SUBROUTINE ELI2 PURPOSE COMPUTES THE GENERALIZED ELLIPTIC INTEGRAL OF SECOND KIND USAGE CALL ELI2(R,X,CK,A,B) DESCRIPTION OF PARAMETERS R - RESULT VALUE X - UPPER INTEGRATION BOUND (ARGUMENT OF ELLIPTIC INTEGRAL OF SECOND KIND) CK - COMPLEMENTARY MODULUS A - CONSTANT TERM IN NUMERATOR B - QUADRATIC TERM IN NUMERATOR REMARKS MODULUS K = SQRT(1.-CK*CK). SPECIAL CASES OF THE GENERALIZED ELLIPTIC INTEGRAL OF SECOND KIND ARE F(ATAN(X),K) OBTAINED WITH A=1., B=1. E(ATAN(X),K) OBTAINED WITH A=1., B=CK*CK. B(ATAN(X),K) OBTAINED WITH A=1., B=0. D(ATAN(X),K) OBTAINED WITH A=0., B=1. SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE METHOD DEFINITION R=INTEGRAL((A+B*T*T)/(SQRT((1+T*T)*(1+(CK*T)**2))*(1+T*T)), SUMMED OVER T FROM 0 TO X). EQUIVALENT IS THE DEFINITION R=INTEGRAL((A+(B-A)*(SIN(T))**2)/SQRT(1-(K*SIN(T))**2), SUMMED OVER T FROM 0 TO ATAN(X)). EVALUATION LANDENS TRANSFORMATION IS USED FOR CALCULATION. REFERENCE R. BULIRSCH, NUMERICAL CALCULATION OF ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS HANDBOOK SERIES OF SPECIAL FUNCTIONS NUMERISCHE MATHEMATIK VOL. 7, 1965, PP. 78-90.