"Model" 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( y-60 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) =a+b*x; "Input" 5*[x,y]; Stack space overflow (message) Rerun of job : 1 "Model" 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( 1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+( y-60 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) =a+b*x; "Input" 5*[x,y]; Control information =================== transformed variable denoted by parameter mean standard deviation minimum maximum a 1.000000 0.000000 1.000000 1.000000 b 5.000000 3.162278 1.000000 9.000000 dep.var. 6.200000 3.492850 2.000000 11.000000 Number of observations : 5 Multiple correlation coefficient 0.995893 (adjusted 0.994521) ================================ Proportion of variation explained 0.991803 (adjusted 0.989071) ================================= Standard deviation of the error term 0.365148 ==================================== Regression parameters ===================== right tail parameter estimate standard deviation F - ratio probability a 0.7000000000 0.3316624790 4.454545 0.125298 b 1.1000000000 0.0577350269 363.000000 0.000316 Analysis of variance ==================== source of right tail variation df sum of squares mean square F - ratio probability --------------------------------------------------------------------------------------------------------------- total 5 241.000000 --------------------------------------------------------------------------------------------------------------- mean 1 192.200000 192.200000 1441.500000 0.000040 regression 1 48.400000 48.400000 363.000000 0.000316 residual 3 0.400000 0.133333 --------------------------------------------------------------------------------------------------------------- regression null hypothesis : b = 0 End of job : 1