SUBROUTINE PLTKC (Z1,ZE,Z2,NZ,KX,NX,KY,NY,PL) SUBROUTINE PLTKP (Z1,ZE,Z2,NZ,KX,NX,KY,NY,PL) SUBROUTINE PLTKX (Z1,ZE,Z2,NX,NY,PL) SUBROUTINE PLTKY (Z1,ZE,Z2,NX,NY,PL) SUBROUTINE PLTLA (I) SUBROUTINE PLTLH (X,Y,P) SUBROUTINE PLTMA (X,Y,X0,Y0) SUBROUTINE PLTMC (X,Y,S) SUBROUTINE PLTME (X1,Y1,X2,Y2) SUBROUTINE PLTMS (X,Y,S) SUBROUTINE PLTMT (X1,Y1,P1,X2,Y2,P2,Q) SUBROUTINE PLTOR (Z1,ZE,Z2,NZ,KX,NX,KY,NY,PL) SUBROUTINE PLTPO (T,R,P) SUBROUTINE PLTPV (Z1,ZE,Z2,NR,NP,PL) SUBROUTINE PLTQ1 (X,Y,P) SUBROUTINE PLTQ2 (X,Y,P) SUBROUTINE PLTQ3 (X,Y,P) SUBROUTINE PLTQ4 (X,Y,P) SUBROUTINE PLTRG (X1,X,X2,Y1,Y,Y2,N) SUBROUTINE PLTRH (X,Y,P) SUBROUTINE PLTRV (Z1,ZE,Z2,NX,NY,TH,PL) SUBROUTINE PLTSE (Z1,ZE,Z2,NX,NY,PL) SUBROUTINE PLTSP (PH,TH,P) SUBROUTINE PLTSS (Z1,ZE,Z2,NX,MX,NY) SUBROUTINE PLTSV (FU,NP,NT,S,O,PR,PL) SUBROUTINE PLTSW (Z1,ZE,Z2,NX,NY,PL) SUBROUTINE PLTTG (N) SUBROUTINE PLTTH (X,Y,P) SUBROUTINE PLTTP (X,Y,Z,P) SUBROUTINE PLTTR (X,Y,P) SUBROUTINE PLTTV (Z1,ZE,Z2,N,M,PL) SUBROUTINE PLTUR (XA,X1,DX,X2,XB,YA,Y1,DY,Y2,YB,W,PL) SUBROUTINE PVIDS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,US,VS,L,M,S,PL) SUBROUTINE PVIIS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,O,S,PL) SUBROUTINE PVIIV (Z1,ZE,Z2,NX,NY,RO,TI,S,PL) SUBROUTINE PVISE (Z1,ZE,Z2,NX,NY,S,PL) SUBROUTINE PVISW (Z1,ZE,Z2,NX,NY,S,PL) SUBROUTINE PVITV (Z1,ZE,Z2,N,M,S,PL) SUBROUTINE PVITS (Z1,ZE,Z2,N,M,S,PL) SUBROUTINE VISBO (X1,T1,B1,M,X0,T0,B0,N0,X,Y,P,N,I,PL) SUBROUTINE VISCH (X,Y,P,N,I,PL) SUBROUTINE VISDC (Z1,ZE,Z2,NZ,NX,MX,NY,MY,US,VS,L,PL) SUBROUTINE VISDO (Z1,S1,S2,Z2,NX,MX,NY,MY,US,VS,L,IS,PL) SUBROUTINE VISDS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,US,VS,L,M,PL) SUBROUTINE VISES (Z1,ZE,Z2,X1,X2,NX,E1,E2,NE,L,M,PL) SUBROUTINE VISHH (X0,T0,B0,N0,X,Y,N,I,PL) SUBROUTINE VISHO (X,Y,N,I,PL) SUBROUTINE VISIS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,O,PL) FUNCTION VISLI (Z,X,Y,I) SUBROUTINE VISNH SUBROUTINE VISNP (PH,TH,JP,IT,NP,NT,O) SUBROUTINE VISPS (Z1,ZE,Z2,R1,R2,NR,P1,P2,NP,L,M,PL) SUBROUTINE VISRB (X,Y,J,M,X1,Y1,N1,X2,Y2,N2,S) SUBROUTINE VISRS (Z1,ZE,Z2,NX,MX,NY,MY,TH,PL) LOGICAL FUNCTION VISSL (EX,WY,X,Y,I) SUBROUTINE VISSP (RHO,PHI,R,T,P,O) SUBROUTINE VISSS (FU,J1,J2,NP,I1,I2,NT,L,M,Q,B,S,O,PR,PL) SUBROUTINE VISTR (Z1,S1,S2,S3,Z2,NX,MX,NY,MY,US,VS,VD,L,IS,PL) SUBROUTINE VISTS (Z1,ZE,Z2,N,M,PL) [08-JUN-75] APPENDIX 2. "GLOB" ANALYSIS OF THE FILE SYMBOL DEFINED REFERENCED: ABS PLTMS,PLTMT,PVIDS,PVIIS,PVITS,VISBO,VISRB,VISRS,VISSL VISSS AIMAG CARG ALOG10 PLTAX AMAX1 KONSC,KONSK,VISBO,VISRB AMIN1 KONSC,KONSK,VISBO,VISRB ATAN2 CARG,VISNP,VISSP CABS PLTKC CARG CARG PLTKC COS PLTCI,PLTEL,PLTHP,PLTPO,PLTSP,VISES,VISPS,VISSP,VISSS COSD PLTAX,PLTEU,VISRS COSH PLTEL,VISES DATE PLTBO,PLTFR DUMMY. KONSC,KONSK,PLTBV,PLTCI,PLTEV,PLTFI,PLTFM,PLTGA,PLTHP PLTIG,PLTIL,PLTIV,PLTKB,PLTKC,PLTKP,PLTKX,PLTKY,PLTOR PLTPV,PLTRV,PLTSE,PLTSV,PLTSW,PLTTV,PLTUR,PVIDS,PVIIS PVIIV,PVISE,PVISW,PVITV,PVITS,VISBO,VISCH,VISDC,VISDO VISDS,VISES,VISHH,VISHO,VISIS,VISPS,VISRS,VISSS,VISTR VISTS EXP2.2 PLTAX FLOAT KONSC,KONSK,PLTAX,PLTBV,PLTCI,PLTFI,PLTHP,PLTKB,PLTKC PLTKP,PLTKX,PLTKY,PLTME,PLTOR,PLTTG,PVIDS,PVIIS,PVITS VISBO,VISDC,VISDO,VISDS,VISES,VISIS,VISNP,VISPS,VISRS VISSS,VISTR,VISTS IABS PVIDS,PVIIS,VISDS,VISIS,VISSS IFIX PLTAX,PVIIS,VISIS,VISNP ISIGN PVIDS,PVIIS,VISDS,VISIS,VISSS KON KONIT KONNC,KONRE,KONSA,KONSC,KONSK,KONXV KONIT KONIT KONSC,KONSK KONNC KONNC KONSC,KONSK KONRE KONRE KONSC,KONSK KONSA KONSA KONSC,KONSK KONSC KONSC PLTKP,PLTOR KONSK KONSK PLTKC KONXV KONXV KONNC,KONSC,KONSK KQN KONRE KONSA MAX0 KONSC,KONSK,PLTKC,PLTKP,PLTOR,PVIDS,PVIIS,VISBO,VISDC VISDO,VISDS,VISES,VISIS,VISNP,VISPS,VISRB,VISRS,VISSS VISTR MIN0 KONSC,KONSK,PLTKC,PLTKP,PLTOR,PVIDS,PVIIS,PVITS,VISBO VISDC,VISDO,VISDS,VISES,VISIS,VISNP,VISPS,VISRB,VISRS VISSS,VISTR,VISTS MOD KONSC,KONSK,VISSS NUMBER PLTAX PLOT PLT00,PLTAX,PLTBO,PLTBS,PLTEJ,PLTFR,PLTMC,PLTME,PLTMS PLOTS PLT00,PLTBS PLT00 PLT00 PLTAX PLTAX PLTBH PLTBH PLTBO PLTBO PLTHP PLTBS PLTBS PLTBV PLTBV PLTCA PLTCA PLTTR PLTCI PLTCI PLTHP SYMBOL DEFINED REFERENCED: PLTEJ PLTEJ PLTSS PLTEL PLTEL PLTEU PLTEU PLTIV,PVIIV PLTEV PLTEV PLTFI PLTFI PLTFM PLTFM PLTIG,PLTUR PLTFR PLTFR PLTSS PLTGA PLTGA PLTHP PLTHP PLTIG PLTIG PLTFI,PLTHP PLTIL PLTIL PLTKB,PLTKX,PLTKY PLTIV PLTIV PLTKB PLTKB PLTKC PLTKC PLTKP PLTKP PLTKX PLTKX PLTKY PLTKY PLTLA PLTLA PLTLH PLTLH PLTSS PLTMA PLTMA PLTMC,PLTME PLTMC PLTMC PLTTP PLTME PLTME PLTMC PLTMS PLTMS PLTBH,PLTBV,PLTCA,PLTEL,PLTLH,PLTPO,PLTQ1,PLTQ2,PLTQ3 PLTQ4,PLTRG,PLTRH,PLTSP,PLTTH PLTMT PLTMT PLTMC,PLTMS PLTOR PLTOR PLTPO PLTPO PLTPV PLTPV PLTQ1 PLTQ1 PLTQ2 PLTQ2 PLTQ3 PLTQ3 PLTQ4 PLTQ4 PLTRG PLTRG PLTRH PLTRH PLTSS PLTRV PLTRV PLTSE PLTSE PLTSP PLTSP PLTSS PLTSS PLTSV PLTSV PLTSW PLTSW PLTTG PLTTG PLTTH PLTTH PLTTP PLTTP PLTTG PLTTR PLTTR PLTTV PLTTV PLTUR PLTUR PVIDS PVIDS PVISE,PVISW PVIIS PVIIS PVIIV PVIIV PVIIV SYMBOL DEFINED REFERENCED: PVISE PVISE PVISW PVISW PVITS PVITS PVITV PVITV PVITV REAL CARG SIGN KONNC,KONSC,KONSK,PLTMT,PLTUR,PVIIS,VISBO,VISIS,VISRB VISSS SIN PLTCI,PLTEL,PLTHP,PLTPO,PLTSP,VISES,VISPS,VISSP,VISSS SIND PLTAX,PLTEU,VISRS SINH PLTEL,VISES SQRT VISNP,VISSP SYMBOL PLTAX,PLTBO,PLTFR,PLTLA SYSJO PLTBO,PLTFR TANH PLTHP,PLTMA TIME PLTBO,PLTFR VIS VISCH VISHO,VISNH VISBO VISBO VISCH,VISHH,VISHO VISCH VISCH PVIDS,PVIIS,PVITS,VISSS VISDC VISDC VISDO VISDO VISDS VISDS PLTSE,PLTSS,PLTSW VISES VISES PLTEV VISHH VISHH VISDC,VISDO,VISTR VISHO VISHO VISDS,VISES,VISIS,VISPS,VISRS,VISTS VISIS VISIS PLTIV VISLI VISLI VISBO,VISRB VISNH VISNH PLTEV,PLTIV,PLTPV,PLTRV,PLTSE,PLTSS,PLTSV,PLTSW,PLTTV PVIIV,PVISE,PVISW,PVITV VISNP VISNP PLTSV,VISSS VISPS VISPS PLTPV VISRB VISRB VISDC,VISDO,VISTR VISRS VISRS PLTRV VISSL VISSL VISBO,VISRB VISSP VISSP VISSS VISSS PLTSV VISTR VISTR VISTS VISTS PLTTV [08-JUN-75] APPENDIX 3. ABSTRACTS OF THE DEMONSTRATION PROGRAMS C [DEMO1] C [04-JUN-74] C [DEMO2] C DEMONSTRATION FOR THE PROGRAMS PLTSE, PLTSS, PLTSW, WHICH GIVE C PERSPECTIVE VIEWS OF FUNCTIONS STORED IN A RECTANGULAR ARRAY. C THE DEMONSTRATION SUPERPOSES AN ELLIPSOIDAL AND A HYPERBOLIC C MOUND, BOTH ON TOP OF A SADDLE. C [20-NOV-74] C [DEMO3] C FLAT-BOTTOM CRATER ON HILL C [16-NOV-74] C [DEMO4] C DEMONSTRATION FOR THE PROGRAM PLTPV, SHOWING A PERSPECTIVE C VIEW OF FUNCTIONS THAT ARE DEFINED IN POLAR COORDINATES. C [04-JUN-74] C [DEMO5] C DEMONSTRATION FOR TRIANGULAR VIEW C [15-MAY-74] C [DEMO6] C DEMONSTRATION FOR THE PROGRAM PLTEV, WHICH GRAPHS FUNCTIONS C DEFINED OVER ELLIPTICAL COORDINATES. C [10-NOV-74] C [DEMO7] C DEMONSTRATION FOR THE EMBEDDING OF CONTOUR LINES INTO THE VIEW C OF A SURFACE. C [13-APR-74] C [DEM08] C DEMONSTRATION FOR THE GRAPHING OF C A PAIR OF SURFACES, CONSISTING OF C SOME GAUSSIAN VARIANTS. C [14-APR-74] C [DEM09] C DEMONSTRATION FOR THE GRAPHING C OF A PAIR OF SURFACES, MADE UP C OUT OF PLANES AND CONES. C [13-APR-74] C [DEM10] C DEMONSTRATION FOR THE GRAPHING OF C A TRIPLE OF SURFACES, MADE UP OUT C OF PLANES AND CONES. C [14-APR-74] C [DEM11] C DEMONSTRATION FOR THE GRAPHING OF TRIPLES C OF SURFACES, CONSISTING IN THIS CASE OF C SINUSOIDAL FUNCTIONS MODULATED BY A GAUSSIAN C AMPLITUDE, PLUS A PARABOLOID. THE VERTICAL C SEPARATION OPTION SHOULD REVEAL THE DETAILS C OF THEIR MUTUAL INTERSECTIONS. C [14-APR-74] C [DEM12] C DEMONSTRATION FOR PLTRV WHICH GIVES A PERSPECTIVE VIEW C OF A FUNCTION STORED IN A RECTANGULAR ARRAY. THE C DEMONSTRATION SUPERPOSES AN ELLIPSOIDAL AND A HYPERBOLIC C MOUND, BOTH ON TOP OF A SADDLE. C [18-MAY-74] SUBROUTINE DEM13 C [DEM13] C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE C VIEW OF FUNCTIONS DEFINED OVER A SPHERE. C [02-JUN-74] SUBROUTINE DEM14 C [DEM14] C DEMONSTRATION FOR THE PROGRAM PLTSV, CONSISTING IN DRAWING C A PERSPECTIVE STEREOPAIR OF A FUNCTION DEFINED OVER A SPHERE, C EXHIBITING THE LINES OF CONSTANT LATITUDE AND LONGITUDE. C [02-JUNE-74] SUBROUTINE DEM15 C [DEM15] C DEMONSTRATION FOR THE PROGRAM PLTHV, WHICH SHOWS A PERSPECTIVE C VIEW OF TWO FUNCTIONS DEFINED OVER A HEMISPHERE. C [27-MAY-74] SUBROUTINE DEM16 C [DEM16] C CHRYSANTHEMUM C [22-MAY-74] SUBROUTINE DEM17 C [DEM17] C STRAWBERRY C DEMONSTRATION FOR THE PROGRAM PLTOV, WHICH CALCULATES C THE OUTER BOUND OF TWO FUNCTIONS DEFINED OVER A SPHERICAL C SURFACE. THE DEMONSTRATION SHOWS A "STRAWBERRY" SURROUNDED C BY A SPARSE SPHERE. C [22-MAY-74] C [DEM18] C PUFF-FISH C DEMONSTRATION FOR THE PROGRAM PLTOV, WHICH CALCULATES C THE OUTER BOUND OF TWO FUNCTIONS DEFINED OVER A SPHERICAL C SURFACE. THE DEMONSTRATION SHOWS A SPINY FIGURE WHICH HAS C BEEN CUT OFF AT A CERTAIN RADIUS. THE INNER AND OUTER PARTS C ARE SHOWN SIDE BY SIDE IN TWO SEPARATE FIGURES. C [23-MAY-74] C [DEM19] C TETRAHEDRAL WAVE FUNCTIONS C DEMONSTRATION TO EXERCISE THE PROGRAMS PLTSV, D19SP, VISSS, AND C OTHERS WHICH MIGHT USE SPHERICAL POLAR COORDINATES. THIS INCLUDES C HIDDEN SURFACE, CONTOURING AND SHADING OPTIONS, AS WELL AS SEVERAL C MULTICOLOR TECHNIQUES. THE SURFACE EMPLOYED IS A RATHER SIMPLE C APPROXIMATION TO THE TETRAHEDRAL BONDING FUNCTIONS, AND THEREFORE C IS ONE WHICH HAS LARGE LOBES IN THE TETRAHEDRAL DIRECTIONS. THE C VARIABLE L SELECTS ONE OF THE FOLLOWING OPTIONS. C L=1 ORDINARY PERSPECTIVE AND CONTOURS C L=2 CHECKERBOARD OF LATITUDE AND LONGITUDE C L=3 CONTOUR BANDS C [21-MAY-75] SUBROUTINE DEM20 C [DEM20] C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE C VIEW OF FUNCTIONS DEFINED OVER A SPHERE. A GRID OF SPINES IS C PLACED ON THE FIGURE AS AN AID TO LOCATING CONTOURS; EACH SPINE C IS ROUNDED UP TO THE NEXT TENTH. C [27-MAY-74] SUBROUTINE DEM21 C [DEM21] C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE C VIEW OF FUNCTIONS DEFINED OVER A SPHERE. C [27-MAY-74] SUBROUTINE DEM22 C [DEM22] C PLANETARY COPPER MINE C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE C VIEW OF FUNCTIONS DEFINED OVER A SPHERE. QUANTIFICATION IS USED C TO INDICATE THE VARIOUS RADIAL CONTOUR LEVELS OF THE FUNCTION. C [02-JUN-74] SUBROUTINE DEM23 C [DEM23] C CALCULATION OF THE TILT OF THE ELEMENTARY RECTANGLES C AS A FUNCTION OF THETA AND PHI FOR USE IN CHOOSING C THE DIAGONAL SEQUENCE TO BE FOLLOWED IN THE SPHERICAL C SEQUENCE ROUTINES. C [28-MAY-74] SUBROUTINE DEM24 C [DEM24] C [03-JUN-74] SUBROUTINE DEM25 C [DEM25] C [29-MAY-74] C [DEM26] C DEMONSTRATION OF TWO PARTICLES IN A COULOMB WELL C [18-MAY-74] C [DEM27] C DEMONSTRATION OF TWO PARTICLES IN AN EXPONENTIAL WELL C [18-MAY-74] C [DEM28] C DEMONSTRATION OF THE POTENTIAL FELT BY TWO PARTICLES IN A GAUSSIAN C WELL. THE SURFACE ARISES FROM THE USE OF HYPERSPHERICAL HARMONICS C IN QUANTUM MECHANICS. HERE IT IS USED TO ILLUSTRATE A TECHNIQUE C OF SKETCHING OUT A COARSE SURFACE INTO WHICH IS INSERTED A DENSER C REGION OF SPECIAL INTEREST. THE DETAIL WHICH IS DESIRED IS THE C SHAPE OF THE BOTTOM OF THE TROUGHS CROSSING AT THE CENTER OF THE C DRAWING. C [06-OCT-74] C [DEM29] C DEMONSTRATION OF TWO PARTICLES IN A GAUSSIAN WELL C [14-NOV-74] C [DEM30] C DEMONSTRATION FOR THE REPRESENTATION OF A FUNCTION OF A COMPLEX C VARIABLE. THE COMPLEX CONTOURING PROGRAM PLTKC AUTOMATICALLY C CONTOURS BOTH THE MODULUS AND THE ARGUMENT OF A COMPLEX FUNCTION, C WHICH IT RECEIVES IN THE FORM OF A COMPLEX ARRAY. C [26-MAY-75] C [DEM31] C DEMONSTRATION FOR THE REPRESENTATION OF A FUNCTION OF A COMPLEX C VARIABLE. THE MODULUS OF THE FUNCTION CAN BE SHOWN AS A SURFACE IN C THREE DIMENSIONS, BUT THE PHASE IS LOST IN THE PROCESS. BY SHOWING C CONTOURS OF CONSTANT PHASE THE LOST INFORMATION IS REGAINED, BUT C IT IS HARD TO SHOW CONTOURS ON A SURFACE ALREADY DENSELY POPULATED C BY LINEAR ARCS. BY SHOWING REGIONS OF DIFFERENT PHASE IN DIFFERENT C COLORS THE INFORMATION IS PRESENTED IN A READILY PERCEIVABLE FORM. C [26-MAY-75] C [DEM32] C DEMONSTRATION FOR THE INCLINED VIEW PROGRAM PLTIV. THE SURFACE C REPRESENTED IS THE SAME ONE USED IN DEM30 AND DEM31, WHICH IS THE C ABSOLUTE VALUE OF A FUNCTION OF A COMPLEX VARIABLE WITH FIVE POLES C LOCATED AT THE VERTICES OF A REGULAR HEXAGON. TWO OPTIONS SHOW C SHOW DIFFERENT STAGES OR ROTATION ABOUT A VERTICAL AXIS (L=1) OR C DIFFERENT DEGREES OF TILT ABOUT A HORIZONTAL AXIS (L=2). C [30-MAY-75] C [DEM33] C DEMONSTRATION OF A COLOR COMPOSITE C [18-DEC-74] C [DEM34] C DEMONSTRATION FOR THE ORTHOGRAPHIC RELIEF PROGRAM. THE SURFACE C SHOWN IS RELATED TO THE SURFACE OF DEM30, DEM31, AND DEM33, BY THE C SUBTRACTION OF THE VARIABLE Z. THE OBJECTIVE IS TO LOCATE POINTS C WHERE THAT SURFACE EQUALS Z; ORTHOGRAPHIC RELIEF WILL SOMETIMES C AID TO DISTINGUISH DEPRESSIONS IN A SURFACE FROM PROTRUBERANCES. C OPTION L ALLOWS GENERATION OF AN ORTHOGRAPHIC RELIEF (L=2) OR AN C ORDINARY CONTOUR (L=1). IF THESE ARE DONE IN TWO DIFFERENT COLORS C AND SUPERPOSED, THEY WILL SOMETIMES ENHANCE ONE ANOTHER. C [08-JUN-75] C [DEM35] C DEMONSTRATION OF BIRDSEYE VIEW C [18-DEC-74] C [DEM38] C DEMONSTRATION PROGRAM FOR PLTRI. THE PRINCIPAL POINT OF INTEREST C IN THIS DEMONSTRATION IS THE FACT THAT VIRTUALLY ANY COORDINATE C SYSTEM MAY BE USED FOR PLOTTING A GRAPH, AND THAT THE AXIS DRAWING C OPTION WILL FAITHFULLY DRAW THE COORDINATE AXES OF THE SYSTEM IN C USE. BY SELECTING OPTIONS L=1,2,3,4,5, THE FIVE COORDINATE SYSTEMS C CARTESIAN, POLAR, ELLIPTIC, SPHERICAL POLAR, OR TRIANGULAR, MAY BE C TESTED. C [07-JUN-75]