100' NAME--WALDS 110' 120' DESCRIPTION--COMPUTES THE IMPORTANT CHARACTERISTICS OF 130' WALDS SEQUENTIAL TEST PROCEDURE. 140' 150' SOURCE--DEAN MYRON TRIBUS,THAYER SCHOOL OF ENGINEERING, 160' DARTMOUTHE COLLEGE, HANOVER, N.H. 03755. 170' 180' INSTRUCTIONS--TYPE "RUN" AND FOLLOW THE INSTRUCTIONS. 190' 200' 210' * * * * * * * MAIN PROGRAM * * * * * * * * * 220' 230 PRINT "TO TEST HYPOTHESES H1 AND H2 WITH COST-K UNITS PER" 240 PRINT "DATA POINT. THERE ARE TWO POSSIBLE ACTS, A1 AND A2" 250 PRINT "THE REWARDS MATRIX IS AS FOLLOWS:" 260 PRINT " H1 TRUE H2 TRUE" 270 PRINT " ACT A1 W1 W2" 280 PRINT " ACT A2 W3 W4" 290 PRINT 300 PRINT "BEFORE TEST BEGINS P0 IS PROBABILITY H1 IS TRUE" 310 PRINT "SYMBOL G IS AN OUTCOME OF A TEST FAVORABLE TO A1" 320 PRINT "P(G/H1)=B1 AND P(G/H2)=B2" 330 PRINT 340 PRINT "INPUT P0,B1,B2,W1,W2,W3,W4,K" 350 INPUT P0,B1,B2,W1,W2,W3,W4,K 360 LET R1=W1-W3 370 LET R2=W4-W2 380 IF ABS(R1/R2)=R1/R2 THEN 420 390 PRINT "YOU HAVE NO PROBLEM. CONSULT THE REWARDS MATRIX AGAIN" 400 PRINT "IT TELLS YOU WHAT TO DO, INDEPENDENT OF ANY TEST" 410 STOP 420 LET C1=LOG(B1/B2) 430 LET C2=LOG((1-B1)/(1-B2)) 440 LET Y1=B1*C1+(1-B1)*C2 450 LET Y2=B2*C1+(1-B2)*C2 460 LET L0=LOG(P0/(1-P0)) 470 LET M1=(R1*Y1-R2*Y2)/K 480 LET M2=2-((R1*R2*Y1*Y2)/(K*K)) 490 PRINT "PARAMETERS; P0=";P0;" B1=";B1;" B2=";B2 500 PRINT "R1=";R1;" R2=";R2;" Y1=";Y1;" Y2=";Y2 510 PRINT "L0=";L0;" M1=";M1" M2=";M2 520 DEF FNZ(Z)=M2+(Z*Z)-(M1*Z)-EXP(Z)-EXP(-Z) 530 LET Z9=1 540 LET Z0=0.001 550 LET Z4=10 560 IF FNZ(Z4)<0 THEN 590 570 LET Z4=2*Z4 580 GO TO 560 590 PRINT Z4 600 IF (Z4/Z0)<1E-5 THEN 730 610 LET X(0)=Z0 620 LET X(1)=Z0+(Z4/4) 630 LET X(2)=Z0 + (Z4/2) 640 LET X(3)=Z0 + (3*Z4/4) 650 LET X(4)=Z0+Z4 660 FOR I=0 TO 4 670 IF FNZ(X(I))*FNZ(X(I+1))>0 THEN 720 680 LET Z0=X(I) 690 LET Z4=X(I+1)-X(I) 700 LET Z9=Z9+1 710 GO TO 590 720 NEXT I 730 LET Z=X(2) 740 PRINT 750 PRINT "Z=";Z" IN";Z9;" TRIALS" 760 LET X=1-EXP(Z)-(R1*Y1/K)+Z 770 LET X=(1-EXP(-Z)-(R2*Y2/K)-Z)/X 780 LET O2=X*Y1/Y2 790 LET O1=Z+LOG(O2) 800 LET P1=O1/(1+O1) 810 LET P2=O2/(1+O2) 820 LET Q1=(P0-P2)/(P1-P2) 830 LET L1=LOG(O1) 840 LET L2=LOG(O2) 850 LET L0=LOG(P0/(1-P0)) 860 LET P(1,1)=Q1*P1/P0 870 LET P(1,2)=((1-P0)-(1-Q1)*(1-P2))/(1-P0) 880 LET P(2,1)=(P0-Q1*P1)/P0 890 LET P(2,2)=(1-Q1)*(1-P2)/(1-P0) 900 LET N=((L1-L0)*P1*Q1+(L2-L0)*P2*(1-Q1))/Y1 910 LET N=N+((L1-L0)*(1-P1)*Q1+(L2-L0)*(1-P2)*(1-Q1))/Y2 920 LET W=(W1*P1+W2*(1-P1))*Q1+(W3*P2+W4*(1-P2))*(1-Q1) 930 LET V=W-K*N 940 PRINT "V=";V;" N=";N;" W=";W 950 PRINT "L0,L1 AND L2 AT";L0;L1;L2;" NAPIERS" 960 PRINT "P0,P1,P2="P0;P1;P2 970 PRINT "P(A1/H1)=";P(1,1);" P(A2/H2)=";P(2,2) 980 PRINT "P(A2/H1)=";P(2,1);" P(A1/H2)=";P(1,2) 990 PRINT "P(H1/A1)=";P1;" P(H2/A1)=";1-P1 1000 PRINT "P(H1/A2)=";P2;" P(H2/A2)=";1-P2 1010 PRINT "P(G/A1)=";B1*P1+B2*(1-P1) 1020 END