100' NAME--STAT16 110' 120' DESCRIPTION--COMPUTES THE ANALYSIS OF VARIANCE TABLE FOR 130' A SIMPLE GRAECO-LATIN SQUARE DESIGN. 140' 150' SOURCE--UNKNOWN 160' 170' INSTRUCTIONS--PLACE DATA IN LINE 1100 AND FOLLOWING. 180' FIRST DATA IS N, THE NUMBER OF TREATMENTS. THEN 190' THE MATRIX GIVING THE LATIN TREATMENT ASSIGNMENTS 200' (NUMBERED FROM 1 TO N ONLY) IS ENTERED. FOLLOWING 210' THAT THE MATRIX GIVING THE GRAECO TREATMENTS IS ENTERED. 220' FINALLY THE MATRIX OF DATA IS ENTERED. ALL MATRICES SHOULD 230' BE ENTERED BY ROWS. IF N IS GREATER THAN 10 A DIM 240' STATEMENT SHOULD BE ADDED TO THE PROGRAM. 250' SAMPLE DATA ARE IN LINES 1100 THROUGH 1160. 260' 270' 280' * * * * * * MAIN PROGRAM * * * * * * * * * 290' 300 READ N 310 MAT READ M(N,N) 320 MAT READ N(N,N) 330 FOR I = 1 TO N 340 FOR J = 1 TO N 350 READ X 360 LET R(I) = R(I) + X 370 LET C(J) = C(J) + X 380 LET T(M(I,J)) = T(M(I,J)) + X 390 LET G(N(I,J)) = G(N(I,J)) + X 400 LET S = S + X 410 LET S0 = S0 + X*X 420 NEXT J 430 NEXT I 440 FOR I = 1 TO N 450 LET S4 = S4 + R(I)^2 460 LET S5 = S5 + C(I)^2 470 LET S6 = S6 + T(I)^2 480 LET S3 = S3 + G(I)^2 490 NEXT I 500 LET C = S*S/N/N 510 LET S4 = S4/N - C 520 LET S5 = S5 / N - C 530 LET S6 = S6 /N - C 540 LET S3 = S3/N - C 550 LET D1 = N - 1 560 LET D2 = D1 *(N - 3) 570 LET S7 = S0 - C - S4 - S5 - S6 580 LET S7 = S7 - S3 590 PRINT "ITEM ", "SUM-SQR ", "DEG. FREE. ", "MEAN-SQR ", "F-RATIO" 600 PRINT "---- ", "------- ", "---------- ", "-------- ", "-------" 610 LET S8 = S7/D2 620 PRINT "ROWS ", S4, D1, S4/D1, S4/D1/S8 630 PRINT "COLS ", S5, D1, S5/D1, S5/D1/S8 640 PRINT "TREAT L ", S6, D1, S6/D1, S6/D1/S8 650 PRINT "TREAT G ", S3, D1, S3/D1, S3/D1/S8 660 PRINT "ERROR ", S7, D2, S8 670 PRINT 680 PRINT 690 LET M=D1 700 LET N=D2 710 LET G=S4/D1/S8 720 GOSUB 800 730 LET G=S5/D1/S8 740 GOSUB 800 750 LET G=S6/D1/S8 760 GOSUB 800 770 LET G=S3/D1/S8 780 GOSUB 800 790 STOP 800 REM THE SUBROUTINE FOR COMPUTATION OF THE F PROBABILITIES WAS 810 REM PROGRAMMED BY VICTOR E. MCGEE, PSYCHOLOGY DEPARTMENT, 646-2771 820 LET P=1 830 IF G<1 THEN 880 840 LET A=M 850 LET B=N 860 LET F=G 870 GO TO 910 880 LET A=N 890 LET B=M 900 LET F=1/G 910 LET A1=2/(9*A) 920 LET B1=2/(9*B) 930 LET Z=ABS((1-B1)*F^(.333333)-1+A1) 940 LET Z=Z/SQR(B1*F^(.666667)+A1) 950 IF B<4 THEN 990 960 LET P=(1+Z*(.196854+Z*(.115194+Z*(.000344+Z*.019527))))^4 970 LET P=.5/P 980 GO TO 1020 990 LET Z=Z*(1+.08*Z^4/B^3) 1000 GO TO 960 1010 IF G<1 THEN 1030 1020 GO TO 1050 1030 LET P=1-P 1040 GO TO 1050 1050 PRINT 1060 LET P = INT(100000*P)/100000 1070 PRINT "EXACT PROB. OF F=";G;"WITH ( "M;", "N;" ) D.F. IS ";P 1080 PRINT 1090 RETURN 1100 DATA 4 1110 DATA 1,2,3,4,2,1,4,3,3,4,1,2,4,3,2,1 1120 DATA 4,3,2,1,2,1,4,3,1,2,3,4,3,4,1,2 1130 DATA 24, 47, 35, 42 1140 DATA 47, 85, 23, 47 1150 DATA 65, 49, 23, 62 1160 DATA 12, 14, 19, 23 1170END