100' NAME--STAT18 110' 120' DESCRIPTION--COMPUTES THE ANALYSIS OF VARIANCE TABLE AND 130' THE F-RATIO FOR TREATMENTS FOR A YOUDEN SQUARE DESIGN. 140' SUM-OF-SQUARES FOR TREATMENTS IS ADJUSTED BECAUSE OF INCOMPLETENESS. 150' 160' SOURCE--UNKNOWN 170' 180' INSTRUCTIONS--PLACE DATA IN LINE 1200 AND FOLLOWING. 190' FIRST DATA IS N,THE NUMBER OF ROWS AND TREATMENTS, THEN K, 200' THE NUMBER OF COLUMNS AND REPLICATIONS OF EACH TREATMENT 210' IN THE EXPERIMENT. NEXT ENTER THE M(I,H) MATRIX BY ROWS. 220' M(I,H)=J IF TREATMENT J APPEARS IN ROW I,COLUMN H. 230' THIS MATRIX HAS DIMENSIONS N BY K. NEXT ENTER THE N(I,J) 240' MATRIX. N(I,J)=1 IF TREATMENT J APPEARS IN ROW I AND IS 250' 0 OTHERWISE. THE N(I,J) MATRIX HAS DIMENSIONS N BY N. 260' FINALLY ENTER THE MATRIX OF OBSERVATIONS X(I,H) BY ROWS. 270' IF N>10 DIM STATEMENTS MUST BE ADDED. 280' SAMPLE DATA ARE IN LINES 1200 THROUGH 1320. 290' 300' 310' * * * * * * MAIN PROGRAM * * * * * * * * * 320' 330 READ N, K 340 LET L = K*(K-1)/(N-1) 350 MAT READ M(N,K) 360 MAT READ N(N,N) 370 FOR I = 1 TO N 380 FOR H = 1 TO K 390 READ X(I,H) 400 LET R(I) = R(I) + X(I,H) 410 LET C(H) = C(H) + X(I,H) 420 LET T(M(I,H)) = T(M(I,H)) + X(I,H) 430 LET S = S + X(I,H) 440 LET S2 = S2 + X(I,H)^2 450 NEXT H 460 NEXT I 470 FOR J = 1 TO N 480 FOR I = 1 TO N 490 LET P(J) = P(J) + N(I,J)*R(I) 500 NEXT I 510 LET Q(J)=K*T(J)-P(J) 520 NEXT J 530 LET C = S*S/N/K 540 FOR I = 1 TO N 550 LET R1 = R1 + R(I)^2 560 LET T1 = T1 + Q(I)^2 570 NEXT I 580 FOR H = 1 TO K 590 LET C1 = C1 + C(H)^2 600 NEXT H 610 LET R2 = R1/K - C 620 LET C2 = C1/N - C 630 LET T2 = T1/N/K/L 640 LET D = (N-1)*(K-2) 650 LET D1 = N*(K-2) + 1 660 LET E2 = S2 - R2 - C2 - T2 - C 670 PRINT "ANOVA TABLE:" 680 PRINT 690 PRINT "ITEM", "SS", "DF", "MS" 700 PRINT 710 PRINT "GRAND TOTAL", S2, N*K 720 PRINT "GRAND MEAN", C, " 1" 730 PRINT "TREATMENTS", T2, N-1, T2/(N-1) 740 PRINT "ROWS", R2, N-1" ...SS NOT ADJUSTED..." 750 PRINT "COLUMNS", C2, K-1, C2/(K-1) 760 PRINT "ERROR", E2, D, E2/D 770 PRINT 780 PRINT 790 LET F = T2/(N-1)/(E2/D) 800 PRINT "TREATMENT F-RATIO ="F", ON"N-1"AND"D"DEGREES OF FREEDOM." 810 LET G=F 820 LET M=N-1 830 LET N=D 840 GOSUB 900 850 PRINT 860 PRINT "IF MSC/MSE ="C2/(K-1)/(E2/D)" IS NOT SIGNIFICANT, IT MAY BE" 870 PRINT "DESIRABLE TO POOL COLUMN AND ERROR SS TO OBTAIN AS AN" 880 PRINT"ERROR MS ESTIMATE";(C2+E2)/D1;"WITH";D1;"DEGREES OF FREEDOM." 890 STOP 900 REM THE SUBROUTINE FOR COMPUTATION OF THE F PROBABILITIES WAS 910 REM PROGRAMMED BY VICTOR E. MCGEE, PSYCHOLOGY DEPARTMENT, 646-2771 920 LET P=1 930 IF G<1 THEN 980 940 LET A=M 950 LET B=N 960 LET F=G 970 GO TO 1010 980 LET A=N 990 LET B=M 1000 LET F=1/G 1010 LET A1=2/(9*A) 1020 LET B1=2/(9*B) 1030 LET Z=ABS((1-B1)*F^(.333333)-1+A1) 1040 LET Z=Z/SQR(B1*F^(.666667)+A1) 1050 IF B<4 THEN 1090 1060 LET P=(1+Z*(.196854+Z*(.115194+Z*(.000344+Z*.019527))))^4 1070 LET P=.5/P 1080 GO TO 1110 1090 LET Z=Z*(1+.08*Z^4/B^3) 1100 GO TO 1060 1110 IF G<1 THEN 1130 1120 GO TO 1150 1130 LET P=1-P 1140 GO TO 1150 1150 PRINT 1160 LET P = INT(100000*P)/100000 1170 PRINT "EXACT PROB. OF F=";G;"WITH ( "M;", "N;" ) D.F. IS ";P 1180 PRINT 1190 RETURN 1200 DATA 4,3 1210 DATA 1,2,3 1220 DATA 4,1,2 1230 DATA 2,3,4 1240 DATA 3,4,1 1250 DATA 1,1,1,0 1260 DATA 1,1,0,1 1270 DATA 0,1,1,1 1280 DATA 1,0,1,1 1290 DATA 2,1,0 1300 DATA -2,2,2 1310 DATA -1,-1,-3 1320 DATA 0,-4,2 1330END