,CON, I
.NAME AAS$005,GBL

AA005S: .FCTR *AAS005-$AA005

AAOVRS: .FCTR AA001S,AA003$,AA004$,AR005$

Example 3 Two Occurrences of Two Psects in the Same Overlay

;IN THIS EXAMPLE, PSECTS $AA001 AND $AAQ02
;ARE IN THE SAME OVERLAY. PSECTS $AA003

;AND $AA004 ARE IN THE SAME OVERLAY.

;PSECT $AA005 IS IN AN OVERLAY ALL BY ITSELF

3

: PSECT $AA001,GBL,RW,CON, I

PSECT $AA002,GBL,RW,CON, I

s we we wo

NAME AAS$001,GBL

for

HAND-TAILORING ODL FILES

AA001S: .FCTR *AAS001-SAA001-SAAQ002

; PSECT $AA003,GBL,RW,CON, I

.PSECT $AA004,GBL,RW,CON, I

" NAME AAS003,GBL

AA003S: .FCTR *AA$S003-$SAA003-SAA004
:PSECT $AA005,GBL,RW,CON,I
.NAME AAS$005,GBL

AA005S: .FCTR *AAS005-SAA005

AAOVR$: .FCTR AA001S,AA003$,AA005$

11.5 MERGING STANDARD ODL FILES

To develop an ODL file for a task composed of more than one COBOL
object program, it 1is necessary to merge the ODL files for each
individual object program into a single ODL file that describes the
overlay requirements for the task.

All of the ODL files to be merged are partial ODL files. That is,
none of these ODL files can be submitted directly to the Task Builder
to build a task; because, none of the compiler generated ODL files
contain a .ROOT directive. The .ROOT directive that describes the
task is supplied by the Merge Utility.

Merging COBOL compiler gdgenerated ODL files is accomplished by

executing the ODL merge utility. (See Section 2.6, Using The Merge
Utility).

11.6 INCLUDING NON-COBOL PROGRAMS IN A TASK

To use the Merge Utility to include a non-COBOL object module in a
task image, you must:

1. Create a standard COBOL ODL file (use any text editor)

2. Specify this ODL file as input to the Merge Utility.

11.6.1 Creating a Standard COBOL ODL File

A standard COBOL ODL file for a non-COBOL object module contains one
or two directive lines:

1. Object Program ID Line - This 1line 1is required. It
identifies the object module to be included in the task
image. The format of this line is:

; COBOBJ=XXXXXX.0BJ

Where XXXXXX.0BJ is the name of the object module to be
included in the task image.

11-5

HAND-TAILORING ODL FILES

2. Main Program ID Line - This 1line is present only for
non-COBOL object modules that are main programs as opposed to
being subprograms. The format of the line is:

; COBMAIN

For each invocation of the COBOL ODL Merge Utility, one and only one
main program ODL file can be specified. If no main program ODL file
is specified, the Merge Utility continues to request more input until
a main program ODL file is specified. If more than one main program
ODL file is specified, all but the first is rejected, and appropriate
diagnostic error messages are issued. Consider the following
examples.

Example 1

MACRO program START.OBJ is a main program in a task consisting of a
main program and several subprograms. The ODL file to be
hand—-generated is:

; COBOBJ=START.OBJ
; COBMAIN

Example 2

Macro subprogram SUBX.OBJ is to be part of a task image that consists
of several COBOL subprograms and a COBOL main program. The ODL file
to be hand-generated is:

; COBOBJ=SUBX.0BJ

11.7 REARRANGING A COMPILER-GENERATED ODL FILE

The ODL file generated by the compiler can be rearranged to modify the
overlay structure of a task. If the ODL file describes a task that
has overlayable segments, one or more of these segments can be
converted into non-overlayable segments by:

1. Modifying the compiler-generated ODL file.

2. Specifying a one-line Task Builder option at task-build time
for each segment made non-overlayable.

11.7.1 Modifying the Compiler-Generated ODL File

Modifying the compiler generated ODL file requires the following
steps:

1. Each overlayable segment is named in the ODL file by an ODL
.NAME directive. This .NAME directive must be removed.

2, Each name appearing in a .NAME directive is marked with an *
and placed as the first element of a .FCTR directive. For
each .NAME directive removed by step 1, this .FCTR directive
must be removed.

11-6

4.

Example

The task

HAND-TAILORING ODL FILES

All references to the name of the .FCTR directive removed 1in
step 2 must be removed from the ODL file.

All PSECTs referenced in the .FCTR directive that was removed
in step 3, must be removed from the ODL file.

image contains three overlayable segments, C€$$010, C$$015,

and C$$020. Segment C$$020 is to be forced into the root. Figure
11-1 contains a listing of the merged ODL file.

:MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:50:00

; COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37
; COBOBJ=TEST1 .0BJ

; COBKER=CS$

;s COBMAIN
.NAME C$$010,GBL
.PSECT CS003,GBL,I,RW,CON
C$0108: .FCTR *C$$010-$Cs003
.NAME C$$015,GBL
.PSECT C004,GBL,I,RW,CON
C015: .FCTR *C$$015-C004
.NAME C$$020,GBL
.PSECT C005,GBL,I,RW,CON
C$0208: .FCTR *C$$020-SCs005
COVR: .FCTR C010,C015,C$0208
CBOBJS : .FCTR TEST1.0BJ
CBOVR$: .FCTR C$SOVRS$
CBOTSS: .FCTR [320,13]COBLIB/LB
RMSS: .FCTR [1,1]RMSLIB/LB
OBJRTS : .FCTR CBOBJ$-CBOTSS$-RMSS$
.ROOT OBJRTS- (CBOVRS)
.END
Figure 11-1 Merged ODL File Listing
To force segment C$$020 into the root, the merged ODL file must be
modified as follows:
1. The .NAME directive referencing C$$020 must be removed.
2. The .FCTR directive containing *C$$020 must be removed.
3. BAll references to the PSECTs in the removed .FCTR directive

must be removed.

11-7

HAND-TAILORING ODL FILES

Figure 11-2 contains the ODL listing after the modifications have
been made.

: MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:55:22
: COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37
: COBOBJ=TEST1 .0BJ
: COBKER=CS$
; COBMAIN
.NAME C$$010,GBL
.PSECT C003,GBL,I,RW,CON
C010: .FCTR *C$$010-C003
.NAME C$$015,GBL
.PSECT C004,GBL,I,RW,CON
C$015%: .FCTR *C$$015-3C$004
CSOVRS$S: .FCTR C$010$,C$0158
CBOBJS$: .FCTR TEST1.OBJ
CBOVRS$: .FCTR CSOVRS
CBOTS$: .FCTR [1,1]COBLIB/LB
RMSS$: .FCTR [1,1]1RMSLIB/LB
OBJRTS$: .FCTR CBOBJ$S-CBOTSS$-RMSS$
.ROOT OBJRTS$- (CBOVRS)
.END

Figure 11-2 Modified ODL File

11.7.2 Specifying Task Builder Options
For each overlayable segment made non-overlayable, a GBLDEF Task
Builder option must be specified at task-build time. The format of
the option is:
GBLDEF=KK$SMMM:0
Where:
KKSMMM is the name of the segment that is being made
non-overlayable. (This 1is the name in the .NAME ODL
directive that was deleted when the ODL file was modified).
Consider the following example.
Example
To make the overlayable segment (C$$020) described in the example in
Section 11.7 non-overlayable, enter the following in response to the
Task Builder ENTER OPTIONS prompt:
GBLDEF=C$$020:0

Figure 11-3 shows the overlay description of the task image before and
after segment C$$020 was made non-overlayable.

11-8

HAND-TAILORING ODL FILES

BEFORE

TEST1.TSK;1 MEMORY ALLOCATION MAP TKB M27
26-JAN-77 10:51

PARTITION NAME : GEN
IDENTIFICATION : 026108
TASK UIC < [320,4])

STACK LIMITS: 000176 001175 001000 00512.
PRG XFR ADDRESS: 022514

TOTAL ADDRESS WINDOWS: 1.

TASK IMAGE SIZE : 6880. WORDS

TASK ADDRESS LIMITS: 000000 032657

TEST1.TSK;1 OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 032507 032510 13640. TEST1

032510 032607 000100 00064. C$$010 3 overlayable
032510 032657 000150 00104. C$$015

032510 032617 000110 00072. T C$$020 segments
AFTER

TEST2.TSK;2 MEMORY ALLOCATION MAP TKB M27
26-JAN-77 10:57

PARTITION NAME : GEN
IDENTIFICATION : 026108
TASK UIC : [320,4]

STACK LIMITS: 000176 001175 001000 00512,
PRG XFR ADDRESS: 022514

TOTAL ADDRESS WINDOWS: 1.

TASK IMAGE SIZE : 6912. WORDS

TASK ADDRESS LIMITS: 000000 032743

TEST2.TSK;2 OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 032573 032574 13692. TEST1

032574 032673 000100 00064. Cs$$010 2 overlayable
032574 032743 000150 00104. C$$015 segments

Figupe 11-3 Overlay Description Map Before and After Modification

11-9

CHAPTER 12

ERROR MESSAGES

12.1 COMPILER SYSTEM ERRORS

The PDP-11 COBOL compiler is a complex system program consisting of
many program overlays that manipulate numerous data structures.
Throughout the compiler, consistency checks are performed on program
flow and the contents of data fields. If the compiler detects an
inconsistency, it types a message on the console and terminates the
compilation. A system error message has the following format:

SYSTEM ERROR NNNNN

where NNNNN is a number used by the DEC COBOL developers to determine
the probable cause of the error. When a system error occurs, the
compiler's input file is closed and all output files (object, list,
and ODL) are closed and deleted.

In the event of a PDP-11 COBOL compiler system error, contact your DEC
Software Support Specialist immediately. See Appendix G, Compiler
System errors.

12.2 DIAGNOSTIC ERROR MESSAGES

This chapter contains a numerical listing of the diagnostic messages
generated by the PDP-11 COBOL compiler. The compiler generates these
messages whenever it detects an error 1in the source program. In
general, a source error detected by the compiler results in the
associated diagnostic message being embedded within the source program
listing. That 1is, when an error is detected in the source program,
the compiler prints the diagnostic message either before or after the
erroneous source program line. There are two exceptions to the
general concept of "embedded diagnostics":

1. There may be diagnostic messages listed after the last entry
in the Data Division and before the Procedure Division
header. These are diagnostics which 1logically can not be
issued until the entire Data Division text is processed.

2., There may be diagnostic messages listed after the 1last 1line
of the Procedure Division. These are diagnostics which
logically can not be issued until the entire Procedure
Division text is processed.

In addition to the error message number and message text, the display
contains a source line number, which identifies the error line, and an
alphabetic code (discussed below) which informs the user of the
seriousness of the error. The information within a diagnostic message
line is displayed (from left to right) in the following order:

12-1

ERROR MESSAGES

1. Alphabetic code,

2. Source line number,

3. Numerical error number,

4. Text of the diagnostic message.

For convenience, the alphabetic code is left-justified in the 1listing
so the wuser merely scans the 1listing to identify any diagnostic
message issued during compilation. Again, for the user's convenience,
a summary of the number of errors detected during the compilation is
given at the end of the source listings. If no errors are detected
during the compilation, the compiler prints "NO ERRORS" at the end of
the source listing.

The following illustration shows a typical diagnostic message and the
manner in which it appears on the source listing:

COBOL 3.00 SRC:MAP.CBL;0 05-JAN-77 18:49:10 PAGE 003

00096 MOVE 72.5 TO N2

00097 IF N2 NOT = T2 DISPLAY "? #10".
00098 *

00099 MOVE 3250 TO N3.

I 00099 372 POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION.

00100 IF N3 NOT = T3 DISPLAY "? #11".
00101 * ,

00102 MOVE -432 TO N4.

00103 IF N4 NOT = T4 DISPLAY "2 #12".
00104 *

In the example, the diagnostic message is immediately identified by
the appearance of the left-justified alphabetic <code 1I. The
alphabetic code indicates that the message is an I-type
(informational) diagnostic; the diagnostic is issued for source
line number 99; the error number is 372; and the text of the
message is POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION. Note that
the diagnostic message line, in this example, appears after the
source line for which it was issued.

The error messages, used in conjunction with this chapter, provide
the wuser with an important debugging tool. This chapter contains
information necessary for interpreting the messages. It explains
what caused the error and how the compiler handled the error.

Since different errors cause varying degrees of problems for the
compiler (some do not affect the compilation at all, while others
may be so critical that they cause an abort of the compilation), the
PDP-11 COBOL compiler provides four general types (or severity
levels) of diagnostic messages. Alphabetic codes (I, W, F, and A)
identify these error levels. When it detects an error in the source
program, the compiler attempts to recover from the error and
continue to compile the program. This recovery action may force the
compiler to make an assumption about the source program. The four
levels of diagnostic messages are categorized according to the
likelihood that the result of the compiler's assumption will be an
object program that runs as originally intended by the programmer.

The following list explains the purpose of and the compiler's action
for each of the four message levels:

12-2

ERROR MESSAGES

(Informational) Informative diagnostic. The purpose of such
a diagnostic 1is to convey information to the user in an
observational or advisory capacity. The compiler's error
recovery (if any is required) is almost certain to be that
desired by the user.

(Warning) Warning diagnostic. The purpose of this type of
message is to warn the user that something is wrong with the
associated source statement, but that the compiler can take
corrective action on the source element in error. The
compiler's recovery action may not be that desired by the
user, but the statement, as corrected by the compiler, will
be executable. '

(Fatal) Fatal diagnostic. The purpose of such a diagnostic
is to indicate to the user that something is fatally wrong
with the indicated source statement. By fatal, the compiler
means it cannot generate the object code required for the
functionality the programmer coded in the erroneous source
statement. The compiler's error recovery action will
probably leave out a portion of the source program. In
general, the compiler will not produce an object program for
COBOL source programs which have F-type errors in them.
However, the user can force the compiler to generate an
object program by specifying the /ACC:2 switch in the
command string input to the compiler prior to compilation
(See Section 5.2.3, Compiler Switches for a detailed
explanation of the /ACC:n switch.) The /ACC:2 switch
instructs the compiler to generate an object program, even
if the source program contains F-type errors. In this case,
when an F-type error is detected in the Procedure Division,
the compiler generates special error trap object code in
place of the incorrect source statement. When the object
program is executed and the special error trap code is
encountered, the software displays the following message on
the console and aborts the program execution:

FATAL ERROR ON SOURCE LINE XXXXX

where XXXXX is the source line number for which an F-type
diagnostic was issued during compilation. For F-type
diagnostics issued in the Identification, Environment, and
Data Divisions, no special error trap coding is generated
since, in general, executable code 1is not generated for
these divisions. However, the fact that F-type diagnostics
are issued for these divisions can have a definite effect on
the behavior of the execution of the object program.

WARNING

When the user specifies the /ACC:2 switch, the wuser
is formally acknowledging to the software a
willingness to let the program go into execution
even though it may have fatal errors in it. Because
the source program has very severe errors in it, the
behavior of the associated object program is, in
general, unpredictable. 1In certain cases, such as a
COBOL program with files opened in I-O mode, letting
the program with F-type errors go 1into execution
could be disastrous. Thus, the /ACC:2 switch should
be used with caution. The facility is provided as
an extra debugging option. It can be useful in
shortening the compile-debug cycle, particularly if

12-3

ERROR MESSAGES

applied to large COBOL programs which take
considerable compilation time. The point is that
the wuser should use the /ACC:2 facility wisely and
discretely.

(Abortive) Abortive diagnostic. The purpose of this type of
diagnostic 1is to inform the user that the compiler must
abort compilation. The compiler's error recovery is not
possible: it can make no valid assumptions and has no
choice but to abort the compilation,

Appendix H contains the PDP-11 COBOL compiler diagnostic
error messages arranged in numerical order for easy
reference.

12.3 RUNTIME FILE I/0O ERROR PROCEDURES

When an error condition occurs during I/0 operations, the following
procedure is used:

1.

If the file status key for the file is present, it is set to
the appropriate code for the error condition. (See Table
12-1 for sequential file status keys, or Table 12-2 for
relative and indexed file status keys.)

If an AT END or INVALID KEY imperative condition is specified
for the 1I/0 operation, the path indicated by the imperative
statement is taken. The file system performs no other
processing in the file for the current statement. The USE
procedure, if one is declared for the file, is not performed.

If no AT END or INVALID KEY imperative condition is specified
for the I/0 operation and a USE procedure is declared for the
file, the USE procedure section 1is performed, and then

.control is returned to the program. The file system performs

no further processing for this file.

If no USE procedure is declared for the file, a fatal error
condition exists; the OTS aborts the program and displays
the following I/0 error message:

"CBL -- 37: FILE: NN... NO USE PROCEDURE FOR
I/0 ERROR"
"CBL -- RECORD MANAGEMENT SERVICES - Xx"
NN represents the name of the file:

XX represents the Record Management Services error code.
(See Appendix I for these error codes.)

12-4

ERROR MESSAGES

The following tables show various error numbers and error codes that
identify error conditions and messages. The error codes in Tables
12-1 and 12-2 are accessible to the wuser's program through the
declaration and use of the FILE STATUS key in the program. The error
codes in Appendix I are not returned to the user's program but
represent error conditions detected by Record Management Services.

The error message numbers in Appendix I are merely identifying numbers
for the messages and appear at the user terminal in the following
form:

"CBL --nn: message ... "
nn is the message number,
Table 12-1 and 12-2 contain status key codes. The left-hand digit of

the status Kkey code 1is status key 1, and the right-hand digit is
status key 2.

Table 12-1
Sequential I/0 File Status Key Values (ASCII)
Status Key
Code Meaning
00 No further information (successful)
10 End-Of-File indicator detected
30 Permanent error
34 Permanent error (boundary error on WRITE statement)
91 File locked by another task:
93 REWRITE attempted without prior READ
94 Improper operation attempted
95 Allocation failure on OPEN (no file space on device)
96 No buffer space (program tried to open a file that is
sharing buffer space (SAME AREA) with another file)
97 No such file (the file named in an OPEN statement was
not found)
98 CLOSE error (error discovered while in the process of
closing the file)

12-5

ERROR MESSAGES

, Table 12-2 :
Relative And Indexed I/O File Status Key Values (ASCII)
Status Key
Code Meaning

00 No further information (successful)

02 Duplicate alternate record key values were
successfully created during the execution of a WRITE
or REWRITE statement

10 End-Of-File indicator detected

21 Sequence error on primary key during the execution of
a WRITE or REWRITE statement

22 Duplicate key error

23 No such record error

24 Boundary error on WRITE statement

30 Permanent error

91 File locked by another task

92 Record locked by another task

93 REWRITE or DELETE attempted without prior READ

94 Improper operation attempted

95 Allocation failure (no file space on device)

96 No buffer space (program tried to open a file that is
sharing buffer space (SAME AREA) with another file)

97 No such file (the file named in an OPEN statement was
not found)

98 CLOSE error (error discovered while in the process of
closing the file)

12,4 RUN-TIME ERROR MESSAGES

Appendix J contains a list of the COBOL Object Time System (OTS) error
messages. Wherever it <can, the COBOL OTS will 1list auxiliary
information along with the error message. This auxiliary information
is defined in Section 12.4.1.

12.4.1 OTS Auxiliary Error Message Information

Following each OTS error message, the OTS will attempt to display
additional <clarifying information. This information is intended to
direct you to the exact source line statement causing the error. The
auxiliary information has the following format:

12-6

ERROR MESSAGES

PROGRAM-ID AAAAAA , IDENT: BBBBBB
IN PSECT: CCCCCC

AT OFFSET: DDDDDD

Where:

AAAAAA is the first six characters of the PROGRAM-ID specified
in the source program.

BBBBBB is the value appearing in the IDENT field of compiler
listing.

cccececee is the name of the procedural code PSECT containing the
error.

DDDDDD is the octal byte offset (within PSECT CCCCCC) at which

the error occurred.

If the statement in error is a PERFORM, the nested PERFORM stack,
containing the source 1line 1location of every PERFORM statement
encountered thus far, is displayed (see Example 1). If an error is
detected while a chain of nested CALL statements is being processed,
auxiliary information is displayed for each element in the chain (see
Example 2).

To take full advantage of this auxiliary information, you must have
compiled the source program with the /MAP and /OBJ switches specified.
Using the PSECT name (CCCCCC) and octal byte offset (DDDDDD), in
conjunction with the Procedure Name Map, you can identify the two
source procedure names that bracket the location of the error. Also,
using the octal byte offset (DDDDDD) you can (via the /OBJ output
listing) identify the specific verb causing the error. Consider the
following examples:

Example 1

Figure 12-1 contains the listings generated for the COBOL program used
in this example. Execution of the program depicted in Figure 12-1 will
yield the following results:

RUN DIAG3

CBL -- 25: ILLEGAL NESTED PERFORM AT SOURCE LINE 16
PROGRAM ID: DIAG3 , IDENT: 038105
IN PSECT: $2z001
AT OFFSET: .000074
NESTED PERFORM SOURCE LINE NUMBERS:
00014
00015

CBL -- 15: STOP RUN
Ready

The PROGRAM-ID and IDENT line refer to the corresponding lines is the
compiler 1listing (DIAG3 and 038105 in this example). The IN PSECT
line identifies the exact PSECT containing the error ($ZZ001 in this
example). See the Procedure Name Map in Figure 12-1. The AT OFFSET
line identifies the octal byte offset within the PSECT at which the
statement in error exists (000074 in this example). See the /OBJ
compiler listing in Figure 12-1. Finally, the 1last three 1lines
identify the source 1line 1location of every PERFORM statement
encountered thus far in the program.

12-7

ERROR MESSAGES

SAMPLE /OBJ LISTING

COBOL 3.00 SRC:DIAG3.CBL;0 07-FEB-77 10:34:03 PAGE 001

CMD:DIAG3,DIAG3/MAP/OBJ/KE: 2%Z=DIAG3
IDENT: 038105

00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. DIAG3.
00003 *
00004 * INVOKE "?ILLEGAL NESTED PERFORM AT LINE XXXXX"
00005 *
00006 ENVIRONMENT DIVISION.
00007 CONFIGURATION SECTION.
00008 SOURCE-COMPUTER. PDP-11.
00009 OBJECT-COMPUTER. PDP-1l.
00010 DATA DIVISION.
00011 WORKING-STORAGE SECTION.
00012 PROCEDURE DIVISION.
00013 S0 SECTION.
PERFORM : 001 000024
00014 PO. PERFORM Pl THRU P5.
PERFORM : 001 000050
00015 Pl. PERFORM P2 THRU P4.
PERFORM : 001 000074
00016 P2. PERFORM P3 THRU P4.
00017 P3.
00018 P4,
00019 P5.
SAMPLE PROCEDURE NAME MAP
COBOL 3.00 SRC:DIAG3.CBL;0 07-FEB-77 10:34:03 PAGE 002

PROCEDURE NAME MAP

NAME SOURCE PSECT OFFSET SEG SECT PARA
LINE

s0 00013 $z2001 000024 00 S

PO 00014 $zz001 000024 00 P
Pl 00015 $22001 000050 00 P
p2 00016 $2z001 000074 00 4
P3 00017 $2z001 000120 00 P
P4 00018 $zz001 000126 00 P
P5 00019 $z7001 000134 00)4

Figure 12-1
Sample Listing of Program Used in Example-1

12-8

ERROR MESSAGES

Example 2

Figure 12-2 contains the listings generated for the COBOL programs used
in this example. Execution of the programs depicted in Figurel2-2
will yield the following results:

RUN TEST

BEGIN MAIN PROGRAM
BEGIN SUB1 SUBPROGRAM
BEGIN SUB2 SUBPROGRAM

CBL -- 13: NULL ALTERABLE GO TO
PROGRAM ID: SUB2 , IDENT: 080130
IN PSECT: $CCO001
AT OFFSET: 000062
LISTING OF NESTED ENVIRONMENTS:
PROGRAM ID: SUB1 , IDENT: 080130
AT OFFSET: 000054
PROGRAM ID: MAIN , IDENT: 080129
AT OFFSET: 000042

CBL -- 15: STOP RUN
Ready

As in the previous example, the PROGRAM-ID and IDENT 1lines refer to
the corresponding 1lines in the compiler listing; the IN PSECT 1line
identifies the exact PSECT containing the error; and the AT OFFSET
line identifies the octal byte offset. Note also, that this
information 1is repeated for every program within the chain of
subprograms comprising the task.

12-9

ERROR MESSAGES

SAMPLE /OBJ LISTING (Main Program)

COBOL 3.00 SRC:MAIN.CBL;O0

CMD:MAIN,MAIN/KE:AA/OBJ/MAP=MAIN

21-MAR-77 12:59:08 PAGE 001

IDENT: 080129
00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. MAIN.
00003 ENVIRONMENT DIVISION.
00004 CONFIGURATION SECTION.
00005 SOURCE-COMPUTER. PDP-11.
00006 OBJECT-COMPUTER. PDP-11.
00007 DATA DIVISION.
00008 WORKING-STORAGE SECTION.
00009 77 A PIC 99.
00010 77 B PIC 99.
00011 77 C PIC 99.
00012 PROCEDURE DIVISION.
00013 S0 SECTION.
00014 PO.
DISPLAY : 01 000024
00015 DISPLAY "BEGIN MAIN PROGRAM".
CALL : 01 000042)
00016 CALL "SUB1" USING A B C .
DISPLAY : 01 000060
00017 DISPLAY "ENDING MAIN PROGRAM".
STOP : 01 000076
00018 STOP RUN.
SAMPLE PROCEDURE MAP (Main Program)
COBOL 3.00 SRC:MAIN.CBL;O0 21-MAR-77 12:59:08 PAGE 003
PROCEDURE NAME MAP
NAME SOURCE PSECT OFFSET SEG SECT PARA
LINE
so 00013 $AA001 000024 00]
PO 00014 $AA001 000024 00 P

Figure 12-2 Sample Listing of Program Used in Example-2

12-10

ERROR MESSAGES

SAMPLE /OBJ LISTING (Subprogram)

COBOL 3.00 SRC:SUBl1.CBL;O0 21-MAR-77 13:00:22 PAGE 001
CMD:SUB1,SUB1/KE:BB/0BJ /MAP=SUB1
IDENT: 080130
00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. SUBI.
00003 ENVIRONMENT DIVISION.
00004 CONFIGURATION SECTION.
00005 SOURCE-COMPUTER. PDP-11.
00006 OBJECT-COMPUTER. PDP-11.
00007 DATA DIVISION.
00008 WORKING-STORAGE SECTION.
00009 LINKAGE SECTION.
00010 77 D PIC 99.
00011 77 E PIC 99.
00012 77 F PIC 99.
00013 PROCEDURE DIVISION USING D E F .
00014 S1 SECTION.
00015 Pl.
DISPLAY : 01 000024
00016 DISPLAY "BEGIN SUB1 SUBPROGRAM".
SUBTRACT : 01 000042
00017 SUBTRACT D FROM E GIVING F .
CALL ¢ 01 000054 '
00018 CALL "SUB2" USING D E F .
DISPLAY : 01 000072
00019 DISPLAY "EXITING SUB1 SUBPROGRAM",
STOP : 01 000110
00020 STOP RUN .
SAMPLE PROCEDURE MAP (Subprogram)
COBOL 3.00 SRC:SUB1.CBL;O0 21-MAR-77 13:00:22 PAGE 003
PROCEDURE NAME MAP
NAME SOURCE PSECT OFFSET SEG SECT PARA
LINE
sl 00014 $BB001 000024 00 S
Pl 00015 $BB001 000024 00 P

Figure 12-2(Cont.) Sample Listing of Program Used in Example-2

12-11

APPENDIX A

THE COBOL FORMATS

COBOL NOTATION USED IN FORMATS
® Underlined upper-case words (key words) - required words;
® Upper-case words (not underlined) - optional words;

® ILower-case words - generic terms, must be supplied by the user;

® Brackets [] - enclosed portion is optional; if several enclosed words are

vertically stacked, only one of them may be used;

® Braces {} - a selection must be made from the vertical stack of enclosed words

e Ellipsis ... = the position at which repetition may occur;
e Comma and semicolon - optional punctuation;
e Period - required where shown in the formats.

NOTE

COBOL formats.

IDENTIFICATION DIVISION.

PROGRAM=~ID,., program—-name.

[AUTHOR. [comment-entryl...]
[INSTALLATION. [comment-entryl...]
[DATE-WRITTEN. [comment-entry]...]
[DATE~-COMPILED. [comment-entryl...]
[SECURITY. [comment-entryl...]

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. PDP-11
WORDS
OBJECT-COMPUTER. PDP-11 MEMORY SIZE integer CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name]
[SEGMENT-LIMIT IS segment-number].

Shaded items represent PDP-11 COROL extensions to the ANS-74 list of

-
H

THE COBOL FORMATS

[SPECIAL-NAMES.

[CARD-READER IS mnemonic-name-1]
[CONSOLE IS mnemonic-name=2)
[LINE-PRINTER IS mnemonic-name-3]
[PAPER~-TAPE~-PUNCH IS mnemonic-name-4]
[PAPER-TAPE-READER IS mnemonic-name-5]

'SWITCH integer-1 ON STATUS IS condition-name-1
[lg‘g STATUS IS condition-name~2
[OFF STATUS IS condition-name-2]
[ON STATUS IS condition-name-1]] b

NATIVE
[Alpha.bet—name Is l STANDARD~1 l]

[CURRENCY SIGN IS literal-l]
[DECIMAL-POINT IS COMMA.]]

[INPUT~-OUTPUT SECTION.

FILE-CONTROL. {file-control-entryl... .,

Format 1l:

SELECT [OPTIONAL] file-name

ASSIGN TO literal-l

. AREA
[; RESERVE integer-1 [AREAS]]

[; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data—-name-1l] .

Format 2:

SELECT file-name

ASSIGN TO literal-l

=
. AREA
; RESERVE integer-1 [AREAS]

; ORGANIZATION IS RELATIVE

[SEQUENTIAL [, RELATIVE KEY IS data-name-1]
; ACCESS MODE IS RANDOM .
—DYNAMIC} RELATIVE KEY IS data-name-l

[; FILE STATUS IS data-name-2] .

THE COBOL FORMATS

Format 3:
SELECT file-name

ASSIGN TO literal-l

- . AREA

L; RESERVE integer-1 [AREA]

+ ORGANIZATION IS INDEXED

[~ SEQUENTIAL

; ACCESS MODE IS RANDOM
DYNAMIC

; 'RECORD KEY IS data-name-1
[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]l...
[; FILE STATUS IS data-name-3] .

[I-0-CONTROL.
[SAME [RECORD] AREA FOR file-name-1 {file-name-2}...]...
[MULTIPLE FILE TAPE CONTAINS file-name=3 [POSITION integer-1]
[file-name-4 [POSITION integer=2]...l...

[APPLY PRINT-CONTROL ON file-name-5 [file-name-6]...] ...]]

DATA DIVISION.

{FILE SECTION.
[FD file-name

. . RECORDS
K - - bt}
_BLOC CONTAINS [integer-1 TO] integer-2 CHARACTERS}
[RECORD CONTAINS [integer-3 g)_] integer-4 CHARACTERS]
RECORD IS STANDARD
LABEL {RECORDS ARE {OMITTED
E data-name-1
F ID I .
mam or 10 15 {§2r2namet]
[‘RECORD IS
_DATA RECORDS ARE data-name~-3 [data-name-4] ...] oo
LINAGE IS data-name-5| ;,pg WITH FOOTING aT |data-name=6
— integer-5 ———— integer-6

[LINES AT TOP |§ata'“ame'7{] [PINES AT BOTTOM l?ata'“ame's’]]
_— integer-7 _— integer-8
[CODE-SET IS alphabet-name].
[record-description-entryleeelec.]
[WORKING-STORAGE SECTION.
77-level-description—entry]
record-description-entry
[LINKAGE SECTION.
[77-level~description-entry
record-description~entry J...]

l.‘]

THE COBOL FORMATS

Data description entry:
Format 1:

data-~name-1
FILLER

[REDEFINES data-name=2]
PICTURE
| | PIC

level~number l

Is character-string]

COMPUTATIONAL
COMP

DISPLAY
DISPLAY-6
DISPLAY~7

INDEX

3 LEADING
BECREENE- N

i {SYNCHRONIZED LEFT

| |sync RIGHT

i JUSTIFIED}
| |JusT
[BLANK WHEN ZERO]
[VALUE IS literall

integer-1 TO integer-2 TIMES DEPENDING ON data-name—3’
integer-2 TIMES

[USAGE 1S]

[SEPARATE CHARACTER]

RIGHT]

OCCURS ‘

[ASCENDING

DESCENDING} KEY I8 data-name-4 [data-name-sl...] ces

[INDEXED BY index-name-1 [index-name-2]) ...]] .

Format 2:

66 data-name-l1 RENAMES data-name-2

[l THROUGH,]

THRU J data-name-3

Format 3:

88 condition-name {%%%g%inRE literal-l [[%ﬁgﬁgﬁg} literal-z]
[litera1-3 n%’k‘;‘—;ﬁ-ﬂ-} litera1—4]] cee .

PROCEDURE DIVISION [USING [data-name~-1][,data=-name=2] ...].

Format 1:

[DECLARATIVES.

{section-name SECTION [segment-number] . declarative-sentence
[paragraph-name. [sentenceleeelecetess

END DECLARATIVES.]

Tsection-name SECTION [segment-number].

[paragraph-name. [sentencel.eeleceteoe

Format 2:

{paragraph-name. [sentencel...}...

THE COBOL FORMATS

STATEMENTS

ACCEPT identifier [FROM mnemonic—name)

DATE
ACCEPT identifier FROM DAY
TIME

ldentlfler-l} [1dent1f1er—2] ... TO identifier-m [ROUNDED]

literal-1 literal=-2
[identifier-n[ROUNDED]]... [ON SIZE ERROR imperative-statement]

ADD identifier-1 identifier-2 identifier-3 oes

—_ literal-l literal-2 literal=-3

GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] ...
[ON SIZE ERROR imperative-statement]

= |

ADD

CORRESPONDING
CORR identifier-1 TO identifier-2 [ROUNDED]
[ON SIZE ERROR imperative-statement]

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2
[procedure-name-3 TO [PROCEED TO0] procedure-name-4] see

CALL literal-l

[USING data—-name~l [,data-name=-2]...]

REEL [WITH NO REWIND]

CLOSE file-name-1 FOR REMOVAL

NO REWIND
WITH {LOCK }
REEL NO
UNIT | {FOR REMOVAL

[WITH NO REWIND]
file-name=2 {

COMPUTE identifier-l [ROUNDED] [identifier-2 [ROUNDED]] ...
= arithmetic—expression [ON SIZE ERROR imperative-statement]

DELETE file-name RECORD [INVALID KEY imperative-statement]
identifier-1 identifier-2

DISPLAY {literal—l } [literal-z]

[UPON mnemonic-name] [WITH NO ADVANCING]

prvipe | identifier-1 INTO identifier-2 [ROUNDED]

— literal-1 —_— e
[identifier-3[ROUNDED]] ... [ON SIZE ERROR imperative-statement]
identifier-1 identifier-2 . ces

DIVIDE ‘ literal-l ’ INTO { literal-2 } GIVING identifier-3[ROUNDED]
[identifier—4 [ROUNDED]]...[ON SIZE ERROR imperative-statement]
identifier-1 identifier-2 . c e

DIVIDE lliteral-l } BY {literal-Z I GIVING identifiexr-3[ROUNDED]
[identifier-4[ROUNDED]]...[ON SIZE ERROR imperative-statement]
identifier-1 identifier-2 R s

DIVIDE { literal-l } INTO l literal-2 , GIVING identifier=-3[ROUNDED]
REMAINDER identifier-4[ON SIZE ERROR imperative-statement]
identifier-1 identifier-2 s ces

Y -
DIVIDE lliteral-l l BY Iliteral-Z } GIVING identifier=3[ROUNDED]

REMAINDER identifier-4[ON SIZE ERROR imperative-statement]

THE COBOL FORMATS

EXIT [PROGRAM]

GO TO [procedure-name-~1]
GO TO procedure-name-l [procedure~name-2}. ..procedure-name-n DEPENDING ON identifier

IF condition lstatement—l ELSE statement-2
_ : NEXT SENTENCE ELSE NEXT SENTENCE
INSPECT identifier-1 TALLYING
'552 } (identifier-S} BEFORE
identifier-2 FOR LEADING literal-1 [KFTE'R— INITIAL
CHARACTERS _—

identifier-4
literal-2 °ec °°*

INSPECT identifier-1 REPLACING

identifier-6 BEFORE identifier-7
cmaRACTERS BY {15eeraies) [l———mm (T T hvsneciall
ALL
e identifier-s’ {identifier-6‘ [BEFORE}
LEADING [. B . ——— INITIAL
FIRST } literal-3 literal-4 AFTER
identifier-7
literal-5 i ot
INSPECT identifier-1 TALLYING
ALL } {identifier-3}
identifier-2 FOR LEADING literal-1 BEFORE
CHARACTERS [l AFTER INITIAL

lidentifier-4}]

literal-2

REPLACING
e o B | B R v
Domg| {[entifiers) gy (Meifiere) [(smom) oy,

identifier-7}
literal-5 °e °n

MOVE

identifier-
literal

1} TO identifier-2 [identifier-3] ...

MOVE

CORFESPONDING m‘m, identifier-1 TO identifier-2

CORR

identifier-1
literal~1l
[identifier-3 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

MULTIPLY | } BY identifier-2[ROUNDED]

identifier-1

identifier~2 . e
MULTIPLY {literal-l } BY [literal-2 } GIVING identifier-3 [ROUNDED]

[identifier-4 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

THE COBOL FORMATS

INPUT file-name-1[WITH NO REWIND] [file-name-2 [WITH NO REWIND]]...

OUTPUT file-name-3[WITH NO REWIND] [file-name-4 [WITH NO REWIND]]... cee
I-0 file-name-5 [file-name-6]... -

EXTEND file-name-7 [file-name-8]...

OPEN

PERFORM procedure-name-1 THROUGH procedure-name-2
— THRU
- -
THROUGH | procedure-name-2 identifier-1
PERFORM procedure=-name=-1 ‘THRU ‘integer—l } TIMES
PERFORM procedure-name-1 %EEQHEE procedure-name-2 UNTIL condition-1
PERFORM procedure-name-1 [%gg%ggﬁ procedure-name-2
. s e identifier-3
varying | ldentifier-2 FROM { index-name-2
—— index-name-1 — .
literal-1l
BY identifier-4 UNTIL condition-1
_ literal-2 ——
. cps identifier-6
AFTER %dentlfler 3 FROM index-name=-4
— index—name-3 —_— R
literal-3
BY identifier-7 UNTIL condition-2
_ literal-4 ——
. . e identifier-9
AFTER }dentlfler 8 FROM index-name-6
—_— index-name-5 —_— .
literal=-5S
BY lqentlfler—lo UNTIL condition=-3
— literal=-6 —

READ file-name [NEXT]RECORD[INTO identifier] [AT END imperative-statement]
READ file-name RECORD[INTO identifier] [INVALID KEY imperative-statement]
READ file-name RECORD[INTO identifier] [;KEY IS data-name]

[; INVALID KEY imperative-statement]

REWRITE record-name [FROM identifier] [INVALID KEY imperative-statement]

identifier-2

index-name-l]] [AT END imperative-statement=-1]

SEARCH identifier-1 [VARYING {

WHEN condition=1 1mperat1ve—statement—2}

NEXT SENTENCE

s imperative-statement-3
[WHEN condition-2 NEXT SENTENCE oo

SEARCH ALL identifier=-1[AT END imperative-statement-1]

Is EQUAL TO

data-name-1
{ literal-1l

} identifier-3

Is = . . .
WHEN condition-name-1 arithmetic-expression-1
identifier-4
data-name-2 {i: EQUAL TO] literal-2
AND arithmetic-expression=-2 ees
condition~-name-2

imperative-statement-2
NEXT SENTENCE

A-7

THE COBOL FORMATS

identifier-1 [identifier-2]... identifier-3
SET . R TO 1{index-name=-3
—— | index-name-1 [index~-name-2]... _—
integer-1
. . UP BY identifier-4
SET index-name~4 index-n -5]... — s
-_— x L x-name-5] ‘ DOWN E!' llnteger-2 l
Is EgUAL TO
IS =
START file-name KEY i: gBEéEEE THAN data~name
IS NOT LESS THAN
IS NOT <
[INVALID KEY imperative-statement]
RUN
fidhta literal,

. o . e identifier-3
sTRng | identifier-1 [“.ie"tlfler 2| ... DELIMITED BY {literal-3
— literal-1 literal-2 —_—

SIZE
. R . s identifier-6
identifier—4 [lc.lenufler 5] «e. DELIMITED BY {literal-6
literal=-4 literal-5 —— STZE

INTO identifier-7 [WITH POINTER identifier-8]
[ON OVERFLOW imperative-statement]

identifier=-1 identifier-2 . . o
SUBTRACT ‘ literal-l } [literal-z] coe FROM identifier-m[ROUNDED]
[identifier-n [ROUNDED]]...[ON SIZE ERROR imperative-statement]
identifier-1 identifier-2 identifier-m
swmact jfeeitiest) [Menifier?] L mon [fenvitier)

GIVING identifier-n[ROUNDED] [identifier—=o[ROUNDED]]...
[ON SIZE ERROR imperative-statement]

CORRESPONDING
SUBTRACT { CORR ’

[ON SIZE ERROR imperative-statement]

identifier-1 FROM identifier-2 [ROUNDED]

UNSTRING identifier-1
identifier-2 identifier-3 e
[QEEEEEIEE BY [ALL] {1itera1—l } [95 (AL} =literal-2 ‘]]
INTO identifier-4[DELIMITER IN identifier-5] [COUNT IN identifier-6]
{identifier~7 [DELIMITER IN identifier-8] [COUNT IN identifier-~9]]...
[WITH POINTER identifier-10] [TALLYING IN identifier-11]
[ON OVERFLOW imperative-statement]

file-name-1l[file-name-2j...

INPUT
USE AFTER STANDARD EXCEPTION PROCEDURE ON QUTPUT
—— ERROR _— -0

EXTEND

THE COBOL FORMATS

WRITE record-name [FROM identifier=-1)

identifier-2 LINE
BEFORE “ l []}
[AFTER } ADVANCING integer LINES
- [PAGE]
[aT {%gg—ﬂ&wg imperative~-statement]

WRITE record-name [FROM identifier)] [INVALID KEY imperative-statement]

text~name
copy ‘ literal=3 }
REPLACING literal-l BY literal~-2 ...
——— word-1 —_— word=-2

NOTE: A COPY statement may appear anywhere that a word
appears in the COBOL source program.

g

w N0 W Ny -

10
11
12
13
14

APPENDIX B

LOGICAL UNIT NUMBER (LUN) ASSIGNMENTS

ASSIGNMENT
Console, input
Console, output
Source input file
Source listing output file
Object output file
ODL output file
CREF scratch file
COPY library input file
Work file
Work file
Intermediate file
Sort work file
Sort work file

Sort work file

APPENDIX C

PDP-11 COBOL COMPILER IMPLEMENTATION LIMITATIONS

This appendix documents the implementation limitations for the PDP-11
COBOL compiler system (compiler and OTS). The reader should not
confuse the term "limitations" with "restrictions". Restrictions
delimit those language facilities which are not implemented or should
not be used due to known bugs in their existent implementation.
Implementation limitations quantify the 1limits of a particular
language facility supported by the system. Practical implementation
limitations exist in every compiler.

Such limitations are due to the finite size of various compiler
tables, compiler data structure representations, etc. Since the
PDP-11 COBOL compiler employs a Virtual Memory System to support many
compiler data structures, the quantities specified for various
implementation limitations are approximations. However, as a deneral
rule, the following guidelines should not be exceeded 1in the
development of a COBOL program.

IMPLEMENTATION LIMITATIONS

1. The maximum length of any COBOL data item (group item,
elementary item, table) is 4095 characters.

2, The default depth of dynamic PERFORM statement nesting is 10.
The default depth can be modified by using the /PFM switch at
compile time.

3. The maximum number of sending operands in a DISPLAY statement
is 16.

4. The maximum number of data-name definitions in a COBOL
program is approximately 2000. ‘

5. The maximum number of procedure name definitions in a COBOL
program is approximately 2000.

6. The maximum nesting depth of matching parentheses in a COBOL
expression is 10.

7. The maximum number of qualifiers in a qualified data-name
reference is 48,

8. The maximum number of procedure names in a GO TO DEPENDING
statement is 16.

APPENDIX D

COMPILER GENERATED PSECTS

An object program generated by the PDP-11 COBOL compiler is composed
of program sections called PSECTs. Three types of PSECTs are
generated:

e Data Psects Contain the memory for the Data Division
of a COBOL program. '

e Control PSECTS Contain the data that is required by the
0TS during program execution.

® Procedural PSECTS Contain the object code generated for
the Procedure Division.

Data and Control PSECTs are always non-overlayable. Procedural
PSECTs, however, can be optionally overlayable or non-overlayable.

D.1 PSECT NAMING CONVENTIONS

The PSECTs generated by the PDP-11 COBOL compiler are named entities.
Each PSECT name is composed of a three character prefix followed by a
three character suffix. There are two different forms of the prefix:

e SKK
Where: $ Is a sentinel character and is always present.

KK Is a two character kernel that identifies the
PSECT. It 1is this kernel character that is
specified by the /KER:kk switch. The /KER:kk
switch is appended to the compiler command line to
assign a unique kernel value to the PSECTs
generated during the compilation. The default
kernel assignment is C$. '

e SCB
Where: $ Is a sentinel character, and is always present.

CB Is a two character code that identifies the PSECT
as a COBOL compiler generated PSECT.

COMPILER GENERATED PSECTS

PSECTs with the prefix $CB are generated to provide the
control and work space required for I/0 operations.

PSECTs with these same names are generated for each COBOL
compilation. They are either overlayed or concatenated at
task-build time. Those that are overlayed, have a known fixed
length at task-build time. Those that are concatenated, have
a known length at compile-time and contribute their size to
the total size of the PSECT that is built by the Task Builder.

The three character suffix identifies the type of code or data the
PSECT contains. Table D-1 describes the suffixes assigned to $KK type
PSECTs, and Table D-2 describes the suffixes assigned to $CB type
PSECTs.

Table D-1
SKK PSECT Name Suffixes

Type Suffix Content

Data DAT Data Division data storage areas.

DDD Data Division directories - contains
descriptions of referenced Data Division
items.

ARG Directories of referenced Linkage Section
items.

LIT Literal Pool - contains all of the literals
referenced in the program,

LTD Literal Directory.

IOB Input/Output buffers.

Control WRK COBOL compile unit work space - contains a
description of the compile unit
environment.

PDT PSECT dispatch table - used for

intra-program control of segmented COBOL
programs.

SDT Subprogram dispatch table - used for
inter-program control (i.e., calling
subprograms) .

LST Argument list work space - used to contain
the argument 1list passed to the called
subprogram.

PFM Perform work space - used . to provide
control and checking of nested PERFORM
statements.

ADT ALTER Dispatch Table - used to contain the

destination of alterable GO TO statements.

COMPILER GENERATED PSECTS

Table D-1 (Cont.)
$KK PSECT Name Suffixes

Type Suffix Content

USE Default USE procedure table - used to
access the default OPEN mode (INPUT,
OUTPUT, I-0, or EXTEND) USE procedures, if
present.

Procedural ENT Code generated by the compiler for the
program entry point.

nnn Numbered suffixes beginning with 001.
These numbered PSECTs contain the object
code generated for the Procedure Division
of a COBOL program.

Table D-2
PSECT Name Suffixes

Allocation Suffix Content

OVR 10T Input/Output Table - contains a reference
to each COBOL Input/Output OTS routine
required by the COBOL compilation.

OVR FAl File Access Block (FAB) - used to transmit
information to RMS at open and close time.

OVR XAl Auxiliary Access Blocks (XABs) - used to
transmit information on the keys for
indexed files to RMS at open time.

OVR SWT COBOL switches flag PSECT. Indicates
whether COBOL switches are referenced in
the COBOL program. -

CON IF1 Internal File Access Blocks (IFABs) - used
internally by RMS to store information.

CON IRI Internal Record Access Blocks (IRABs) -
used internally by RMS to store
information.

CON KD1 Internal Key Descriptors - used internally

by RMS to store information on the keys for
indexed files.

CON BD1 Buffer Descriptor Blocks (BDBs) - used
internally by RMS to store information on
the buffers.

COMPILER GENERATED PSECTS

Table D-2 (Cont.)
PSECT Names Suffixes

Allocation Suffix Content
CON KBl Key Buffers - used internally by RMS to
store keys for indexed files.
CON FD1 FDA Index Vector - contains address of

first FDA in program.
Note:
OVR indicates overlayable PSECT.

CON indicates concatenatable PSECT.

APPENDIX E

SORTING FILES IN A COBOL PROGRAM

Files prepared for or by COBOL programs may be sorted using the SORT
utility, which 1is discussed in the PDP-11 SORT Reference Manual. A
major portion of that facility is available to the COBOL programmer
through usage of a set of subroutine linkages, described in detail in
this chapter. All such linkages involve use of a CALL statement with
an appropriate parameter list.

E.1 CALL STATEMENTS REQUIRED

A set of five CALL statements, each calling a particular SORT
subroutine, is required within a COBOL program in order to produce a
sorted output file. Each of these subroutines (RSORT, RELES, MERGE,
RETRN, ENDS) performs a specialized function in the SORT procedural
sequence and lets the COBOL programmer both specify sorting parameters
and perform special operations on individual records as they pass
through the initial and final phases.

E.1.1 1Initializing the SORT - CALL RSORT
The following statement is needed to initialize the sorting operation:

CALL "RSORT" USING IERROR, KEYSIZ, MAXREC, KEYLOC, SRTBUF,
BUFSIZ, SCRNUM.

Parameter usage is as follows:

IERROR - location in which a SORT subroutine may place a
non-zero error code, if necessary, in COMP form,
value less than 100.

KEYSIzZ - location containing byte count of total key size
in COMP form, a positive even integer.

MAXREC - location containing byte count of maximum data
record size in COMP form, a positive even integer.
The sum of KEYSIZ and MAXREC cannot exceed 16,383
(decimal).

KEYLOC - address of most major word in key. See Section
E.2 for details on setting up sort key.

SRTBUF - address of first word in sort work area.

BUFSIZ - location containing byte count of sort work area

size in COMP form.

E-1

SORTING FILES IN A COBOL PROGRAM

SCRNUM - location containing number of scratch files
available to the SORT (not less than 3, not more
than 8), in COMP form.

E.1.2 Passing a Record to the Sort - CALL RELES
The following statement is needed to pass a record to the sort:
CALL "RELES" USING IERROR, RECSIZ, INREC.
Parameter usage is as follows:
IERROR - usage is as described above.
RECSIZ - location containing byte count of data record size
in COMP form, a positive even integer not greater

than value in MAXREC.

INREC - address of record to be passed to the sort.

E.1.3 Merging the Scratch Files - CALL MERGE

The following statement is needed to merge the scratch files in the
sort after all input records have been passed to the sort:

CALL "MERGE" USING IERROR.

IERROR usage is as described above.

E.1.4 Requesting an OUTPUT Record - CALL RETRN

The following statement is needed to request the output records, one
at a time, produced in sorted order by the sort:

CALL "RETRN" USING IERROR, RECSIZ, OUTREC.
Parameter usage is as follows:
IERROR ~ usage is as described above.
RECSIZ - location to receive byte count of returned data
record size in COMP form, a positive even integer

not greater than value in MAXREC.

OUTREC - address of area to receive returned data record.

NOTE

RETRN indicates "no more records" by
placing a negative value in IERROR.

SORTING FILES IN A COBOL PROGRAM

E.1.5 Terminating the Sort - CALL ENDS

The following statement is needed to terminate the sort after all
sorted output records have been returned:

CALL "ENDS" USING IERROR.

IERROR usage is as described above.

E.2 SETTING UP THE KEY

Before CALL RELES is executed, the COBOL programmer must first set up
the key in an area outside the record itself. Since the key area must
begin and end on a word boundary, usage of an 01 level description in
the Working - Storage Section is recommended. The most major byte for
the key, that byte "on the left", must be stored in the highest memory
location of the key area, and the most minor byte, that byte "on the
right", must be stored in the lowest memory location.

Thus the data must be moved byte by byte, NOT word by word, to the key
area, resulting in the key being stored "backwards" by bytes. If the
actual key contains an odd number of bytes, the last unused position
must be zeroed out, to insure proper results from word compares. Thus
for a key of 7 bytes, KEYSIZ - 8; the contents of the 1lowest byte
address should always be zero.

The form of the comparison is logical, i.e., all eight bits of a byte
are significant; there 1is no implied sign. The programmer is

responsible for organizing the key data passed to the sort in a form
which ensures the correct sequence.

E.3 WORK AREA SIZE

The size of the sort work area, BUFSIZ, must be at least as 1large as
the result of the following calculation:

Minimum BUFSIZE = SCRNUM * (1110 + MAXREC + KEYSIZE)
If less space is provided, the sort will keep decreasing the number of
work files until either the above equation is satisfied or the number
of files drop below three; the latter is an error condition (error
code 17).

Any extra memory will be used to expand the in-core sort area. Thus,
in general, the more space supplied, the faster the sort.

E.4 TYPICAL USAGE SEQUENCE

Sort the file SORT-IN to produce the file SORT-OUT.
1. Open SORT-IN..
2. Call RSORT to initialize the sort.

3. Read the next logical record from SORT-IN. If no more data,
go to step 7.

SORTING FILES IN A COBOL PROGRAM

4, Perform any desired operations upon the input record. If it
is not to be submitted to the sort, go to step 3.

5. Set up the keys from the new record.

6. Call RELES to give the record to the sort, then loop back to
step 3.

7. Close SORT-IN.
8. Call MERGE to collate the records submitted to the sort.
9. Open SORT-OUT.

10. Call RETRN to get the next sorted output record. If no more
records, go to step 13.

11. Perform any desired operations upon the sorted output record.
If it is not to be included in the SORT-OUT file, go to step
10.

12. Write the record onto SORT-OUT, then loop back to step 10.
13. Close SORT-OUT.

14, Call ENDS to clean up the sort scratch files.

E.5 LINKING SORT ROUTINES WITH A COBOL PROGRAM

The actual sorting subroutines are contained in SORTS.OBJ and
SIORMS.OBJ which are included in the COBOL object library (COBLIB).
The programmer can link these to his own calling program, by following
the usual procedure for using the Task Builder to task-build any COBOL
program.

Note that the sort subroutines use LUNs 5, 6, ... 12 for the scratch
files. Use the task builder device assignment (ASG) command
appropriately. The LUN can be overridden by globally patching
location $RFIRL. Insure that the LUNs used by the sort subroutines do
not conflict with the LUNs assigned to files in the COBOL program that
might be open when the sort subroutines are called.

E.6 COMPARISON WITH ANS COBOL SORT VERB

Readers familiar with the ANS COBOL SORT verb will recognize that a
substantial portion of that capability has been described in this
chapter. The following points of comparison will be helpful in
converting from such usage to the described facility:

1. INPUT PROCEDURES are available thru the CALL RELES usage.
2. OUTPUT PROCEDURES are available thru the CALL RETRN usage.

3. Only ASCENDING keys are supported. The programmer can get
the effect of DESCENDING key fields by simply complementing
them when he stores them in KEYLOC. Note that the data
record itself is unaffected by this procedure, so restoration
of such fields after the sort is unnecessary.

SORTING FILES IN A COBOL PROGRAM

The COLLATING-SEQUENCE option is not directly available.
Again, however, the programmer could transform key fields
when storing them in KEYLOC to achieve the desired effect.

There is no MERGE feature,

Multiple usages of the sort may occur within a given COBOL
program provided that "RSORT" and "END" bracket each usage.

There is no restriction on the presence of COBOL code in
addition to INPUT and OUTPUT PROCEDURES.

E.7 ERROR CODES

Whenever the sort detects an error, it returns a non-zero code to the

location

specified by the programmer (IERROR in discussion above).

The error codes (octal representation) and their meanings are:

DEC

10

11
12

13

OCTAL

00 No errors

01 Device input error

02 Device output error

03 OPEN INPUT failure

04 OPEN OUTPUT failure

05 Size of current record is dgreater than
maximum size

06 Not enough work area

07 "RETRN" was called after it had exited with a
negative error code (end of sort).

10 SORT routine called out of order. The order
of the <calls must be RSORT, RELES, MERGE,
RETRN, ENDS.

11 Sort already in progress. To do a second
sort, ENDS must be called to clean up the
first sort.

12 Key size is not positive, SORTS detected a
zero or nedative key size in its calling
parameter.

13 Record size not positive.

14 Key address not even. The keys must start at
an even address (SORT uses word moves).

15 Record address not even.

DEC

14

15

16

17

18
19
20

SORTING FILES IN A COBOL PROGRAM

OCTAL

16

17

20

21

22
23
24

Scratch records will be too large. The size
of the Kkeys plus the size of the largest
record must be less than 377776 (octal).

Too few scratch files. A minimum of 3
scratch files must be specified.

Too many scratch files. A maximum of 10
scratch files may be specified.

End-of-string record was detected where none
was expected.

Like 21, but for End-of-File.
SORT found a record larger than it expected.

Record 1length 1is non-standard for SORTT,
SORTA, SORTI.

[COMP items are displayed in DECIMAL!]

APPENDIX F

COBOL TERMINAL HANDLING SERVICES ON RSTS/E

The COBOL-1l runtime library contains a set of callable subroutines
that support multi-terminal access from a single COBOL program. These
subroutines run only on RSTS/E.

The purpose of this subroutine package is to provide asynchronous
terminal I/0 support for COBOL programs running on RSTS/E.

F.1 GENERAL SERVICES
The subroutines provide the following services:

1. The ability to assign and deassign available terminal
(keyboards) to the running COBOL program.

2. The ability to OPEN or CLOSE a specific I/0 channel and
logical unit pair for terminal INPUT/OUTPUT.

3. The ability to WRITE a message to any single terminal
assigned to the program.

4. The ability to READ a message from a specific terminal.

5. The ability to READ a message from any terminal in the dgroup
assigned to the program and have the subroutine identify from
which terminal the message came. This technique is known as
polling.

6. In conjunction with the READ capabilities, the user has the

ability to specify how long to wait for a message from any
terminal before returning to the user program.

F.1.1 Open a Logical Unit for Terminal I/0

This function must be called to initialize the multi-terminal
subroutines to expect terminal I/0 on a specified logical unit (LUN).
The LUN is required by the subsequent terminal I/0 subroutines to
function properly.

The form of the call is

CALL "KBOPEN" USING ERR, LUN

COBOL TERMINAL HANDLING SERVICES ON RSTS/E

Where:

ERR - is a comp data-item [PIC 9(4) COMP] that contains the
returned error status code. (See Section F.4.)

LUN - a comp data-item [PIC 9(4) COMP] that contains the decimal
logical unit number to use.

Example

MOVE 14 TO LUN.
CALL "KBOPEN" USING ERR, LUN.

An error code of zero indicates a successful call.

The choice of LUN number is very important and must comply with the
following rules:

l. It must be in the range of 1 to 15.

2. It must not conflict with a LUN number assigned by the COBOL
compiler to a file in the COBOL program.

F.1.2 Close a Terminal Logical Unit

This function disassociates a LUN and all keyboards assigned to the
LUN from the running COBOL program. The form of the call is

CALL "KBCLOS" USING ERR, LUN
Where:
ERR and LUN are as specified in

KBOPEN

F.1.3 Assigning a Terminal

In order to use the RSTS/E COBOL multi-terminal functions, each
terminal must be assigned to the COBOL program. A CALL is made to the
subroutine KBASGN to assign a specific terminal or keyboard (KB) to a
logical unit (LUN). This LUN must have been the subject of a
previously executed CALL to KBOPEN in the COBOL program.

The form of the CALL is

CALL "KBASGN" USING ERR, KB-UNIT

Where:
ERR -~ A 2-byte COMP data-item [PIC 9(4) COMP] that contains
an error code returned by the subroutine (see Section
F.4).

KB-UNIT - A 2-byte comp data-item [PIC 9(4) COMP] that contains
the keyboard number in decimal.

COBOL TERMINAL HANDLING SERVICES ON RSTS/E

F.l1l.4 Deassigning a Terminal

This function removes the specified terminal wunit from the 1list
assigned to the specified LUN. The form of the CALL is

CALL "KBDEAS"™ USING ERR, KB-UNIT
Where:

ERR AND KB-UNIT are as specified for the call to KBASGN.

F.1.5 Write to a Specific Terminal

Assuming that the specified terminal has been assigned, this function
delivers a message to the indicated terminal. The form of the call is

CALL "KBWRIT" USING ERR, COUNT, MESSAGE, LUN, KB-UNIT

Where:
ERR - the 2-byte comp data-item as specified earlier.
COUNT - a 2-byte comp data-item [PIC 9(4) COMP] that contains

the length the message in bytes.

MESSAGE - the data-item that contains the message to be written.
This message must contain all vertical and horizontal
formatting characters such as carriage returns, 1line
feeds and tabs.

LUN - a 2-byte comp item [PIC 9(4) COMP] as previously
specified.

KN-UNIT - a 2-byte comp data-item [PIC 9(4) COMP] identifying the
specific terminal to which the message is written..

F.1.6 Read from a Specific Terminal

This function allows a COBOL program to read a message from a specific
terminal and optionally waits for as much as 255 seconds for input
from the terminal. The form of the call is

CALL "KBREAD" USING ERR, COUNT, MESSAGE, LUN, KB-UNIT, TIME

Where:
ERR - is the 2-byte comp data-item where a success/error code
will be returned.
COUNT - is the 2-byte comp data-item which contains the 1length

of the message just read.

MESSAGE - defines the data-item into which the message 1is read.
This data item should be long enough to contain the
longest anticipated message to be read.

COBOL TERMINAL HANDLING SERVICES ON RSTS/E

When a message is read from a terminal, the message is
prefixed by a l-byte field which contains the terminal
unit number in binary. Therefore space should be
reserved in the message input data item for this byte.

i.e.,

01 MESSAGE
02 KB-NUM PIC X.
02 REAL-MESSAGE PIC X(80)

All messages are returned as ASCII strings with no
conversions taking place.

LUN - a 2-byte comp data-item containing the LUN number.

KN-UNIT - a 2-byte comp data-item containing the terminal number
to be used in the READ.

TIME - a 2-byte comp data-item containing a value from 1 to
255 which is the amount of time in seconds to wait for
input from the terminal(s). If no message is available
in this time, then an error 13 (user data error on
device) is returned. {

If TIME is given a zero value, then the" system will
wait indefinitely for input from the terminal(s).

If a terminal operator types CONTROL-Z at a \te;minal,
error code 11 (end-of-file on device) is returned.

F.1.7 READ Unsolicited from Any Terminal Assigned

This function allows a COBOL program to read a message from any
terminal assigned to the program. The read is called unsolicited
because no specific terminal is identified and what is expected 1is a
message from the first terminal found to have typed in a message.
This function can also wait for input from a terminal for a specified
length of time - up to 255 seconds. If no message is available from
any assigned terminal within this time, then an error condition is
returned. The error code 1is 13 - a user data error on device
condition that is generated by the RSTS/E monitor.

Using this function, the COBOL program can effectively poll group of
terminals requesting input as any is available.

The form of this call is
CALL "KBREAU" USING ERR, COUNT, MESSAGE, LUN, KB-UNIT TIME
Where:

ERR, COUNT, MESSAGE, LUN and TIME are as specified 1in the
description of KBREAD

and
KB-UNIT is a 2-byte comp data-item that contains (upon return

from the call to KBREAD) the wunit number (in binary) of the
terminal from which the current message was read.

COBOL TERMINAL HANDLING SERVICES ON RSTS/E

F.2 ERROR CODES DURING MULTI-TERMINAL HANDLING

These values are returned in binary in the 2-byte comp data-item used
in every call to the multi-terminal subroutines.

CODE

11

12

13

15

31

MEANING

Successful.

NOT A VALID DEVICE. An attempt was made to WRIT to an
unassigned device with DBWRIT.

I/0 CHANNEL ALREADY OPEN. A KBOPEN call attempted to use a
LUN that was already in use by the program for a file or for
other terminal operations because of a previous KBOPEN call.

DEVICE NOT AVAILABLE. A KBASGN call was made to assign a
terminal that is unavailable to the program and reserved by
another user,

1/0 CHANNEL NOT OPEN. A call to KBASGN, KBREAD, KBREAU or
KBWRIT was made using a LUN that was not OPENed by a KBOPEN
call.

END OF FILE ON DEVICE. A user at an assigned terminal typed
CONTROL/Z during a KBREAD call.

FATAL SYSTEM 1/0 FAILURE. A system level I/0 error occurred
- the user has no guarantee that the last operation was
performed.

USER DATA ERROR ON DEVICE. BAD DATA may have been
transmitted during the previous I/0 call or a call to KBREAD
or KBREAU did not get any data in the requested wait time.

Keyboard wait exhausted. The WAIT time requested for input
during a KBREAD or KBREAU call.

ILLEGAL BYTE COUNT FOR I/0O. A bad message length value was
used as a parameter during a DBWRIT call.

APPENDIX G
COMPILER SYSTEM ERRORS

(To be supplied in subsequent update.)

APPENDIX H

DIAGNOSTIC ERROR MESSAGES

This Appendix contains a numerical listing of the diagnostic messages
generated by the PDP-11 COBOL compiler. The general format of
presentation is to give the error message number and the text of the
diagnostic message to the left. On the right, a detailed explanation
of the diagnostic is given indicating the reason(s) for which the
diagnostic message 1is issued and the recovery action taken by the
compiler,.

NOTE

In many explanations, the word "Fatal."
appears as the very last sentence of the
explanation. This means that this is a
fatal diagnostic issued in the Procedure
Division. If the /ACC:2 switch is
specified in the command string input to
the compiler, the associated diagnostic
message will cause the generation of the
special error trap coding discussed

previously.
001 CONTINUE PUNCH WITH BLANK A blank line has a continue
STATEMENT. IGNORED. punch. The continue punch is

ignored.

002 OQUOTE OR CONTINUE PUNCH MISSING. A non-numeric literal has no
QUOTE ASSUMED. quote and the following line
has no continue punch. A
terminal gquote is assumed at
the end of the line.

003 VIOLATION OF AREA A. The first non-blank character
ASSUMED CORRECT. on a continued line occurs in
Area A. The error is ignored.
004 LINE LENGTH EXCEEDS INPUT Continuation lines cause a
BUFFER. TRUNCATED. COBOL word to exceed the

capacity of the input buffer.
The word is truncated on the
right; the number of
characters retained depends
on the type of word being
processed.

H-1

005

006

007

010

011

012

013

014

015

016

017

020

DIAGNOSTIC ERROR MESSAGES

.IO CONTROL. WITHOUT .FILE
CONTROL. IGNORED.

.STRING. DATA ITEM MUST HAVE
DISPLAY USAGE.

NAME EXCEEDS 30 CHARACTERS.
TRUNCATED TO 30.

NUMERIC LITERAL OVER 18
DIGITS. TRUNCATED TO 18.

NUMERIC LITERAL HAS MULTIPLE
DECIMAL POINTS.

PICTURE CLAUSE ILLEGAL ON

GROUP LEVEL. IGNORED.
.SELECT. NOT FOUND. SENTENCE
IGNORED.

JUST.SYNC.BLANK CLAUSES
WRONG AT GROUP. IGNORED.

FILENAME MISSING OR
INVALID. SELECT IGNORED.

USAGE CONFLICTS WITH GROUP
USAGE. USES GROUP.

ILLEGAL NUMERIC DATANAME

IN .STRING.

.ALL. ILLEGAL IN CONTEXT OF
.STRING. STATEMENT.

An I-O-~-CONTROL paragraph
appears when no FILE-CONTROL
paragraph was present. The
I-O-CONTROL paragraph is
ignored.

A data item in a STRING
statement has been given a
COMP or INDEX usage. Fatal.

A character string which
appears to be a name exceeds
30 characters in length. The
string is truncated on the
right to 30 characters.

A numeric literal exceeds 18
digits in length. The
literal is truncated on the
right, with any necessary
adjustment to scaling. The
sign is retained.

A numeric literal has more
than one decimal point.

A group level item has a
PICTURE clause. The clause
is ignored.

A FILE-CONTROL statement
should begin with the word
SELECT, but does not. All
words up to the next period
are ignored.

A group level item may not
contain JUSTIFIED,

SYNCHRONIZED, or BLANK WHEN
ZERO clauses. The clause is
ignored.

A SELECT statement either
contains no user name or the
the user name is invalid. The
SELECT statement is ignored.

The usage specified for this
item differs from the usage
stated at a higher group
level. The group level usage
is used.

A numeric data item in a
STRING statement has an
illegal description. Fatal.

An ALL literal has been used
in a STRING statement. Fatal.

021

022

023

024

025

026

027

030

031

032

033

034

DIAGNOSTIC ERROR MESSAGES

SYNTAX ERROR OR NO
TERMINATOR.

NUMERIC LITERAL ILLEGAL
IN THIS STATEMENT.

SENDING LIST OMITTED IN
.STRING. STATEMENT.

MORE THAN ONE FILENAME

IN .ASSIGN.

ILLEGAL DATANAME FOLLOWS

.INTO. IN .STRING.

SUBSCRIPTING DEPTH EXCEEDS
3. OVER 3 IGNORED.

VALUE
ITEM.

ILLEGAL IN OCCURS
IGNORED.

VALUE ILLEGAL IN

REDEFINES ITEM. IGNORED.

NO TERMINATOR FOR .IO
CONTROL. PARAGRAPH.

.MAP. NO LONGER APPLICABLE.
IGNORED.

AN IO CONTROL CLAUSE
WITHOUT FILES.

SYNTAX ERROR IN .APPLY..

CLAUSES SKIPPED.

A SELECT statement is missing
its terminating period or an
error causes the statement to
be processed before all
clauses were found. The
SELECT statement is ignored.

A STRING, UNSTRING, or
INSPECT statement contains a
numeric literal. Fatal.

A STRING statement contains
no sending fields before a
DELIMITED BY phrase. Fatal.

The non-numeric literal of an
ASSIGN clause contains more
than one file specification.
Only the first specification
is used.

The receiving field of a
STRING statement is invalid.
Fatal.

This OCCURS clause is nested
more than three deep. The
OCCURS clause is ignored.

A VALUE clause appears in an
item with an OCCURS clause or
in an item subordinate to an
OCCURS clause. The VALUE
clause is ignored.

A VALUE clause appears in an
item which either contains a
REDEFINES clause, or is
subordinate to an item with a
REDEFINES clause.

The I-O-CONTROL paragraph is
not terminated by a period.
The terminator is assumed
present.

An APPLY clause with the MAP
option is not applicable for
this version and future
versions of PDP-11 CORBOL.
APPLY clause is ignored.

The

A file-name is missing in a
clause of the I-0-CONTROL
paragraph. The clause is
ignored.

An APPLY clause has illegal
syntax. The clause is
ignored.

035

036

037

040

041

042

043

044

045

046

047

050

DIAGNOSTIC ERROR MESSAGES

INVALID ACCESS MODE.
TREAT AS SEQUENTIAL.

INVALID FILE ORGANIZATION.

TREAT AS SEQUENTIAL.

NO SELECT STATEMENTS.

OMITTED FROM
SELECT IGNORED.

.ASSIGN.
SELECT.

DECIMAL PLACES TRUNCATED.

INTEGER EXPECTED, ZERO
ASSUMED.

INTEGER VALUE TOO BIG.
LARGEST VALUE USED.

ERROR IN DATA RECORDS
CLAUSE. CLAUSE SKIPPED.

ERROR IN LABEL RECORDS
CLAUSE. CLAUSE SKIPPED.

NO INTEGER IN BLOCK

CLAUSE. CLAUSE SKIPPED.

BAD VALUE IN BLOCK
CLAUSE. CLAUSE SKIPPED.

NO INTEGER IN RECORD
CLAUSE. CLAUSE SKIPPED.

The SELECT statement contains
an invalid ACCESS mode.
SEQUENTIAL ACCESS mode is
assumed.

THE SELECT statement contains
an invalid ORGANIZATION
specification. SEQUENTIAL
organization is assumed.

A FILE-CONTROL paragraph
either contains no SELECT
statements or none of those
present are valid. The
FILE-CONTROL paragraph is
ignored.)

A SELECT statement contains
no ASSIGN clause. The SELECT
statement is ignored.

Decimal places have been
truncated from a numeric
literal during conversion for
use as an integer. The
integer positions are used.

An integer literal was
expected but fractional
positions were found. The
literal is ignored and a
value of zero is assumed.

A numeric literal is too big
for conversion as an integer
in the given context. A
value of 32,767 is used.

The word DATA is not followed
by RECORD or RECORDS in the
DATA RECORDS clause. The
DATA RECORDS clause is
ignored.

The word LABEL is not
followed by RECORD or RECORDS
in the LABEL RECORDS clause.
The LABEL RECORDS clause is
ignored.

The BLOCK clause does not
contain a numeric literal.
The BLOCK clause is ignored.

The numeric literal in the
BLOCK clause causes an
illegal block size. The block
size in bytes must be greater
than 0 and less than 32768.
The BLOCK clause is ignored.

The RECORD CONTAINS clause
does not contain a numeric
literal. The RECORD CONTAINS
clause is ignored.

051

052

053

054

055

056

057

060

061

062

063

DIAGNOSTIC ERROR MESSAGES

INVALID VALUE IN RECORD
CLAUSE. CLAUSE SKIPPED.

INVALID FILENAME.
FD SKIPPED.

FD TERMINATOR MISSING.
ASSUMED PRESENT.

KEY WORD EXPECTED.
REMAINING CLAUSES SKIPPED.

NO LABEL CLAUSE IN FD.
.STANDARD. ASSUMED.

NO SELECT. FILE
DELETED.

ALLOCATED SPACE EXCEEDS
LARGEST RECORD.

RECORD AREA EXTENDED TO
CONTAIN LARGEST RECORD.

NO RECORD AREA.
DELETED.

FILE

ILLEGAL DATANAME FOLLOWS

.WITH POINTER. PHRASE.

ILLEGAL SYNTAX IN .STRING.
STATEMENT.

The numeric literal in the
RECORD CONTAINS clause is not
greater than zero. The
RECORD CONTAINS clause is
ignored.

The word following FD is not
valid as a file-name. The
FD entry is ignored.

The file description entry
contains no period
terminator. The error is
ignored.

A keyword, which begins a
clause, such as BLOCK, LABEL,
DATA, etc. is missing. The
remainder of the FD entry is
ignored.

The FD entry contains no
LABEL RECORD clause. LABEL
RECORD IS STANDARD is assumed.

The FD entry's file-name has
no corresponding SELECT
statement. The FD entry is
ignored. All references to
the filename will be
diagnosed as undefined.

The maximum record size
specified by the RECORD
CONTAINS clause exceeds the
space required for any 01
entry under the same file.
The value specified by the
RECORD CONTAINS clause is
used.

The space required by the
largest 01 record under a
file description exceeds the
space required by the RECORD
CONTAINS clause in the FD
entry. The value derived
from the 01 record
description is used.

No record area is allocated
for a file description. The
file description is ignored.
All references to the file
will be diagnosed as
undefined.

The data item used as a
pointer in a STRING or
UNSTRING statement is
illegal. Fatal.

A STRING statement contains
illegal syntax. Fatal.

DIAGNOSTIC ERROR MESSAGES

064 77 ILLEGAL IN FILESECTION. A 77 level item description
CHANGED TO 01. has been found in the FILE
SECTION. The 77 level is
treated as an 01 level.

065 ILLEGAL WORD FOLLOWS A data-name or literal is
.DELIMITED BY. PHRASE. expected following a
DELIMITED BY phrase in a
STRING or UNSTRING statement.

Fatal.
066 ILLEGAL USE OF .ALL.. In the VALUE clause, an ALL
IGNORED. numeric literal is detected.

This is illegal. ALL is
ignored by the compiler.

067 CONDITION NAME MISSING OR The condition—-name in an 88
INVALID. 88 IGNORED. level entry is either missing
or invalid. The entire entry
is ignored.

070 TWO INDEXED KEYS START AT The leftmost character

SAME OFFSET IN RECORD position of the RECORD KEY or
ALTERNATE RECORD KEY dataname
corresponds to the leftmost
character position of some
other RECORD KEY or ALTERNATE
RECORD KEY data-name. The
clause is ignored.

071 .REDEFINES. ON 01 LEVEL The REDEFINES clause is
IN FILE SECTION INVALID. present on the 01 level
in the FILE SECTION, where
redefinition is implicit.
REDEFINES clause is ignored.

072 PICTURE IGNORED An item defined as USAGE
FOR INDEX 1ITEM. INDEX has a PICTURE clause.
The PICTURE clause is
is ignored.

073 NONNUMERIC PIC ON COMP An item defined as USAGE COMP
ITEM. TREATED AS DISPLAY. has a picture-string with
non-numeric characters. The
stated usage is ignored. The
item is treated as USAGE

DISPLAY,
074 SUBSCRIPT OUT OF RANGE. A literal subscript is either
ASSUME 1. less than 1 or greater than

the maximum allowable value.
A value of 1 is used.

075 .STATUS. OMITTED FROM The FILE STATUS clause has
.FILE STATUS.. ASSUMED. incorrect syntax. The error
is ignored. :
076 SOME FILES WITHOUT POSIT. A MULTIPLE FILE TAPE clause
NO. IN MUL. FILE TAPE. contains file-names with

POSITION Clauses. Not all
the file-names contain
POSITION clauses. The error
is ignored. File searching
during OPEN will find the
file.

H-6

077

100

101

102

103

104

105

106

107

110

111

112

113

114

DIAGNOSTIC ERROR MESSAGES

.MULTIPLE FILE TAPE.
ERROR.

SYNTAX

OPERAND CLASSES IN CONFLICT.

POSSIBLE RECEIVING
FIELD TRUNCATION.

TOO FEW SOURCE FIELDS
FOR ADD .GIVING..

.EXIT. WAS NOT THE ONLY
VERB IN PARAGRAPH.

SENDING ITEM INVALID
OR OMITTED.

SENDING ITEM NOT FOLLOWED
BY .TO..

RECEIVING ITEM INVALID OR
OMITTED.

INVALID CLASS FOR
DESTINATION FIELD.

RELATIVE OR RECORD KEY OR STATUS
NAME INVALID.

.STOP. SYNTAX ERROR.

.SIZE ERROR.
INCORRECT.

STATEMENT

.PROCEDURE DIVISION. OMITTED.

INTERMEDIATE RESULT TOO LARGE.
HIGH ORDER TRUNC.

A MULTIPLE FILE TAPE clause
contains a syntax error. The
clause is ignored.

One or more operands in a
statement have invalid class.
Fatal.

A MOVE statement results

in right hand truncation of
the receiving field value.
This is not an error and is
ignored.

At least two valid source
operands must appear in an
ADD...GIVING statement.
Fatal.

An EXIT statement is not the
only statement in a
paragraph. The EXIT
statement is ignored.

A MOVE statement contains
an invalid or missing
sending operand. Fatal.

A MOVE statement does
have a TO following the
sending operand. Fatal.

not

A MOVE statement has no valid
receiving operand. Fatal.

The receiving operand of an
ADD or SUBTRACT statement is
not numeric or numeric-
edited. Fatal.

The name referenced in a
RELATIVE KEY, RECORD KEY,
ALTERNATE RECORD KEY or

FILE STATUS clause is invalid.
The clause is ignored.

The STOP statement is not
followed by a literal or
the word RUN. Fatal.

The word ERROR is not found
in ON SIZE clause. Fatal.

The source program does not
contain a PROCEDURE DIVISION.
Fatal.

An arithmetic statement calls
for an intermediate result in
excess of 18 digits.

The intermediate result is
truncated on the left to 18
digits with a possible loss
of high order non-zero digits
at execution time.

115

116

117

120

121

122

123

124

125

126

127

130

131

DIAGNOSTIC ERROR MESSAGES

INTERMEDIATE RESULT TOO
LARGE. LOW ORDER TRUNC.

.DIVISION. OMITTED AFTER

.PROCEDURE. .

TERMINATOR MISSING AFTER
DIVISION HEADER.

LITERAL INCOMPATIBLE WITH
ATTEMPTED USAGE.

DATANAME MUST FOLLOW .INTO.
IN THIS STATEMENT.

NUMERIC SUBJECT OR OBJECT
MUST BE INTEGER.

OPERANDS CONFLICT IN .SET...

OPERANDS CONFLICT IN .SET ...

BY. STATEMENT.

ILLEGAL FILENAME LITERAL

OR FILENAME DATANAME.

INVALID SUBJECT OF
SIGN CONDITION.

ITEM IN TABLE MAY NOT
BE USED AS A SUBSCRIPT.

.POINTER. MUST FOLLOW .WITH.
IN THIS STATEMENT.

RELATIVE KEY INVALID FOR
THIS FILE. IGNORED.

An arithmetic expression
calls for an intermediate
result in excess of 18
digits. The intermediate
result is truncated on the
right to 18 digits with a
possible loss of low order
non-zero digits at execution
time.

The word DIVISION is missing
in the PROCEDURE DIVISION
header. The error is
ignored.

The period terminator is
missing from a division
header. The error is
ignored.

Conversion of a literal
from one form to another
has failed. Fatal.

A valid data-name is not
present following INTO in
a STRING or UNSTRING
statement. Fatal.

A numeric, non-integer
subject or object is invalid
in the context of this
relation condition. Fatal.

A SET...TO statement

TO. STATEMENT. references
invalid operands.

Fatal.

A SET...BY statement
references invalid operands.
Fatal.

An ASSIGN statement or a
VALUE OF ID statement
contains an invalid file
specification or data-name.
The statement is ignored.

The subject of a sign
condition is not a valid
arithmetic expression.
Fatal.

A data item used as a
subscript is itself a table
element. Fatal.

A STRING or UNSTRING
statement has an invalid
WITH POINTER phrase. Fatal.

A RELATIVE KEY clause has
been applied” to a file which

132

133

134

135

136

137

140

141

142

143

DIAGNOSTIC ERROR MESSAGES

SUBJECT OR OBJECT OMITTED IN
RELATION CONDITION.

UNIDENTIFIABLE WORD FOUND IN
SUBSCRIPT.

INVALID SUBJECT OR OBJECT IN
RELATION CONDITION.

SUBSCRIPTS OMITTED.
VALUE OF 1.

ASSUME

RELATIVE INDEX LITERAL OUT
OF RANGE. INDEX USED.

SUBSCRIPTS GIVEN WHERE NOT
REQUIRED. IGNORED.

TOO FEW SUBSCRIPTS GIVEN.
ASSUME 1 FOR REST.

TOO MANY SUBSCRIPTS
GIVEN. IGNORE EXCESS.

SUBJECT AND OBJECT USAGE
MUST MATCH.

ARITHMETIC EXPRESSION
REQUIRED IN THIS CONTEXT.

does not have RELATIVE
organization.

The RELATIVE KEY clause is
ignored.

The subject or object is
omitted in a COBOL relation
condition. The condition
expression is considered
syntactically invalid. Fatal.

A subscript list contains

a word which is neither a
data-name or numeric literal.
The remainder of the list or
sentence is ignored.

Fatal.

The subject or object of a
relation condition is an
invalid operand. Fatal.

A reference to a table item
contains no subscript list.
Literal subscripts of 1 are
supplied as defaults.

The literal value of a
relative index causes an
out of range reference

to the table. The literal
value is ignored, and the
index-name only is used.

A reference is made to

a non-table item, and a
subscript list follows the
reference. The subscript
list is ignored.

A reference to a table item
contains a subscript list
with too few subscripts.
Default literal subscripts of
1 are supplied for missing
subscripts.

A reference to a table item
contains too many subscripts
in the subscript list. Extra
subscripts are ignored.

A relation condition between
non-numer ic operands requires
the same usage for both
operands. Fatal.

An arithmetic expression is
required in the context of
the COBOL statement being
compiled. The compiler has
failed to recognize the
arithmetic expression in this
context. Fatal.

144

145

146

147

150

151

152

153

154

155

DIAGNOSTIC ERROR MESSAGES

CONDITION EXPRESSION REQUIRED
IN THIS CONTEXT.

ILLEGAL OPERAND FOUND IN
COBOL EXPRESSION.

OPERATOR IS MISSING IN COBOL
EXPRESSION.

ABSOLUTE VALUE STORED.

ILLEGAL WORD FOUND AFTER
.NOT. IN EXPRESSION.

VERB FOUND IN AREA A.
ALLOWED.

EXPECTED .RELATIVE KEY.
DATANAME NOT DEFINED.

.LINAGE. CLAUSE DATAITEM
IS TOO LONG.

PROCEDURE NAME DUPLICATES
DATA NAME. ALLOWED.

STATEMENTS FOLLOWING .GO.
CAN NEVER BE EXECUTED.

A condition expression is
required in the context of
the COBOL statement being
compiled. The compiler has
failed to recognize the
condition expression in this
context. Fatal.

An invalid data-name or
literal has been found in the
COBOL statement being
compiled. The class or USAGE
of the data item may be
invalid in the context as a
reference in an expression.
Fatal.

An operator is omitted in the
specification of this COBOL
expression. The compiler
cannot recognize this
expression as a syntactically
valid COBOL expression.
Fatal.

A negative value has been
supplied for an unsigned
numeric item. The absolute
value of the numeric literal
is stored in the item.

The compiler has detected an
illegal expression operator
following a NOT keyword in
the COBOL expression being
compiled. The COBOL
expression is considered
syntactically invalid. Fatal.

A statement begins in
Area A. The error is ignored.

The data-name given in a
RELATIVE KEY clause has not
been defined in the Data
Division.

A data item named in a LINAGE
clause is declared in the
Data Division with more than
four decimal integer
positions of precision.

A procedure name is identical
to a data-name. The error is
ignored, since there can be
no ambiguity in legal
references.

A statement follows an
unconditional GO statement.
The statements following the
GO are compiled, but can

not be executed.

156

157

160

161

162

163

l64

165

166

167

170

DIAGNOSTIC ERROR MESSAGES

NONSEQUENTIAL FILE MAY
NOT BE OPTIONAL.

FILE HAS 10 CONTROL
CLAUSE CONFLICTS.

FILE REQUIRES REL. KEY.
TREATED AS SEQ. ACCESS.

INVALID INDEX DATAITEM USE IN
RELATIONAL.

UNKNOWN WORD.
NEXT CLAUSE.

SCAN TO

CLAUSE DUPLICATED.
OCCURRENCE USED.

SECOND

NO FD FOR THIS SELECT.

DIFFERENT SAME REC. AREAS
FOR SAME AREA.

.READ. WITHOUT .INVALID KEY.
.AT END. OR .USE.

I0 CONTROL CLAUSE HAS FILE
WITH NO .SELECT.

INTEGER OMITTED IN
.RESERVE.. DEFAULT ASSUMED.

The SELECT statement may
specify OPTIONAL only on
files with sequential
organization. The word
OPTIONAL is ignored.

A file is given conflicting
clause specifications in the
I-0-CONTROL paragraph of the
INPUT-OUTPUT SECTION.

A file with relative
organization and random
or dynamic access has no
RELATIVE KEY clause. The
access mode is changed to
SEQUENTIAL. ’

The compiler detects the
invalid use of an index data
item reference as the subject
or object of a relation
condition. Fatal.

An unknown word is
encountered when a clause
keyword is expected. All
words are ignored up to the
next valid clause.

A SELECT statement contains
two occurrences of the same
clause. The second
occurrence is used.

The file-name supplied in a
SELECT statement is not
further described in an FD
in the Data Division. The
SELECT statement is ignored,
causing the filename to
become undefined.

The compiler detects a
conflict between the SAME
RECORD AREA clause and the
SAME AREA clause.

A READ statement contains

no conditional clauses and
the file being read has no
USE procedure applied to it.
Fatal.

An I-O-CONTROL clause
references a file-name which
was not named in a SELECT
statement. The file-name is
ignored in the I-O-CONTROL
statement.

A RESERVE clause fails
to specify the number of

buffer areas to reserve. The

171

172

173

174

175

176

177

DIAGNOSTIC ERROR MESSAGES

INVALID SUBJECT OF CLASS
CONDITION.

VALUE EXCEEDS FIELD CAPACITY.
TRUNCATED.

NO DATA DIVISION STATEMENTS

PROCESSED.

INVALID GRP LEV NUM.
REST OF RECORD IGNORED.

INVALID PROCEDURE NAME
DEFINITION IN AREA A.

MISSING QUOTE ON CONTINUE
LINE. QUOTE ASSUMED.

COMPARISON OF LITERALS IS
NOT PERMITTED.

clause is ignored, and a
default of one area for
SEQUENTIAL and RELATIVE or two
areas for INDEXED is supplied.

The subject of a class
condition is not a data
item with acceptable class.
Fatal.

A numeric literal supplied

by a VALUE clause exceeds the
length of the field. The
value is right truncated and
stored in the field.

The Data Division contains
no valid entries. This
is an observation only.

A level-number is encountered
which terminates a previous
group item, but does not
match any previous group
item's level-number. All
data entries are skipped
until the next 01 level,
level indicator or header.

The compiler detects source
text in Area A of the
Procedure Division which does
not conform to the rules for
the definition of a
legitimate paragraph or
section name. Source text
found in Area A of the
Procedure Division is
interpreted by the compiler
as a user attempt to define a
new paragraph or section
name. The compiler supplies a
system-defined procedure name
and proceeds with the
processing of the source line
text containing the invalid
Area A text. The system-
defined procedure name is
transparent and, thus,
inaccessible to the user.

A non-numeric literal is
continued, but the first
non-space character is not a
quote. The error is ignored
by assuming a quote in front
of the first non-space
character.

A relation condition has
a literal as both subject and
object. Fatal.

200

201

202

203

204

205

206

207

210

211

212

213

214

215

DIAGNOSTIC

COPY IGNORED WITHIN
LIBRARY TEXT.

INVALID FILENAME ON COPY.
COPY IGNORED.

COPY FILENAME NOT FOUND.

PERIOD OMITTED AFTER
.DECLARATIVES..

.DECLARATIVES. OMITTED FROM
.END. STATEMENT.

PERIOD OMITTED AFTER
.END DECLARATIVES..

SOURCE PROGRAM ENDS IN
DECLARATIVES.

DATANAME MUST FOLLOW
.WITH POINTER. PHRASE.

.OVERFLOW. MUST FOLLOW
IN THIS STATEMENT.

.ON.

ILLEGAL SENDING FIELD
DATANAME IN .UNSTRING.

ILLEGAL SYNTAX IN
.UNSTRING. STATEMENT.

MULTIPLE SIGN CLAUSES
ON THIS ITEM.

ILLEGAL SYNTAX IN COBOL
EXPRESSION.

SIGN CLAUSE ON
NONNUMERIC ITEM.

ERROR MESSAGES

A COPY statement is
encountered within library
text. The COPY statement
is ignored.

A COPY statement supplies
a file specification which
is invalid. The COPY
statement is ignored.

A COPY statement supplies

a valid file specification,
but the file cannot be found
on the specified device. The
COPY statement is ignored.

The word DECLARATIVES is not
followed by a period. The
error is ignored.

The word END is not followed
by DECLARATIVES. END
DECLARATIVES is assumed.

words END DECLARATIVES
not followed by a period.
error is ignored.

The
are
The

The end of the source program
occurs in the Declaratives
area. Fatal.

A STRING or UNSTRING
statement contains an invalid
WITH POINTER phrase. Fatal.

A STRING or UNSTRING
statement contains an invalid
ON OVERFLOW phrase. Fatal.

The sending field of an
UNSTRING statement has
invalid class. Fatal.

An UNSTRING statement
has invalid syntax. Fatal.

More than one SIGN clause
appears in a data
description. (SEPARATE must
follow LEADING or TRAILING.)
The second clause is used.

The compiler detects a syntax
error of a general nature in
the COBOL expression being
compiled. Fatal.

A SIGN clause appears in

a non-numer ic data
description. The SIGN clause
is ignored.

216

217

220

221

222

223

224

225

226

227

230

231

232

DIAGNOSTIC ERROR MESSAGES

SIGN CLAUSE APPLIED
TO NONDISPLAY ITEM.

SIGN CLAUSE APPLIED
TO UNSIGNED DATAITEM.

ILLEGAL DELIMITING DATA

ITEM IN .UNSTRING.

.ALL. FIGURATIVE CONSTANT
ILLEGAL IN .UNSTRING.

ILLEGAL RECEIVING DATANAME
IN .UNSTRING.

.DELIMITED. CLAUSE REQUIRED
IN THIS .UNSTRING.

DATANAME MUST FOLLOW
.DELIMITER IN. PHRASE.

ILLEGAL DATANAME FOLLOWS
.DELIMITER IN. PHRASE.

DATANAME MUST FOLLOW
.COUNT IN. PHRASE.

ILLEGAL DATANAME FOLLOWS
.COUNT IN. PHRASE.

DATANAME MUST FOLLOW
.TALLYING IN. PHRASE.

ILLEGAL DATANAME FOLLOWS
.TALLYING IN. PHRASE.

DATANAME MUST FOLLOW
.INSPECT. VERB.

A SIGN clause appears in

a numeric data description
with usage other than
DISPLAY. The SIGN clause is
ignored.

A SIGN clause appears in a
numeric data description
which has no "S" in its
PICTURE string. The SIGN
clause is ignored.

An UNSTRING statement
references an invalid
delimiter. Fatal.

An UNSTRING statement
contains an ALL literal
reference. Fatal.

An UNSTRING statement
references a receiving data
item which is invalid.
Fatal.

An UNSTRING statement
contains no DELIMITED BY
clause. Fatal.

An UNSTRING statement
contains a DELIMITER

IN phrase with an illegal
reference. Fatal.

An UNSTRING statement
contains a DELIMITER IN
phrase referencing a data
item which is invalid.
Fatal.

An UNSTRING statement
contains a COUNT IN phrase
with an illegal reference.
Fatal.

An UNSTRING statement
contains a COUNT IN phrase
which references a data item
which is invalid. Fatal.

An UNSTRING statement
contains a TALLYING phrase
with an illegal reference.
Fatal.

An UNSTRING statement
contains a TALLYING
phrase referencing a data
item which is invalid.
Fatal.

A valid data-name reference
does not follow the INSPECT
keyword. Fatal.

DIAGNOSTIC ERROR MESSAGES

233 ILLEGAL DATANAME FOLLOWS An INSPECT statement
.INSPECT. VERB. references a data item
which is invalid. Fatal.
234 ILLEGAL DATANAME PRECEDES An INSPECT...TALLYING
.FOR. IN .INSPECT. statement references a tally
data item which is invalid.
Fatal.
235 .FOR. OMITTED IN An INSPECT...TALLYING
.INSPECT. STATEMENT statement has invalid syntax.
Fatal.
236 DATANAME MUST FOLLOW An INSPECT...TALLYING
.TALLYING. PHRASE. statement does not reference
a tally data-name. Fatal.
237 ILLEGAL WORD FOLLOWS An INSPECT...TALLYING
.FOR. IN .INSPECT. statement does not state
a valid search condition.
Fatal.
240 DATAITEM OMITTED AFTER An INSPECT statement
.ALL. .LEADING. OR .FIRST. does not reference a
valid search argument.
Fatal.
241 .ALL. FIGURATIVE CONSTANT An ALL literal appears in an
ILLEGAL IN ,INSPECT. INSPECT statement. Fatal.
242 ILLEGAL DATANAME FOLLOWS An INSPECT statement
.ALL. OR .LEADING. does not reference a
valid search argument.
Fatal.
243 ILLEGAL DATANAME FOLLOWS An INSPECT statement does
.BEFORE. OR .AFTER. not reference a valid
delimiter in the BEFORE/
AFTER phrase. Fatal.
244 ILLEGAL DATANAME FOLLOWS An INSPECT statement
.BY. does not reference a valid
replacement argument. Fatal.
245 ILLEGAL DATANAME PRECEDES An INSPECT statement does not
.BY. reference a legal data-name
or literal preceding the
BY phrase. Fatal. :
246 DATAITEM OMITTED IN An INSPECT statement does
.BEFORE. OR .AFTER. PHRASE. not reference a legal data-
name or literal after the
— — - N . BEFORE or AFTER phrase.
Fatal. T
247 ILLEGAL SYNTAX 1IN Both the TALLYING and
.INSPECT. STATEMENT. REPLACING keywords are
missing in the INSPECT
statement. Fatal.
250 .BY. MUST FOLLOW .CHARACTERS. The INSPECT...REPLACING

IN REPLACING LIST.

statement must have
CHARACTERS BY phrase

completely specified. Fatal.

251

252

253

254

255

256

257

260

DIAGNOSTIC ERROR MESSAGES

DATAITEM OMITTED AFTER
.BY. IN .INSPECT.

DATAITEM FOLLOWING .BY.
EXCEEDS 1 CHARACTER.

DATAITEMS BEFORE AND AFTER
.BY. UNEQUAL IN SIZE.

.BEFORE. OR .AFTER. OPERAND
EXCEEDS 1 CHARACTER.

ILLEGAL WORD FOLLOWS
-REPLACING. IN INSPECT..

.BY. OMITTED AFTER REPLACING
COMPARISON OPERAND.

TOO MANY RIGHT PARENTHESES IN
COBOL EXPRESSION.

TOO MANY LEFT PARENTHESES IN
COBOL EXPRESSION.

The INSPECT...REPLACING
statement does not reference
a legal data-name or literal
after BY. Fatal.

In an INSPECT...REPLACING
statement, either when the
CHARACTERS BY phrase is
specified or when a
figurative constant preceding
the BY keyword of the ALL,
LEADING, or FIRST phrase is
specified, the data-name or
literal after the BY keyword
must be defined as one
character in length. Fatal.
In an INSPECT...REPLACING
statement, the data items
before and after the BY
keyword of the ALL, LEADING,
or FIRST phrase must be equal
in length. Fatal.

In an INSPECT...REPLACING
CHARACTERS BY statement, the
data-name or literal follow-
ing the BEFORE or AFTER
keyword must be one character
in length. Fatal.

A legal keyword was not
recognized following
REPLACING in the INSPECT
statement. Fatal.

The keyword BY is omitted in
the ALL, LEADING, or FIRST
phrase where it separates
operands to be compared.
Fatal.

The compiler detects an
excess of right parentheses
in the COBOL expression being
compiled. Parentheses must be
specified in balanced pairs
i.e., a left parenthesis for
each right parenthesis speci-
fied. This COBOL expression
is considered syntactically
incorrect. Fatal.

The compiler detects an
excess of left parentheses in
the COBOL expression being
compiled. Parentheses must

be specified in balanced
pairs i.e., a right paren-
thesis for each left paren-
thesis specified. This COBOL
expression is considered syn-
tactically incorrect. Fatal.

261

262

263

264

265

266

267

270

DIAGNOSTIC ERROR MESSAGES

MISSING OPERAND IN ARITHMETIC
EXPRESSION.

ILLEGAL OPERAND IN ARITHMETIC
EXPRESSION.

NONINTEGER EXPONENT FOUND IN
COBOL EXPRESSION.

SUBJECT OMITTED IN
CLASS CONDITION.

SUBJECT OMITTED IN SIGN
CONDITION.

OPERAND MISSING IN
COMPLEX CONDITION.

INVALID OPERAND IN
COMPLEX EXPRESSION.

ILLEGAL SYNTAX IN NEGATED
SIMPLE CONDITION.

An operand is omitted in a
COBOL arithmetic expression.
The COBOL expression is con-
sidered syntactically in-
valid. Fatal.

The compiler detects an
illegal operand in a COBOL
arithmetic expression. The
class or usage of the operand
may be invalid in the context
as a reference in an arith-
metic expression. Fatal.

The compiler detects a
non-integer, numeric exponent
in a COBOL arithmetic
expression. The arithmetic
expression is considered
invalid. Fatal.

The compiler detects the
omission of the subject in a
NUMERIC or ALPHABETIC class
condition. The class
condition is considered
syntactically invalid. Fatal.

The compiler detects the
omission of the subject in a
sign condition. The sign
condition is considered
syntactically invalid.
Fatal.

The compiler detects the
omission of an operand in an
AND or OR complex condition.
The COBOL condition
expression.is considered
syntactically invalid. Fatal.

The compiler detects a
complex condition operand
which, in turn, is neither a
simple condition, combined
condition, nor a complex
condition. Fatal.

The compiler detects illegal
syntax in a COBOL negated
simple condition. Fatal.

271

272

INVALID NEGATED SIMPLE
CONDITION.

ILLEGAL SYNTAX IN
COMPUTE. STATEMENT.

The compiler detects the
application of the NOT
keyword to an invalid simple
condition. Fatal.

The compiler detects illegal
syntax in a COMPUTE
statement. The left side of
the assignment symbol, or

the assignment symbol itself
may have been omitted. Fatal.

273

274

275

276

277

300

301

302

303

DIAGNOSTIC ERROR MESSAGES

.AT END. ILLEGAL FOR
RANDOM .READ

INVALID KEY ILLEGAL FOR
SEQUENTIAL .READ.

INDEX DATA ITEM ILLEGAL
AS INDEX ON TABLE.

INDEX NAME NOT DEFINED
FOR THIS TABLE.

RELATIVE INDEX IS INVALID.

PROGRAM NAME OMITTED

AFTER .CALL. VERB

LINAGE 0 OR LESS

THAN FOOTING.

FILE CLOSED BUT NOT
OPENED.

PRINT CONTROL ON NON SEQUENTIAL

FILE. IGNORED.

Either the file has ACCESS
RANDOM or DYNAMIC without the
word NEXT being included in
the READ statement. In either
case, the AT END clause is
illegal and is treated as an
INVALID KEY clause.

Either the file has ACCESS
SEQUENTIAL or the READ
statement contains the word
NEXT. In either case, the
INVALID KEY clause is illegal.
It is treated as an AT END
clause.

An index data item is used as
an index on a table. The
index data item reference is
ignored. A 1literal subscript
of 1 replaces the index

data item reference.

An index-name used in a sub-
script list either is not
defined for this table or
appears in the wrong logical
position of the subscript
list for this table. The
index-name is ignored and a
default value of 1 is assumed
as the subscript.

The literal component of a
relative index is zero or
less in value or is an
invalid word. Relative
indexing is ignored and the
index-name only is used.

The program-name is omitted
after the key word CALL in

a CALL statement. This is
syntactically invalid. Fatal.

The LINAGE clause must
specify a page body of at
least one line and that page
body size must be equal to or
greater than the footing size
specified in the FOOTING
phrase.

A CLOSE statement was seen
for a file that was not
OPENed in this program.
Fatal.

An APPLY PRINT-CONTROL clause
references a file which does
not have SEQUENTIAL
organization. The file—name
is ignored in the APPLY
clause.

304

305

306

307

310

311

312

313

DIAGNOSTIC ERROR MESSAGES

DATANAME OMITTED IN .KEY
IS. PHRASE.

SECTION OR PARAGRAPH
NAME MISSING.

.PROCEDURE. MISSING IN .USE.
STATEMENT. ASSUMED.

~START. WITHOUT .INVALID
KEY. OR .USE.

.WRITE. WITHOUT .INVALID
KEY. OR .USE.

DATA DIVISION MUCH TOO
LARGE.

.REDEFINES. SPECIFIES INVALID
REDEFINITION.

ILLEGAL TO REDEFINE ANOTHER
REDEFINITION.

The KEY IS phrase of the START
statement is not followed by a
data—-name. The prime RECORD
KEY data—-name is assumed
present.

The Procedure Division does
not start with a section or
paragraph name or a section
header is not followed by a
paragraph name. Fatal.

The keyword PROCEDURE is
missing in the USE

statement. It is assumed and
processing is continued.

The INVALID KEY option is
missing from the START
statement or no USE proce-
dure is declared for the
referenced file. Fatal.

THE INVALID KEY option

is missing from the WRITE
statement or no USE
procedure is declared for
the referenced file. Fatal.

Too much buffer space is
being used for the

files in this program. Too
many files are declared to be
OPEN simultaneously. Fatal.

The compiler detects the
invalid application of
REDEFINES to a data
description entry which
contributes new character
positions between the data
description entry con-
taining the REDEFINES clause
and the item being redefined.
Also, the source of error may
be the definition of another
data description entry with a
lower level number appearing
between the data description
entry containing the
REDEFINES clause and the item
being redefined. The compiler
ignores the REDEFINES clause
and continues processing the
data description entry.

The REDEFINES clause speci-
fies the redefinition of a
data item whose data
description entry contains a
REDEFINES clause itself. This
is syntactically invalid. The
compiler ignores the

REDEFINES clause and continues

314

315

316

317

320

321

322

DIAGNOSTIC ERROR MESSAGES

ILLEGAL TO REDEFINE A
COBOL TABLE.

.REDEFINES. APPLIED TO
VARIABLE LENGTH DATAITEM.

.OCCURS DEPENDING ON. ILLEGAL
IN REDEFINITION.

PICTURE EXCEEDS 30
CHARACTERS. PIC X ASSUMED.

FILENAME MUST FOLLOW .CLOSE
VERB.

.NO. MUST FOLLOW .WITH.
IT IS ASSUMED.

.REWIND. MUST FOLLOW .NO.
IT IS ASSUMED.

processing of the data
description entry.

The REDEFINES clause speci-
fies the redefinition of a
data item whose data descrip-
tion entry contains an OCCURS
clause. This is syntactically
invalid. The compiler ignores
the REDEFINES clause and
continues processing of the
data description, entry.

The compiler detects an
application of the REDEFINES
clause to a data item whose
length is variable at run-
time. This data item is
variable in length because it
has a subordinate data item
whose data description entry
contains an OCCURS DEPENDING
ON clause. The application of
the REDEFINES clause to such
a data item is syntactically
invalid. The compiler ignores
the REDEFINES clause and
continues processing of the
data description entry.

The compiler detects a
redefinition which contains a
data description entry
declared with an OCCURS
DEPENDING ON clause. The
OCCURS DEPENDING ON clause
causes the redefinition to
contain a data item whose
length is variable at run-
time. This is syntactically
invalid. The DEPENDING ON
phrase is ignored and pro-
cessing continues.

The unexpanded PICTURE string
exceeds 30 characters in
length. This is syntactically
invalid. The compiler ignores
the user-supplied PICTURE

and declares the data-name
alphanumeric with a

"PICTURE X" declaration.

The data item following the
CLOSE verb was not a file-
name. Fatal.

The keyword NO is missing in
the WITH NO REWIND phrase of
the CLOSE statement. NO is
assumed present.

The WITH NO REWIND phrase of
the CLOSE statement must be

323

324

325

326

327

330

331

332

333

334

335

DIAGNOSTIC ERROR MESSAGES

.REMOVAL. MUST FOLLOW .FOR.
IT IS ASSUMED.

.LOCK. OMITTED AFTER .WITH.
IT IS ASSUMED.

DATANAME SPECIFIED WHERE
FILENAME EXPECTED.

FILENAME MUST FOLLOW
MODE SPEC. IN .OPEN.,.

ILLEGAL MODE SPECIFIED
AFTER .OPEN. VERB.

.END. MUST FOLLOW .AT..
IT IS ASSUMED.

FILENAME MUST FOLLOW
.READ. VERB.

DATANAME OMITTED AFTER .INTO.
IN .READ.

RECORDNAME MUST FOLLOW
.WRITE. OR .REWRITE.

STATEMENT IGNORED DUE
TO ILLEGAL RECORDNAME.

.ADVANCING. OPTION OMITTED
IN .WRITE. 1 ASSUMED.

completely specified. 1It is

assumed present.

The FOR REMOVAL phrase of the
CLOSE statement must be
completely specified.
assumed present.

It is

The keyword WITH in a CLOSE
statement is recognized but
is not followed by one of the
keywords NO or LOCK. The
WITH LOCK phrase is assumed
present.

The name used in an I/0 verb

to reference a file was not a
file name but was some other

data-name. Fatal.

The OPEN statement does not
reference a valid file name
where a file—-name reference
is expected. Fatal.

One of the OPEN mode keywords
INPUT, OUTPUT, I-O, or EXTEND
is required immediately after
the OPEN verb. None of these
four keywords was

recognized. Fatal.

The keyword END was omitted
in the AT END phrase of the
READ statement. The AT END
phrase is assumed present.

Either the file-name was
omitted following the READ
verb or the data item
following the READ verb is
not a valid file-name
reference. Fatal.

The data-name reference
following the INTO keyword
of the READ statement was
omitted. Fatal.

The 01 record-name reference
immediately following the
WRITE or REWRITE verb was
omitted. Fatal.

The data-name immediately
following the WRITE or
REWRITE verb is not a valid
01 record-name reference.
Fatal.

A data-name reference, numer-
ic integer literal reference,
or the keyword PAGE was not
recognized in the BEFORE/

336

337

340

341

342

343

344

345

346

DIAGNOSTIC ERROR MESSAGES

.EOP. MUST FOLLOW .AT..
IT IS ASSUMED.

DATANAME OMITTED AFTER
.FROM.

.ADVANCING. INTEGER TOO BIG.
TRUNCATED TO 63.

.NO REWIND. ILLEGAL WITH
.I0. OR .EXTEND. MODE.

ILLEGAL .ADVANCING. DATANAME.
1 IS ASSUMED.

FILENAME MUST FOLLOW
.DELETE. VERB.

FILENAME MUST FOLLOW
.START. VERB.

.LESS. OMITTED AFTER .NOT.
IN .START. ASSUMED.

DATANAME OMITTED IN .KEY
IS. PHRASE. ASSUMED.

AFTER ADVANCING phrase of the
WRITE statement. A numeric
integer literal value of 1 is
assumed.

The keyword EOP was omitted
in the AT EOP phrase of the
WRITE statement. The AT EOP
phrase is assumed present.

The data-name reference
following the FROM keyword of
the WRITE or REWRITE
statement was omitted.

Fatal.

The numeric integer in the
BEFORE/AFTER ADVANCING phrase
of the WRITE statement is
greater than 63. 63

is assumed.

An OPEN statement with the
I-0 or EXTEND mode specified
cannot have the NO REWIND
phrase also specified.
Fatal.

The data-name in the BEFORE/
AFTER ADVANCING phrase of the
WRITE statement is not an
elementary numeric integer
data-name reference. A
numeric integer literal value
of 1 is assumed.

Either the file-name was
omitted following the DELETE
verb or the data item
following the DELETE verb is
not a valid file-name
reference. Fatal.

Either the file name was
omitted following the START
verb or the data item
following the START verb is
not a valid file name
reference. Fatal.

The keyword LESS is omitted
after NOT in the relational
condition of the START

statement. LESS is assumed
present. :

The RELATIVE KEY data-name
for. the referenced file was
omitted in the KEY IS phrase
of the START statement. The
RELATIVE KEY data-name is
assumed present.

347

350

351

352

353

354

355

356

357

360

DIAGNOSTIC ERROR MESSAGES

RELATIONAL WORD OMITTED
AFER .KEY IS. PHRASE,.

TERMINATOR IGNORED IN
.10 CONTROL. PARAGRAPH.

TERMINATOR IGNORED IN
.SPECIAL NAMES. PARAGRAPH.

.NATIVE. MISSING IN
SPECIALNAMES CLAUSE. .

SYNTAX ERROR IN .OBJECT
COMPUTER. PARAGRAPH.

TERMINATOR OMITTED IN
.OBJECT COMPUTER. PARA.

DATANAME FOLLOWING .KEY IS.

PHRASE IS ILLEGAL

INVALID USAGE ON
CONDITIONAL VARIABLE.

ILLEGAL SEPARATOR IN
COBOL STATEMENT. IGNORED.

ILLEGAL CHARACTER FOUND
WITHIN A COBOL WORD.

None of the relational
keywords EQUAL, GREATER, or
NOT was recognized following
the KEY IS phrase of the
START statement. Fatal.

A clause is terminated by a
period, but a header does not
follow in Area A. The period
is ignored. The compiler
assumes it is still in the
I-O-CONTROL paragraph.

A clause is terminated by a
period, but is not followed
by a header in Area A. The
period is ignored, and the
compiler continues processing
the SPECIAL-NAMES paragraph.

The alphabet-name clause does
not contain NATIVE or
STANDARD-1. The alphabet-
name clause is ignored.

The OBJECT-COMPUTER paragraph
contains an unrecognizable
word. Recovery is made by
scanning over all words until
a word is found in area A.

The OBJECT-COMPUTER paragraph
is not terminated by a
period. Recovery is made by
scanning over all words until
a word is found in area A.

The data-name following the
KEY IS phrase of the START
statement is not a RECORD KEY
associated with the referenced
indexed file, nor is it
subordinate to a RECORD KEY
whose left-most character
position corresponds to its
own left-most character
position. FATAL.

The level 88 condition
variable does not have
DISPLAY or COMPUTATIONAL
usage.

An illegal character was
detected between two
consecutive words of a COBOL
statement. The illegal
character is ignored.

Illegal characters were found
in an alphanumeric COBOL
word, not within an
alphanumeric literal.
illegal characters are

The

361

362

363

364

365

366

367

370

371

DIAGNOSTIC ERROR MESSAGES

UNRECOGNIZABLE TEXT FOUND
IN COBOL STATEMENT.

COBOL WORD BEGINS WITH
OR ENDS IN HYPHEN.

NONNUMERIC LITERAL TOO LONG.
TRUNCATED TO MAX.

COBOL SOURCE LINE TOO LONG.
TRUNCATED TO MAX.

.BY. OMITTED IN REPLACING
OPTION. COPY IGNORED.

TERMINATOR OMITTED IN
.COPY. 1IT IS ASSUMED.,

.LINAGE. CLAUSE DATANAME
MUST BE AN INTEGER.

.LINAGE.CLAUSE DATANAME
MUST BE UNSIGNED.

POSSIBLE HIGH ORDER
RECEIVING FIELD TRUNCATION,

replaced by dollar signs in
the internal representation
of the COBOL word.

In scanning the source text,
the compiler was unable to
recognize an alphanumeric
COBOL word (i.e., a keyword
or user—-defined word), an
alphanumeric literal, or a
numeric literal. The error
is not internally corrected
and usually will propagate
further error messages.

In attempting to recognize a
keyword or user-defined word,
the compiler has detected
that the COBOL word begins

or ends with a hyphen
character.

An alphanumeric literal
greater than 132 characters

in length is detected. The
literal is truncated on right,
retaining the first 132 char-
acters as the literal.

The indicated COBOL source
line contains more than 65
characters in terminal
format. The excess
characters are ignored and
only those characters in the
printed COBOL source line are
retained.

The keyword BY was not found
in this COPY...REPLACING
statement. The statement
will be ignored.

The required period
terminating the COPY
statement is omitted.
assumed present.

It is

A data—-name referenced in the
LINAGE clause of the FILE
SECTION is defined in the
WORKING-STORAGE SECTION with
decimal places.

A numeric data-name refer-
enced in the LINAGE clause of
the FILE SECTION is defined
in the WORKING-STORAGE SEC-
TION as a signed data item.

Truncation of high order
information during a MOVE
or an arithmetic operation
upon a receiving field is

372

373

374

375

376

377

400

401

402

DIAGNOSTIC ERROR MESSAGES

POSSIBLE LOW ORDER

RECEIVING FIELD TRUNCATION.

PD HEADER NOT FOLLOWED
BY AN AREA A WORD.

OPEN OPTIONAL FILES ONLY
IN .INPUT. MODE.

EXPECTED .FILE STATUS.
DATANAME NOT DEFINED.

EXPECTED .VALUE OF ID.
DATANAME NOT DEFINED.

EXPECTED .LINAGE. CLAUSE
DATANAME NOT DEFINED.

.RELATIVE KEY. DATANAME
HAS INVALID CLASS.

.RELATIVE KEY. DATANAME
HAS INVALID USAGE.

-RELATIVE KEY.
IS TOO LONG.

DATAITEM

possible. This is an
observation only.

Truncation of low order
information during a MOVE
or an arithmetic operation
upon a receiving field is
possible. This is an
observation only.

The word following the
PROCEDURE DIVISION header
does not begin in Area A. A
scan is made over all words
until a word is found in Area
A.

An OPTIONAL file can be
OPENed in INPUT mode only.
The compiler assumes that the
OPTIONAL file is OPENed in
INPUT mode.

A data-name referenced in a
FILE STATUS phrase of a
SELECT clause in the FILE-
CONTROL paragraph is not
defined in the WORKING-
STORAGE SECTION of the DATA
DIVISION.

The data-name referenced in a
VALUE OF ID clause of an FD
is not defined in the
WORKING-STORAGE SECTION of
the DATA DIVISION. Fatal.

A data-name referenced in the
LINAGE clause of the FILE
SECTION is not defined in the
WORKING-STORAGE SECTION of
the DATA DIVISION.

A data-name referenced in a
RELATIVE KEY phrase of a
SELECT clause in the FILE-
CONTROL paragraph is defined
in the WORKING-STORAGE
SECTION with non-numeric
class.

A data-name referenced in a
RELATIVE KEY phrase of a
SELECT clause must be defined
with COMPUTATIONAL or

DISPLAY usage in the WORKING-
STORAGE SECTION.

A numeric integer data-name
referenced in a RELATIVE KEY
phrase is defined with more
than eight digits of
precision in the WORKING-
STORAGE SECTION.

403

404

405

406

407

410

411

412

413

414

DIAGNOSTIC ERROR MESSAGES

.RELATIVE KEY. DATANAME
MUST BE AN INTEGER.

.FILE STATUS. DATANAME
HAS INVALID CLASS.

.FILE STATUS. DATA NAME
HAS INVALID USAGE.

LENGTH OF .FILE STATUS.
DATAITEM IS ILLEGAL.

.VALUE OF ID. DATANAME
HAS INVALID CLASS.

.VALUE OF ID. DATANAME
HAS INVALID USAGE.

LENGTH OF .VALUE OF ID.
DATAITEM IS ILLEGAL.

.LINAGE. CLAUSE DATANAME
HAS INVALID CLASS.

.LINAGE. CLAUSE DATANAME
HAS INVALID USAGE.

INVALID RECEIVING OPERAND

IN .SET.. IGNORED.

A numeric data-name refer-
enced in a RELATIVE KEY
phrase is defined in the
WORKING-STORAGE SECTION with
decimal places.

A data-name referenced in a
the FILE STATUS phrase of a
SELECT clause must be defined
in with DISPLAY usage in the
WORKING-STORAGE SECTION.

A data-name referenced in a
FILE STATUS phrase of a
SELECT clause is defined with
DISPLAY USAGE in the WORKING-
STORAGE SECTION.

An alphanumeric data-name
referenced in a FILE STATUS
phrase of a SELECT clause
must be defined as an
alphanumeric variable
consisting of two characters
in the WORKING-STORAGE
SECTION.

A data-name referenced in a
VALUE OF ID clause of an FD
is defined in the WORKING-
STORAGE SECTION with non-
alphanumeric class.

A data—-name referenced in a
VALUE OF ID clause of an FD
must be defined with DISPLAY
usage in the WORKING-STORAGE
SECTION.

An alphanumeric data-name
referenced in a VALUE OF ID
clause of an FD must be
defined in the
WORKING-STORAGE section as
alphanumeric variable whose
length L falls in the range
9<=L<=40 characters.

A data-name referenced in

the LINAGE clause of the FILE
SECTION is defined in the
WORKING~STORAGE SECTION with
non-numeric class.

A data-name referenced in the
LINAGE clause of the FILE
SECTION must be defined with
COMPUTATIONAL USAGE in the
WORKING~-STORAGE SECTION.

A receiving 6perand of a
SET statement is invalid.
Fatal.

415

416

417

420

421

422

423

424

425

426

427

DIAGNOSTIC ERROR MESSAGES

NO RECEIVING OPERAND
SPECIFIED IN .SET..

OMITTED OR ILLEGAL OPERAND
AFTER .TO. IN .SET..

ILLEGAL SYNTAX IN
.SET. STATEMENT.

.BY. MUST FOLLOW .UP.
OR .DOWN.. ASSUMED.

OMITTED OR ILLEGAL OPERAND
AFTER .BY. IN .SET..

NO OPERANDS SPECIFIED
IN .DISPLAY.

SETTING INDEX NAME OUT
OF RANGE. .SET. IGNORED.

.IF. TRUE PATH OMITTED.
ASSUME .NEXT SENTENCE.

CONFLICTING SIGN SYMBOLS
IN PICTURE STRING.

ZERO SUPPRESSION CONFLICTS
IN PICTURE STRING.

ILLEGAL CHARACTER IN
THE PICTURE STRING.

No receiving operands are
specified in a SET statement.
Fatal.

A SET statement has no valid
sending operand. Fatal.

The words TO, UP or DOWN do
not follow the receiving
operands of a SET statement.
Fatal.

The keyword BY does not
follow the word UP or DOWN in
a SET statement. BY is
assumed present.

The operand following the UP
BY or DOWN BY phrase in a SET
statement is invalid or
omitted. Fatal.

No operands to be displayed
were recognized by the
compiler in this DISPLAY
statement. Fatal.

A SET statement is attempting
to set an index name using a
literal that is too large.
Fatal.

The true path code is omitted
from the IF statement. NEXT
SENTENCE is assumed as the
true path of the IF
statement.

The compiler recognizes

both the + and - sign symbols
in this PICTURE string. The
compiler ignores the user-
supplied PICTURE and declares
the data-name alphanumeric
with a "PICTURE X"
declaration

The compiler recognizes

both the Z and * zero
suppression symbols in this
PICTURE string. The compiler
ignores the user-supplied
PICTURE and declares the
data-name alphanumeric with a
"PICTURE X" declaration.

A character which is not in
the PICTURE string character
set is recognized in this
PICTURE by the compiler.
compiler ignores the user-
supplied PICTURE and declares
the data—-name alphanumeric
with a "PICTURE X"
declaration.

The

430

431

432

433

434

435

436

437

440

DIAGNOSTIC ERROR MESSAGES

.BLANK WHEN ZERO.
WITH ZERO SUPPRESS.

CONFLICTS

PARENTHESIZED SPECIFIER
EXCEEDS 18 DIGITS

SPECIFIER MISSING INSIDE
PARENTHESES.

ILLEGAL SYMBOL PRECEDES
LEFT PAREN. IN PICTURE.

TERMINATOR OMITTED IN
.NOTE. PARAGRAPH

INVALID OPERAND IN
OR .AFTER. PHRASE.

.VARYING.

INVALID OPERAND IN
.BY. PHRASE.

.FROM. OR

TOO MANY .AFTER. PHRASES IN
.PERFORM. STATEMENT.

.FROM. OR .BY. OR .UNTIL.
MISSING IN PERFORM,

A BLANK WHEN ZERO clause is
recognized with a zero
suppression field specified
in the PICTURE string. The
compiler ignores the BLANK
WHEN ZERO clause and
continues with its
processing.

The specification contained
inside parentheses of a
PICTURE string exceeds 18
digits in length. The
compiler ignores the user-
supplied PICTURE and declares
the data-name alphanumeric
with a "PICTURE X"
declaration.

The specification contained
inside parentheses of a
PICTURE string is missing.
The compiler ignores the
user-supplied PICTURE and
declares the data-name
alphanumeric with a "PICTURE
X" declaration.

The compiler recognizes

an S, vV, CR, DB, or "."
character preceding a left
parenthesis in a PICTURE
string. The error is ignored
and processing continues.

A NOTE paragraph that does
not end with a period
was detected.

The expected operand is not a
valid name reference in the
VARYING or AFTER phrase of
this PERFORM VARYING
statement. Fatal.

The FROM or BY phrase of this
PERFORM VARYING statement
does not contain a valid
operand reference. Fatal.

The compiler detects more
than two AFTER phrases in the
PERFORM VARYING statement
being compiled. This is
syntactically invalid.

Fatal.

The compiler detects the
omission of the keywords
FROM, BY, or UNTIL in the
PERFORM VARYING statement.
Fatal.

441

442

443

444

445

446

447

450

DIAGNOSTIC ERROR MESSAGES

ILLEGAL CONDITION EXPRESSION
IN THE PERFORM.

NONPOSITIVE LITERAL IN .FROM.
OR .BY. PHRASE.

INVALID RELATION CONDITION IN
.SEARCH ALL.

NONINTEGER DATA CONFLICTS
WITH INDEXNAME USAGE.

IMPLICIT REFERENCE TO BAD
CONDITION VALUES.

IMPLICIT REFERENCE TO BAD
CONDITION VARIABLE.

TOO MANY NAMES IN COBOL
PROGRAM. RECOMPILE.

REFERENCE TO UNDEFINED
DATANAME. IGNORED.

The compiler detects an
invalid condition expression
in the PERFORM statement.
Fatal.

The compiler detects a
non-positive, numeric integer
literal in this PERFORM
statement. This is
syntactically invalid.

Fatal.

The compiler detects either a
syntax error or an

invalid operand in the
restricted form of a relation
condition in the SEARCH ALL
statement. Fatal.

The compiler detects a
non-integer data item
reference in a PERFORM
VARYING statement in which
the VARYING, AFTER, and/or
FROM phrase contains an
index-name reference. This is
syntactically invalid. Fatal.

Through a reference to a
condition-name, the compiler
detects a reference to an
associated condition-value
which is improperly declared
in the Data Division. The
compiler considers this to be
syntactically invalid.

Fatal.

Through a reference to a
condition-name, the compiler
detects that the associated
condition-variable is
improperly declared in the
Data Division. The compiler
considers this to be
syntactically invalid. Fatal.

The COBOL program being
compiled has too many data-
names or procedure-names.
This condition has caused a
compiler table to overflow
with the resultant action of
aborting the compilation. The
user is advised to recompile
the program using the
"/SYM:N" switch to get more
space for the compiler
symbol tables.

The COBOL statement being
compiled contains a reference
to an undefined data-name.
The compiler considers this

DIAGNOSTIC ERROR MESSAGES

451 QUALIFIED REFERENCE ILLEGAL
IN THIS CONTEXT.

452 QUALIFIER OMITTED IN
QUALIFIED REFERENCE.

453 TOO MANY QUALIFIERS IN

QUALIFIED REFERENCE.

454 UNDEFINED QUALIFIER IN
QUALIFIED REFERENCE.

455 COBOL STATEMENT CONTAINS
AMBIGUOUS REFERENCE.

456 DATANAME REFERENCE EXPECTED
IN THIS CONTEXT.

to be syntactically invalid
and ignores the reference.
This diagnostic may be issued
in conjunction with other
diagnostics for the

erroneous statement.

The compiler detects a
qualified reference in a
context in which an
unqualified reference is
required. The compiler
permits the qualified
reference in this context and
continues with the
compilation of the statement
containing the reference.

A data-name is omitted after
the keyword OF or IN in a
qualified reference in the
COBOL statement being
compiled. The reference is
ignored. This diagnostic may
be issued in conjunction with
other diagnostics for the
statement in error.

The compiler detects more
than 48 qualifiers in a
qualified reference. The
excess qualifiers are ignored
in the reference.

The compiler detects a
qualified reference one of
whose qualifiers is a
reference to an undefined
data-name. The compiler
considers this to be
syntactically invalid

and ignores the entire
qualified reference. This
diagnostic may be issued in
conjunction with other
diagnostics for the erroneous
statement containing the
reference.

The compiler detects a
reference to COBOL data which
is not uniquely referenceable
through qualification. The
compiler uses a reference to
COBOL datum which satisfies
the reference in the text of
the COBOL program. This
diagnostic may be issued in
conjunction with other
diagnostics for the statement
in error.

The compiler detects a
reference to a COBOL datum

457

460

461

462

464

465

470

DIAGNOSTIC ERROR MESSAGES

ILLEGAL REFERENCE DETECTED IN
THIS CONTEXT.

PARENTHESIZED SPECIFIER
LARGER THAN 4095.

EXTRA OPENING QUOTE ON
LITERAL IS IGNORED.

PROGRAM NAME MUST BE A
NONNUMERIC LITERAL

LITERALS ARE ILLEGAL IN

ARGUMENT LIST OF .CALL..

ARGUMENT LIST OMITTED
AFTER .USING. IN .CALL..

ILLEGAL SYNTAX IN .CODE SET.
CLAUSE. IGNORED.

which is not alphabetic,
numeric, alphanumeric,
alphanumeric-edited, or
numeric-edited. The context
of this reference requires
that the reference be to one
of these classes of data
items.

The compiler considers the
referenced item to be
syntactically invalid. This
diagnostic may be issued in
conjunction with other
diagnostics for the statement
in error.

The compiler detects a
reference to a COBOL datum
which is invalid in the
context of its usage. The
compiler considers the
referenced item to be
syntactically invalid. This
diagnostic may be issued in
conjunction with other
diagnostics for the statement
in error. Fatal.

The specification contained
inside parentheses of a
PICTURE string is larger than
4095 in value. The specifier
exceeds an implementation
limitation of 4095. The
compiler assumes 4095 and
continues with the processing
of the PICTURE string.

The compiler detects a
superfluous gquote at the
beginning of a non-numeric
literal specification. The
compiler ignores the extra
quote and continues with the
processing of the non-numeric
literal.

The program—-name literal
following the key word CALL
is not a nonnumeric
literal. This is
syntactically invalid. Fatal.
Literals are not allowed in
the argument list of a CALL
statement. Fatal.

The required argument list
is missing after the key
word USING in the CALL
statement., Fatal.

A valid alphabet-name
reference is omitted in the

471

472

473

474

475

476

477

500

501

DIAGNOSTIC ERROR MESSAGES

DATANAME IN .KEY IS. PHRASE
NOT ALPHANUMERIC.

.RECORD KEY. DATAITEM
LENGTH GREATER THAN 255.

DATANAME IN .KEY IS PHRASE
IS SUBSCRIPTED OR INDEX

.RECORD KEY. DATAITEM MUST
NOT BE A COBOL TABLE

-.RECORD. OMITTED FROM
-ALTERNATE RECORD. ASSUMED.

UNDEFINED .ALTERNATE RECORD
KEY. DATANAME.

.ALTERNATE RECORD KEY.
CLAUSES ARE SEPARATED

LINKAGE SECTION ITEM
APPEARS TWICE IN .USING.

ILLEGAL .SEGMENT-LIMIT.
VALUE. IGNORED

CODE-SET clause. The
compiler ignores the CODE~SET
clause and continues to proc-
ess the remainder of the FD.

The data-name following the
KEY IS phrase in a START
statement referencing an
indexed file must be
alphanumeric. FATAL.

A data-name referenced in a
RECORD KEY or ALTERNATE RECORD
KEY phrase of a SELECT clause
in the FILE-CONTROL paragraph
must be defined in the FILE
SECTION as an item whose
length is less than or equal
to 255.

The data~name following the
KEY IS phrase in a READ or
START statement referencing an
indexed file must not be
subscripted or index. Fatal.

A data-name referenced in a
RECORD KEY or ALTERNATE RECORD
KEY phrase of a SELECT clause
in the FILE-CONTROL paragraph
must not be defined in the
FILE SECTION with an OCCURS
clause or subordinate to an
item with an OCCURS clause.

The reserved word RECORD is
missing from the ALTERNATE
RECORD KEY clause. The error
is ignored.

The data-name given in an
ALTERNATE RECORD KEY clause
has not been defined in the
Data Division.

In the SELECT statement the
ALTERNATE RECORD KEY clauses
are interleaved among the
other clauses. The ALTERNATE
RECORD KEY clauses should
follow one another with no
intervening clauses. This
error is ignored.

A LINKAGE SECTION data item
must not appear more than once
in the USING phrase of a
PROCEDURE DIVISION USING
header. FATAL.

The segment-limit is either
not a numeric literal or a
numeric literal whose value is
outside of allowed segment-
limit range.

502

503

504

505

506

507

510

511

512

DIAGNOSTIC ERROR

INTEGER 1 BEYOND AREA A
TREATED AS LEVEL NUMBER.

MULTIPLE PICTURES FOR
SAME ITEM. LAST USED.

CLOSING PARENTHESIS MISSING
IN PICTURE.

OT A SUBPROGRAM .PROGRAM.
IGNORED.

EXPANDED PICTURE STRING TOO
LONG. PIC X ASSUMED.

SPECIFIER OMITTED BEFORE
LEFT PAREN. IN PIC.

SECTION NO. GREATER THAN

49 TREATED AS 49.

INVALID ITEM LENGTH IN
PARENTHESES OF PICTURE.

VALUE CLAUSE NOT ALLOWED
IN LINKAGE SECTION.

MESSAGES

An 01 level item was detected
beyond Area A and accepted as
if in Area A.

A data item has more than 1
PICTURE clause. The compiler
used the last PICTURE clause
specified.

The right parenthesis is
missing in the PICTURE
string. The compiler uses
the last four digits of the
PICTURE string.

An EXIT PROGRAM has been
detected, but the COBOL
program being compiled is not
a subprogram. Because EXIT
PROGRAM is meaningful only in
a subprogram, the word PROGRAM
is ignored, and the statement
is treated as if it were a
simple EXIT statement.

The process of expanding a
PICTURE string specification
produces a string which
exceeds implementation
limitation. The compiler
ignores the user-supplied
PICTURE and declares the
data-name with a "PICTURE X"
declaration.

The first character of a
PICTURE string is a left
parenthesis. The compiler
ignores the user-supplied
PICTURE and declares the
data-name alphanumeric with a
"PICTURE X" declaration.

A segment number greater than
49 follows the word SECTION.
The segment is treated as if
it were 49.

The parenthesized length
specifier in a PICTURE
contains non-numeric
characters. The compiler
ignores the user-supplied
PICTURE and declares the
data-name alphanumeric with a
"PICTURE X" declaration.

The VALUE clause cannot appear
in data items in the LINKAGE
SECTION. The only place the
VALUE clause can appear in the
LINKAGE SECTION is in a
condition name definition.

513

514

515

516

517

520

521

522

523

DIAGNOSTIC ERROR MESSAGES

OPERAND IN .USING. MUST BE
LINKAGE SECTION ITEM.

MULTIPLE FLOATING FIELDS
IN NUMERIC EDIT ITEM.

MULTIPLE ZERO SUPPRESS
FIELDS IN PICTURE STRING.

ZERO SUPPRESSION ILLEGAL
WITH FLOATING FIELD.

ILLEGAL SYNTAX IN
PICTURE STRING.

MULTIPLE DECIMAL POINTS
IN PICTURE.

OPERAND IN USING MUST BE
LEVEL 01 OR 77

INVALID USAGE.

IGNORED.

MULTIPLE USAGE CLAUSES.
LAST USED.

Only level 01 or 77 LINKAGE
SECTION items may appear in
the USING phrase of a
PROCEDURE DIVISION header.
FATAL.

The PICTURE string contains
multiple floating fields.
The compiler ignores the
user-supplied PICTURE and
declares the data-name
alphanumeric with a "PICTURE
X" declaraton.

Multiple zero suppression
fields are detected in
PICTURE string. The compiler
ignores the user-supplied
PICTURE and declares the
data-name alphanumeric with a
"PICTURE X" declaration.

The PICTURE string contains
both floating and zero
suppression fields. The
compiler ignores the user-
supplied PICTURE and declares
the data-name alphanumeric
with a "PICTURE X"
declaration.

The PICTURE string is not
specified correctly according
to the rules of PICTURE
string syntax. The compiler
ignores the user-supplied
PICTURE and declares the
data-name alphanumeric with a
"PICTURE X" declaration.

The PICTURE string contains
multiple decimal point
specifications (V's, P's, or
periods). The compiler
ignores the user-supplied
PICTURE and declares the
data-name alphanumeric with a
"PICTURE X" declaration.

Only level 01 or 77 LINKAGE
SECTION items may appear in
the USING phrase of a
PROCEDURE DIVISION header.
FATAL.

The USAGE clause contains an
invalid word. The compiler
ignores the entire USAGE
clause.

The defined data-name has
multiple USAGE clauses
specified. The last USAGE
clause specified is used by
the compiler.

524

525

526

527

530

531

532

533

DIAGNOSTIC ERROR MESSAGES

MULTIPLE OCCURS CLAUSES.
LAST USED.

OCCURS SPECIFICATION ERROR.
1 ASSUMED.

DATANAME OMITTED IN DATA
DESCRIPTION ENTRY.

INVALID INDEX NAME.
IGNORED.

USAGE OPTION NOT YET
IMPLEMENTED. IGNORED.

TERMINATOR OMITTED AFTER
DATAITEM DESCRIPTION.

INVALID SIGN IN NUMERIC
PICTURE.

PICTURE CLAUSE OMITTED ON
ELEMENTARY ITEM.

The defined data-name has
multiple OCCURS clauses
specified. The compiler uses
the last OCCURS clause
specified.

The integer entry of the
OCCURS clause is either
non-numeric or non-integer or
does not lie in the range 1
to 4095. The compiler
assumes an integer value

of 1.

The data—-name declaration is
omitted after a level-number
in the data description
entry. The compiler supplies
a system—defined name and
proceeds with the processing
of the data description
entry. The system—-defined
name is transparent and,
thus, inaccessible to the
user.

The compiler did not
recognize a valid index name
in the INDEXED BY phrase.
The compiler ignores the
INDEXED BY phrase.

The compiler detected COMP-1
in the USAGE clause. This
option is not implemented and
is ignored. The default
USAGE of DISPLAY is used by
the compiler.

A data item description entry
in the DATA DIVISION is not
terminated by a period. The
compiler assumes the period
is present and continues
processing.

The sign character S is
detected in a position other
than the leading character
position of a numeric PICTURE
string. The compiler ignores
the user-supplied PICTURE and
declares the data-name
alphanumeric with a "PICTURE
X" declaration.

An elementary item is
recognized with its PICTURE
clause omitted in the
description. The compiler
declares the data-name
alphanumeric with a PICTURE
X declaration.

534

535

536

537

540

541

542

543

544

DIAGNOSTIC ERROR MESSAGES

NUMERIC ITEM EXCEEDS 18
DIGIT MAX. TRUNCATED.

COMP ITEM EXCEEDS 18
DIGITS. ASSIGN 4 WORDS.

INDEX ITEM HAS
ILLEGAL CLAUSE.

NUMERIC VALUE FOR
DISPLAY ITEM. IGNORED.

VALUE TOO LONG.
TRUNCATED.

CLAUSE DUPLICATION. IGNORED.

INVALID WORD IN .BLANK
WHEN ZERO.. IGNORED.

LEVEL NUMS UNEQUAL IN
.REDEFINES. CLAUSE IGNORED.

POSSIBLE OVERLAP OF DEPENDING
ON ITEM AND TABLE

A numeric field is defined in
this PICTURE with more than
18 digits of precision. The
numeric field is truncated to
18 digits.

A COMPUTATIONAL data item
exceeds 18 digits in its
specification. The compiler
truncates it and allocates
four words for its run-time
storage.

The compiler recognized a
JUSTIFIED, SYNCHRONIZED,
VALUE, PICTURE, or SIGN
clause on a data-item
description which has INDEX
USAGE. This is illegal. The
compiler ignores the
offensive clause.

The VALUE clause specifies
numeric value initialization
for a non-numeric data-item
which is defined with DISPLAY
USAGE. This is illegal. The
VALUE clause is ignored.

The length of the non-numeric
literal in the VALUE clause
is longer than the associated
data-item. The literal is
truncated on the right to fit
in the storage allocated to
the data-item.

This clause has been
previously recognized for
this item. The duplicate
clause is ignored.

The keyword ZERO was not
recognized in the BLANK WHEN
ZERO clause. The entire
clause is ignored.

A REDEFINES clause attempts
to redefine two items of
different level numbers. The
REDEFINES clause is ignored.

The depending on item and
variable length table are
both defined in the LINKAGE
SECTION. Because LINKAGE
SECTION items are associated
with data items appearing in
a CALL statement, there is
no way at compile time to
insure that the depending on
items and table do not
overlap. The COBOL run-time
OTS does not check for overlap

545

546

547

550

551

552

553

DIAGNOSTIC ERROR MESSAGES

LEVEL ILLEGAL AFTER 77.
TREATED AS 01.

PERIOD OMITTED AFTER .EXIT
PROGRAM.

.EXIT PROGRAM. NOT LAST
STMT OF SENTENCE.

REDEFINING LENGTH SHOULD
MATCH ORIGINAL LENGTH.

REDEFINITION OF .OCCURS.

ITEM. IGNORED

PROCESSING RESUMES AFTER
BAD FD.

INVALID CLAUSE KEYWORD.
OTHER CLAUSES SKIPPED.

of the depending on item and
the table during execution.
It is, therefore, your
responsibility to insure
that overlap does not occur.

An invalid level number
(02-49) follows a 77 level
item. The 77 level item is
treated as an 01 level item.
This action may propagate
further diagnostics if it is
not a valid group item.

The words EXIT PROGRAM are not
followed by a period. The
error is ignored.

An EXIT PROGRAM statement
appears in a sequence of
statements within a sentence.
But, it is not the last
statement. All of the
statements following it are
compiled, but can never be
reached during execution.

The length of a non-01 level
redefines item is not the
same as the length of the
item it REDEFINES. The new
length is used.

Items with OCCURS cannot
be redefined. REDEFINES
is ignored.

Prior to issuing this
message, the compiler had
discovered bad syntax in the
FD of the FILE SECTION. The
compiler at that time issued
an error message identifying
the syntax error. Then the
compiler went into recovery
mode attempting to recognize
another FD, the WORKING-
STORAGE SECTION header or the
PROCEDURE DIVISION. Upon
recognizing one of these
three language elements,
compiler issues this
diagnostic indicating that
normal processing resumes.

the

A reserved clause keyword was
expected at this point in a
data item description entry
of the DATA DIVISION, but was
not recognized by the
compiler. The compiler skips
to the next level number

data item description.

554

555

556

557

560

561

562

563

564

565

566

ID DIV.

DIAGNOSTIC ERROR MESSAGES

INVALID WORD FOLLOWING
.VALUE.. IGNORED.

VALUE CONFLICT.
GROUP VALUE USED.

LEVEL NUMBER OMITTED.
ITEM IGNORED.

NO VALUE AFTER CONDITION
NAME. 88 IGNORED.

SYNTAX ERROR IN SWITCH
CLAUSE. CLAUSE IGNORED.

.NO. MISSING IN

ADVANCING PHRASE. ASSUMED.

.ADVANCING. MISSING AFTER
.NO.. ASSUMED.

DUPLICATE DATANAME
DECLARATION DETECTED.

ILLEGAL PARAGRAPH HEADER
PAR IGNORED.

ILLEGAL PARAGRAPH HEADER
ENV DIV. PAR IGNORED.

NUMERIC LITERAL ILLEGAL
ON GROUP ITEM. IGNORED.

The VALUE clause contains an
invalid word for this data
description. The entire
‘VALUE clause is ignored.

This VALUE clause assigns

a value to an item
subordinate to a group item
that also has a VALUE clause.
The subordinate VALUE clause
is ignored.

The level number has been
omitted in a data~-item
description. All the source
text is ignored up to and
including the next period.

An 88 level condition-name
has no VALUE clause
specified. The entire 88
level data-item is ignored.

The SWITCH clause has a
syntax error in its
specification. The compiler
ignores the entire clause.

The keyword NO is missing in
the ADVANCING phrase of the
DISPLAY statement. NO is
assumed present,

The keyword ADVANCING is
missing in the ADVANCING
phrase of the DISPLAY
statement. ADVANCING is
assumed present,

In the ENVIRONMENT and/or
DATA DIVISION, a data-name is
defined which, if referenced,
is not uniquely referenceable
even with complete
qualification.

An illegal paragraph header

appears in the IDENTIFICATION
DIVISION. The paragraph is
ignored. '

An illegal paragraph header
appears in the ENVIRONMENT
DIVISION. The paragraph is
ignored.

A numeric literal is illegal
in the VALUE clause of a
group item. The VALUE clause
is ignored.

567

570

571

572

573

574

600

601

602

603

DIAGNOSTIC ERROR MESSAGES

.ENVIRONMENT. NOT FOLLOWED
BY .DIVISION..

TERMINATOR MISSING AFTER
.DATA DIVISION. HEADER.

TERMINATOR MISSING AFTER
PARAGRAPH HEADER.

.RENAMES. SPECIFIES STORAGE
OVERLAP ON RIGHT.

.SECTION. OMITTED FROM
SECTION HEADER.

TERMINATOR MISSING AFTER
SECTION HEADER.

ILLEGAL LEVEL NUMBER.
TREAT AS 01.

TERMINATOR MISSING AFTER
ENV DIV HEADER.

.DATA. NOT FOLLOWED BY
.DIVISION.

ENVIRONMENT DIVISION HEADER
OMITTED.

The word ENVIRONMENT is
not followed by the word
DIVISION. DIVISION is
assumed present.

The DATA DIVISION header is
not followed by a period.

The period is assumed present
and processing continues.

A paragraph header in the
IDENTIFICATION or ENVIRONMENT
DIVISION is not terminated by
a period. The period is
assumed present and
processing continues.

In processing the RENAMES
clause, the compiler detects
the condition in which the
end of the storage allocated
to the data-name after the
THRU keyword is not position-
ally to the right of the end
of the storage allocated to
the data-name after the
RENAMES keyword. This is
syntactically invalid. The
compiler ignores the entire
RENAMES data description
entry.

An ENVIRONMENT DIVISION
section name is not followed
by the word SECTION. The
error is ignored.

An ENVIRONMENT DIVISION
section header is not
terminated by a period.
error is ignored.

The

This level number is not an

01-49, 66, 77, or 88 1level

number. The level number is
assumed to be 01.

The ENVIRONMENT DIVISION
header is not terminated by a
period. The period is assumed
present and processing
continues.

The word DATA is not
followed by the word
DIVISION. DIVISION is
assumed present.

The program contains no
ENVIRONMENT DIVISION header.
The compiler resumes
processing at the next
paragraph header.

604

605

. 606

607

610

611

DIAGNOSTIC ERROR MESSAGES

UNRECOGNIZABLE COBOL PROGRAM
FORMAT. ABORT.

.IDENTIFICATION. NOT FOLLOWED
BY .DIVISION..

TERMINATOR OMITTED AFTER
.ID DIVISION. HEADER.

.PROGRAMID. EXPECTED AFTER
DIVISION HEADER.

TERMINATOR OMITTED AFTER
.PROGID. PARA HEADER.

INVALID PROGRAM NAME IN
.PROGRAM ID. PARAGRAPH,

The compiler is unable to
recognize the reserved word
IDENTIFICATION as the first
word required in a COBOL
source program., Failure to
recognize this required
reserved word may be due to
one of the following reasons:
(1) IDENTIFICATION is, in
fact, omitted as the first
word of the source file, (2)
the user is attempting to
compile a COBOL source
program in conventional
format without specifying the
"/CVF" switch, or (3) the
user is attempting to compile
a file which is not a COBOL
source program. The compiler
issues a string of
diagnostics to the printer,
informs the user on the
system console, and then
aborts the compilation.

The word IDENTIFICATION is
not followed by the word
DIVISION. DIVISION is
assumed present.

The IDENTIFICATION DIVISION
header is not terminated by a
period. The period is
assumed present and
processing continues.

The IDENTIFICATION DIVISION
header is not followed by
the PROGRAM-ID paragraph.
The error is ignored and
processing continues.

The PROGRAM-ID paragraph-name
is not terminated by a
period. The period is
assumed present and
processing continues.

The program name of the
PROGRAM-ID paragraph contains
an invalid character or
exceeds nine characters in
length. The error is ignored
and processing continues.

DIAGNOSTIC ERROR MESSAGES

612 TOO MANY FILES FOR LUNS
OR TEMPORARY SPACE.

613 INVALID WORD SUSPENDS
PROCESSING. SCAN FORWARD.

614 PROCESSING RESTARTS ON
VERB.

615 PROCESSING RESTARTS ON
PROCEDURE NAME.

616 PROCESSING RESTARTS AFTER
TERMINATOR.

617 .IDENTIFICATION.
KEYWORD NOT IN AREA A.

620 PARAGRAPH TERMINATOR
ASSUMED OMITTED.

H-41

The compiler has discovered
either that more than 30
files are declared in the
program or that more than 30
SAME RECORD AREA clauses are
specified in the program.
The compiler imposes a limit
of 30 in both cases, because
the associated compiler and/
or object time table space is
exhausted.

An unidentifiable word is
found where a verb is
expected. A scan is made to
a verb, or period, or word in
Area A.

Due to a previous syntax
error, the compiler went into
recovery mode looking for the
next verb, period, or Area A
word upon which to resume
compilation. The compiler
has recognized a verb and
resumes normal compilation at
this point. This message is
an observation only.

Due to a previous syntax
error, the compiler went into
recovery mode looking for the
next verb, period, or Area A
word upon which to resume
compilation. The compiler

has recognized an Area A word
and resumes compilation at
this point. This message is
an observation only.

Due to a previous syntax
error, the compiler went into
recovery mode looking for the
next verb, period, or Area A
word upon which to resume
compilation. The compiler
has recognized a period and
resumes normal compilation on
the word following the
period. This is an
observation only.

The compiler detects that the
IDENTIFICATION keyword is not
in Area A. The compiler
ignores the error and
continues processing,

A paragraph was terminated
without a period. The period
is assumed and processing
continues.

621

622

623

624

625

626

627

630

631

632

633

DIAGNOSTIC ERROR MESSAGES

.LINAGE. INVALID FOR THIS
FILE. CLAUSE IGNORED.

TERMINATOR MISSING AFTER
PROCEDURE NAME.

.ELSE DOES NOT HAVE

ASSOCIATED .IF.. IGNORED.

VERB EXPECTED TO FOLLOW
ELSE.. .ELSE. IGNORED.

.JUSTIFY. WITH NUMERIC OR
EDITED ITEM. IGNORED.

.BLANK WHEN ZERO. ILLEGALLY
SPECIFIED. IGNORED.

INVALID OR MISSING DATANAME
AFTER .REDEFINES..

.REDEFINES. MUST FOLLOW
DATA NAME. IGNORED.

DEPTH OF NESTED
EXCEEDS LIMIT.

.IF.

DUPLICATE PROCEDURE
NAME DETECTED.

REFERENCE TO UNDEFINED
PARAGRAPH NAME.

The LINAGE clause must not be
specified for a file which
has RELATIVE or INDEXED
organization. The LINAGE
clause is ignored.

A section or paragraph

name is not terminated by a
period. The period is
assumed present and
processing continues.

The word ELSE has no
associated IF statement.
ELSE is ignored.

The

A SENTENCE ENDS WITH THE
word ELSE. The ELSE is
ignored.

The JUSTIFIED clause must not
be specified for a numeric or
numeric-edited dataitem. The
JUSTIFIED clause is ignored.

The BLANK WHEN ZERO clause
must be specified only for a
numeric or numeric-edited
data-item. The clause is
ignored.

The compiler detects the
omission of a valid data-name
reference following the
keyword REDEFINES. The
compiler ignores the
REDEFINES clause and
continues with the processing
of the data description
entry.

The REDEFINES keyword appears
in the wrong position of a
data description entry. The
REDEFINES clause is ignored.

A nested IF statement has
exceeded the maximum depth of
30 levels. The compiler
ignores nesting beyond this
depth of nesting.

In the Procedure Division, a
paragraph or section-name is
defined which, if referenced,
is not uniquely reference-
able, even with
qualification.

In the Procedure Division, an
explicit qualified reference
is made to a paragraph-name
which is undefined in the
section specified by the
qualifier.

634

635

636

637

640

641

642

643

644

DIAGNOSTIC ERROR MESSAGES

FILENAME LITERAL TOO LONG.
TRUNCATED.

ILLEGAL SYNTAX IN .GO
TO. STATEMENT.

INVALID INTEGER OR
DATANAME.

.GO TO. HAS MULTIPLE
PROCEDURE NAMES.

INVALID WORD FOLLOWS
.DATA DIVISION.

INVALID WORD IN FILE
SECTION. SCAN FORWARD.

.OMITTED LABELS IGNORED

WITH .VALUE OF ID.

.SECTION. EXPECTED AFTER
HEADER WORD.

TERMINATOR EXPECTED AFTER
SECTION HEADER.

H-43

A file specification in the
ASSIGN clause exceeds 40
characters in length. 1It is
truncated to 40 characters.

The compiler detects illegal
syntax in the GO TO
statement. Fatal.

In the LINAGE clause, the
compiler failed to recognize
a non-negative integer
literal or a numeric integer
data-name. This phrase of

the LINAGE clause is ignored.

A simple GO TO statement
(i.e., without the DEPENDING
ON phrase) has more than one
procedure-name. Fatal.

The word following the DATA
DIVISION header either does
not start in Area A or is not
one of the reserved words
FILE, WORKING-STORAGE,
LINKAGE, or PROCEDURE. The
compiler goes into recovery
mode skipping all source
text until one of the
keywords FILE, WORKING-
STORAGE, LINKAGE, or
PROCEDURE is recognized.

An invalid word was detected
in the FILE SECTION where

the keyword FD is expected.
The compiler goes into
recovery mode skipping all
source text until one of the
keywords FD, WORKING-STORAGE,
LINKAGE, or PROCEDURE

is recognized.

The LABEL RECORDS ARE OMITTED
clause is ignored if VALUE OF
ID is specified for a file.
STANDARD labels are assumed.
WARNING.

The keyword SECTION is
omitted after the word FILE,
WORKING-STORAGE, OR LINKAGE
SECTION is assumed present
and processing continues.

The FILE SECTION, WORKING-
STORAGE SECTION, or LINKAGE
header is not terminated

by a period. The

period is assumed and
processing continues.

646

647

650

651

652

653

654

DIAGNOSTIC ERROR MESSAGES

.OF. OR .ID. MISSING
IN .VALUE OF ID..

ILLEGAL WORD IN AREA A.
SCAN FORWARD.

GROUP LEVEL .VALUE.
DISALLOWED.

REFERENCED LINKAGE SECTION
ITEM NOT IN .PD. USING..

NON-SEQ FILE IN .MULTIPLE.
FILE TAPE. CLAUSE.

.VALUE. CLAUSE ILLEGAL IN
FILE SECTION.

SYNTAX ERROR IN CURRENCY
CLAUSE.

One or both of the keywords
OF or ID is omitted in the
VALUE OF ID clause. Their
presence is assumed and
processing continues.

In the WORKING-STORAGE
SECTION, an 01 or 77

level number or the
PROCEDURE keyword was
expected in Area A, but was
not recognized. The compiler
goes into recovery mode
skipping source text until
one of the three language
elements aforementioned is
recognized in Area A.

The VALUE clause on this
group item is not permitted
because a subordinate
elementary item has a non-
DISPLAY usage specified or
has a SYNCHRONIZED clause
specified. The group VALUE
clause is ignored.

This LINKAGE SECTION item has
been referenced in the
PROCEDURE DIVISION. However,
neither this item nor the
level 01 to which

it is subordinate, appeared in
the PROCEDURE DIVISION USING
phrase. Only those LINKAGE
SECTION items appearing in the
PROCEDURE DIVISION USING
phrase, or items subordinate
to them may be referenced in
the PROCEDURE DIVISION of a
COBOL program. FATAL.

In the I-O CONTROL paragraph,
the MULTIPLE FILE TAPE clause
is specified for a file whose
organization is not
SEQUENTIAL. This is illegal.
The MULTIPLE FILE TAPE clause
is ignored for this file.

A VALUE clause is specified
for a data description entry
given in the FILE SECTION.
This is illegal. The VALUE
clause is ignored.

The alphanumeric literal
expected in the CURRENCY SIGN
clause of the SPECIAL-NAMES
paragraph is omitted. The
clause is ignored and the
currency sign defaults to the
dollar sign.

655

656

657

660

661

662

663

664

665

DIAGNOSTIC ERROR MESSAGES

ILLEGAL CURRENCY SIGN.

SPECIALNAMES CLAUSE INVALID,

SYNTAX ERROR IN
DECIMALPOINT CLAUSE.

.AFTER. MISSING IN
.USE. STATEMENT. ASSUMED.

NO .ERROR. OR .EXCEPTION.
IN .USE. ASSUMED.

NO KNOWN CLAUSES IN

SPECIALNAMES.

REDUNDANT .USE. COVERAGE.

PREV. .USE. IGNORED.

UNKNOWN OPEN MODE IN

.USE. STATEMENT.

GROUP ITEM HAS BEEN CALLED
FILLER.

H-45

The alphanumeric literal in
the CURRENCY SIGN clause is
not allowed as the currency
sign either because the
literal is longer than one
character or because it is an
invalid COBOL currency sign.
The CURRENCY SIGN clause is
ignored and the currency sign
defaults to the dollar sign.

An unrecognizable word
appears in a position where a
SPECIAL-NAMES paragraph
clause keyword is expected.
All source text is skipped up
to the next recognizable
keyword.

The keyword COMMA is omitted
in the DECIMAL-POINT IS COMMA
clause of the SPECIAL-NAMES
paragraph. The clause is
ignored.

The keyword AFTER is omitted
in the USE statement. AFTER
is assumed present and
processing continues.

One of the keywords ERROR or
EXCEPTION is omitted in the
USE statement. The missing
keyword is assumed present
and processing continues.

The SPECIAL-NAMES paragraph
contains no valid clauses.
This is an observation only.

Multiple USE statements have
referenced the same file.
The last USE statement
specified is then applied to
the referenced file. Fatal.

An unrecognizable OPEN mode
option was specified in the
USE statement. Fatal.

A FILLER item cannot have any
elementary items subordinate
to it. The compiler replaces
the FILLER declaration with a
system—-defined name and
proceeds with the processing
of the newly named group
item. The system-defined name
is transparent and inaccess-
ible to the user.

666

667

670

671

672

673

674

675

676

677

DIAGNOSTIC ERROR MESSAGES

MISSING ENVIRONMENT
DIVISION.

DIVISION BY ZERO.

VALUE NOT PERMITTED WITH
THIS ITEM.

INVALID CONSTANT OR
LITERAL FOLLOWING .ALL..

BAD FILENAME IN .USE.

STATEMENT.

FILE NOT CLOSED.

SUBJECT OF .ALTER. IS
SECTION NAME.

FILE COVERED BY CONFLICTING
USE PROCEDURE.

DATAITEM LENGTH EXCEEDS 4095
CHARACTERS.

SUPPLIED VALUE INVALID FOR
NUM ITEM. IGNORED.

The program does not contain
an ENVIRONMENT DIVISION. The
compiler skips to the DATA
DIVISION and continues
processing.

The divisor of a DIVIDE
statement is a literal of
zero value. The error is
ignored.

A VALUE clause is recognized
in a data description entry
which contains a REDEFINES or
an OCCURS clause. This is
illegal. The VALUE clause is
ignored.

The reserved word ALL is not
followed by a non-numeric
literal or a figurative
constant. Thus, this is not
a valid ALL literal. ALL is
ignored and processing
continues.

An unrecognizable word
appears where a filename is
expected in the USE
statement. Fatal.

The referenced file was
OPENed but there was no CLOSE
statement detected for this
file in the program.

The ALTER statement references
a section name. Only paragraph
names may be altered. If this
statement is reached during
execution, the program will be
aborted.

There was more than one
conflicting USE procedure
specified for the referenced
file. Fatal.

An elementary or group item
is longer than the
implementation limit of 4095
characters. The compiler
declares the data item with a
length of 4095 characters and
proceeds with the processing
of the data item.

The VALUE clause specifies
invalid value initialization
for a numeric data item. The
compiler ignores the VALUE
clause.

700

701

702

704

705

706

707

710

711

DIAGNOSTIC ERROR MESSAGES

FILE ACCESSED BY VERB
REQUIRING REL. OR IDX ORG.

FILE ACCESSED BY VERB REQ.
SEQUENTIAL ORG.

VERB NOT IMPLEMENTED.

OCCURS ILLEGAL FOR 01
OR 77 ITEM. IGNORE.

.ACCEPT FROM. OBJECT NOT
IN SPECIALNAMES.

ACCEPT IDENTIFIER INVALID.

VERB OR COND. CLAUSE
CONFLICTS WITH FILE ACCESS.

DATANAME AFTER .GO
DEPENDING. INVALID.

INVALID CLASS OF DATANAME
AFTER .GO DEPENDING.

A file whose organization is
SEQUENTIAL is referenced by
the START or DELETE verbs or
by an I/0 verb which has the
INVALID KEY clause specified.
This is illegal. 1In all
these cases, the referenced
file must have RELATIVE or
INDEXED organization. Fatal.

A file whose organization is
RELATIVE or INDEXED is
referenced by an I/0 verb
which has the AT EOP or
ADVANCING clauses specified.
This is illegal. The
referenced file must have
SEQUENTIAL organization.
Fatal.

An ANS 1974 COBOL verb
appears that is not
implemented in this release
of the compiler. The
compiler scans to another
verb, period, or word in Area
A.

An OCCURS clause is specified
for an 01 or 77 level
data-name. The compiler
ignores the OCCURS clause.

The mnemonic name used in the
ACCEPT statement was not
defined in the SPECIAL-NAMES
paragraph. Fatal.

The word following the ACCEPT
verb is not a data-name or is
a data-name which has non-
DISPLAY usage or invalid
class. Fatal.

There is a conflict between
the ACCESS MODE of the
referenced file and the 1I/0
verbs and/or condition
clauses which reference this
file. Fatal.

The word following the
DEPENDING ON phrase of the GO
TO statement is not a
data-name or is a data-name
which has INDEX usage. This
is illegal. Fatal.

The data-name following the
DEPENDING ON phrase of the GO
TO statement is not a numeric
data-name or is a numeric,
non-integer data-name. This
is illegal. Fatal.

712

713

714

715

716

717

720

721

722

723

724

DIAGNOSTIC ERROR MESSAGES

.DISPLAY UPON. OBJECT
NOT IN SPECIALNAMES.

.DISPLAY. OPERAND IS INVALID.

MISSING OR INVALID OPERAND.
OF .MULTIPLY..

ILLEGAL .MULTIPLY. DUE
TO MISSING .BY..

MISSING OR INVALID OPERAND
OF .DIVIDE..

ILLEGAL .DIVIDE. DUE TO
MISSING .BY. OR .INTO..

.GIVING. OPTION OF .DIVIDE.
MISSING.

MISSING OR INVALID OPERAND OF
.ADD. OR .COMPUTE.

.TO. OR .GIVING. MISSING
FROM .ADD..

MISSING OR INVALID
OPERAND OF SUBTRACT.

FILE NEEDS DYNAMIC ACCESS
FOR .READ NEXT..

The mnemonic name used in the
DISPLAY statement was not
defined in the SPECIAL-NAMES
paragraph. Fatal. ’

A data item in the DISPLAY
statement has invalid class
or USAGE.

One of the operands of the
MULTIPLY statement either is
missing or is invalid.
Fatal.

The keyword BY is omitted in
the MULTIPLY statement.
Fatal.

One of the operands of the
DIVIDE statement either is
missing or is invalid.
Fatal.

One of the keywords BY or
INTO is omitted in the DIVIDE
statement. Fatal.

The GIVING option must be
specified in a DIVIDE
statement when one of the
following syntactic elements
is present in the DIVIDE
statement: (1) a numeric
literal follows the keyword
INTO or (2)the keyword BY

is specified. In this DIVIDE
statement, the GIVING option
was omitted while one of the
two aforementioned syntactic
elements was present.

Fatal.

One of the operands of an ADD
or COMPUTE statement is
either missing or is invalid.
Fatal.

One of the keywords TO or
GIVING is omitted in the ADD
statement. Fatal.

One of the operands in the
SUBTRACT statement either is
missing or is invalid.
Fatal.

In a READ NEXT statement, the
referenced file must have
ACCESS MODE IS DYNAMIC
specified in the FILE-CONTROL
paragraph. Fatal.

725

726

7217

730

731

732

733

734

735

736

7137

DIAGNOSTIC ERROR MESSAGES

BAD PROCEDURE NAME IN
.PERFORM. .

ILLEGAL OPERAND OF .TIMES.
OPTION OF .PERFORM..

.TIMES. MISSING FROM
.PERFORM.. ASSUMED.

PROCEDURE NAME OMITTED
IN .ALTER..

ILLEGAL .ALTER. DUE
TO MISSING .TO..

FILE HAS VAR. SIZE RECS.

.READ INTO. ILLEGAL.

FILE ACCESSED BY VERB
REQUIRING .LINAGE.

.DELETE. OR .REWRITE.
WITHOUT INV. KEY OR USE.

OPEN MODE OR NO READ
PROHIBITS REWRITE OR DELETE.

.START. CONFLICTS WITH OPEN
MODE.

.WRITE. CONFLICTS WITH OPEN
MODE.

A missing or invalid
procedure-name is recognized
in the PERFORM statement.
Fatal.

The TIMES operand of the
PERFORM statement is not

a numeric integer data-name
or numeric integer literal.
The compiler assumes a value
of 1 for the TIMES operand.

The PERFORM statement does
not contain the keyword TIMES
but does contain the
iteration value required to
execute the PERFORM
correctly. The keyword TIMES
is assumed present.

A valid procedure-name was
not recognized in the ALTER
statement. Fatal.

The keyword TO was not
recognized in the ALTER
statement. Fatal.

It is illegal for the READ
INTO statement to reference a
file which has multiple
record descriptions of
different lengths. Fatal.

A file is accessed by an I/0
verb which did not have a
LINAGE clause in its
specification. Fatal.

A DELETE or REWRITE statement
references a file for which
there was no USE procedure
specified and for which the
INVALID KEY option was not
specified in that DELETE or
REWRITE statement. Fatal.

A DELETE or REWRITE statement
references a file which was
not OPENed in the proper mode
or which has no READ
statement referencing it in
the program. Fatal.

A START statement references
a file which was not opened
in the proper mode. Fatal.

A WRITE statement references
a file which was not opened
in the proper mode. Fatal.

740

741

742

743

744

745

746

747

750

DIAGNOSTIC ERROR MESSAGES

.READ. CONFLICTS WITH OPEN
MODE.

USE NOT IN DECLAR. OR NOT
FOLLOWING SECTION NAME.

MORE THAN 255 ALTERNATE
KEYS. IGNORED.

INTEGER IN SWITCH CLAUSE
INVALID OR OMITTED.

.IS. OMITTED IN SPECIALNAMES.
ASSUMED PRESENT.

DEVICE MNEMONIC OMITTED IN
SPECIALNAMES.

TERMINATOR OMITTED IN
SPECIALNAMES.

SUBJECT OF .ALTER. NOT .GO

. TO.. ALTER IGNORED.

KEYWORD OMITTED IN
.SWITCH. CLAUSE.

A READ statement references
a file which is only opened
in OUTPUT or EXTEND
mode. Fatal. :

The USE statement is not in
the DECLARATIVES section of
the PROCEDURE DIVISION or is
not immediately following a
section name inside the
DECLARATIVES. Fatal.

The maximum of 255 ALTERNATE
KEYS has been exceeded. The
clause is ignored.

A SWITCH clause of the
SPECIAL-NAMES paragraph
either contains an invalid
numeric integer or has
omitted the integer in its
specification. A SWITCH
clause integer, for example,
n must fall in the decimal
range 1<=n<=16. The SWITCH
clause is ignored.

The required keyword IS is
omitted in a clause of the
SPECIAL-NAMES paragraph. IS
is assumed present and
processing continues.

A valid device mnemonic-name
is not recognized in one of
the CONSOLE, LINE~-PRINTER,
CARD-READER, PAPER-TAPE-
READER, or PAPER-TAPE-PUNCH
clauses of the SPECIAL-NAMES
paragraph. All source text is
skipped up to the next
recognizable keyword.

The SPECIAL-NAMES paragraph
is not terminated by a
period. The period is
assumed present and
processing continues.

The paragraph referenced by
this ALTER statement does not
contain a GO TO statement

as its first statement.

The ALTER statement

is ignored.

One of the keywords OFF or ON
is omitted in the SWITCH
clause of the SPECIAL-NAMES
paragraph. The SWITCH clause
is ignored.

751

752

753

754

755

756

760

761

762

763

764

DIAGNOSTIC ERROR MESSAGES

CONDITION NAME MISSING
IN .SWITCH. CLAUSE.

.CR. OR .DB. NOT AT RIGHT
END OF PICTURE.

.CR. OR .DB. USED WITH
SIGNED ITEM.

MULTIPLE DEFINITION OF
SWITCH. FIRST USED.

.SENTENCE. ASSUMED AFTER
.NEXT..

SUBSCRIPT NOT NUMERIC
INTEGER.

ILLEGAL SYNTAX IN
.DIVIDE. STATEMENT.

INDEXED FILE REQUIRES
.RECORD KEY. PHRASE.

RECORD KEY INVALID FOR THIS
FILE.

.ALT RECORD KEY. INVALID
FOR FILE. IGNORED.

READ-AHEAD. OR. WRITE-BEHIND.
NOT SUPPORTED.

A valid condition-name is not
recognized in the SWITCH
clause of the SPECIAL-NAMES
paragraph. The SWITCH clause
is ignored.

The PICTURE symbol CR or DB
does not appear at the

right end of the PICTURE
string. The compiler ignores
the user-supplied PICTURE and
declares the data—name
alphanumeric with a "PICTURE
X" DECLARATION.

Both the PICTURE symbols, CR
or DB, and a sign, + or -,
appear in the same PICTURE.
The compiler ignores the
user-supplied PICTURE and
declares the data-name
alphanumeric with a "PICTURE
X" declaration.

Multiple definitions of a
COBOL switch are detected in
the SPECIAL-NAMES paragraph.
All but the first definition
of SWITCH are ignored.

The keyword NEXT is not
followed by the keyword
SENTENCE. SENTENCE is
assumed present and
processing continues.

A data-name used as a
subscript is not numeric

in class. A default value of
1 is assumed as the
subscript.

The compiler detects illegal
syntax in the DIVIDE
statement. Fatal.

Self explanatory.

The RECORD KEY clause is only
valid for indexed files.

The ALTERNATE RECORD KEY
clause is only valid for
indexed files.

The APPLY READ-AHEAD or APPLY
WRITE-BEHIND clauses are not
supported in this version of
the compiler. The APPLY
clause is ignored.

765

766

767

770

771

772

773

774

775

DIAGNOSTIC ERROR MESSAGES

INTEGER INVALID IN. RESERVE

AREA. CLAUSE.

BAD VALUE IN BLOCK CONTAINS
CLAUSE.

VALUE IN. BLOCK CONTAINS.
CLAUSE IS ROUNDED UP

EXPECTED .RECORD KEY.
DATANAME NOT DEFINED.

.RECORD KEY. DATANAME HAS
INVALID CLASS.

.RECORD KEY. DATA ITEM
CANNOT BE VARIABLE LENGTH.

.RECORD KEY. ITEM NOT
DEFINED IN RECORD OF FILE

FILE ACCESSED BY VERB
REQUIRING INDEXED ORG.

.KEY IS. PHRASE INVALID
FOR SEQUENTIAL .READ.

H-52

The number of buffer areas
reserved by the RESERVE clause
is invalid. The clause is
ignored and a default of one
area for SEQUENTIAL and
RELATIVE or two areas for
INDEXED is supplied.

The numeric literal in the
BLOCK clause is less than the
sum of the record size, the
record header size, and the
bucket header size. The BLOCK
CONTAINS clause is ignored.

The numeric literal in the
BLOCK clause is not a multiple
of 512. The value is rounded
up to the next even multiple
of 512,

The data-name given in a
RECORD KEY clause has not been
defined in the DATA DIVISION.

A data-name referenced in a
RECORD KEY or ALTERNATE RECORD
KEY phrase of a SELECT clause
in the FILE-CONTROL paragdgraph
is defined in the FILE SECTION
with non-alphanumeric class.

A data-name referenced in a
RECORD KEY or ALTERNATE RECORD
KEY phrase of a SELECT clause
in the FILE-CONTROL paragraph
is defined in the FILE SECTION
as an item whose size is
variable.

A data-name referenced in a
RECORD KEY or an ALTERNATE
RECORD KEY phrase of a SELECT
clause is not defined in the
record description of the
associated file.

A file whose organization is
SEQUENTIAL or RELATIVE is
referenced by the READ verb
which has the KEY IS data-name
phrase specified. This is
illegal. The referenced file
must have INDEXED
organization. FATAL.

Either the file has ACCESS
SEQUENTIAL or the READ
statement contains the word
NEXT. In either case the KEY
IS data—-name phrase is
illegal. FATAL.

DIAGNOSTIC ERROR MESSAGES

776 INVALID DATANAME IN .KEY
IS. PHRASE.

777 .KEY IS. PHRASE NOT FOLLOWED
BY RECORD KEY.

1000 VARIABLE OCCURRENCES TABLE
MUST END RECORD.

1001 .ASCENDING. OR .DESCENDING.
DATANAME EXPECTED.

1002 RENAMED DATAITEMS NOT IN
CURRENT RECORD.

1003 MAXIMUM OCCURRENCES NOT
GREATER THAN MINIMUM.

1004 .DEPENDING. IS OMITTED IN THE
.OCCURS. CLAUSE.

1005 A DATANAME MUST FOLLOW THE
.DEPENDING. KEYWORD.

The KEY IS phrase of the READ
statement was not followed by
a data-name. FATAL.

The data-name following the
KEY IS phrase of the READ
statement is not a RECORD KEY
or ALTERNATE RECORD KEY for
the referenced file. The
RECORD KEY data-name

is assumed.

A COBOL table declared with
the DEPENDING ON phrase may
only be followed, within the
record, by data description
entries whose level-numbers
are strictly greater than
the level-number of this
table entry. The compiler
ignores the remainder of the
record descriptor from the
point where the error is
detected. Fatal.

A user-defined data-name was
expected, but not found, in
the ASCENDING KEY IS or
DESCENDING KEY IS phrase.

The data items specified
after the RENAMES keyword
(i.e., the data items being
renamed) are defined outside
of the current record
description. This is syntac-
tically invalid. The compiler
ignores the entire RENAMES
data description entry.

In a variable occurrence
table declaration, the
integer following the
keyword TO (i.e., the
maximum) must be strictly
greater than the integer
following the keyword OCCURS
{({i.e., the minimum). The
compiler assumes the maximum
value to be equal to the
minimum value plus one.

In a variable occurrence
table declaration, the
keyword DEPENDING has

been omitted. The compiler
ignores the remainder of the
OCCURS clause and treats the
table declaration as an
ordinary COBOL table.

In a variable occurrence
table declaration, a valid
data-name is not found

1006

1007

1010

1011

1012

1013

1014

1015

DIAGNOSTIC ERROR MESSAGES

.OCCURS DEPENDING.
SUBORDINATE TO AN .OCCURS.

MAXIMUM NO. TABLE OCCURRENCES
MUST BE POSITIVE.

EXPECTED .DEPENDING ON.
DATANAME NOT DEFINED.

EXPECTED .ASCENDING KEY.
DATANAME NOT DEFINED.

EXPECTED .DESCENDING KEY.
DATANAME NOT DEFINED.

.DEPENDING ON. DATANAME NOT A
NUMERIC INTEGER.

-RENAMES. APPLIED TO AN
INVALID LEVEL OF DATA.

.DEPENDING ON. DATANAME
DETECTED WITHIN TABLE.

following the keyword
DEPENDING. The compiler
ignores the remainder of the
OCCURS clause and treats the
table declaration as an
ordinary COBOL table.

The compiler detects a table
declaration with a DEPENDING
ON phrase subordinate to a
group item which has an
OCCURS clause. This is
syntactically illegal. The
compiler ignores the
DEPENDING ON phrase and
treats the declaration as an
ordinary COBOL table.

In a variable occurrence
table declaration, the
integer following the keyword
TO (i.e., the maximum) must
be greater than zero. The
compiler assumes the maximum
value to be equal to the
integer value following the
keyword OCCURS (i.e., the
minimum) plus one.

The data-name referenced in a
DEPENDING ON phrase was not
defined in the DATA DIVISION.
Fatal.

The data-name referenced in
an ASCENDING KEY phrase was
not defined in the DATA
DIVISION. Fatal.

The data-name referenced in a
DESCENDING KEY phrase was not
defined in the DATA DIVISION.
Fatal.

The data—-name referenced in a
DEPENDING ON phrase was not
declared as a numeric integer
in the DATA DIVISION. Fatal.

The RENAMES clause specifies
the renaming of data items
whose level number is an 01,
66, 77, or 88. This is syn-
tactically invalid. The
compiler ignores the entire
RENAMES data description
entry.

The compiler detects a
data-name, which follows a
DEPENDING ON phrase and which
defines the current number of
occurrences in a variable
occurrence table, to have its

1016

1017

1020

1021

1022

1023

1024

1025

DIAGNOSTIC ERROR MESSAGES

.OCCURS. CLAUSE ON A TABLE
KEY DATANAME.

.SEARCH ALL. TABLE DOES
NOT HAVE KEYS.

IMPERATIVE STATEMENT EXPECTED
DURING .SEARCH.

KEYS SPECIFIED FOR .SEARCH
ALL. NOT DENSE.

.WHEN. EXPECTED BUT NOT FOUND
IN .SEARCH.

THE KEYWORD .WHEN. ILLEGAL IN
THIS CONTEXT.

THE KEYWORD .SEARCH. ILLEGAL
IN THIS CONTEXT.

KEY MUST BE SUBSCRIPTED BY
FIRST INDEX OF TABLE.

H-55

storage allocated within the
range of the table. This is
syntactically illegal. Fatal.

The compiler detects the
presence of an OCCURS clause
on a data item which has been
declared as an ASCENDING or
DESCENDING KEY. This is
syntactically illegal. Fatal.

The table being searched by
by SEARCH ALL statement must
have the ASCENDING KEY or
DESCENDING KEY phrase
specified in its declaration.
Fatal. :

A period or a non-imperative
statement was found where the
SEARCH statement environment
is expecting an imperative
statement. Fatal.

When a key is referenced for
the SEARCH ALL statement, all
preceding keys in the KEY
clause of the table declara-
tion must also be referenced.
Fatal.

The compiler expected but
failed to recognize the WHEN
keyword while compiling the
SEARCH statement. This SEARCH
statement is considered
syntactically invalid. Fatal.

The compiler detects the
presence of the keyword WHEN
outside the environment of
the SEARCH statement. This is
syntactically invalid. Fatal.

While compiling a SEARCH
statement, the compiler
detects the presence of
another SEARCH statement in
the environment of the
original SEARCH statement.
The second SEARCH statement
is detected at a '‘point where
an imperative statement is
expected. This is syntac-
tically invalid. Fatal.

The SEARCH ALL statement
requires that the key refer-
enced on the left side of the
simple condition must be sub-
scripted by the first index-
name of the table being
searched. Fatal.

1026

1027

1030

1031

1032

1033

1034

1035

1036

DIAGNOSTIC ERROR MESSAGES

THE KEYWORD .SENTENCE.
EXPECTED AFTER .NEXT..

TABLE NAME NOT FOUND AFTER
.SEARCH. VERB.

INVALID TABLE REFERENCE IN
.SEARCH. STATEMENT.

DATANAME EXPECTED AFTER
.VARYING. IN .SEARCH.

.VARYING. ITEM MUST BE INDEX
OR INTEGER.

.SEARCH ALL. DATA ITEM
IS NOT A KEY.

DATA ITEM NOT A KEY FOR THIS
.SEARCH. TABLE.

.RENAMES. SPECIFIES RENAMING
OF A COBOL TABLE.

-.RENAMES. APPLIED TO VARIABLE
LENGTH DATAITEM.

The keyword SENTENCE was not
detected after the NEXT
keyword during the
compilation of a SEARCH
statement. Fatal.

The compiler failed to
recognize a valid table data
item after the keyword SEARCH
or SEARCH ALL. Fatal.

The table data item reference
following the SEARCH or
SEARCH ALL verbs must have
both the INDEXED BY and the
OCCURS clauses specified in
its declaration. Fatal.

No data-name reference was
found after the VARYING
keyword in the SEARCH state-
ment being compiled. Fatal.

The data-name reference
following the VARYING keyword
must be an index data item,
an index-name, or an
elementary numeric integer
data-name reference. Fatal.

The data item referenced on

the left side of the SEARCH

ALL simple condition must be
declared as an ASCENDING or

DESCENDING KEY. Fatal.

The data item referenced on
the left side of the SEARCH
ALL simple condition is not
a key for the table being
searched. This is considered
illegal. Fatal.

The RENAMES clause specifies
the renaming of a datum which
has an OCCURS clause in its
declaration or is subordinate
to another datum having an
OCCURS clause. This is
syntactically invalid. The
compiler ignores the entire
RENAMES data description
entry.

The compiler detects an
application of the RENAMES
clause to a range of data
items which contains a data
item whose length is variable
at run-time. This data item
is variable in length because
is has a subordinate data
item whose data description
entry contains an OCCURS

1037

1040

1041

1042

1043

1044

1045

DIAGNOSTIC ERROR MESSAGES

DATANAME OMITTED AFTER
66 LEVEL NUMBER.

.RENAMES. OMITTED IN LEVEL 66
DESCRIPTION ENTRY.

SEARCH KEY NOT
SUBORDINATE TO TABLE.

INVALID OR MISSING DATANAME
AFTER .RENAMES..

.OCCURS. ITEM NOT ALLOWED
BETWEEN TABLE AND KEY.

-RENAMES. SPECIFIES INVALID
NOMENCLATURE RANGE.

.RENAMES. SPECIFIES STORAGE
OVERLAP ON LEFT END.

DEPENDING ON clause. The
application of the RENAMES
clause to such a range of
data items is syntactically
invalid. The compiler ignores
the entire RENAMES data
description entry.

The data-name declaration is
omitted after a 66 level
number. The compiler ignores
the entire RENAMES data
description entry.

The RENAMES keyword is
omitted in a level 66 data
description entry. The
compiler ignores the entire
level 66 data description
entry.

The compiler detects an
ASCENDING or DESCENDING data-
name key which is not defined
as a data item subordinate to
the associated SEARCH table.
This is syntactically
invalid.

The data-name is missing
after the RENAMES keyword or,
if present, is not recognized
as a valid data item
previously defined. The
compiler ignores the entire
RENAMES data description
entry.

The compiler detects a data
item declared with an OCCURS
clause "sandwiched" between
the declaration of another
COBOL table and its
associated SEARCH key.

This is syntactically
invalid.

In processing the RENAMES
clause, the compiler detects
an invalid nomenclature range
specified by identical data-
names following the RENAMES
and THRU keywords,
respectively. This is
syntactically invalid. The
compiler ignores the entire
RENAMES data description
entry.

In processing the RENAMES
clause, the compiler detects
the condition in which the
beginning of the storage
allocated to the data-name

1046

1047

1050

1051

1052

DIAGNOSTIC ERROR MESSAGES

INVALID OR MISSING DATANAME
AFTER .THRU..

INVALID OR MISSING DATANAME
AFTER CORRESPONDING.

.TO. OR .FROM. OMITTED IN
.CORRESPONDING.

INVALID OR MISSING DATANAME
AFTER .TO. OR .FROM.

NO OBJECT CODE PRODUCED FOR
.CORRESPONDING.

H-58

after the THRU keyword is
positionally to the left of
the beginning of the storage
allocated to the data-name
after the RENAMES keyword.
This is syntactically
invalid. The compiler
ignores the entire RENAMES
data description entry.

In specifying the RENAMES
clause, a data-name is
missing after the THRU
keyword or, if present, is
not recognized as a valid
data item previously defined.
The compiler ignores the
entire RENAMES data
description entry.

In the processing of an ADD,
SUBTRACT, or MOVE
CORRESPONDING statement, the
compiler detects the omission
of a valid data-~name
reference after the CORRE-
SPONDING keyword. Fatal.

In the processing of an ADD,
SUBTRACT, or MOVE CORRE-
SPONDING statement, the
compiler detects the omission
of the TO or FROM keyword.
Fatal.

In the processing of an ADD,
SUBTRACT, or MOVE
CORRESPONDING statement,

the compiler detects the
omission of a valid data-name
reference after the keyword
TO or FROM. Fatal.

In the processing of an ADD,
SUBTRACT, or MOVE
CORRESPONDING statement,
the compiler produced no-:
object code. No object code
is produced because no
"correspondence" was found
between the two group items
referenced in the COBOL
statement containing the
CORRESPONDING option. This
diagnostic is informational
only.

1053

1054

1055

1056

1057

1060

1061

1062

DIAGNOSTIC ERROR MESSAGES

GROUP ITEM NOT REFERENCED IN
.CORRESPONDING.

LEVEL 66 REFERENCE DISALLOWED
IN .CORRESPONDING.

.FILE STATUS.
.FILE SECTION.

ITEM DEFINED IN

INCOMPATIBLE OPERANDS FOUND
IN .CORRESPONDING.

EMPTY .GO TO. WAS NOT THE
SUBJECT OF AN .ALTER..

QUALIFIER OMITTED IN
PROCEDURE REFERENCE.

INCONSISTENT NUMBER OF
ARGUMENTS IN .CALL..

PARAGRAPH WITHOUT SECTION
PRECEDES THIS SECTION.

H-59

In the processing of an ADD,
SUBTRACT, or MOVE
CORRESPONDING statement,

the compiler discovers that
one of the references is a
reference to an elementary
item. This is syntactically
invalid. Fatal.

In the processing of an ADD,
SUBTRACT, or MOVE
CORRESPONDING statement, the
compiler detects a reference
to a data-name declared at
level 66. This is an invalid
reference. Fatal.

A data-name referenced in a
FILE STATUS phrase of a
SELECT clause is defined in
the FILE SECTION of the
COBOL program. The compiler
ignores this error and
continues to process the
FILE STATUS data-name.

In the processing of an ADD,
SUBTRACT, or MOVE
CORRESPONDING statement, the
compiler detects a pair of
CORRESPONDING data items
which are incompatible. This
diagnostic is informational
only.

A GO TO statement without a
procedure reference was
detected. The empty GO TO is
not the subject of an ALTER
statement. FATAL.

A section name is omitted
after the keyword OF or IN in
a qualified procedure
reference of the COBOL
statement being compiled.
Fatal.

The subprogram referenced in
this CALL statement has been
referenced before. The number
of arguments ‘in the earlier
CALL differs from the number
in the current CALL.

In a COBOL program, if one
paragraph is in a section,
then all paragraphs must be in
sections. In this source
program, a paragraph not
within a section has been
detected, preceding this
section in the source program.

1063

1064

1065

1066

1067

1070

1071

1072

DIAGNOSTIC ERROR MESSAGES

DUPLICATE PARAGRAPH
NAME DETECTED.

REFERENCE TO UNDEFINED
PROCEDURE NAME.

UNDEFINED PROCEDURE QUALIFIER
REFERENCE.

ILLEGAL PROCEDURE NAME
REFERENCE.

AMBIGUOUS PROCEDURE
NAME REFERENCE.

PARAGRAPH NAME
DISALLOWED AS QUALIFIER.

SECTION NAME REFERENCE MAY
NOT BE QUALIFIED.

AMBIGUOUS PARAGRAPH
NAME REFERENCE.

In a section of the Procedure
Division, a paragraph name is
defined more than once which,
if referenced, is not
uniquely referenceable, even
with qualification.

The compiler detects a
reference to an undefined
procedure name in the
PROCEDURE DIVISION. This is
syntactically invalid:

The compiler detects a
qualified procedure reference
which contains an undefined
qualifier in the PROCEDURE
DIVISION. This is syntac-
tically invalid.

The compiler detects an
invalid procedure name
reference in the PROCEDURE
DIVISION. This is syntac-
tically invalid.

The compiler detects a
reference in the PROCEDURE
DIVISION to a procedure name
which is not uniquely
referenceable, even through
qualification. This is
syntactically invalid.

The compiler detects a
qualified procedure reference
in the PROCEDURE DIVISION

in which the qualifier is a
paragraph name. This is
syntactically invalid.

The compiler detects a
qualified procedure reference
in the PROCEDURE DIVISION

in which a section name is
qualified by another section
name. This is syntactically
invalid.

The compiler detects a
reference in the PROCEDURE
DIVISION to a paragraph name
which is not uniquely
referenceable, even through
qualification.

DIAGNOSTIC ERROR MESSAGES

1073 POSSIBLE .PERFORM.
RANGE VIOLATION.

1074 NUMERIC PROCEDURE NAME
EXCEEDS 30 CHARACTERS.

1075 NUMERIC PROCEDURE NAME
CONTAINS DECIMAL POINT.

1076 .RELATIVE KEY. ITEM DEFINED
IN RECORD OF FILE.

1077 NO. OF AREAS DEFAULTS TO MAX.
FOR FILE TYPE)

The compiler detects a
PERFORM THRU statement in
which the procedure name
following the THRU keyword
is defined in the text of
the Procedure Division
before the procedure name
following the PERFORM
keyword. This condition may
potentially represent a logic
problem in the COBOL program
being compiled, although not
necessarily so.

A numeric string which
appears to be a numeric
procedure name exceeds 30
characters in length. The
string is truncated on the
right to 30 characters and
processing of the numeric
procedure name continues.

A numeric string which
appears to be a numeric
procedure name contains a
decimal point. This is
syntactically invalid. The
compiler ignores the presence
of the decimal point and
proceeds with the processing
of the numeric procedure
name.

A data-name referenced in a
RELATIVE KEY phrase of a
SELECT clause is defined in
the record description of the
associated file. The compiler
ignores this error and
continues to process the
RELATIVE KEY data-name.

The number of buffer areas
reserved by the RESERVE clause
is greater than the maximum
allowed for the file
organization. Instead, the
clause will cause two areas to
be allocated for a sequential
file and one for a relative
file.

APPENDIX I

RECORD MANAGEMENT SERVICES ERROR CODES

Any of the following I/0 error conditions could occur during COBOL
program execution. The codes appear in a COBOL message in the form
shown below:

"RECORD MANAGEMENT SERVICES ERROR - nn"
(nn represents the Record Management Services error code).
These error codes are listed in Table I-1.

Table I-1 :
RMS System Standard Error Codes

Value Meaning

-16 OPERATION ABORTED (STV=ER$STK/MAP)

-32 F11ACP COULD NOT ACCESS FILE(STV=SYS ERROR CODE)
-48 "FILE" ACTIVITY PRECLUDES OPERATION

-64 BAD AREA ID(STV=@XAB)

-80 ALIGNMENT OPTIONS ERROR (STV=@XAB)

-96 ALLOCATION QUANTITY TOO LARGE

-112 NOT ANSI "D" FORMAT

-128 ALLOCATION OPTIONS ERROR(STV=@XAB)

-144 INVALID(I.E. SYNCH) OPERATION AT AST LEVEL

-160 ATTRIBUTE READ ERROR(STV=SYS ERR CODE)

-176 ATTRIBUTE WRITE ERROR(STV=SYS ERR CODE)

-192 BUCKET SIZE TOO LARGE (FAB)

-208 BUCKET SIZE TOO LARGE (STV=@XAB)

~-224 "BLN" LENGTH ERROR(RAB/FAB)

-232 BEGINNING OF FILE DETECTED

-240 PRIVATE POOL ADDRESS NOT MULTIPLE OF "4"

-256 PRIVATE POOL SIZE NOT MULTIPLE OF "4"

=272 INTERNAL RMS ERROR CONDITION DETECTED

-288 CAN'T CONNECT RAB

-304 S$UPDATE-KEY CHANGE A KEY WITHOUT HAVING ATTRIBUTE OF
XB$CHG SET

-320 BUCKET FORMAT CHECK-BYTE FAILURE

-336 RSTS/E CLOSE FUNCTION FAILED (STV=SYS ERR CODE)
-352 INVALID OR UNSUPPORTED "COD" FIELD (STV=@XAB)
-368 F11-ACP COULD NOT CREATE FILE (STV=SYS ERR CODE)
-384 NO CURRENT RECORD (OPERATION NOT PRECEDED BY GET/FIND)
-400 F11-ACP DEACCESS ERROR DURING "CLOSE" (STV=SYS ERR CODE)
-416 DATA "AREA" NUMBER INVALID(STV=@XAB)

-432 RFA-ACCESSED RECORD WAS DELETED

-448 BAD DEVICE, OR INAPPROPRIATE DEVICE TYPE

-464 ERROR IN DIRECTORY NAME

I-1

RECORD MANAGEMENT SERVICES ERROR CODES

Table I-1 (Cont.)
RMS System Standard Error Codes

Value Meaning

-480 DYNAMIC MEMORY EXHAUSTED

-496 DIRECTORY NOT FOUND

-512 DEVICE NOT READY

-520 DEVICE POSITIONING ERROR(STV=SYS ERR CODE)

-528 "DTP" FIELD INVALID(STV=@XAB)

-544 DUPLICATE KEY DETECTED, XB$DUP ATTRIBUTE NOT SET
-560 RSX-F11ACP ENTER FUNCTION FAILED (STV=SYS ERR CODE)
-576 OPERATION NOT SELECTED IN "ORGS" MACRO

-592 END-OF~FILE

~608 EXPANDED STRING AREA TOO SHORT

-616 FILE EXPIRATION DATE NOT YET REACHED

-624 FILE EXTEND FAILURE (STV=SYS ERR CODE)

-640 NOT A VALID FAB("BID" NOT=FB$BID)

-656 ILLEGAL FAC FOR REC-OP,0, OR FBSPUT NOT SET FOR "CREATE"
-672 FILE ALREADY EXISTS

-680 INVALID FILE-ID

-688 INVALID FLAG-BITS COMBINATION (STV=@XAB)

-704 FILE IS LOCKED BY OTHER USER

=720 PSX-F11ACP "FIND" FUNCTION FAILED (STV=SYS ERR CODE)
-736 FILE NOT FOUND

-752 ERROR IN FILENAME

-768 INVALID FILE OPTIONS

-784 DEVICE/FILE FULL

-800 INDEX "AREA" NUMBER INVALID (STV=@XAB)

-816 INDEX NOT INITIALIZED (STV ONLY,STS=ERSRNF)

-832 INVALID IFI VALUE

-848 MAX NUM(254) AREAS/KEY XABS EXCEEDED (STV=@XAB)

-864 $INIT MACRO NEVER ISSUED

-880 OPERATION ILLEGAL, OR INVALID FOR FILE ORG.

-896 ILLEGAL RECORD ENCOUNTERED (SEQ. FILES ONLY)

-912 INVALID ISI VALUE, ON UNCONNECTED RAB

-928 BAD KEY BUFFER ADDRESS (KBF=0)

-944 INVALID KEY FIELD (KEY=0/NEG)

-960 INVALID KEY-OF-REFERENCE ($GET/$FIND)

-976 KEY SIZE TOO LARGE (IDX)/NOT=4 (REL)

-992 LOWEST-LEVEL-INDEX "AREA" NUMBER INVALID (STV=@XAB)
-1008 | NOT ANSI LABELED TAPE

~1024 | LOGICAL CHANNEL BUSY

-1040 | LOGICAL CHANNEL NUMBER TOO LARGE

-1048 | LOGICAL EXTEND ERROR, PRIOR EXTEND STILL VALID (STV=@XAB)
-1056 | "LOC" FIELD INVALID (STV=@XAB)

-1072 | BUFFER MAPPING ERROR

-1088 | F11ACP COULD NOT MARK FILE FOR DELETION (STV=SYS ERR CODE)
-1104 | MRN VALUE=NEG/REL.KEY>MRN

-1120 | MRS VALUE=0 FOR FIXED LENGTH RECS/=0 FOR REL. FILES
-1136 | "NAM" BLOCK ADDRESS INVALID(NAM=0, OR NOT ACCESSIBLE)
-1152 |NOT POSITIONED TO EOF (SEG. FILES ONLY)

-1168 |CAN'T ALLOCATE INTERNAL INDEX DESCRIPTOR

-1184 | INDEXED FILE-NO PRIMARY KEY DEFINED

-1200 | RSTS/E OPEN FUNCTION FAILED (STV=SYS ERR CODE)

-1216 |XAB'S NOT IN CORRECT ORDER(STV=@XAB)

-1232 [INVALID FILE ORGANIZATION VALUE

~1248 |ERROR IN FILE'S PROLOGUE (RECONSTRUCT FILE)

-1264 | "POS" FIELD INVALID (POS>MRS,STV=@XAB)

-1280 |BAD FILE DATE FIELD RETRIEVED (STV=@XAB)

-1296 |PRIVILEGE VIOLATION (OS DENYS ACCESS)

RECORD MANAGEMENT SERVICES ERROR CODES

Table I-1 (Cont.)
RMS System Standard Error Codes

Value Meaning

-1312 { NOT A VALID RAB("BID" NOT=RB$BID)

-1328 | ILLEGAL RAC VALUE

-1344 | ILLEGAL RECORD ATTRIBUTES

-1360 | INVALID RECORD BUFFER ADDR("ODD", OR NOT WORD-ALIGNED IF
BLK-IO)

-1376 | FILE READ ERROR(STV=SYS ERR CODE)

1=1392 | RECORD ALREADY EXISTS

-1408 | BAD RFA VALUE (RFA=0)

-1424 | INVALID RECORD FORMAT

-1440 | TARGET BUCKET LOCKED BY ANOTHER STREAM

-1456 | RSX-F11ACP REMOVE FUNCTION FAILED (STV=SYS ERR CODE)

-1472 | RECORD NOT FOUND (STV=0/ER$IDX)
RECORD NEVER WAS IN FILE, OR HAS BEEN DELETED

-1488 | RECORD NOT LOCKED

-1504 | INVALID RECORD OPTIONS

-1520 | ERROR WHILE READING PROLOGUE (STV=SYS ERR CODE)

-1536 | INVALID RRV RECORD ENCOUNTERED

-1552 | RAB STREAM CURRENTLY ACTIVE

-1568 | BAD RECORD SIZE (RSZ>MRS, OR NOT=MRS IF FIXED LENGTH RECS
RSZ NOT=CURRENT REC.SIZE FOR SUPDATE TO SEQ.FILE

-1584 { RECORD TOO BIG FOR USER'S BUFFER(STV=ACTUAL REC SIZE)

-1600 | PRIMARY KEY OUT OF SEQUENCE (RAC=RB$SEQ FOR $PUT)

~1616 | "SHR" FIELD INVALID FOR FILE (CAN'T SHARE SEQ FILES)

~1632 | "SIz" FIELD INVALID(STV=@XAB)

-1648 | STACK TOO BIG FOR SAVE AREA

-1664 | SYSTEM DIRECTIVE ERROR(STV=SYS ERR CODE)

-1680 | INDEX TREE ERROR

-1696 | ERROR IN FILE TYPE

-1712 | INVALID USER BUFFER ADDR(0,0DD, OR IF BLK-IO NOT WORD
ALIGNED) :

-1728 | INVALID USER BUFFER SIZE (USZ=0)

-1744 | ERROR IN VERSION NUMBER

~1760 | INVALID VOLUME NUMBER (STV=@XAB)

-1776 | FILE WRITE ERROR(STV=SYS ERR CODE)

-1784 |DEVICE IS WRITE-LOCKED

-1792 | ERROR WHILE WRITING PROLOGUE (STV=SYS ERR CODE)

-1808 | NOT A VALID XAB(@XAB=0DD,STV=@XAB)

APPENDIX J

OBJECT TIME SYSTEM ERROR MESSAGES

Table J-1
COBOL Object Time System Error Messages

Number Message Meaning

1 NON EXISTENT OTS ROUTINE |The COBOL compiler has generated

INVOKED reference to a nonexistent OTS
routine. This should never
occur; (COBOL compiler

error - notify your DEC Software
Specialist).

3 DEPENDING DATA NAME The data item which defines the
OUT OF RANGE current number of elements in the
table does not fall within the
defined table size range.

4 ILLEGAL SUBROUTINE A COBOL subprogram may not be
REENTRY called while it is still
processing a previous call.

5 INCORRECT NUMBER OF The number of arguments expected
SUBROUTINE ARGUMENTS by a COBOL subprogram does not
agree with the number actually

received.

6 FILE: NN... ATTEMPT TO The program tried to open a file

OPEN 2 'MULTIPLE that uses the same buffer area of
SAME AREA' FILES another file that is still open.
SIMULTANEOUSLY (NN... represents the

file-name.)

7 FILE: NN... NOT OPEN The program attempted to perform
an I/O0 operation on a file that
was not open. (NN... represents
the file-name.)

OBJECT TIME SYSTEM ERROR MESSAGES

Table J-1 (Cont.)
COBOL Object Time System Error Messages

Number

Message

Meaning

10

11

12

13

14

15

16

17

20

FILE: NN... ALREADY
OPEN

SUBSCRIPT TOO BIG

PERFORM STACK
OVERFLOW

NULL ALTERABLE
GO TO

STOP, CR TO CONTINUE

STOP RUN

SUBSCRIPT TOO SMALL

PERFORM END OF
RANGE VIOLATION

FILE: NN... OPTIONAL
FILE MOUNTED? Y OR N?

The program attempted to open
a file that was already open.
(NN... represents the
file-name.)

A subscript value used in a
subscripted data item reference
has exceeded the upper bounds of
the number of items in the table.

The perform stack is used to
process nested performs. The
size of this stack is fixed at
compile time. To increase the
default size, specify the /PFM
switch at compile time.

An alterable GOTO statement has
been reached, and no procedure
name was assigned to it.

The program executed a STOP
statement. The (03] waits
indefinitely. To continue, type
carriage return.

The program executed a STOP RUN
statement. The program stops all
activity and closes all open
files.

The subscript value of a data
item 1is 1less than or equal to
zZero.

The end-point of an active
perform range has occurred.
However, the perform range in
question is not the most recent.

The OTS is asking the operator to

specify whether the file NN...

is available to the running
program. (NN... represents the
file-name.) Type a Y for yes, or
N (or some other character) for
no.

OBJECT TIME SYSTE

Table J-1
COBOL Object Time Sy

M ERROR MESSAGES

(Cont.)
stem Error Messages

Number

Message

Meaning

22

24

25

26

27

30

31

32

33

INDEX VALUE TOO SMALL
OR TOO LARGE AT
SOURCE LINE NNNNN

WRITE ERROR IN DISPLAY

ILLEGAL NESTED
PERFORM

UNKNOWN PROCEDURE

SPECIFY "ON" SWITCHES

ACCEPT-INPUT TOO LONG

FILE: NN... OPEN ERROR-XX

FILE: NN... CLOSE ERROR-XX

FILE: NN... NOT OPEN

A value for an index name is
being used in a SET statement
that is outside the bounds of the

table. (NNNNN represents the
source program's page-line
number.)

A DISPLAY statement encountered a
bad device or a record length of
more than 132 characters.

An attempt was made to invoke a
perform range whose end-point is
that of an active perform range.

Self-explanatory; an appropriate
diagnostic error message was
produced by the compiler. See
the compiler listing.

See Section 2.8

A single ACCEPT statement has
attempted to read more than 80
characters. The oTs currently
imposes a limit of 80 characters on
the ACCEPT statement.

The program attempted to open file
NN... but the open failed. The
Record Management services error
code specifies the kind of error.
(See Appendix I for the RMS error
codes.) (NNN.. represents the
file-name. XX represents the error
code.)

The program attempted to close
file NN... but the close operation
failed. The RMS error code
specifies the kind of error. (See
Appendix I for the RMS error
codes.) (NN... represents the
file-name. XX represents the error
code.) ’

The program attempted to close file
NN... but file NN... is not open.
(NN... represents the file-name.)

J-

3

OBJECT TIME SYSTEM ERROR MESSAGES

Table J-1 (Cont.)
COBOL Object Time System Error Messages

Number

Message

Meaning

34

36

37

40

41

42

FILE: NN... INVALID
LINAGE

FILE: NN... REWRITE/
DELETE NOT LEGAL
WITHOUT PRIOR READ

FILE: NN... NO USE
PROCEDURE FOR I/0
ERROR-XX

FILE: NN... LOCKED

FILE: NN... INVALID
OPERATION

ABORT EXECUTION

The LINAGE clause specified a
page body size that has been
calculated to be zero. (NN...
represents the file-name.)

The program requested a REWRITE
or a DELETE operation on a
sequential file and the last 1I/0
operation in the file was not a
READ.

The OTS detected an I/0 error for
file NN... and no USE procedure
is specified for the file
(explicitly or implicitly). The
RMS error code XX, specifies the
kind of error. (See Appendix I
for the RMS error codes.) This
message results from a fatal
error; the OTS executes a STOP
RUN and closes all open files.

The program previously closed the
file with lock during this
program execution. (NN...
represents the file-name.)

The program attempted to issue
one of the following 1/0
statements on a file open in an
incompatible mode:

® A READ on a file open for
output;

° A WRITE on a file open for
input or I-0O;

° A REWRITE or DELETE on a file
open for input or output.

Execution of the task has arrived
at a point where a fatal
diagnostic was detected by the
compiler.

The following errors
condition within

NOTE

indicate a fault

the task. See the

Executive Reference Manual for your

operating system.

J"f4v

OBJECT TIME SYSTEM ERROR MESSAGES

Table J-1 (Cont.)
COBOL Object Time System Error Messages

Number Message Meaning

43 ODD ADDRESS ERROR

44 MEMORY PROTECTION
VIOLATION

45 T-BIT TRAP OR BPT
INSTRUCTION

46 IOT INSTRUCTION

47 RESERVED INSTRUCTION

50 NON-RSX EMT

51 FLOATING POINT EXCEPTION

/ACC:nn, 2-21
ACCEPT statement, 6-48
Access modes (indexed),
6-32
Access modes (relative),
6-19
Account, 2-19
ACCUMULATOR specification,
COBRG, 8-9
Active/inactive arguments,
3-41
ADD statement, 4-15, 4-16
ALTER statement, 7-5
Area A, 2-4
Area B, 2-4
Argument,
Replacement, 3-52
Search, 3-51
Tally, 3-44
Argument match, 3-42
Arguments,
Active/inactive, 3-41
REPLACING, 3-40
TALLYING, 3-40
Arithmetic expression
proessing, 4-19
Arithmetic statements, 4-12
Arithmetic statements
errors, 4-18
ASSIGN clause, 6-44
Assigning a terminal, F-2
Assignments,
Device, 6-—-44
LUN, B-1

BEFORE/AFTER phrase, 3-37
Blank lines, 2-5
BLOCK CONTAINS Cnum
CHARACTERS, 6-16
BLOCK CONTAINS integer
RECORDS, 6-7
BLOCK CONTAINS Rnum RECORDS,
6-16, 6-29
Blocking (indexed),
Record, 6-27
Blocking (sequential),
Record, 6-6, 6-15
BREAK specification,
COBRG, 8-8
Buffer areas (indexed),
I"‘O' 6“30
‘Buffer areas (sequential),
1-0, 6-8
Buffer size (indexed), 6-30

INDEX

Buffer size (sequential),
6-8

Buffer space (indexed),
6-31

Buffering (indexed), 6-30

Buffering (relative), 6-17

CALL statement, 10-2
Calling COBOL subprograms,
10-2
Card reader devices, 6-39
CBL, 2-19
Character handling,
Non-numeric, 3-1
Numeric, 4-1
Characters,
Special, 3-3
Tab, 2-5
Choosing a reference format,
1-7
Choosing an input medium,
2-7
Class tests, 3-6, 4-7
Classes of data, 3-5
Clause,
ASSIGN, 6-44
RECORD CONTAINS, 6-4,
6-14, 6-27
SAME RECORD AREA, 6-5,
6-15, 6-27
SEGMENT-LIMIT, 9-1
SYNCHRONIZED, 5-3
VALUE OF 1D, 6-41
Closing a terminal, F-2
Closing indexed files, 6-37
Closing relative files,
6-24
Closing sequential files,
6-13
COBOL,
Using PDP-11, 1-7
COBOL command line, 2-18
COBOL command sequence IAS,
2-20
COBOL command sequence
RSTS/E, 2-20
COBOL command sequence
RSX-11M, 2-20
COBOL command string errors,
2-35
COBOL compiler, 1-2
Invoking the, 2-17
Using the, 2-17

Index-1

COBOL compiler limitations,
c-1
COBOL file types, 6-2
COBOL formats, A-1
COBOL ODL files,
Creating standard, 11-5
COBOL report generation,
8-1
COBOL source program, 1-5
COBOL subprograms,
Calling, 10-2
COBOL task,
Executing a, 2-43
COBOL utility programs, 1-7
COBRG, 8-1
COBRG ACCUMULATOR
specification, 8-9
COBRG BREAK specification,
8-8
COBRG command string, 8-14
COBRG EMIT specification,
8-12
COBRG error messages, 8-23
COBRG HEADER specification,
8-7
COBRG INPUT specification,
8-4
COBRG LIST specification,
' 8-13
COBRG NAME specification,
8-3
COBRG output, 8-14
COBRG OUTPUT specification,
8-5
COBRG sample program, 8-2,
8-15
COBRG specification line,
8-3
COBRG TOTAL specification,
8-11
COBRG utility, 1-7
Codes,
Device, 6-37
RMS error, I-1
Sort error, E-5
Command line,
COBOL, 2-18
Command string,
COBRG, 8-14
REFORMAT, 8-27
Command string errors,
COBOL, 2-35
Command-file, 2-18
;comment, 11-2
Comment indicator, 2-4
Comment lines, 2-5
Communicating with the
program, 6-48
Communications,
Inter—-program, 10-1

INDEX (CONT.)

COMP, 4-1
Comparison operation, 3-6
Compiler,

COBOL, 1-2

Invoking the COBOL, 2-17

Using the COBOL, 2-17
Compiler generated PSECT,

D-1
Compiler limitations,

COBOL, C-1
Compiler switches, 2-21
Compiler system errors, G-1,

12-1
Compiler—generated ODL file,
11-6
COMPUTE statement, 4-18
Condition-names,

Level 88, 7-6
Configuration section, 1-5
Continuation lines, 2-4
Conventional reference

format, 2-2
COPY, 2-7
COPY REPLACING statement,
2-12
COPY statement, 2-9
COUNT phrase, 3-28
Counter,

Tally, 3-44

Creating a library file,
2-9

Creating a source file, 2-7

Creating standard COBOL ODL
files, 11-5

/CREF, 2-21

/CSEG:nnnn, 2-21, 9-3

/CVF, 2-22

Data,

Classes of, 3-5
DATA DIVISION, 1-5
Data file transportability,

6-51
Data item definition, 7-10
Data items,

Index, 5-14
Data movement, 3-7
Data organization, 3-2
Data references,

Qualified, 7-8
Data—names,

Subscripting with, 5-11
Deassigning a terminal, F-3
Defining tables, 5-1
Definition,

data item, 7-10

Index-2

Deleting records from
indexed files, 6-35
Deleting records from
relative files, 6-22
DELIMITED BY phrase, 3-15,
3-23
DELIMITER phrase, 3-29
Delimiters,
Multiple, 3-27
Dev:, 2-19
Device, 2-10
Device assignments, 6-—-44
-Device codes, 6-37
Devices, 6-37
Card reader, 6-39
Disk, 6-38
Line printer, 6-39
Magnetic tape, 6-39
Diagnostic error messages,
H-1
Diagnostic errors, 12-1
Disk devices, 6-38
DISPLAY, 4-1
DISPLAY statement, 6-49
DIVIDE statement, 4-17
DIVISION,
DATA, 1-5
ENVIRONMENT, 1-5
IDENTIFICATION, 1-5
PROCEDURE, 1-6

Edited moves, 3-10
Numeric, 4-10
Elementary items, 3-2
Elementary moves, 3-8
EMIT specification,
COBRG, 8-12
.END, 11-2
ENDS, E-1
ENVIRONMENT DIVISION, 1-5
/ERR:n, 2-22
Error codes,
RMS, I-1
Sort, E-5
Error messages,
COBRG, 8-23
Diagnostic, H-1

oTs, J-1
REFORMAT, 8-28
Errors,

Arithmetic statements,
4-18

COBOL command string,
2-35

Compiler system, G-1,
12-1

Diagnostic, 12-1

I/0, 12-4

INDEX (CONT.)

Errors (Cont.)
INSPECT statement, 3-55
Library facility, 2-16
Merge utility, 2-38
MOVE statement, 3-12,
4-12
Multi-terminal handling,
F-5
0oTs, 1l2-6
Processing I-0, 6-52
Run-time, 12-6
STRING statement, 3-20
UNSTRING statement, 3-36
Executing a COBOL task,
2-43
EXIT PROGRAM statement,
10-3
Explicit filenames, 6-41
Expression proessing,
Arithmetic, 4-19

.FCTR, 11-2

Field,

. Identification, 2-4
Fields,

Illegal values in numeric,

4-3
testing numeric, 4-6
File,
Compiler—-generated ODL,
11-6
Creating a library, 2-9
Creating a source, 2-7
Listing, 1-2
Object, 1-2
Overlay description
language, 1-2
Standard ODL, 11-1
File body,
OoDL, 11-2
File compatibility, 6-50
File handling, 6-1
File header,
ODL, 11-1
File organization,
Indexed, 6-24
Relative, 6-13
Sequential, 6-3
File section, 1-5
File specification, 2-9,
2-19
File switches, 6-43
File transportability,
Data, 6-51
File types,
COBOL, 6-2
File-~name, 2-10, 2-19
File-type, 2-10

Index~-3

Filenames,
Explicit, 6-41
Files,
Closing indexed, 6-37
Closing relative, 6-24
Closing sequential, 6-13
Creating standard COBOL
ODL, 11-5
Deleting records from
indexed, 6-35
Deleting records from
relative, 6-22
Hand-tailoring ODL, 11-1
Merging standard ODL,
11-5
Opening indexed, 6-33
Opening relative, 6-20
Opening sequential, 6-9
Reading foreign, 6-51
Reading indexed, 6-—-34
Reading relative, 6-21
Reading sequential, 6-11
Rewriting indexed, 6-34
Rewriting relative, 6-22
Rewriting sequential,
6-12
Sorting, E-1
Writing foreign, 6-50
Writing relative, 6-22
Writing sequential, 6-12
Files and filenames, 6-40
Files and logical units,
6-44
Foreign files,
Reading, 6-51
Writing, 6-50
Format,
Choosing a reference, 1-7
Conventional reference,
2-2
Reference, 7-10
Terminal reference, 2-6
Formats,
COBOL, A-1
Formatting the source
program, 7-1

GIVING phrase, 4-15
Group items, 3-2
Group moves, 3-8, 4-8

Hand-tailoring ODL files,
11-1
Handling,
file, 6-1

INDEX (CONT.)

Handling (Cont.)
Non-numeric character,

3-1
Numeric character, 4-1
table, 5-1

HEADER specification,
COBRG, 8-7
/HELP, 2-22

I-0 buffer areas (indexed),
6-30
I-0 buffer areas]
(sequential), 6-8
I-0 errors,
Processing, 6-52
I-O statements, 6-2
Indexed, 6-31
Relative, 6-18
Sequential, 6-9
I/0 errors, 12-4

IAs, 2-17
COBOL command sequence,
2-20
IDENTIFICATION DIVISION,
1-5

Identification field, 2-4
Illegal values in numeric
fields, 4-3
Implicit redefinition, 3-38
Index data items, 5-14
Indexed file organization,
6-24
Indexed files,
Closing, 6-37
Deleting records from,
6-35

Opening, 6-33

Reading, 6-34

Rewriting, 6-34
Indexed I-O statements,

6-31
Indexes,

Subscripting with, 5-12
Indexing, 5-9

relative, 5-13
Indicator,

Comment, 2-4
Initializing tables, 5-7
INPUT specification,
Input-output section, 1-5
INSPECT operation, 3-40
INSPECT statement, 3-36

Subscripting in, 3-43
INSPECT statement errors,

3-55
Inter—-program
communications, 10-1

Index-4

Intermediate results, 4-12
Invoking task builder, 2-40
Invoking the COBOL compiler,
2-17

Itens,

Elementary, 3-2

Group, 3-2

Index data, 5-14

Justified moves, 3-10

/KER:kk, 2-22

Level 88 condition-names,
7-6
LIB, 2-10
Library facility, 2-7
Library facility errors,
2-16
Library file,
. Creating a, 2-9
Line,
COBOL command, 2-18
COBRG specification, 8-3
Line printer devices, 6-39
Lines,
Blank, 2-5
Comment, 2-5
Continuation, 2-4
Short, 2-5
Linkage—-section, 1-6
LIST specification,
COBRG, 8-13
Listing,
Source, 2-15
Source program, 2-24
Listing file, 1-2
Listing—-file, 2-18
Literals,
subscripting with, 5-9
LsT, 1-2, 2-19
LUN, 6-44
LUN assignments, B-1

Magnetic tape devices, 6-39
Main program, 10-1
/MAP, 2-22
Mapping table elements, 5-3
MERGE, E-1
Merge,

Invoking, 2-36

INDEX (CONT.)

Merge utility, 1-7, 2-36
Merge utility errors, 2-38
Merge utility program, 1-2
Merging standard ODL files,
11-5
Messages,
COBRG error, 8-23
Diagnostic error, H-1
OTS error, J-1
REFORMAT error, 8-28
MOVE CORRESPONDING, 3-12
MOVE statement, 3-8, 4-8
MOVE statement errors, 3-12,
4-12
Moves,
Edited, 3-10
Elementary, 3-8
Group, 4-8
Justified, 3-10
Numeric, 4-8
Numeric edited, 4-10
Subscripted, 3-11
Multi-terminal handling
errors, F-5
Multiple delimiters, 3-27
MULTIPLY statement, 4-17

.NAME, 11-2
NAME specification,
COBRG, 8-3
/NL, 2-22
Non-COBOL programs, 11-5
Non-numeric character
handling, 3-1
Non-numerics,
Testing, 3-4
Numeric character handling,
4-1
Numeric edited moves, 4-10
Numeric fields,
Illegal values in, 4-3
testing, 4-6
Numeric moves, 4-8

OBJ, 1-2, 2-19

/OBJ, 2-23

Object file, 1-2

Object-file, 2-18

OCCURS phrase, 5-2

opL, 1-2, 2-19, 11-1

/ODL, 2-23

ODL file,
Compiler—generated, 11-6
Standard, 11-1

ODL file body, 11-2

Index-5

ODL file header, 1l1-1
ODL files,
Creating standard COBOL,
11-5
Hand-tailoring, 11-1
Merging standard, 11-5
OPEN modes,
Relative, 6-19
OPEN modes (indexed), 6-32
Opening indexed files, 6-33
Opening relative files,
6-20
Opening sequential files,
6-9
Operation,
Comparison, 3-6
INSPECT, 3-40
Optimization, 6—-45
Space, 6-47
Speed, 6-—-45
Options,
Task builder, 11-8
Organization,
Data, 3-2
Indexed file, 6-24
Relative file, 6-13
Sequential file, 6-3
OTS error messages, J-1
OTS errors, 12-6
Output,
COBRG, 8-14
OUTPUT specification,
COBRG, 8-5
/ov, 2-23, 9-2
OVERFLOW phrase, 3-17, 3-33
Overlay description
language file, 1-2

PERFORM statement, 7-5
/PFM:nn, 2-23
Phrase,
BEFORE/AFTER, 3-37
COUNT, 3-28
DELIMITED BY, 3-15, 3-23
DELIMITER, 3-29
GIVING, 4-15
OCCURS, 5-2
OVERFLOW, 3-17, 3-33
POINER, 3-30
POINTER, 3-14
REPLACING, 3-51
ROUNDED, 4-13
SIZE ERROR, 4-14
TALLYING, 3-32, 3-43
/PLT, 2-23
POINTER phrase, 3-14, 3-30

INDEX (CONT.)

.Print-controlled records,

6-6
Printer devices,
PROCEDURE DIVISION, 1-6
PROCEDURE DIVISION USING,
10-2
Procedure references, 7-11
Processing I-O errors, 6-52
Program,
COBOL source, 1-5
COBRG sample, 8-2, 8-15
Communicating with the,
6-48
formatting the source,
7-1
Main, 10-1
Merge utility, 1-2
Program listing,
Source, 2-24
Programming languages,
other, 6-50
Programming practices, 7-1
Programs,
COBOL utility, 1-7
Non-COBOL, 11-5
Program,
Utility, 8-1
.PSECT, 11-2
PSECT naming conventions,
D-1
Punctuation,
Use of, 7-4

Qualification, 7-12
Qualified data references,
7-8

READ NEXT (relative), 6-24

Reading foreign files, 6-51

Reading from a terminal,
F-3

Reading indexed files, 6-34

Reading relative files,
6—-21

Reading sequential files,
6-11

Record blocking (indexed),
6—-27

Record blocking
(sequential), 6-6, 6-15

RECORD CONTAINS clause, 6-4,
6-14, 6-27

Record size (indexed), 6-27

Index-6

Record size (relative),
6-14
Record size (sequential),
6-4
RECORDS,
BLOCK CONTAINS Rnum, 6-16
Records,
Print—-controlled, 6-6
Redefinition,
Implicit, 3-38
Referability,
Unique, 7-11
Reference format, 7-10
Choosing a, 1-7
Conventional, 2-2
Terminal, 2-6
References,
Procedure, 7-11
Qualified data, 7-8
Referencing tables, 5-15
REFORMAT command string,
8-27
REFORMAT error messages,
8-28
REFORMAT utility, 1-7, 8-26
Relation tests, 3-4, 4-6
Relative file organization,
6-13
Relative files,
Closing, 6-24
Deleting records from,
6-22
Opening, 6-20
Reading, 6-21
Rewriting, 6-22
Writing, 6-22
Relative I-O statements,
6-18
Relative indexing, 5-13
Relative OPEN modes, 6-19
RELES, E-1
Replacement argument, 3-52
Replacement value, 3-52
REPLACING arguments, 3-40
REPLACING phrase, 3-51
Report generation,
COBOL, 8-1
Results,
Intermediate, 4-12
RETRN, E-1
Rewriting indexed files,
6-34
Rewriting relative files,
6-22
Rewriting sequential files,
6-12
RMS error codes, I-l
/RO, 2-23
.ROOT, 11-2

INDEX (CONT.)

ROUNDED phrase, 4-13
RSORT, E-1
RSTS/E, 2-17
COBOL command sequence,
2-20
Terminal handling on, F-1
RSX-11M, 2-17
COBOL command sequence,
2-20
Run—time errors, 12-6

SAME RECORD AREA clause,
6-5, 6-15, 6-27
Sample program,

COBRG, 8-2, 8-15
Search argument, 3-51
SEARCH verb, 5-16
SECTION, 9-1
Section,

Configuration, 1-5

Input-output, 1-5

Working-storage, 1-5
Section-name, 9-1
SEGMENT-LIMIT clause, 9-1
Segment-number, 9-1
Segmentation, 9-1
Sequence numbers, 2-4
Sequential file

organization, 6-3
Sequential files,

Closing, 6-13

Opening, 6-9

Reading, 6-11

Rewriting, 6-12

Writing, 6-12
Sequential I-O statements,

6-9
SET statement, 5-14
Sharing buffer space
(sequential), 6-8
Short lines, 2-5
Sign convention, 4-2
Sign tests, 4-6
SIZE ERROR phrase, 4-14
Sort error codes, E-5
Sorting files, E-1
Source file,

Creating a, 2-7
Source listing, 2-15
Source program,

COBOL, 1-5

formatting the, 7-1
Source program listing,

2-24
Source-file, 2-18
Space optimization, 6-47

Index-7

Special characters, 3-3
Specification,
COBRG ACCUMULATOR, 8-9
COBRG BREAK, 8-8
COBRG EMIT, 8-12
COBRG HEADER, 8-7
COBRG INPUT, 8-—4
COBRG LIST, 8-13
COBRG NAME, 8-3
COBRG OUTPUT, 8-5
COBRG TOTAL, 8-11
file, 2-9, 2-19
Specification line,
COBRG, 8-3
Speed optimization, 6-45
START statement (indexed),
6-35
START statement (relative),
6-23
Statement,
ACCEPT, 6-48
ADD, 4-15, 4-16
ALTER, 7-5
CALL, 10-2
COMPUTE, 4-18
COPY, 2-9
COPY REPLACING, 2-12
DISPLAY, 6-49
DIVIDE, 4-17
EXIT PROGRAM, 10-3
INSPECT, 3-36
MOVE, 3-8, 4-8
MULTIPLY, 4-17
PERFORM, 7-5
SET, 5-14
Subscripting in INSPECT,
3-43
Subscripting in UNSTRING,
3-34
SUBTRACT, 4-15, 4-16
UNSTRING, 3-21
USE, 6-52
Statement errors,
INSPECT, 3-55
MOVE, 3-12, 4-12
STRING, 3-20
UNSTRING, 3-36
Statements,
Arithmetic, 4-12
I-0, 6-2
Indexed I-0, 6-31
Relative I-0, 6-18
Sequential I-O, 6-9
Statements errors,
Arithmetic, 4-18
String,
COBRG command, 8-14
REFORMAT command, 8-27
STRING statement, 3-13
Subscripting in, 3-18

INDEX (CONT.)

STRING statement errors,
3-20

Subprogram, 10-2

Subprograms,
Calling COBOL, 10-2
Subscripted moves, 3-11
Subscripting, 5-9
Subscripting with
data-names, 5-11

Subscripting with indexes,
5-12

Subscripting with literals,
5-9

SUBTRACT statement, 4-15,
4-16

/Sw, 2"‘19

Switches,

Compiler, 2-21

file, 6-43
/SY¥M:n, 2-23
SYNCHRONIZED clause, 5-3
System errors,

Compiler, G-1, 12-1

Tab characters, 2-5
Table handling, 5-1
Tables,

defining, 5-1

Initializing, 5-7

Referencing, 5-15
Tally argument, 3-44
Tally counter, 3-44
TALLYING arguments, 3-40
TALLYING phrase, 3-32, 3-43
Tape devices,

Magnetic, 6-39
Task,

Executing a COBOL, 2-43
Task builder, 1-3, 2-40
Task builder,

Invoking, 2-40
Task builder options, 11-8
Terminal,

Assigning a, F-2

Closing a, F-2

Deassigning a, F-3

Reading from a, F-3
Terminal handling on RSTS/E,

F-1
Terminal reference format,
2-6
Testing non—-numerics, 3-4
Testing numeric fields, 4-6
Tests,

Class, 3-6

class, 4-7

Relation, 3-4

Sign, 4-6

Index-8

TKB, 2-40

TOTAL specification,
COBRG, 8-11

.typ, 2-19

UI1C, 2-10
Unique referability, 7-11
UNSTRING statement, 3-21

Subscripting in, 3-34

UNSTRING statement errors,
3-36

USAGE, 4-1

USE statement, 6-52

USING,

PROCEDURE DIVISION, 10-2
Using PDP-11 COBOL, 1-7
Using the COBOL compiler,

2-17
Utility,

COBRG, 1-7

Merge, 1-7, 2-36

REFORMAT, 1-7, 8-26

INDEX (CONT.)

Utility errors,
Merge, 2-38
Utility program,
Merge, 1-2
Utility programs,
COBOL, 1-7
Utility proram, 8-1

VALUE OF ID clause, 6-41
Version-number, 2-10

Working—-storage section,
1-5

Writing foreign files, 6-50

Writing relative files,
6-22

Writing sequential files,
6-12

Index-9

e

Please cut alo

PDP-11 COBOL
User's Guide
AA-1757C-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

digital equipment corporation

Printed in U.S.A.

