$JOB STEPR[30,30] $FORTRAN STEPR C STEP 10 C ..................................................................STEP 20 C STEP 30 C SAMPLE MAIN PROGRAM FOR STEP-WISE MULTIPLE REGRESSION - STEPR STEP 40 C STEP 50 C PURPOSE STEP 60 C (1) READ THE PROBLEM PARAMETER CARD FOR A STEP-WISE MULTIPLESTEP 70 C REGRESSION, (2) READ SUBSET SELECTION CARDS, (3) CALL THE STEP 80 C SUBROUTINE TO CALCULATE MEANS, STANDARD DEVIATIONS, SIMPLE STEP 90 C CORRELATION COEFFICIENTS, AND (4) CALL THE SUBROUTINE TO STEP 100 C PERFORM EACH STEP OF REGRESSION ANALYSIS. STEP 110 C STEP 120 C REMARKS STEP 130 C THE NUMBER OF OBSERVATIONS, N, MUST BE GREATER THAN M+2, STEP 140 C WHERE M IS THE NUMBER OF VARIABLES. IF SELECTION CARDS ARE STEP 150 C NOT PRESENT, THIS PROGRAM CAN NOT PERFORM STEP-WISE MULTIPLESTEP 160 C REGRESSION. STEP 170 C STEP 180 C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED STEP 190 C CORRE (WHICH, IN TURN, CALLS THE SUBROUTINE DATA) STEP 200 C MSTR (WHICH, IN TURN, CALLS THE SUBROUTINE LOC) STEP 210 C STPRG (WHICH, IN TURN, CALLS THE SUBROUTINE STOUT) STEP 220 C STEP 230 C METHOD STEP 240 C REFER TO C. A. BENNETT AND N. L. FRANKLIN, 'STATISTICAL STEP 250 C ANALYSIS IN CHEMISTRY AND THE CHEMICAL INDUSTRY', JOHN WILEYSTEP 260 C AND SONS, 1954, APPENDIX 6A. STEP 270 C STEP 280 C ..................................................................STEP 290 C STEP 300 C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO THE STEP 310 C NUMBER OF VARIABLES, M.. STEP 320 C STEP 330 DIMENSION XBAR(35),STD(35),D(35),B(35),T(35),IDX(35),L(35) STEP 340 C STEP 350 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE STEP 360 C PRODUCT OF M*M.. STEP 370 C STEP 380 DIMENSION RX(1225) STEP 390 C STEP 400 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE STEP 410 C (M+1)*M/2.. STEP 420 C STEP 430 DIMENSION R(630) STEP 440 C STEP 450 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 5.. STEP 460 C STEP 470 DIMENSION NSTEP(5) STEP 480 C STEP 490 C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 11.. STEP 500 C STEP 510 DIMENSION ANS(11) STEP 520 C STEP 530 C ..................................................................STEP 540 C STEP 550 C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE STEP 560 C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STEP 570 C STATEMENT WHICH FOLLOWS. STEP 580 C STEP 590 C DOUBLE PRECISION XBAR,STD,RX,R,B,T,ANS,YEST STEP 600 C STEP 610 C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS STEP 620 C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS STEP 630 C ROUTINE. STEP 640 C STEP 650 C ..................................................................STEP 660 C STEP 670 1 FORMAT(A4,A2,I5,2I2,F6.0,I1) STEP 680 2 FORMAT(53H0NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATED.) STEP 690 3 FORMAT(35H1STEP-WISE MULTIPLE REGRESSION.....A4,A2) STEP 700 4 FORMAT(31H0VARIABLE MEAN STANDARD/4X,3HN0.16X,9HDEVIATION)STEP 710 5 FORMAT(4X,I2,F14.5,F12.5) STEP 720 6 FORMAT(19H1CORRELATION MATRIX) STEP 730 7 FORMAT(4H0ROWI3/(10F12.5)) STEP 740 8 FORMAT(72I1) STEP 750 9 FORMAT(23H0NUMBER OF OBSERVATIONSI5) STEP 760 10 FORMAT(20H NUMBER OF VARIABLES3X,I5) STEP 770 11 FORMAT(21H NUMBER OF SELECTIONS2X,I5) STEP 780 12 FORMAT(28H0CONSTANT TO LIMIT VARIABLESF9.5) STEP 790 13 FORMAT(/15H1SELECTION.....I2) STEP 800 14 FORMAT(16X,18HTABLE OF RESIDUALS//9H CASE NO.5X,7HY VALUE5X,10HY ESTEP 810 1STIMATE6X,8HRESIDUAL) STEP 820 15 FORMAT(I7,F15.5,2F14.5) STEP 830 16 FORMAT(1H ) STEP 840 17 FORMAT(1H1) STEP 850 18 FORMAT(1H0,'****COLUMN',I4,' OF SELECTION CARD',I5,' IS IN ERROR. STEP 860 1 IT IS POSSIBLE THAT COLUMNS SUCCEEDING THAT COLUMN ARE ALSO' STEP 870 2/' INCORRECT. THE SELECTION IS IGNORED.****') STEP 880 19 FORMAT(1H0,'****SELECTION CARD',I5,' DOES NOT NAME ONE AND ONLY ONSTEP 890 1E DEPENDENT VARIABLE. SELECTION IGNORED.****') STEP 900 20 FORMAT(1H0,'****EITHER THE MATRIX IS SINGULAR, OR THE RESIDUAL SUMSTEP 910 1 OF SQUARES IS NEGATIVE IMPLYING EXTREME ILL CONDITION.',/,' SELECSTEP 920 2TION IGNORED.****') STEP 930 21 FORMAT(1H0,'****',I6,' OBSERVATIONS ARE TOO FEW TO ALLOW PARAMETERSTEP 940 1 ESTIMATION FOR',I5,' VARIABLES. JOB TERMINATED.****') STEP 950 C STEP 960 C READ PROBLEM PARAMETER CARD STEP 970 C STEP 980 100 READ (5,1,END=999) PR1,PR2,N,M,NS,PCT,NR STEP 990 C PR1.....PROBLEM CODE (MAY BE ALPHAMERIC) STEP1000 C PR2.....PROBLEM CODE (CONTINUED) STEP1010 C N ......NUMBER OF OBSERVATIONS STEP1020 C M ......NUMBER OF VARIABLES STEP1030 C NS......NUMBER OF SELECTIONS STEP1040 C PCT.....A CONSTANT VALUE OF PROPORTION OF SUM OF SQUARES THAT STEP1050 C WILL BE USED TO LIMIT VARIABLES ENTERING IN THE REGRES-STEP1060 C SION STEP1070 C NR......OPTION CODE FOR TABLE OF RESIDUALS STEP1080 C 0 - IF IT IS NOT DESIRED STEP1090 C 1 - IF IT IS DESIRED STEP1100 C STEP1110 WRITE (6,3) PR1,PR2 STEP1120 WRITE (6,9) N STEP1130 WRITE (6,10) M STEP1140 IF(N-M-2) 101,101,102 STEP1150 101 WRITE(6,21) N,M STEP1160 STOP STEP1170 102 WRITE (6,11) NS STEP1180 WRITE (6,12) PCT STEP1190 C STEP1200 C LOGICAL TAPE 13 IS USED AS INTERMEDIATE STORAGE TO HOLD INPUT STEP1210 C DATA. THE INPUT DATA ARE WRITTEN ON LOGICAL TAPE 13 BY THE STEP1220 C SPECIAL INPUT SUBROUTINE NAMED DATA. THE STORED DATA MAY BE USED STEP1230 C FOR RESIDUAL ANALYSIS. STEP1240 C STEP1250 REWIND 13 STEP1260 C STEP1270 IO=0 STEP1280 X=0.0 STEP1290 C STEP1300 CALL CORRE (N,M,IO,X,XBAR,STD,RX,R,B,D,T) STEP1310 C STEP1320 REWIND 13 STEP1330 C STEP1340 C PRINT MEANS AND STANDARD DEVIATION STEP1350 C STEP1360 WRITE (6,4) STEP1370 DO 105 I=1,M STEP1380 105 WRITE (6,5) I,XBAR(I),STD(I) STEP1390 C STEP1400 C PRINT CORRELATION MATRIX STEP1410 C STEP1420 WRITE (6,6) STEP1430 DO 130 I=1,M STEP1440 DO 125 J=1,M STEP1450 IF(I-J) 110, 120, 120 STEP1460 110 K=I+(J*J-J)/2 STEP1470 GO TO 125 STEP1480 120 K=J+(I*I-I)/2 STEP1490 125 T(J)=R(K) STEP1500 130 WRITE (6,7) I,(T(J),J=1,M) STEP1510 C STEP1520 C TEST NUMBER OF SELECTIONS STEP1530 C STEP1540 IF(NS) 135, 135, 140 STEP1550 135 WRITE (6,2) STEP1560 GO TO 200 STEP1570 C STEP1580 C SAVE THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS STEP1590 C STEP1600 140 CALL MSTR (RX,R,M,0,1) STEP1610 C STEP1620 NSEL=1 STEP1630 GO TO 150 STEP1640 C STEP1650 C COPY THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS STEP1660 C STEP1670 145 CALL MSTR (R,RX,M,1,0) STEP1680 C STEP1690 C READ A SELECTION CARD STEP1700 C STEP1710 150 WRITE (6,13) NSEL STEP1720 READ (5,8) (IDX(J),J=1,M) STEP1730 C STEP1740 C IN EACH POSITION OF IDX, ONE OF THE FOLLOWING CODES MUST BE STEP1750 C SPECIFIED.. STEP1760 C 0 OR BLANK - INDEPENDENT VARIABLE AVAILABLE FOR SELECTION STEP1770 C 1 - INDEPENDENT VARIABLE TO BE FORCED IN REGRESSION STEP1780 C 2 - VARIABLE TO BE DELETED STEP1790 C 3 - DEPENDENT VARIABLE STEP1800 C STEP1810 N35=0 STEP1820 DO 155 K=1,M STEP1830 IF (IDX(K)) 152,153,153 STEP1840 152 WRITE (6,18) K,NSEL STEP1850 GO TO 185 STEP1860 153 IF (IDX(K)-3) 155,154,152 STEP1870 154 N35=N35+1 STEP1880 155 CONTINUE STEP1890 IF (N35-1) 156,157,156 STEP1900 156 WRITE (6,19) NSEL STEP1910 GO TO 185 STEP1920 C CALL THE SUBROUTINE TO PERFORM A STEP-WISE REGRESSION ANALYSIS STEP1930 C STEP1940 157 CALL STPRG (M,N,RX,XBAR,IDX,PCT,NSTEP,ANS,L,B,STD,T,D,IER) STEP1950 IF (IER) 158,159,158 STEP1960 158 WRITE (6,20) STEP1970 GO TO 185 STEP1980 C STEP1990 C FIND WHETHER TO PRINT THE TABLE OF RESIDUALS STEP2000 C STEP2010 159 IF(NR) 185, 185, 160 STEP2020 C STEP2030 C PRINT THE TABLE OF RESIDUALS STEP2040 C STEP2050 C STEP2060 160 WRITE (6,13) NSEL STEP2070 WRITE (6,16) STEP2080 WRITE (6,14) STEP2090 MM=NSTEP(1) STEP2100 DO 180 I=1,N STEP2110 READ (13) (D(J),J=1,M) STEP2120 YEST=ANS(9) STEP2130 K=NSTEP(4) STEP2140 DO 170 J=1,K STEP2150 KK=L(J) STEP2160 170 YEST=YEST+B(J)*D(KK) STEP2170 RESI=D(MM)-YEST STEP2180 180 WRITE (6,15) I,D(MM),YEST,RESI STEP2190 REWIND 13 STEP2200 C STEP2210 C TEST TO SEE WHETHER ALL SELECTIONS ARE COMPLETED STEP2220 C STEP2230 185 IF(NSEL-NS) 190, 100, 100 STEP2240 190 NSEL=NSEL+1 STEP2250 WRITE (6,17) STEP2260 GO TO 145 STEP2270 C STEP2280 200 CONTINUE STEP2290 999 STOP END STEP2300 $FORTRAN DATA C DATA 10 C ..................................................................DATA 20 C DATA 30 C SAMPLE INPUT SUBROUTINE - DATA DATA 40 C DATA 50 C PURPOSE DATA 60 C READ AN OBSERVATION (M DATA VALUES) FROM INPUT DEVICE. DATA 70 C THIS SUBROUTINE IS CALLED BY THE SUBROUTINE CORRE AND MUST DATA 80 C BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA DATA 90 C FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUB- DATA 100 C ROUTINE MUST BE RECOMPILED WITH A PROPER FORMAT STATEMENT. DATA 110 C DATA 120 C USAGE DATA 130 C CALL DATA (M,D) DATA 140 C DATA 150 C DESCRIPTION OF PARAMETERS DATA 160 C M - THE NUMBER OF VARIABLES IN AN OBSERVATION. DATA 170 C D - OUTPUT VECTOR OF LENGTH M CONTAINING THE OBSERVATION DATA 180 C DATA. DATA 190 C DATA 200 C REMARKS DATA 210 C THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE DATA 220 C EITHER F OR E. DATA 230 C DATA 240 C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DATA 250 C NONE DATA 260 C ..................................................................DATA 270 C DATA 280 SUBROUTINE DATA (M,D) DATA 290 C DATA 300 DIMENSION D(1) DATA 310 C DATA 320 1 FORMAT(12F6.0) DATA 330 C DATA 340 C READ AN OBSERVATION FROM INPUT DEVICE. DATA 350 C DATA 360 READ (5,1) (D(I),I=1,M) DATA 370 C DATA 380 C INPUT DATA ARE WRITTEN ON LOGICAL TAPE 13 FOR THE RESIDUAL ANALY- DATA 390 C SIS PERFORMED IN THE SAMPLE MULTIPLE REGRESSION PROGRAM. DATA 400 C DATA 410 WRITE (13) (D(I),I=1,M) DATA 420 RETURN DATA 430 END DATA 440 $FORTRAN STOUT C STOU 10 C ..................................................................STOU 20 C STOU 30 C SAMPLE OUTPUT SUBROUTINE STOUT STOU 40 C STOU 50 C PURPOSE STOU 60 C PRINT THE RESULT OF A STEP-WISE MULTIPLE REGRESSION. THIS STOU 70 C SUBROUTINE IS CALLED BY THE SUBROUTINE STPRG. STOU 80 C STOU 90 C USAGE STOU 100 C CALL STOUT (NSTEP,ANS,L,B,S,T,NSTOP) STOU 110 C STOU 120 C DESCRIPTION OF PARAMETERS STOU 130 C NSTEP - INPUT VECTOR OF LENGTH 5 CONTAINING THE FOLLOWING STOU 140 C INFORMATION.. STOU 150 C NSTEP(1) DEPENDENT VARIABLE STOU 160 C NSTEP(2) NUMBER OF VARIABLES FORCED TO ENTER STOU 170 C IN THE REGRESSION STOU 180 C NSTEP(3) NUMBER OF VARIABLES DELETED STOU 190 C NSTEP(4) THE LAST STEP NUMBER STOU 200 C NSTEP(5) THE LAST VARIABLE ENTERED STOU 210 C ANS - INPUT VECTOR OF LENGTH 11 CONTAINING THE FOLLOWING STOU 220 C INFORMATION FOR THE LAST STEP.. STOU 230 C ANS(1) SUM OF SQUARES REDUCED STOU 240 C ANS(2) PROPORTION REDUCED STOU 250 C ANS(3) CUMULATIVE SUM OF SQUARES REDUCED STOU 260 C ANS(4) CUMULATIVE PROPORTION REDUCED STOU 270 C ANS(5) SUM OF SQUARES OF THE DEPENDENT VARIABLE STOU 280 C ANS(6) MULTIPLE CORRELATION COEFFICIENT STOU 290 C ANS(7) F-VALUE FOR ANALYSIS VARIANCE (FOR THE STOU 300 C REGRESSION) STOU 310 C ANS(8) STANDARD ERROR OF ESTIMATE STOU 320 C ANS(9) INTERCEPT STOU 330 C ANS(10) ADJUSTED MULTIPLE R STOU 340 C ANS(11) ADJUSTED STANDARD ERROR OF ESTIMATE STOU 350 C L - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 360 C ING VARIABLES ENTERED IN THE REGRESSION. L(1)=FIRSTSTOU 370 C VARIABLE ENTERED, L(2)=SECOND VARIABLE ENTERED, ETC.STOU 380 C B - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 390 C ING REGRESSION COEFFICIENTS CORRESPONDING TO THE STOU 400 C VARIABLES IN VECTOR L STOU 410 C S - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 420 C ING STANDARD ERRORS OF REGRESSION COEFFICIENTS STOU 430 C CORRESPONDING TO THE VARIABLES IN VECTOR L STOU 440 C T - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 450 C ING COMPUTED T-VALUES CORRESPONDING TO THE VARIABLESSTOU 460 C IN VECTOR L STOU 470 C NSTOP - OUTPUT OPTION CODE TO STOP THE STEP-WISE REGRESSION STOU 480 C 1 - IF THE STEP-WISE REGRESSION IS TO BE TERMI- STOU 490 C NATED BY SOME CRITERIA OTHER THAN PROPORTION STOU 500 C OF SUM OF SQUARES, SUCH AS F-TEST AND SO ON, STOU 510 C THIS SUBROUTINE MAY BE MODIFIED TO PERFORM STOU 520 C DESIRED TESTS. WHEN IT BECOMES NO LONGER STOU 530 C NECESSARY TO CONTINUE THE STEP-WISE REGRES- STOU 540 C SION, SET NSTOP EQUAL TO 1. STOU 550 C 0 - IF THE STEP-WISE REGRESSION IS TO BE CONTINUEDSTOU 560 C STOU 570 C REMARKS STOU 580 C THE CONTENTS OF THE VECTORS NSTEP, ANS, L ARE REQUIRED IN STOU 590 C SUBSEQUENT STEPS AND MUST NOT BE DESTROYED. STOU 600 C STOU 610 C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED STOU 620 C NONE STOU 630 C STOU 640 C STOU 650 C ..................................................................STOU 660 C STOU 670 SUBROUTINE STOUT (NSTEP,ANS,L,B,S,T,NSTOP) STOU 680 C STOU 690 DIMENSION NSTEP(1),ANS(1),L(1),B(1),S(1),T(1) STOU 700 C STOU 710 C ..................................................................STOU 720 C STOU 730 C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE STOU 740 C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STOU 750 C STATEMENT WHICH FOLLOWS. STOU 760 C STOU 770 C DOUBLE PRECISION ANS,B,S,T STOU 780 C STOU 790 C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS STOU 800 C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS STOU 810 C ROUTINE. STOU 820 C STOU 830 C ..................................................................STOU 840 C STOU 850 1 FORMAT(/5H1STEPI3) STOU 860 2 FORMAT(22H0VARIABLE ENTERED.....I2) STOU 870 3 FORMAT(40H0SUM OF SQUARES REDUCED IN THIS STEP....F13.3) STOU 880 4 FORMAT(40H PROPORTION REDUCED IN THIS STEP........F13.3) STOU 890 5 FORMAT(40H0CUMULATIVE SUM OF SQUARES REDUCED......F13.3) STOU 900 6 FORMAT(40H CUMULATIVE PROPORTION REDUCED..........F13.3,4H OFF13.STOU 910 13) STOU 920 7 FORMAT(4H0FORI3,18H VARIABLES ENTERED) STOU 930 8 FORMAT(38H MULTIPLE CORRELATION COEFFICIENT...F9.3) STOU 940 9 FORMAT(38H F-VALUE FOR ANALYSIS OF VARIANCE...F9.3) STOU 950 10 FORMAT(38H STANDARD ERROR OF ESTIMATE.........F9.3) STOU 960 11 FORMAT(/57H VARIABLE REGRESSION STD. ERROR OF COMPUTSTOU 970 1ED/56H NUMBER COEFFICIENT REG. COEFF. T-VALUE) STOU 980 12 FORMAT(5X,I3,F18.5,F16.5,F14.3) STOU 990 13 FORMAT(12H INTERCEPTF14.5) STOU1000 14 FORMAT(31H0DEPENDENT VARIABLE............I2) STOU1010 15 FORMAT(31H NUMBER OF VARIABLES FORCED....I2) STOU1020 16 FORMAT(31H NUMBER OF VARIABLES DELETED...I2) STOU1030 17 FORMAT(20H (FORCED VARIABLE)) STOU1040 18 FORMAT(38H (ADJUSTED FOR D.F.)...........F9.3) STOU1050 C STOU1060 C TEST WHETHER THIS IS THE FIRST STEP STOU1070 C STOU1080 IF(NSTEP(4)-1) 30, 30, 35 STOU1090 30 WRITE (6,14) NSTEP(1) STOU1100 WRITE (6,15) NSTEP(2) STOU1110 WRITE (6,16) NSTEP(3) STOU1120 C STOU1130 C PRINT THE RESULT OF A STEP STOU1140 C STOU1150 35 WRITE (6,1) NSTEP(4) STOU1160 WRITE (6,2) NSTEP(5) STOU1170 IF(NSTEP(4)-NSTEP(2)) 37, 37, 38 STOU1180 37 WRITE (6,17) STOU1190 38 WRITE (6,3) ANS(1) STOU1200 WRITE (6,4) ANS(2) STOU1210 WRITE (6,5) ANS(3) STOU1220 WRITE (6,6) ANS(4), ANS(5) STOU1230 WRITE (6,7) NSTEP(4) STOU1240 WRITE (6,8) ANS(6) STOU1250 WRITE(6,18)ANS(10) STOU1260 WRITE (6,9) ANS(7) STOU1270 WRITE (6,10) ANS(8) STOU1280 WRITE(6,18)ANS(11) STOU1290 WRITE (6,11) STOU1300 N=NSTEP(4) STOU1310 DO 40 I=1,N STOU1320 40 WRITE (6,12) L(I),B(I),S(I),T(I) STOU1330 WRITE (6,13) ANS(9) STOU1340 C STOU1350 NSTOP=0 STOU1360 RETURN STOU1370 END STOU1380 $DECK STE.CDR SAMPLE 30 6 2 0.001 20 29 289 216 85 14 1 30 30 391 244 92 16 2 40 30 424 246 90 18 2 50 30 313 239 91 10 0 60 35 243 275 95 30 2 70 35 365 219 95 21 2 80 43 396 267 100 39 3 90 43 356 274 79 19 2 100 44 346 255 126 56 3 110 44 156 258 95 28 0 120 44 278 249 110 42 4 130 44 349 252 88 21 1 140 44 141 236 129 56 1 150 44 245 236 97 24 1 160 45 297 256 111 45 3 170 45 310 262 94 20 2 180 45 151 339 96 35 3 190 45 370 357 88 15 4 200 45 379 198 147 64 4 210 45 463 206 105 31 3 220 45 316 245 132 60 4 230 45 280 225 108 36 4 240 44 395 215 101 27 1 250 49 139 220 136 59 0 260 49 245 205 113 37 4 270 49 373 215 88 25 1 280 51 224 215 118 54 3 290 51 677 210 116 33 4 300 51 424 210 140 59 4 310 51 150 210 105 30 0 320 000003 330 001203 340 $EOD .ASSIGN CDR 5 .ASSIGN LPT 6 .ASSIGN DSK 13 .SET CDR STE .EXECUTE/REL STEPR,DATA,STOUT,WES:SSP/LIB %FIN:: .DELETE STE.CDR,FOR13.DAT